1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2010 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * sunpm.c builds sunpm.o "power management framework" 31 * kernel-resident power management code. Implements power management 32 * policy 33 * Assumes: all backwards compat. device components wake up on & 34 * the pm_info pointer in dev_info is initially NULL 35 * 36 * PM - (device) Power Management 37 * 38 * Each device may have 0 or more components. If a device has no components, 39 * then it can't be power managed. Each component has 2 or more 40 * power states. 41 * 42 * "Backwards Compatible" (bc) devices: 43 * There are two different types of devices from the point of view of this 44 * code. The original type, left over from the original PM implementation on 45 * the voyager platform are known in this code as "backwards compatible" 46 * devices (PM_ISBC(dip) returns true). 47 * They are recognized by the pm code by the lack of a pm-components property 48 * and a call made by the driver to pm_create_components(9F). 49 * For these devices, component 0 is special, and represents the power state 50 * of the device. If component 0 is to be set to power level 0 (off), then 51 * the framework must first call into the driver's detach(9E) routine with 52 * DDI_PM_SUSPEND, to get the driver to save the hardware state of the device. 53 * After setting component 0 from 0 to a non-zero power level, a call must be 54 * made into the driver's attach(9E) routine with DDI_PM_RESUME. 55 * 56 * Currently, the only way to get a bc device power managed is via a set of 57 * ioctls (PM_DIRECT_PM, PM_SET_CURRENT_POWER) issued to /dev/pm. 58 * 59 * For non-bc devices, the driver describes the components by exporting a 60 * pm-components(9P) property that tells how many components there are, 61 * tells what each component's power state values are, and provides human 62 * readable strings (currently unused) for each component name and power state. 63 * Devices which export pm-components(9P) are automatically power managed 64 * whenever autopm is enabled (via PM_START_PM ioctl issued by pmconfig(8) 65 * after parsing power.conf(5)). The exception to this rule is that power 66 * manageable CPU devices may be automatically managed independently of autopm 67 * by either enabling or disabling (via PM_START_CPUPM and PM_STOP_CPUPM 68 * ioctls) cpupm. If the CPU devices are not managed independently, then they 69 * are managed by autopm. In either case, for automatically power managed 70 * devices, all components are considered independent of each other, and it is 71 * up to the driver to decide when a transition requires saving or restoring 72 * hardware state. 73 * 74 * Each device component also has a threshold time associated with each power 75 * transition (see power.conf(5)), and a busy/idle state maintained by the 76 * driver calling pm_idle_component(9F) and pm_busy_component(9F). 77 * Components are created idle. 78 * 79 * The PM framework provides several functions: 80 * -implement PM policy as described in power.conf(5) 81 * Policy is set by pmconfig(8) issuing pm ioctls based on power.conf(5). 82 * Policies consist of: 83 * -set threshold values (defaults if none provided by pmconfig) 84 * -set dependencies among devices 85 * -enable/disable autopm 86 * -enable/disable cpupm 87 * -turn down idle components based on thresholds (if autopm or cpupm is 88 * enabled) (aka scanning) 89 * -maintain power states based on dependencies among devices 90 * -upon request, or when the frame buffer powers off, attempt to turn off 91 * all components that are idle or become idle over the next (10 sec) 92 * period in an attempt to get down to an EnergyStar compliant state 93 * -prevent powering off of a device which exported the 94 * pm-no-involuntary-power-cycles property without active involvement of 95 * the device's driver (so no removing power when the device driver is 96 * not attached) 97 * -provide a mechanism for a device driver to request that a device's component 98 * be brought back to the power level necessary for the use of the device 99 * -allow a process to directly control the power levels of device components 100 * (via ioctls issued to /dev/pm--see usr/src/uts/common/io/pm.c) 101 * -ensure that the console frame buffer is powered up before being referenced 102 * via prom_printf() or other prom calls that might generate console output 103 * -maintain implicit dependencies (e.g. parent must be powered up if child is) 104 * -provide "backwards compatible" behavior for devices without pm-components 105 * property 106 * 107 * Scanning: 108 * Whenever autopm or cpupm is enabled, the framework attempts to bring each 109 * component of each managed device to its lowest power based on the threshold 110 * of idleness associated with each transition and the busy/idle state of the 111 * component. 112 * 113 * The actual work of this is done by pm_scan_dev(), which cycles through each 114 * component of a device, checking its idleness against its current threshold, 115 * and calling pm_set_power() as appropriate to change the power level. 116 * This function also indicates when it would next be profitable to scan the 117 * device again, and a new scan is scheduled after that time. 118 * 119 * Dependencies: 120 * It is possible to establish a dependency between the power states of two 121 * otherwise unrelated devices. This is currently done to ensure that the 122 * cdrom is always up whenever the console framebuffer is up, so that the user 123 * can insert a cdrom and see a popup as a result. 124 * 125 * The dependency terminology used in power.conf(5) is not easy to understand, 126 * so we've adopted a different terminology in the implementation. We write 127 * of a "keeps up" and a "kept up" device. A relationship can be established 128 * where one device keeps up another. That means that if the keepsup device 129 * has any component that is at a non-zero power level, all components of the 130 * "kept up" device must be brought to full power. This relationship is 131 * asynchronous. When the keeping device is powered up, a request is queued 132 * to a worker thread to bring up the kept device. The caller does not wait. 133 * Scan will not turn down a kept up device. 134 * 135 * Direct PM: 136 * A device may be directly power managed by a process. If a device is 137 * directly pm'd, then it will not be scanned, and dependencies will not be 138 * enforced. * If a directly pm'd device's driver requests a power change (via 139 * pm_raise_power(9F)), then the request is blocked and notification is sent 140 * to the controlling process, which must issue the requested power change for 141 * the driver to proceed. 142 * 143 */ 144 145 #include <sys/types.h> 146 #include <sys/errno.h> 147 #include <sys/callb.h> /* callback registration during CPR */ 148 #include <sys/conf.h> /* driver flags and functions */ 149 #include <sys/open.h> /* OTYP_CHR definition */ 150 #include <sys/stat.h> /* S_IFCHR definition */ 151 #include <sys/pathname.h> /* name -> dev_info xlation */ 152 #include <sys/ddi_impldefs.h> /* dev_info node fields */ 153 #include <sys/kmem.h> /* memory alloc stuff */ 154 #include <sys/debug.h> 155 #include <sys/archsystm.h> 156 #include <sys/pm.h> 157 #include <sys/ddi.h> 158 #include <sys/sunddi.h> 159 #include <sys/sunndi.h> 160 #include <sys/sunpm.h> 161 #include <sys/epm.h> 162 #include <sys/vfs.h> 163 #include <sys/mode.h> 164 #include <sys/mkdev.h> 165 #include <sys/promif.h> 166 #include <sys/consdev.h> 167 #include <sys/esunddi.h> 168 #include <sys/modctl.h> 169 #include <sys/fs/ufs_fs.h> 170 #include <sys/note.h> 171 #include <sys/taskq.h> 172 #include <sys/bootconf.h> 173 #include <sys/reboot.h> 174 #include <sys/spl.h> 175 #include <sys/disp.h> 176 #include <sys/sobject.h> 177 #include <sys/sunmdi.h> 178 #include <sys/systm.h> 179 #include <sys/cpuvar.h> 180 #include <sys/cyclic.h> 181 #include <sys/uadmin.h> 182 #include <sys/srn.h> 183 184 185 /* 186 * PM LOCKING 187 * The list of locks: 188 * Global pm mutex locks. 189 * 190 * pm_scan_lock: 191 * It protects the timeout id of the scan thread, and the value 192 * of autopm_enabled and cpupm. This lock is not held 193 * concurrently with any other PM locks. 194 * 195 * pm_clone_lock: Protects the clone list and count of poll events 196 * pending for the pm driver. 197 * Lock ordering: 198 * pm_clone_lock -> pm_pscc_interest_rwlock, 199 * pm_clone_lock -> pm_pscc_direct_rwlock. 200 * 201 * pm_rsvp_lock: 202 * Used to synchronize the data structures used for processes 203 * to rendezvous with state change information when doing 204 * direct PM. 205 * Lock ordering: 206 * pm_rsvp_lock -> pm_pscc_interest_rwlock, 207 * pm_rsvp_lock -> pm_pscc_direct_rwlock, 208 * pm_rsvp_lock -> pm_clone_lock. 209 * 210 * ppm_lock: protects the list of registered ppm drivers 211 * Lock ordering: 212 * ppm_lock -> ppm driver unit_lock 213 * 214 * pm_compcnt_lock: 215 * Protects count of components that are not at their lowest 216 * power level. 217 * Lock ordering: 218 * pm_compcnt_lock -> ppm_lock. 219 * 220 * pm_dep_thread_lock: 221 * Protects work list for pm_dep_thread. Not taken concurrently 222 * with any other pm lock. 223 * 224 * pm_remdrv_lock: 225 * Serializes the operation of removing noinvol data structure 226 * entries for a branch of the tree when a driver has been 227 * removed from the system (modctl_rem_major). 228 * Lock ordering: 229 * pm_remdrv_lock -> pm_noinvol_rwlock. 230 * 231 * pm_cfb_lock: (High level spin lock) 232 * Protects the count of how many components of the console 233 * frame buffer are off (so we know if we have to bring up the 234 * console as a result of a prom_printf, etc. 235 * No other locks are taken while holding this lock. 236 * 237 * pm_loan_lock: 238 * Protects the lock_loan list. List is used to record that one 239 * thread has acquired a power lock but has launched another thread 240 * to complete its processing. An entry in the list indicates that 241 * the worker thread can borrow the lock held by the other thread, 242 * which must block on the completion of the worker. Use is 243 * specific to module loading. 244 * No other locks are taken while holding this lock. 245 * 246 * Global PM rwlocks 247 * 248 * pm_thresh_rwlock: 249 * Protects the list of thresholds recorded for future use (when 250 * devices attach). 251 * Lock ordering: 252 * pm_thresh_rwlock -> devi_pm_lock 253 * 254 * pm_noinvol_rwlock: 255 * Protects list of detached nodes that had noinvol registered. 256 * No other PM locks are taken while holding pm_noinvol_rwlock. 257 * 258 * pm_pscc_direct_rwlock: 259 * Protects the list that maps devices being directly power 260 * managed to the processes that manage them. 261 * Lock ordering: 262 * pm_pscc_direct_rwlock -> psce_lock 263 * 264 * pm_pscc_interest_rwlock; 265 * Protects the list that maps state change events to processes 266 * that want to know about them. 267 * Lock ordering: 268 * pm_pscc_interest_rwlock -> psce_lock 269 * 270 * per-dip locks: 271 * 272 * Each node has these per-dip locks, which are only used if the device is 273 * a candidate for power management (e.g. has pm components) 274 * 275 * devi_pm_lock: 276 * Protects all power management state of the node except for 277 * power level, which is protected by ndi_devi_enter(). 278 * Encapsulated in macros PM_LOCK_DIP()/PM_UNLOCK_DIP(). 279 * Lock ordering: 280 * devi_pm_lock -> pm_rsvp_lock, 281 * devi_pm_lock -> pm_dep_thread_lock, 282 * devi_pm_lock -> pm_noinvol_rwlock, 283 * devi_pm_lock -> power lock 284 * 285 * power lock (ndi_devi_enter()): 286 * Since changing power level is possibly a slow operation (30 287 * seconds to spin up a disk drive), this is locked separately. 288 * Since a call into the driver to change the power level of one 289 * component may result in a call back into the framework to change 290 * the power level of another, this lock allows re-entrancy by 291 * the same thread (ndi_devi_enter is used for this because 292 * the USB framework uses ndi_devi_enter in its power entry point, 293 * and use of any other lock would produce a deadlock. 294 * 295 * devi_pm_busy_lock: 296 * This lock protects the integrity of the busy count. It is 297 * only taken by pm_busy_component() and pm_idle_component and 298 * some code that adjust the busy time after the timer gets set 299 * up or after a CPR operation. It is per-dip to keep from 300 * single-threading all the disk drivers on a system. 301 * It could be per component instead, but most devices have 302 * only one component. 303 * No other PM locks are taken while holding this lock. 304 * 305 */ 306 307 static int stdout_is_framebuffer; 308 static kmutex_t e_pm_power_lock; 309 static kmutex_t pm_loan_lock; 310 kmutex_t pm_scan_lock; 311 callb_id_t pm_cpr_cb_id; 312 callb_id_t pm_panic_cb_id; 313 callb_id_t pm_halt_cb_id; 314 int pm_comps_notlowest; /* no. of comps not at lowest power */ 315 int pm_powering_down; /* cpr is source of DDI_SUSPEND calls */ 316 317 clock_t pm_id_ticks = 5; /* ticks to wait before scan during idle-down */ 318 clock_t pm_default_min_scan = PM_DEFAULT_MIN_SCAN; 319 clock_t pm_cpu_min_scan = PM_CPU_MIN_SCAN; 320 321 #define PM_MIN_SCAN(dip) (PM_ISCPU(dip) ? pm_cpu_min_scan : \ 322 pm_default_min_scan) 323 324 static int pm_busop_set_power(dev_info_t *, 325 void *, pm_bus_power_op_t, void *, void *); 326 static int pm_busop_match_request(dev_info_t *, void *); 327 static int pm_all_to_normal_nexus(dev_info_t *, pm_canblock_t); 328 static void e_pm_set_max_power(dev_info_t *, int, int); 329 static int e_pm_get_max_power(dev_info_t *, int); 330 331 /* 332 * Dependency Processing is done thru a seperate thread. 333 */ 334 kmutex_t pm_dep_thread_lock; 335 kcondvar_t pm_dep_thread_cv; 336 pm_dep_wk_t *pm_dep_thread_workq = NULL; 337 pm_dep_wk_t *pm_dep_thread_tail = NULL; 338 339 /* 340 * Autopm must be turned on by a PM_START_PM ioctl, so we don't end up 341 * power managing things in single user mode that have been suppressed via 342 * power.conf entries. Protected by pm_scan_lock. 343 */ 344 int autopm_enabled; 345 346 /* 347 * cpupm is turned on and off, by the PM_START_CPUPM and PM_STOP_CPUPM ioctls, 348 * to define the power management behavior of CPU devices separate from 349 * autopm. Protected by pm_scan_lock. 350 */ 351 pm_cpupm_t cpupm = PM_CPUPM_NOTSET; 352 353 /* 354 * Defines the default mode of operation for CPU power management, 355 * either the polling implementation, or the event based dispatcher driven 356 * implementation. 357 */ 358 pm_cpupm_t cpupm_default_mode = PM_CPUPM_EVENT; 359 360 /* 361 * AutoS3 depends on autopm being enabled, and must be enabled by 362 * PM_START_AUTOS3 command. 363 */ 364 int autoS3_enabled; 365 366 #if !defined(__sparc) 367 /* 368 * on sparc these live in fillsysinfo.c 369 * 370 * If this variable is non-zero, cpr should return "not supported" when 371 * it is queried even though it would normally be supported on this platform. 372 */ 373 int cpr_supported_override; 374 375 /* 376 * Some platforms may need to support CPR even in the absence of 377 * having the correct platform id information. If this 378 * variable is non-zero, cpr should proceed even in the absence 379 * of otherwise being qualified. 380 */ 381 int cpr_platform_enable = 0; 382 383 #endif 384 385 /* 386 * pm_S3_enabled indicates that we believe the platform can support S3, 387 * which we get from pmconfig(8) 388 */ 389 int pm_S3_enabled; 390 391 /* 392 * This flag is true while processes are stopped for a checkpoint/resume. 393 * Controlling processes of direct pm'd devices are not available to 394 * participate in power level changes, so we bypass them when this is set. 395 */ 396 static int pm_processes_stopped; 397 398 #ifdef DEBUG 399 400 /* 401 * see common/sys/epm.h for PMD_* values 402 */ 403 404 uint_t pm_debug = 0; 405 406 /* 407 * If pm_divertdebug is set, then no prom_printf calls will be made by 408 * PMD(), which will prevent debug output from bringing up the console 409 * frame buffer. Clearing this variable before setting pm_debug will result 410 * in PMD output going to the console. 411 * 412 * pm_divertdebug is incremented in pm_set_power() if dip == cfb_dip to avoid 413 * deadlocks and decremented at the end of pm_set_power() 414 */ 415 uint_t pm_divertdebug = 1; 416 volatile uint_t pm_debug_to_console = 0; 417 kmutex_t pm_debug_lock; /* protects pm_divertdebug */ 418 419 void prdeps(char *); 420 #endif 421 422 /* Globals */ 423 424 /* 425 * List of recorded thresholds and dependencies 426 */ 427 pm_thresh_rec_t *pm_thresh_head; 428 krwlock_t pm_thresh_rwlock; 429 430 pm_pdr_t *pm_dep_head; 431 static int pm_unresolved_deps = 0; 432 static int pm_prop_deps = 0; 433 434 /* 435 * List of devices that exported no-involuntary-power-cycles property 436 */ 437 pm_noinvol_t *pm_noinvol_head; 438 439 /* 440 * Locks used in noinvol processing 441 */ 442 krwlock_t pm_noinvol_rwlock; 443 kmutex_t pm_remdrv_lock; 444 445 int pm_default_idle_threshold = PM_DEFAULT_SYS_IDLENESS; 446 int pm_system_idle_threshold; 447 int pm_cpu_idle_threshold; 448 449 /* 450 * By default nexus has 0 threshold, and depends on its children to keep it up 451 */ 452 int pm_default_nexus_threshold = 0; 453 454 /* 455 * Data structures shared with common/io/pm.c 456 */ 457 kmutex_t pm_clone_lock; 458 kcondvar_t pm_clones_cv[PM_MAX_CLONE]; 459 uint_t pm_poll_cnt[PM_MAX_CLONE]; /* count of events for poll */ 460 unsigned char pm_interest[PM_MAX_CLONE]; 461 struct pollhead pm_pollhead; 462 463 /* 464 * Data structures shared with common/io/srn.c 465 */ 466 kmutex_t srn_clone_lock; /* protects srn_signal, srn_inuse */ 467 void (*srn_signal)(int type, int event); 468 int srn_inuse; /* stop srn detach */ 469 470 extern int hz; 471 extern char *platform_module_list[]; 472 473 /* 474 * Wrappers for use in ddi_walk_devs 475 */ 476 477 static int pm_set_dev_thr_walk(dev_info_t *, void *); 478 static int pm_restore_direct_lvl_walk(dev_info_t *, void *); 479 static int pm_save_direct_lvl_walk(dev_info_t *, void *); 480 static int pm_discard_dep_walk(dev_info_t *, void *); 481 #ifdef DEBUG 482 static int pm_desc_pwrchk_walk(dev_info_t *, void *); 483 #endif 484 485 /* 486 * Routines for managing noinvol devices 487 */ 488 int pm_noinvol_update(int, int, int, char *, dev_info_t *); 489 void pm_noinvol_update_node(dev_info_t *, 490 pm_bp_noinvol_t *req); 491 492 kmutex_t pm_rsvp_lock; 493 kmutex_t pm_compcnt_lock; 494 krwlock_t pm_pscc_direct_rwlock; 495 krwlock_t pm_pscc_interest_rwlock; 496 497 #define PSC_INTEREST 0 /* belongs to interest psc list */ 498 #define PSC_DIRECT 1 /* belongs to direct psc list */ 499 500 pscc_t *pm_pscc_interest; 501 pscc_t *pm_pscc_direct; 502 503 #define PM_MAJOR(dip) ddi_driver_major(dip) 504 #define PM_IS_NEXUS(dip) ((PM_MAJOR(dip) == DDI_MAJOR_T_NONE) ? 0 : \ 505 NEXUS_DRV(devopsp[PM_MAJOR(dip)])) 506 #define POWERING_ON(old, new) ((old) == 0 && (new) != 0) 507 #define POWERING_OFF(old, new) ((old) != 0 && (new) == 0) 508 509 #define PM_INCR_NOTLOWEST(dip) { \ 510 mutex_enter(&pm_compcnt_lock); \ 511 if (!PM_IS_NEXUS(dip) || \ 512 (DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\ 513 if (pm_comps_notlowest == 0) \ 514 pm_ppm_notify_all_lowest(dip, PM_NOT_ALL_LOWEST);\ 515 pm_comps_notlowest++; \ 516 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr notlowest->%d\n",\ 517 pmf, PM_DEVICE(dip), pm_comps_notlowest)) \ 518 } \ 519 mutex_exit(&pm_compcnt_lock); \ 520 } 521 #define PM_DECR_NOTLOWEST(dip) { \ 522 mutex_enter(&pm_compcnt_lock); \ 523 if (!PM_IS_NEXUS(dip) || \ 524 (DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\ 525 ASSERT(pm_comps_notlowest); \ 526 pm_comps_notlowest--; \ 527 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr notlowest to " \ 528 "%d\n", pmf, PM_DEVICE(dip), pm_comps_notlowest))\ 529 if (pm_comps_notlowest == 0) \ 530 pm_ppm_notify_all_lowest(dip, PM_ALL_LOWEST); \ 531 } \ 532 mutex_exit(&pm_compcnt_lock); \ 533 } 534 535 /* 536 * console frame-buffer power-management is not enabled when 537 * debugging services are present. to override, set pm_cfb_override 538 * to non-zero. 539 */ 540 uint_t pm_cfb_comps_off = 0; /* PM_LEVEL_UNKNOWN is considered on */ 541 kmutex_t pm_cfb_lock; 542 int pm_cfb_enabled = 1; /* non-zero allows pm of console frame buffer */ 543 #ifdef DEBUG 544 int pm_cfb_override = 1; /* non-zero allows pm of cfb with debuggers */ 545 #else 546 int pm_cfb_override = 0; /* non-zero allows pm of cfb with debuggers */ 547 #endif 548 549 static dev_info_t *cfb_dip = 0; 550 static dev_info_t *cfb_dip_detaching = 0; 551 uint_t cfb_inuse = 0; 552 static ddi_softintr_t pm_soft_id; 553 static boolean_t pm_soft_pending; 554 int pm_scans_disabled = 0; 555 556 /* 557 * A structure to record the fact that one thread has borrowed a lock held 558 * by another thread. The context requires that the lender block on the 559 * completion of the borrower. 560 */ 561 typedef struct lock_loan { 562 struct lock_loan *pmlk_next; 563 kthread_t *pmlk_borrower; 564 kthread_t *pmlk_lender; 565 dev_info_t *pmlk_dip; 566 } lock_loan_t; 567 static lock_loan_t lock_loan_head; /* list head is a dummy element */ 568 569 #ifdef DEBUG 570 #ifdef PMDDEBUG 571 #define PMD_FUNC(func, name) char *(func) = (name); 572 #else /* !PMDDEBUG */ 573 #define PMD_FUNC(func, name) 574 #endif /* PMDDEBUG */ 575 #else /* !DEBUG */ 576 #define PMD_FUNC(func, name) 577 #endif /* DEBUG */ 578 579 580 /* 581 * Must be called before first device (including pseudo) attach 582 */ 583 void 584 pm_init_locks(void) 585 { 586 mutex_init(&pm_scan_lock, NULL, MUTEX_DRIVER, NULL); 587 mutex_init(&pm_rsvp_lock, NULL, MUTEX_DRIVER, NULL); 588 mutex_init(&pm_compcnt_lock, NULL, MUTEX_DRIVER, NULL); 589 mutex_init(&pm_dep_thread_lock, NULL, MUTEX_DRIVER, NULL); 590 mutex_init(&pm_remdrv_lock, NULL, MUTEX_DRIVER, NULL); 591 mutex_init(&pm_loan_lock, NULL, MUTEX_DRIVER, NULL); 592 rw_init(&pm_thresh_rwlock, NULL, RW_DEFAULT, NULL); 593 rw_init(&pm_noinvol_rwlock, NULL, RW_DEFAULT, NULL); 594 cv_init(&pm_dep_thread_cv, NULL, CV_DEFAULT, NULL); 595 } 596 597 static int pm_reset_timestamps(dev_info_t *, void *); 598 599 static boolean_t 600 pm_cpr_callb(void *arg, int code) 601 { 602 _NOTE(ARGUNUSED(arg)) 603 static int auto_save; 604 static pm_cpupm_t cpupm_save; 605 606 switch (code) { 607 case CB_CODE_CPR_CHKPT: 608 /* 609 * Cancel scan or wait for scan in progress to finish 610 * Other threads may be trying to restart the scan, so we 611 * have to keep at it unil it sticks 612 */ 613 mutex_enter(&pm_scan_lock); 614 ASSERT(!pm_scans_disabled); 615 pm_scans_disabled = 1; 616 auto_save = autopm_enabled; 617 autopm_enabled = 0; 618 cpupm_save = cpupm; 619 cpupm = PM_CPUPM_NOTSET; 620 mutex_exit(&pm_scan_lock); 621 ddi_walk_devs(ddi_root_node(), pm_scan_stop_walk, NULL); 622 break; 623 624 case CB_CODE_CPR_RESUME: 625 ASSERT(!autopm_enabled); 626 ASSERT(cpupm == PM_CPUPM_NOTSET); 627 ASSERT(pm_scans_disabled); 628 pm_scans_disabled = 0; 629 /* 630 * Call pm_reset_timestamps to reset timestamps of each 631 * device to the time when the system is resumed so that their 632 * idleness can be re-calculated. That's to avoid devices from 633 * being powered down right after resume if the system was in 634 * suspended mode long enough. 635 */ 636 ddi_walk_devs(ddi_root_node(), pm_reset_timestamps, NULL); 637 638 autopm_enabled = auto_save; 639 cpupm = cpupm_save; 640 /* 641 * If there is any auto-pm device, get the scanning 642 * going. Otherwise don't bother. 643 */ 644 ddi_walk_devs(ddi_root_node(), pm_rescan_walk, NULL); 645 break; 646 } 647 return (B_TRUE); 648 } 649 650 /* 651 * This callback routine is called when there is a system panic. This function 652 * exists for prototype matching. 653 */ 654 static boolean_t 655 pm_panic_callb(void *arg, int code) 656 { 657 _NOTE(ARGUNUSED(arg, code)) 658 void pm_cfb_check_and_powerup(void); 659 PMD(PMD_CFB, ("pm_panic_callb\n")) 660 pm_cfb_check_and_powerup(); 661 return (B_TRUE); 662 } 663 664 static boolean_t 665 pm_halt_callb(void *arg, int code) 666 { 667 _NOTE(ARGUNUSED(arg, code)) 668 return (B_TRUE); 669 } 670 671 static void pm_dep_thread(void); 672 673 /* 674 * This needs to be called after the root and platform drivers are loaded 675 * and be single-threaded with respect to driver attach/detach 676 */ 677 void 678 pm_init(void) 679 { 680 PMD_FUNC(pmf, "pm_init") 681 char **mod; 682 extern pri_t minclsyspri; 683 684 pm_comps_notlowest = 0; 685 pm_system_idle_threshold = pm_default_idle_threshold; 686 pm_cpu_idle_threshold = 0; 687 688 pm_cpr_cb_id = callb_add(pm_cpr_callb, (void *)NULL, 689 CB_CL_CPR_PM, "pm_cpr"); 690 pm_panic_cb_id = callb_add(pm_panic_callb, (void *)NULL, 691 CB_CL_PANIC, "pm_panic"); 692 pm_halt_cb_id = callb_add(pm_halt_callb, (void *)NULL, 693 CB_CL_HALT, "pm_halt"); 694 695 /* 696 * Create a thread to do dependency processing. 697 */ 698 (void) thread_create(NULL, 0, (void (*)())pm_dep_thread, NULL, 0, &p0, 699 TS_RUN, minclsyspri); 700 701 /* 702 * loadrootmodules already loaded these ppm drivers, now get them 703 * attached so they can claim the root drivers as they attach 704 */ 705 for (mod = platform_module_list; *mod; mod++) { 706 if (i_ddi_attach_hw_nodes(*mod) != DDI_SUCCESS) { 707 cmn_err(CE_WARN, "!cannot load platform pm driver %s\n", 708 *mod); 709 } else { 710 PMD(PMD_DHR, ("%s: %s (%s)\n", pmf, *mod, 711 ddi_major_to_name(ddi_name_to_major(*mod)))) 712 } 713 } 714 } 715 716 /* 717 * pm_scan_init - create pm scan data structure. Called (if autopm or cpupm 718 * enabled) when device becomes power managed or after a failed detach and 719 * when autopm is started via PM_START_PM or PM_START_CPUPM ioctls, and after 720 * a CPR resume to get all the devices scanning again. 721 */ 722 void 723 pm_scan_init(dev_info_t *dip) 724 { 725 PMD_FUNC(pmf, "scan_init") 726 pm_scan_t *scanp; 727 728 ASSERT(!PM_ISBC(dip)); 729 730 PM_LOCK_DIP(dip); 731 scanp = PM_GET_PM_SCAN(dip); 732 if (!scanp) { 733 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): create scan data\n", 734 pmf, PM_DEVICE(dip))) 735 scanp = kmem_zalloc(sizeof (pm_scan_t), KM_SLEEP); 736 DEVI(dip)->devi_pm_scan = scanp; 737 } else if (scanp->ps_scan_flags & PM_SCAN_STOP) { 738 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): " 739 "clear PM_SCAN_STOP flag\n", pmf, PM_DEVICE(dip))) 740 scanp->ps_scan_flags &= ~PM_SCAN_STOP; 741 } 742 PM_UNLOCK_DIP(dip); 743 } 744 745 /* 746 * pm_scan_fini - remove pm scan data structure when stopping pm on the device 747 */ 748 void 749 pm_scan_fini(dev_info_t *dip) 750 { 751 PMD_FUNC(pmf, "scan_fini") 752 pm_scan_t *scanp; 753 754 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 755 ASSERT(!PM_ISBC(dip)); 756 PM_LOCK_DIP(dip); 757 scanp = PM_GET_PM_SCAN(dip); 758 if (!scanp) { 759 PM_UNLOCK_DIP(dip); 760 return; 761 } 762 763 ASSERT(!scanp->ps_scan_id && !(scanp->ps_scan_flags & 764 (PM_SCANNING | PM_SCAN_DISPATCHED | PM_SCAN_AGAIN))); 765 766 kmem_free(scanp, sizeof (pm_scan_t)); 767 DEVI(dip)->devi_pm_scan = NULL; 768 PM_UNLOCK_DIP(dip); 769 } 770 771 /* 772 * Given a pointer to a component struct, return the current power level 773 * (struct contains index unless it is a continuous level). 774 * Located here in hopes of getting both this and dev_is_needed into the 775 * cache together 776 */ 777 static int 778 cur_power(pm_component_t *cp) 779 { 780 if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN) 781 return (cp->pmc_cur_pwr); 782 783 return (cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]); 784 } 785 786 static char * 787 pm_decode_direction(int direction) 788 { 789 switch (direction) { 790 case PM_LEVEL_UPONLY: 791 return ("up"); 792 793 case PM_LEVEL_EXACT: 794 return ("exact"); 795 796 case PM_LEVEL_DOWNONLY: 797 return ("down"); 798 799 default: 800 return ("INVALID DIRECTION"); 801 } 802 } 803 804 char * 805 pm_decode_op(pm_bus_power_op_t op) 806 { 807 switch (op) { 808 case BUS_POWER_CHILD_PWRCHG: 809 return ("CHILD_PWRCHG"); 810 case BUS_POWER_NEXUS_PWRUP: 811 return ("NEXUS_PWRUP"); 812 case BUS_POWER_PRE_NOTIFICATION: 813 return ("PRE_NOTIFICATION"); 814 case BUS_POWER_POST_NOTIFICATION: 815 return ("POST_NOTIFICATION"); 816 case BUS_POWER_HAS_CHANGED: 817 return ("HAS_CHANGED"); 818 case BUS_POWER_NOINVOL: 819 return ("NOINVOL"); 820 default: 821 return ("UNKNOWN OP"); 822 } 823 } 824 825 /* 826 * Returns true if level is a possible (valid) power level for component 827 */ 828 int 829 e_pm_valid_power(dev_info_t *dip, int cmpt, int level) 830 { 831 PMD_FUNC(pmf, "e_pm_valid_power") 832 pm_component_t *cp = PM_CP(dip, cmpt); 833 int i; 834 int *ip = cp->pmc_comp.pmc_lvals; 835 int limit = cp->pmc_comp.pmc_numlevels; 836 837 if (level < 0) 838 return (0); 839 for (i = 0; i < limit; i++) { 840 if (level == *ip++) 841 return (1); 842 } 843 #ifdef DEBUG 844 if (pm_debug & PMD_FAIL) { 845 ip = cp->pmc_comp.pmc_lvals; 846 847 for (i = 0; i < limit; i++) 848 PMD(PMD_FAIL, ("%s: index=%d, level=%d\n", 849 pmf, i, *ip++)) 850 } 851 #endif 852 return (0); 853 } 854 855 static int pm_start(dev_info_t *dip); 856 /* 857 * Returns true if device is pm'd (after calling pm_start if need be) 858 */ 859 int 860 e_pm_valid_info(dev_info_t *dip, pm_info_t **infop) 861 { 862 pm_info_t *info; 863 864 /* 865 * Check if the device is power managed if not. 866 * To make the common case (device is power managed already) 867 * fast, we check without the lock. If device is not already 868 * power managed, then we take the lock and the long route through 869 * go get it managed. Devices never go unmanaged until they 870 * detach. 871 */ 872 info = PM_GET_PM_INFO(dip); 873 if (!info) { 874 if (!DEVI_IS_ATTACHING(dip)) { 875 return (0); 876 } 877 if (pm_start(dip) != DDI_SUCCESS) { 878 return (0); 879 } 880 info = PM_GET_PM_INFO(dip); 881 } 882 ASSERT(info); 883 if (infop != NULL) 884 *infop = info; 885 return (1); 886 } 887 888 int 889 e_pm_valid_comp(dev_info_t *dip, int cmpt, pm_component_t **cpp) 890 { 891 if (cmpt >= 0 && cmpt < PM_NUMCMPTS(dip)) { 892 if (cpp != NULL) 893 *cpp = PM_CP(dip, cmpt); 894 return (1); 895 } else { 896 return (0); 897 } 898 } 899 900 /* 901 * Internal guts of ddi_dev_is_needed and pm_raise/lower_power 902 */ 903 static int 904 dev_is_needed(dev_info_t *dip, int cmpt, int level, int direction) 905 { 906 PMD_FUNC(pmf, "din") 907 pm_component_t *cp; 908 char *pathbuf; 909 int result; 910 911 ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY); 912 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp) || 913 !e_pm_valid_power(dip, cmpt, level)) 914 return (DDI_FAILURE); 915 916 PMD(PMD_DIN, ("%s: %s@%s(%s#%d) cmpt=%d, dir=%s, new=%d, cur=%d\n", 917 pmf, PM_DEVICE(dip), cmpt, pm_decode_direction(direction), 918 level, cur_power(cp))) 919 920 if (pm_set_power(dip, cmpt, level, direction, 921 PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) { 922 if (direction == PM_LEVEL_UPONLY) { 923 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 924 (void) ddi_pathname(dip, pathbuf); 925 cmn_err(CE_WARN, "Device %s failed to power up.", 926 pathbuf); 927 kmem_free(pathbuf, MAXPATHLEN); 928 } 929 PMD(PMD_DIN | PMD_FAIL, ("%s: %s@%s(%s#%d) [%d] %s->%d failed, " 930 "errno %d\n", pmf, PM_DEVICE(dip), cmpt, 931 pm_decode_direction(direction), level, result)) 932 return (DDI_FAILURE); 933 } 934 935 PMD(PMD_RESCAN | PMD_DIN, ("%s: pm_rescan %s@%s(%s#%d)\n", pmf, 936 PM_DEVICE(dip))) 937 pm_rescan(dip); 938 return (DDI_SUCCESS); 939 } 940 941 /* 942 * We can get multiple pm_rescan() threads, if one of them discovers 943 * that no scan is running at the moment, it kicks it into action. 944 * Otherwise, it tells the current scanning thread to scan again when 945 * it is done by asserting the PM_SCAN_AGAIN flag. The PM_SCANNING and 946 * PM_SCAN_AGAIN flags are used to regulate scan, to make sure only one 947 * thread at a time runs the pm_scan_dev() code. 948 */ 949 void 950 pm_rescan(void *arg) 951 { 952 PMD_FUNC(pmf, "rescan") 953 dev_info_t *dip = (dev_info_t *)arg; 954 pm_info_t *info; 955 pm_scan_t *scanp; 956 timeout_id_t scanid; 957 958 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 959 PM_LOCK_DIP(dip); 960 info = PM_GET_PM_INFO(dip); 961 scanp = PM_GET_PM_SCAN(dip); 962 if (pm_scans_disabled || !PM_SCANABLE(dip) || !info || !scanp || 963 (scanp->ps_scan_flags & PM_SCAN_STOP)) { 964 PM_UNLOCK_DIP(dip); 965 return; 966 } 967 if (scanp->ps_scan_flags & PM_SCANNING) { 968 scanp->ps_scan_flags |= PM_SCAN_AGAIN; 969 PM_UNLOCK_DIP(dip); 970 return; 971 } else if (scanp->ps_scan_id) { 972 scanid = scanp->ps_scan_id; 973 scanp->ps_scan_id = 0; 974 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): cancel timeout scanid %lx\n", 975 pmf, PM_DEVICE(dip), (ulong_t)scanid)) 976 PM_UNLOCK_DIP(dip); 977 (void) untimeout(scanid); 978 PM_LOCK_DIP(dip); 979 } 980 981 /* 982 * Dispatching pm_scan during attach time is risky due to the fact that 983 * attach might soon fail and dip dissolved, and panic may happen while 984 * attempting to stop scan. So schedule a pm_rescan instead. 985 * (Note that if either of the first two terms are true, taskq_dispatch 986 * will not be invoked). 987 * 988 * Multiple pm_scan dispatching is unecessary and costly to keep track 989 * of. The PM_SCAN_DISPATCHED flag is used between pm_rescan and pm_scan 990 * to regulate the dispatching. 991 * 992 * Scan is stopped before the device is detached (in pm_detaching()) 993 * but it may get re-started during the post_detach processing if the 994 * driver fails to detach. 995 */ 996 if (DEVI_IS_ATTACHING(dip) || 997 (scanp->ps_scan_flags & PM_SCAN_DISPATCHED) || 998 taskq_dispatch(system_taskq, pm_scan, (void *)dip, TQ_NOSLEEP) == 999 TASKQID_INVALID) { 1000 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): attaching, pm_scan already " 1001 "dispatched or dispatching failed\n", pmf, PM_DEVICE(dip))) 1002 if (scanp->ps_scan_id) { 1003 scanid = scanp->ps_scan_id; 1004 scanp->ps_scan_id = 0; 1005 PM_UNLOCK_DIP(dip); 1006 (void) untimeout(scanid); 1007 PM_LOCK_DIP(dip); 1008 if (scanp->ps_scan_id) { 1009 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): a competing " 1010 "thread scheduled pm_rescan, scanid %lx\n", 1011 pmf, PM_DEVICE(dip), 1012 (ulong_t)scanp->ps_scan_id)) 1013 PM_UNLOCK_DIP(dip); 1014 return; 1015 } 1016 } 1017 scanp->ps_scan_id = timeout(pm_rescan, (void *)dip, 1018 (scanp->ps_idle_down ? pm_id_ticks : 1019 (PM_MIN_SCAN(dip) * hz))); 1020 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): scheduled next pm_rescan, " 1021 "scanid %lx\n", pmf, PM_DEVICE(dip), 1022 (ulong_t)scanp->ps_scan_id)) 1023 } else { 1024 PMD(PMD_SCAN, ("%s: dispatched pm_scan for %s@%s(%s#%d)\n", 1025 pmf, PM_DEVICE(dip))) 1026 scanp->ps_scan_flags |= PM_SCAN_DISPATCHED; 1027 } 1028 PM_UNLOCK_DIP(dip); 1029 } 1030 1031 void 1032 pm_scan(void *arg) 1033 { 1034 PMD_FUNC(pmf, "scan") 1035 dev_info_t *dip = (dev_info_t *)arg; 1036 pm_scan_t *scanp; 1037 time_t nextscan; 1038 1039 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 1040 1041 PM_LOCK_DIP(dip); 1042 scanp = PM_GET_PM_SCAN(dip); 1043 ASSERT(scanp && PM_GET_PM_INFO(dip)); 1044 1045 if (pm_scans_disabled || !PM_SCANABLE(dip) || 1046 (scanp->ps_scan_flags & PM_SCAN_STOP)) { 1047 scanp->ps_scan_flags &= ~(PM_SCAN_AGAIN | PM_SCAN_DISPATCHED); 1048 PM_UNLOCK_DIP(dip); 1049 return; 1050 } 1051 1052 if (scanp->ps_idle_down) { 1053 /* 1054 * make sure we remember idledown was in affect until 1055 * we've completed the scan 1056 */ 1057 PMID_SET_SCANS(scanp->ps_idle_down) 1058 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown starts " 1059 "(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down)) 1060 } 1061 1062 /* possible having two threads running pm_scan() */ 1063 if (scanp->ps_scan_flags & PM_SCANNING) { 1064 scanp->ps_scan_flags |= PM_SCAN_AGAIN; 1065 PMD(PMD_SCAN, ("%s: scanning, will scan %s@%s(%s#%d) again\n", 1066 pmf, PM_DEVICE(dip))) 1067 scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED; 1068 PM_UNLOCK_DIP(dip); 1069 return; 1070 } 1071 1072 scanp->ps_scan_flags |= PM_SCANNING; 1073 scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED; 1074 do { 1075 scanp->ps_scan_flags &= ~PM_SCAN_AGAIN; 1076 PM_UNLOCK_DIP(dip); 1077 nextscan = pm_scan_dev(dip); 1078 PM_LOCK_DIP(dip); 1079 } while (scanp->ps_scan_flags & PM_SCAN_AGAIN); 1080 1081 ASSERT(scanp->ps_scan_flags & PM_SCANNING); 1082 scanp->ps_scan_flags &= ~PM_SCANNING; 1083 1084 if (scanp->ps_idle_down) { 1085 scanp->ps_idle_down &= ~PMID_SCANS; 1086 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown ends " 1087 "(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down)) 1088 } 1089 1090 /* schedule for next idle check */ 1091 if (nextscan != LONG_MAX) { 1092 if (nextscan > (LONG_MAX / hz)) 1093 nextscan = (LONG_MAX - 1) / hz; 1094 if (scanp->ps_scan_id) { 1095 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): while scanning " 1096 "another rescan scheduled scanid(%lx)\n", pmf, 1097 PM_DEVICE(dip), (ulong_t)scanp->ps_scan_id)) 1098 PM_UNLOCK_DIP(dip); 1099 return; 1100 } else if (!(scanp->ps_scan_flags & PM_SCAN_STOP)) { 1101 scanp->ps_scan_id = timeout(pm_rescan, (void *)dip, 1102 (clock_t)(nextscan * hz)); 1103 PMD(PMD_SCAN, ("%s: nextscan for %s@%s(%s#%d) in " 1104 "%lx sec, scanid(%lx) \n", pmf, PM_DEVICE(dip), 1105 (ulong_t)nextscan, (ulong_t)scanp->ps_scan_id)) 1106 } 1107 } 1108 PM_UNLOCK_DIP(dip); 1109 } 1110 1111 void 1112 pm_get_timestamps(dev_info_t *dip, time_t *valuep) 1113 { 1114 int components = PM_NUMCMPTS(dip); 1115 int i; 1116 1117 ASSERT(components > 0); 1118 PM_LOCK_BUSY(dip); /* so we get a consistent view */ 1119 for (i = 0; i < components; i++) { 1120 valuep[i] = PM_CP(dip, i)->pmc_timestamp; 1121 } 1122 PM_UNLOCK_BUSY(dip); 1123 } 1124 1125 /* 1126 * Returns true if device needs to be kept up because it exported the 1127 * "no-involuntary-power-cycles" property or we're pretending it did (console 1128 * fb case) or it is an ancestor of such a device and has used up the "one 1129 * free cycle" allowed when all such leaf nodes have voluntarily powered down 1130 * upon detach 1131 */ 1132 int 1133 pm_noinvol(dev_info_t *dip) 1134 { 1135 PMD_FUNC(pmf, "noinvol") 1136 1137 /* 1138 * This doesn't change over the life of a driver, so no locking needed 1139 */ 1140 if (PM_IS_CFB(dip)) { 1141 PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB %s@%s(%s#%d)\n", 1142 pmf, PM_DEVICE(dip))) 1143 return (1); 1144 } 1145 /* 1146 * Not an issue if no such kids 1147 */ 1148 if (DEVI(dip)->devi_pm_noinvolpm == 0) { 1149 #ifdef DEBUG 1150 if (DEVI(dip)->devi_pm_volpmd != 0) { 1151 dev_info_t *pdip = dip; 1152 do { 1153 PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d) noinvol %d " 1154 "volpmd %d\n", pmf, PM_DEVICE(pdip), 1155 DEVI(pdip)->devi_pm_noinvolpm, 1156 DEVI(pdip)->devi_pm_volpmd)) 1157 pdip = ddi_get_parent(pdip); 1158 } while (pdip); 1159 } 1160 #endif 1161 ASSERT(DEVI(dip)->devi_pm_volpmd == 0); 1162 return (0); 1163 } 1164 1165 /* 1166 * Since we now maintain the counts correct at every node, we no longer 1167 * need to look up the tree. An ancestor cannot use up the free cycle 1168 * without the children getting their counts adjusted. 1169 */ 1170 1171 #ifdef DEBUG 1172 if (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd) 1173 PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s@%s(%s#%d)\n", pmf, 1174 DEVI(dip)->devi_pm_noinvolpm, DEVI(dip)->devi_pm_volpmd, 1175 PM_DEVICE(dip))) 1176 #endif 1177 return (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd); 1178 } 1179 1180 static int cur_threshold(dev_info_t *, int); 1181 static int pm_next_lower_power(pm_component_t *, int); 1182 1183 /* 1184 * This function performs the actual scanning of the device. 1185 * It attempts to power off the indicated device's components if they have 1186 * been idle and other restrictions are met. 1187 * pm_scan_dev calculates and returns when the next scan should happen for 1188 * this device. 1189 */ 1190 time_t 1191 pm_scan_dev(dev_info_t *dip) 1192 { 1193 PMD_FUNC(pmf, "scan_dev") 1194 pm_scan_t *scanp; 1195 time_t *timestamp, idletime, now, thresh; 1196 time_t timeleft = 0; 1197 #ifdef PMDDEBUG 1198 int curpwr; 1199 #endif 1200 int i, nxtpwr, pwrndx, unused; 1201 size_t size; 1202 pm_component_t *cp; 1203 dev_info_t *pdip = ddi_get_parent(dip); 1204 int circ; 1205 clock_t min_scan = pm_default_min_scan; 1206 1207 /* 1208 * skip attaching device 1209 */ 1210 if (DEVI_IS_ATTACHING(dip)) { 1211 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) is attaching, timeleft(%lx)\n", 1212 pmf, PM_DEVICE(dip), min_scan)) 1213 return (min_scan); 1214 } 1215 1216 PM_LOCK_DIP(dip); 1217 scanp = PM_GET_PM_SCAN(dip); 1218 min_scan = PM_MIN_SCAN(dip); 1219 ASSERT(scanp && PM_GET_PM_INFO(dip)); 1220 1221 PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1222 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): kuc is %d\n", pmf, PM_DEVICE(dip), 1223 PM_KUC(dip))) 1224 1225 /* no scan under the following conditions */ 1226 if (pm_scans_disabled || !PM_SCANABLE(dip) || 1227 (scanp->ps_scan_flags & PM_SCAN_STOP) || 1228 (PM_KUC(dip) != 0) || 1229 PM_ISDIRECT(dip) || pm_noinvol(dip)) { 1230 PM_UNLOCK_DIP(dip); 1231 PMD(PMD_SCAN, ("%s: [END, %s@%s(%s#%d)] no scan, " 1232 "scan_disabled(%d), apm_enabled(%d), cpupm(%d), " 1233 "kuc(%d), %s directpm, %s pm_noinvol\n", 1234 pmf, PM_DEVICE(dip), pm_scans_disabled, autopm_enabled, 1235 cpupm, PM_KUC(dip), 1236 PM_ISDIRECT(dip) ? "is" : "is not", 1237 pm_noinvol(dip) ? "is" : "is not")) 1238 return (LONG_MAX); 1239 } 1240 PM_UNLOCK_DIP(dip); 1241 1242 if (!ndi_devi_tryenter(pdip, &circ)) { 1243 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) can't hold pdip", 1244 pmf, PM_DEVICE(pdip))) 1245 return ((time_t)1); 1246 } 1247 now = gethrestime_sec(); 1248 size = PM_NUMCMPTS(dip) * sizeof (time_t); 1249 timestamp = kmem_alloc(size, KM_SLEEP); 1250 pm_get_timestamps(dip, timestamp); 1251 1252 /* 1253 * Since we removed support for backwards compatible devices, 1254 * (see big comment at top of file) 1255 * it is no longer required to deal with component 0 last. 1256 */ 1257 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 1258 /* 1259 * If already off (an optimization, perhaps) 1260 */ 1261 cp = PM_CP(dip, i); 1262 pwrndx = cp->pmc_cur_pwr; 1263 #ifdef PMDDEBUG 1264 curpwr = (pwrndx == PM_LEVEL_UNKNOWN) ? 1265 PM_LEVEL_UNKNOWN : 1266 cp->pmc_comp.pmc_lvals[pwrndx]; 1267 #endif 1268 1269 if (pwrndx == 0) { 1270 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d off or " 1271 "lowest\n", pmf, PM_DEVICE(dip), i)) 1272 /* skip device if off or at its lowest */ 1273 continue; 1274 } 1275 1276 thresh = cur_threshold(dip, i); /* comp i threshold */ 1277 if ((timestamp[i] == 0) || (cp->pmc_busycount > 0)) { 1278 /* were busy or newly became busy by another thread */ 1279 if (timeleft == 0) 1280 timeleft = max(thresh, min_scan); 1281 else 1282 timeleft = min( 1283 timeleft, max(thresh, min_scan)); 1284 continue; 1285 } 1286 1287 idletime = now - timestamp[i]; /* idle time */ 1288 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d idle time %lx\n", 1289 pmf, PM_DEVICE(dip), i, idletime)) 1290 if (idletime >= thresh || PM_IS_PID(dip)) { 1291 nxtpwr = pm_next_lower_power(cp, pwrndx); 1292 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, %d->%d\n", 1293 pmf, PM_DEVICE(dip), i, curpwr, nxtpwr)) 1294 if (pm_set_power(dip, i, nxtpwr, PM_LEVEL_DOWNONLY, 1295 PM_CANBLOCK_FAIL, 1, &unused) != DDI_SUCCESS && 1296 PM_CURPOWER(dip, i) != nxtpwr) { 1297 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1298 "%d->%d Failed\n", pmf, PM_DEVICE(dip), 1299 i, curpwr, nxtpwr)) 1300 timeleft = min_scan; 1301 continue; 1302 } else { 1303 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1304 "%d->%d, GOOD curpwr %d\n", pmf, 1305 PM_DEVICE(dip), i, curpwr, nxtpwr, 1306 cur_power(cp))) 1307 1308 if (nxtpwr == 0) /* component went off */ 1309 continue; 1310 1311 /* 1312 * scan to next lower level 1313 */ 1314 if (timeleft == 0) 1315 timeleft = max( 1316 1, cur_threshold(dip, i)); 1317 else 1318 timeleft = min(timeleft, 1319 max(1, cur_threshold(dip, i))); 1320 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1321 "timeleft(%lx)\n", pmf, PM_DEVICE(dip), 1322 i, timeleft)) 1323 } 1324 } else { /* comp not idle long enough */ 1325 if (timeleft == 0) 1326 timeleft = thresh - idletime; 1327 else 1328 timeleft = min(timeleft, (thresh - idletime)); 1329 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, timeleft=" 1330 "%lx\n", pmf, PM_DEVICE(dip), i, timeleft)) 1331 } 1332 } 1333 ndi_devi_exit(pdip, circ); 1334 kmem_free(timestamp, size); 1335 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] timeleft(%lx)\n", pmf, 1336 PM_DEVICE(dip), timeleft)) 1337 1338 /* 1339 * if components are already at lowest level, timeleft is left 0 1340 */ 1341 return ((timeleft == 0) ? LONG_MAX : timeleft); 1342 } 1343 1344 /* 1345 * pm_scan_stop - cancel scheduled pm_rescan, 1346 * wait for termination of dispatched pm_scan thread 1347 * and active pm_scan_dev thread. 1348 */ 1349 void 1350 pm_scan_stop(dev_info_t *dip) 1351 { 1352 PMD_FUNC(pmf, "scan_stop") 1353 pm_scan_t *scanp; 1354 timeout_id_t scanid; 1355 1356 PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1357 PM_LOCK_DIP(dip); 1358 scanp = PM_GET_PM_SCAN(dip); 1359 if (!scanp) { 1360 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] scan not initialized\n", 1361 pmf, PM_DEVICE(dip))) 1362 PM_UNLOCK_DIP(dip); 1363 return; 1364 } 1365 scanp->ps_scan_flags |= PM_SCAN_STOP; 1366 1367 /* cancel scheduled scan taskq */ 1368 while (scanp->ps_scan_id) { 1369 scanid = scanp->ps_scan_id; 1370 scanp->ps_scan_id = 0; 1371 PM_UNLOCK_DIP(dip); 1372 (void) untimeout(scanid); 1373 PM_LOCK_DIP(dip); 1374 } 1375 1376 while (scanp->ps_scan_flags & (PM_SCANNING | PM_SCAN_DISPATCHED)) { 1377 PM_UNLOCK_DIP(dip); 1378 delay(1); 1379 PM_LOCK_DIP(dip); 1380 } 1381 PM_UNLOCK_DIP(dip); 1382 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1383 } 1384 1385 int 1386 pm_scan_stop_walk(dev_info_t *dip, void *arg) 1387 { 1388 _NOTE(ARGUNUSED(arg)) 1389 1390 if (!PM_GET_PM_SCAN(dip)) 1391 return (DDI_WALK_CONTINUE); 1392 ASSERT(!PM_ISBC(dip)); 1393 pm_scan_stop(dip); 1394 return (DDI_WALK_CONTINUE); 1395 } 1396 1397 /* 1398 * Converts a power level value to its index 1399 */ 1400 static int 1401 power_val_to_index(pm_component_t *cp, int val) 1402 { 1403 int limit, i, *ip; 1404 1405 ASSERT(val != PM_LEVEL_UPONLY && val != PM_LEVEL_DOWNONLY && 1406 val != PM_LEVEL_EXACT); 1407 /* convert power value into index (i) */ 1408 limit = cp->pmc_comp.pmc_numlevels; 1409 ip = cp->pmc_comp.pmc_lvals; 1410 for (i = 0; i < limit; i++) 1411 if (val == *ip++) 1412 return (i); 1413 return (-1); 1414 } 1415 1416 /* 1417 * Converts a numeric power level to a printable string 1418 */ 1419 static char * 1420 power_val_to_string(pm_component_t *cp, int val) 1421 { 1422 int index; 1423 1424 if (val == PM_LEVEL_UPONLY) 1425 return ("<UPONLY>"); 1426 1427 if (val == PM_LEVEL_UNKNOWN || 1428 (index = power_val_to_index(cp, val)) == -1) 1429 return ("<LEVEL_UNKNOWN>"); 1430 1431 return (cp->pmc_comp.pmc_lnames[index]); 1432 } 1433 1434 /* 1435 * Return true if this node has been claimed by a ppm. 1436 */ 1437 static int 1438 pm_ppm_claimed(dev_info_t *dip) 1439 { 1440 return (PPM(dip) != NULL); 1441 } 1442 1443 /* 1444 * A node which was voluntarily power managed has just used up its "free cycle" 1445 * and need is volpmd field cleared, and the same done to all its descendents 1446 */ 1447 static void 1448 pm_clear_volpm_dip(dev_info_t *dip) 1449 { 1450 PMD_FUNC(pmf, "clear_volpm_dip") 1451 1452 if (dip == NULL) 1453 return; 1454 PMD(PMD_NOINVOL, ("%s: clear volpm from %s@%s(%s#%d)\n", pmf, 1455 PM_DEVICE(dip))) 1456 DEVI(dip)->devi_pm_volpmd = 0; 1457 for (dip = ddi_get_child(dip); dip; dip = ddi_get_next_sibling(dip)) { 1458 pm_clear_volpm_dip(dip); 1459 } 1460 } 1461 1462 /* 1463 * A node which was voluntarily power managed has used up the "free cycles" 1464 * for the subtree that it is the root of. Scan through the list of detached 1465 * nodes and adjust the counts of any that are descendents of the node. 1466 */ 1467 static void 1468 pm_clear_volpm_list(dev_info_t *dip) 1469 { 1470 PMD_FUNC(pmf, "clear_volpm_list") 1471 char *pathbuf; 1472 size_t len; 1473 pm_noinvol_t *ip; 1474 1475 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1476 (void) ddi_pathname(dip, pathbuf); 1477 len = strlen(pathbuf); 1478 PMD(PMD_NOINVOL, ("%s: clear volpm list %s\n", pmf, pathbuf)) 1479 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 1480 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 1481 PMD(PMD_NOINVOL, ("%s: clear volpm: ni_path %s\n", pmf, 1482 ip->ni_path)) 1483 if (strncmp(pathbuf, ip->ni_path, len) == 0 && 1484 ip->ni_path[len] == '/') { 1485 PMD(PMD_NOINVOL, ("%s: clear volpm: %s\n", pmf, 1486 ip->ni_path)) 1487 ip->ni_volpmd = 0; 1488 ip->ni_wasvolpmd = 0; 1489 } 1490 } 1491 kmem_free(pathbuf, MAXPATHLEN); 1492 rw_exit(&pm_noinvol_rwlock); 1493 } 1494 1495 /* 1496 * Powers a device, suspending or resuming the driver if it is a backward 1497 * compatible device, calling into ppm to change power level. 1498 * Called with the component's power lock held. 1499 */ 1500 static int 1501 power_dev(dev_info_t *dip, int comp, int level, int old_level, 1502 pm_canblock_t canblock, pm_ppm_devlist_t **devlist) 1503 { 1504 PMD_FUNC(pmf, "power_dev") 1505 power_req_t power_req; 1506 int power_op_ret; /* DDI_SUCCESS or DDI_FAILURE */ 1507 int resume_needed = 0; 1508 int suspended = 0; 1509 int result; 1510 #ifdef PMDDEBUG 1511 struct pm_component *cp = PM_CP(dip, comp); 1512 #endif 1513 int bc = PM_ISBC(dip); 1514 int pm_all_components_off(dev_info_t *); 1515 int clearvolpmd = 0; 1516 char pathbuf[MAXNAMELEN]; 1517 #ifdef PMDDEBUG 1518 char *ppmname, *ppmaddr; 1519 #endif 1520 /* 1521 * If this is comp 0 of a backwards compat device and we are 1522 * going to take the power away, we need to detach it with 1523 * DDI_PM_SUSPEND command. 1524 */ 1525 if (bc && comp == 0 && POWERING_OFF(old_level, level)) { 1526 if (devi_detach(dip, DDI_PM_SUSPEND) != DDI_SUCCESS) { 1527 /* We could not suspend before turning cmpt zero off */ 1528 PMD(PMD_ERROR, ("%s: could not suspend %s@%s(%s#%d)\n", 1529 pmf, PM_DEVICE(dip))) 1530 return (DDI_FAILURE); 1531 } else { 1532 DEVI(dip)->devi_pm_flags |= PMC_SUSPENDED; 1533 suspended++; 1534 } 1535 } 1536 power_req.request_type = PMR_PPM_SET_POWER; 1537 power_req.req.ppm_set_power_req.who = dip; 1538 power_req.req.ppm_set_power_req.cmpt = comp; 1539 power_req.req.ppm_set_power_req.old_level = old_level; 1540 power_req.req.ppm_set_power_req.new_level = level; 1541 power_req.req.ppm_set_power_req.canblock = canblock; 1542 power_req.req.ppm_set_power_req.cookie = NULL; 1543 #ifdef PMDDEBUG 1544 if (pm_ppm_claimed(dip)) { 1545 ppmname = PM_NAME(PPM(dip)); 1546 ppmaddr = PM_ADDR(PPM(dip)); 1547 1548 } else { 1549 ppmname = "noppm"; 1550 ppmaddr = "0"; 1551 } 1552 PMD(PMD_PPM, ("%s: %s@%s(%s#%d):%s[%d] %s (%d) -> %s (%d) via %s@%s\n", 1553 pmf, PM_DEVICE(dip), cp->pmc_comp.pmc_name, comp, 1554 power_val_to_string(cp, old_level), old_level, 1555 power_val_to_string(cp, level), level, ppmname, ppmaddr)) 1556 #endif 1557 /* 1558 * If non-bc noinvolpm device is turning first comp on, or noinvolpm 1559 * bc device comp 0 is powering on, then we count it as a power cycle 1560 * against its voluntary count. 1561 */ 1562 if (DEVI(dip)->devi_pm_volpmd && 1563 (!bc && pm_all_components_off(dip) && level != 0) || 1564 (bc && comp == 0 && POWERING_ON(old_level, level))) 1565 clearvolpmd = 1; 1566 if ((power_op_ret = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 1567 &power_req, &result)) == DDI_SUCCESS) { 1568 /* 1569 * Now do involuntary pm accounting; If we've just cycled power 1570 * on a voluntarily pm'd node, and by inference on its entire 1571 * subtree, we need to set the subtree (including those nodes 1572 * already detached) volpmd counts to 0, and subtract out the 1573 * value of the current node's volpmd count from the ancestors 1574 */ 1575 if (clearvolpmd) { 1576 int volpmd = DEVI(dip)->devi_pm_volpmd; 1577 pm_clear_volpm_dip(dip); 1578 pm_clear_volpm_list(dip); 1579 if (volpmd) { 1580 (void) ddi_pathname(dip, pathbuf); 1581 (void) pm_noinvol_update(PM_BP_NOINVOL_POWER, 1582 volpmd, 0, pathbuf, dip); 1583 } 1584 } 1585 } else { 1586 PMD(PMD_FAIL, ("%s: can't set comp %d (%s) of %s@%s(%s#%d) " 1587 "to level %d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name, 1588 PM_DEVICE(dip), level, power_val_to_string(cp, level))) 1589 } 1590 /* 1591 * If some other devices were also powered up (e.g. other cpus in 1592 * the same domain) return a pointer to that list 1593 */ 1594 if (devlist) { 1595 *devlist = (pm_ppm_devlist_t *) 1596 power_req.req.ppm_set_power_req.cookie; 1597 } 1598 /* 1599 * We will have to resume the device if the device is backwards compat 1600 * device and either of the following is true: 1601 * -This is comp 0 and we have successfully powered it up 1602 * -This is comp 0 and we have failed to power it down. Resume is 1603 * needed because we have suspended it above 1604 */ 1605 1606 if (bc && comp == 0) { 1607 ASSERT(PM_ISDIRECT(dip) || DEVI_IS_DETACHING(dip)); 1608 if (power_op_ret == DDI_SUCCESS) { 1609 if (POWERING_ON(old_level, level)) { 1610 /* 1611 * It must be either suspended or resumed 1612 * via pm_power_has_changed path 1613 */ 1614 ASSERT((DEVI(dip)->devi_pm_flags & 1615 PMC_SUSPENDED) || 1616 (PM_CP(dip, comp)->pmc_flags & 1617 PM_PHC_WHILE_SET_POWER)); 1618 1619 resume_needed = suspended; 1620 } 1621 } else { 1622 if (POWERING_OFF(old_level, level)) { 1623 /* 1624 * It must be either suspended or resumed 1625 * via pm_power_has_changed path 1626 */ 1627 ASSERT((DEVI(dip)->devi_pm_flags & 1628 PMC_SUSPENDED) || 1629 (PM_CP(dip, comp)->pmc_flags & 1630 PM_PHC_WHILE_SET_POWER)); 1631 1632 resume_needed = suspended; 1633 } 1634 } 1635 } 1636 if (resume_needed) { 1637 ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED); 1638 /* ppm is not interested in DDI_PM_RESUME */ 1639 if ((power_op_ret = devi_attach(dip, DDI_PM_RESUME)) == 1640 DDI_SUCCESS) { 1641 DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED; 1642 } else 1643 cmn_err(CE_WARN, "!pm: Can't resume %s@%s(%s#%d)", 1644 PM_DEVICE(dip)); 1645 } 1646 return (power_op_ret); 1647 } 1648 1649 /* 1650 * Return true if we are the owner or a borrower of the devi lock. See 1651 * pm_lock_power_single() about borrowing the lock. 1652 */ 1653 static int 1654 pm_devi_lock_held(dev_info_t *dip) 1655 { 1656 lock_loan_t *cur; 1657 1658 if (DEVI_BUSY_OWNED(dip)) 1659 return (1); 1660 1661 /* return false if no locks borrowed */ 1662 if (lock_loan_head.pmlk_next == NULL) 1663 return (0); 1664 1665 mutex_enter(&pm_loan_lock); 1666 /* see if our thread is registered as a lock borrower. */ 1667 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 1668 if (cur->pmlk_borrower == curthread) 1669 break; 1670 mutex_exit(&pm_loan_lock); 1671 1672 return (cur != NULL && cur->pmlk_lender == DEVI(dip)->devi_busy_thread); 1673 } 1674 1675 /* 1676 * pm_set_power: adjusts power level of device. Assumes device is power 1677 * manageable & component exists. 1678 * 1679 * Cases which require us to bring up devices we keep up ("wekeepups") for 1680 * backwards compatible devices: 1681 * component 0 is off and we're bringing it up from 0 1682 * bring up wekeepup first 1683 * and recursively when component 0 is off and we bring some other 1684 * component up from 0 1685 * For devices which are not backward compatible, our dependency notion is much 1686 * simpler. Unless all components are off, then wekeeps must be on. 1687 * We don't treat component 0 differently. 1688 * Canblock tells how to deal with a direct pm'd device. 1689 * Scan arg tells us if we were called from scan, in which case we don't need 1690 * to go back to the root node and walk down to change power. 1691 */ 1692 int 1693 pm_set_power(dev_info_t *dip, int comp, int level, int direction, 1694 pm_canblock_t canblock, int scan, int *retp) 1695 { 1696 PMD_FUNC(pmf, "set_power") 1697 char *pathbuf; 1698 pm_bp_child_pwrchg_t bpc; 1699 pm_sp_misc_t pspm; 1700 int ret = DDI_SUCCESS; 1701 int unused = DDI_SUCCESS; 1702 dev_info_t *pdip = ddi_get_parent(dip); 1703 1704 #ifdef DEBUG 1705 int diverted = 0; 1706 1707 /* 1708 * This prevents operations on the console from calling prom_printf and 1709 * either deadlocking or bringing up the console because of debug 1710 * output 1711 */ 1712 if (dip == cfb_dip) { 1713 diverted++; 1714 mutex_enter(&pm_debug_lock); 1715 pm_divertdebug++; 1716 mutex_exit(&pm_debug_lock); 1717 } 1718 #endif 1719 ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY || 1720 direction == PM_LEVEL_EXACT); 1721 PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d, dir=%s, new=%d\n", 1722 pmf, PM_DEVICE(dip), comp, pm_decode_direction(direction), level)) 1723 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1724 (void) ddi_pathname(dip, pathbuf); 1725 bpc.bpc_dip = dip; 1726 bpc.bpc_path = pathbuf; 1727 bpc.bpc_comp = comp; 1728 bpc.bpc_olevel = PM_CURPOWER(dip, comp); 1729 bpc.bpc_nlevel = level; 1730 pspm.pspm_direction = direction; 1731 pspm.pspm_errnop = retp; 1732 pspm.pspm_canblock = canblock; 1733 pspm.pspm_scan = scan; 1734 bpc.bpc_private = &pspm; 1735 1736 /* 1737 * If a config operation is being done (we've locked the parent) or 1738 * we already hold the power lock (we've locked the node) 1739 * then we can operate directly on the node because we have already 1740 * brought up all the ancestors, otherwise, we have to go back to the 1741 * top of the tree. 1742 */ 1743 if (pm_devi_lock_held(pdip) || pm_devi_lock_held(dip)) 1744 ret = pm_busop_set_power(dip, NULL, BUS_POWER_CHILD_PWRCHG, 1745 (void *)&bpc, (void *)&unused); 1746 else 1747 ret = pm_busop_bus_power(ddi_root_node(), NULL, 1748 BUS_POWER_CHILD_PWRCHG, (void *)&bpc, (void *)&unused); 1749 #ifdef DEBUG 1750 if (ret != DDI_SUCCESS || *retp != DDI_SUCCESS) { 1751 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) can't change power, ret=%d, " 1752 "errno=%d\n", pmf, PM_DEVICE(dip), ret, *retp)) 1753 } 1754 if (diverted) { 1755 mutex_enter(&pm_debug_lock); 1756 pm_divertdebug--; 1757 mutex_exit(&pm_debug_lock); 1758 } 1759 #endif 1760 kmem_free(pathbuf, MAXPATHLEN); 1761 return (ret); 1762 } 1763 1764 /* 1765 * If holddip is set, then if a dip is found we return with the node held. 1766 * 1767 * This code uses the same locking scheme as e_ddi_hold_devi_by_path 1768 * (resolve_pathname), but it does not drive attach. 1769 */ 1770 dev_info_t * 1771 pm_name_to_dip(char *pathname, int holddip) 1772 { 1773 struct pathname pn; 1774 char *component; 1775 dev_info_t *parent, *child; 1776 int circ; 1777 1778 if ((pathname == NULL) || (*pathname != '/')) 1779 return (NULL); 1780 1781 /* setup pathname and allocate component */ 1782 if (pn_get(pathname, UIO_SYSSPACE, &pn)) 1783 return (NULL); 1784 component = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1785 1786 /* start at top, process '/' component */ 1787 parent = child = ddi_root_node(); 1788 ndi_hold_devi(parent); 1789 pn_skipslash(&pn); 1790 ASSERT(i_ddi_devi_attached(parent)); 1791 1792 /* process components of pathname */ 1793 while (pn_pathleft(&pn)) { 1794 (void) pn_getcomponent(&pn, component); 1795 1796 /* enter parent and search for component child */ 1797 ndi_devi_enter(parent, &circ); 1798 child = ndi_devi_findchild(parent, component); 1799 if ((child == NULL) || !i_ddi_devi_attached(child)) { 1800 child = NULL; 1801 ndi_devi_exit(parent, circ); 1802 ndi_rele_devi(parent); 1803 goto out; 1804 } 1805 1806 /* attached child found, hold child and release parent */ 1807 ndi_hold_devi(child); 1808 ndi_devi_exit(parent, circ); 1809 ndi_rele_devi(parent); 1810 1811 /* child becomes parent, and process next component */ 1812 parent = child; 1813 pn_skipslash(&pn); 1814 1815 /* loop with active ndi_devi_hold of child->parent */ 1816 } 1817 1818 out: 1819 pn_free(&pn); 1820 kmem_free(component, MAXNAMELEN); 1821 1822 /* if we are not asked to return with hold, drop current hold */ 1823 if (child && !holddip) 1824 ndi_rele_devi(child); 1825 return (child); 1826 } 1827 1828 /* 1829 * Search for a dependency and mark it unsatisfied 1830 */ 1831 static void 1832 pm_unsatisfy(char *keeper, char *kept) 1833 { 1834 PMD_FUNC(pmf, "unsatisfy") 1835 pm_pdr_t *dp; 1836 1837 PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf, keeper, kept)) 1838 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1839 if (!dp->pdr_isprop) { 1840 if (strcmp(dp->pdr_keeper, keeper) == 0 && 1841 (dp->pdr_kept_count > 0) && 1842 strcmp(dp->pdr_kept_paths[0], kept) == 0) { 1843 if (dp->pdr_satisfied) { 1844 dp->pdr_satisfied = 0; 1845 pm_unresolved_deps++; 1846 PMD(PMD_KEEPS, ("%s: clear satisfied, " 1847 "pm_unresolved_deps now %d\n", pmf, 1848 pm_unresolved_deps)) 1849 } 1850 } 1851 } 1852 } 1853 } 1854 1855 /* 1856 * Device dip is being un power managed, it keeps up count other devices. 1857 * We need to release any hold we have on the kept devices, and also 1858 * mark the dependency no longer satisfied. 1859 */ 1860 static void 1861 pm_unkeeps(int count, char *keeper, char **keptpaths, int pwr) 1862 { 1863 PMD_FUNC(pmf, "unkeeps") 1864 int i, j; 1865 dev_info_t *kept; 1866 dev_info_t *dip; 1867 struct pm_component *cp; 1868 int keeper_on = 0, circ; 1869 1870 PMD(PMD_KEEPS, ("%s: count=%d, keeper=%s, keptpaths=%p\n", pmf, count, 1871 keeper, (void *)keptpaths)) 1872 /* 1873 * Try to grab keeper. Keeper may have gone away by now, 1874 * in this case, used the passed in value pwr 1875 */ 1876 dip = pm_name_to_dip(keeper, 1); 1877 for (i = 0; i < count; i++) { 1878 /* Release power hold */ 1879 kept = pm_name_to_dip(keptpaths[i], 1); 1880 if (kept) { 1881 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)[%d]\n", pmf, 1882 PM_DEVICE(kept), i)) 1883 /* 1884 * We need to check if we skipped a bringup here 1885 * because we could have failed the bringup 1886 * (ie DIRECT PM device) and have 1887 * not increment the count. 1888 */ 1889 if ((dip != NULL) && (PM_GET_PM_INFO(dip) != NULL)) { 1890 keeper_on = 0; 1891 PM_LOCK_POWER(dip, &circ); 1892 for (j = 0; j < PM_NUMCMPTS(dip); j++) { 1893 cp = &DEVI(dip)->devi_pm_components[j]; 1894 if (cur_power(cp)) { 1895 keeper_on++; 1896 break; 1897 } 1898 } 1899 if (keeper_on && (PM_SKBU(kept) == 0)) { 1900 pm_rele_power(kept); 1901 DEVI(kept)->devi_pm_flags 1902 &= ~PMC_SKIP_BRINGUP; 1903 } 1904 PM_UNLOCK_POWER(dip, circ); 1905 } else if (pwr) { 1906 if (PM_SKBU(kept) == 0) { 1907 pm_rele_power(kept); 1908 DEVI(kept)->devi_pm_flags 1909 &= ~PMC_SKIP_BRINGUP; 1910 } 1911 } 1912 ddi_release_devi(kept); 1913 } 1914 /* 1915 * mark this dependency not satisfied 1916 */ 1917 pm_unsatisfy(keeper, keptpaths[i]); 1918 } 1919 if (dip) 1920 ddi_release_devi(dip); 1921 } 1922 1923 /* 1924 * Device kept is being un power managed, it is kept up by keeper. 1925 * We need to mark the dependency no longer satisfied. 1926 */ 1927 static void 1928 pm_unkepts(char *kept, char *keeper) 1929 { 1930 PMD_FUNC(pmf, "unkepts") 1931 PMD(PMD_KEEPS, ("%s: kept=%s, keeper=%s\n", pmf, kept, keeper)) 1932 ASSERT(keeper != NULL); 1933 /* 1934 * mark this dependency not satisfied 1935 */ 1936 pm_unsatisfy(keeper, kept); 1937 } 1938 1939 /* 1940 * Removes dependency information and hold on the kepts, if the path is a 1941 * path of a keeper. 1942 */ 1943 static void 1944 pm_free_keeper(char *path, int pwr) 1945 { 1946 pm_pdr_t *dp; 1947 int i; 1948 size_t length; 1949 1950 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1951 if (strcmp(dp->pdr_keeper, path) != 0) 1952 continue; 1953 /* 1954 * Remove all our kept holds and the dependency records, 1955 * then free up the kept lists. 1956 */ 1957 pm_unkeeps(dp->pdr_kept_count, path, dp->pdr_kept_paths, pwr); 1958 if (dp->pdr_kept_count) { 1959 for (i = 0; i < dp->pdr_kept_count; i++) { 1960 length = strlen(dp->pdr_kept_paths[i]); 1961 kmem_free(dp->pdr_kept_paths[i], length + 1); 1962 } 1963 kmem_free(dp->pdr_kept_paths, 1964 dp->pdr_kept_count * sizeof (char **)); 1965 dp->pdr_kept_paths = NULL; 1966 dp->pdr_kept_count = 0; 1967 } 1968 } 1969 } 1970 1971 /* 1972 * Removes the device represented by path from the list of kepts, if the 1973 * path is a path of a kept 1974 */ 1975 static void 1976 pm_free_kept(char *path) 1977 { 1978 pm_pdr_t *dp; 1979 int i; 1980 int j, count; 1981 size_t length; 1982 char **paths; 1983 1984 paths = NULL; 1985 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1986 if (dp->pdr_kept_count == 0) 1987 continue; 1988 count = dp->pdr_kept_count; 1989 /* Remove this device from the kept path lists */ 1990 for (i = 0; i < count; i++) { 1991 if (strcmp(dp->pdr_kept_paths[i], path) == 0) { 1992 pm_unkepts(path, dp->pdr_keeper); 1993 length = strlen(dp->pdr_kept_paths[i]) + 1; 1994 kmem_free(dp->pdr_kept_paths[i], length); 1995 dp->pdr_kept_paths[i] = NULL; 1996 dp->pdr_kept_count--; 1997 } 1998 } 1999 /* Compact the kept paths array */ 2000 if (dp->pdr_kept_count) { 2001 length = dp->pdr_kept_count * sizeof (char **); 2002 paths = kmem_zalloc(length, KM_SLEEP); 2003 j = 0; 2004 for (i = 0; i < count; i++) { 2005 if (dp->pdr_kept_paths[i] != NULL) { 2006 paths[j] = dp->pdr_kept_paths[i]; 2007 j++; 2008 } 2009 } 2010 ASSERT(j == dp->pdr_kept_count); 2011 } 2012 /* Now free the old array and point to the new one */ 2013 kmem_free(dp->pdr_kept_paths, count * sizeof (char **)); 2014 dp->pdr_kept_paths = paths; 2015 } 2016 } 2017 2018 /* 2019 * Free the dependency information for a device. 2020 */ 2021 void 2022 pm_free_keeps(char *path, int pwr) 2023 { 2024 PMD_FUNC(pmf, "free_keeps") 2025 2026 #ifdef DEBUG 2027 int doprdeps = 0; 2028 void prdeps(char *); 2029 2030 PMD(PMD_KEEPS, ("%s: %s\n", pmf, path)) 2031 if (pm_debug & PMD_KEEPS) { 2032 doprdeps = 1; 2033 prdeps("pm_free_keeps before"); 2034 } 2035 #endif 2036 /* 2037 * First assume we are a keeper and remove all our kepts. 2038 */ 2039 pm_free_keeper(path, pwr); 2040 /* 2041 * Now assume we a kept device, and remove all our records. 2042 */ 2043 pm_free_kept(path); 2044 #ifdef DEBUG 2045 if (doprdeps) { 2046 prdeps("pm_free_keeps after"); 2047 } 2048 #endif 2049 } 2050 2051 static int 2052 pm_is_kept(char *path) 2053 { 2054 pm_pdr_t *dp; 2055 int i; 2056 2057 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 2058 if (dp->pdr_kept_count == 0) 2059 continue; 2060 for (i = 0; i < dp->pdr_kept_count; i++) { 2061 if (strcmp(dp->pdr_kept_paths[i], path) == 0) 2062 return (1); 2063 } 2064 } 2065 return (0); 2066 } 2067 2068 static void 2069 e_pm_hold_rele_power(dev_info_t *dip, int cnt) 2070 { 2071 PMD_FUNC(pmf, "hold_rele_power") 2072 int circ; 2073 2074 if ((dip == NULL) || 2075 (PM_GET_PM_INFO(dip) == NULL) || PM_ISBC(dip)) 2076 return; 2077 2078 PM_LOCK_POWER(dip, &circ); 2079 ASSERT(cnt >= 0 || (cnt < 0 && PM_KUC(dip) > 0)); 2080 PMD(PMD_KIDSUP, ("%s: kidsupcnt for %s@%s(%s#%d) %d->%d\n", pmf, 2081 PM_DEVICE(dip), PM_KUC(dip), (PM_KUC(dip) + cnt))) 2082 2083 PM_KUC(dip) += cnt; 2084 2085 PM_UNLOCK_POWER(dip, circ); 2086 2087 if (cnt < 0 && PM_KUC(dip) == 0) 2088 pm_rescan(dip); 2089 } 2090 2091 #define MAX_PPM_HANDLERS 4 2092 2093 kmutex_t ppm_lock; /* in case we ever do multi-threaded startup */ 2094 2095 struct ppm_callbacks { 2096 int (*ppmc_func)(dev_info_t *); 2097 dev_info_t *ppmc_dip; 2098 } ppm_callbacks[MAX_PPM_HANDLERS + 1]; 2099 2100 2101 /* 2102 * This routine calls into all the registered ppms to notify them 2103 * that either all components of power-managed devices are at their 2104 * lowest levels or no longer all are at their lowest levels. 2105 */ 2106 static void 2107 pm_ppm_notify_all_lowest(dev_info_t *dip, int mode) 2108 { 2109 struct ppm_callbacks *ppmcp; 2110 power_req_t power_req; 2111 int result = 0; 2112 2113 power_req.request_type = PMR_PPM_ALL_LOWEST; 2114 power_req.req.ppm_all_lowest_req.mode = mode; 2115 mutex_enter(&ppm_lock); 2116 for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++) 2117 (void) pm_ctlops((dev_info_t *)ppmcp->ppmc_dip, dip, 2118 DDI_CTLOPS_POWER, &power_req, &result); 2119 mutex_exit(&ppm_lock); 2120 if (mode == PM_ALL_LOWEST) { 2121 if (autoS3_enabled) { 2122 PMD(PMD_SX, ("pm_ppm_notify_all_lowest triggering " 2123 "autos3\n")) 2124 mutex_enter(&srn_clone_lock); 2125 if (srn_signal) { 2126 srn_inuse++; 2127 PMD(PMD_SX, ("(*srn_signal)(AUTOSX, 3)\n")) 2128 (*srn_signal)(SRN_TYPE_AUTOSX, 3); 2129 srn_inuse--; 2130 } else { 2131 PMD(PMD_SX, ("srn_signal NULL\n")) 2132 } 2133 mutex_exit(&srn_clone_lock); 2134 } else { 2135 PMD(PMD_SX, ("pm_ppm_notify_all_lowest autos3 " 2136 "disabled\n")); 2137 } 2138 } 2139 } 2140 2141 static void 2142 pm_set_pm_info(dev_info_t *dip, void *value) 2143 { 2144 DEVI(dip)->devi_pm_info = value; 2145 } 2146 2147 pm_rsvp_t *pm_blocked_list; 2148 2149 /* 2150 * Look up an entry in the blocked list by dip and component 2151 */ 2152 static pm_rsvp_t * 2153 pm_rsvp_lookup(dev_info_t *dip, int comp) 2154 { 2155 pm_rsvp_t *p; 2156 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 2157 for (p = pm_blocked_list; p; p = p->pr_next) 2158 if (p->pr_dip == dip && p->pr_comp == comp) { 2159 return (p); 2160 } 2161 return (NULL); 2162 } 2163 2164 /* 2165 * Called when a device which is direct power managed (or the parent or 2166 * dependent of such a device) changes power, or when a pm clone is closed 2167 * that was direct power managing a device. This call results in pm_blocked() 2168 * (below) returning. 2169 */ 2170 void 2171 pm_proceed(dev_info_t *dip, int cmd, int comp, int newlevel) 2172 { 2173 PMD_FUNC(pmf, "proceed") 2174 pm_rsvp_t *found = NULL; 2175 pm_rsvp_t *p; 2176 2177 mutex_enter(&pm_rsvp_lock); 2178 switch (cmd) { 2179 /* 2180 * we're giving up control, let any pending op continue 2181 */ 2182 case PMP_RELEASE: 2183 for (p = pm_blocked_list; p; p = p->pr_next) { 2184 if (dip == p->pr_dip) { 2185 p->pr_retval = PMP_RELEASE; 2186 PMD(PMD_DPM, ("%s: RELEASE %s@%s(%s#%d)\n", 2187 pmf, PM_DEVICE(dip))) 2188 cv_signal(&p->pr_cv); 2189 } 2190 } 2191 break; 2192 2193 /* 2194 * process has done PM_SET_CURRENT_POWER; let a matching request 2195 * succeed and a non-matching request for the same device fail 2196 */ 2197 case PMP_SETPOWER: 2198 found = pm_rsvp_lookup(dip, comp); 2199 if (!found) /* if driver not waiting */ 2200 break; 2201 /* 2202 * This cannot be pm_lower_power, since that can only happen 2203 * during detach or probe 2204 */ 2205 if (found->pr_newlevel <= newlevel) { 2206 found->pr_retval = PMP_SUCCEED; 2207 PMD(PMD_DPM, ("%s: SUCCEED %s@%s(%s#%d)\n", pmf, 2208 PM_DEVICE(dip))) 2209 } else { 2210 found->pr_retval = PMP_FAIL; 2211 PMD(PMD_DPM, ("%s: FAIL %s@%s(%s#%d)\n", pmf, 2212 PM_DEVICE(dip))) 2213 } 2214 cv_signal(&found->pr_cv); 2215 break; 2216 2217 default: 2218 panic("pm_proceed unknown cmd %d", cmd); 2219 } 2220 mutex_exit(&pm_rsvp_lock); 2221 } 2222 2223 /* 2224 * This routine dispatches new work to the dependency thread. Caller must 2225 * be prepared to block for memory if necessary. 2226 */ 2227 void 2228 pm_dispatch_to_dep_thread(int cmd, char *keeper, char *kept, int wait, 2229 int *res, int cached_pwr) 2230 { 2231 pm_dep_wk_t *new_work; 2232 2233 new_work = kmem_zalloc(sizeof (pm_dep_wk_t), KM_SLEEP); 2234 new_work->pdw_type = cmd; 2235 new_work->pdw_wait = wait; 2236 new_work->pdw_done = 0; 2237 new_work->pdw_ret = 0; 2238 new_work->pdw_pwr = cached_pwr; 2239 cv_init(&new_work->pdw_cv, NULL, CV_DEFAULT, NULL); 2240 if (keeper != NULL) { 2241 new_work->pdw_keeper = kmem_zalloc(strlen(keeper) + 1, 2242 KM_SLEEP); 2243 (void) strcpy(new_work->pdw_keeper, keeper); 2244 } 2245 if (kept != NULL) { 2246 new_work->pdw_kept = kmem_zalloc(strlen(kept) + 1, KM_SLEEP); 2247 (void) strcpy(new_work->pdw_kept, kept); 2248 } 2249 mutex_enter(&pm_dep_thread_lock); 2250 if (pm_dep_thread_workq == NULL) { 2251 pm_dep_thread_workq = new_work; 2252 pm_dep_thread_tail = new_work; 2253 new_work->pdw_next = NULL; 2254 } else { 2255 pm_dep_thread_tail->pdw_next = new_work; 2256 pm_dep_thread_tail = new_work; 2257 new_work->pdw_next = NULL; 2258 } 2259 cv_signal(&pm_dep_thread_cv); 2260 /* If caller asked for it, wait till it is done. */ 2261 if (wait) { 2262 while (!new_work->pdw_done) 2263 cv_wait(&new_work->pdw_cv, &pm_dep_thread_lock); 2264 /* 2265 * Pass return status, if any, back. 2266 */ 2267 if (res != NULL) 2268 *res = new_work->pdw_ret; 2269 /* 2270 * If we asked to wait, it is our job to free the request 2271 * structure. 2272 */ 2273 if (new_work->pdw_keeper) 2274 kmem_free(new_work->pdw_keeper, 2275 strlen(new_work->pdw_keeper) + 1); 2276 if (new_work->pdw_kept) 2277 kmem_free(new_work->pdw_kept, 2278 strlen(new_work->pdw_kept) + 1); 2279 kmem_free(new_work, sizeof (pm_dep_wk_t)); 2280 } 2281 mutex_exit(&pm_dep_thread_lock); 2282 } 2283 2284 /* 2285 * Release the pm resource for this device. 2286 */ 2287 void 2288 pm_rem_info(dev_info_t *dip) 2289 { 2290 PMD_FUNC(pmf, "rem_info") 2291 int i, count = 0; 2292 pm_info_t *info = PM_GET_PM_INFO(dip); 2293 dev_info_t *pdip = ddi_get_parent(dip); 2294 char *pathbuf; 2295 int work_type = PM_DEP_WK_DETACH; 2296 2297 ASSERT(info); 2298 2299 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 2300 if (PM_ISDIRECT(dip)) { 2301 info->pmi_dev_pm_state &= ~PM_DIRECT; 2302 ASSERT(info->pmi_clone); 2303 info->pmi_clone = 0; 2304 pm_proceed(dip, PMP_RELEASE, -1, -1); 2305 } 2306 ASSERT(!PM_GET_PM_SCAN(dip)); 2307 2308 /* 2309 * Now adjust parent's kidsupcnt. BC nodes we check only comp 0, 2310 * Others we check all components. BC node that has already 2311 * called pm_destroy_components() has zero component count. 2312 * Parents that get notification are not adjusted because their 2313 * kidsupcnt is always 0 (or 1 during configuration). 2314 */ 2315 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d) has %d components\n", pmf, 2316 PM_DEVICE(dip), PM_NUMCMPTS(dip))) 2317 2318 /* node is detached, so we can examine power without locking */ 2319 if (PM_ISBC(dip)) { 2320 count = (PM_CURPOWER(dip, 0) != 0); 2321 } else { 2322 for (i = 0; i < PM_NUMCMPTS(dip); i++) 2323 count += (PM_CURPOWER(dip, i) != 0); 2324 } 2325 2326 if (PM_NUMCMPTS(dip) && pdip && !PM_WANTS_NOTIFICATION(pdip)) 2327 e_pm_hold_rele_power(pdip, -count); 2328 2329 /* Schedule a request to clean up dependency records */ 2330 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 2331 (void) ddi_pathname(dip, pathbuf); 2332 pm_dispatch_to_dep_thread(work_type, pathbuf, pathbuf, 2333 PM_DEP_NOWAIT, NULL, (count > 0)); 2334 kmem_free(pathbuf, MAXPATHLEN); 2335 2336 /* 2337 * Adjust the pm_comps_notlowest count since this device is 2338 * not being power-managed anymore. 2339 */ 2340 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 2341 pm_component_t *cp = PM_CP(dip, i); 2342 if (cp->pmc_cur_pwr != 0) 2343 PM_DECR_NOTLOWEST(dip) 2344 } 2345 /* 2346 * Once we clear the info pointer, it looks like it is not power 2347 * managed to everybody else. 2348 */ 2349 pm_set_pm_info(dip, NULL); 2350 kmem_free(info, sizeof (pm_info_t)); 2351 } 2352 2353 int 2354 pm_get_norm_pwrs(dev_info_t *dip, int **valuep, size_t *length) 2355 { 2356 int components = PM_NUMCMPTS(dip); 2357 int *bufp; 2358 size_t size; 2359 int i; 2360 2361 if (components <= 0) { 2362 cmn_err(CE_NOTE, "!pm: %s@%s(%s#%d) has no components, " 2363 "can't get normal power values\n", PM_DEVICE(dip)); 2364 return (DDI_FAILURE); 2365 } else { 2366 size = components * sizeof (int); 2367 bufp = kmem_alloc(size, KM_SLEEP); 2368 for (i = 0; i < components; i++) { 2369 bufp[i] = pm_get_normal_power(dip, i); 2370 } 2371 } 2372 *length = size; 2373 *valuep = bufp; 2374 return (DDI_SUCCESS); 2375 } 2376 2377 static int 2378 pm_reset_timestamps(dev_info_t *dip, void *arg) 2379 { 2380 _NOTE(ARGUNUSED(arg)) 2381 2382 int components; 2383 int i; 2384 2385 if (!PM_GET_PM_INFO(dip)) 2386 return (DDI_WALK_CONTINUE); 2387 components = PM_NUMCMPTS(dip); 2388 ASSERT(components > 0); 2389 PM_LOCK_BUSY(dip); 2390 for (i = 0; i < components; i++) { 2391 struct pm_component *cp; 2392 /* 2393 * If the component was not marked as busy, 2394 * reset its timestamp to now. 2395 */ 2396 cp = PM_CP(dip, i); 2397 if (cp->pmc_timestamp) 2398 cp->pmc_timestamp = gethrestime_sec(); 2399 } 2400 PM_UNLOCK_BUSY(dip); 2401 return (DDI_WALK_CONTINUE); 2402 } 2403 2404 /* 2405 * Convert a power level to an index into the levels array (or 2406 * just PM_LEVEL_UNKNOWN in that special case). 2407 */ 2408 static int 2409 pm_level_to_index(dev_info_t *dip, pm_component_t *cp, int level) 2410 { 2411 PMD_FUNC(pmf, "level_to_index") 2412 int i; 2413 int limit = cp->pmc_comp.pmc_numlevels; 2414 int *ip = cp->pmc_comp.pmc_lvals; 2415 2416 if (level == PM_LEVEL_UNKNOWN) 2417 return (level); 2418 2419 for (i = 0; i < limit; i++) { 2420 if (level == *ip++) { 2421 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d)[%d] to %x\n", 2422 pmf, PM_DEVICE(dip), 2423 (int)(cp - DEVI(dip)->devi_pm_components), level)) 2424 return (i); 2425 } 2426 } 2427 panic("pm_level_to_index: level %d not found for device " 2428 "%s@%s(%s#%d)", level, PM_DEVICE(dip)); 2429 /*NOTREACHED*/ 2430 } 2431 2432 /* 2433 * Internal function to set current power level 2434 */ 2435 static void 2436 e_pm_set_cur_pwr(dev_info_t *dip, pm_component_t *cp, int level) 2437 { 2438 PMD_FUNC(pmf, "set_cur_pwr") 2439 int curpwr = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 2440 cp->pmc_phc_pwr : cp->pmc_cur_pwr); 2441 2442 /* 2443 * Nothing to adjust if current & new levels are the same. 2444 */ 2445 if (curpwr != PM_LEVEL_UNKNOWN && 2446 level == cp->pmc_comp.pmc_lvals[curpwr]) 2447 return; 2448 2449 /* 2450 * Keep the count for comps doing transition to/from lowest 2451 * level. 2452 */ 2453 if (curpwr == 0) { 2454 PM_INCR_NOTLOWEST(dip); 2455 } else if (level == cp->pmc_comp.pmc_lvals[0]) { 2456 PM_DECR_NOTLOWEST(dip); 2457 } 2458 cp->pmc_phc_pwr = PM_LEVEL_UNKNOWN; 2459 cp->pmc_cur_pwr = pm_level_to_index(dip, cp, level); 2460 } 2461 2462 static int pm_phc_impl(dev_info_t *, int, int, int); 2463 2464 /* 2465 * This is the default method of setting the power of a device if no ppm 2466 * driver has claimed it. 2467 */ 2468 int 2469 pm_power(dev_info_t *dip, int comp, int level) 2470 { 2471 PMD_FUNC(pmf, "power") 2472 struct dev_ops *ops; 2473 int (*fn)(dev_info_t *, int, int); 2474 struct pm_component *cp = PM_CP(dip, comp); 2475 int retval; 2476 pm_info_t *info = PM_GET_PM_INFO(dip); 2477 2478 PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf, 2479 PM_DEVICE(dip), comp, level)) 2480 if (!(ops = ddi_get_driver(dip))) { 2481 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) has no ops\n", pmf, 2482 PM_DEVICE(dip))) 2483 return (DDI_FAILURE); 2484 } 2485 if ((ops->devo_rev < 2) || !(fn = ops->devo_power)) { 2486 PMD(PMD_FAIL, ("%s: %s%s\n", pmf, 2487 (ops->devo_rev < 2 ? " wrong devo_rev" : ""), 2488 (!fn ? " devo_power NULL" : ""))) 2489 return (DDI_FAILURE); 2490 } 2491 cp->pmc_flags |= PM_POWER_OP; 2492 retval = (*fn)(dip, comp, level); 2493 cp->pmc_flags &= ~PM_POWER_OP; 2494 if (retval == DDI_SUCCESS) { 2495 e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level); 2496 return (DDI_SUCCESS); 2497 } 2498 2499 /* 2500 * If pm_power_has_changed() detected a deadlock with pm_power() it 2501 * updated only the power level of the component. If our attempt to 2502 * set the device new to a power level above has failed we sync the 2503 * total power state via phc code now. 2504 */ 2505 if (cp->pmc_flags & PM_PHC_WHILE_SET_POWER) { 2506 int phc_lvl = 2507 cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]; 2508 2509 ASSERT(info); 2510 (void) pm_phc_impl(dip, comp, phc_lvl, 0); 2511 PMD(PMD_PHC, ("%s: phc %s@%s(%s#%d) comp=%d level=%d\n", 2512 pmf, PM_DEVICE(dip), comp, phc_lvl)) 2513 } 2514 2515 PMD(PMD_FAIL, ("%s: can't set comp=%d (%s) of %s@%s(%s#%d) to " 2516 "level=%d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name, PM_DEVICE(dip), 2517 level, power_val_to_string(cp, level))); 2518 return (DDI_FAILURE); 2519 } 2520 2521 int 2522 pm_unmanage(dev_info_t *dip) 2523 { 2524 PMD_FUNC(pmf, "unmanage") 2525 power_req_t power_req; 2526 int result, retval = 0; 2527 2528 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 2529 PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, 2530 PM_DEVICE(dip))) 2531 power_req.request_type = PMR_PPM_UNMANAGE; 2532 power_req.req.ppm_config_req.who = dip; 2533 if (pm_ppm_claimed(dip)) 2534 retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 2535 &power_req, &result); 2536 #ifdef DEBUG 2537 else 2538 retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 2539 &power_req, &result); 2540 #endif 2541 ASSERT(retval == DDI_SUCCESS); 2542 pm_rem_info(dip); 2543 return (retval); 2544 } 2545 2546 int 2547 pm_raise_power(dev_info_t *dip, int comp, int level) 2548 { 2549 if (level < 0) 2550 return (DDI_FAILURE); 2551 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 2552 !e_pm_valid_power(dip, comp, level)) 2553 return (DDI_FAILURE); 2554 2555 return (dev_is_needed(dip, comp, level, PM_LEVEL_UPONLY)); 2556 } 2557 2558 int 2559 pm_lower_power(dev_info_t *dip, int comp, int level) 2560 { 2561 PMD_FUNC(pmf, "pm_lower_power") 2562 2563 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 2564 !e_pm_valid_power(dip, comp, level)) { 2565 PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) " 2566 "comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 2567 return (DDI_FAILURE); 2568 } 2569 2570 if (!DEVI_IS_DETACHING(dip)) { 2571 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) not detaching\n", 2572 pmf, PM_DEVICE(dip))) 2573 return (DDI_FAILURE); 2574 } 2575 2576 /* 2577 * If we don't care about saving power, or we're treating this node 2578 * specially, then this is a no-op 2579 */ 2580 if (!PM_SCANABLE(dip) || pm_noinvol(dip)) { 2581 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) %s%s%s%s\n", 2582 pmf, PM_DEVICE(dip), 2583 !autopm_enabled ? "!autopm_enabled " : "", 2584 !PM_POLLING_CPUPM ? "!cpupm_polling " : "", 2585 PM_CPUPM_DISABLED ? "cpupm_disabled " : "", 2586 pm_noinvol(dip) ? "pm_noinvol()" : "")) 2587 return (DDI_SUCCESS); 2588 } 2589 2590 if (dev_is_needed(dip, comp, level, PM_LEVEL_DOWNONLY) != DDI_SUCCESS) { 2591 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) dev_is_needed failed\n", pmf, 2592 PM_DEVICE(dip))) 2593 return (DDI_FAILURE); 2594 } 2595 return (DDI_SUCCESS); 2596 } 2597 2598 /* 2599 * Find the entries struct for a given dip in the blocked list, return it locked 2600 */ 2601 static psce_t * 2602 pm_psc_dip_to_direct(dev_info_t *dip, pscc_t **psccp) 2603 { 2604 pscc_t *p; 2605 psce_t *psce; 2606 2607 rw_enter(&pm_pscc_direct_rwlock, RW_READER); 2608 for (p = pm_pscc_direct; p; p = p->pscc_next) { 2609 if (p->pscc_dip == dip) { 2610 *psccp = p; 2611 psce = p->pscc_entries; 2612 mutex_enter(&psce->psce_lock); 2613 ASSERT(psce); 2614 rw_exit(&pm_pscc_direct_rwlock); 2615 return (psce); 2616 } 2617 } 2618 rw_exit(&pm_pscc_direct_rwlock); 2619 panic("sunpm: no entry for dip %p in direct list", (void *)dip); 2620 /*NOTREACHED*/ 2621 } 2622 2623 /* 2624 * Write an entry indicating a power level change (to be passed to a process 2625 * later) in the given psce. 2626 * If we were called in the path that brings up the console fb in the 2627 * case of entering the prom, we don't want to sleep. If the alloc fails, then 2628 * we create a record that has a size of -1, a physaddr of NULL, and that 2629 * has the overflow flag set. 2630 */ 2631 static int 2632 psc_entry(ushort_t event, psce_t *psce, dev_info_t *dip, int comp, int new, 2633 int old, int which, pm_canblock_t canblock) 2634 { 2635 char buf[MAXNAMELEN]; 2636 pm_state_change_t *p; 2637 size_t size; 2638 caddr_t physpath = NULL; 2639 int overrun = 0; 2640 2641 ASSERT(MUTEX_HELD(&psce->psce_lock)); 2642 (void) ddi_pathname(dip, buf); 2643 size = strlen(buf) + 1; 2644 p = psce->psce_in; 2645 if (canblock == PM_CANBLOCK_BYPASS) { 2646 physpath = kmem_alloc(size, KM_NOSLEEP); 2647 if (physpath == NULL) { 2648 /* 2649 * mark current entry as overrun 2650 */ 2651 p->flags |= PSC_EVENT_LOST; 2652 size = (size_t)-1; 2653 } 2654 } else 2655 physpath = kmem_alloc(size, KM_SLEEP); 2656 if (p->size) { /* overflow; mark the next entry */ 2657 if (p->size != (size_t)-1) 2658 kmem_free(p->physpath, p->size); 2659 ASSERT(psce->psce_out == p); 2660 if (p == psce->psce_last) { 2661 psce->psce_first->flags |= PSC_EVENT_LOST; 2662 psce->psce_out = psce->psce_first; 2663 } else { 2664 (p + 1)->flags |= PSC_EVENT_LOST; 2665 psce->psce_out = (p + 1); 2666 } 2667 overrun++; 2668 } else if (physpath == NULL) { /* alloc failed, mark this entry */ 2669 p->flags |= PSC_EVENT_LOST; 2670 p->size = 0; 2671 p->physpath = NULL; 2672 } 2673 if (which == PSC_INTEREST) { 2674 mutex_enter(&pm_compcnt_lock); 2675 if (pm_comps_notlowest == 0) 2676 p->flags |= PSC_ALL_LOWEST; 2677 else 2678 p->flags &= ~PSC_ALL_LOWEST; 2679 mutex_exit(&pm_compcnt_lock); 2680 } 2681 p->event = event; 2682 p->timestamp = gethrestime_sec(); 2683 p->component = comp; 2684 p->old_level = old; 2685 p->new_level = new; 2686 p->physpath = physpath; 2687 p->size = size; 2688 if (physpath != NULL) 2689 (void) strcpy(p->physpath, buf); 2690 if (p == psce->psce_last) 2691 psce->psce_in = psce->psce_first; 2692 else 2693 psce->psce_in = ++p; 2694 mutex_exit(&psce->psce_lock); 2695 return (overrun); 2696 } 2697 2698 /* 2699 * Find the next entry on the interest list. We keep a pointer to the item we 2700 * last returned in the user's cooke. Returns a locked entries struct. 2701 */ 2702 static psce_t * 2703 psc_interest(void **cookie, pscc_t **psccp) 2704 { 2705 pscc_t *pscc; 2706 pscc_t **cookiep = (pscc_t **)cookie; 2707 2708 if (*cookiep == NULL) 2709 pscc = pm_pscc_interest; 2710 else 2711 pscc = (*cookiep)->pscc_next; 2712 if (pscc) { 2713 *cookiep = pscc; 2714 *psccp = pscc; 2715 mutex_enter(&pscc->pscc_entries->psce_lock); 2716 return (pscc->pscc_entries); 2717 } else { 2718 return (NULL); 2719 } 2720 } 2721 2722 /* 2723 * Create an entry for a process to pick up indicating a power level change. 2724 */ 2725 static void 2726 pm_enqueue_notify(ushort_t cmd, dev_info_t *dip, int comp, 2727 int newlevel, int oldlevel, pm_canblock_t canblock) 2728 { 2729 PMD_FUNC(pmf, "enqueue_notify") 2730 pscc_t *pscc; 2731 psce_t *psce; 2732 void *cookie = NULL; 2733 int overrun; 2734 2735 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 2736 switch (cmd) { 2737 case PSC_PENDING_CHANGE: /* only for controlling process */ 2738 PMD(PMD_DPM, ("%s: PENDING %s@%s(%s#%d), comp %d, %d -> %d\n", 2739 pmf, PM_DEVICE(dip), comp, oldlevel, newlevel)) 2740 psce = pm_psc_dip_to_direct(dip, &pscc); 2741 ASSERT(psce); 2742 PMD(PMD_IOCTL, ("%s: PENDING: %s@%s(%s#%d) pm_poll_cnt[%d] " 2743 "%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone, 2744 pm_poll_cnt[pscc->pscc_clone])) 2745 overrun = psc_entry(cmd, psce, dip, comp, newlevel, oldlevel, 2746 PSC_DIRECT, canblock); 2747 PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone)) 2748 mutex_enter(&pm_clone_lock); 2749 if (!overrun) 2750 pm_poll_cnt[pscc->pscc_clone]++; 2751 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2752 pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN)); 2753 mutex_exit(&pm_clone_lock); 2754 break; 2755 case PSC_HAS_CHANGED: 2756 PMD(PMD_DPM, ("%s: HAS %s@%s(%s#%d), comp %d, %d -> %d\n", 2757 pmf, PM_DEVICE(dip), comp, oldlevel, newlevel)) 2758 if (PM_ISDIRECT(dip) && canblock != PM_CANBLOCK_BYPASS) { 2759 psce = pm_psc_dip_to_direct(dip, &pscc); 2760 PMD(PMD_IOCTL, ("%s: HAS: %s@%s(%s#%d) pm_poll_cnt[%d] " 2761 "%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone, 2762 pm_poll_cnt[pscc->pscc_clone])) 2763 overrun = psc_entry(cmd, psce, dip, comp, newlevel, 2764 oldlevel, PSC_DIRECT, canblock); 2765 PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone)) 2766 mutex_enter(&pm_clone_lock); 2767 if (!overrun) 2768 pm_poll_cnt[pscc->pscc_clone]++; 2769 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2770 pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN)); 2771 mutex_exit(&pm_clone_lock); 2772 } 2773 mutex_enter(&pm_clone_lock); 2774 rw_enter(&pm_pscc_interest_rwlock, RW_READER); 2775 while ((psce = psc_interest(&cookie, &pscc)) != NULL) { 2776 (void) psc_entry(cmd, psce, dip, comp, newlevel, 2777 oldlevel, PSC_INTEREST, canblock); 2778 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2779 } 2780 rw_exit(&pm_pscc_interest_rwlock); 2781 mutex_exit(&pm_clone_lock); 2782 break; 2783 #ifdef DEBUG 2784 default: 2785 ASSERT(0); 2786 #endif 2787 } 2788 } 2789 2790 static void 2791 pm_enqueue_notify_others(pm_ppm_devlist_t **listp, pm_canblock_t canblock) 2792 { 2793 if (listp) { 2794 pm_ppm_devlist_t *p, *next = NULL; 2795 2796 for (p = *listp; p; p = next) { 2797 next = p->ppd_next; 2798 pm_enqueue_notify(PSC_HAS_CHANGED, p->ppd_who, 2799 p->ppd_cmpt, p->ppd_new_level, p->ppd_old_level, 2800 canblock); 2801 kmem_free(p, sizeof (pm_ppm_devlist_t)); 2802 } 2803 *listp = NULL; 2804 } 2805 } 2806 2807 /* 2808 * Try to get the power locks of the parent node and target (child) 2809 * node. Return true if successful (with both locks held) or false 2810 * (with no locks held). 2811 */ 2812 static int 2813 pm_try_parent_child_locks(dev_info_t *pdip, 2814 dev_info_t *dip, int *pcircp, int *circp) 2815 { 2816 if (ndi_devi_tryenter(pdip, pcircp)) 2817 if (PM_TRY_LOCK_POWER(dip, circp)) { 2818 return (1); 2819 } else { 2820 ndi_devi_exit(pdip, *pcircp); 2821 } 2822 return (0); 2823 } 2824 2825 /* 2826 * Determine if the power lock owner is blocked by current thread. 2827 * returns : 2828 * 1 - If the thread owning the effective power lock (the first lock on 2829 * which a thread blocks when it does PM_LOCK_POWER) is blocked by 2830 * a mutex held by the current thread. 2831 * 2832 * 0 - otherwise 2833 * 2834 * Note : This function is called by pm_power_has_changed to determine whether 2835 * it is executing in parallel with pm_set_power. 2836 */ 2837 static int 2838 pm_blocked_by_us(dev_info_t *dip) 2839 { 2840 power_req_t power_req; 2841 kthread_t *owner; 2842 int result; 2843 kmutex_t *mp; 2844 dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm; 2845 2846 power_req.request_type = PMR_PPM_POWER_LOCK_OWNER; 2847 power_req.req.ppm_power_lock_owner_req.who = dip; 2848 if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req, &result) != 2849 DDI_SUCCESS) { 2850 /* 2851 * It is assumed that if the device is claimed by ppm, ppm 2852 * will always implement this request type and it'll always 2853 * return success. We panic here, if it fails. 2854 */ 2855 panic("pm: Can't determine power lock owner of %s@%s(%s#%d)\n", 2856 PM_DEVICE(dip)); 2857 /*NOTREACHED*/ 2858 } 2859 2860 if ((owner = power_req.req.ppm_power_lock_owner_req.owner) != NULL && 2861 owner->t_state == TS_SLEEP && 2862 owner->t_sobj_ops && 2863 SOBJ_TYPE(owner->t_sobj_ops) == SOBJ_MUTEX && 2864 (mp = (kmutex_t *)owner->t_wchan) && 2865 mutex_owner(mp) == curthread) 2866 return (1); 2867 2868 return (0); 2869 } 2870 2871 /* 2872 * Notify parent which wants to hear about a child's power changes. 2873 */ 2874 static void 2875 pm_notify_parent(dev_info_t *dip, 2876 dev_info_t *pdip, int comp, int old_level, int level) 2877 { 2878 pm_bp_has_changed_t bphc; 2879 pm_sp_misc_t pspm; 2880 char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2881 int result = DDI_SUCCESS; 2882 2883 bphc.bphc_dip = dip; 2884 bphc.bphc_path = ddi_pathname(dip, pathbuf); 2885 bphc.bphc_comp = comp; 2886 bphc.bphc_olevel = old_level; 2887 bphc.bphc_nlevel = level; 2888 pspm.pspm_canblock = PM_CANBLOCK_BLOCK; 2889 pspm.pspm_scan = 0; 2890 bphc.bphc_private = &pspm; 2891 (void) (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 2892 BUS_POWER_HAS_CHANGED, (void *)&bphc, (void *)&result); 2893 kmem_free(pathbuf, MAXPATHLEN); 2894 } 2895 2896 /* 2897 * Check if we need to resume a BC device, and make the attach call as required. 2898 */ 2899 static int 2900 pm_check_and_resume(dev_info_t *dip, int comp, int old_level, int level) 2901 { 2902 int ret = DDI_SUCCESS; 2903 2904 if (PM_ISBC(dip) && comp == 0 && old_level == 0 && level != 0) { 2905 ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED); 2906 /* ppm is not interested in DDI_PM_RESUME */ 2907 if ((ret = devi_attach(dip, DDI_PM_RESUME)) != DDI_SUCCESS) 2908 /* XXX Should we mark it resumed, */ 2909 /* even though it failed? */ 2910 cmn_err(CE_WARN, "!pm: Can't resume %s@%s", 2911 PM_NAME(dip), PM_ADDR(dip)); 2912 DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED; 2913 } 2914 2915 return (ret); 2916 } 2917 2918 /* 2919 * Tests outside the lock to see if we should bother to enqueue an entry 2920 * for any watching process. If yes, then caller will take the lock and 2921 * do the full protocol 2922 */ 2923 static int 2924 pm_watchers() 2925 { 2926 if (pm_processes_stopped) 2927 return (0); 2928 return (pm_pscc_direct || pm_pscc_interest); 2929 } 2930 2931 static int pm_phc_impl(dev_info_t *, int, int, int); 2932 2933 /* 2934 * A driver is reporting that the power of one of its device's components 2935 * has changed. Update the power state accordingly. 2936 */ 2937 int 2938 pm_power_has_changed(dev_info_t *dip, int comp, int level) 2939 { 2940 PMD_FUNC(pmf, "pm_power_has_changed") 2941 int ret; 2942 dev_info_t *pdip = ddi_get_parent(dip); 2943 struct pm_component *cp; 2944 int blocked, circ, pcirc, old_level; 2945 2946 if (level < 0) { 2947 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d): bad level=%d\n", pmf, 2948 PM_DEVICE(dip), level)) 2949 return (DDI_FAILURE); 2950 } 2951 2952 PMD(PMD_KIDSUP | PMD_DEP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf, 2953 PM_DEVICE(dip), comp, level)) 2954 2955 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, &cp) || 2956 !e_pm_valid_power(dip, comp, level)) 2957 return (DDI_FAILURE); 2958 2959 /* 2960 * A driver thread calling pm_power_has_changed and another thread 2961 * calling pm_set_power can deadlock. The problem is not resolvable 2962 * by changing lock order, so we use pm_blocked_by_us() to detect 2963 * this specific deadlock. If we can't get the lock immediately 2964 * and we are deadlocked, just update the component's level, do 2965 * notifications, and return. We intend to update the total power 2966 * state later (if the other thread fails to set power to the 2967 * desired level). If we were called because of a power change on a 2968 * component that isn't involved in a set_power op, update all state 2969 * immediately. 2970 */ 2971 cp = PM_CP(dip, comp); 2972 while (!pm_try_parent_child_locks(pdip, dip, &pcirc, &circ)) { 2973 if (((blocked = pm_blocked_by_us(dip)) != 0) && 2974 (cp->pmc_flags & PM_POWER_OP)) { 2975 if (pm_watchers()) { 2976 mutex_enter(&pm_rsvp_lock); 2977 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, 2978 level, cur_power(cp), PM_CANBLOCK_BLOCK); 2979 mutex_exit(&pm_rsvp_lock); 2980 } 2981 if (pdip && PM_WANTS_NOTIFICATION(pdip)) 2982 pm_notify_parent(dip, 2983 pdip, comp, cur_power(cp), level); 2984 (void) pm_check_and_resume(dip, 2985 comp, cur_power(cp), level); 2986 2987 /* 2988 * Stash the old power index, update curpwr, and flag 2989 * that the total power state needs to be synched. 2990 */ 2991 cp->pmc_flags |= PM_PHC_WHILE_SET_POWER; 2992 /* 2993 * Several pm_power_has_changed calls could arrive 2994 * while the set power path remains blocked. Keep the 2995 * oldest old power and the newest new power of any 2996 * sequence of phc calls which arrive during deadlock. 2997 */ 2998 if (cp->pmc_phc_pwr == PM_LEVEL_UNKNOWN) 2999 cp->pmc_phc_pwr = cp->pmc_cur_pwr; 3000 cp->pmc_cur_pwr = 3001 pm_level_to_index(dip, cp, level); 3002 PMD(PMD_PHC, ("%s: deadlock for %s@%s(%s#%d), comp=%d, " 3003 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3004 return (DDI_SUCCESS); 3005 } else 3006 if (blocked) { /* blocked, but different cmpt? */ 3007 if (!ndi_devi_tryenter(pdip, &pcirc)) { 3008 cmn_err(CE_NOTE, 3009 "!pm: parent kuc not updated due " 3010 "to possible deadlock.\n"); 3011 return (pm_phc_impl(dip, 3012 comp, level, 1)); 3013 } 3014 old_level = cur_power(cp); 3015 if (pdip && !PM_WANTS_NOTIFICATION(pdip) && 3016 (!PM_ISBC(dip) || comp == 0) && 3017 POWERING_ON(old_level, level)) 3018 pm_hold_power(pdip); 3019 ret = pm_phc_impl(dip, comp, level, 1); 3020 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 3021 if ((!PM_ISBC(dip) || 3022 comp == 0) && level == 0 && 3023 old_level != PM_LEVEL_UNKNOWN) 3024 pm_rele_power(pdip); 3025 } 3026 ndi_devi_exit(pdip, pcirc); 3027 /* child lock not held: deadlock */ 3028 return (ret); 3029 } 3030 delay(1); 3031 PMD(PMD_PHC, ("%s: try lock again\n", pmf)) 3032 } 3033 3034 /* non-deadlock case */ 3035 old_level = cur_power(cp); 3036 if (pdip && !PM_WANTS_NOTIFICATION(pdip) && 3037 (!PM_ISBC(dip) || comp == 0) && POWERING_ON(old_level, level)) 3038 pm_hold_power(pdip); 3039 ret = pm_phc_impl(dip, comp, level, 1); 3040 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 3041 if ((!PM_ISBC(dip) || comp == 0) && level == 0 && 3042 old_level != PM_LEVEL_UNKNOWN) 3043 pm_rele_power(pdip); 3044 } 3045 PM_UNLOCK_POWER(dip, circ); 3046 ndi_devi_exit(pdip, pcirc); 3047 return (ret); 3048 } 3049 3050 /* 3051 * Account for power changes to a component of the the console frame buffer. 3052 * If lowering power from full (or "unkown", which is treatd as full) 3053 * we will increment the "components off" count of the fb device. 3054 * Subsequent lowering of the same component doesn't affect the count. If 3055 * raising a component back to full power, we will decrement the count. 3056 * 3057 * Return: the increment value for pm_cfb_comps_off (-1, 0, or 1) 3058 */ 3059 static int 3060 calc_cfb_comps_incr(dev_info_t *dip, int cmpt, int old, int new) 3061 { 3062 struct pm_component *cp = PM_CP(dip, cmpt); 3063 int on = (old == PM_LEVEL_UNKNOWN || old == cp->pmc_norm_pwr); 3064 int want_normal = (new == cp->pmc_norm_pwr); 3065 int incr = 0; 3066 3067 if (on && !want_normal) 3068 incr = 1; 3069 else if (!on && want_normal) 3070 incr = -1; 3071 return (incr); 3072 } 3073 3074 /* 3075 * Adjust the count of console frame buffer components < full power. 3076 */ 3077 static void 3078 update_comps_off(int incr, dev_info_t *dip) 3079 { 3080 mutex_enter(&pm_cfb_lock); 3081 pm_cfb_comps_off += incr; 3082 ASSERT(pm_cfb_comps_off <= PM_NUMCMPTS(dip)); 3083 mutex_exit(&pm_cfb_lock); 3084 } 3085 3086 /* 3087 * Update the power state in the framework (via the ppm). The 'notify' 3088 * argument tells whether to notify watchers. Power lock is already held. 3089 */ 3090 static int 3091 pm_phc_impl(dev_info_t *dip, int comp, int level, int notify) 3092 { 3093 PMD_FUNC(pmf, "phc_impl") 3094 power_req_t power_req; 3095 int i, dodeps = 0; 3096 dev_info_t *pdip = ddi_get_parent(dip); 3097 int result; 3098 int old_level; 3099 struct pm_component *cp; 3100 int incr = 0; 3101 dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm; 3102 int work_type = 0; 3103 char *pathbuf; 3104 3105 /* Must use "official" power level for this test. */ 3106 cp = PM_CP(dip, comp); 3107 old_level = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 3108 cp->pmc_phc_pwr : cp->pmc_cur_pwr); 3109 if (old_level != PM_LEVEL_UNKNOWN) 3110 old_level = cp->pmc_comp.pmc_lvals[old_level]; 3111 3112 if (level == old_level) { 3113 PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d is already at " 3114 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3115 return (DDI_SUCCESS); 3116 } 3117 3118 /* 3119 * Tell ppm about this. 3120 */ 3121 power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY; 3122 power_req.req.ppm_notify_level_req.who = dip; 3123 power_req.req.ppm_notify_level_req.cmpt = comp; 3124 power_req.req.ppm_notify_level_req.new_level = level; 3125 power_req.req.ppm_notify_level_req.old_level = old_level; 3126 if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req, 3127 &result) == DDI_FAILURE) { 3128 PMD(PMD_FAIL, ("%s: pm_ctlops %s@%s(%s#%d) to %d failed\n", 3129 pmf, PM_DEVICE(dip), level)) 3130 return (DDI_FAILURE); 3131 } 3132 3133 if (PM_IS_CFB(dip)) { 3134 incr = calc_cfb_comps_incr(dip, comp, old_level, level); 3135 3136 if (incr) { 3137 update_comps_off(incr, dip); 3138 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) comp=%d %d->%d " 3139 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 3140 comp, old_level, level, pm_cfb_comps_off)) 3141 } 3142 } 3143 e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level); 3144 result = DDI_SUCCESS; 3145 3146 if (notify) { 3147 if (pdip && PM_WANTS_NOTIFICATION(pdip)) 3148 pm_notify_parent(dip, pdip, comp, old_level, level); 3149 (void) pm_check_and_resume(dip, comp, old_level, level); 3150 } 3151 3152 /* 3153 * Decrement the dependency kidsup count if we turn a device 3154 * off. 3155 */ 3156 if (POWERING_OFF(old_level, level)) { 3157 dodeps = 1; 3158 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3159 cp = PM_CP(dip, i); 3160 if (cur_power(cp)) { 3161 dodeps = 0; 3162 break; 3163 } 3164 } 3165 if (dodeps) 3166 work_type = PM_DEP_WK_POWER_OFF; 3167 } 3168 3169 /* 3170 * Increment if we turn it on. Check to see 3171 * if other comps are already on, if so, 3172 * dont increment. 3173 */ 3174 if (POWERING_ON(old_level, level)) { 3175 dodeps = 1; 3176 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3177 cp = PM_CP(dip, i); 3178 if (comp == i) 3179 continue; 3180 /* -1 also treated as 0 in this case */ 3181 if (cur_power(cp) > 0) { 3182 dodeps = 0; 3183 break; 3184 } 3185 } 3186 if (dodeps) 3187 work_type = PM_DEP_WK_POWER_ON; 3188 } 3189 3190 if (dodeps) { 3191 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3192 (void) ddi_pathname(dip, pathbuf); 3193 pm_dispatch_to_dep_thread(work_type, pathbuf, NULL, 3194 PM_DEP_NOWAIT, NULL, 0); 3195 kmem_free(pathbuf, MAXPATHLEN); 3196 } 3197 3198 if (notify && (level != old_level) && pm_watchers()) { 3199 mutex_enter(&pm_rsvp_lock); 3200 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, level, old_level, 3201 PM_CANBLOCK_BLOCK); 3202 mutex_exit(&pm_rsvp_lock); 3203 } 3204 3205 PMD(PMD_RESCAN, ("%s: %s@%s(%s#%d): pm_rescan\n", pmf, PM_DEVICE(dip))) 3206 pm_rescan(dip); 3207 return (DDI_SUCCESS); 3208 } 3209 3210 /* 3211 * This function is called at startup time to notify pm of the existence 3212 * of any platform power managers for this platform. As a result of 3213 * this registration, each function provided will be called each time 3214 * a device node is attached, until one returns true, and it must claim the 3215 * device node (by returning non-zero) if it wants to be involved in the 3216 * node's power management. If it does claim the node, then it will 3217 * subsequently be notified of attach and detach events. 3218 * 3219 */ 3220 3221 int 3222 pm_register_ppm(int (*func)(dev_info_t *), dev_info_t *dip) 3223 { 3224 PMD_FUNC(pmf, "register_ppm") 3225 struct ppm_callbacks *ppmcp; 3226 pm_component_t *cp; 3227 int i, pwr, result, circ; 3228 power_req_t power_req; 3229 struct ppm_notify_level_req *p = &power_req.req.ppm_notify_level_req; 3230 void pm_ppm_claim(dev_info_t *); 3231 3232 mutex_enter(&ppm_lock); 3233 ppmcp = ppm_callbacks; 3234 for (i = 0; i < MAX_PPM_HANDLERS; i++, ppmcp++) { 3235 if (ppmcp->ppmc_func == NULL) { 3236 ppmcp->ppmc_func = func; 3237 ppmcp->ppmc_dip = dip; 3238 break; 3239 } 3240 } 3241 mutex_exit(&ppm_lock); 3242 3243 if (i >= MAX_PPM_HANDLERS) 3244 return (DDI_FAILURE); 3245 while ((dip = ddi_get_parent(dip)) != NULL) { 3246 if (dip != ddi_root_node() && PM_GET_PM_INFO(dip) == NULL) 3247 continue; 3248 pm_ppm_claim(dip); 3249 /* don't bother with the not power-manageable nodes */ 3250 if (pm_ppm_claimed(dip) && PM_GET_PM_INFO(dip)) { 3251 /* 3252 * Tell ppm about this. 3253 */ 3254 power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY; 3255 p->old_level = PM_LEVEL_UNKNOWN; 3256 p->who = dip; 3257 PM_LOCK_POWER(dip, &circ); 3258 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3259 cp = PM_CP(dip, i); 3260 pwr = cp->pmc_cur_pwr; 3261 if (pwr != PM_LEVEL_UNKNOWN) { 3262 p->cmpt = i; 3263 p->new_level = cur_power(cp); 3264 p->old_level = PM_LEVEL_UNKNOWN; 3265 if (pm_ctlops(PPM(dip), dip, 3266 DDI_CTLOPS_POWER, &power_req, 3267 &result) == DDI_FAILURE) { 3268 PMD(PMD_FAIL, ("%s: pc " 3269 "%s@%s(%s#%d) to %d " 3270 "fails\n", pmf, 3271 PM_DEVICE(dip), pwr)) 3272 } 3273 } 3274 } 3275 PM_UNLOCK_POWER(dip, circ); 3276 } 3277 } 3278 return (DDI_SUCCESS); 3279 } 3280 3281 /* 3282 * Call the ppm's that have registered and adjust the devinfo struct as 3283 * appropriate. First one to claim it gets it. The sets of devices claimed 3284 * by each ppm are assumed to be disjoint. 3285 */ 3286 void 3287 pm_ppm_claim(dev_info_t *dip) 3288 { 3289 struct ppm_callbacks *ppmcp; 3290 3291 if (PPM(dip)) { 3292 return; 3293 } 3294 mutex_enter(&ppm_lock); 3295 for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++) { 3296 if ((*ppmcp->ppmc_func)(dip)) { 3297 DEVI(dip)->devi_pm_ppm = 3298 (struct dev_info *)ppmcp->ppmc_dip; 3299 mutex_exit(&ppm_lock); 3300 return; 3301 } 3302 } 3303 mutex_exit(&ppm_lock); 3304 } 3305 3306 /* 3307 * Node is being detached so stop autopm until we see if it succeeds, in which 3308 * case pm_stop will be called. For backwards compatible devices we bring the 3309 * device up to full power on the assumption the detach will succeed. 3310 */ 3311 void 3312 pm_detaching(dev_info_t *dip) 3313 { 3314 PMD_FUNC(pmf, "detaching") 3315 pm_info_t *info = PM_GET_PM_INFO(dip); 3316 int iscons; 3317 3318 PMD(PMD_REMDEV, ("%s: %s@%s(%s#%d), %d comps\n", pmf, PM_DEVICE(dip), 3319 PM_NUMCMPTS(dip))) 3320 if (info == NULL) 3321 return; 3322 ASSERT(DEVI_IS_DETACHING(dip)); 3323 PM_LOCK_DIP(dip); 3324 info->pmi_dev_pm_state |= PM_DETACHING; 3325 PM_UNLOCK_DIP(dip); 3326 if (!PM_ISBC(dip)) 3327 pm_scan_stop(dip); 3328 3329 /* 3330 * console and old-style devices get brought up when detaching. 3331 */ 3332 iscons = PM_IS_CFB(dip); 3333 if (iscons || PM_ISBC(dip)) { 3334 (void) pm_all_to_normal(dip, PM_CANBLOCK_BYPASS); 3335 if (iscons) { 3336 mutex_enter(&pm_cfb_lock); 3337 while (cfb_inuse) { 3338 mutex_exit(&pm_cfb_lock); 3339 PMD(PMD_CFB, ("%s: delay; cfb_inuse\n", pmf)) 3340 delay(1); 3341 mutex_enter(&pm_cfb_lock); 3342 } 3343 ASSERT(cfb_dip_detaching == NULL); 3344 ASSERT(cfb_dip); 3345 cfb_dip_detaching = cfb_dip; /* case detach fails */ 3346 cfb_dip = NULL; 3347 mutex_exit(&pm_cfb_lock); 3348 } 3349 } 3350 } 3351 3352 /* 3353 * Node failed to detach. If it used to be autopm'd, make it so again. 3354 */ 3355 void 3356 pm_detach_failed(dev_info_t *dip) 3357 { 3358 PMD_FUNC(pmf, "detach_failed") 3359 pm_info_t *info = PM_GET_PM_INFO(dip); 3360 int pm_all_at_normal(dev_info_t *); 3361 3362 if (info == NULL) 3363 return; 3364 ASSERT(DEVI_IS_DETACHING(dip)); 3365 if (info->pmi_dev_pm_state & PM_DETACHING) { 3366 info->pmi_dev_pm_state &= ~PM_DETACHING; 3367 if (info->pmi_dev_pm_state & PM_ALLNORM_DEFERRED) { 3368 /* Make sure the operation is still needed */ 3369 if (!pm_all_at_normal(dip)) { 3370 if (pm_all_to_normal(dip, 3371 PM_CANBLOCK_FAIL) != DDI_SUCCESS) { 3372 PMD(PMD_ERROR, ("%s: could not bring " 3373 "%s@%s(%s#%d) to normal\n", pmf, 3374 PM_DEVICE(dip))) 3375 } 3376 } 3377 info->pmi_dev_pm_state &= ~PM_ALLNORM_DEFERRED; 3378 } 3379 } 3380 if (!PM_ISBC(dip)) { 3381 mutex_enter(&pm_scan_lock); 3382 if (PM_SCANABLE(dip)) 3383 pm_scan_init(dip); 3384 mutex_exit(&pm_scan_lock); 3385 pm_rescan(dip); 3386 } 3387 } 3388 3389 /* generic Backwards Compatible component */ 3390 static char *bc_names[] = {"off", "on"}; 3391 3392 static pm_comp_t bc_comp = {"unknown", 2, NULL, NULL, &bc_names[0]}; 3393 3394 static void 3395 e_pm_default_levels(dev_info_t *dip, pm_component_t *cp, int norm) 3396 { 3397 pm_comp_t *pmc; 3398 pmc = &cp->pmc_comp; 3399 pmc->pmc_numlevels = 2; 3400 pmc->pmc_lvals[0] = 0; 3401 pmc->pmc_lvals[1] = norm; 3402 e_pm_set_cur_pwr(dip, cp, norm); 3403 } 3404 3405 static void 3406 e_pm_default_components(dev_info_t *dip, int cmpts) 3407 { 3408 int i; 3409 pm_component_t *p = DEVI(dip)->devi_pm_components; 3410 3411 p = DEVI(dip)->devi_pm_components; 3412 for (i = 0; i < cmpts; i++, p++) { 3413 p->pmc_comp = bc_comp; /* struct assignment */ 3414 p->pmc_comp.pmc_lvals = kmem_zalloc(2 * sizeof (int), 3415 KM_SLEEP); 3416 p->pmc_comp.pmc_thresh = kmem_alloc(2 * sizeof (int), 3417 KM_SLEEP); 3418 p->pmc_comp.pmc_numlevels = 2; 3419 p->pmc_comp.pmc_thresh[0] = INT_MAX; 3420 p->pmc_comp.pmc_thresh[1] = INT_MAX; 3421 } 3422 } 3423 3424 /* 3425 * Called from functions that require components to exist already to allow 3426 * for their creation by parsing the pm-components property. 3427 * Device will not be power managed as a result of this call 3428 * No locking needed because we're single threaded by the ndi_devi_enter 3429 * done while attaching, and the device isn't visible until after it has 3430 * attached 3431 */ 3432 int 3433 pm_premanage(dev_info_t *dip, int style) 3434 { 3435 PMD_FUNC(pmf, "premanage") 3436 pm_comp_t *pcp, *compp; 3437 int cmpts, i, norm, error; 3438 pm_component_t *p = DEVI(dip)->devi_pm_components; 3439 pm_comp_t *pm_autoconfig(dev_info_t *, int *); 3440 3441 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 3442 /* 3443 * If this dip has already been processed, don't mess with it 3444 */ 3445 if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE) 3446 return (DDI_SUCCESS); 3447 if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_FAILED) { 3448 return (DDI_FAILURE); 3449 } 3450 /* 3451 * Look up pm-components property and create components accordingly 3452 * If that fails, fall back to backwards compatibility 3453 */ 3454 if ((compp = pm_autoconfig(dip, &error)) == NULL) { 3455 /* 3456 * If error is set, the property existed but was not well formed 3457 */ 3458 if (error || (style == PM_STYLE_NEW)) { 3459 DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_FAILED; 3460 return (DDI_FAILURE); 3461 } 3462 /* 3463 * If they don't have the pm-components property, then we 3464 * want the old "no pm until PM_SET_DEVICE_THRESHOLDS ioctl" 3465 * behavior driver must have called pm_create_components, and 3466 * we need to flesh out dummy components 3467 */ 3468 if ((cmpts = PM_NUMCMPTS(dip)) == 0) { 3469 /* 3470 * Not really failure, but we don't want the 3471 * caller to treat it as success 3472 */ 3473 return (DDI_FAILURE); 3474 } 3475 DEVI(dip)->devi_pm_flags |= PMC_BC; 3476 e_pm_default_components(dip, cmpts); 3477 for (i = 0; i < cmpts; i++) { 3478 /* 3479 * if normal power not set yet, we don't really know 3480 * what *ANY* of the power values are. If normal 3481 * power is set, then we assume for this backwards 3482 * compatible case that the values are 0, normal power. 3483 */ 3484 norm = pm_get_normal_power(dip, i); 3485 if (norm == (uint_t)-1) { 3486 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d)[%d]\n", pmf, 3487 PM_DEVICE(dip), i)) 3488 return (DDI_FAILURE); 3489 } 3490 /* 3491 * Components of BC devices start at their normal power, 3492 * so count them to be not at their lowest power. 3493 */ 3494 PM_INCR_NOTLOWEST(dip); 3495 e_pm_default_levels(dip, PM_CP(dip, i), norm); 3496 } 3497 } else { 3498 /* 3499 * e_pm_create_components was called from pm_autoconfig(), it 3500 * creates components with no descriptions (or known levels) 3501 */ 3502 cmpts = PM_NUMCMPTS(dip); 3503 ASSERT(cmpts != 0); 3504 pcp = compp; 3505 p = DEVI(dip)->devi_pm_components; 3506 for (i = 0; i < cmpts; i++, p++) { 3507 p->pmc_comp = *pcp++; /* struct assignment */ 3508 ASSERT(PM_CP(dip, i)->pmc_cur_pwr == 0); 3509 e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN); 3510 } 3511 if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH) 3512 pm_set_device_threshold(dip, pm_cpu_idle_threshold, 3513 PMC_CPU_THRESH); 3514 else 3515 pm_set_device_threshold(dip, pm_system_idle_threshold, 3516 PMC_DEF_THRESH); 3517 kmem_free(compp, cmpts * sizeof (pm_comp_t)); 3518 } 3519 return (DDI_SUCCESS); 3520 } 3521 3522 /* 3523 * Called from during or after the device's attach to let us know it is ready 3524 * to play autopm. Look up the pm model and manage the device accordingly. 3525 * Returns system call errno value. 3526 * If DDI_ATTACH and DDI_DETACH were in same namespace, this would be 3527 * a little cleaner 3528 * 3529 * Called with dip lock held, return with dip lock unheld. 3530 */ 3531 3532 int 3533 e_pm_manage(dev_info_t *dip, int style) 3534 { 3535 PMD_FUNC(pmf, "e_manage") 3536 pm_info_t *info; 3537 dev_info_t *pdip = ddi_get_parent(dip); 3538 int pm_thresh_specd(dev_info_t *); 3539 int count; 3540 char *pathbuf; 3541 3542 if (pm_premanage(dip, style) != DDI_SUCCESS) { 3543 return (DDI_FAILURE); 3544 } 3545 PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3546 ASSERT(PM_GET_PM_INFO(dip) == NULL); 3547 info = kmem_zalloc(sizeof (pm_info_t), KM_SLEEP); 3548 3549 /* 3550 * Now set up parent's kidsupcnt. BC nodes are assumed to start 3551 * out at their normal power, so they are "up", others start out 3552 * unknown, which is effectively "up". Parent which want notification 3553 * get kidsupcnt of 0 always. 3554 */ 3555 count = (PM_ISBC(dip)) ? 1 : PM_NUMCMPTS(dip); 3556 if (count && pdip && !PM_WANTS_NOTIFICATION(pdip)) 3557 e_pm_hold_rele_power(pdip, count); 3558 3559 pm_set_pm_info(dip, info); 3560 /* 3561 * Apply any recorded thresholds 3562 */ 3563 (void) pm_thresh_specd(dip); 3564 3565 /* 3566 * Do dependency processing. 3567 */ 3568 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3569 (void) ddi_pathname(dip, pathbuf); 3570 pm_dispatch_to_dep_thread(PM_DEP_WK_ATTACH, pathbuf, pathbuf, 3571 PM_DEP_NOWAIT, NULL, 0); 3572 kmem_free(pathbuf, MAXPATHLEN); 3573 3574 if (!PM_ISBC(dip)) { 3575 mutex_enter(&pm_scan_lock); 3576 if (PM_SCANABLE(dip)) { 3577 pm_scan_init(dip); 3578 mutex_exit(&pm_scan_lock); 3579 pm_rescan(dip); 3580 } else { 3581 mutex_exit(&pm_scan_lock); 3582 } 3583 } 3584 return (0); 3585 } 3586 3587 /* 3588 * This is the obsolete exported interface for a driver to find out its 3589 * "normal" (max) power. 3590 * We only get components destroyed while no power management is 3591 * going on (and the device is detached), so we don't need a mutex here 3592 */ 3593 int 3594 pm_get_normal_power(dev_info_t *dip, int comp) 3595 { 3596 3597 if (comp >= 0 && comp < PM_NUMCMPTS(dip)) { 3598 return (PM_CP(dip, comp)->pmc_norm_pwr); 3599 } 3600 return (DDI_FAILURE); 3601 } 3602 3603 /* 3604 * Fetches the current power level. Return DDI_SUCCESS or DDI_FAILURE. 3605 */ 3606 int 3607 pm_get_current_power(dev_info_t *dip, int comp, int *levelp) 3608 { 3609 if (comp >= 0 && comp < PM_NUMCMPTS(dip)) { 3610 *levelp = PM_CURPOWER(dip, comp); 3611 return (DDI_SUCCESS); 3612 } 3613 return (DDI_FAILURE); 3614 } 3615 3616 /* 3617 * Returns current threshold of indicated component 3618 */ 3619 static int 3620 cur_threshold(dev_info_t *dip, int comp) 3621 { 3622 pm_component_t *cp = PM_CP(dip, comp); 3623 int pwr; 3624 3625 if (PM_ISBC(dip)) { 3626 /* 3627 * backwards compatible nodes only have one threshold 3628 */ 3629 return (cp->pmc_comp.pmc_thresh[1]); 3630 } 3631 pwr = cp->pmc_cur_pwr; 3632 if (pwr == PM_LEVEL_UNKNOWN) { 3633 int thresh; 3634 if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH) 3635 thresh = pm_default_nexus_threshold; 3636 else if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH) 3637 thresh = pm_cpu_idle_threshold; 3638 else 3639 thresh = pm_system_idle_threshold; 3640 return (thresh); 3641 } 3642 ASSERT(cp->pmc_comp.pmc_thresh); 3643 return (cp->pmc_comp.pmc_thresh[pwr]); 3644 } 3645 3646 /* 3647 * Compute next lower component power level given power index. 3648 */ 3649 static int 3650 pm_next_lower_power(pm_component_t *cp, int pwrndx) 3651 { 3652 int nxt_pwr; 3653 3654 if (pwrndx == PM_LEVEL_UNKNOWN) { 3655 nxt_pwr = cp->pmc_comp.pmc_lvals[0]; 3656 } else { 3657 pwrndx--; 3658 ASSERT(pwrndx >= 0); 3659 nxt_pwr = cp->pmc_comp.pmc_lvals[pwrndx]; 3660 } 3661 return (nxt_pwr); 3662 } 3663 3664 /* 3665 * Update the maxpower (normal) power of a component. Note that the 3666 * component's power level is only changed if it's current power level 3667 * is higher than the new max power. 3668 */ 3669 int 3670 pm_update_maxpower(dev_info_t *dip, int comp, int level) 3671 { 3672 PMD_FUNC(pmf, "update_maxpower") 3673 int old; 3674 int result; 3675 3676 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 3677 !e_pm_valid_power(dip, comp, level)) { 3678 PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) " 3679 "comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3680 return (DDI_FAILURE); 3681 } 3682 old = e_pm_get_max_power(dip, comp); 3683 e_pm_set_max_power(dip, comp, level); 3684 3685 if (pm_set_power(dip, comp, level, PM_LEVEL_DOWNONLY, 3686 PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) { 3687 e_pm_set_max_power(dip, comp, old); 3688 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) pm_set_power failed\n", pmf, 3689 PM_DEVICE(dip))) 3690 return (DDI_FAILURE); 3691 } 3692 return (DDI_SUCCESS); 3693 } 3694 3695 /* 3696 * Bring all components of device to normal power 3697 */ 3698 int 3699 pm_all_to_normal(dev_info_t *dip, pm_canblock_t canblock) 3700 { 3701 PMD_FUNC(pmf, "all_to_normal") 3702 int *normal; 3703 int i, ncomps, result; 3704 size_t size; 3705 int changefailed = 0; 3706 3707 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3708 ASSERT(PM_GET_PM_INFO(dip)); 3709 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 3710 PMD(PMD_ALLNORM, ("%s: can't get norm pwrs for " 3711 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3712 return (DDI_FAILURE); 3713 } 3714 ncomps = PM_NUMCMPTS(dip); 3715 for (i = 0; i < ncomps; i++) { 3716 if (pm_set_power(dip, i, normal[i], 3717 PM_LEVEL_UPONLY, canblock, 0, &result) != DDI_SUCCESS) { 3718 changefailed++; 3719 PMD(PMD_ALLNORM | PMD_FAIL, ("%s: failed to set " 3720 "%s@%s(%s#%d)[%d] to %d, errno %d\n", pmf, 3721 PM_DEVICE(dip), i, normal[i], result)) 3722 } 3723 } 3724 kmem_free(normal, size); 3725 if (changefailed) { 3726 PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) " 3727 "to full power\n", pmf, changefailed, PM_DEVICE(dip))) 3728 return (DDI_FAILURE); 3729 } 3730 return (DDI_SUCCESS); 3731 } 3732 3733 /* 3734 * Returns true if all components of device are at normal power 3735 */ 3736 int 3737 pm_all_at_normal(dev_info_t *dip) 3738 { 3739 PMD_FUNC(pmf, "all_at_normal") 3740 int *normal; 3741 int i; 3742 size_t size; 3743 3744 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3745 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 3746 PMD(PMD_ALLNORM, ("%s: can't get normal power\n", pmf)) 3747 return (DDI_FAILURE); 3748 } 3749 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3750 int current = PM_CURPOWER(dip, i); 3751 if (normal[i] > current) { 3752 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d) comp=%d, " 3753 "norm=%d, cur=%d\n", pmf, PM_DEVICE(dip), i, 3754 normal[i], current)) 3755 break; 3756 } 3757 } 3758 kmem_free(normal, size); 3759 if (i != PM_NUMCMPTS(dip)) { 3760 return (0); 3761 } 3762 return (1); 3763 } 3764 3765 static void bring_pmdep_up(dev_info_t *, int); 3766 3767 static void 3768 bring_wekeeps_up(char *keeper) 3769 { 3770 PMD_FUNC(pmf, "bring_wekeeps_up") 3771 int i; 3772 pm_pdr_t *dp; 3773 pm_info_t *wku_info; 3774 char *kept_path; 3775 dev_info_t *kept; 3776 3777 if (panicstr) { 3778 return; 3779 } 3780 /* 3781 * We process the request even if the keeper detaches because 3782 * detach processing expects this to increment kidsupcnt of kept. 3783 */ 3784 PMD(PMD_BRING, ("%s: keeper= %s\n", pmf, keeper)) 3785 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 3786 if (strcmp(dp->pdr_keeper, keeper) != 0) 3787 continue; 3788 for (i = 0; i < dp->pdr_kept_count; i++) { 3789 kept_path = dp->pdr_kept_paths[i]; 3790 if (kept_path == NULL) 3791 continue; 3792 ASSERT(kept_path[0] != '\0'); 3793 if ((kept = pm_name_to_dip(kept_path, 1)) == NULL) 3794 continue; 3795 wku_info = PM_GET_PM_INFO(kept); 3796 if (wku_info == NULL) { 3797 if (kept) 3798 ddi_release_devi(kept); 3799 continue; 3800 } 3801 /* 3802 * Don't mess with it if it is being detached, it isn't 3803 * safe to call its power entry point 3804 */ 3805 if (wku_info->pmi_dev_pm_state & PM_DETACHING) { 3806 if (kept) 3807 ddi_release_devi(kept); 3808 continue; 3809 } 3810 bring_pmdep_up(kept, 1); 3811 ddi_release_devi(kept); 3812 } 3813 } 3814 } 3815 3816 /* 3817 * Bring up the 'kept' device passed as argument 3818 */ 3819 static void 3820 bring_pmdep_up(dev_info_t *kept_dip, int hold) 3821 { 3822 PMD_FUNC(pmf, "bring_pmdep_up") 3823 int is_all_at_normal = 0; 3824 3825 /* 3826 * If the kept device has been unmanaged, do nothing. 3827 */ 3828 if (!PM_GET_PM_INFO(kept_dip)) 3829 return; 3830 3831 /* Just ignore DIRECT PM device till they are released. */ 3832 if (!pm_processes_stopped && PM_ISDIRECT(kept_dip) && 3833 !(is_all_at_normal = pm_all_at_normal(kept_dip))) { 3834 PMD(PMD_BRING, ("%s: can't bring up PM_DIRECT %s@%s(%s#%d) " 3835 "controlling process did something else\n", pmf, 3836 PM_DEVICE(kept_dip))) 3837 DEVI(kept_dip)->devi_pm_flags |= PMC_SKIP_BRINGUP; 3838 return; 3839 } 3840 /* if we got here the keeper had a transition from OFF->ON */ 3841 if (hold) 3842 pm_hold_power(kept_dip); 3843 3844 if (!is_all_at_normal) 3845 (void) pm_all_to_normal(kept_dip, PM_CANBLOCK_FAIL); 3846 } 3847 3848 /* 3849 * A bunch of stuff that belongs only to the next routine (or two) 3850 */ 3851 3852 static const char namestr[] = "NAME="; 3853 static const int nameln = sizeof (namestr) - 1; 3854 static const char pmcompstr[] = "pm-components"; 3855 3856 struct pm_comp_pkg { 3857 pm_comp_t *comp; 3858 struct pm_comp_pkg *next; 3859 }; 3860 3861 #define isdigit(ch) ((ch) >= '0' && (ch) <= '9') 3862 3863 #define isxdigit(ch) (isdigit(ch) || ((ch) >= 'a' && (ch) <= 'f') || \ 3864 ((ch) >= 'A' && (ch) <= 'F')) 3865 3866 /* 3867 * Rather than duplicate this code ... 3868 * (this code excerpted from the function that follows it) 3869 */ 3870 #define FINISH_COMP { \ 3871 ASSERT(compp); \ 3872 compp->pmc_lnames_sz = size; \ 3873 tp = compp->pmc_lname_buf = kmem_alloc(size, KM_SLEEP); \ 3874 compp->pmc_numlevels = level; \ 3875 compp->pmc_lnames = kmem_alloc(level * sizeof (char *), KM_SLEEP); \ 3876 compp->pmc_lvals = kmem_alloc(level * sizeof (int), KM_SLEEP); \ 3877 compp->pmc_thresh = kmem_alloc(level * sizeof (int), KM_SLEEP); \ 3878 /* copy string out of prop array into buffer */ \ 3879 for (j = 0; j < level; j++) { \ 3880 compp->pmc_thresh[j] = INT_MAX; /* only [0] sticks */ \ 3881 compp->pmc_lvals[j] = lvals[j]; \ 3882 (void) strcpy(tp, lnames[j]); \ 3883 compp->pmc_lnames[j] = tp; \ 3884 tp += lszs[j]; \ 3885 } \ 3886 ASSERT(tp > compp->pmc_lname_buf && tp <= \ 3887 compp->pmc_lname_buf + compp->pmc_lnames_sz); \ 3888 } 3889 3890 /* 3891 * Create (empty) component data structures. 3892 */ 3893 static void 3894 e_pm_create_components(dev_info_t *dip, int num_components) 3895 { 3896 struct pm_component *compp, *ocompp; 3897 int i, size = 0; 3898 3899 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 3900 ASSERT(!DEVI(dip)->devi_pm_components); 3901 ASSERT(!(DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE)); 3902 size = sizeof (struct pm_component) * num_components; 3903 3904 compp = kmem_zalloc(size, KM_SLEEP); 3905 ocompp = compp; 3906 DEVI(dip)->devi_pm_comp_size = size; 3907 DEVI(dip)->devi_pm_num_components = num_components; 3908 PM_LOCK_BUSY(dip); 3909 for (i = 0; i < num_components; i++) { 3910 compp->pmc_timestamp = gethrestime_sec(); 3911 compp->pmc_norm_pwr = (uint_t)-1; 3912 compp++; 3913 } 3914 PM_UNLOCK_BUSY(dip); 3915 DEVI(dip)->devi_pm_components = ocompp; 3916 DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_DONE; 3917 } 3918 3919 /* 3920 * Parse hex or decimal value from char string 3921 */ 3922 static char * 3923 pm_parsenum(char *cp, int *valp) 3924 { 3925 int ch, offset; 3926 char numbuf[256]; 3927 char *np = numbuf; 3928 int value = 0; 3929 3930 ch = *cp++; 3931 if (isdigit(ch)) { 3932 if (ch == '0') { 3933 if ((ch = *cp++) == 'x' || ch == 'X') { 3934 ch = *cp++; 3935 while (isxdigit(ch)) { 3936 *np++ = (char)ch; 3937 ch = *cp++; 3938 } 3939 *np = 0; 3940 cp--; 3941 goto hexval; 3942 } else { 3943 goto digit; 3944 } 3945 } else { 3946 digit: 3947 while (isdigit(ch)) { 3948 *np++ = (char)ch; 3949 ch = *cp++; 3950 } 3951 *np = 0; 3952 cp--; 3953 goto decval; 3954 } 3955 } else 3956 return (NULL); 3957 3958 hexval: 3959 offset = 0; 3960 for (np = numbuf; *np; np++) { 3961 if (*np >= 'a' && *np <= 'f') 3962 offset = 'a' - 10; 3963 else if (*np >= 'A' && *np <= 'F') 3964 offset = 'A' - 10; 3965 else if (*np >= '0' && *np <= '9') 3966 offset = '0'; 3967 value *= 16; 3968 value += *np - offset; 3969 } 3970 *valp = value; 3971 return (cp); 3972 3973 decval: 3974 offset = '0'; 3975 for (np = numbuf; *np; np++) { 3976 value *= 10; 3977 value += *np - offset; 3978 } 3979 *valp = value; 3980 return (cp); 3981 } 3982 3983 /* 3984 * Set max (previously documented as "normal") power. 3985 */ 3986 static void 3987 e_pm_set_max_power(dev_info_t *dip, int component_number, int level) 3988 { 3989 PM_CP(dip, component_number)->pmc_norm_pwr = level; 3990 } 3991 3992 /* 3993 * Get max (previously documented as "normal") power. 3994 */ 3995 static int 3996 e_pm_get_max_power(dev_info_t *dip, int component_number) 3997 { 3998 return (PM_CP(dip, component_number)->pmc_norm_pwr); 3999 } 4000 4001 /* 4002 * Internal routine for destroying components 4003 * It is called even when there might not be any, so it must be forgiving. 4004 */ 4005 static void 4006 e_pm_destroy_components(dev_info_t *dip) 4007 { 4008 int i; 4009 struct pm_component *cp; 4010 4011 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4012 if (PM_NUMCMPTS(dip) == 0) 4013 return; 4014 cp = DEVI(dip)->devi_pm_components; 4015 ASSERT(cp); 4016 for (i = 0; i < PM_NUMCMPTS(dip); i++, cp++) { 4017 int nlevels = cp->pmc_comp.pmc_numlevels; 4018 kmem_free(cp->pmc_comp.pmc_lvals, nlevels * sizeof (int)); 4019 kmem_free(cp->pmc_comp.pmc_thresh, nlevels * sizeof (int)); 4020 /* 4021 * For BC nodes, the rest is static in bc_comp, so skip it 4022 */ 4023 if (PM_ISBC(dip)) 4024 continue; 4025 kmem_free(cp->pmc_comp.pmc_name, cp->pmc_comp.pmc_name_sz); 4026 kmem_free(cp->pmc_comp.pmc_lnames, nlevels * sizeof (char *)); 4027 kmem_free(cp->pmc_comp.pmc_lname_buf, 4028 cp->pmc_comp.pmc_lnames_sz); 4029 } 4030 kmem_free(DEVI(dip)->devi_pm_components, DEVI(dip)->devi_pm_comp_size); 4031 DEVI(dip)->devi_pm_components = NULL; 4032 DEVI(dip)->devi_pm_num_components = 0; 4033 DEVI(dip)->devi_pm_flags &= 4034 ~(PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED); 4035 } 4036 4037 /* 4038 * Read the pm-components property (if there is one) and use it to set up 4039 * components. Returns a pointer to an array of component structures if 4040 * pm-components found and successfully parsed, else returns NULL. 4041 * Sets error return *errp to true to indicate a failure (as opposed to no 4042 * property being present). 4043 */ 4044 pm_comp_t * 4045 pm_autoconfig(dev_info_t *dip, int *errp) 4046 { 4047 PMD_FUNC(pmf, "autoconfig") 4048 uint_t nelems; 4049 char **pp; 4050 pm_comp_t *compp = NULL; 4051 int i, j, level, components = 0; 4052 size_t size = 0; 4053 struct pm_comp_pkg *p, *ptail; 4054 struct pm_comp_pkg *phead = NULL; 4055 int *lvals = NULL; 4056 int *lszs = NULL; 4057 int *np = NULL; 4058 int npi = 0; 4059 char **lnames = NULL; 4060 char *cp, *tp; 4061 pm_comp_t *ret = NULL; 4062 4063 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4064 *errp = 0; /* assume success */ 4065 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 4066 (char *)pmcompstr, &pp, &nelems) != DDI_PROP_SUCCESS) { 4067 return (NULL); 4068 } 4069 4070 if (nelems < 3) { /* need at least one name and two levels */ 4071 goto errout; 4072 } 4073 4074 /* 4075 * pm_create_components is no longer allowed 4076 */ 4077 if (PM_NUMCMPTS(dip) != 0) { 4078 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) has %d comps\n", 4079 pmf, PM_DEVICE(dip), PM_NUMCMPTS(dip))) 4080 goto errout; 4081 } 4082 4083 lvals = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4084 lszs = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4085 lnames = kmem_alloc(nelems * sizeof (char *), KM_SLEEP); 4086 np = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4087 4088 level = 0; 4089 phead = NULL; 4090 for (i = 0; i < nelems; i++) { 4091 cp = pp[i]; 4092 if (!isdigit(*cp)) { /* must be name */ 4093 if (strncmp(cp, namestr, nameln) != 0) { 4094 goto errout; 4095 } 4096 if (i != 0) { 4097 if (level == 0) { /* no level spec'd */ 4098 PMD(PMD_ERROR, ("%s: no level spec'd\n", 4099 pmf)) 4100 goto errout; 4101 } 4102 np[npi++] = lvals[level - 1]; 4103 /* finish up previous component levels */ 4104 FINISH_COMP; 4105 } 4106 cp += nameln; 4107 if (!*cp) { 4108 PMD(PMD_ERROR, ("%s: nsa\n", pmf)) 4109 goto errout; 4110 } 4111 p = kmem_zalloc(sizeof (*phead), KM_SLEEP); 4112 if (phead == NULL) { 4113 phead = ptail = p; 4114 } else { 4115 ptail->next = p; 4116 ptail = p; 4117 } 4118 compp = p->comp = kmem_zalloc(sizeof (pm_comp_t), 4119 KM_SLEEP); 4120 compp->pmc_name_sz = strlen(cp) + 1; 4121 compp->pmc_name = kmem_zalloc(compp->pmc_name_sz, 4122 KM_SLEEP); 4123 (void) strncpy(compp->pmc_name, cp, compp->pmc_name_sz); 4124 components++; 4125 level = 0; 4126 } else { /* better be power level <num>=<name> */ 4127 #ifdef DEBUG 4128 tp = cp; 4129 #endif 4130 if (i == 0 || 4131 (cp = pm_parsenum(cp, &lvals[level])) == NULL) { 4132 PMD(PMD_ERROR, ("%s: parsenum(%s)\n", pmf, tp)) 4133 goto errout; 4134 } 4135 #ifdef DEBUG 4136 tp = cp; 4137 #endif 4138 if (*cp++ != '=' || !*cp) { 4139 PMD(PMD_ERROR, ("%s: ex =, got %s\n", pmf, tp)) 4140 goto errout; 4141 } 4142 4143 lszs[level] = strlen(cp) + 1; 4144 size += lszs[level]; 4145 lnames[level] = cp; /* points into prop string */ 4146 level++; 4147 } 4148 } 4149 np[npi++] = lvals[level - 1]; 4150 if (level == 0) { /* ended with a name */ 4151 PMD(PMD_ERROR, ("%s: ewn\n", pmf)) 4152 goto errout; 4153 } 4154 FINISH_COMP; 4155 4156 4157 /* 4158 * Now we have a list of components--we have to return instead an 4159 * array of them, but we can just copy the top level and leave 4160 * the rest as is 4161 */ 4162 (void) e_pm_create_components(dip, components); 4163 for (i = 0; i < components; i++) 4164 e_pm_set_max_power(dip, i, np[i]); 4165 4166 ret = kmem_zalloc(components * sizeof (pm_comp_t), KM_SLEEP); 4167 for (i = 0, p = phead; i < components; i++) { 4168 ASSERT(p); 4169 /* 4170 * Now sanity-check values: levels must be monotonically 4171 * increasing 4172 */ 4173 if (p->comp->pmc_numlevels < 2) { 4174 PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) only %d " 4175 "levels\n", pmf, 4176 p->comp->pmc_name, PM_DEVICE(dip), 4177 p->comp->pmc_numlevels)) 4178 goto errout; 4179 } 4180 for (j = 0; j < p->comp->pmc_numlevels; j++) { 4181 if ((p->comp->pmc_lvals[j] < 0) || ((j > 0) && 4182 (p->comp->pmc_lvals[j] <= 4183 p->comp->pmc_lvals[j - 1]))) { 4184 PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) " 4185 "not mono. incr, %d follows %d\n", pmf, 4186 p->comp->pmc_name, PM_DEVICE(dip), 4187 p->comp->pmc_lvals[j], 4188 p->comp->pmc_lvals[j - 1])) 4189 goto errout; 4190 } 4191 } 4192 ret[i] = *p->comp; /* struct assignment */ 4193 for (j = 0; j < i; j++) { 4194 /* 4195 * Test for unique component names 4196 */ 4197 if (strcmp(ret[j].pmc_name, ret[i].pmc_name) == 0) { 4198 PMD(PMD_ERROR, ("%s: %s of %s@%s(%s#%d) not " 4199 "unique\n", pmf, ret[j].pmc_name, 4200 PM_DEVICE(dip))) 4201 goto errout; 4202 } 4203 } 4204 ptail = p; 4205 p = p->next; 4206 phead = p; /* errout depends on phead making sense */ 4207 kmem_free(ptail->comp, sizeof (*ptail->comp)); 4208 kmem_free(ptail, sizeof (*ptail)); 4209 } 4210 out: 4211 ddi_prop_free(pp); 4212 if (lvals) 4213 kmem_free(lvals, nelems * sizeof (int)); 4214 if (lszs) 4215 kmem_free(lszs, nelems * sizeof (int)); 4216 if (lnames) 4217 kmem_free(lnames, nelems * sizeof (char *)); 4218 if (np) 4219 kmem_free(np, nelems * sizeof (int)); 4220 return (ret); 4221 4222 errout: 4223 e_pm_destroy_components(dip); 4224 *errp = 1; /* signal failure */ 4225 cmn_err(CE_CONT, "!pm: %s property ", pmcompstr); 4226 for (i = 0; i < nelems - 1; i++) 4227 cmn_err(CE_CONT, "!'%s', ", pp[i]); 4228 if (nelems != 0) 4229 cmn_err(CE_CONT, "!'%s'", pp[nelems - 1]); 4230 cmn_err(CE_CONT, "! for %s@%s(%s#%d) is ill-formed.\n", PM_DEVICE(dip)); 4231 for (p = phead; p; ) { 4232 pm_comp_t *pp; 4233 int n; 4234 4235 ptail = p; 4236 /* 4237 * Free component data structures 4238 */ 4239 pp = p->comp; 4240 n = pp->pmc_numlevels; 4241 if (pp->pmc_name_sz) { 4242 kmem_free(pp->pmc_name, pp->pmc_name_sz); 4243 } 4244 if (pp->pmc_lnames_sz) { 4245 kmem_free(pp->pmc_lname_buf, pp->pmc_lnames_sz); 4246 } 4247 if (pp->pmc_lnames) { 4248 kmem_free(pp->pmc_lnames, n * (sizeof (char *))); 4249 } 4250 if (pp->pmc_thresh) { 4251 kmem_free(pp->pmc_thresh, n * (sizeof (int))); 4252 } 4253 if (pp->pmc_lvals) { 4254 kmem_free(pp->pmc_lvals, n * (sizeof (int))); 4255 } 4256 p = ptail->next; 4257 kmem_free(ptail, sizeof (*ptail)); 4258 } 4259 if (ret != NULL) 4260 kmem_free(ret, components * sizeof (pm_comp_t)); 4261 ret = NULL; 4262 goto out; 4263 } 4264 4265 /* 4266 * Set threshold values for a devices components by dividing the target 4267 * threshold (base) by the number of transitions and assign each transition 4268 * that threshold. This will get the entire device down in the target time if 4269 * all components are idle and even if there are dependencies among components. 4270 * 4271 * Devices may well get powered all the way down before the target time, but 4272 * at least the EPA will be happy. 4273 */ 4274 void 4275 pm_set_device_threshold(dev_info_t *dip, int base, int flag) 4276 { 4277 PMD_FUNC(pmf, "set_device_threshold") 4278 int target_threshold = (base * 95) / 100; 4279 int level, comp; /* loop counters */ 4280 int transitions = 0; 4281 int ncomp = PM_NUMCMPTS(dip); 4282 int thresh; 4283 int remainder; 4284 pm_comp_t *pmc; 4285 int i, circ; 4286 4287 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4288 PM_LOCK_DIP(dip); 4289 /* 4290 * First we handle the easy one. If we're setting the default 4291 * threshold for a node with children, then we set it to the 4292 * default nexus threshold (currently 0) and mark it as default 4293 * nexus threshold instead 4294 */ 4295 if (PM_IS_NEXUS(dip)) { 4296 if (flag == PMC_DEF_THRESH) { 4297 PMD(PMD_THRESH, ("%s: [%s@%s(%s#%d) NEXDEF]\n", pmf, 4298 PM_DEVICE(dip))) 4299 thresh = pm_default_nexus_threshold; 4300 for (comp = 0; comp < ncomp; comp++) { 4301 pmc = &PM_CP(dip, comp)->pmc_comp; 4302 for (level = 1; level < pmc->pmc_numlevels; 4303 level++) { 4304 pmc->pmc_thresh[level] = thresh; 4305 } 4306 } 4307 DEVI(dip)->devi_pm_dev_thresh = 4308 pm_default_nexus_threshold; 4309 /* 4310 * If the nexus node is being reconfigured back to 4311 * the default threshold, adjust the notlowest count. 4312 */ 4313 if (DEVI(dip)->devi_pm_flags & 4314 (PMC_DEV_THRESH|PMC_COMP_THRESH)) { 4315 PM_LOCK_POWER(dip, &circ); 4316 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 4317 if (PM_CURPOWER(dip, i) == 0) 4318 continue; 4319 mutex_enter(&pm_compcnt_lock); 4320 ASSERT(pm_comps_notlowest); 4321 pm_comps_notlowest--; 4322 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr " 4323 "notlowest to %d\n", pmf, 4324 PM_DEVICE(dip), pm_comps_notlowest)) 4325 if (pm_comps_notlowest == 0) 4326 pm_ppm_notify_all_lowest(dip, 4327 PM_ALL_LOWEST); 4328 mutex_exit(&pm_compcnt_lock); 4329 } 4330 PM_UNLOCK_POWER(dip, circ); 4331 } 4332 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 4333 DEVI(dip)->devi_pm_flags |= PMC_NEXDEF_THRESH; 4334 PM_UNLOCK_DIP(dip); 4335 return; 4336 } else if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH) { 4337 /* 4338 * If the nexus node is being configured for a 4339 * non-default threshold, include that node in 4340 * the notlowest accounting. 4341 */ 4342 PM_LOCK_POWER(dip, &circ); 4343 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 4344 if (PM_CURPOWER(dip, i) == 0) 4345 continue; 4346 mutex_enter(&pm_compcnt_lock); 4347 if (pm_comps_notlowest == 0) 4348 pm_ppm_notify_all_lowest(dip, 4349 PM_NOT_ALL_LOWEST); 4350 pm_comps_notlowest++; 4351 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr " 4352 "notlowest to %d\n", pmf, 4353 PM_DEVICE(dip), pm_comps_notlowest)) 4354 mutex_exit(&pm_compcnt_lock); 4355 } 4356 PM_UNLOCK_POWER(dip, circ); 4357 } 4358 } 4359 /* 4360 * Compute the total number of transitions for all components 4361 * of the device. Distribute the threshold evenly over them 4362 */ 4363 for (comp = 0; comp < ncomp; comp++) { 4364 pmc = &PM_CP(dip, comp)->pmc_comp; 4365 ASSERT(pmc->pmc_numlevels > 1); 4366 transitions += pmc->pmc_numlevels - 1; 4367 } 4368 ASSERT(transitions); 4369 thresh = target_threshold / transitions; 4370 4371 for (comp = 0; comp < ncomp; comp++) { 4372 pmc = &PM_CP(dip, comp)->pmc_comp; 4373 for (level = 1; level < pmc->pmc_numlevels; level++) { 4374 pmc->pmc_thresh[level] = thresh; 4375 } 4376 } 4377 4378 #ifdef DEBUG 4379 for (comp = 0; comp < ncomp; comp++) { 4380 pmc = &PM_CP(dip, comp)->pmc_comp; 4381 for (level = 1; level < pmc->pmc_numlevels; level++) { 4382 PMD(PMD_THRESH, ("%s: thresh before %s@%s(%s#%d) " 4383 "comp=%d, level=%d, %d\n", pmf, PM_DEVICE(dip), 4384 comp, level, pmc->pmc_thresh[level])) 4385 } 4386 } 4387 #endif 4388 /* 4389 * Distribute any remainder till they are all gone 4390 */ 4391 remainder = target_threshold - thresh * transitions; 4392 level = 1; 4393 #ifdef DEBUG 4394 PMD(PMD_THRESH, ("%s: remainder=%d target_threshold=%d thresh=%d " 4395 "trans=%d\n", pmf, remainder, target_threshold, thresh, 4396 transitions)) 4397 #endif 4398 while (remainder > 0) { 4399 comp = 0; 4400 while (remainder && (comp < ncomp)) { 4401 pmc = &PM_CP(dip, comp)->pmc_comp; 4402 if (level < pmc->pmc_numlevels) { 4403 pmc->pmc_thresh[level] += 1; 4404 remainder--; 4405 } 4406 comp++; 4407 } 4408 level++; 4409 } 4410 #ifdef DEBUG 4411 for (comp = 0; comp < ncomp; comp++) { 4412 pmc = &PM_CP(dip, comp)->pmc_comp; 4413 for (level = 1; level < pmc->pmc_numlevels; level++) { 4414 PMD(PMD_THRESH, ("%s: thresh after %s@%s(%s#%d) " 4415 "comp=%d level=%d, %d\n", pmf, PM_DEVICE(dip), 4416 comp, level, pmc->pmc_thresh[level])) 4417 } 4418 } 4419 #endif 4420 ASSERT(PM_IAM_LOCKING_DIP(dip)); 4421 DEVI(dip)->devi_pm_dev_thresh = base; 4422 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 4423 DEVI(dip)->devi_pm_flags |= flag; 4424 PM_UNLOCK_DIP(dip); 4425 } 4426 4427 /* 4428 * Called when there is no old-style platform power management driver 4429 */ 4430 static int 4431 ddi_no_platform_power(power_req_t *req) 4432 { 4433 _NOTE(ARGUNUSED(req)) 4434 return (DDI_FAILURE); 4435 } 4436 4437 /* 4438 * This function calls the entry point supplied by the platform-specific 4439 * pm driver to bring the device component 'pm_cmpt' to power level 'pm_level'. 4440 * The use of global for getting the function name from platform-specific 4441 * pm driver is not ideal, but it is simple and efficient. 4442 * The previous property lookup was being done in the idle loop on swift 4443 * systems without pmc chips and hurt deskbench performance as well as 4444 * violating scheduler locking rules 4445 */ 4446 int (*pm_platform_power)(power_req_t *) = ddi_no_platform_power; 4447 4448 /* 4449 * Old obsolete interface for a device to request a power change (but only 4450 * an increase in power) 4451 */ 4452 int 4453 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level) 4454 { 4455 return (pm_raise_power(dip, cmpt, level)); 4456 } 4457 4458 /* 4459 * The old obsolete interface to platform power management. Only used by 4460 * Gypsy platform and APM on X86. 4461 */ 4462 int 4463 ddi_power(dev_info_t *dip, int pm_cmpt, int pm_level) 4464 { 4465 power_req_t request; 4466 4467 request.request_type = PMR_SET_POWER; 4468 request.req.set_power_req.who = dip; 4469 request.req.set_power_req.cmpt = pm_cmpt; 4470 request.req.set_power_req.level = pm_level; 4471 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4472 } 4473 4474 /* 4475 * A driver can invoke this from its detach routine when DDI_SUSPEND is 4476 * passed. Returns true if subsequent processing could result in power being 4477 * removed from the device. The arg is not currently used because it is 4478 * implicit in the operation of cpr/DR. 4479 */ 4480 int 4481 ddi_removing_power(dev_info_t *dip) 4482 { 4483 _NOTE(ARGUNUSED(dip)) 4484 return (pm_powering_down); 4485 } 4486 4487 /* 4488 * Returns true if a device indicates that its parent handles suspend/resume 4489 * processing for it. 4490 */ 4491 int 4492 e_ddi_parental_suspend_resume(dev_info_t *dip) 4493 { 4494 return (DEVI(dip)->devi_pm_flags & PMC_PARENTAL_SR); 4495 } 4496 4497 /* 4498 * Called for devices which indicate that their parent does suspend/resume 4499 * handling for them 4500 */ 4501 int 4502 e_ddi_suspend(dev_info_t *dip, ddi_detach_cmd_t cmd) 4503 { 4504 power_req_t request; 4505 request.request_type = PMR_SUSPEND; 4506 request.req.suspend_req.who = dip; 4507 request.req.suspend_req.cmd = cmd; 4508 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4509 } 4510 4511 /* 4512 * Called for devices which indicate that their parent does suspend/resume 4513 * handling for them 4514 */ 4515 int 4516 e_ddi_resume(dev_info_t *dip, ddi_attach_cmd_t cmd) 4517 { 4518 power_req_t request; 4519 request.request_type = PMR_RESUME; 4520 request.req.resume_req.who = dip; 4521 request.req.resume_req.cmd = cmd; 4522 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4523 } 4524 4525 /* 4526 * Old obsolete exported interface for drivers to create components. 4527 * This is now handled by exporting the pm-components property. 4528 */ 4529 int 4530 pm_create_components(dev_info_t *dip, int num_components) 4531 { 4532 PMD_FUNC(pmf, "pm_create_components") 4533 4534 if (num_components < 1) 4535 return (DDI_FAILURE); 4536 4537 if (!DEVI_IS_ATTACHING(dip)) { 4538 return (DDI_FAILURE); 4539 } 4540 4541 /* don't need to lock dip because attach is single threaded */ 4542 if (DEVI(dip)->devi_pm_components) { 4543 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) already has %d\n", pmf, 4544 PM_DEVICE(dip), PM_NUMCMPTS(dip))) 4545 return (DDI_FAILURE); 4546 } 4547 e_pm_create_components(dip, num_components); 4548 DEVI(dip)->devi_pm_flags |= PMC_BC; 4549 e_pm_default_components(dip, num_components); 4550 return (DDI_SUCCESS); 4551 } 4552 4553 /* 4554 * Obsolete interface previously called by drivers to destroy their components 4555 * at detach time. This is now done automatically. However, we need to keep 4556 * this for the old drivers. 4557 */ 4558 void 4559 pm_destroy_components(dev_info_t *dip) 4560 { 4561 PMD_FUNC(pmf, "pm_destroy_components") 4562 dev_info_t *pdip = ddi_get_parent(dip); 4563 4564 PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, 4565 PM_DEVICE(dip))) 4566 ASSERT(DEVI_IS_DETACHING(dip)); 4567 #ifdef DEBUG 4568 if (!PM_ISBC(dip)) 4569 cmn_err(CE_WARN, "!driver exporting pm-components property " 4570 "(%s@%s) calls pm_destroy_components", PM_NAME(dip), 4571 PM_ADDR(dip)); 4572 #endif 4573 /* 4574 * We ignore this unless this is an old-style driver, except for 4575 * printing the message above 4576 */ 4577 if (PM_NUMCMPTS(dip) == 0 || !PM_ISBC(dip)) { 4578 PMD(PMD_REMDEV, ("%s: ignore %s@%s(%s#%d)\n", pmf, 4579 PM_DEVICE(dip))) 4580 return; 4581 } 4582 ASSERT(PM_GET_PM_INFO(dip)); 4583 4584 /* 4585 * pm_unmanage will clear info pointer later, after dealing with 4586 * dependencies 4587 */ 4588 ASSERT(!PM_GET_PM_SCAN(dip)); /* better be gone already */ 4589 /* 4590 * Now adjust parent's kidsupcnt. We check only comp 0. 4591 * Parents that get notification are not adjusted because their 4592 * kidsupcnt is always 0 (or 1 during probe and attach). 4593 */ 4594 if ((PM_CURPOWER(dip, 0) != 0) && pdip && !PM_WANTS_NOTIFICATION(pdip)) 4595 pm_rele_power(pdip); 4596 #ifdef DEBUG 4597 else { 4598 PMD(PMD_KIDSUP, ("%s: kuc stays %s@%s(%s#%d) comps gone\n", 4599 pmf, PM_DEVICE(dip))) 4600 } 4601 #endif 4602 e_pm_destroy_components(dip); 4603 /* 4604 * Forget we ever knew anything about the components of this device 4605 */ 4606 DEVI(dip)->devi_pm_flags &= 4607 ~(PMC_BC | PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED); 4608 } 4609 4610 /* 4611 * Exported interface for a driver to set a component busy. 4612 */ 4613 int 4614 pm_busy_component(dev_info_t *dip, int cmpt) 4615 { 4616 struct pm_component *cp; 4617 4618 ASSERT(dip != NULL); 4619 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp)) 4620 return (DDI_FAILURE); 4621 PM_LOCK_BUSY(dip); 4622 cp->pmc_busycount++; 4623 cp->pmc_timestamp = 0; 4624 PM_UNLOCK_BUSY(dip); 4625 return (DDI_SUCCESS); 4626 } 4627 4628 /* 4629 * Exported interface for a driver to set a component idle. 4630 */ 4631 int 4632 pm_idle_component(dev_info_t *dip, int cmpt) 4633 { 4634 PMD_FUNC(pmf, "pm_idle_component") 4635 struct pm_component *cp; 4636 pm_scan_t *scanp = PM_GET_PM_SCAN(dip); 4637 4638 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp)) 4639 return (DDI_FAILURE); 4640 4641 PM_LOCK_BUSY(dip); 4642 if (cp->pmc_busycount) { 4643 if (--(cp->pmc_busycount) == 0) 4644 cp->pmc_timestamp = gethrestime_sec(); 4645 } else { 4646 cp->pmc_timestamp = gethrestime_sec(); 4647 } 4648 4649 PM_UNLOCK_BUSY(dip); 4650 4651 /* 4652 * if device becomes idle during idle down period, try scan it down 4653 */ 4654 if (scanp && PM_IS_PID(dip)) { 4655 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d) idle.\n", pmf, 4656 PM_DEVICE(dip))) 4657 pm_rescan(dip); 4658 return (DDI_SUCCESS); 4659 } 4660 4661 /* 4662 * handle scan not running with nexus threshold == 0 4663 */ 4664 4665 if (PM_IS_NEXUS(dip) && (cp->pmc_busycount == 0)) { 4666 pm_rescan(dip); 4667 } 4668 4669 return (DDI_SUCCESS); 4670 } 4671 4672 /* 4673 * This is the old obsolete interface called by drivers to set their normal 4674 * power. Thus we can't fix its behavior or return a value. 4675 * This functionality is replaced by the pm-component property. 4676 * We'll only get components destroyed while no power management is 4677 * going on (and the device is detached), so we don't need a mutex here 4678 */ 4679 void 4680 pm_set_normal_power(dev_info_t *dip, int comp, int level) 4681 { 4682 PMD_FUNC(pmf, "set_normal_power") 4683 #ifdef DEBUG 4684 if (!PM_ISBC(dip)) 4685 cmn_err(CE_WARN, "!call to pm_set_normal_power() by %s@%s " 4686 "(driver exporting pm-components property) ignored", 4687 PM_NAME(dip), PM_ADDR(dip)); 4688 #endif 4689 if (PM_ISBC(dip)) { 4690 PMD(PMD_NORM, ("%s: %s@%s(%s#%d) set normal power comp=%d, " 4691 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 4692 e_pm_set_max_power(dip, comp, level); 4693 e_pm_default_levels(dip, PM_CP(dip, comp), level); 4694 } 4695 } 4696 4697 /* 4698 * Called on a successfully detached driver to free pm resources 4699 */ 4700 static void 4701 pm_stop(dev_info_t *dip) 4702 { 4703 PMD_FUNC(pmf, "stop") 4704 dev_info_t *pdip = ddi_get_parent(dip); 4705 4706 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4707 /* stopping scan, destroy scan data structure */ 4708 if (!PM_ISBC(dip)) { 4709 pm_scan_stop(dip); 4710 pm_scan_fini(dip); 4711 } 4712 4713 if (PM_GET_PM_INFO(dip) != NULL) { 4714 if (pm_unmanage(dip) == DDI_SUCCESS) { 4715 /* 4716 * Old style driver may have called 4717 * pm_destroy_components already, but just in case ... 4718 */ 4719 e_pm_destroy_components(dip); 4720 } else { 4721 PMD(PMD_FAIL, ("%s: can't pm_unmanage %s@%s(%s#%d)\n", 4722 pmf, PM_DEVICE(dip))) 4723 } 4724 } else { 4725 if (PM_NUMCMPTS(dip)) 4726 e_pm_destroy_components(dip); 4727 else { 4728 if (DEVI(dip)->devi_pm_flags & PMC_NOPMKID) { 4729 DEVI(dip)->devi_pm_flags &= ~PMC_NOPMKID; 4730 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 4731 pm_rele_power(pdip); 4732 } else if (pdip && 4733 MDI_VHCI(pdip) && MDI_CLIENT(dip)) { 4734 (void) mdi_power(pdip, 4735 MDI_PM_RELE_POWER, 4736 (void *)dip, NULL, 0); 4737 } 4738 } 4739 } 4740 } 4741 } 4742 4743 /* 4744 * The node is the subject of a reparse pm props ioctl. Throw away the old 4745 * info and start over. 4746 */ 4747 int 4748 e_new_pm_props(dev_info_t *dip) 4749 { 4750 if (PM_GET_PM_INFO(dip) != NULL) { 4751 pm_stop(dip); 4752 4753 if (e_pm_manage(dip, PM_STYLE_NEW) != DDI_SUCCESS) { 4754 return (DDI_FAILURE); 4755 } 4756 } 4757 e_pm_props(dip); 4758 return (DDI_SUCCESS); 4759 } 4760 4761 /* 4762 * Device has been attached, so process its pm properties 4763 */ 4764 void 4765 e_pm_props(dev_info_t *dip) 4766 { 4767 char *pp; 4768 int len; 4769 int flags = 0; 4770 int propflag = DDI_PROP_DONTPASS|DDI_PROP_CANSLEEP; 4771 4772 /* 4773 * It doesn't matter if we do this more than once, we should always 4774 * get the same answers, and if not, then the last one in is the 4775 * best one. 4776 */ 4777 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-hardware-state", 4778 (caddr_t)&pp, &len) == DDI_PROP_SUCCESS) { 4779 if (strcmp(pp, "needs-suspend-resume") == 0) { 4780 flags = PMC_NEEDS_SR; 4781 } else if (strcmp(pp, "no-suspend-resume") == 0) { 4782 flags = PMC_NO_SR; 4783 } else if (strcmp(pp, "parental-suspend-resume") == 0) { 4784 flags = PMC_PARENTAL_SR; 4785 } else { 4786 cmn_err(CE_NOTE, "!device %s@%s has unrecognized " 4787 "%s property value '%s'", PM_NAME(dip), 4788 PM_ADDR(dip), "pm-hardware-state", pp); 4789 } 4790 kmem_free(pp, len); 4791 } 4792 /* 4793 * This next segment (PMC_WANTS_NOTIFY) is in 4794 * support of nexus drivers which will want to be involved in 4795 * (or at least notified of) their child node's power level transitions. 4796 * "pm-want-child-notification?" is defined by the parent. 4797 */ 4798 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag, 4799 "pm-want-child-notification?") && PM_HAS_BUS_POWER(dip)) 4800 flags |= PMC_WANTS_NOTIFY; 4801 ASSERT(PM_HAS_BUS_POWER(dip) || !ddi_prop_exists(DDI_DEV_T_ANY, 4802 dip, propflag, "pm-want-child-notification?")); 4803 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag, 4804 "no-involuntary-power-cycles")) 4805 flags |= PMC_NO_INVOL; 4806 /* 4807 * Is the device a CPU device? 4808 */ 4809 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-class", 4810 (caddr_t)&pp, &len) == DDI_PROP_SUCCESS) { 4811 if (strcmp(pp, "CPU") == 0) { 4812 flags |= PMC_CPU_DEVICE; 4813 } else { 4814 cmn_err(CE_NOTE, "!device %s@%s has unrecognized " 4815 "%s property value '%s'", PM_NAME(dip), 4816 PM_ADDR(dip), "pm-class", pp); 4817 } 4818 kmem_free(pp, len); 4819 } 4820 /* devfs single threads us */ 4821 DEVI(dip)->devi_pm_flags |= flags; 4822 } 4823 4824 /* 4825 * This is the DDI_CTLOPS_POWER handler that is used when there is no ppm 4826 * driver which has claimed a node. 4827 * Sets old_power in arg struct. 4828 */ 4829 static int 4830 pm_default_ctlops(dev_info_t *dip, dev_info_t *rdip, 4831 ddi_ctl_enum_t ctlop, void *arg, void *result) 4832 { 4833 _NOTE(ARGUNUSED(dip)) 4834 PMD_FUNC(pmf, "ctlops") 4835 power_req_t *reqp = (power_req_t *)arg; 4836 int retval; 4837 dev_info_t *target_dip; 4838 int new_level, old_level, cmpt; 4839 #ifdef PMDDEBUG 4840 char *format; 4841 #endif 4842 4843 /* 4844 * The interface for doing the actual power level changes is now 4845 * through the DDI_CTLOPS_POWER bus_ctl, so that we can plug in 4846 * different platform-specific power control drivers. 4847 * 4848 * This driver implements the "default" version of this interface. 4849 * If no ppm driver has been installed then this interface is called 4850 * instead. 4851 */ 4852 ASSERT(dip == NULL); 4853 switch (ctlop) { 4854 case DDI_CTLOPS_POWER: 4855 switch (reqp->request_type) { 4856 case PMR_PPM_SET_POWER: 4857 { 4858 target_dip = reqp->req.ppm_set_power_req.who; 4859 ASSERT(target_dip == rdip); 4860 new_level = reqp->req.ppm_set_power_req.new_level; 4861 cmpt = reqp->req.ppm_set_power_req.cmpt; 4862 /* pass back old power for the PM_LEVEL_UNKNOWN case */ 4863 old_level = PM_CURPOWER(target_dip, cmpt); 4864 reqp->req.ppm_set_power_req.old_level = old_level; 4865 retval = pm_power(target_dip, cmpt, new_level); 4866 PMD(PMD_PPM, ("%s: PPM_SET_POWER %s@%s(%s#%d)[%d] %d->" 4867 "%d %s\n", pmf, PM_DEVICE(target_dip), cmpt, 4868 old_level, new_level, (retval == DDI_SUCCESS ? 4869 "chd" : "no chg"))) 4870 return (retval); 4871 } 4872 4873 case PMR_PPM_PRE_DETACH: 4874 case PMR_PPM_POST_DETACH: 4875 case PMR_PPM_PRE_ATTACH: 4876 case PMR_PPM_POST_ATTACH: 4877 case PMR_PPM_PRE_PROBE: 4878 case PMR_PPM_POST_PROBE: 4879 case PMR_PPM_PRE_RESUME: 4880 case PMR_PPM_INIT_CHILD: 4881 case PMR_PPM_UNINIT_CHILD: 4882 #ifdef PMDDEBUG 4883 switch (reqp->request_type) { 4884 case PMR_PPM_PRE_DETACH: 4885 format = "%s: PMR_PPM_PRE_DETACH " 4886 "%s@%s(%s#%d)\n"; 4887 break; 4888 case PMR_PPM_POST_DETACH: 4889 format = "%s: PMR_PPM_POST_DETACH " 4890 "%s@%s(%s#%d) rets %d\n"; 4891 break; 4892 case PMR_PPM_PRE_ATTACH: 4893 format = "%s: PMR_PPM_PRE_ATTACH " 4894 "%s@%s(%s#%d)\n"; 4895 break; 4896 case PMR_PPM_POST_ATTACH: 4897 format = "%s: PMR_PPM_POST_ATTACH " 4898 "%s@%s(%s#%d) rets %d\n"; 4899 break; 4900 case PMR_PPM_PRE_PROBE: 4901 format = "%s: PMR_PPM_PRE_PROBE " 4902 "%s@%s(%s#%d)\n"; 4903 break; 4904 case PMR_PPM_POST_PROBE: 4905 format = "%s: PMR_PPM_POST_PROBE " 4906 "%s@%s(%s#%d) rets %d\n"; 4907 break; 4908 case PMR_PPM_PRE_RESUME: 4909 format = "%s: PMR_PPM_PRE_RESUME " 4910 "%s@%s(%s#%d) rets %d\n"; 4911 break; 4912 case PMR_PPM_INIT_CHILD: 4913 format = "%s: PMR_PPM_INIT_CHILD " 4914 "%s@%s(%s#%d)\n"; 4915 break; 4916 case PMR_PPM_UNINIT_CHILD: 4917 format = "%s: PMR_PPM_UNINIT_CHILD " 4918 "%s@%s(%s#%d)\n"; 4919 break; 4920 default: 4921 break; 4922 } 4923 PMD(PMD_PPM, (format, pmf, PM_DEVICE(rdip), 4924 reqp->req.ppm_config_req.result)) 4925 #endif 4926 return (DDI_SUCCESS); 4927 4928 case PMR_PPM_POWER_CHANGE_NOTIFY: 4929 /* 4930 * Nothing for us to do 4931 */ 4932 ASSERT(reqp->req.ppm_notify_level_req.who == rdip); 4933 PMD(PMD_PPM, ("%s: PMR_PPM_POWER_CHANGE_NOTIFY " 4934 "%s@%s(%s#%d)[%d] %d->%d\n", pmf, 4935 PM_DEVICE(reqp->req.ppm_notify_level_req.who), 4936 reqp->req.ppm_notify_level_req.cmpt, 4937 PM_CURPOWER(reqp->req.ppm_notify_level_req.who, 4938 reqp->req.ppm_notify_level_req.cmpt), 4939 reqp->req.ppm_notify_level_req.new_level)) 4940 return (DDI_SUCCESS); 4941 4942 case PMR_PPM_UNMANAGE: 4943 PMD(PMD_PPM, ("%s: PMR_PPM_UNMANAGE %s@%s(%s#%d)\n", 4944 pmf, PM_DEVICE(rdip))) 4945 return (DDI_SUCCESS); 4946 4947 case PMR_PPM_LOCK_POWER: 4948 pm_lock_power_single(reqp->req.ppm_lock_power_req.who, 4949 reqp->req.ppm_lock_power_req.circp); 4950 return (DDI_SUCCESS); 4951 4952 case PMR_PPM_UNLOCK_POWER: 4953 pm_unlock_power_single( 4954 reqp->req.ppm_unlock_power_req.who, 4955 reqp->req.ppm_unlock_power_req.circ); 4956 return (DDI_SUCCESS); 4957 4958 case PMR_PPM_TRY_LOCK_POWER: 4959 *(int *)result = pm_try_locking_power_single( 4960 reqp->req.ppm_lock_power_req.who, 4961 reqp->req.ppm_lock_power_req.circp); 4962 return (DDI_SUCCESS); 4963 4964 case PMR_PPM_POWER_LOCK_OWNER: 4965 target_dip = reqp->req.ppm_power_lock_owner_req.who; 4966 ASSERT(target_dip == rdip); 4967 reqp->req.ppm_power_lock_owner_req.owner = 4968 DEVI(rdip)->devi_busy_thread; 4969 return (DDI_SUCCESS); 4970 default: 4971 PMD(PMD_ERROR, ("%s: default!\n", pmf)) 4972 return (DDI_FAILURE); 4973 } 4974 4975 default: 4976 PMD(PMD_ERROR, ("%s: unknown\n", pmf)) 4977 return (DDI_FAILURE); 4978 } 4979 } 4980 4981 /* 4982 * We overload the bus_ctl ops here--perhaps we ought to have a distinct 4983 * power_ops struct for this functionality instead? 4984 * However, we only ever do this on a ppm driver. 4985 */ 4986 int 4987 pm_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v) 4988 { 4989 int (*fp)(); 4990 4991 /* if no ppm handler, call the default routine */ 4992 if (d == NULL) { 4993 return (pm_default_ctlops(d, r, op, a, v)); 4994 } 4995 if (!d || !r) 4996 return (DDI_FAILURE); 4997 ASSERT(DEVI(d)->devi_ops && DEVI(d)->devi_ops->devo_bus_ops && 4998 DEVI(d)->devi_ops->devo_bus_ops->bus_ctl); 4999 5000 fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl; 5001 return ((*fp)(d, r, op, a, v)); 5002 } 5003 5004 /* 5005 * Called on a node when attach completes or the driver makes its first pm 5006 * call (whichever comes first). 5007 * In the attach case, device may not be power manageable at all. 5008 * Don't need to lock the dip because we're single threaded by the devfs code 5009 */ 5010 static int 5011 pm_start(dev_info_t *dip) 5012 { 5013 PMD_FUNC(pmf, "start") 5014 int ret; 5015 dev_info_t *pdip = ddi_get_parent(dip); 5016 int e_pm_manage(dev_info_t *, int); 5017 void pm_noinvol_specd(dev_info_t *dip); 5018 5019 e_pm_props(dip); 5020 pm_noinvol_specd(dip); 5021 /* 5022 * If this dip has already been processed, don't mess with it 5023 * (but decrement the speculative count we did above, as whatever 5024 * code put it under pm already will have dealt with it) 5025 */ 5026 if (PM_GET_PM_INFO(dip)) { 5027 PMD(PMD_KIDSUP, ("%s: pm already done for %s@%s(%s#%d)\n", 5028 pmf, PM_DEVICE(dip))) 5029 return (0); 5030 } 5031 ret = e_pm_manage(dip, PM_STYLE_UNKNOWN); 5032 5033 if (PM_GET_PM_INFO(dip) == NULL) { 5034 /* 5035 * keep the kidsupcount increment as is 5036 */ 5037 DEVI(dip)->devi_pm_flags |= PMC_NOPMKID; 5038 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 5039 pm_hold_power(pdip); 5040 } else if (pdip && MDI_VHCI(pdip) && MDI_CLIENT(dip)) { 5041 (void) mdi_power(pdip, MDI_PM_HOLD_POWER, 5042 (void *)dip, NULL, 0); 5043 } 5044 5045 PMD(PMD_KIDSUP, ("%s: pm of %s@%s(%s#%d) failed, parent " 5046 "left up\n", pmf, PM_DEVICE(dip))) 5047 } 5048 5049 return (ret); 5050 } 5051 5052 /* 5053 * Keep a list of recorded thresholds. For now we just keep a list and 5054 * search it linearly. We don't expect too many entries. Can always hash it 5055 * later if we need to. 5056 */ 5057 void 5058 pm_record_thresh(pm_thresh_rec_t *rp) 5059 { 5060 pm_thresh_rec_t *pptr, *ptr; 5061 5062 ASSERT(*rp->ptr_physpath); 5063 rw_enter(&pm_thresh_rwlock, RW_WRITER); 5064 for (pptr = NULL, ptr = pm_thresh_head; 5065 ptr; pptr = ptr, ptr = ptr->ptr_next) { 5066 if (strcmp(rp->ptr_physpath, ptr->ptr_physpath) == 0) { 5067 /* replace this one */ 5068 rp->ptr_next = ptr->ptr_next; 5069 if (pptr) { 5070 pptr->ptr_next = rp; 5071 } else { 5072 pm_thresh_head = rp; 5073 } 5074 rw_exit(&pm_thresh_rwlock); 5075 kmem_free(ptr, ptr->ptr_size); 5076 return; 5077 } 5078 continue; 5079 } 5080 /* 5081 * There was not a match in the list, insert this one in front 5082 */ 5083 if (pm_thresh_head) { 5084 rp->ptr_next = pm_thresh_head; 5085 pm_thresh_head = rp; 5086 } else { 5087 rp->ptr_next = NULL; 5088 pm_thresh_head = rp; 5089 } 5090 rw_exit(&pm_thresh_rwlock); 5091 } 5092 5093 /* 5094 * Create a new dependency record and hang a new dependency entry off of it 5095 */ 5096 pm_pdr_t * 5097 newpdr(char *kept, char *keeps, int isprop) 5098 { 5099 size_t size = strlen(kept) + strlen(keeps) + 2 + sizeof (pm_pdr_t); 5100 pm_pdr_t *p = kmem_zalloc(size, KM_SLEEP); 5101 p->pdr_size = size; 5102 p->pdr_isprop = isprop; 5103 p->pdr_kept_paths = NULL; 5104 p->pdr_kept_count = 0; 5105 p->pdr_kept = (char *)((intptr_t)p + sizeof (pm_pdr_t)); 5106 (void) strcpy(p->pdr_kept, kept); 5107 p->pdr_keeper = (char *)((intptr_t)p->pdr_kept + strlen(kept) + 1); 5108 (void) strcpy(p->pdr_keeper, keeps); 5109 ASSERT((intptr_t)p->pdr_keeper + strlen(p->pdr_keeper) + 1 <= 5110 (intptr_t)p + size); 5111 ASSERT((intptr_t)p->pdr_kept + strlen(p->pdr_kept) + 1 <= 5112 (intptr_t)p + size); 5113 return (p); 5114 } 5115 5116 /* 5117 * Keep a list of recorded dependencies. We only keep the 5118 * keeper -> kept list for simplification. At this point We do not 5119 * care about whether the devices are attached or not yet, 5120 * this would be done in pm_keeper() and pm_kept(). 5121 * If a PM_RESET_PM happens, then we tear down and forget the dependencies, 5122 * and it is up to the user to issue the ioctl again if they want it 5123 * (e.g. pmconfig) 5124 * Returns true if dependency already exists in the list. 5125 */ 5126 int 5127 pm_record_keeper(char *kept, char *keeper, int isprop) 5128 { 5129 PMD_FUNC(pmf, "record_keeper") 5130 pm_pdr_t *npdr, *ppdr, *pdr; 5131 5132 PMD(PMD_KEEPS, ("%s: %s, %s\n", pmf, kept, keeper)) 5133 ASSERT(kept && keeper); 5134 #ifdef DEBUG 5135 if (pm_debug & PMD_KEEPS) 5136 prdeps("pm_record_keeper entry"); 5137 #endif 5138 for (ppdr = NULL, pdr = pm_dep_head; pdr; 5139 ppdr = pdr, pdr = pdr->pdr_next) { 5140 PMD(PMD_KEEPS, ("%s: check %s, %s\n", pmf, pdr->pdr_kept, 5141 pdr->pdr_keeper)) 5142 if (strcmp(kept, pdr->pdr_kept) == 0 && 5143 strcmp(keeper, pdr->pdr_keeper) == 0) { 5144 PMD(PMD_KEEPS, ("%s: match\n", pmf)) 5145 return (1); 5146 } 5147 } 5148 /* 5149 * We did not find any match, so we have to make an entry 5150 */ 5151 npdr = newpdr(kept, keeper, isprop); 5152 if (ppdr) { 5153 ASSERT(ppdr->pdr_next == NULL); 5154 ppdr->pdr_next = npdr; 5155 } else { 5156 ASSERT(pm_dep_head == NULL); 5157 pm_dep_head = npdr; 5158 } 5159 #ifdef DEBUG 5160 if (pm_debug & PMD_KEEPS) 5161 prdeps("pm_record_keeper after new record"); 5162 #endif 5163 if (!isprop) 5164 pm_unresolved_deps++; 5165 else 5166 pm_prop_deps++; 5167 return (0); 5168 } 5169 5170 /* 5171 * Look up this device in the set of devices we've seen ioctls for 5172 * to see if we are holding a threshold spec for it. If so, make it so. 5173 * At ioctl time, we were given the physical path of the device. 5174 */ 5175 int 5176 pm_thresh_specd(dev_info_t *dip) 5177 { 5178 void pm_apply_recorded_thresh(dev_info_t *, pm_thresh_rec_t *); 5179 char *path = 0; 5180 char pathbuf[MAXNAMELEN]; 5181 pm_thresh_rec_t *rp; 5182 5183 path = ddi_pathname(dip, pathbuf); 5184 5185 rw_enter(&pm_thresh_rwlock, RW_READER); 5186 for (rp = pm_thresh_head; rp; rp = rp->ptr_next) { 5187 if (strcmp(rp->ptr_physpath, path) != 0) 5188 continue; 5189 pm_apply_recorded_thresh(dip, rp); 5190 rw_exit(&pm_thresh_rwlock); 5191 return (1); 5192 } 5193 rw_exit(&pm_thresh_rwlock); 5194 return (0); 5195 } 5196 5197 static int 5198 pm_set_keeping(dev_info_t *keeper, dev_info_t *kept) 5199 { 5200 PMD_FUNC(pmf, "set_keeping") 5201 int j, up = 0, circ; 5202 void prdeps(char *); 5203 5204 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), kept=%s@%s(%s#%d)\n", pmf, 5205 PM_DEVICE(keeper), PM_DEVICE(kept))) 5206 #ifdef DEBUG 5207 if (pm_debug & PMD_KEEPS) 5208 prdeps("Before PAD\n"); 5209 #endif 5210 ASSERT(keeper != kept); 5211 if (PM_GET_PM_INFO(keeper) == NULL) { 5212 cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device " 5213 "%s@%s(%s#%d), but the former is not power managed", 5214 PM_DEVICE(keeper), PM_DEVICE(kept)); 5215 PMD((PMD_FAIL | PMD_KEEPS), ("%s: keeper %s@%s(%s#%d) is not" 5216 "power managed\n", pmf, PM_DEVICE(keeper))) 5217 return (0); 5218 } 5219 if (PM_GET_PM_INFO(kept) == NULL) { 5220 cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device " 5221 "%s@%s(%s#%d), but the latter is not power managed", 5222 PM_DEVICE(keeper), PM_DEVICE(kept)); 5223 PMD((PMD_FAIL | PMD_KEEPS), ("%s: kept %s@%s(%s#%d) is not" 5224 "power managed\n", pmf, PM_DEVICE(kept))) 5225 return (0); 5226 } 5227 5228 PM_LOCK_POWER(keeper, &circ); 5229 for (j = 0; j < PM_NUMCMPTS(keeper); j++) { 5230 if (PM_CURPOWER(keeper, j)) { 5231 up++; 5232 break; 5233 } 5234 } 5235 if (up) { 5236 /* Bringup and maintain a hold on the kept */ 5237 PMD(PMD_KEEPS, ("%s: place a hold on kept %s@%s(%s#%d)\n", pmf, 5238 PM_DEVICE(kept))) 5239 bring_pmdep_up(kept, 1); 5240 } 5241 PM_UNLOCK_POWER(keeper, circ); 5242 #ifdef DEBUG 5243 if (pm_debug & PMD_KEEPS) 5244 prdeps("After PAD\n"); 5245 #endif 5246 return (1); 5247 } 5248 5249 /* 5250 * Should this device keep up another device? 5251 * Look up this device in the set of devices we've seen ioctls for 5252 * to see if we are holding a dependency spec for it. If so, make it so. 5253 * Because we require the kept device to be attached already in order to 5254 * make the list entry (and hold it), we only need to look for keepers. 5255 * At ioctl time, we were given the physical path of the device. 5256 */ 5257 int 5258 pm_keeper(char *keeper) 5259 { 5260 PMD_FUNC(pmf, "keeper") 5261 int pm_apply_recorded_dep(dev_info_t *, pm_pdr_t *); 5262 dev_info_t *dip; 5263 pm_pdr_t *dp; 5264 dev_info_t *kept = NULL; 5265 int ret = 0; 5266 int i; 5267 5268 if (!pm_unresolved_deps && !pm_prop_deps) 5269 return (0); 5270 ASSERT(keeper != NULL); 5271 dip = pm_name_to_dip(keeper, 1); 5272 if (dip == NULL) 5273 return (0); 5274 PMD(PMD_KEEPS, ("%s: keeper=%s\n", pmf, keeper)) 5275 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 5276 if (!dp->pdr_isprop) { 5277 if (!pm_unresolved_deps) 5278 continue; 5279 PMD(PMD_KEEPS, ("%s: keeper %s\n", pmf, dp->pdr_keeper)) 5280 if (dp->pdr_satisfied) { 5281 PMD(PMD_KEEPS, ("%s: satisfied\n", pmf)) 5282 continue; 5283 } 5284 if (strcmp(dp->pdr_keeper, keeper) == 0) { 5285 ret += pm_apply_recorded_dep(dip, dp); 5286 } 5287 } else { 5288 if (strcmp(dp->pdr_keeper, keeper) != 0) 5289 continue; 5290 for (i = 0; i < dp->pdr_kept_count; i++) { 5291 if (dp->pdr_kept_paths[i] == NULL) 5292 continue; 5293 kept = pm_name_to_dip(dp->pdr_kept_paths[i], 1); 5294 if (kept == NULL) 5295 continue; 5296 ASSERT(ddi_prop_exists(DDI_DEV_T_ANY, kept, 5297 DDI_PROP_DONTPASS, dp->pdr_kept)); 5298 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), " 5299 "kept=%s@%s(%s#%d) keptcnt=%d\n", 5300 pmf, PM_DEVICE(dip), PM_DEVICE(kept), 5301 dp->pdr_kept_count)) 5302 if (kept != dip) { 5303 ret += pm_set_keeping(dip, kept); 5304 } 5305 ddi_release_devi(kept); 5306 } 5307 5308 } 5309 } 5310 ddi_release_devi(dip); 5311 return (ret); 5312 } 5313 5314 /* 5315 * Should this device be kept up by another device? 5316 * Look up all dependency recorded from PM_ADD_DEPENDENT and 5317 * PM_ADD_DEPENDENT_PROPERTY ioctls. Record down on the keeper's 5318 * kept device lists. 5319 */ 5320 static int 5321 pm_kept(char *keptp) 5322 { 5323 PMD_FUNC(pmf, "kept") 5324 pm_pdr_t *dp; 5325 int found = 0; 5326 int ret = 0; 5327 dev_info_t *keeper; 5328 dev_info_t *kept; 5329 size_t length; 5330 int i; 5331 char **paths; 5332 char *path; 5333 5334 ASSERT(keptp != NULL); 5335 kept = pm_name_to_dip(keptp, 1); 5336 if (kept == NULL) 5337 return (0); 5338 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(kept))) 5339 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 5340 if (dp->pdr_isprop) { 5341 PMD(PMD_KEEPS, ("%s: property %s\n", pmf, dp->pdr_kept)) 5342 if (ddi_prop_exists(DDI_DEV_T_ANY, kept, 5343 DDI_PROP_DONTPASS, dp->pdr_kept)) { 5344 /* 5345 * Dont allow self dependency. 5346 */ 5347 if (strcmp(dp->pdr_keeper, keptp) == 0) 5348 continue; 5349 keeper = pm_name_to_dip(dp->pdr_keeper, 1); 5350 if (keeper == NULL) 5351 continue; 5352 PMD(PMD_KEEPS, ("%s: adding to kepts path list " 5353 "%p\n", pmf, (void *)kept)) 5354 #ifdef DEBUG 5355 if (pm_debug & PMD_DEP) 5356 prdeps("Before Adding from pm_kept\n"); 5357 #endif 5358 /* 5359 * Add ourselves to the dip list. 5360 */ 5361 if (dp->pdr_kept_count == 0) { 5362 length = strlen(keptp) + 1; 5363 path = 5364 kmem_alloc(length, KM_SLEEP); 5365 paths = kmem_alloc(sizeof (char **), 5366 KM_SLEEP); 5367 (void) strcpy(path, keptp); 5368 paths[0] = path; 5369 dp->pdr_kept_paths = paths; 5370 dp->pdr_kept_count++; 5371 } else { 5372 /* Check to see if already on list */ 5373 for (i = 0; i < dp->pdr_kept_count; 5374 i++) { 5375 if (strcmp(keptp, 5376 dp->pdr_kept_paths[i]) 5377 == 0) { 5378 found++; 5379 break; 5380 } 5381 } 5382 if (found) { 5383 ddi_release_devi(keeper); 5384 continue; 5385 } 5386 length = dp->pdr_kept_count * 5387 sizeof (char **); 5388 paths = kmem_alloc( 5389 length + sizeof (char **), 5390 KM_SLEEP); 5391 if (dp->pdr_kept_count) { 5392 bcopy(dp->pdr_kept_paths, 5393 paths, length); 5394 kmem_free(dp->pdr_kept_paths, 5395 length); 5396 } 5397 dp->pdr_kept_paths = paths; 5398 length = strlen(keptp) + 1; 5399 path = 5400 kmem_alloc(length, KM_SLEEP); 5401 (void) strcpy(path, keptp); 5402 dp->pdr_kept_paths[i] = path; 5403 dp->pdr_kept_count++; 5404 } 5405 #ifdef DEBUG 5406 if (pm_debug & PMD_DEP) 5407 prdeps("After from pm_kept\n"); 5408 #endif 5409 if (keeper) { 5410 ret += pm_set_keeping(keeper, kept); 5411 ddi_release_devi(keeper); 5412 } 5413 } 5414 } else { 5415 /* 5416 * pm_keeper would be called later to do 5417 * the actual pm_set_keeping. 5418 */ 5419 PMD(PMD_KEEPS, ("%s: adding to kepts path list %p\n", 5420 pmf, (void *)kept)) 5421 #ifdef DEBUG 5422 if (pm_debug & PMD_DEP) 5423 prdeps("Before Adding from pm_kept\n"); 5424 #endif 5425 if (strcmp(keptp, dp->pdr_kept) == 0) { 5426 if (dp->pdr_kept_paths == NULL) { 5427 length = strlen(keptp) + 1; 5428 path = 5429 kmem_alloc(length, KM_SLEEP); 5430 paths = kmem_alloc(sizeof (char **), 5431 KM_SLEEP); 5432 (void) strcpy(path, keptp); 5433 paths[0] = path; 5434 dp->pdr_kept_paths = paths; 5435 dp->pdr_kept_count++; 5436 } 5437 } 5438 #ifdef DEBUG 5439 if (pm_debug & PMD_DEP) 5440 prdeps("After from pm_kept\n"); 5441 #endif 5442 } 5443 } 5444 ddi_release_devi(kept); 5445 return (ret); 5446 } 5447 5448 /* 5449 * Apply a recorded dependency. dp specifies the dependency, and 5450 * keeper is already known to be the device that keeps up the other (kept) one. 5451 * We have to the whole tree for the "kept" device, then apply 5452 * the dependency (which may already be applied). 5453 */ 5454 int 5455 pm_apply_recorded_dep(dev_info_t *keeper, pm_pdr_t *dp) 5456 { 5457 PMD_FUNC(pmf, "apply_recorded_dep") 5458 dev_info_t *kept = NULL; 5459 int ret = 0; 5460 char *keptp = NULL; 5461 5462 /* 5463 * Device to Device dependency can only be 1 to 1. 5464 */ 5465 if (dp->pdr_kept_paths == NULL) 5466 return (0); 5467 keptp = dp->pdr_kept_paths[0]; 5468 if (keptp == NULL) 5469 return (0); 5470 ASSERT(*keptp != '\0'); 5471 kept = pm_name_to_dip(keptp, 1); 5472 if (kept == NULL) 5473 return (0); 5474 if (kept) { 5475 PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf, 5476 dp->pdr_keeper, keptp)) 5477 if (pm_set_keeping(keeper, kept)) { 5478 ASSERT(dp->pdr_satisfied == 0); 5479 dp->pdr_satisfied = 1; 5480 ASSERT(pm_unresolved_deps); 5481 pm_unresolved_deps--; 5482 ret++; 5483 } 5484 } 5485 ddi_release_devi(kept); 5486 5487 return (ret); 5488 } 5489 5490 /* 5491 * Called from common/io/pm.c 5492 */ 5493 int 5494 pm_cur_power(pm_component_t *cp) 5495 { 5496 return (cur_power(cp)); 5497 } 5498 5499 /* 5500 * External interface to sanity-check a power level. 5501 */ 5502 int 5503 pm_valid_power(dev_info_t *dip, int comp, int level) 5504 { 5505 PMD_FUNC(pmf, "valid_power") 5506 5507 if (comp >= 0 && comp < PM_NUMCMPTS(dip) && level >= 0) 5508 return (e_pm_valid_power(dip, comp, level)); 5509 else { 5510 PMD(PMD_FAIL, ("%s: comp=%d, ncomp=%d, level=%d\n", 5511 pmf, comp, PM_NUMCMPTS(dip), level)) 5512 return (0); 5513 } 5514 } 5515 5516 /* 5517 * Called when a device that is direct power managed needs to change state. 5518 * This routine arranges to block the request until the process managing 5519 * the device makes the change (or some other incompatible change) or 5520 * the process closes /dev/pm. 5521 */ 5522 static int 5523 pm_block(dev_info_t *dip, int comp, int newpower, int oldpower) 5524 { 5525 pm_rsvp_t *new = kmem_zalloc(sizeof (*new), KM_SLEEP); 5526 int ret = 0; 5527 void pm_dequeue_blocked(pm_rsvp_t *); 5528 void pm_enqueue_blocked(pm_rsvp_t *); 5529 5530 ASSERT(!pm_processes_stopped); 5531 ASSERT(PM_IAM_LOCKING_DIP(dip)); 5532 new->pr_dip = dip; 5533 new->pr_comp = comp; 5534 new->pr_newlevel = newpower; 5535 new->pr_oldlevel = oldpower; 5536 cv_init(&new->pr_cv, NULL, CV_DEFAULT, NULL); 5537 mutex_enter(&pm_rsvp_lock); 5538 pm_enqueue_blocked(new); 5539 pm_enqueue_notify(PSC_PENDING_CHANGE, dip, comp, newpower, oldpower, 5540 PM_CANBLOCK_BLOCK); 5541 PM_UNLOCK_DIP(dip); 5542 /* 5543 * truss may make the cv_wait_sig return prematurely 5544 */ 5545 while (ret == 0) { 5546 /* 5547 * Normally there will be no user context involved, but if 5548 * there is (e.g. we are here via an ioctl call to a driver) 5549 * then we should allow the process to abort the request, 5550 * or we get an unkillable process if the same thread does 5551 * PM_DIRECT_PM and pm_raise_power 5552 */ 5553 if (cv_wait_sig(&new->pr_cv, &pm_rsvp_lock) == 0) { 5554 ret = PMP_FAIL; 5555 } else { 5556 ret = new->pr_retval; 5557 } 5558 } 5559 pm_dequeue_blocked(new); 5560 mutex_exit(&pm_rsvp_lock); 5561 cv_destroy(&new->pr_cv); 5562 kmem_free(new, sizeof (*new)); 5563 return (ret); 5564 } 5565 5566 /* 5567 * Returns true if the process is interested in power level changes (has issued 5568 * PM_GET_STATE_CHANGE ioctl). 5569 */ 5570 int 5571 pm_interest_registered(int clone) 5572 { 5573 ASSERT(clone >= 0 && clone < PM_MAX_CLONE - 1); 5574 return (pm_interest[clone]); 5575 } 5576 5577 static void pm_enqueue_pscc(pscc_t *, pscc_t **); 5578 5579 /* 5580 * Process with clone has just done PM_DIRECT_PM on dip, or has asked to 5581 * watch all state transitions (dip == NULL). Set up data 5582 * structs to communicate with process about state changes. 5583 */ 5584 void 5585 pm_register_watcher(int clone, dev_info_t *dip) 5586 { 5587 pscc_t *p; 5588 psce_t *psce; 5589 5590 /* 5591 * We definitely need a control struct, then we have to search to see 5592 * there is already an entries struct (in the dip != NULL case). 5593 */ 5594 pscc_t *pscc = kmem_zalloc(sizeof (*pscc), KM_SLEEP); 5595 pscc->pscc_clone = clone; 5596 pscc->pscc_dip = dip; 5597 5598 if (dip) { 5599 int found = 0; 5600 rw_enter(&pm_pscc_direct_rwlock, RW_WRITER); 5601 for (p = pm_pscc_direct; p; p = p->pscc_next) { 5602 /* 5603 * Already an entry for this clone, so just use it 5604 * for the new one (for the case where a single 5605 * process is watching multiple devices) 5606 */ 5607 if (p->pscc_clone == clone) { 5608 pscc->pscc_entries = p->pscc_entries; 5609 pscc->pscc_entries->psce_references++; 5610 found++; 5611 break; 5612 } 5613 } 5614 if (!found) { /* create a new one */ 5615 psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP); 5616 mutex_init(&psce->psce_lock, NULL, MUTEX_DEFAULT, NULL); 5617 psce->psce_first = 5618 kmem_zalloc(sizeof (pm_state_change_t) * PSCCOUNT, 5619 KM_SLEEP); 5620 psce->psce_in = psce->psce_out = psce->psce_first; 5621 psce->psce_last = &psce->psce_first[PSCCOUNT - 1]; 5622 psce->psce_references = 1; 5623 pscc->pscc_entries = psce; 5624 } 5625 pm_enqueue_pscc(pscc, &pm_pscc_direct); 5626 rw_exit(&pm_pscc_direct_rwlock); 5627 } else { 5628 ASSERT(!pm_interest_registered(clone)); 5629 rw_enter(&pm_pscc_interest_rwlock, RW_WRITER); 5630 #ifdef DEBUG 5631 for (p = pm_pscc_interest; p; p = p->pscc_next) { 5632 /* 5633 * Should not be an entry for this clone! 5634 */ 5635 ASSERT(p->pscc_clone != clone); 5636 } 5637 #endif 5638 psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP); 5639 psce->psce_first = kmem_zalloc(sizeof (pm_state_change_t) * 5640 PSCCOUNT, KM_SLEEP); 5641 psce->psce_in = psce->psce_out = psce->psce_first; 5642 psce->psce_last = &psce->psce_first[PSCCOUNT - 1]; 5643 psce->psce_references = 1; 5644 pscc->pscc_entries = psce; 5645 pm_enqueue_pscc(pscc, &pm_pscc_interest); 5646 pm_interest[clone] = 1; 5647 rw_exit(&pm_pscc_interest_rwlock); 5648 } 5649 } 5650 5651 /* 5652 * Remove the given entry from the blocked list 5653 */ 5654 void 5655 pm_dequeue_blocked(pm_rsvp_t *p) 5656 { 5657 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 5658 if (pm_blocked_list == p) { 5659 ASSERT(p->pr_prev == NULL); 5660 if (p->pr_next != NULL) 5661 p->pr_next->pr_prev = NULL; 5662 pm_blocked_list = p->pr_next; 5663 } else { 5664 ASSERT(p->pr_prev != NULL); 5665 p->pr_prev->pr_next = p->pr_next; 5666 if (p->pr_next != NULL) 5667 p->pr_next->pr_prev = p->pr_prev; 5668 } 5669 } 5670 5671 /* 5672 * Remove the given control struct from the given list 5673 */ 5674 static void 5675 pm_dequeue_pscc(pscc_t *p, pscc_t **list) 5676 { 5677 if (*list == p) { 5678 ASSERT(p->pscc_prev == NULL); 5679 if (p->pscc_next != NULL) 5680 p->pscc_next->pscc_prev = NULL; 5681 *list = p->pscc_next; 5682 } else { 5683 ASSERT(p->pscc_prev != NULL); 5684 p->pscc_prev->pscc_next = p->pscc_next; 5685 if (p->pscc_next != NULL) 5686 p->pscc_next->pscc_prev = p->pscc_prev; 5687 } 5688 } 5689 5690 /* 5691 * Stick the control struct specified on the front of the list 5692 */ 5693 static void 5694 pm_enqueue_pscc(pscc_t *p, pscc_t **list) 5695 { 5696 pscc_t *h; /* entry at head of list */ 5697 if ((h = *list) == NULL) { 5698 *list = p; 5699 ASSERT(p->pscc_next == NULL); 5700 ASSERT(p->pscc_prev == NULL); 5701 } else { 5702 p->pscc_next = h; 5703 ASSERT(h->pscc_prev == NULL); 5704 h->pscc_prev = p; 5705 ASSERT(p->pscc_prev == NULL); 5706 *list = p; 5707 } 5708 } 5709 5710 /* 5711 * If dip is NULL, process is closing "clone" clean up all its registrations. 5712 * Otherwise only clean up those for dip because process is just giving up 5713 * control of a direct device. 5714 */ 5715 void 5716 pm_deregister_watcher(int clone, dev_info_t *dip) 5717 { 5718 pscc_t *p, *pn; 5719 psce_t *psce; 5720 int found = 0; 5721 5722 if (dip == NULL) { 5723 rw_enter(&pm_pscc_interest_rwlock, RW_WRITER); 5724 for (p = pm_pscc_interest; p; p = pn) { 5725 pn = p->pscc_next; 5726 if (p->pscc_clone == clone) { 5727 pm_dequeue_pscc(p, &pm_pscc_interest); 5728 psce = p->pscc_entries; 5729 ASSERT(psce->psce_references == 1); 5730 mutex_destroy(&psce->psce_lock); 5731 kmem_free(psce->psce_first, 5732 sizeof (pm_state_change_t) * PSCCOUNT); 5733 kmem_free(psce, sizeof (*psce)); 5734 kmem_free(p, sizeof (*p)); 5735 } 5736 } 5737 pm_interest[clone] = 0; 5738 rw_exit(&pm_pscc_interest_rwlock); 5739 } 5740 found = 0; 5741 rw_enter(&pm_pscc_direct_rwlock, RW_WRITER); 5742 for (p = pm_pscc_direct; p; p = pn) { 5743 pn = p->pscc_next; 5744 if ((dip && p->pscc_dip == dip) || 5745 (dip == NULL && clone == p->pscc_clone)) { 5746 ASSERT(clone == p->pscc_clone); 5747 found++; 5748 /* 5749 * Remove from control list 5750 */ 5751 pm_dequeue_pscc(p, &pm_pscc_direct); 5752 /* 5753 * If we're the last reference, free the 5754 * entries struct. 5755 */ 5756 psce = p->pscc_entries; 5757 ASSERT(psce); 5758 if (psce->psce_references == 1) { 5759 kmem_free(psce->psce_first, 5760 PSCCOUNT * sizeof (pm_state_change_t)); 5761 kmem_free(psce, sizeof (*psce)); 5762 } else { 5763 psce->psce_references--; 5764 } 5765 kmem_free(p, sizeof (*p)); 5766 } 5767 } 5768 ASSERT(dip == NULL || found); 5769 rw_exit(&pm_pscc_direct_rwlock); 5770 } 5771 5772 /* 5773 * Search the indicated list for an entry that matches clone, and return a 5774 * pointer to it. To be interesting, the entry must have something ready to 5775 * be passed up to the controlling process. 5776 * The returned entry will be locked upon return from this call. 5777 */ 5778 static psce_t * 5779 pm_psc_find_clone(int clone, pscc_t **list, krwlock_t *lock) 5780 { 5781 pscc_t *p; 5782 psce_t *psce; 5783 rw_enter(lock, RW_READER); 5784 for (p = *list; p; p = p->pscc_next) { 5785 if (clone == p->pscc_clone) { 5786 psce = p->pscc_entries; 5787 mutex_enter(&psce->psce_lock); 5788 if (psce->psce_out->size) { 5789 rw_exit(lock); 5790 return (psce); 5791 } else { 5792 mutex_exit(&psce->psce_lock); 5793 } 5794 } 5795 } 5796 rw_exit(lock); 5797 return (NULL); 5798 } 5799 5800 static psce_t *pm_psc_find_clone(int, pscc_t **, krwlock_t *); 5801 /* 5802 * Find an entry for a particular clone in the direct list. 5803 */ 5804 psce_t * 5805 pm_psc_clone_to_direct(int clone) 5806 { 5807 return (pm_psc_find_clone(clone, &pm_pscc_direct, 5808 &pm_pscc_direct_rwlock)); 5809 } 5810 5811 /* 5812 * Find an entry for a particular clone in the interest list. 5813 */ 5814 psce_t * 5815 pm_psc_clone_to_interest(int clone) 5816 { 5817 return (pm_psc_find_clone(clone, &pm_pscc_interest, 5818 &pm_pscc_interest_rwlock)); 5819 } 5820 5821 /* 5822 * Put the given entry at the head of the blocked list 5823 */ 5824 void 5825 pm_enqueue_blocked(pm_rsvp_t *p) 5826 { 5827 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 5828 ASSERT(p->pr_next == NULL); 5829 ASSERT(p->pr_prev == NULL); 5830 if (pm_blocked_list != NULL) { 5831 p->pr_next = pm_blocked_list; 5832 ASSERT(pm_blocked_list->pr_prev == NULL); 5833 pm_blocked_list->pr_prev = p; 5834 pm_blocked_list = p; 5835 } else { 5836 pm_blocked_list = p; 5837 } 5838 } 5839 5840 /* 5841 * Sets every power managed device back to its default threshold 5842 */ 5843 void 5844 pm_all_to_default_thresholds(void) 5845 { 5846 ddi_walk_devs(ddi_root_node(), pm_set_dev_thr_walk, 5847 (void *) &pm_system_idle_threshold); 5848 } 5849 5850 static int 5851 pm_set_dev_thr_walk(dev_info_t *dip, void *arg) 5852 { 5853 int thr = (int)(*(int *)arg); 5854 5855 if (!PM_GET_PM_INFO(dip)) 5856 return (DDI_WALK_CONTINUE); 5857 pm_set_device_threshold(dip, thr, PMC_DEF_THRESH); 5858 return (DDI_WALK_CONTINUE); 5859 } 5860 5861 /* 5862 * Returns the current threshold value (in seconds) for the indicated component 5863 */ 5864 int 5865 pm_current_threshold(dev_info_t *dip, int comp, int *threshp) 5866 { 5867 if (comp < 0 || comp >= PM_NUMCMPTS(dip)) { 5868 return (DDI_FAILURE); 5869 } else { 5870 *threshp = cur_threshold(dip, comp); 5871 return (DDI_SUCCESS); 5872 } 5873 } 5874 5875 /* 5876 * To be called when changing the power level of a component of a device. 5877 * On some platforms, changing power on one device may require that power 5878 * be changed on other, related devices in the same transaction. Thus, we 5879 * always pass this request to the platform power manager so that all the 5880 * affected devices will be locked. 5881 */ 5882 void 5883 pm_lock_power(dev_info_t *dip, int *circp) 5884 { 5885 power_req_t power_req; 5886 int result; 5887 5888 power_req.request_type = PMR_PPM_LOCK_POWER; 5889 power_req.req.ppm_lock_power_req.who = dip; 5890 power_req.req.ppm_lock_power_req.circp = circp; 5891 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5892 } 5893 5894 /* 5895 * Release the lock (or locks) acquired to change the power of a device. 5896 * See comments for pm_lock_power. 5897 */ 5898 void 5899 pm_unlock_power(dev_info_t *dip, int circ) 5900 { 5901 power_req_t power_req; 5902 int result; 5903 5904 power_req.request_type = PMR_PPM_UNLOCK_POWER; 5905 power_req.req.ppm_unlock_power_req.who = dip; 5906 power_req.req.ppm_unlock_power_req.circ = circ; 5907 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5908 } 5909 5910 5911 /* 5912 * Attempt (without blocking) to acquire the lock(s) needed to change the 5913 * power of a component of a device. See comments for pm_lock_power. 5914 * 5915 * Return: 1 if lock(s) acquired, 0 if not. 5916 */ 5917 int 5918 pm_try_locking_power(dev_info_t *dip, int *circp) 5919 { 5920 power_req_t power_req; 5921 int result; 5922 5923 power_req.request_type = PMR_PPM_TRY_LOCK_POWER; 5924 power_req.req.ppm_lock_power_req.who = dip; 5925 power_req.req.ppm_lock_power_req.circp = circp; 5926 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5927 return (result); 5928 } 5929 5930 5931 /* 5932 * Lock power state of a device. 5933 * 5934 * The implementation handles a special case where another thread may have 5935 * acquired the lock and created/launched this thread to do the work. If 5936 * the lock cannot be acquired immediately, we check to see if this thread 5937 * is registered as a borrower of the lock. If so, we may proceed without 5938 * the lock. This assumes that the lending thread blocks on the completion 5939 * of this thread. 5940 * 5941 * Note 1: for use by ppm only. 5942 * 5943 * Note 2: On failing to get the lock immediately, we search lock_loan list 5944 * for curthread (as borrower of the lock). On a hit, we check that the 5945 * lending thread already owns the lock we want. It is safe to compare 5946 * devi_busy_thread and thread id of the lender because in the == case (the 5947 * only one we care about) we know that the owner is blocked. Similarly, 5948 * If we find that curthread isn't registered as a lock borrower, it is safe 5949 * to use the blocking call (ndi_devi_enter) because we know that if we 5950 * weren't already listed as a borrower (upstream on the call stack) we won't 5951 * become one. 5952 */ 5953 void 5954 pm_lock_power_single(dev_info_t *dip, int *circp) 5955 { 5956 lock_loan_t *cur; 5957 5958 /* if the lock is available, we are done. */ 5959 if (ndi_devi_tryenter(dip, circp)) 5960 return; 5961 5962 mutex_enter(&pm_loan_lock); 5963 /* see if our thread is registered as a lock borrower. */ 5964 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 5965 if (cur->pmlk_borrower == curthread) 5966 break; 5967 mutex_exit(&pm_loan_lock); 5968 5969 /* if this thread not already registered, it is safe to block */ 5970 if (cur == NULL) 5971 ndi_devi_enter(dip, circp); 5972 else { 5973 /* registered: does lender own the lock we want? */ 5974 if (cur->pmlk_lender == DEVI(dip)->devi_busy_thread) { 5975 ASSERT(cur->pmlk_dip == NULL || cur->pmlk_dip == dip); 5976 cur->pmlk_dip = dip; 5977 } else /* no: just block for it */ 5978 ndi_devi_enter(dip, circp); 5979 5980 } 5981 } 5982 5983 /* 5984 * Drop the lock on the device's power state. See comment for 5985 * pm_lock_power_single() for special implementation considerations. 5986 * 5987 * Note: for use by ppm only. 5988 */ 5989 void 5990 pm_unlock_power_single(dev_info_t *dip, int circ) 5991 { 5992 lock_loan_t *cur; 5993 5994 /* optimization: mutex not needed to check empty list */ 5995 if (lock_loan_head.pmlk_next == NULL) { 5996 ndi_devi_exit(dip, circ); 5997 return; 5998 } 5999 6000 mutex_enter(&pm_loan_lock); 6001 /* see if our thread is registered as a lock borrower. */ 6002 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 6003 if (cur->pmlk_borrower == curthread) 6004 break; 6005 mutex_exit(&pm_loan_lock); 6006 6007 if (cur == NULL || cur->pmlk_dip != dip) 6008 /* we acquired the lock directly, so return it */ 6009 ndi_devi_exit(dip, circ); 6010 } 6011 6012 /* 6013 * Try to take the lock for changing the power level of a component. 6014 * 6015 * Note: for use by ppm only. 6016 */ 6017 int 6018 pm_try_locking_power_single(dev_info_t *dip, int *circp) 6019 { 6020 return (ndi_devi_tryenter(dip, circp)); 6021 } 6022 6023 #ifdef DEBUG 6024 /* 6025 * The following are used only to print out data structures for debugging 6026 */ 6027 void 6028 prdeps(char *msg) 6029 { 6030 6031 pm_pdr_t *rp; 6032 int i; 6033 6034 pm_log("pm_dep_head %s %p\n", msg, (void *)pm_dep_head); 6035 for (rp = pm_dep_head; rp; rp = rp->pdr_next) { 6036 pm_log("%p: %s keeper %s, kept %s, kept count %d, next %p\n", 6037 (void *)rp, (rp->pdr_isprop ? "property" : "device"), 6038 rp->pdr_keeper, rp->pdr_kept, rp->pdr_kept_count, 6039 (void *)rp->pdr_next); 6040 if (rp->pdr_kept_count != 0) { 6041 pm_log("kept list = "); 6042 i = 0; 6043 while (i < rp->pdr_kept_count) { 6044 pm_log("%s ", rp->pdr_kept_paths[i]); 6045 i++; 6046 } 6047 pm_log("\n"); 6048 } 6049 } 6050 } 6051 6052 void 6053 pr_noinvol(char *hdr) 6054 { 6055 pm_noinvol_t *ip; 6056 6057 pm_log("%s\n", hdr); 6058 rw_enter(&pm_noinvol_rwlock, RW_READER); 6059 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) 6060 pm_log("\tmaj %d, flags %x, noinvolpm %d %s\n", 6061 ip->ni_major, ip->ni_flags, ip->ni_noinvolpm, ip->ni_path); 6062 rw_exit(&pm_noinvol_rwlock); 6063 } 6064 #endif 6065 6066 /* 6067 * Attempt to apply the thresholds indicated by rp to the node specified by 6068 * dip. 6069 */ 6070 void 6071 pm_apply_recorded_thresh(dev_info_t *dip, pm_thresh_rec_t *rp) 6072 { 6073 PMD_FUNC(pmf, "apply_recorded_thresh") 6074 int i, j; 6075 int comps = PM_NUMCMPTS(dip); 6076 struct pm_component *cp; 6077 pm_pte_t *ep; 6078 int pm_valid_thresh(dev_info_t *, pm_thresh_rec_t *); 6079 6080 PMD(PMD_THRESH, ("%s: part: %s@%s(%s#%d), rp %p, %s\n", pmf, 6081 PM_DEVICE(dip), (void *)rp, rp->ptr_physpath)) 6082 PM_LOCK_DIP(dip); 6083 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip) || !pm_valid_thresh(dip, rp)) { 6084 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_GET_PM_INFO %p\n", 6085 pmf, PM_DEVICE(dip), (void*)PM_GET_PM_INFO(dip))) 6086 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_ISBC %d\n", 6087 pmf, PM_DEVICE(dip), PM_ISBC(dip))) 6088 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) pm_valid_thresh %d\n", 6089 pmf, PM_DEVICE(dip), pm_valid_thresh(dip, rp))) 6090 PM_UNLOCK_DIP(dip); 6091 return; 6092 } 6093 6094 ep = rp->ptr_entries; 6095 /* 6096 * Here we do the special case of a device threshold 6097 */ 6098 if (rp->ptr_numcomps == 0) { /* PM_SET_DEVICE_THRESHOLD product */ 6099 ASSERT(ep && ep->pte_numthresh == 1); 6100 PMD(PMD_THRESH, ("%s: set dev thr %s@%s(%s#%d) to 0x%x\n", 6101 pmf, PM_DEVICE(dip), ep->pte_thresh[0])) 6102 PM_UNLOCK_DIP(dip); 6103 pm_set_device_threshold(dip, ep->pte_thresh[0], PMC_DEV_THRESH); 6104 if (PM_SCANABLE(dip)) 6105 pm_rescan(dip); 6106 return; 6107 } 6108 for (i = 0; i < comps; i++) { 6109 cp = PM_CP(dip, i); 6110 for (j = 0; j < ep->pte_numthresh; j++) { 6111 PMD(PMD_THRESH, ("%s: set thr %d for %s@%s(%s#%d)[%d] " 6112 "to %x\n", pmf, j, PM_DEVICE(dip), 6113 i, ep->pte_thresh[j])) 6114 cp->pmc_comp.pmc_thresh[j + 1] = ep->pte_thresh[j]; 6115 } 6116 ep++; 6117 } 6118 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 6119 DEVI(dip)->devi_pm_flags |= PMC_COMP_THRESH; 6120 PM_UNLOCK_DIP(dip); 6121 6122 if (PM_SCANABLE(dip)) 6123 pm_rescan(dip); 6124 } 6125 6126 /* 6127 * Returns true if the threshold specified by rp could be applied to dip 6128 * (that is, the number of components and transitions are the same) 6129 */ 6130 int 6131 pm_valid_thresh(dev_info_t *dip, pm_thresh_rec_t *rp) 6132 { 6133 PMD_FUNC(pmf, "valid_thresh") 6134 int comps, i; 6135 pm_component_t *cp; 6136 pm_pte_t *ep; 6137 6138 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip)) { 6139 PMD(PMD_ERROR, ("%s: %s: no pm_info or BC\n", pmf, 6140 rp->ptr_physpath)) 6141 return (0); 6142 } 6143 /* 6144 * Special case: we represent the PM_SET_DEVICE_THRESHOLD case by 6145 * an entry with numcomps == 0, (since we don't know how many 6146 * components there are in advance). This is always a valid 6147 * spec. 6148 */ 6149 if (rp->ptr_numcomps == 0) { 6150 ASSERT(rp->ptr_entries && rp->ptr_entries->pte_numthresh == 1); 6151 return (1); 6152 } 6153 if (rp->ptr_numcomps != (comps = PM_NUMCMPTS(dip))) { 6154 PMD(PMD_ERROR, ("%s: comp # mm (dip %d cmd %d) for %s\n", 6155 pmf, PM_NUMCMPTS(dip), rp->ptr_numcomps, rp->ptr_physpath)) 6156 return (0); 6157 } 6158 ep = rp->ptr_entries; 6159 for (i = 0; i < comps; i++) { 6160 cp = PM_CP(dip, i); 6161 if ((ep + i)->pte_numthresh != 6162 cp->pmc_comp.pmc_numlevels - 1) { 6163 PMD(PMD_ERROR, ("%s: %s[%d]: thresh=%d, record=%d\n", 6164 pmf, rp->ptr_physpath, i, 6165 cp->pmc_comp.pmc_numlevels - 1, 6166 (ep + i)->pte_numthresh)) 6167 return (0); 6168 } 6169 } 6170 return (1); 6171 } 6172 6173 /* 6174 * Remove any recorded threshold for device physpath 6175 * We know there will be at most one. 6176 */ 6177 void 6178 pm_unrecord_threshold(char *physpath) 6179 { 6180 pm_thresh_rec_t *pptr, *ptr; 6181 6182 rw_enter(&pm_thresh_rwlock, RW_WRITER); 6183 for (pptr = NULL, ptr = pm_thresh_head; ptr; ptr = ptr->ptr_next) { 6184 if (strcmp(physpath, ptr->ptr_physpath) == 0) { 6185 if (pptr) { 6186 pptr->ptr_next = ptr->ptr_next; 6187 } else { 6188 ASSERT(pm_thresh_head == ptr); 6189 pm_thresh_head = ptr->ptr_next; 6190 } 6191 kmem_free(ptr, ptr->ptr_size); 6192 break; 6193 } 6194 pptr = ptr; 6195 } 6196 rw_exit(&pm_thresh_rwlock); 6197 } 6198 6199 /* 6200 * Discard all recorded thresholds. We are returning to the default pm state. 6201 */ 6202 void 6203 pm_discard_thresholds(void) 6204 { 6205 pm_thresh_rec_t *rp; 6206 rw_enter(&pm_thresh_rwlock, RW_WRITER); 6207 while (pm_thresh_head) { 6208 rp = pm_thresh_head; 6209 pm_thresh_head = rp->ptr_next; 6210 kmem_free(rp, rp->ptr_size); 6211 } 6212 rw_exit(&pm_thresh_rwlock); 6213 } 6214 6215 /* 6216 * Discard all recorded dependencies. We are returning to the default pm state. 6217 */ 6218 void 6219 pm_discard_dependencies(void) 6220 { 6221 pm_pdr_t *rp; 6222 int i; 6223 size_t length; 6224 6225 #ifdef DEBUG 6226 if (pm_debug & PMD_DEP) 6227 prdeps("Before discard\n"); 6228 #endif 6229 ddi_walk_devs(ddi_root_node(), pm_discard_dep_walk, NULL); 6230 6231 #ifdef DEBUG 6232 if (pm_debug & PMD_DEP) 6233 prdeps("After discard\n"); 6234 #endif 6235 while (pm_dep_head) { 6236 rp = pm_dep_head; 6237 if (!rp->pdr_isprop) { 6238 ASSERT(rp->pdr_satisfied == 0); 6239 ASSERT(pm_unresolved_deps); 6240 pm_unresolved_deps--; 6241 } else { 6242 ASSERT(pm_prop_deps); 6243 pm_prop_deps--; 6244 } 6245 pm_dep_head = rp->pdr_next; 6246 if (rp->pdr_kept_count) { 6247 for (i = 0; i < rp->pdr_kept_count; i++) { 6248 length = strlen(rp->pdr_kept_paths[i]) + 1; 6249 kmem_free(rp->pdr_kept_paths[i], length); 6250 } 6251 kmem_free(rp->pdr_kept_paths, 6252 rp->pdr_kept_count * sizeof (char **)); 6253 } 6254 kmem_free(rp, rp->pdr_size); 6255 } 6256 } 6257 6258 6259 static int 6260 pm_discard_dep_walk(dev_info_t *dip, void *arg) 6261 { 6262 _NOTE(ARGUNUSED(arg)) 6263 char *pathbuf; 6264 6265 if (PM_GET_PM_INFO(dip) == NULL) 6266 return (DDI_WALK_CONTINUE); 6267 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6268 (void) ddi_pathname(dip, pathbuf); 6269 pm_free_keeper(pathbuf, 0); 6270 kmem_free(pathbuf, MAXPATHLEN); 6271 return (DDI_WALK_CONTINUE); 6272 } 6273 6274 static int 6275 pm_kept_walk(dev_info_t *dip, void *arg) 6276 { 6277 _NOTE(ARGUNUSED(arg)) 6278 char *pathbuf; 6279 6280 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6281 (void) ddi_pathname(dip, pathbuf); 6282 (void) pm_kept(pathbuf); 6283 kmem_free(pathbuf, MAXPATHLEN); 6284 6285 return (DDI_WALK_CONTINUE); 6286 } 6287 6288 static int 6289 pm_keeper_walk(dev_info_t *dip, void *arg) 6290 { 6291 _NOTE(ARGUNUSED(arg)) 6292 char *pathbuf; 6293 6294 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6295 (void) ddi_pathname(dip, pathbuf); 6296 (void) pm_keeper(pathbuf); 6297 kmem_free(pathbuf, MAXPATHLEN); 6298 6299 return (DDI_WALK_CONTINUE); 6300 } 6301 6302 static char * 6303 pdw_type_decode(int type) 6304 { 6305 switch (type) { 6306 case PM_DEP_WK_POWER_ON: 6307 return ("power on"); 6308 case PM_DEP_WK_POWER_OFF: 6309 return ("power off"); 6310 case PM_DEP_WK_DETACH: 6311 return ("detach"); 6312 case PM_DEP_WK_REMOVE_DEP: 6313 return ("remove dep"); 6314 case PM_DEP_WK_BRINGUP_SELF: 6315 return ("bringup self"); 6316 case PM_DEP_WK_RECORD_KEEPER: 6317 return ("add dependent"); 6318 case PM_DEP_WK_RECORD_KEEPER_PROP: 6319 return ("add dependent property"); 6320 case PM_DEP_WK_KEPT: 6321 return ("kept"); 6322 case PM_DEP_WK_KEEPER: 6323 return ("keeper"); 6324 case PM_DEP_WK_ATTACH: 6325 return ("attach"); 6326 case PM_DEP_WK_CHECK_KEPT: 6327 return ("check kept"); 6328 case PM_DEP_WK_CPR_SUSPEND: 6329 return ("suspend"); 6330 case PM_DEP_WK_CPR_RESUME: 6331 return ("resume"); 6332 default: 6333 return ("unknown"); 6334 } 6335 6336 } 6337 6338 static void 6339 pm_rele_dep(char *keeper) 6340 { 6341 PMD_FUNC(pmf, "rele_dep") 6342 pm_pdr_t *dp; 6343 char *kept_path = NULL; 6344 dev_info_t *kept = NULL; 6345 int count = 0; 6346 6347 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 6348 if (strcmp(dp->pdr_keeper, keeper) != 0) 6349 continue; 6350 for (count = 0; count < dp->pdr_kept_count; count++) { 6351 kept_path = dp->pdr_kept_paths[count]; 6352 if (kept_path == NULL) 6353 continue; 6354 kept = pm_name_to_dip(kept_path, 1); 6355 if (kept) { 6356 PMD(PMD_KEEPS, ("%s: release kept=%s@%s(%s#%d) " 6357 "of keeper=%s\n", pmf, PM_DEVICE(kept), 6358 keeper)) 6359 ASSERT(DEVI(kept)->devi_pm_kidsupcnt > 0); 6360 pm_rele_power(kept); 6361 ddi_release_devi(kept); 6362 } 6363 } 6364 } 6365 } 6366 6367 /* 6368 * Called when we are just released from direct PM. Bring ourself up 6369 * if our keeper is up since dependency is not honored while a kept 6370 * device is under direct PM. 6371 */ 6372 static void 6373 pm_bring_self_up(char *keptpath) 6374 { 6375 PMD_FUNC(pmf, "bring_self_up") 6376 dev_info_t *kept; 6377 dev_info_t *keeper; 6378 pm_pdr_t *dp; 6379 int i, j; 6380 int up = 0, circ; 6381 6382 kept = pm_name_to_dip(keptpath, 1); 6383 if (kept == NULL) 6384 return; 6385 PMD(PMD_KEEPS, ("%s: kept=%s@%s(%s#%d)\n", pmf, PM_DEVICE(kept))) 6386 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 6387 if (dp->pdr_kept_count == 0) 6388 continue; 6389 for (i = 0; i < dp->pdr_kept_count; i++) { 6390 if (strcmp(dp->pdr_kept_paths[i], keptpath) != 0) 6391 continue; 6392 keeper = pm_name_to_dip(dp->pdr_keeper, 1); 6393 if (keeper) { 6394 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d)\n", 6395 pmf, PM_DEVICE(keeper))) 6396 PM_LOCK_POWER(keeper, &circ); 6397 for (j = 0; j < PM_NUMCMPTS(keeper); 6398 j++) { 6399 if (PM_CURPOWER(keeper, j)) { 6400 PMD(PMD_KEEPS, ("%s: comp=" 6401 "%d is up\n", pmf, j)) 6402 up++; 6403 } 6404 } 6405 if (up) { 6406 if (PM_SKBU(kept)) 6407 DEVI(kept)->devi_pm_flags &= 6408 ~PMC_SKIP_BRINGUP; 6409 bring_pmdep_up(kept, 1); 6410 } 6411 PM_UNLOCK_POWER(keeper, circ); 6412 ddi_release_devi(keeper); 6413 } 6414 } 6415 } 6416 ddi_release_devi(kept); 6417 } 6418 6419 static void 6420 pm_process_dep_request(pm_dep_wk_t *work) 6421 { 6422 PMD_FUNC(pmf, "dep_req") 6423 int ret; 6424 6425 PMD(PMD_DEP, ("%s: work=%s\n", pmf, 6426 pdw_type_decode(work->pdw_type))) 6427 PMD(PMD_DEP, ("%s: keeper=%s, kept=%s\n", pmf, 6428 (work->pdw_keeper ? work->pdw_keeper : "NULL"), 6429 (work->pdw_kept ? work->pdw_kept : "NULL"))) 6430 6431 ret = 0; 6432 switch (work->pdw_type) { 6433 case PM_DEP_WK_POWER_ON: 6434 /* Bring up the kept devices and put a hold on them */ 6435 bring_wekeeps_up(work->pdw_keeper); 6436 break; 6437 case PM_DEP_WK_POWER_OFF: 6438 /* Release the kept devices */ 6439 pm_rele_dep(work->pdw_keeper); 6440 break; 6441 case PM_DEP_WK_DETACH: 6442 pm_free_keeps(work->pdw_keeper, work->pdw_pwr); 6443 break; 6444 case PM_DEP_WK_REMOVE_DEP: 6445 pm_discard_dependencies(); 6446 break; 6447 case PM_DEP_WK_BRINGUP_SELF: 6448 /* 6449 * We deferred satisfying our dependency till now, so satisfy 6450 * it again and bring ourselves up. 6451 */ 6452 pm_bring_self_up(work->pdw_kept); 6453 break; 6454 case PM_DEP_WK_RECORD_KEEPER: 6455 (void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 0); 6456 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6457 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6458 break; 6459 case PM_DEP_WK_RECORD_KEEPER_PROP: 6460 (void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 1); 6461 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6462 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6463 break; 6464 case PM_DEP_WK_KEPT: 6465 ret = pm_kept(work->pdw_kept); 6466 PMD(PMD_DEP, ("%s: PM_DEP_WK_KEPT: pm_kept returns %d\n", pmf, 6467 ret)) 6468 break; 6469 case PM_DEP_WK_KEEPER: 6470 ret = pm_keeper(work->pdw_keeper); 6471 PMD(PMD_DEP, ("%s: PM_DEP_WK_KEEPER: pm_keeper returns %d\n", 6472 pmf, ret)) 6473 break; 6474 case PM_DEP_WK_ATTACH: 6475 ret = pm_keeper(work->pdw_keeper); 6476 PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_keeper returns %d\n", 6477 pmf, ret)) 6478 ret = pm_kept(work->pdw_kept); 6479 PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_kept returns %d\n", 6480 pmf, ret)) 6481 break; 6482 case PM_DEP_WK_CHECK_KEPT: 6483 ret = pm_is_kept(work->pdw_kept); 6484 PMD(PMD_DEP, ("%s: PM_DEP_WK_CHECK_KEPT: kept=%s, ret=%d\n", 6485 pmf, work->pdw_kept, ret)) 6486 break; 6487 case PM_DEP_WK_CPR_SUSPEND: 6488 pm_discard_dependencies(); 6489 break; 6490 case PM_DEP_WK_CPR_RESUME: 6491 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6492 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6493 break; 6494 default: 6495 ASSERT(0); 6496 break; 6497 } 6498 /* 6499 * Free the work structure if the requester is not waiting 6500 * Otherwise it is the requester's responsiblity to free it. 6501 */ 6502 if (!work->pdw_wait) { 6503 if (work->pdw_keeper) 6504 kmem_free(work->pdw_keeper, 6505 strlen(work->pdw_keeper) + 1); 6506 if (work->pdw_kept) 6507 kmem_free(work->pdw_kept, strlen(work->pdw_kept) + 1); 6508 kmem_free(work, sizeof (pm_dep_wk_t)); 6509 } else { 6510 /* 6511 * Notify requester if it is waiting for it. 6512 */ 6513 work->pdw_ret = ret; 6514 work->pdw_done = 1; 6515 cv_signal(&work->pdw_cv); 6516 } 6517 } 6518 6519 /* 6520 * Process PM dependency requests. 6521 */ 6522 static void 6523 pm_dep_thread(void) 6524 { 6525 pm_dep_wk_t *work; 6526 callb_cpr_t cprinfo; 6527 6528 CALLB_CPR_INIT(&cprinfo, &pm_dep_thread_lock, callb_generic_cpr, 6529 "pm_dep_thread"); 6530 for (;;) { 6531 mutex_enter(&pm_dep_thread_lock); 6532 if (pm_dep_thread_workq == NULL) { 6533 CALLB_CPR_SAFE_BEGIN(&cprinfo); 6534 cv_wait(&pm_dep_thread_cv, &pm_dep_thread_lock); 6535 CALLB_CPR_SAFE_END(&cprinfo, &pm_dep_thread_lock); 6536 } 6537 work = pm_dep_thread_workq; 6538 pm_dep_thread_workq = work->pdw_next; 6539 if (pm_dep_thread_tail == work) 6540 pm_dep_thread_tail = work->pdw_next; 6541 mutex_exit(&pm_dep_thread_lock); 6542 pm_process_dep_request(work); 6543 6544 } 6545 /*NOTREACHED*/ 6546 } 6547 6548 /* 6549 * Set the power level of the indicated device to unknown (if it is not a 6550 * backwards compatible device), as it has just been resumed, and it won't 6551 * know if the power was removed or not. Adjust parent's kidsupcnt if necessary. 6552 */ 6553 void 6554 pm_forget_power_level(dev_info_t *dip) 6555 { 6556 dev_info_t *pdip = ddi_get_parent(dip); 6557 int i, count = 0; 6558 6559 if (!PM_ISBC(dip)) { 6560 for (i = 0; i < PM_NUMCMPTS(dip); i++) 6561 count += (PM_CURPOWER(dip, i) == 0); 6562 6563 if (count && pdip && !PM_WANTS_NOTIFICATION(pdip)) 6564 e_pm_hold_rele_power(pdip, count); 6565 6566 /* 6567 * Count this as a power cycle if we care 6568 */ 6569 if (DEVI(dip)->devi_pm_volpmd && 6570 PM_CP(dip, 0)->pmc_cur_pwr == 0) 6571 DEVI(dip)->devi_pm_volpmd = 0; 6572 for (i = 0; i < PM_NUMCMPTS(dip); i++) 6573 e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN); 6574 } 6575 } 6576 6577 /* 6578 * This function advises the caller whether it should make a power-off 6579 * transition at this time or not. If the transition is not advised 6580 * at this time, the time that the next power-off transition can 6581 * be made from now is returned through "intervalp" pointer. 6582 * This function returns: 6583 * 6584 * 1 power-off advised 6585 * 0 power-off not advised, intervalp will point to seconds from 6586 * now that a power-off is advised. If it is passed the number 6587 * of years that policy specifies the device should last, 6588 * a large number is returned as the time interval. 6589 * -1 error 6590 */ 6591 int 6592 pm_trans_check(struct pm_trans_data *datap, time_t *intervalp) 6593 { 6594 PMD_FUNC(pmf, "pm_trans_check") 6595 char dbuf[DC_SCSI_MFR_LEN]; 6596 struct pm_scsi_cycles *scp; 6597 int service_years, service_weeks, full_years; 6598 time_t now, service_seconds, tdiff; 6599 time_t within_year, when_allowed; 6600 char *ptr; 6601 int lower_bound_cycles, upper_bound_cycles, cycles_allowed; 6602 int cycles_diff, cycles_over; 6603 struct pm_smart_count *smart_p; 6604 6605 if (datap == NULL) { 6606 PMD(PMD_TCHECK, ("%s: NULL data pointer!\n", pmf)) 6607 return (-1); 6608 } 6609 6610 if (datap->format == DC_SCSI_FORMAT) { 6611 /* 6612 * Power cycles of the scsi drives are distributed 6613 * over 5 years with the following percentage ratio: 6614 * 6615 * 30%, 25%, 20%, 15%, and 10% 6616 * 6617 * The power cycle quota for each year is distributed 6618 * linearly through out the year. The equation for 6619 * determining the expected cycles is: 6620 * 6621 * e = a * (n / y) 6622 * 6623 * e = expected cycles 6624 * a = allocated cycles for this year 6625 * n = number of seconds since beginning of this year 6626 * y = number of seconds in a year 6627 * 6628 * Note that beginning of the year starts the day that 6629 * the drive has been put on service. 6630 * 6631 * If the drive has passed its expected cycles, we 6632 * can determine when it can start to power cycle 6633 * again to keep it on track to meet the 5-year 6634 * life expectancy. The equation for determining 6635 * when to power cycle is: 6636 * 6637 * w = y * (c / a) 6638 * 6639 * w = when it can power cycle again 6640 * y = number of seconds in a year 6641 * c = current number of cycles 6642 * a = allocated cycles for the year 6643 * 6644 */ 6645 char pcnt[DC_SCSI_NPY] = { 30, 55, 75, 90, 100 }; 6646 6647 scp = &datap->un.scsi_cycles; 6648 PMD(PMD_TCHECK, ("%s: format=%d, lifemax=%d, ncycles=%d, " 6649 "svc_date=%s, svc_flag=%d\n", pmf, datap->format, 6650 scp->lifemax, scp->ncycles, scp->svc_date, scp->flag)) 6651 if (scp->ncycles < 0 || scp->flag != 0) { 6652 PMD(PMD_TCHECK, ("%s: ncycles < 0 || flag != 0\n", pmf)) 6653 return (-1); 6654 } 6655 6656 if (scp->ncycles > scp->lifemax) { 6657 *intervalp = (LONG_MAX / hz); 6658 return (0); 6659 } 6660 6661 /* 6662 * convert service date to time_t 6663 */ 6664 bcopy(scp->svc_date, dbuf, DC_SCSI_YEAR_LEN); 6665 dbuf[DC_SCSI_YEAR_LEN] = '\0'; 6666 ptr = dbuf; 6667 service_years = stoi(&ptr) - EPOCH_YEAR; 6668 bcopy(&scp->svc_date[DC_SCSI_YEAR_LEN], dbuf, 6669 DC_SCSI_WEEK_LEN); 6670 dbuf[DC_SCSI_WEEK_LEN] = '\0'; 6671 6672 /* 6673 * scsi standard does not specify WW data, 6674 * could be (00-51) or (01-52) 6675 */ 6676 ptr = dbuf; 6677 service_weeks = stoi(&ptr); 6678 if (service_years < 0 || 6679 service_weeks < 0 || service_weeks > 52) { 6680 PMD(PMD_TCHECK, ("%s: service year %d and week %d\n", 6681 pmf, service_years, service_weeks)) 6682 return (-1); 6683 } 6684 6685 /* 6686 * calculate service date in seconds-since-epoch, 6687 * adding one day for each leap-year. 6688 * 6689 * (years-since-epoch + 2) fixes integer truncation, 6690 * example: (8) leap-years during [1972, 2000] 6691 * (2000 - 1970) = 30; and (30 + 2) / 4 = 8; 6692 */ 6693 service_seconds = (service_years * DC_SPY) + 6694 (service_weeks * DC_SPW) + 6695 (((service_years + 2) / 4) * DC_SPD); 6696 6697 now = gethrestime_sec(); 6698 /* 6699 * since the granularity of 'svc_date' is day not second, 6700 * 'now' should be rounded up to full day. 6701 */ 6702 now = ((now + DC_SPD -1) / DC_SPD) * DC_SPD; 6703 if (service_seconds > now) { 6704 PMD(PMD_TCHECK, ("%s: service date (%ld) later " 6705 "than now (%ld)!\n", pmf, service_seconds, now)) 6706 return (-1); 6707 } 6708 6709 tdiff = now - service_seconds; 6710 PMD(PMD_TCHECK, ("%s: age is %ld sec\n", pmf, tdiff)) 6711 6712 /* 6713 * NOTE - Leap years are not considered in the calculations 6714 * below. 6715 */ 6716 full_years = (tdiff / DC_SPY); 6717 if ((full_years >= DC_SCSI_NPY) && 6718 (scp->ncycles <= scp->lifemax)) 6719 return (1); 6720 6721 /* 6722 * Determine what is the normal cycle usage for the 6723 * device at the beginning and the end of this year. 6724 */ 6725 lower_bound_cycles = (!full_years) ? 0 : 6726 ((scp->lifemax * pcnt[full_years - 1]) / 100); 6727 upper_bound_cycles = (scp->lifemax * pcnt[full_years]) / 100; 6728 6729 if (scp->ncycles <= lower_bound_cycles) 6730 return (1); 6731 6732 /* 6733 * The linear slope that determines how many cycles 6734 * are allowed this year is number of seconds 6735 * passed this year over total number of seconds in a year. 6736 */ 6737 cycles_diff = (upper_bound_cycles - lower_bound_cycles); 6738 within_year = (tdiff % DC_SPY); 6739 cycles_allowed = lower_bound_cycles + 6740 (((uint64_t)cycles_diff * (uint64_t)within_year) / DC_SPY); 6741 PMD(PMD_TCHECK, ("%s: lived %d yrs and %ld secs\n", pmf, 6742 full_years, within_year)) 6743 PMD(PMD_TCHECK, ("%s: # of cycles allowed %d\n", pmf, 6744 cycles_allowed)) 6745 6746 if (scp->ncycles <= cycles_allowed) 6747 return (1); 6748 6749 /* 6750 * The transition is not advised now but we can 6751 * determine when the next transition can be made. 6752 * 6753 * Depending on how many cycles the device has been 6754 * over-used, we may need to skip years with 6755 * different percentage quota in order to determine 6756 * when the next transition can be made. 6757 */ 6758 cycles_over = (scp->ncycles - lower_bound_cycles); 6759 while (cycles_over > cycles_diff) { 6760 full_years++; 6761 if (full_years >= DC_SCSI_NPY) { 6762 *intervalp = (LONG_MAX / hz); 6763 return (0); 6764 } 6765 cycles_over -= cycles_diff; 6766 lower_bound_cycles = upper_bound_cycles; 6767 upper_bound_cycles = 6768 (scp->lifemax * pcnt[full_years]) / 100; 6769 cycles_diff = (upper_bound_cycles - lower_bound_cycles); 6770 } 6771 6772 /* 6773 * The linear slope that determines when the next transition 6774 * can be made is the relative position of used cycles within a 6775 * year over total number of cycles within that year. 6776 */ 6777 when_allowed = service_seconds + (full_years * DC_SPY) + 6778 (((uint64_t)DC_SPY * (uint64_t)cycles_over) / cycles_diff); 6779 *intervalp = (when_allowed - now); 6780 if (*intervalp > (LONG_MAX / hz)) 6781 *intervalp = (LONG_MAX / hz); 6782 PMD(PMD_TCHECK, ("%s: no cycle is allowed in %ld secs\n", pmf, 6783 *intervalp)) 6784 return (0); 6785 } else if (datap->format == DC_SMART_FORMAT) { 6786 /* 6787 * power cycles of SATA disks are reported from SMART 6788 * attributes. 6789 */ 6790 smart_p = &datap->un.smart_count; 6791 if (smart_p->consumed >= smart_p->allowed) { 6792 *intervalp = (LONG_MAX / hz); 6793 PMD(PMD_TCHECK, ("%s: exceeded lifemax cycles.\n", pmf)) 6794 return (0); 6795 } else 6796 return (1); 6797 } 6798 6799 PMD(PMD_TCHECK, ("%s: unknown format!\n", pmf)) 6800 return (-1); 6801 } 6802 6803 /* 6804 * Nexus drivers call into pm framework to indicate which child driver is about 6805 * to be installed. In some platforms, ppm may need to configure the hardware 6806 * for successful installation of a driver. 6807 */ 6808 int 6809 pm_init_child(dev_info_t *dip) 6810 { 6811 power_req_t power_req; 6812 6813 ASSERT(ddi_binding_name(dip)); 6814 ASSERT(ddi_get_name_addr(dip)); 6815 pm_ppm_claim(dip); 6816 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 6817 power_req.request_type = PMR_PPM_INIT_CHILD; 6818 power_req.req.ppm_config_req.who = dip; 6819 ASSERT(PPM(dip) != NULL); 6820 return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, 6821 NULL)); 6822 } else { 6823 #ifdef DEBUG 6824 /* pass it to the default handler so we can debug things */ 6825 power_req.request_type = PMR_PPM_INIT_CHILD; 6826 power_req.req.ppm_config_req.who = dip; 6827 (void) pm_ctlops(NULL, dip, 6828 DDI_CTLOPS_POWER, &power_req, NULL); 6829 #endif 6830 } 6831 return (DDI_SUCCESS); 6832 } 6833 6834 /* 6835 * Bring parent of a node that is about to be probed up to full power, and 6836 * arrange for it to stay up until pm_post_probe() or pm_post_attach() decide 6837 * it is time to let it go down again 6838 */ 6839 void 6840 pm_pre_probe(dev_info_t *dip, pm_ppm_cookie_t *cp) 6841 { 6842 int result; 6843 power_req_t power_req; 6844 6845 bzero(cp, sizeof (*cp)); 6846 cp->ppc_dip = dip; 6847 6848 pm_ppm_claim(dip); 6849 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 6850 power_req.request_type = PMR_PPM_PRE_PROBE; 6851 power_req.req.ppm_config_req.who = dip; 6852 ASSERT(PPM(dip) != NULL); 6853 (void) pm_ctlops(PPM(dip), dip, 6854 DDI_CTLOPS_POWER, &power_req, &result); 6855 cp->ppc_ppm = PPM(dip); 6856 } else { 6857 #ifdef DEBUG 6858 /* pass it to the default handler so we can debug things */ 6859 power_req.request_type = PMR_PPM_PRE_PROBE; 6860 power_req.req.ppm_config_req.who = dip; 6861 (void) pm_ctlops(NULL, dip, 6862 DDI_CTLOPS_POWER, &power_req, &result); 6863 #endif 6864 cp->ppc_ppm = NULL; 6865 } 6866 } 6867 6868 int 6869 pm_pre_config(dev_info_t *dip, char *devnm) 6870 { 6871 PMD_FUNC(pmf, "pre_config") 6872 int ret; 6873 6874 if (MDI_VHCI(dip)) { 6875 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 6876 ret = mdi_power(dip, MDI_PM_PRE_CONFIG, NULL, devnm, 0); 6877 return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 6878 } else if (!PM_GET_PM_INFO(dip)) 6879 return (DDI_SUCCESS); 6880 6881 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 6882 pm_hold_power(dip); 6883 ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK); 6884 if (ret != DDI_SUCCESS) 6885 pm_rele_power(dip); 6886 return (ret); 6887 } 6888 6889 /* 6890 * This routine is called by devfs during its walk to unconfigue a node. 6891 * If the call is due to auto mod_unloads and the dip is not at its 6892 * full power, we return DDI_FAILURE to terminate the walk, otherwise 6893 * return DDI_SUCCESS. 6894 */ 6895 int 6896 pm_pre_unconfig(dev_info_t *dip, int flags, int *held, char *devnm) 6897 { 6898 PMD_FUNC(pmf, "pre_unconfig") 6899 int ret; 6900 6901 if (MDI_VHCI(dip)) { 6902 PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf, 6903 PM_DEVICE(dip), flags)) 6904 ret = mdi_power(dip, MDI_PM_PRE_UNCONFIG, held, devnm, flags); 6905 return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 6906 } else if (!PM_GET_PM_INFO(dip)) 6907 return (DDI_SUCCESS); 6908 6909 PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf, PM_DEVICE(dip), 6910 flags)) 6911 *held = 0; 6912 6913 /* 6914 * If the dip is a leaf node, don't power it up. 6915 */ 6916 if (!ddi_get_child(dip)) 6917 return (DDI_SUCCESS); 6918 6919 /* 6920 * Do not power up the node if it is called due to auto-modunload. 6921 */ 6922 if ((flags & NDI_AUTODETACH) && !pm_all_at_normal(dip)) 6923 return (DDI_FAILURE); 6924 6925 pm_hold_power(dip); 6926 *held = 1; 6927 ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK); 6928 if (ret != DDI_SUCCESS) { 6929 pm_rele_power(dip); 6930 *held = 0; 6931 } 6932 return (ret); 6933 } 6934 6935 /* 6936 * Notify ppm of attach action. Parent is already held at full power by 6937 * probe action. 6938 */ 6939 void 6940 pm_pre_attach(dev_info_t *dip, pm_ppm_cookie_t *cp, ddi_attach_cmd_t cmd) 6941 { 6942 static char *me = "pm_pre_attach"; 6943 power_req_t power_req; 6944 int result; 6945 6946 /* 6947 * Initialize and fill in the PPM cookie 6948 */ 6949 bzero(cp, sizeof (*cp)); 6950 cp->ppc_cmd = (int)cmd; 6951 cp->ppc_ppm = PPM(dip); 6952 cp->ppc_dip = dip; 6953 6954 /* 6955 * DDI_ATTACH and DDI_RESUME cmds need to call platform specific 6956 * Power Management stuff. DDI_RESUME also has to purge it's 6957 * powerlevel information. 6958 */ 6959 switch (cmd) { 6960 case DDI_ATTACH: 6961 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 6962 power_req.request_type = PMR_PPM_PRE_ATTACH; 6963 power_req.req.ppm_config_req.who = dip; 6964 ASSERT(PPM(dip)); 6965 (void) pm_ctlops(cp->ppc_ppm, dip, DDI_CTLOPS_POWER, 6966 &power_req, &result); 6967 } 6968 #ifdef DEBUG 6969 else { 6970 power_req.request_type = PMR_PPM_PRE_ATTACH; 6971 power_req.req.ppm_config_req.who = dip; 6972 (void) pm_ctlops(NULL, dip, 6973 DDI_CTLOPS_POWER, &power_req, &result); 6974 } 6975 #endif 6976 break; 6977 case DDI_RESUME: 6978 pm_forget_power_level(dip); 6979 6980 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 6981 power_req.request_type = PMR_PPM_PRE_RESUME; 6982 power_req.req.resume_req.who = cp->ppc_dip; 6983 power_req.req.resume_req.cmd = 6984 (ddi_attach_cmd_t)cp->ppc_cmd; 6985 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 6986 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 6987 DDI_CTLOPS_POWER, &power_req, &result); 6988 } 6989 #ifdef DEBUG 6990 else { 6991 power_req.request_type = PMR_PPM_PRE_RESUME; 6992 power_req.req.resume_req.who = cp->ppc_dip; 6993 power_req.req.resume_req.cmd = 6994 (ddi_attach_cmd_t)cp->ppc_cmd; 6995 (void) pm_ctlops(NULL, cp->ppc_dip, 6996 DDI_CTLOPS_POWER, &power_req, &result); 6997 } 6998 #endif 6999 break; 7000 7001 case DDI_PM_RESUME: 7002 break; 7003 7004 default: 7005 panic(me); 7006 } 7007 } 7008 7009 /* 7010 * Nexus drivers call into pm framework to indicate which child driver is 7011 * being uninstalled. In some platforms, ppm may need to reconfigure the 7012 * hardware since the device driver is no longer installed. 7013 */ 7014 int 7015 pm_uninit_child(dev_info_t *dip) 7016 { 7017 power_req_t power_req; 7018 7019 ASSERT(ddi_binding_name(dip)); 7020 ASSERT(ddi_get_name_addr(dip)); 7021 pm_ppm_claim(dip); 7022 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 7023 power_req.request_type = PMR_PPM_UNINIT_CHILD; 7024 power_req.req.ppm_config_req.who = dip; 7025 ASSERT(PPM(dip)); 7026 return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, 7027 NULL)); 7028 } else { 7029 #ifdef DEBUG 7030 /* pass it to the default handler so we can debug things */ 7031 power_req.request_type = PMR_PPM_UNINIT_CHILD; 7032 power_req.req.ppm_config_req.who = dip; 7033 (void) pm_ctlops(NULL, dip, DDI_CTLOPS_POWER, &power_req, NULL); 7034 #endif 7035 } 7036 return (DDI_SUCCESS); 7037 } 7038 /* 7039 * Decrement kidsupcnt so scan can turn the parent back off if it is idle 7040 * Also notify ppm of result of probe if there is a ppm that cares 7041 */ 7042 void 7043 pm_post_probe(pm_ppm_cookie_t *cp, int ret, int probe_failed) 7044 { 7045 _NOTE(ARGUNUSED(probe_failed)) 7046 int result; 7047 power_req_t power_req; 7048 7049 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7050 power_req.request_type = PMR_PPM_POST_PROBE; 7051 power_req.req.ppm_config_req.who = cp->ppc_dip; 7052 power_req.req.ppm_config_req.result = ret; 7053 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7054 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, DDI_CTLOPS_POWER, 7055 &power_req, &result); 7056 } 7057 #ifdef DEBUG 7058 else { 7059 power_req.request_type = PMR_PPM_POST_PROBE; 7060 power_req.req.ppm_config_req.who = cp->ppc_dip; 7061 power_req.req.ppm_config_req.result = ret; 7062 (void) pm_ctlops(NULL, cp->ppc_dip, DDI_CTLOPS_POWER, 7063 &power_req, &result); 7064 } 7065 #endif 7066 } 7067 7068 void 7069 pm_post_config(dev_info_t *dip, char *devnm) 7070 { 7071 PMD_FUNC(pmf, "post_config") 7072 7073 if (MDI_VHCI(dip)) { 7074 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 7075 (void) mdi_power(dip, MDI_PM_POST_CONFIG, NULL, devnm, 0); 7076 return; 7077 } else if (!PM_GET_PM_INFO(dip)) 7078 return; 7079 7080 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 7081 pm_rele_power(dip); 7082 } 7083 7084 void 7085 pm_post_unconfig(dev_info_t *dip, int held, char *devnm) 7086 { 7087 PMD_FUNC(pmf, "post_unconfig") 7088 7089 if (MDI_VHCI(dip)) { 7090 PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf, 7091 PM_DEVICE(dip), held)) 7092 (void) mdi_power(dip, MDI_PM_POST_UNCONFIG, &held, devnm, 0); 7093 return; 7094 } else if (!PM_GET_PM_INFO(dip)) 7095 return; 7096 7097 PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf, PM_DEVICE(dip), 7098 held)) 7099 if (!held) 7100 return; 7101 /* 7102 * We have held power in pre_unconfig, release it here. 7103 */ 7104 pm_rele_power(dip); 7105 } 7106 7107 /* 7108 * Notify ppm of result of attach if there is a ppm that cares 7109 */ 7110 void 7111 pm_post_attach(pm_ppm_cookie_t *cp, int ret) 7112 { 7113 int result; 7114 power_req_t power_req; 7115 dev_info_t *dip; 7116 7117 if (cp->ppc_cmd != DDI_ATTACH) 7118 return; 7119 7120 dip = cp->ppc_dip; 7121 7122 if (ret == DDI_SUCCESS) { 7123 /* 7124 * Attach succeeded, so proceed to doing post-attach pm tasks 7125 */ 7126 if (PM_GET_PM_INFO(dip) == NULL) 7127 (void) pm_start(dip); 7128 } else { 7129 /* 7130 * Attach may have got pm started before failing 7131 */ 7132 pm_stop(dip); 7133 } 7134 7135 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7136 power_req.request_type = PMR_PPM_POST_ATTACH; 7137 power_req.req.ppm_config_req.who = cp->ppc_dip; 7138 power_req.req.ppm_config_req.result = ret; 7139 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7140 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 7141 DDI_CTLOPS_POWER, &power_req, &result); 7142 } 7143 #ifdef DEBUG 7144 else { 7145 power_req.request_type = PMR_PPM_POST_ATTACH; 7146 power_req.req.ppm_config_req.who = cp->ppc_dip; 7147 power_req.req.ppm_config_req.result = ret; 7148 (void) pm_ctlops(NULL, cp->ppc_dip, 7149 DDI_CTLOPS_POWER, &power_req, &result); 7150 } 7151 #endif 7152 } 7153 7154 /* 7155 * Notify ppm of attach action. Parent is already held at full power by 7156 * probe action. 7157 */ 7158 void 7159 pm_pre_detach(dev_info_t *dip, ddi_detach_cmd_t cmd, pm_ppm_cookie_t *cp) 7160 { 7161 int result; 7162 power_req_t power_req; 7163 7164 bzero(cp, sizeof (*cp)); 7165 cp->ppc_dip = dip; 7166 cp->ppc_cmd = (int)cmd; 7167 7168 switch (cmd) { 7169 case DDI_DETACH: 7170 pm_detaching(dip); /* suspend pm while detaching */ 7171 if (pm_ppm_claimed(dip)) { /* if ppm driver claims node */ 7172 power_req.request_type = PMR_PPM_PRE_DETACH; 7173 power_req.req.ppm_config_req.who = dip; 7174 ASSERT(PPM(dip)); 7175 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 7176 &power_req, &result); 7177 cp->ppc_ppm = PPM(dip); 7178 } else { 7179 #ifdef DEBUG 7180 /* pass to the default handler so we can debug things */ 7181 power_req.request_type = PMR_PPM_PRE_DETACH; 7182 power_req.req.ppm_config_req.who = dip; 7183 (void) pm_ctlops(NULL, dip, 7184 DDI_CTLOPS_POWER, &power_req, &result); 7185 #endif 7186 cp->ppc_ppm = NULL; 7187 } 7188 break; 7189 7190 default: 7191 break; 7192 } 7193 } 7194 7195 /* 7196 * Dip is either a leaf node that exported "no-involuntary-power-cycles" prop., 7197 * (if devi_pm_noinvol count is 0) or an ancestor of such a node. We need to 7198 * make an entry to record the details, which includes certain flag settings. 7199 */ 7200 static void 7201 pm_record_invol_path(char *path, int flags, int noinvolpm, int volpmd, 7202 int wasvolpmd, major_t major) 7203 { 7204 PMD_FUNC(pmf, "record_invol_path") 7205 major_t pm_path_to_major(char *); 7206 size_t plen; 7207 pm_noinvol_t *ip, *np, *pp; 7208 pp = NULL; 7209 7210 plen = strlen(path) + 1; 7211 np = kmem_zalloc(sizeof (*np), KM_SLEEP); 7212 np->ni_size = plen; 7213 np->ni_path = kmem_alloc(plen, KM_SLEEP); 7214 np->ni_noinvolpm = noinvolpm; 7215 np->ni_volpmd = volpmd; 7216 np->ni_wasvolpmd = wasvolpmd; 7217 np->ni_flags = flags; 7218 (void) strcpy(np->ni_path, path); 7219 /* 7220 * If we haven't actually seen the node attached, it is hard to figure 7221 * out its major. If we could hold the node by path, we would be much 7222 * happier here. 7223 */ 7224 if (major == DDI_MAJOR_T_NONE) { 7225 np->ni_major = pm_path_to_major(path); 7226 } else { 7227 np->ni_major = major; 7228 } 7229 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 7230 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7231 int comp = strcmp(path, ip->ni_path); 7232 if (comp < 0) { 7233 PMD(PMD_NOINVOL, ("%s: %s insert before %s\n", 7234 pmf, path, ip->ni_path)) 7235 /* insert before current entry */ 7236 np->ni_next = ip; 7237 if (pp) { 7238 pp->ni_next = np; 7239 } else { 7240 pm_noinvol_head = np; 7241 } 7242 rw_exit(&pm_noinvol_rwlock); 7243 #ifdef DEBUG 7244 if (pm_debug & PMD_NOINVOL) 7245 pr_noinvol("record_invol_path exit0"); 7246 #endif 7247 return; 7248 } else if (comp == 0) { 7249 panic("%s already in pm_noinvol list", path); 7250 } 7251 } 7252 /* 7253 * If we did not find an entry in the list that this should go before, 7254 * then it must go at the end 7255 */ 7256 if (pp) { 7257 PMD(PMD_NOINVOL, ("%s: %s append after %s\n", pmf, path, 7258 pp->ni_path)) 7259 ASSERT(pp->ni_next == 0); 7260 pp->ni_next = np; 7261 } else { 7262 PMD(PMD_NOINVOL, ("%s: %s added to end-of-list\n", pmf, path)) 7263 ASSERT(!pm_noinvol_head); 7264 pm_noinvol_head = np; 7265 } 7266 rw_exit(&pm_noinvol_rwlock); 7267 #ifdef DEBUG 7268 if (pm_debug & PMD_NOINVOL) 7269 pr_noinvol("record_invol_path exit"); 7270 #endif 7271 } 7272 7273 void 7274 pm_record_invol(dev_info_t *dip) 7275 { 7276 char *pathbuf; 7277 int pm_all_components_off(dev_info_t *); 7278 int volpmd = (PM_NUMCMPTS(dip) > 0) && pm_all_components_off(dip); 7279 7280 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 7281 (void) ddi_pathname(dip, pathbuf); 7282 7283 pm_record_invol_path(pathbuf, (DEVI(dip)->devi_pm_flags & 7284 (PMC_NO_INVOL | PMC_CONSOLE_FB)), DEVI(dip)->devi_pm_noinvolpm, 7285 DEVI(dip)->devi_pm_volpmd, volpmd, PM_MAJOR(dip)); 7286 7287 /* 7288 * If this child's detach will be holding up its ancestors, then we 7289 * allow for an exception to that if all children of this type have 7290 * gone down voluntarily. 7291 * Now walk down the tree incrementing devi_pm_noinvolpm 7292 */ 7293 (void) pm_noinvol_update(PM_BP_NOINVOL_DETACH, 0, volpmd, pathbuf, 7294 dip); 7295 kmem_free(pathbuf, MAXPATHLEN); 7296 } 7297 7298 void 7299 pm_post_detach(pm_ppm_cookie_t *cp, int ret) 7300 { 7301 dev_info_t *dip = cp->ppc_dip; 7302 int result; 7303 power_req_t power_req; 7304 7305 switch (cp->ppc_cmd) { 7306 case DDI_DETACH: 7307 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7308 power_req.request_type = PMR_PPM_POST_DETACH; 7309 power_req.req.ppm_config_req.who = cp->ppc_dip; 7310 power_req.req.ppm_config_req.result = ret; 7311 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7312 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 7313 DDI_CTLOPS_POWER, &power_req, &result); 7314 } 7315 #ifdef DEBUG 7316 else { 7317 power_req.request_type = PMR_PPM_POST_DETACH; 7318 power_req.req.ppm_config_req.who = cp->ppc_dip; 7319 power_req.req.ppm_config_req.result = ret; 7320 (void) pm_ctlops(NULL, cp->ppc_dip, 7321 DDI_CTLOPS_POWER, &power_req, &result); 7322 } 7323 #endif 7324 if (ret == DDI_SUCCESS) { 7325 /* 7326 * For hotplug detach we assume it is *really* gone 7327 */ 7328 if (cp->ppc_cmd == DDI_DETACH && 7329 ((DEVI(dip)->devi_pm_flags & 7330 (PMC_NO_INVOL | PMC_CONSOLE_FB)) || 7331 DEVI(dip)->devi_pm_noinvolpm)) 7332 pm_record_invol(dip); 7333 DEVI(dip)->devi_pm_flags &= 7334 ~(PMC_NO_INVOL | PMC_NOINVOL_DONE); 7335 7336 /* 7337 * If console fb is detaching, then we don't need to 7338 * worry any more about it going off (pm_detaching has 7339 * brought up all components) 7340 */ 7341 if (PM_IS_CFB(dip)) { 7342 mutex_enter(&pm_cfb_lock); 7343 ASSERT(cfb_dip_detaching); 7344 ASSERT(cfb_dip == NULL); 7345 ASSERT(pm_cfb_comps_off == 0); 7346 cfb_dip_detaching = NULL; 7347 mutex_exit(&pm_cfb_lock); 7348 } 7349 pm_stop(dip); /* make it permanent */ 7350 } else { 7351 if (PM_IS_CFB(dip)) { 7352 mutex_enter(&pm_cfb_lock); 7353 ASSERT(cfb_dip_detaching); 7354 ASSERT(cfb_dip == NULL); 7355 ASSERT(pm_cfb_comps_off == 0); 7356 cfb_dip = cfb_dip_detaching; 7357 cfb_dip_detaching = NULL; 7358 mutex_exit(&pm_cfb_lock); 7359 } 7360 pm_detach_failed(dip); /* resume power management */ 7361 } 7362 break; 7363 case DDI_PM_SUSPEND: 7364 break; 7365 case DDI_SUSPEND: 7366 break; /* legal, but nothing to do */ 7367 default: 7368 #ifdef DEBUG 7369 panic("pm_post_detach: unrecognized cmd %d for detach", 7370 cp->ppc_cmd); 7371 /*NOTREACHED*/ 7372 #else 7373 break; 7374 #endif 7375 } 7376 } 7377 7378 /* 7379 * Called after vfs_mountroot has got the clock started to fix up timestamps 7380 * that were set when root bush drivers attached. hresttime was 0 then, so the 7381 * devices look busy but have a 0 busycnt 7382 */ 7383 int 7384 pm_adjust_timestamps(dev_info_t *dip, void *arg) 7385 { 7386 _NOTE(ARGUNUSED(arg)) 7387 7388 pm_info_t *info = PM_GET_PM_INFO(dip); 7389 struct pm_component *cp; 7390 int i; 7391 7392 if (!info) 7393 return (DDI_WALK_CONTINUE); 7394 PM_LOCK_BUSY(dip); 7395 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 7396 cp = PM_CP(dip, i); 7397 if (cp->pmc_timestamp == 0 && cp->pmc_busycount == 0) 7398 cp->pmc_timestamp = gethrestime_sec(); 7399 } 7400 PM_UNLOCK_BUSY(dip); 7401 return (DDI_WALK_CONTINUE); 7402 } 7403 7404 /* 7405 * Called at attach time to see if the device being attached has a record in 7406 * the no involuntary power cycles list. If so, we do some bookkeeping on the 7407 * parents and set a flag in the dip 7408 */ 7409 void 7410 pm_noinvol_specd(dev_info_t *dip) 7411 { 7412 PMD_FUNC(pmf, "noinvol_specd") 7413 char *pathbuf; 7414 pm_noinvol_t *ip, *pp = NULL; 7415 int wasvolpmd; 7416 int found = 0; 7417 7418 if (DEVI(dip)->devi_pm_flags & PMC_NOINVOL_DONE) 7419 return; 7420 DEVI(dip)->devi_pm_flags |= PMC_NOINVOL_DONE; 7421 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 7422 (void) ddi_pathname(dip, pathbuf); 7423 7424 PM_LOCK_DIP(dip); 7425 DEVI(dip)->devi_pm_volpmd = 0; 7426 DEVI(dip)->devi_pm_noinvolpm = 0; 7427 rw_enter(&pm_noinvol_rwlock, RW_READER); 7428 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7429 PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n", 7430 pmf, pathbuf, ip->ni_path)) 7431 if (strcmp(pathbuf, ip->ni_path) == 0) { 7432 found++; 7433 break; 7434 } 7435 } 7436 rw_exit(&pm_noinvol_rwlock); 7437 if (!found) { 7438 PM_UNLOCK_DIP(dip); 7439 kmem_free(pathbuf, MAXPATHLEN); 7440 return; 7441 } 7442 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 7443 pp = NULL; 7444 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7445 PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n", 7446 pmf, pathbuf, ip->ni_path)) 7447 if (strcmp(pathbuf, ip->ni_path) == 0) { 7448 ip->ni_flags &= ~PMC_DRIVER_REMOVED; 7449 DEVI(dip)->devi_pm_flags |= ip->ni_flags; 7450 /* 7451 * Handle special case of console fb 7452 */ 7453 if (PM_IS_CFB(dip)) { 7454 mutex_enter(&pm_cfb_lock); 7455 cfb_dip = dip; 7456 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) setting " 7457 "cfb_dip\n", pmf, PM_DEVICE(dip))) 7458 mutex_exit(&pm_cfb_lock); 7459 } 7460 DEVI(dip)->devi_pm_noinvolpm = ip->ni_noinvolpm; 7461 ASSERT((DEVI(dip)->devi_pm_flags & 7462 (PMC_NO_INVOL | PMC_CONSOLE_FB)) || 7463 DEVI(dip)->devi_pm_noinvolpm); 7464 DEVI(dip)->devi_pm_volpmd = ip->ni_volpmd; 7465 PMD(PMD_NOINVOL, ("%s: noinvol=%d, volpmd=%d, " 7466 "wasvolpmd=%d, flags=%x, path=%s\n", pmf, 7467 ip->ni_noinvolpm, ip->ni_volpmd, 7468 ip->ni_wasvolpmd, ip->ni_flags, ip->ni_path)) 7469 /* 7470 * free the entry in hopes the list will now be empty 7471 * and we won't have to search it any more until the 7472 * device detaches 7473 */ 7474 if (pp) { 7475 PMD(PMD_NOINVOL, ("%s: free %s, prev %s\n", 7476 pmf, ip->ni_path, pp->ni_path)) 7477 pp->ni_next = ip->ni_next; 7478 } else { 7479 PMD(PMD_NOINVOL, ("%s: free %s head\n", 7480 pmf, ip->ni_path)) 7481 ASSERT(pm_noinvol_head == ip); 7482 pm_noinvol_head = ip->ni_next; 7483 } 7484 PM_UNLOCK_DIP(dip); 7485 wasvolpmd = ip->ni_wasvolpmd; 7486 rw_exit(&pm_noinvol_rwlock); 7487 kmem_free(ip->ni_path, ip->ni_size); 7488 kmem_free(ip, sizeof (*ip)); 7489 /* 7490 * Now walk up the tree decrementing devi_pm_noinvolpm 7491 * (and volpmd if appropriate) 7492 */ 7493 (void) pm_noinvol_update(PM_BP_NOINVOL_ATTACH, 0, 7494 wasvolpmd, pathbuf, dip); 7495 #ifdef DEBUG 7496 if (pm_debug & PMD_NOINVOL) 7497 pr_noinvol("noinvol_specd exit"); 7498 #endif 7499 kmem_free(pathbuf, MAXPATHLEN); 7500 return; 7501 } 7502 } 7503 kmem_free(pathbuf, MAXPATHLEN); 7504 rw_exit(&pm_noinvol_rwlock); 7505 PM_UNLOCK_DIP(dip); 7506 } 7507 7508 int 7509 pm_all_components_off(dev_info_t *dip) 7510 { 7511 int i; 7512 pm_component_t *cp; 7513 7514 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 7515 cp = PM_CP(dip, i); 7516 if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN || 7517 cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]) 7518 return (0); 7519 } 7520 return (1); /* all off */ 7521 } 7522 7523 /* 7524 * Make sure that all "no involuntary power cycles" devices are attached. 7525 * Called before doing a cpr suspend to make sure the driver has a say about 7526 * the power cycle 7527 */ 7528 int 7529 pm_reattach_noinvol(void) 7530 { 7531 PMD_FUNC(pmf, "reattach_noinvol") 7532 pm_noinvol_t *ip; 7533 char *path; 7534 dev_info_t *dip; 7535 7536 /* 7537 * Prevent the modunload thread from unloading any modules until we 7538 * have completely stopped all kernel threads. 7539 */ 7540 modunload_disable(); 7541 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 7542 /* 7543 * Forget we'v ever seen any entry 7544 */ 7545 ip->ni_persistent = 0; 7546 } 7547 restart: 7548 rw_enter(&pm_noinvol_rwlock, RW_READER); 7549 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 7550 #ifdef PMDDEBUG 7551 major_t maj; 7552 maj = ip->ni_major; 7553 #endif 7554 path = ip->ni_path; 7555 if (path != NULL && !(ip->ni_flags & PMC_DRIVER_REMOVED)) { 7556 if (ip->ni_persistent) { 7557 /* 7558 * If we weren't able to make this entry 7559 * go away, then we give up, as 7560 * holding/attaching the driver ought to have 7561 * resulted in this entry being deleted 7562 */ 7563 PMD(PMD_NOINVOL, ("%s: can't reattach %s " 7564 "(%s|%d)\n", pmf, ip->ni_path, 7565 ddi_major_to_name(maj), (int)maj)) 7566 cmn_err(CE_WARN, "cpr: unable to reattach %s ", 7567 ip->ni_path); 7568 modunload_enable(); 7569 rw_exit(&pm_noinvol_rwlock); 7570 return (0); 7571 } 7572 ip->ni_persistent++; 7573 rw_exit(&pm_noinvol_rwlock); 7574 PMD(PMD_NOINVOL, ("%s: holding %s\n", pmf, path)) 7575 dip = e_ddi_hold_devi_by_path(path, 0); 7576 if (dip == NULL) { 7577 PMD(PMD_NOINVOL, ("%s: can't hold (%s|%d)\n", 7578 pmf, path, (int)maj)) 7579 cmn_err(CE_WARN, "cpr: unable to hold %s " 7580 "driver", path); 7581 modunload_enable(); 7582 return (0); 7583 } else { 7584 PMD(PMD_DHR, ("%s: release %s\n", pmf, path)) 7585 /* 7586 * Since the modunload thread is stopped, we 7587 * don't have to keep the driver held, which 7588 * saves a ton of bookkeeping 7589 */ 7590 ddi_release_devi(dip); 7591 goto restart; 7592 } 7593 } else { 7594 PMD(PMD_NOINVOL, ("%s: skip %s; unknown major\n", 7595 pmf, ip->ni_path)) 7596 continue; 7597 } 7598 } 7599 rw_exit(&pm_noinvol_rwlock); 7600 return (1); 7601 } 7602 7603 void 7604 pm_reattach_noinvol_fini(void) 7605 { 7606 modunload_enable(); 7607 } 7608 7609 /* 7610 * Display pm support code 7611 */ 7612 7613 7614 /* 7615 * console frame-buffer power-mgmt gets enabled when debugging 7616 * services are not present or console fbpm override is set 7617 */ 7618 void 7619 pm_cfb_setup(const char *stdout_path) 7620 { 7621 PMD_FUNC(pmf, "cfb_setup") 7622 extern int obpdebug; 7623 char *devname; 7624 dev_info_t *dip; 7625 int devname_len; 7626 extern dev_info_t *fbdip; 7627 7628 /* 7629 * By virtue of this function being called (from consconfig), 7630 * we know stdout is a framebuffer. 7631 */ 7632 stdout_is_framebuffer = 1; 7633 7634 if (obpdebug || (boothowto & RB_DEBUG)) { 7635 if (pm_cfb_override == 0) { 7636 /* 7637 * Console is frame buffer, but we want to suppress 7638 * pm on it because of debugging setup 7639 */ 7640 pm_cfb_enabled = 0; 7641 cmn_err(CE_NOTE, "Kernel debugger present: disabling " 7642 "console power management."); 7643 /* 7644 * however, we still need to know which is the console 7645 * fb in order to suppress pm on it 7646 */ 7647 } else { 7648 cmn_err(CE_WARN, "Kernel debugger present: see " 7649 "kmdb(1) for interaction with power management."); 7650 } 7651 } 7652 #ifdef DEBUG 7653 /* 7654 * IF console is fb and is power managed, don't do prom_printfs from 7655 * pm debug macro 7656 */ 7657 if (pm_cfb_enabled && !pm_debug_to_console) { 7658 if (pm_debug) 7659 prom_printf("pm debug output will be to log only\n"); 7660 pm_divertdebug++; 7661 } 7662 #endif 7663 devname = i_ddi_strdup((char *)stdout_path, KM_SLEEP); 7664 devname_len = strlen(devname) + 1; 7665 PMD(PMD_CFB, ("%s: stripped %s\n", pmf, devname)) 7666 /* if the driver is attached */ 7667 if ((dip = fbdip) != NULL) { 7668 PMD(PMD_CFB, ("%s: attached: %s@%s(%s#%d)\n", pmf, 7669 PM_DEVICE(dip))) 7670 /* 7671 * We set up here as if the driver were power manageable in case 7672 * we get a later attach of a pm'able driver (which would result 7673 * in a panic later) 7674 */ 7675 cfb_dip = dip; 7676 DEVI(dip)->devi_pm_flags |= (PMC_CONSOLE_FB | PMC_NO_INVOL); 7677 PMD(PMD_CFB, ("%s: cfb_dip -> %s@%s(%s#%d)\n", pmf, 7678 PM_DEVICE(dip))) 7679 #ifdef DEBUG 7680 if (!(PM_GET_PM_INFO(dip) != NULL && PM_NUMCMPTS(dip))) { 7681 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) not power-managed\n", 7682 pmf, PM_DEVICE(dip))) 7683 } 7684 #endif 7685 } else { 7686 char *ep; 7687 PMD(PMD_CFB, ("%s: pntd %s failed\n", pmf, devname)) 7688 pm_record_invol_path(devname, 7689 (PMC_CONSOLE_FB | PMC_NO_INVOL), 1, 0, 0, 7690 DDI_MAJOR_T_NONE); 7691 for (ep = strrchr(devname, '/'); ep != devname; 7692 ep = strrchr(devname, '/')) { 7693 PMD(PMD_CFB, ("%s: devname %s\n", pmf, devname)) 7694 *ep = '\0'; 7695 dip = pm_name_to_dip(devname, 0); 7696 if (dip != NULL) { 7697 /* 7698 * Walk up the tree incrementing 7699 * devi_pm_noinvolpm 7700 */ 7701 (void) pm_noinvol_update(PM_BP_NOINVOL_CFB, 7702 0, 0, devname, dip); 7703 break; 7704 } else { 7705 pm_record_invol_path(devname, 7706 PMC_NO_INVOL, 1, 0, 0, DDI_MAJOR_T_NONE); 7707 } 7708 } 7709 } 7710 kmem_free(devname, devname_len); 7711 } 7712 7713 void 7714 pm_cfb_rele(void) 7715 { 7716 mutex_enter(&pm_cfb_lock); 7717 /* 7718 * this call isn't using the console any more, it is ok to take it 7719 * down if the count goes to 0 7720 */ 7721 cfb_inuse--; 7722 mutex_exit(&pm_cfb_lock); 7723 } 7724 7725 /* 7726 * software interrupt handler for fbpm; this function exists because we can't 7727 * bring up the frame buffer power from above lock level. So if we need to, 7728 * we instead schedule a softint that runs this routine and takes us into 7729 * debug_enter (a bit delayed from the original request, but avoiding a panic). 7730 */ 7731 static uint_t 7732 pm_cfb_softint(caddr_t int_handler_arg) 7733 { 7734 _NOTE(ARGUNUSED(int_handler_arg)) 7735 int rval = DDI_INTR_UNCLAIMED; 7736 7737 mutex_enter(&pm_cfb_lock); 7738 if (pm_soft_pending) { 7739 mutex_exit(&pm_cfb_lock); 7740 debug_enter((char *)NULL); 7741 /* acquired in debug_enter before calling pm_cfb_trigger */ 7742 pm_cfb_rele(); 7743 mutex_enter(&pm_cfb_lock); 7744 pm_soft_pending = B_FALSE; 7745 mutex_exit(&pm_cfb_lock); 7746 rval = DDI_INTR_CLAIMED; 7747 } else 7748 mutex_exit(&pm_cfb_lock); 7749 7750 return (rval); 7751 } 7752 7753 void 7754 pm_cfb_setup_intr(void) 7755 { 7756 PMD_FUNC(pmf, "cfb_setup_intr") 7757 extern void prom_set_outfuncs(void (*)(void), void (*)(void)); 7758 void pm_cfb_check_and_powerup(void); 7759 7760 mutex_init(&pm_cfb_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8)); 7761 #ifdef PMDDEBUG 7762 mutex_init(&pm_debug_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8)); 7763 #endif 7764 7765 if (!stdout_is_framebuffer) { 7766 PMD(PMD_CFB, ("%s: console not fb\n", pmf)) 7767 return; 7768 } 7769 7770 /* 7771 * setup software interrupt handler 7772 */ 7773 if (ddi_add_softintr(ddi_root_node(), DDI_SOFTINT_HIGH, &pm_soft_id, 7774 NULL, NULL, pm_cfb_softint, NULL) != DDI_SUCCESS) 7775 panic("pm: unable to register soft intr."); 7776 7777 prom_set_outfuncs(pm_cfb_check_and_powerup, pm_cfb_rele); 7778 } 7779 7780 /* 7781 * Checks to see if it is safe to write to the console wrt power management 7782 * (i.e. if the console is a framebuffer, then it must be at full power) 7783 * returns 1 when power is off (power-up is needed) 7784 * returns 0 when power is on (power-up not needed) 7785 */ 7786 int 7787 pm_cfb_check_and_hold(void) 7788 { 7789 /* 7790 * cfb_dip is set iff console is a power manageable frame buffer 7791 * device 7792 */ 7793 extern int modrootloaded; 7794 7795 mutex_enter(&pm_cfb_lock); 7796 cfb_inuse++; 7797 ASSERT(cfb_inuse); /* wrap? */ 7798 if (modrootloaded && cfb_dip) { 7799 /* 7800 * don't power down the frame buffer, the prom is using it 7801 */ 7802 if (pm_cfb_comps_off) { 7803 mutex_exit(&pm_cfb_lock); 7804 return (1); 7805 } 7806 } 7807 mutex_exit(&pm_cfb_lock); 7808 return (0); 7809 } 7810 7811 /* 7812 * turn on cfb power (which is known to be off). 7813 * Must be called below lock level! 7814 */ 7815 void 7816 pm_cfb_powerup(void) 7817 { 7818 pm_info_t *info; 7819 int norm; 7820 int ccount, ci; 7821 int unused; 7822 #ifdef DEBUG 7823 /* 7824 * Can't reenter prom_prekern, so suppress pm debug messages 7825 * (still go to circular buffer). 7826 */ 7827 mutex_enter(&pm_debug_lock); 7828 pm_divertdebug++; 7829 mutex_exit(&pm_debug_lock); 7830 #endif 7831 info = PM_GET_PM_INFO(cfb_dip); 7832 ASSERT(info); 7833 7834 ccount = PM_NUMCMPTS(cfb_dip); 7835 for (ci = 0; ci < ccount; ci++) { 7836 norm = pm_get_normal_power(cfb_dip, ci); 7837 (void) pm_set_power(cfb_dip, ci, norm, PM_LEVEL_UPONLY, 7838 PM_CANBLOCK_BYPASS, 0, &unused); 7839 } 7840 #ifdef DEBUG 7841 mutex_enter(&pm_debug_lock); 7842 pm_divertdebug--; 7843 mutex_exit(&pm_debug_lock); 7844 #endif 7845 } 7846 7847 /* 7848 * Check if the console framebuffer is powered up. If not power it up. 7849 * Note: Calling pm_cfb_check_and_hold has put a hold on the power state which 7850 * must be released by calling pm_cfb_rele when the console fb operation 7851 * is completed. 7852 */ 7853 void 7854 pm_cfb_check_and_powerup(void) 7855 { 7856 if (pm_cfb_check_and_hold()) 7857 pm_cfb_powerup(); 7858 } 7859 7860 /* 7861 * Trigger a low level interrupt to power up console frame buffer. 7862 */ 7863 void 7864 pm_cfb_trigger(void) 7865 { 7866 if (cfb_dip == NULL) 7867 return; 7868 7869 mutex_enter(&pm_cfb_lock); 7870 /* 7871 * If the machine appears to be hung, pulling the keyboard connector of 7872 * the console will cause a high level interrupt and go to debug_enter. 7873 * But, if the fb is powered down, this routine will be called to bring 7874 * it up (by generating a softint to do the work). If a second attempt 7875 * at triggering this softint happens before the first one completes, 7876 * we panic as softints are most likely not being handled. 7877 */ 7878 if (pm_soft_pending) { 7879 panicstr = "pm_cfb_trigger: failed to enter the debugger"; 7880 panic(panicstr); /* does a power up at any intr level */ 7881 /* NOTREACHED */ 7882 } 7883 pm_soft_pending = B_TRUE; 7884 mutex_exit(&pm_cfb_lock); 7885 ddi_trigger_softintr(pm_soft_id); 7886 } 7887 7888 static major_t i_path_to_major(char *, char *); 7889 7890 major_t 7891 pm_path_to_major(char *path) 7892 { 7893 PMD_FUNC(pmf, "path_to_major") 7894 char *np, *ap, *bp; 7895 major_t ret; 7896 size_t len; 7897 7898 PMD(PMD_NOINVOL, ("%s: %s\n", pmf, path)) 7899 7900 np = strrchr(path, '/'); 7901 if (np != NULL) 7902 np++; 7903 else 7904 np = path; 7905 len = strlen(np) + 1; 7906 bp = kmem_alloc(len, KM_SLEEP); 7907 (void) strcpy(bp, np); 7908 if ((ap = strchr(bp, '@')) != NULL) { 7909 *ap = '\0'; 7910 } 7911 PMD(PMD_NOINVOL, ("%s: %d\n", pmf, ddi_name_to_major(np))) 7912 ret = i_path_to_major(path, np); 7913 kmem_free(bp, len); 7914 return (ret); 7915 } 7916 7917 #ifdef DEBUG 7918 #ifndef sparc 7919 clock_t pt_sleep = 1; 7920 #endif 7921 7922 char *pm_msgp; 7923 char *pm_bufend; 7924 char *pm_msgbuf = NULL; 7925 int pm_logpages = 0x100; 7926 #include <sys/sunldi.h> 7927 #include <sys/uio.h> 7928 clock_t pm_log_sleep = 1000; 7929 int pm_extra_cr = 1; 7930 volatile int pm_tty = 1; 7931 7932 #define PMLOGPGS pm_logpages 7933 7934 #if defined(__x86) 7935 void pm_printf(char *s); 7936 #endif 7937 7938 /*PRINTFLIKE1*/ 7939 void 7940 pm_log(const char *fmt, ...) 7941 { 7942 va_list adx; 7943 size_t size; 7944 7945 mutex_enter(&pm_debug_lock); 7946 if (pm_msgbuf == NULL) { 7947 pm_msgbuf = kmem_zalloc(mmu_ptob(PMLOGPGS), KM_SLEEP); 7948 pm_bufend = pm_msgbuf + mmu_ptob(PMLOGPGS) - 1; 7949 pm_msgp = pm_msgbuf; 7950 } 7951 va_start(adx, fmt); 7952 size = vsnprintf(NULL, 0, fmt, adx) + 1; 7953 va_end(adx); 7954 va_start(adx, fmt); 7955 if (size > (pm_bufend - pm_msgp)) { /* wraps */ 7956 bzero(pm_msgp, pm_bufend - pm_msgp); 7957 (void) vsnprintf(pm_msgbuf, size, fmt, adx); 7958 if (!pm_divertdebug) 7959 prom_printf("%s", pm_msgp); 7960 #if defined(__x86) 7961 if (pm_tty) { 7962 pm_printf(pm_msgp); 7963 if (pm_extra_cr) 7964 pm_printf("\r"); 7965 } 7966 #endif 7967 pm_msgp = pm_msgbuf + size; 7968 } else { 7969 (void) vsnprintf(pm_msgp, size, fmt, adx); 7970 #if defined(__x86) 7971 if (pm_tty) { 7972 pm_printf(pm_msgp); 7973 if (pm_extra_cr) 7974 pm_printf("\r"); 7975 } 7976 #endif 7977 if (!pm_divertdebug) 7978 prom_printf("%s", pm_msgp); 7979 pm_msgp += size; 7980 } 7981 va_end(adx); 7982 mutex_exit(&pm_debug_lock); 7983 drv_usecwait((clock_t)pm_log_sleep); 7984 } 7985 #endif /* DEBUG */ 7986 7987 /* 7988 * We want to save the state of any directly pm'd devices over the suspend/ 7989 * resume process so that we can put them back the way the controlling 7990 * process left them. 7991 */ 7992 void 7993 pm_save_direct_levels(void) 7994 { 7995 pm_processes_stopped = 1; 7996 ddi_walk_devs(ddi_root_node(), pm_save_direct_lvl_walk, 0); 7997 } 7998 7999 static int 8000 pm_save_direct_lvl_walk(dev_info_t *dip, void *arg) 8001 { 8002 _NOTE(ARGUNUSED(arg)) 8003 int i; 8004 int *ip; 8005 pm_info_t *info = PM_GET_PM_INFO(dip); 8006 8007 if (!info) 8008 return (DDI_WALK_CONTINUE); 8009 8010 if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) { 8011 if (PM_NUMCMPTS(dip) > 2) { 8012 info->pmi_lp = kmem_alloc(PM_NUMCMPTS(dip) * 8013 sizeof (int), KM_SLEEP); 8014 ip = info->pmi_lp; 8015 } else { 8016 ip = info->pmi_levels; 8017 } 8018 /* autopm and processes are stopped, ok not to lock power */ 8019 for (i = 0; i < PM_NUMCMPTS(dip); i++) 8020 *ip++ = PM_CURPOWER(dip, i); 8021 /* 8022 * There is a small window between stopping the 8023 * processes and setting pm_processes_stopped where 8024 * a driver could get hung up in a pm_raise_power() 8025 * call. Free any such driver now. 8026 */ 8027 pm_proceed(dip, PMP_RELEASE, -1, -1); 8028 } 8029 8030 return (DDI_WALK_CONTINUE); 8031 } 8032 8033 void 8034 pm_restore_direct_levels(void) 8035 { 8036 /* 8037 * If cpr didn't call pm_save_direct_levels, (because stopping user 8038 * threads failed) then we don't want to try to restore them 8039 */ 8040 if (!pm_processes_stopped) 8041 return; 8042 8043 ddi_walk_devs(ddi_root_node(), pm_restore_direct_lvl_walk, 0); 8044 pm_processes_stopped = 0; 8045 } 8046 8047 static int 8048 pm_restore_direct_lvl_walk(dev_info_t *dip, void *arg) 8049 { 8050 _NOTE(ARGUNUSED(arg)) 8051 PMD_FUNC(pmf, "restore_direct_lvl_walk") 8052 int i, nc, result; 8053 int *ip; 8054 8055 pm_info_t *info = PM_GET_PM_INFO(dip); 8056 if (!info) 8057 return (DDI_WALK_CONTINUE); 8058 8059 if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) { 8060 if ((nc = PM_NUMCMPTS(dip)) > 2) { 8061 ip = &info->pmi_lp[nc - 1]; 8062 } else { 8063 ip = &info->pmi_levels[nc - 1]; 8064 } 8065 /* 8066 * Because fb drivers fail attempts to turn off the 8067 * fb when the monitor is on, but treat a request to 8068 * turn on the monitor as a request to turn on the 8069 * fb too, we process components in descending order 8070 * Because autopm is disabled and processes aren't 8071 * running, it is ok to examine current power outside 8072 * of the power lock 8073 */ 8074 for (i = nc - 1; i >= 0; i--, ip--) { 8075 if (PM_CURPOWER(dip, i) == *ip) 8076 continue; 8077 if (pm_set_power(dip, i, *ip, PM_LEVEL_EXACT, 8078 PM_CANBLOCK_BYPASS, 0, &result) != DDI_SUCCESS) { 8079 cmn_err(CE_WARN, "cpr: unable " 8080 "to restore power level of " 8081 "component %d of directly " 8082 "power manged device %s@%s" 8083 " to %d", 8084 i, PM_NAME(dip), 8085 PM_ADDR(dip), *ip); 8086 PMD(PMD_FAIL, ("%s: failed to restore " 8087 "%s@%s(%s#%d)[%d] exact(%d)->%d, " 8088 "errno %d\n", pmf, PM_DEVICE(dip), i, 8089 PM_CURPOWER(dip, i), *ip, result)) 8090 } 8091 } 8092 if (nc > 2) { 8093 kmem_free(info->pmi_lp, nc * sizeof (int)); 8094 info->pmi_lp = NULL; 8095 } 8096 } 8097 return (DDI_WALK_CONTINUE); 8098 } 8099 8100 /* 8101 * Stolen from the bootdev module 8102 * attempt to convert a path to a major number 8103 */ 8104 static major_t 8105 i_path_to_major(char *path, char *leaf_name) 8106 { 8107 extern major_t path_to_major(char *pathname); 8108 major_t maj; 8109 8110 if ((maj = path_to_major(path)) == DDI_MAJOR_T_NONE) { 8111 maj = ddi_name_to_major(leaf_name); 8112 } 8113 8114 return (maj); 8115 } 8116 8117 static void i_pm_driver_removed(major_t major); 8118 8119 /* 8120 * When user calls rem_drv, we need to forget no-involuntary-power-cycles state 8121 * An entry in the list means that the device is detached, so we need to 8122 * adjust its ancestors as if they had just seen this attach, and any detached 8123 * ancestors need to have their list entries adjusted. 8124 */ 8125 void 8126 pm_driver_removed(major_t major) 8127 { 8128 8129 /* 8130 * Serialize removal of drivers. This is to keep ancestors of 8131 * a node that is being deleted from getting deleted and added back 8132 * with different counters. 8133 */ 8134 mutex_enter(&pm_remdrv_lock); 8135 i_pm_driver_removed(major); 8136 mutex_exit(&pm_remdrv_lock); 8137 } 8138 8139 static void adjust_ancestors(char *, int); 8140 static int pm_is_noinvol_ancestor(pm_noinvol_t *); 8141 static void pm_noinvol_process_ancestors(char *); 8142 8143 /* 8144 * This routine is called recursively by pm_noinvol_process_ancestors() 8145 */ 8146 static void 8147 i_pm_driver_removed(major_t major) 8148 { 8149 PMD_FUNC(pmf, "driver_removed") 8150 pm_noinvol_t *ip, *pp = NULL; 8151 int wasvolpmd; 8152 ASSERT(major != DDI_MAJOR_T_NONE); 8153 PMD(PMD_NOINVOL, ("%s: %s\n", pmf, ddi_major_to_name(major))) 8154 again: 8155 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 8156 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 8157 if (major != ip->ni_major) 8158 continue; 8159 /* 8160 * If it is an ancestor of no-invol node, which is 8161 * not removed, skip it. This is to cover the case of 8162 * ancestor removed without removing its descendants. 8163 */ 8164 if (pm_is_noinvol_ancestor(ip)) { 8165 ip->ni_flags |= PMC_DRIVER_REMOVED; 8166 continue; 8167 } 8168 wasvolpmd = ip->ni_wasvolpmd; 8169 /* 8170 * remove the entry from the list 8171 */ 8172 if (pp) { 8173 PMD(PMD_NOINVOL, ("%s: freeing %s, prev is %s\n", 8174 pmf, ip->ni_path, pp->ni_path)) 8175 pp->ni_next = ip->ni_next; 8176 } else { 8177 PMD(PMD_NOINVOL, ("%s: free %s head\n", pmf, 8178 ip->ni_path)) 8179 ASSERT(pm_noinvol_head == ip); 8180 pm_noinvol_head = ip->ni_next; 8181 } 8182 rw_exit(&pm_noinvol_rwlock); 8183 adjust_ancestors(ip->ni_path, wasvolpmd); 8184 /* 8185 * Had an ancestor been removed before this node, it would have 8186 * been skipped. Adjust the no-invol counters for such skipped 8187 * ancestors. 8188 */ 8189 pm_noinvol_process_ancestors(ip->ni_path); 8190 kmem_free(ip->ni_path, ip->ni_size); 8191 kmem_free(ip, sizeof (*ip)); 8192 goto again; 8193 } 8194 rw_exit(&pm_noinvol_rwlock); 8195 } 8196 8197 /* 8198 * returns 1, if *aip is a ancestor of a no-invol node 8199 * 0, otherwise 8200 */ 8201 static int 8202 pm_is_noinvol_ancestor(pm_noinvol_t *aip) 8203 { 8204 pm_noinvol_t *ip; 8205 8206 ASSERT(strlen(aip->ni_path) != 0); 8207 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 8208 if (ip == aip) 8209 continue; 8210 /* 8211 * To be an ancestor, the path must be an initial substring of 8212 * the descendent, and end just before a '/' in the 8213 * descendent's path. 8214 */ 8215 if ((strstr(ip->ni_path, aip->ni_path) == ip->ni_path) && 8216 (ip->ni_path[strlen(aip->ni_path)] == '/')) 8217 return (1); 8218 } 8219 return (0); 8220 } 8221 8222 /* 8223 * scan through the pm_noinvolpm list adjusting ancestors of the current 8224 * node; Modifies string *path. 8225 */ 8226 static void 8227 adjust_ancestors(char *path, int wasvolpmd) 8228 { 8229 PMD_FUNC(pmf, "adjust_ancestors") 8230 char *cp; 8231 pm_noinvol_t *lp; 8232 pm_noinvol_t *pp = NULL; 8233 major_t locked = DDI_MAJOR_T_NONE; 8234 dev_info_t *dip; 8235 char *pathbuf; 8236 size_t pathbuflen = strlen(path) + 1; 8237 8238 /* 8239 * First we look up the ancestor's dip. If we find it, then we 8240 * adjust counts up the tree 8241 */ 8242 PMD(PMD_NOINVOL, ("%s: %s wasvolpmd %d\n", pmf, path, wasvolpmd)) 8243 pathbuf = kmem_alloc(pathbuflen, KM_SLEEP); 8244 (void) strcpy(pathbuf, path); 8245 cp = strrchr(pathbuf, '/'); 8246 if (cp == NULL) { 8247 /* if no ancestors, then nothing to do */ 8248 kmem_free(pathbuf, pathbuflen); 8249 return; 8250 } 8251 *cp = '\0'; 8252 dip = pm_name_to_dip(pathbuf, 1); 8253 if (dip != NULL) { 8254 locked = PM_MAJOR(dip); 8255 8256 (void) pm_noinvol_update(PM_BP_NOINVOL_REMDRV, 0, wasvolpmd, 8257 path, dip); 8258 8259 if (locked != DDI_MAJOR_T_NONE) 8260 ddi_release_devi(dip); 8261 } else { 8262 char *apath; 8263 size_t len = strlen(pathbuf) + 1; 8264 int lock_held = 1; 8265 8266 /* 8267 * Now check for ancestors that exist only in the list 8268 */ 8269 apath = kmem_alloc(len, KM_SLEEP); 8270 (void) strcpy(apath, pathbuf); 8271 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 8272 for (lp = pm_noinvol_head; lp; pp = lp, lp = lp->ni_next) { 8273 /* 8274 * This can only happen once. Since we have to drop 8275 * the lock, we need to extract the relevant info. 8276 */ 8277 if (strcmp(pathbuf, lp->ni_path) == 0) { 8278 PMD(PMD_NOINVOL, ("%s: %s no %d -> %d\n", pmf, 8279 lp->ni_path, lp->ni_noinvolpm, 8280 lp->ni_noinvolpm - 1)) 8281 lp->ni_noinvolpm--; 8282 if (wasvolpmd && lp->ni_volpmd) { 8283 PMD(PMD_NOINVOL, ("%s: %s vol %d -> " 8284 "%d\n", pmf, lp->ni_path, 8285 lp->ni_volpmd, lp->ni_volpmd - 1)) 8286 lp->ni_volpmd--; 8287 } 8288 /* 8289 * remove the entry from the list, if there 8290 * are no more no-invol descendants and node 8291 * itself is not a no-invol node. 8292 */ 8293 if (!(lp->ni_noinvolpm || 8294 (lp->ni_flags & PMC_NO_INVOL))) { 8295 ASSERT(lp->ni_volpmd == 0); 8296 if (pp) { 8297 PMD(PMD_NOINVOL, ("%s: freeing " 8298 "%s, prev is %s\n", pmf, 8299 lp->ni_path, pp->ni_path)) 8300 pp->ni_next = lp->ni_next; 8301 } else { 8302 PMD(PMD_NOINVOL, ("%s: free %s " 8303 "head\n", pmf, lp->ni_path)) 8304 ASSERT(pm_noinvol_head == lp); 8305 pm_noinvol_head = lp->ni_next; 8306 } 8307 lock_held = 0; 8308 rw_exit(&pm_noinvol_rwlock); 8309 adjust_ancestors(apath, wasvolpmd); 8310 /* restore apath */ 8311 (void) strcpy(apath, pathbuf); 8312 kmem_free(lp->ni_path, lp->ni_size); 8313 kmem_free(lp, sizeof (*lp)); 8314 } 8315 break; 8316 } 8317 } 8318 if (lock_held) 8319 rw_exit(&pm_noinvol_rwlock); 8320 adjust_ancestors(apath, wasvolpmd); 8321 kmem_free(apath, len); 8322 } 8323 kmem_free(pathbuf, pathbuflen); 8324 } 8325 8326 /* 8327 * Do no-invol processing for any ancestors i.e. adjust counters of ancestors, 8328 * which were skipped even though their drivers were removed. 8329 */ 8330 static void 8331 pm_noinvol_process_ancestors(char *path) 8332 { 8333 pm_noinvol_t *lp; 8334 8335 rw_enter(&pm_noinvol_rwlock, RW_READER); 8336 for (lp = pm_noinvol_head; lp; lp = lp->ni_next) { 8337 if (strstr(path, lp->ni_path) && 8338 (lp->ni_flags & PMC_DRIVER_REMOVED)) { 8339 rw_exit(&pm_noinvol_rwlock); 8340 i_pm_driver_removed(lp->ni_major); 8341 return; 8342 } 8343 } 8344 rw_exit(&pm_noinvol_rwlock); 8345 } 8346 8347 /* 8348 * Returns true if (detached) device needs to be kept up because it exported the 8349 * "no-involuntary-power-cycles" property or we're pretending it did (console 8350 * fb case) or it is an ancestor of such a device and has used up the "one 8351 * free cycle" allowed when all such leaf nodes have voluntarily powered down 8352 * upon detach. In any event, we need an exact hit on the path or we return 8353 * false. 8354 */ 8355 int 8356 pm_noinvol_detached(char *path) 8357 { 8358 PMD_FUNC(pmf, "noinvol_detached") 8359 pm_noinvol_t *ip; 8360 int ret = 0; 8361 8362 rw_enter(&pm_noinvol_rwlock, RW_READER); 8363 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 8364 if (strcmp(path, ip->ni_path) == 0) { 8365 if (ip->ni_flags & PMC_CONSOLE_FB) { 8366 PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB " 8367 "%s\n", pmf, path)) 8368 ret = 1; 8369 break; 8370 } 8371 #ifdef DEBUG 8372 if (ip->ni_noinvolpm != ip->ni_volpmd) 8373 PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s" 8374 "\n", pmf, ip->ni_noinvolpm, ip->ni_volpmd, 8375 path)) 8376 #endif 8377 ret = (ip->ni_noinvolpm != ip->ni_volpmd); 8378 break; 8379 } 8380 } 8381 rw_exit(&pm_noinvol_rwlock); 8382 return (ret); 8383 } 8384 8385 int 8386 pm_is_cfb(dev_info_t *dip) 8387 { 8388 return (dip == cfb_dip); 8389 } 8390 8391 #ifdef DEBUG 8392 /* 8393 * Return true if all components of the console frame buffer are at 8394 * "normal" power, i.e., fully on. For the case where the console is not 8395 * a framebuffer, we also return true 8396 */ 8397 int 8398 pm_cfb_is_up(void) 8399 { 8400 return (pm_cfb_comps_off == 0); 8401 } 8402 #endif 8403 8404 /* 8405 * Preventing scan from powering down the node by incrementing the 8406 * kidsupcnt. 8407 */ 8408 void 8409 pm_hold_power(dev_info_t *dip) 8410 { 8411 e_pm_hold_rele_power(dip, 1); 8412 } 8413 8414 /* 8415 * Releasing the hold by decrementing the kidsupcnt allowing scan 8416 * to power down the node if all conditions are met. 8417 */ 8418 void 8419 pm_rele_power(dev_info_t *dip) 8420 { 8421 e_pm_hold_rele_power(dip, -1); 8422 } 8423 8424 /* 8425 * A wrapper of pm_all_to_normal() to power up a dip 8426 * to its normal level 8427 */ 8428 int 8429 pm_powerup(dev_info_t *dip) 8430 { 8431 PMD_FUNC(pmf, "pm_powerup") 8432 8433 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 8434 ASSERT(!(servicing_interrupt())); 8435 8436 /* 8437 * in case this node is not already participating pm 8438 */ 8439 if (!PM_GET_PM_INFO(dip)) { 8440 if (!DEVI_IS_ATTACHING(dip)) 8441 return (DDI_SUCCESS); 8442 if (pm_start(dip) != DDI_SUCCESS) 8443 return (DDI_FAILURE); 8444 if (!PM_GET_PM_INFO(dip)) 8445 return (DDI_SUCCESS); 8446 } 8447 8448 return (pm_all_to_normal(dip, PM_CANBLOCK_BLOCK)); 8449 } 8450 8451 int 8452 pm_rescan_walk(dev_info_t *dip, void *arg) 8453 { 8454 _NOTE(ARGUNUSED(arg)) 8455 8456 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip)) 8457 return (DDI_WALK_CONTINUE); 8458 8459 /* 8460 * Currently pm_cpr_callb/resume code is the only caller 8461 * and it needs to make sure that stopped scan get 8462 * reactivated. Otherwise, rescan walk needn't reactive 8463 * stopped scan. 8464 */ 8465 pm_scan_init(dip); 8466 8467 (void) pm_rescan(dip); 8468 return (DDI_WALK_CONTINUE); 8469 } 8470 8471 static dev_info_t * 8472 pm_get_next_descendent(dev_info_t *dip, dev_info_t *tdip) 8473 { 8474 dev_info_t *wdip, *pdip; 8475 8476 for (wdip = tdip; wdip != dip; wdip = pdip) { 8477 pdip = ddi_get_parent(wdip); 8478 if (pdip == dip) 8479 return (wdip); 8480 } 8481 return (NULL); 8482 } 8483 8484 int 8485 pm_busop_bus_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op, 8486 void *arg, void *result) 8487 { 8488 PMD_FUNC(pmf, "bp_bus_power") 8489 dev_info_t *cdip; 8490 pm_info_t *cinfo; 8491 pm_bp_child_pwrchg_t *bpc; 8492 pm_sp_misc_t *pspm; 8493 pm_bp_nexus_pwrup_t *bpn; 8494 pm_bp_child_pwrchg_t new_bpc; 8495 pm_bp_noinvol_t *bpi; 8496 dev_info_t *tdip; 8497 char *pathbuf; 8498 int ret = DDI_SUCCESS; 8499 int errno = 0; 8500 pm_component_t *cp; 8501 8502 PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip), 8503 pm_decode_op(op))) 8504 switch (op) { 8505 case BUS_POWER_CHILD_PWRCHG: 8506 bpc = (pm_bp_child_pwrchg_t *)arg; 8507 pspm = (pm_sp_misc_t *)bpc->bpc_private; 8508 tdip = bpc->bpc_dip; 8509 cdip = pm_get_next_descendent(dip, tdip); 8510 cinfo = PM_GET_PM_INFO(cdip); 8511 if (cdip != tdip) { 8512 /* 8513 * If the node is an involved parent, it needs to 8514 * power up the node as it is needed. There is nothing 8515 * else the framework can do here. 8516 */ 8517 if (PM_WANTS_NOTIFICATION(cdip)) { 8518 PMD(PMD_SET, ("%s: call bus_power for " 8519 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(cdip))) 8520 return ((*PM_BUS_POWER_FUNC(cdip))(cdip, 8521 impl_arg, op, arg, result)); 8522 } 8523 ASSERT(pspm->pspm_direction == PM_LEVEL_UPONLY || 8524 pspm->pspm_direction == PM_LEVEL_DOWNONLY || 8525 pspm->pspm_direction == PM_LEVEL_EXACT); 8526 /* 8527 * we presume that the parent needs to be up in 8528 * order for the child to change state (either 8529 * because it must already be on if the child is on 8530 * (and the pm_all_to_normal_nexus() will be a nop) 8531 * or because it will need to be on for the child 8532 * to come on; so we make the call regardless 8533 */ 8534 pm_hold_power(cdip); 8535 if (cinfo) { 8536 pm_canblock_t canblock = pspm->pspm_canblock; 8537 ret = pm_all_to_normal_nexus(cdip, canblock); 8538 if (ret != DDI_SUCCESS) { 8539 pm_rele_power(cdip); 8540 return (ret); 8541 } 8542 } 8543 PMD(PMD_SET, ("%s: walk down to %s@%s(%s#%d)\n", pmf, 8544 PM_DEVICE(cdip))) 8545 ret = pm_busop_bus_power(cdip, impl_arg, op, arg, 8546 result); 8547 pm_rele_power(cdip); 8548 } else { 8549 ret = pm_busop_set_power(cdip, impl_arg, op, arg, 8550 result); 8551 } 8552 return (ret); 8553 8554 case BUS_POWER_NEXUS_PWRUP: 8555 bpn = (pm_bp_nexus_pwrup_t *)arg; 8556 pspm = (pm_sp_misc_t *)bpn->bpn_private; 8557 8558 if (!e_pm_valid_info(dip, NULL) || 8559 !e_pm_valid_comp(dip, bpn->bpn_comp, &cp) || 8560 !e_pm_valid_power(dip, bpn->bpn_comp, bpn->bpn_level)) { 8561 PMD(PMD_SET, ("%s: %s@%s(%s#%d) has no pm info; EIO\n", 8562 pmf, PM_DEVICE(dip))) 8563 *pspm->pspm_errnop = EIO; 8564 *(int *)result = DDI_FAILURE; 8565 return (DDI_FAILURE); 8566 } 8567 8568 ASSERT(bpn->bpn_dip == dip); 8569 PMD(PMD_SET, ("%s: nexus powerup for %s@%s(%s#%d)\n", pmf, 8570 PM_DEVICE(dip))) 8571 new_bpc.bpc_dip = dip; 8572 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8573 new_bpc.bpc_path = ddi_pathname(dip, pathbuf); 8574 new_bpc.bpc_comp = bpn->bpn_comp; 8575 new_bpc.bpc_olevel = PM_CURPOWER(dip, bpn->bpn_comp); 8576 new_bpc.bpc_nlevel = bpn->bpn_level; 8577 new_bpc.bpc_private = bpn->bpn_private; 8578 ((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_direction = 8579 PM_LEVEL_UPONLY; 8580 ((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_errnop = 8581 &errno; 8582 ret = pm_busop_set_power(dip, impl_arg, BUS_POWER_CHILD_PWRCHG, 8583 (void *)&new_bpc, result); 8584 kmem_free(pathbuf, MAXPATHLEN); 8585 return (ret); 8586 8587 case BUS_POWER_NOINVOL: 8588 bpi = (pm_bp_noinvol_t *)arg; 8589 tdip = bpi->bpni_dip; 8590 cdip = pm_get_next_descendent(dip, tdip); 8591 8592 /* In case of rem_drv, the leaf node has been removed */ 8593 if (cdip == NULL) 8594 return (DDI_SUCCESS); 8595 8596 cinfo = PM_GET_PM_INFO(cdip); 8597 if (cdip != tdip) { 8598 if (PM_WANTS_NOTIFICATION(cdip)) { 8599 PMD(PMD_NOINVOL, 8600 ("%s: call bus_power for %s@%s(%s#%d)\n", 8601 pmf, PM_DEVICE(cdip))) 8602 ret = (*PM_BUS_POWER_FUNC(cdip)) 8603 (cdip, NULL, op, arg, result); 8604 if ((cinfo) && (ret == DDI_SUCCESS)) 8605 (void) pm_noinvol_update_node(cdip, 8606 bpi); 8607 return (ret); 8608 } else { 8609 PMD(PMD_NOINVOL, 8610 ("%s: walk down to %s@%s(%s#%d)\n", pmf, 8611 PM_DEVICE(cdip))) 8612 ret = pm_busop_bus_power(cdip, NULL, op, 8613 arg, result); 8614 /* 8615 * Update the current node. 8616 */ 8617 if ((cinfo) && (ret == DDI_SUCCESS)) 8618 (void) pm_noinvol_update_node(cdip, 8619 bpi); 8620 return (ret); 8621 } 8622 } else { 8623 /* 8624 * For attach, detach, power up: 8625 * Do nothing for leaf node since its 8626 * counts are already updated. 8627 * For CFB and driver removal, since the 8628 * path and the target dip passed in is up to and incl. 8629 * the immediate ancestor, need to do the update. 8630 */ 8631 PMD(PMD_NOINVOL, ("%s: target %s@%s(%s#%d) is " 8632 "reached\n", pmf, PM_DEVICE(cdip))) 8633 if (cinfo && ((bpi->bpni_cmd == PM_BP_NOINVOL_REMDRV) || 8634 (bpi->bpni_cmd == PM_BP_NOINVOL_CFB))) 8635 (void) pm_noinvol_update_node(cdip, bpi); 8636 return (DDI_SUCCESS); 8637 } 8638 8639 default: 8640 PMD(PMD_SET, ("%s: operation %d is not supported!\n", pmf, op)) 8641 return (DDI_FAILURE); 8642 } 8643 } 8644 8645 static int 8646 pm_busop_set_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op, 8647 void *arg, void *resultp) 8648 { 8649 _NOTE(ARGUNUSED(impl_arg)) 8650 PMD_FUNC(pmf, "bp_set_power") 8651 pm_ppm_devlist_t *devl = NULL; 8652 int clevel, circ; 8653 #ifdef DEBUG 8654 int circ_db, ccirc_db; 8655 #endif 8656 int ret = DDI_SUCCESS; 8657 dev_info_t *cdip; 8658 pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg; 8659 pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private; 8660 pm_canblock_t canblock = pspm->pspm_canblock; 8661 int scan = pspm->pspm_scan; 8662 int comp = bpc->bpc_comp; 8663 int olevel = bpc->bpc_olevel; 8664 int nlevel = bpc->bpc_nlevel; 8665 int comps_off_incr = 0; 8666 dev_info_t *pdip = ddi_get_parent(dip); 8667 int dodeps; 8668 int direction = pspm->pspm_direction; 8669 int *errnop = pspm->pspm_errnop; 8670 #ifdef PMDDEBUG 8671 char *dir = pm_decode_direction(direction); 8672 #endif 8673 int *iresp = (int *)resultp; 8674 time_t idletime, thresh; 8675 pm_component_t *cp = PM_CP(dip, comp); 8676 int work_type; 8677 8678 *iresp = DDI_SUCCESS; 8679 *errnop = 0; 8680 ASSERT(op == BUS_POWER_CHILD_PWRCHG); 8681 PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip), 8682 pm_decode_op(op))) 8683 8684 /* 8685 * The following set of conditions indicate we are here to handle a 8686 * driver's pm_[raise|lower]_power request, but the device is being 8687 * power managed (PM_DIRECT_PM) by a user process. For that case 8688 * we want to pm_block and pass a status back to the caller based 8689 * on whether the controlling process's next activity on the device 8690 * matches the current request or not. This distinction tells 8691 * downstream functions to avoid calling into a driver or changing 8692 * the framework's power state. To actually block, we need: 8693 * 8694 * PM_ISDIRECT(dip) 8695 * no reason to block unless a process is directly controlling dev 8696 * direction != PM_LEVEL_EXACT 8697 * EXACT is used by controlling proc's PM_SET_CURRENT_POWER ioctl 8698 * !pm_processes_stopped 8699 * don't block if controlling proc already be stopped for cpr 8700 * canblock != PM_CANBLOCK_BYPASS 8701 * our caller must not have explicitly prevented blocking 8702 */ 8703 if (direction != PM_LEVEL_EXACT && canblock != PM_CANBLOCK_BYPASS) { 8704 PM_LOCK_DIP(dip); 8705 while (PM_ISDIRECT(dip) && !pm_processes_stopped) { 8706 /* releases dip lock */ 8707 ret = pm_busop_match_request(dip, bpc); 8708 if (ret == EAGAIN) { 8709 PM_LOCK_DIP(dip); 8710 continue; 8711 } 8712 return (*iresp = ret); 8713 } 8714 PM_UNLOCK_DIP(dip); 8715 } 8716 /* BC device is never scanned, so power will stick until we are done */ 8717 if (PM_ISBC(dip) && comp != 0 && nlevel != 0 && 8718 direction != PM_LEVEL_DOWNONLY) { 8719 int nrmpwr0 = pm_get_normal_power(dip, 0); 8720 if (pm_set_power(dip, 0, nrmpwr0, direction, 8721 canblock, 0, resultp) != DDI_SUCCESS) { 8722 /* *resultp set by pm_set_power */ 8723 return (DDI_FAILURE); 8724 } 8725 } 8726 if (PM_WANTS_NOTIFICATION(pdip)) { 8727 PMD(PMD_SET, ("%s: pre_notify %s@%s(%s#%d) for child " 8728 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(pdip), PM_DEVICE(dip))) 8729 ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 8730 BUS_POWER_PRE_NOTIFICATION, bpc, resultp); 8731 if (ret != DDI_SUCCESS) { 8732 PMD(PMD_SET, ("%s: failed to pre_notify %s@%s(%s#%d)\n", 8733 pmf, PM_DEVICE(pdip))) 8734 return (DDI_FAILURE); 8735 } 8736 } else { 8737 /* 8738 * Since we don't know what the actual power level is, 8739 * we place a power hold on the parent no matter what 8740 * component and level is changing. 8741 */ 8742 pm_hold_power(pdip); 8743 } 8744 PM_LOCK_POWER(dip, &circ); 8745 clevel = PM_CURPOWER(dip, comp); 8746 /* 8747 * It's possible that a call was made to pm_update_maxpower() 8748 * on another thread before we took the lock above. So, we need to 8749 * make sure that this request isn't processed after the 8750 * change of power executed on behalf of pm_update_maxpower(). 8751 */ 8752 if (nlevel > pm_get_normal_power(dip, comp)) { 8753 PMD(PMD_SET, ("%s: requested level is higher than normal.\n", 8754 pmf)) 8755 ret = DDI_FAILURE; 8756 *iresp = DDI_FAILURE; 8757 goto post_notify; 8758 } 8759 PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, olvl=%d, nlvl=%d, clvl=%d, " 8760 "dir=%s\n", pmf, PM_DEVICE(dip), comp, bpc->bpc_olevel, nlevel, 8761 clevel, dir)) 8762 switch (direction) { 8763 case PM_LEVEL_UPONLY: 8764 /* Powering up */ 8765 if (clevel >= nlevel) { 8766 PMD(PMD_SET, ("%s: current level is already " 8767 "at or above the requested level.\n", pmf)) 8768 *iresp = DDI_SUCCESS; 8769 ret = DDI_SUCCESS; 8770 goto post_notify; 8771 } 8772 break; 8773 case PM_LEVEL_EXACT: 8774 /* specific level request */ 8775 if (clevel == nlevel && !PM_ISBC(dip)) { 8776 PMD(PMD_SET, ("%s: current level is already " 8777 "at the requested level.\n", pmf)) 8778 *iresp = DDI_SUCCESS; 8779 ret = DDI_SUCCESS; 8780 goto post_notify; 8781 } else if (PM_IS_CFB(dip) && (nlevel < clevel)) { 8782 PMD(PMD_CFB, ("%s: powerdown of console\n", pmf)) 8783 if (!pm_cfb_enabled) { 8784 PMD(PMD_ERROR | PMD_CFB, 8785 ("%s: !pm_cfb_enabled, fails\n", pmf)) 8786 *errnop = EINVAL; 8787 *iresp = DDI_FAILURE; 8788 ret = DDI_FAILURE; 8789 goto post_notify; 8790 } 8791 mutex_enter(&pm_cfb_lock); 8792 while (cfb_inuse) { 8793 mutex_exit(&pm_cfb_lock); 8794 if (delay_sig(1) == EINTR) { 8795 ret = DDI_FAILURE; 8796 *iresp = DDI_FAILURE; 8797 *errnop = EINTR; 8798 goto post_notify; 8799 } 8800 mutex_enter(&pm_cfb_lock); 8801 } 8802 mutex_exit(&pm_cfb_lock); 8803 } 8804 break; 8805 case PM_LEVEL_DOWNONLY: 8806 /* Powering down */ 8807 thresh = cur_threshold(dip, comp); 8808 idletime = gethrestime_sec() - cp->pmc_timestamp; 8809 if (scan && ((PM_KUC(dip) != 0) || 8810 (cp->pmc_busycount > 0) || 8811 ((idletime < thresh) && !PM_IS_PID(dip)))) { 8812 #ifdef DEBUG 8813 if (DEVI(dip)->devi_pm_kidsupcnt != 0) 8814 PMD(PMD_SET, ("%s: scan failed: " 8815 "kidsupcnt != 0\n", pmf)) 8816 if (cp->pmc_busycount > 0) 8817 PMD(PMD_SET, ("%s: scan failed: " 8818 "device become busy\n", pmf)) 8819 if (idletime < thresh) 8820 PMD(PMD_SET, ("%s: scan failed: device " 8821 "hasn't been idle long enough\n", pmf)) 8822 #endif 8823 *iresp = DDI_FAILURE; 8824 *errnop = EBUSY; 8825 ret = DDI_FAILURE; 8826 goto post_notify; 8827 } else if (clevel != PM_LEVEL_UNKNOWN && clevel <= nlevel) { 8828 PMD(PMD_SET, ("%s: current level is already at " 8829 "or below the requested level.\n", pmf)) 8830 *iresp = DDI_SUCCESS; 8831 ret = DDI_SUCCESS; 8832 goto post_notify; 8833 } 8834 break; 8835 } 8836 8837 if (PM_IS_CFB(dip) && (comps_off_incr = 8838 calc_cfb_comps_incr(dip, comp, clevel, nlevel)) > 0) { 8839 /* 8840 * Pre-adjust pm_cfb_comps_off if lowering a console fb 8841 * component from full power. Remember that we tried to 8842 * lower power in case it fails and we need to back out 8843 * the adjustment. 8844 */ 8845 update_comps_off(comps_off_incr, dip); 8846 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d cfb_comps_off->%d\n", 8847 pmf, PM_DEVICE(dip), comp, clevel, nlevel, 8848 pm_cfb_comps_off)) 8849 } 8850 8851 if ((*iresp = power_dev(dip, 8852 comp, nlevel, clevel, canblock, &devl)) == DDI_SUCCESS) { 8853 #ifdef DEBUG 8854 /* 8855 * All descendents of this node should already be powered off. 8856 */ 8857 if (PM_CURPOWER(dip, comp) == 0) { 8858 pm_desc_pwrchk_t pdpchk; 8859 pdpchk.pdpc_dip = dip; 8860 pdpchk.pdpc_par_involved = PM_WANTS_NOTIFICATION(dip); 8861 ndi_devi_enter(dip, &circ_db); 8862 for (cdip = ddi_get_child(dip); cdip != NULL; 8863 cdip = ddi_get_next_sibling(cdip)) { 8864 ndi_devi_enter(cdip, &ccirc_db); 8865 ddi_walk_devs(cdip, pm_desc_pwrchk_walk, 8866 (void *)&pdpchk); 8867 ndi_devi_exit(cdip, ccirc_db); 8868 } 8869 ndi_devi_exit(dip, circ_db); 8870 } 8871 #endif 8872 /* 8873 * Post-adjust pm_cfb_comps_off if we brought an fb component 8874 * back up to full power. 8875 */ 8876 if (PM_IS_CFB(dip) && comps_off_incr < 0) { 8877 update_comps_off(comps_off_incr, dip); 8878 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d " 8879 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 8880 comp, clevel, nlevel, pm_cfb_comps_off)) 8881 } 8882 dodeps = 0; 8883 if (POWERING_OFF(clevel, nlevel)) { 8884 if (PM_ISBC(dip)) { 8885 dodeps = (comp == 0); 8886 } else { 8887 int i; 8888 dodeps = 1; 8889 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 8890 /* if some component still on */ 8891 if (PM_CURPOWER(dip, i)) { 8892 dodeps = 0; 8893 break; 8894 } 8895 } 8896 } 8897 if (dodeps) 8898 work_type = PM_DEP_WK_POWER_OFF; 8899 } else if (POWERING_ON(clevel, nlevel)) { 8900 if (PM_ISBC(dip)) { 8901 dodeps = (comp == 0); 8902 } else { 8903 int i; 8904 dodeps = 1; 8905 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 8906 if (i == comp) 8907 continue; 8908 if (PM_CURPOWER(dip, i) > 0) { 8909 dodeps = 0; 8910 break; 8911 } 8912 } 8913 } 8914 if (dodeps) 8915 work_type = PM_DEP_WK_POWER_ON; 8916 } 8917 8918 if (dodeps) { 8919 char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8920 8921 (void) ddi_pathname(dip, pathbuf); 8922 pm_dispatch_to_dep_thread(work_type, pathbuf, NULL, 8923 PM_DEP_NOWAIT, NULL, 0); 8924 kmem_free(pathbuf, MAXPATHLEN); 8925 } 8926 if ((PM_CURPOWER(dip, comp) == nlevel) && pm_watchers()) { 8927 int old; 8928 8929 /* If old power cached during deadlock, use it. */ 8930 old = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 8931 cp->pmc_phc_pwr : olevel); 8932 mutex_enter(&pm_rsvp_lock); 8933 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, nlevel, 8934 old, canblock); 8935 pm_enqueue_notify_others(&devl, canblock); 8936 mutex_exit(&pm_rsvp_lock); 8937 } else { 8938 pm_ppm_devlist_t *p; 8939 pm_ppm_devlist_t *next; 8940 for (p = devl; p != NULL; p = next) { 8941 next = p->ppd_next; 8942 kmem_free(p, sizeof (pm_ppm_devlist_t)); 8943 } 8944 devl = NULL; 8945 } 8946 8947 /* 8948 * If we are coming from a scan, don't do it again, 8949 * else we can have infinite loops. 8950 */ 8951 if (!scan) 8952 pm_rescan(dip); 8953 } else { 8954 /* if we incremented pm_comps_off_count, but failed */ 8955 if (comps_off_incr > 0) { 8956 update_comps_off(-comps_off_incr, dip); 8957 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d " 8958 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 8959 comp, clevel, nlevel, pm_cfb_comps_off)) 8960 } 8961 *errnop = EIO; 8962 } 8963 8964 post_notify: 8965 /* 8966 * This thread may have been in deadlock with pm_power_has_changed. 8967 * Before releasing power lock, clear the flag which marks this 8968 * condition. 8969 */ 8970 cp->pmc_flags &= ~PM_PHC_WHILE_SET_POWER; 8971 8972 /* 8973 * Update the old power level in the bus power structure with the 8974 * actual power level before the transition was made to the new level. 8975 * Some involved parents depend on this information to keep track of 8976 * their children's power transition. 8977 */ 8978 if (*iresp != DDI_FAILURE) 8979 bpc->bpc_olevel = clevel; 8980 8981 if (PM_WANTS_NOTIFICATION(pdip)) { 8982 ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 8983 BUS_POWER_POST_NOTIFICATION, bpc, resultp); 8984 PM_UNLOCK_POWER(dip, circ); 8985 PMD(PMD_SET, ("%s: post_notify %s@%s(%s#%d) for " 8986 "child %s@%s(%s#%d), ret=%d\n", pmf, PM_DEVICE(pdip), 8987 PM_DEVICE(dip), ret)) 8988 } else { 8989 nlevel = cur_power(cp); /* in case phc deadlock updated pwr */ 8990 PM_UNLOCK_POWER(dip, circ); 8991 /* 8992 * Now that we know what power transition has occurred 8993 * (if any), release the power hold. Leave the hold 8994 * in effect in the case of OFF->ON transition. 8995 */ 8996 if (!(clevel == 0 && nlevel > 0 && 8997 (!PM_ISBC(dip) || comp == 0))) 8998 pm_rele_power(pdip); 8999 /* 9000 * If the power transition was an ON->OFF transition, 9001 * remove the power hold from the parent. 9002 */ 9003 if ((clevel > 0 || clevel == PM_LEVEL_UNKNOWN) && 9004 nlevel == 0 && (!PM_ISBC(dip) || comp == 0)) 9005 pm_rele_power(pdip); 9006 } 9007 if (*iresp != DDI_SUCCESS || ret != DDI_SUCCESS) 9008 return (DDI_FAILURE); 9009 else 9010 return (DDI_SUCCESS); 9011 } 9012 9013 /* 9014 * If an app (SunVTS or Xsun) has taken control, then block until it 9015 * gives it up or makes the requested power level change, unless 9016 * we have other instructions about blocking. Returns DDI_SUCCESS, 9017 * DDI_FAILURE or EAGAIN (owner released device from directpm). 9018 */ 9019 static int 9020 pm_busop_match_request(dev_info_t *dip, void *arg) 9021 { 9022 PMD_FUNC(pmf, "bp_match_request") 9023 pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg; 9024 pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private; 9025 int comp = bpc->bpc_comp; 9026 int nlevel = bpc->bpc_nlevel; 9027 pm_canblock_t canblock = pspm->pspm_canblock; 9028 int direction = pspm->pspm_direction; 9029 int clevel, circ; 9030 9031 ASSERT(PM_IAM_LOCKING_DIP(dip)); 9032 PM_LOCK_POWER(dip, &circ); 9033 clevel = PM_CURPOWER(dip, comp); 9034 PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, nlvl=%d, clvl=%d\n", 9035 pmf, PM_DEVICE(dip), comp, nlevel, clevel)) 9036 if (direction == PM_LEVEL_UPONLY) { 9037 if (clevel >= nlevel) { 9038 PM_UNLOCK_POWER(dip, circ); 9039 PM_UNLOCK_DIP(dip); 9040 return (DDI_SUCCESS); 9041 } 9042 } else if (clevel == nlevel) { 9043 PM_UNLOCK_POWER(dip, circ); 9044 PM_UNLOCK_DIP(dip); 9045 return (DDI_SUCCESS); 9046 } 9047 if (canblock == PM_CANBLOCK_FAIL) { 9048 PM_UNLOCK_POWER(dip, circ); 9049 PM_UNLOCK_DIP(dip); 9050 return (DDI_FAILURE); 9051 } 9052 if (canblock == PM_CANBLOCK_BLOCK) { 9053 /* 9054 * To avoid a deadlock, we must not hold the 9055 * power lock when we pm_block. 9056 */ 9057 PM_UNLOCK_POWER(dip, circ); 9058 PMD(PMD_SET, ("%s: blocking\n", pmf)) 9059 /* pm_block releases dip lock */ 9060 switch (pm_block(dip, comp, nlevel, clevel)) { 9061 case PMP_RELEASE: 9062 return (EAGAIN); 9063 case PMP_SUCCEED: 9064 return (DDI_SUCCESS); 9065 case PMP_FAIL: 9066 return (DDI_FAILURE); 9067 } 9068 } else { 9069 ASSERT(0); 9070 } 9071 _NOTE(NOTREACHED); 9072 return (DDI_FAILURE); /* keep gcc happy */ 9073 } 9074 9075 static int 9076 pm_all_to_normal_nexus(dev_info_t *dip, pm_canblock_t canblock) 9077 { 9078 PMD_FUNC(pmf, "all_to_normal_nexus") 9079 int *normal; 9080 int i, ncomps; 9081 size_t size; 9082 int changefailed = 0; 9083 int ret, result = DDI_SUCCESS; 9084 pm_bp_nexus_pwrup_t bpn; 9085 pm_sp_misc_t pspm; 9086 9087 ASSERT(PM_GET_PM_INFO(dip)); 9088 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9089 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 9090 PMD(PMD_ALLNORM, ("%s: can't get norm pwrs\n", pmf)) 9091 return (DDI_FAILURE); 9092 } 9093 ncomps = PM_NUMCMPTS(dip); 9094 for (i = 0; i < ncomps; i++) { 9095 bpn.bpn_dip = dip; 9096 bpn.bpn_comp = i; 9097 bpn.bpn_level = normal[i]; 9098 pspm.pspm_canblock = canblock; 9099 pspm.pspm_scan = 0; 9100 bpn.bpn_private = &pspm; 9101 ret = pm_busop_bus_power(dip, NULL, BUS_POWER_NEXUS_PWRUP, 9102 (void *)&bpn, (void *)&result); 9103 if (ret != DDI_SUCCESS || result != DDI_SUCCESS) { 9104 PMD(PMD_FAIL | PMD_ALLNORM, ("%s: %s@%s(%s#%d)[%d] " 9105 "->%d failure result %d\n", pmf, PM_DEVICE(dip), 9106 i, normal[i], result)) 9107 changefailed++; 9108 } 9109 } 9110 kmem_free(normal, size); 9111 if (changefailed) { 9112 PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) " 9113 "full power\n", pmf, changefailed, PM_DEVICE(dip))) 9114 return (DDI_FAILURE); 9115 } 9116 return (DDI_SUCCESS); 9117 } 9118 9119 int 9120 pm_noinvol_update(int subcmd, int volpmd, int wasvolpmd, char *path, 9121 dev_info_t *tdip) 9122 { 9123 PMD_FUNC(pmf, "noinvol_update") 9124 pm_bp_noinvol_t args; 9125 int ret; 9126 int result = DDI_SUCCESS; 9127 9128 args.bpni_path = path; 9129 args.bpni_dip = tdip; 9130 args.bpni_cmd = subcmd; 9131 args.bpni_wasvolpmd = wasvolpmd; 9132 args.bpni_volpmd = volpmd; 9133 PMD(PMD_NOINVOL, ("%s: update for path %s tdip %p subcmd %d " 9134 "volpmd %d wasvolpmd %d\n", pmf, 9135 path, (void *)tdip, subcmd, wasvolpmd, volpmd)) 9136 ret = pm_busop_bus_power(ddi_root_node(), NULL, BUS_POWER_NOINVOL, 9137 &args, &result); 9138 return (ret); 9139 } 9140 9141 void 9142 pm_noinvol_update_node(dev_info_t *dip, pm_bp_noinvol_t *req) 9143 { 9144 PMD_FUNC(pmf, "noinvol_update_node") 9145 9146 PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9147 switch (req->bpni_cmd) { 9148 case PM_BP_NOINVOL_ATTACH: 9149 PMD(PMD_NOINVOL, ("%s: PM_PB_NOINVOL_ATTACH %s@%s(%s#%d) " 9150 "noinvol %d->%d\n", pmf, PM_DEVICE(dip), 9151 DEVI(dip)->devi_pm_noinvolpm, 9152 DEVI(dip)->devi_pm_noinvolpm - 1)) 9153 ASSERT(DEVI(dip)->devi_pm_noinvolpm); 9154 PM_LOCK_DIP(dip); 9155 DEVI(dip)->devi_pm_noinvolpm--; 9156 if (req->bpni_wasvolpmd) { 9157 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_ATTACH " 9158 "%s@%s(%s#%d) volpmd %d->%d\n", pmf, 9159 PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd, 9160 DEVI(dip)->devi_pm_volpmd - 1)) 9161 if (DEVI(dip)->devi_pm_volpmd) 9162 DEVI(dip)->devi_pm_volpmd--; 9163 } 9164 PM_UNLOCK_DIP(dip); 9165 break; 9166 9167 case PM_BP_NOINVOL_DETACH: 9168 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH %s@%s(%s#%d) " 9169 "noinvolpm %d->%d\n", pmf, PM_DEVICE(dip), 9170 DEVI(dip)->devi_pm_noinvolpm, 9171 DEVI(dip)->devi_pm_noinvolpm + 1)) 9172 PM_LOCK_DIP(dip); 9173 DEVI(dip)->devi_pm_noinvolpm++; 9174 if (req->bpni_wasvolpmd) { 9175 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH " 9176 "%s@%s(%s#%d) volpmd %d->%d\n", pmf, 9177 PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd, 9178 DEVI(dip)->devi_pm_volpmd + 1)) 9179 DEVI(dip)->devi_pm_volpmd++; 9180 } 9181 PM_UNLOCK_DIP(dip); 9182 break; 9183 9184 case PM_BP_NOINVOL_REMDRV: 9185 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) " 9186 "noinvol %d->%d\n", pmf, PM_DEVICE(dip), 9187 DEVI(dip)->devi_pm_noinvolpm, 9188 DEVI(dip)->devi_pm_noinvolpm - 1)) 9189 ASSERT(DEVI(dip)->devi_pm_noinvolpm); 9190 PM_LOCK_DIP(dip); 9191 DEVI(dip)->devi_pm_noinvolpm--; 9192 if (req->bpni_wasvolpmd) { 9193 PMD(PMD_NOINVOL, 9194 ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) " 9195 "volpmd %d->%d\n", pmf, PM_DEVICE(dip), 9196 DEVI(dip)->devi_pm_volpmd, 9197 DEVI(dip)->devi_pm_volpmd - 1)) 9198 /* 9199 * A power up could come in between and 9200 * clear the volpmd, if that's the case, 9201 * volpmd would be clear. 9202 */ 9203 if (DEVI(dip)->devi_pm_volpmd) 9204 DEVI(dip)->devi_pm_volpmd--; 9205 } 9206 PM_UNLOCK_DIP(dip); 9207 break; 9208 9209 case PM_BP_NOINVOL_CFB: 9210 PMD(PMD_NOINVOL, 9211 ("%s: PM_BP_NOIVOL_CFB %s@%s(%s#%d) noinvol %d->%d\n", 9212 pmf, PM_DEVICE(dip), DEVI(dip)->devi_pm_noinvolpm, 9213 DEVI(dip)->devi_pm_noinvolpm + 1)) 9214 PM_LOCK_DIP(dip); 9215 DEVI(dip)->devi_pm_noinvolpm++; 9216 PM_UNLOCK_DIP(dip); 9217 break; 9218 9219 case PM_BP_NOINVOL_POWER: 9220 PMD(PMD_NOINVOL, 9221 ("%s: PM_BP_NOIVOL_PWR %s@%s(%s#%d) volpmd %d->%d\n", 9222 pmf, PM_DEVICE(dip), 9223 DEVI(dip)->devi_pm_volpmd, DEVI(dip)->devi_pm_volpmd - 9224 req->bpni_volpmd)) 9225 PM_LOCK_DIP(dip); 9226 DEVI(dip)->devi_pm_volpmd -= req->bpni_volpmd; 9227 PM_UNLOCK_DIP(dip); 9228 break; 9229 9230 default: 9231 break; 9232 } 9233 9234 } 9235 9236 #ifdef DEBUG 9237 static int 9238 pm_desc_pwrchk_walk(dev_info_t *dip, void *arg) 9239 { 9240 PMD_FUNC(pmf, "desc_pwrchk") 9241 pm_desc_pwrchk_t *pdpchk = (pm_desc_pwrchk_t *)arg; 9242 pm_info_t *info = PM_GET_PM_INFO(dip); 9243 int i; 9244 /* LINTED */ 9245 int curpwr, ce_level; 9246 9247 if (!info) 9248 return (DDI_WALK_CONTINUE); 9249 9250 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9251 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 9252 /* LINTED */ 9253 if ((curpwr = PM_CURPOWER(dip, i)) == 0) 9254 continue; 9255 /* E_FUNC_SET_NOT_USED */ 9256 ce_level = (pdpchk->pdpc_par_involved == 0) ? CE_PANIC : 9257 CE_WARN; 9258 PMD(PMD_SET, ("%s: %s@%s(%s#%d) is powered off while desc " 9259 "%s@%s(%s#%d)[%d] is at %d\n", pmf, 9260 PM_DEVICE(pdpchk->pdpc_dip), PM_DEVICE(dip), i, curpwr)) 9261 cmn_err(ce_level, "!device %s@%s(%s#%d) is powered on, " 9262 "while its ancestor, %s@%s(%s#%d), is powering off!", 9263 PM_DEVICE(dip), PM_DEVICE(pdpchk->pdpc_dip)); 9264 } 9265 return (DDI_WALK_CONTINUE); 9266 } 9267 #endif 9268 9269 /* 9270 * Record the fact that one thread is borrowing the lock on a device node. 9271 * Use is restricted to the case where the lending thread will block until 9272 * the borrowing thread (always curthread) completes. 9273 */ 9274 void 9275 pm_borrow_lock(kthread_t *lender) 9276 { 9277 lock_loan_t *prev = &lock_loan_head; 9278 lock_loan_t *cur = (lock_loan_t *)kmem_zalloc(sizeof (*cur), KM_SLEEP); 9279 9280 cur->pmlk_borrower = curthread; 9281 cur->pmlk_lender = lender; 9282 mutex_enter(&pm_loan_lock); 9283 cur->pmlk_next = prev->pmlk_next; 9284 prev->pmlk_next = cur; 9285 mutex_exit(&pm_loan_lock); 9286 } 9287 9288 /* 9289 * Return the borrowed lock. A thread can borrow only one. 9290 */ 9291 void 9292 pm_return_lock(void) 9293 { 9294 lock_loan_t *cur; 9295 lock_loan_t *prev = &lock_loan_head; 9296 9297 mutex_enter(&pm_loan_lock); 9298 ASSERT(prev->pmlk_next != NULL); 9299 for (cur = prev->pmlk_next; cur; prev = cur, cur = cur->pmlk_next) 9300 if (cur->pmlk_borrower == curthread) 9301 break; 9302 9303 ASSERT(cur != NULL); 9304 prev->pmlk_next = cur->pmlk_next; 9305 mutex_exit(&pm_loan_lock); 9306 kmem_free(cur, sizeof (*cur)); 9307 } 9308 9309 #if defined(__x86) 9310 9311 #define CPR_RXR 0x1 9312 #define CPR_TXR 0x20 9313 #define CPR_DATAREG 0x3f8 9314 #define CPR_LSTAT 0x3fd 9315 #define CPR_INTRCTL 0x3f9 9316 9317 char 9318 pm_getchar(void) 9319 { 9320 while ((inb(CPR_LSTAT) & CPR_RXR) != CPR_RXR) 9321 drv_usecwait(10); 9322 9323 return (inb(CPR_DATAREG)); 9324 9325 } 9326 9327 void 9328 pm_putchar(char c) 9329 { 9330 while ((inb(CPR_LSTAT) & CPR_TXR) == 0) 9331 drv_usecwait(10); 9332 9333 outb(CPR_DATAREG, c); 9334 } 9335 9336 void 9337 pm_printf(char *s) 9338 { 9339 while (*s) { 9340 pm_putchar(*s++); 9341 } 9342 } 9343 9344 #endif 9345 9346 int 9347 pm_ppm_searchlist(pm_searchargs_t *sp) 9348 { 9349 power_req_t power_req; 9350 int result = 0; 9351 /* LINTED */ 9352 int ret; 9353 9354 power_req.request_type = PMR_PPM_SEARCH_LIST; 9355 power_req.req.ppm_search_list_req.searchlist = sp; 9356 ASSERT(DEVI(ddi_root_node())->devi_pm_ppm); 9357 ret = pm_ctlops((dev_info_t *)DEVI(ddi_root_node())->devi_pm_ppm, 9358 ddi_root_node(), DDI_CTLOPS_POWER, &power_req, &result); 9359 PMD(PMD_SX, ("pm_ppm_searchlist returns %d, result %d\n", 9360 ret, result)) 9361 return (result); 9362 } 9363