xref: /illumos-gate/usr/src/uts/common/os/strsubr.c (revision 16b6a7e9a6f9116cc7c300e732be5000d82934e7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  * Copyright (c) 2016 by Delphix. All rights reserved.
29  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30  */
31 
32 #include <sys/types.h>
33 #include <sys/sysmacros.h>
34 #include <sys/param.h>
35 #include <sys/errno.h>
36 #include <sys/signal.h>
37 #include <sys/proc.h>
38 #include <sys/conf.h>
39 #include <sys/cred.h>
40 #include <sys/user.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/session.h>
44 #include <sys/stream.h>
45 #include <sys/strsubr.h>
46 #include <sys/stropts.h>
47 #include <sys/poll.h>
48 #include <sys/systm.h>
49 #include <sys/cpuvar.h>
50 #include <sys/uio.h>
51 #include <sys/cmn_err.h>
52 #include <sys/priocntl.h>
53 #include <sys/procset.h>
54 #include <sys/vmem.h>
55 #include <sys/bitmap.h>
56 #include <sys/kmem.h>
57 #include <sys/siginfo.h>
58 #include <sys/vtrace.h>
59 #include <sys/callb.h>
60 #include <sys/debug.h>
61 #include <sys/modctl.h>
62 #include <sys/vmsystm.h>
63 #include <vm/page.h>
64 #include <sys/atomic.h>
65 #include <sys/suntpi.h>
66 #include <sys/strlog.h>
67 #include <sys/promif.h>
68 #include <sys/project.h>
69 #include <sys/vm.h>
70 #include <sys/taskq.h>
71 #include <sys/sunddi.h>
72 #include <sys/sunldi_impl.h>
73 #include <sys/strsun.h>
74 #include <sys/isa_defs.h>
75 #include <sys/multidata.h>
76 #include <sys/pattr.h>
77 #include <sys/strft.h>
78 #include <sys/fs/snode.h>
79 #include <sys/zone.h>
80 #include <sys/open.h>
81 #include <sys/sunldi.h>
82 #include <sys/sad.h>
83 #include <sys/netstack.h>
84 
85 #define	O_SAMESTR(q)	(((q)->q_next) && \
86 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
87 
88 /*
89  * WARNING:
90  * The variables and routines in this file are private, belonging
91  * to the STREAMS subsystem. These should not be used by modules
92  * or drivers. Compatibility will not be guaranteed.
93  */
94 
95 /*
96  * Id value used to distinguish between different multiplexor links.
97  */
98 static int32_t lnk_id = 0;
99 
100 #define	STREAMS_LOPRI MINCLSYSPRI
101 static pri_t streams_lopri = STREAMS_LOPRI;
102 
103 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
104 typedef struct str_stat {
105 	kstat_named_t	sqenables;
106 	kstat_named_t	stenables;
107 	kstat_named_t	syncqservice;
108 	kstat_named_t	freebs;
109 	kstat_named_t	qwr_outer;
110 	kstat_named_t	rservice;
111 	kstat_named_t	strwaits;
112 	kstat_named_t	taskqfails;
113 	kstat_named_t	bufcalls;
114 	kstat_named_t	qhelps;
115 	kstat_named_t	qremoved;
116 	kstat_named_t	sqremoved;
117 	kstat_named_t	bcwaits;
118 	kstat_named_t	sqtoomany;
119 } str_stat_t;
120 
121 static str_stat_t str_statistics = {
122 	{ "sqenables",		KSTAT_DATA_UINT64 },
123 	{ "stenables",		KSTAT_DATA_UINT64 },
124 	{ "syncqservice",	KSTAT_DATA_UINT64 },
125 	{ "freebs",		KSTAT_DATA_UINT64 },
126 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
127 	{ "rservice",		KSTAT_DATA_UINT64 },
128 	{ "strwaits",		KSTAT_DATA_UINT64 },
129 	{ "taskqfails",		KSTAT_DATA_UINT64 },
130 	{ "bufcalls",		KSTAT_DATA_UINT64 },
131 	{ "qhelps",		KSTAT_DATA_UINT64 },
132 	{ "qremoved",		KSTAT_DATA_UINT64 },
133 	{ "sqremoved",		KSTAT_DATA_UINT64 },
134 	{ "bcwaits",		KSTAT_DATA_UINT64 },
135 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
136 };
137 
138 static kstat_t *str_kstat;
139 
140 /*
141  * qrunflag was used previously to control background scheduling of queues. It
142  * is not used anymore, but kept here in case some module still wants to access
143  * it via qready() and setqsched macros.
144  */
145 char qrunflag;			/*  Unused */
146 
147 /*
148  * Most of the streams scheduling is done via task queues. Task queues may fail
149  * for non-sleep dispatches, so there are two backup threads servicing failed
150  * requests for queues and syncqs. Both of these threads also service failed
151  * dispatches freebs requests. Queues are put in the list specified by `qhead'
152  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
153  * requests are put into `freebs_list' which has no tail pointer. All three
154  * lists are protected by a single `service_queue' lock and use
155  * `services_to_run' condition variable for signaling background threads. Use of
156  * a single lock should not be a problem because it is only used under heavy
157  * loads when task queues start to fail and at that time it may be a good idea
158  * to throttle scheduling requests.
159  *
160  * NOTE: queues and syncqs should be scheduled by two separate threads because
161  * queue servicing may be blocked waiting for a syncq which may be also
162  * scheduled for background execution. This may create a deadlock when only one
163  * thread is used for both.
164  */
165 
166 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
167 
168 static kmutex_t service_queue;		/* protects all of servicing vars */
169 static kcondvar_t services_to_run;	/* wake up background service thread */
170 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
171 
172 /*
173  * List of queues scheduled for background processing due to lack of resources
174  * in the task queues. Protected by service_queue lock;
175  */
176 static struct queue *qhead;
177 static struct queue *qtail;
178 
179 /*
180  * Same list for syncqs
181  */
182 static syncq_t *sqhead;
183 static syncq_t *sqtail;
184 
185 static mblk_t *freebs_list;	/* list of buffers to free */
186 
187 /*
188  * Backup threads for servicing queues and syncqs
189  */
190 kthread_t *streams_qbkgrnd_thread;
191 kthread_t *streams_sqbkgrnd_thread;
192 
193 /*
194  * Bufcalls related variables.
195  */
196 struct bclist	strbcalls;	/* list of waiting bufcalls */
197 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
198 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
199 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
200 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
201 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
202 
203 kmutex_t	strresources;	/* protects global resources */
204 kmutex_t	muxifier;	/* single-threads multiplexor creation */
205 
206 static void	*str_stack_init(netstackid_t stackid, netstack_t *ns);
207 static void	str_stack_shutdown(netstackid_t stackid, void *arg);
208 static void	str_stack_fini(netstackid_t stackid, void *arg);
209 
210 /*
211  * run_queues is no longer used, but is kept in case some 3rd party
212  * module/driver decides to use it.
213  */
214 int run_queues = 0;
215 
216 /*
217  * sq_max_size is the depth of the syncq (in number of messages) before
218  * qfill_syncq() starts QFULL'ing destination queues. As its primary
219  * consumer - IP is no longer D_MTPERMOD, but there may be other
220  * modules/drivers depend on this syncq flow control, we prefer to
221  * choose a large number as the default value. For potential
222  * performance gain, this value is tunable in /etc/system.
223  */
224 int sq_max_size = 10000;
225 
226 /*
227  * The number of ciputctrl structures per syncq and stream we create when
228  * needed.
229  */
230 int n_ciputctrl;
231 int max_n_ciputctrl = 16;
232 /*
233  * If n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
234  */
235 int min_n_ciputctrl = 2;
236 
237 /*
238  * Per-driver/module syncqs
239  * ========================
240  *
241  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
242  * perdm structures, new entries being added (and new syncqs allocated) when
243  * setq() encounters a module/driver with a streamtab that it hasn't seen
244  * before.
245  * The reason for this mechanism is that some modules and drivers share a
246  * common streamtab and it is necessary for those modules and drivers to also
247  * share a common PERMOD syncq.
248  *
249  * perdm_list --> dm_str == streamtab_1
250  *                dm_sq == syncq_1
251  *                dm_ref
252  *                dm_next --> dm_str == streamtab_2
253  *                            dm_sq == syncq_2
254  *                            dm_ref
255  *                            dm_next --> ... NULL
256  *
257  * The dm_ref field is incremented for each new driver/module that takes
258  * a reference to the perdm structure and hence shares the syncq.
259  * References are held in the fmodsw_impl_t structure for each STREAMS module
260  * or the dev_impl array (indexed by device major number) for each driver.
261  *
262  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
263  *		     ^                 ^ ^               ^
264  *                   |  ______________/  |               |
265  *                   | /                 |               |
266  * dev_impl:     ...|x|y|...          module A	      module B
267  *
268  * When a module/driver is unloaded the reference count is decremented and,
269  * when it falls to zero, the perdm structure is removed from the list and
270  * the syncq is freed (see rele_dm()).
271  */
272 perdm_t *perdm_list = NULL;
273 static krwlock_t perdm_rwlock;
274 cdevsw_impl_t *devimpl;
275 
276 extern struct qinit strdata;
277 extern struct qinit stwdata;
278 
279 static void runservice(queue_t *);
280 static void streams_bufcall_service(void);
281 static void streams_qbkgrnd_service(void);
282 static void streams_sqbkgrnd_service(void);
283 static syncq_t *new_syncq(void);
284 static void free_syncq(syncq_t *);
285 static void outer_insert(syncq_t *, syncq_t *);
286 static void outer_remove(syncq_t *, syncq_t *);
287 static void write_now(syncq_t *);
288 static void clr_qfull(queue_t *);
289 static void runbufcalls(void);
290 static void sqenable(syncq_t *);
291 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
292 static void wait_q_syncq(queue_t *);
293 static void backenable_insertedq(queue_t *);
294 
295 static void queue_service(queue_t *);
296 static void stream_service(stdata_t *);
297 static void syncq_service(syncq_t *);
298 static void qwriter_outer_service(syncq_t *);
299 static void mblk_free(mblk_t *);
300 #ifdef DEBUG
301 static int qprocsareon(queue_t *);
302 #endif
303 
304 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
305 static void reset_nfsrv_ptr(queue_t *, queue_t *);
306 void set_qfull(queue_t *);
307 
308 static void sq_run_events(syncq_t *);
309 static int propagate_syncq(queue_t *);
310 
311 static void	blocksq(syncq_t *, ushort_t, int);
312 static void	unblocksq(syncq_t *, ushort_t, int);
313 static int	dropsq(syncq_t *, uint16_t);
314 static void	emptysq(syncq_t *);
315 static sqlist_t *sqlist_alloc(struct stdata *, int);
316 static void	sqlist_free(sqlist_t *);
317 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
318 static void	sqlist_insert(sqlist_t *, syncq_t *);
319 static void	sqlist_insertall(sqlist_t *, queue_t *);
320 
321 static void	strsetuio(stdata_t *);
322 
323 struct kmem_cache *stream_head_cache;
324 struct kmem_cache *queue_cache;
325 struct kmem_cache *syncq_cache;
326 struct kmem_cache *qband_cache;
327 struct kmem_cache *linkinfo_cache;
328 struct kmem_cache *ciputctrl_cache = NULL;
329 
330 static linkinfo_t *linkinfo_list;
331 
332 /* Global esballoc throttling queue */
333 static esb_queue_t system_esbq;
334 
335 /* Array of esballoc throttling queues, of length esbq_nelem */
336 static esb_queue_t *volatile system_esbq_array;
337 static int esbq_nelem;
338 static kmutex_t esbq_lock;
339 static int esbq_log2_cpus_per_q = 0;
340 
341 /* Scale the system_esbq length by setting number of CPUs per queue. */
342 uint_t esbq_cpus_per_q = 1;
343 
344 /*
345  * esballoc tunable parameters.
346  */
347 int		esbq_max_qlen = 0x16;	/* throttled queue length */
348 clock_t		esbq_timeout = 0x8;	/* timeout to process esb queue */
349 
350 /*
351  * Routines to handle esballoc queueing.
352  */
353 static void esballoc_process_queue(esb_queue_t *);
354 static void esballoc_enqueue_mblk(mblk_t *);
355 static void esballoc_timer(void *);
356 static void esballoc_set_timer(esb_queue_t *, clock_t);
357 static void esballoc_mblk_free(mblk_t *);
358 
359 /*
360  *  Qinit structure and Module_info structures
361  *	for passthru read and write queues
362  */
363 
364 static void pass_wput(queue_t *, mblk_t *);
365 static queue_t *link_addpassthru(stdata_t *);
366 static void link_rempassthru(queue_t *);
367 
368 struct  module_info passthru_info = {
369 	0,
370 	"passthru",
371 	0,
372 	INFPSZ,
373 	STRHIGH,
374 	STRLOW
375 };
376 
377 struct  qinit passthru_rinit = {
378 	(int (*)())putnext,
379 	NULL,
380 	NULL,
381 	NULL,
382 	NULL,
383 	&passthru_info,
384 	NULL
385 };
386 
387 struct  qinit passthru_winit = {
388 	(int (*)()) pass_wput,
389 	NULL,
390 	NULL,
391 	NULL,
392 	NULL,
393 	&passthru_info,
394 	NULL
395 };
396 
397 /*
398  * Verify correctness of list head/tail pointers.
399  */
400 #define	LISTCHECK(head, tail, link) {				\
401 	EQUIV(head, tail);					\
402 	IMPLY(tail != NULL, tail->link == NULL);		\
403 }
404 
405 /*
406  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
407  * using a `link' field.
408  */
409 #define	ENQUEUE(el, head, tail, link) {				\
410 	ASSERT(el->link == NULL);				\
411 	LISTCHECK(head, tail, link);				\
412 	if (head == NULL)					\
413 		head = el;					\
414 	else							\
415 		tail->link = el;				\
416 	tail = el;						\
417 }
418 
419 /*
420  * Dequeue the first element of the list denoted by `head' and `tail' pointers
421  * using a `link' field and put result into `el'.
422  */
423 #define	DQ(el, head, tail, link) {				\
424 	LISTCHECK(head, tail, link);				\
425 	el = head;						\
426 	if (head != NULL) {					\
427 		head = head->link;				\
428 		if (head == NULL)				\
429 			tail = NULL;				\
430 		el->link = NULL;				\
431 	}							\
432 }
433 
434 /*
435  * Remove `el' from the list using `chase' and `curr' pointers and return result
436  * in `succeed'.
437  */
438 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
439 	LISTCHECK(head, tail, link);				\
440 	chase = NULL;						\
441 	succeed = 0;						\
442 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
443 		chase = curr;					\
444 	if (curr != NULL) {					\
445 		succeed = 1;					\
446 		ASSERT(curr == el);				\
447 		if (chase != NULL)				\
448 			chase->link = curr->link;		\
449 		else						\
450 			head = curr->link;			\
451 		curr->link = NULL;				\
452 		if (curr == tail)				\
453 			tail = chase;				\
454 	}							\
455 	LISTCHECK(head, tail, link);				\
456 }
457 
458 /* Handling of delayed messages on the inner syncq. */
459 
460 /*
461  * DEBUG versions should use function versions (to simplify tracing) and
462  * non-DEBUG kernels should use macro versions.
463  */
464 
465 /*
466  * Put a queue on the syncq list of queues.
467  * Assumes SQLOCK held.
468  */
469 #define	SQPUT_Q(sq, qp)							\
470 {									\
471 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
472 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
473 		/* The queue should not be linked anywhere */		\
474 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
475 		/* Head and tail may only be NULL simultaneously */	\
476 		EQUIV(sq->sq_head, sq->sq_tail);			\
477 		/* Queue may be only enqueued on its syncq */		\
478 		ASSERT(sq == qp->q_syncq);				\
479 		/* Check the correctness of SQ_MESSAGES flag */		\
480 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
481 		/* Sanity check first/last elements of the list */	\
482 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
483 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
484 		/*							\
485 		 * Sanity check of priority field: empty queue should	\
486 		 * have zero priority					\
487 		 * and nqueues equal to zero.				\
488 		 */							\
489 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
490 		/* Sanity check of sq_nqueues field */			\
491 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
492 		if (sq->sq_head == NULL) {				\
493 			sq->sq_head = sq->sq_tail = qp;			\
494 			sq->sq_flags |= SQ_MESSAGES;			\
495 		} else if (qp->q_spri == 0) {				\
496 			qp->q_sqprev = sq->sq_tail;			\
497 			sq->sq_tail->q_sqnext = qp;			\
498 			sq->sq_tail = qp;				\
499 		} else {						\
500 			/*						\
501 			 * Put this queue in priority order: higher	\
502 			 * priority gets closer to the head.		\
503 			 */						\
504 			queue_t **qpp = &sq->sq_tail;			\
505 			queue_t *qnext = NULL;				\
506 									\
507 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
508 				qnext = *qpp;				\
509 				qpp = &(*qpp)->q_sqprev;		\
510 			}						\
511 			qp->q_sqnext = qnext;				\
512 			qp->q_sqprev = *qpp;				\
513 			if (*qpp != NULL) {				\
514 				(*qpp)->q_sqnext = qp;			\
515 			} else {					\
516 				sq->sq_head = qp;			\
517 				sq->sq_pri = sq->sq_head->q_spri;	\
518 			}						\
519 			*qpp = qp;					\
520 		}							\
521 		qp->q_sqflags |= Q_SQQUEUED;				\
522 		qp->q_sqtstamp = ddi_get_lbolt();			\
523 		sq->sq_nqueues++;					\
524 	}								\
525 }
526 
527 /*
528  * Remove a queue from the syncq list
529  * Assumes SQLOCK held.
530  */
531 #define	SQRM_Q(sq, qp)							\
532 	{								\
533 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
534 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
535 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
536 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
537 		/* Check that the queue is actually in the list */	\
538 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
539 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
540 		ASSERT(sq->sq_nqueues != 0);				\
541 		if (qp->q_sqprev == NULL) {				\
542 			/* First queue on list, make head q_sqnext */	\
543 			sq->sq_head = qp->q_sqnext;			\
544 		} else {						\
545 			/* Make prev->next == next */			\
546 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
547 		}							\
548 		if (qp->q_sqnext == NULL) {				\
549 			/* Last queue on list, make tail sqprev */	\
550 			sq->sq_tail = qp->q_sqprev;			\
551 		} else {						\
552 			/* Make next->prev == prev */			\
553 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
554 		}							\
555 		/* clear out references on this queue */		\
556 		qp->q_sqprev = qp->q_sqnext = NULL;			\
557 		qp->q_sqflags &= ~Q_SQQUEUED;				\
558 		/* If there is nothing queued, clear SQ_MESSAGES */	\
559 		if (sq->sq_head != NULL) {				\
560 			sq->sq_pri = sq->sq_head->q_spri;		\
561 		} else	{						\
562 			sq->sq_flags &= ~SQ_MESSAGES;			\
563 			sq->sq_pri = 0;					\
564 		}							\
565 		sq->sq_nqueues--;					\
566 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
567 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
568 	}
569 
570 /* Hide the definition from the header file. */
571 #ifdef SQPUT_MP
572 #undef SQPUT_MP
573 #endif
574 
575 /*
576  * Put a message on the queue syncq.
577  * Assumes QLOCK held.
578  */
579 #define	SQPUT_MP(qp, mp)						\
580 	{								\
581 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
582 		ASSERT(qp->q_sqhead == NULL ||				\
583 		    (qp->q_sqtail != NULL &&				\
584 		    qp->q_sqtail->b_next == NULL));			\
585 		qp->q_syncqmsgs++;					\
586 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
587 		if (qp->q_sqhead == NULL) {				\
588 			qp->q_sqhead = qp->q_sqtail = mp;		\
589 		} else {						\
590 			qp->q_sqtail->b_next = mp;			\
591 			qp->q_sqtail = mp;				\
592 		}							\
593 		ASSERT(qp->q_syncqmsgs > 0);				\
594 		set_qfull(qp);						\
595 	}
596 
597 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
598 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
599 		if ((sq)->sq_ciputctrl != NULL) {			\
600 			int i;						\
601 			int nlocks = (sq)->sq_nciputctrl;		\
602 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
603 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
604 			for (i = 0; i <= nlocks; i++) {			\
605 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
606 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
607 			}						\
608 		}							\
609 	}
610 
611 
612 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
613 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
614 		if ((sq)->sq_ciputctrl != NULL) {			\
615 			int i;						\
616 			int nlocks = (sq)->sq_nciputctrl;		\
617 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
618 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
619 			for (i = 0; i <= nlocks; i++) {			\
620 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
621 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
622 			}						\
623 		}							\
624 	}
625 
626 /*
627  * Run service procedures for all queues in the stream head.
628  */
629 #define	STR_SERVICE(stp, q) {						\
630 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
631 	while (stp->sd_qhead != NULL) {					\
632 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
633 		ASSERT(stp->sd_nqueues > 0);				\
634 		stp->sd_nqueues--;					\
635 		ASSERT(!(q->q_flag & QINSERVICE));			\
636 		mutex_exit(&stp->sd_qlock);				\
637 		queue_service(q);					\
638 		mutex_enter(&stp->sd_qlock);				\
639 	}								\
640 	ASSERT(stp->sd_nqueues == 0);					\
641 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
642 }
643 
644 /*
645  * Constructor/destructor routines for the stream head cache
646  */
647 /* ARGSUSED */
648 static int
649 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
650 {
651 	stdata_t *stp = buf;
652 
653 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
654 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
655 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
656 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
657 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
658 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
659 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
660 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
661 	stp->sd_wrq = NULL;
662 
663 	return (0);
664 }
665 
666 /* ARGSUSED */
667 static void
668 stream_head_destructor(void *buf, void *cdrarg)
669 {
670 	stdata_t *stp = buf;
671 
672 	mutex_destroy(&stp->sd_lock);
673 	mutex_destroy(&stp->sd_reflock);
674 	mutex_destroy(&stp->sd_qlock);
675 	cv_destroy(&stp->sd_monitor);
676 	cv_destroy(&stp->sd_iocmonitor);
677 	cv_destroy(&stp->sd_refmonitor);
678 	cv_destroy(&stp->sd_qcv);
679 	cv_destroy(&stp->sd_zcopy_wait);
680 }
681 
682 /*
683  * Constructor/destructor routines for the queue cache
684  */
685 /* ARGSUSED */
686 static int
687 queue_constructor(void *buf, void *cdrarg, int kmflags)
688 {
689 	queinfo_t *qip = buf;
690 	queue_t *qp = &qip->qu_rqueue;
691 	queue_t *wqp = &qip->qu_wqueue;
692 	syncq_t	*sq = &qip->qu_syncq;
693 
694 	qp->q_first = NULL;
695 	qp->q_link = NULL;
696 	qp->q_count = 0;
697 	qp->q_mblkcnt = 0;
698 	qp->q_sqhead = NULL;
699 	qp->q_sqtail = NULL;
700 	qp->q_sqnext = NULL;
701 	qp->q_sqprev = NULL;
702 	qp->q_sqflags = 0;
703 	qp->q_rwcnt = 0;
704 	qp->q_spri = 0;
705 
706 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
707 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
708 
709 	wqp->q_first = NULL;
710 	wqp->q_link = NULL;
711 	wqp->q_count = 0;
712 	wqp->q_mblkcnt = 0;
713 	wqp->q_sqhead = NULL;
714 	wqp->q_sqtail = NULL;
715 	wqp->q_sqnext = NULL;
716 	wqp->q_sqprev = NULL;
717 	wqp->q_sqflags = 0;
718 	wqp->q_rwcnt = 0;
719 	wqp->q_spri = 0;
720 
721 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
722 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
723 
724 	sq->sq_head = NULL;
725 	sq->sq_tail = NULL;
726 	sq->sq_evhead = NULL;
727 	sq->sq_evtail = NULL;
728 	sq->sq_callbpend = NULL;
729 	sq->sq_outer = NULL;
730 	sq->sq_onext = NULL;
731 	sq->sq_oprev = NULL;
732 	sq->sq_next = NULL;
733 	sq->sq_svcflags = 0;
734 	sq->sq_servcount = 0;
735 	sq->sq_needexcl = 0;
736 	sq->sq_nqueues = 0;
737 	sq->sq_pri = 0;
738 
739 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
740 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
741 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
742 
743 	return (0);
744 }
745 
746 /* ARGSUSED */
747 static void
748 queue_destructor(void *buf, void *cdrarg)
749 {
750 	queinfo_t *qip = buf;
751 	queue_t *qp = &qip->qu_rqueue;
752 	queue_t *wqp = &qip->qu_wqueue;
753 	syncq_t	*sq = &qip->qu_syncq;
754 
755 	ASSERT(qp->q_sqhead == NULL);
756 	ASSERT(wqp->q_sqhead == NULL);
757 	ASSERT(qp->q_sqnext == NULL);
758 	ASSERT(wqp->q_sqnext == NULL);
759 	ASSERT(qp->q_rwcnt == 0);
760 	ASSERT(wqp->q_rwcnt == 0);
761 
762 	mutex_destroy(&qp->q_lock);
763 	cv_destroy(&qp->q_wait);
764 
765 	mutex_destroy(&wqp->q_lock);
766 	cv_destroy(&wqp->q_wait);
767 
768 	mutex_destroy(&sq->sq_lock);
769 	cv_destroy(&sq->sq_wait);
770 	cv_destroy(&sq->sq_exitwait);
771 }
772 
773 /*
774  * Constructor/destructor routines for the syncq cache
775  */
776 /* ARGSUSED */
777 static int
778 syncq_constructor(void *buf, void *cdrarg, int kmflags)
779 {
780 	syncq_t	*sq = buf;
781 
782 	bzero(buf, sizeof (syncq_t));
783 
784 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
785 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
786 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
787 
788 	return (0);
789 }
790 
791 /* ARGSUSED */
792 static void
793 syncq_destructor(void *buf, void *cdrarg)
794 {
795 	syncq_t	*sq = buf;
796 
797 	ASSERT(sq->sq_head == NULL);
798 	ASSERT(sq->sq_tail == NULL);
799 	ASSERT(sq->sq_evhead == NULL);
800 	ASSERT(sq->sq_evtail == NULL);
801 	ASSERT(sq->sq_callbpend == NULL);
802 	ASSERT(sq->sq_callbflags == 0);
803 	ASSERT(sq->sq_outer == NULL);
804 	ASSERT(sq->sq_onext == NULL);
805 	ASSERT(sq->sq_oprev == NULL);
806 	ASSERT(sq->sq_next == NULL);
807 	ASSERT(sq->sq_needexcl == 0);
808 	ASSERT(sq->sq_svcflags == 0);
809 	ASSERT(sq->sq_servcount == 0);
810 	ASSERT(sq->sq_nqueues == 0);
811 	ASSERT(sq->sq_pri == 0);
812 	ASSERT(sq->sq_count == 0);
813 	ASSERT(sq->sq_rmqcount == 0);
814 	ASSERT(sq->sq_cancelid == 0);
815 	ASSERT(sq->sq_ciputctrl == NULL);
816 	ASSERT(sq->sq_nciputctrl == 0);
817 	ASSERT(sq->sq_type == 0);
818 	ASSERT(sq->sq_flags == 0);
819 
820 	mutex_destroy(&sq->sq_lock);
821 	cv_destroy(&sq->sq_wait);
822 	cv_destroy(&sq->sq_exitwait);
823 }
824 
825 /* ARGSUSED */
826 static int
827 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
828 {
829 	ciputctrl_t *cip = buf;
830 	int i;
831 
832 	for (i = 0; i < n_ciputctrl; i++) {
833 		cip[i].ciputctrl_count = SQ_FASTPUT;
834 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
835 	}
836 
837 	return (0);
838 }
839 
840 /* ARGSUSED */
841 static void
842 ciputctrl_destructor(void *buf, void *cdrarg)
843 {
844 	ciputctrl_t *cip = buf;
845 	int i;
846 
847 	for (i = 0; i < n_ciputctrl; i++) {
848 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
849 		mutex_destroy(&cip[i].ciputctrl_lock);
850 	}
851 }
852 
853 /*
854  * Init routine run from main at boot time.
855  */
856 void
857 strinit(void)
858 {
859 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
860 
861 	stream_head_cache = kmem_cache_create("stream_head_cache",
862 	    sizeof (stdata_t), 0,
863 	    stream_head_constructor, stream_head_destructor, NULL,
864 	    NULL, NULL, 0);
865 
866 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
867 	    queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
868 
869 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
870 	    syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
871 
872 	qband_cache = kmem_cache_create("qband_cache",
873 	    sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
874 
875 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
876 	    sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
877 
878 	n_ciputctrl = ncpus;
879 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
880 	ASSERT(n_ciputctrl >= 1);
881 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
882 	if (n_ciputctrl >= min_n_ciputctrl) {
883 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
884 		    sizeof (ciputctrl_t) * n_ciputctrl,
885 		    sizeof (ciputctrl_t), ciputctrl_constructor,
886 		    ciputctrl_destructor, NULL, NULL, NULL, 0);
887 	}
888 
889 	streams_taskq = system_taskq;
890 
891 	if (streams_taskq == NULL)
892 		panic("strinit: no memory for streams taskq!");
893 
894 	bc_bkgrnd_thread = thread_create(NULL, 0,
895 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
896 
897 	streams_qbkgrnd_thread = thread_create(NULL, 0,
898 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
899 
900 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
901 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
902 
903 	/*
904 	 * Create STREAMS kstats.
905 	 */
906 	str_kstat = kstat_create("streams", 0, "strstat",
907 	    "net", KSTAT_TYPE_NAMED,
908 	    sizeof (str_statistics) / sizeof (kstat_named_t),
909 	    KSTAT_FLAG_VIRTUAL);
910 
911 	if (str_kstat != NULL) {
912 		str_kstat->ks_data = &str_statistics;
913 		kstat_install(str_kstat);
914 	}
915 
916 	/*
917 	 * TPI support routine initialisation.
918 	 */
919 	tpi_init();
920 
921 	/*
922 	 * Handle to have autopush and persistent link information per
923 	 * zone.
924 	 * Note: uses shutdown hook instead of destroy hook so that the
925 	 * persistent links can be torn down before the destroy hooks
926 	 * in the TCP/IP stack are called.
927 	 */
928 	netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
929 	    str_stack_fini);
930 }
931 
932 void
933 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
934 {
935 	struct stdata *stp;
936 
937 	ASSERT(vp->v_stream);
938 	stp = vp->v_stream;
939 	/* Have to hold sd_lock to prevent siglist from changing */
940 	mutex_enter(&stp->sd_lock);
941 	if (stp->sd_sigflags & event)
942 		strsendsig(stp->sd_siglist, event, band, error);
943 	mutex_exit(&stp->sd_lock);
944 }
945 
946 /*
947  * Send the "sevent" set of signals to a process.
948  * This might send more than one signal if the process is registered
949  * for multiple events. The caller should pass in an sevent that only
950  * includes the events for which the process has registered.
951  */
952 static void
953 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
954     uchar_t band, int error)
955 {
956 	ASSERT(MUTEX_HELD(&proc->p_lock));
957 
958 	info->si_band = 0;
959 	info->si_errno = 0;
960 
961 	if (sevent & S_ERROR) {
962 		sevent &= ~S_ERROR;
963 		info->si_code = POLL_ERR;
964 		info->si_errno = error;
965 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
966 		    "strsendsig:proc %p info %p", proc, info);
967 		sigaddq(proc, NULL, info, KM_NOSLEEP);
968 		info->si_errno = 0;
969 	}
970 	if (sevent & S_HANGUP) {
971 		sevent &= ~S_HANGUP;
972 		info->si_code = POLL_HUP;
973 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
974 		    "strsendsig:proc %p info %p", proc, info);
975 		sigaddq(proc, NULL, info, KM_NOSLEEP);
976 	}
977 	if (sevent & S_HIPRI) {
978 		sevent &= ~S_HIPRI;
979 		info->si_code = POLL_PRI;
980 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
981 		    "strsendsig:proc %p info %p", proc, info);
982 		sigaddq(proc, NULL, info, KM_NOSLEEP);
983 	}
984 	if (sevent & S_RDBAND) {
985 		sevent &= ~S_RDBAND;
986 		if (events & S_BANDURG)
987 			sigtoproc(proc, NULL, SIGURG);
988 		else
989 			sigtoproc(proc, NULL, SIGPOLL);
990 	}
991 	if (sevent & S_WRBAND) {
992 		sevent &= ~S_WRBAND;
993 		sigtoproc(proc, NULL, SIGPOLL);
994 	}
995 	if (sevent & S_INPUT) {
996 		sevent &= ~S_INPUT;
997 		info->si_code = POLL_IN;
998 		info->si_band = band;
999 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1000 		    "strsendsig:proc %p info %p", proc, info);
1001 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1002 		info->si_band = 0;
1003 	}
1004 	if (sevent & S_OUTPUT) {
1005 		sevent &= ~S_OUTPUT;
1006 		info->si_code = POLL_OUT;
1007 		info->si_band = band;
1008 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1009 		    "strsendsig:proc %p info %p", proc, info);
1010 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1011 		info->si_band = 0;
1012 	}
1013 	if (sevent & S_MSG) {
1014 		sevent &= ~S_MSG;
1015 		info->si_code = POLL_MSG;
1016 		info->si_band = band;
1017 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1018 		    "strsendsig:proc %p info %p", proc, info);
1019 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1020 		info->si_band = 0;
1021 	}
1022 	if (sevent & S_RDNORM) {
1023 		sevent &= ~S_RDNORM;
1024 		sigtoproc(proc, NULL, SIGPOLL);
1025 	}
1026 	if (sevent != 0) {
1027 		panic("strsendsig: unknown event(s) %x", sevent);
1028 	}
1029 }
1030 
1031 /*
1032  * Send SIGPOLL/SIGURG signal to all processes and process groups
1033  * registered on the given signal list that want a signal for at
1034  * least one of the specified events.
1035  *
1036  * Must be called with exclusive access to siglist (caller holding sd_lock).
1037  *
1038  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1039  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1040  * while it is in the siglist.
1041  *
1042  * For performance reasons (MP scalability) the code drops pidlock
1043  * when sending signals to a single process.
1044  * When sending to a process group the code holds
1045  * pidlock to prevent the membership in the process group from changing
1046  * while walking the p_pglink list.
1047  */
1048 void
1049 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1050 {
1051 	strsig_t *ssp;
1052 	k_siginfo_t info;
1053 	struct pid *pidp;
1054 	proc_t  *proc;
1055 
1056 	info.si_signo = SIGPOLL;
1057 	info.si_errno = 0;
1058 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1059 		int sevent;
1060 
1061 		sevent = ssp->ss_events & event;
1062 		if (sevent == 0)
1063 			continue;
1064 
1065 		if ((pidp = ssp->ss_pidp) == NULL) {
1066 			/* pid was released but still on event list */
1067 			continue;
1068 		}
1069 
1070 
1071 		if (ssp->ss_pid > 0) {
1072 			/*
1073 			 * XXX This unfortunately still generates
1074 			 * a signal when a fd is closed but
1075 			 * the proc is active.
1076 			 */
1077 			ASSERT(ssp->ss_pid == pidp->pid_id);
1078 
1079 			mutex_enter(&pidlock);
1080 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1081 			if (proc == NULL) {
1082 				mutex_exit(&pidlock);
1083 				continue;
1084 			}
1085 			mutex_enter(&proc->p_lock);
1086 			mutex_exit(&pidlock);
1087 			dosendsig(proc, ssp->ss_events, sevent, &info,
1088 			    band, error);
1089 			mutex_exit(&proc->p_lock);
1090 		} else {
1091 			/*
1092 			 * Send to process group. Hold pidlock across
1093 			 * calls to dosendsig().
1094 			 */
1095 			pid_t pgrp = -ssp->ss_pid;
1096 
1097 			mutex_enter(&pidlock);
1098 			proc = pgfind_zone(pgrp, ALL_ZONES);
1099 			while (proc != NULL) {
1100 				mutex_enter(&proc->p_lock);
1101 				dosendsig(proc, ssp->ss_events, sevent,
1102 				    &info, band, error);
1103 				mutex_exit(&proc->p_lock);
1104 				proc = proc->p_pglink;
1105 			}
1106 			mutex_exit(&pidlock);
1107 		}
1108 	}
1109 }
1110 
1111 /*
1112  * Attach a stream device or module.
1113  * qp is a read queue; the new queue goes in so its next
1114  * read ptr is the argument, and the write queue corresponding
1115  * to the argument points to this queue. Return 0 on success,
1116  * or a non-zero errno on failure.
1117  */
1118 int
1119 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1120     boolean_t is_insert)
1121 {
1122 	major_t			major;
1123 	cdevsw_impl_t		*dp;
1124 	struct streamtab	*str;
1125 	queue_t			*rq;
1126 	queue_t			*wrq;
1127 	uint32_t		qflag;
1128 	uint32_t		sqtype;
1129 	perdm_t			*dmp;
1130 	int			error;
1131 	int			sflag;
1132 
1133 	rq = allocq();
1134 	wrq = _WR(rq);
1135 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1136 
1137 	if (fp != NULL) {
1138 		str = fp->f_str;
1139 		qflag = fp->f_qflag;
1140 		sqtype = fp->f_sqtype;
1141 		dmp = fp->f_dmp;
1142 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1143 		sflag = MODOPEN;
1144 
1145 		/*
1146 		 * stash away a pointer to the module structure so we can
1147 		 * unref it in qdetach.
1148 		 */
1149 		rq->q_fp = fp;
1150 	} else {
1151 		ASSERT(!is_insert);
1152 
1153 		major = getmajor(*devp);
1154 		dp = &devimpl[major];
1155 
1156 		str = dp->d_str;
1157 		ASSERT(str == STREAMSTAB(major));
1158 
1159 		qflag = dp->d_qflag;
1160 		ASSERT(qflag & QISDRV);
1161 		sqtype = dp->d_sqtype;
1162 
1163 		/* create perdm_t if needed */
1164 		if (NEED_DM(dp->d_dmp, qflag))
1165 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1166 
1167 		dmp = dp->d_dmp;
1168 		sflag = 0;
1169 	}
1170 
1171 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1172 	    "qattach:qflag == %X(%X)", qflag, *devp);
1173 
1174 	/* setq might sleep in allocator - avoid holding locks. */
1175 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1176 
1177 	/*
1178 	 * Before calling the module's open routine, set up the q_next
1179 	 * pointer for inserting a module in the middle of a stream.
1180 	 *
1181 	 * Note that we can always set _QINSERTING and set up q_next
1182 	 * pointer for both inserting and pushing a module.  Then there
1183 	 * is no need for the is_insert parameter.  In insertq(), called
1184 	 * by qprocson(), assume that q_next of the new module always points
1185 	 * to the correct queue and use it for insertion.  Everything should
1186 	 * work out fine.  But in the first release of _I_INSERT, we
1187 	 * distinguish between inserting and pushing to make sure that
1188 	 * pushing a module follows the same code path as before.
1189 	 */
1190 	if (is_insert) {
1191 		rq->q_flag |= _QINSERTING;
1192 		rq->q_next = qp;
1193 	}
1194 
1195 	/*
1196 	 * If there is an outer perimeter get exclusive access during
1197 	 * the open procedure.  Bump up the reference count on the queue.
1198 	 */
1199 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1200 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1201 	if (error != 0)
1202 		goto failed;
1203 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1204 	ASSERT(qprocsareon(rq));
1205 	return (0);
1206 
1207 failed:
1208 	rq->q_flag &= ~_QINSERTING;
1209 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1210 		qprocsoff(rq);
1211 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1212 	rq->q_next = wrq->q_next = NULL;
1213 	qdetach(rq, 0, 0, crp, B_FALSE);
1214 	return (error);
1215 }
1216 
1217 /*
1218  * Handle second open of stream. For modules, set the
1219  * last argument to MODOPEN and do not pass any open flags.
1220  * Ignore dummydev since this is not the first open.
1221  */
1222 int
1223 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1224 {
1225 	int	error;
1226 	dev_t dummydev;
1227 	queue_t *wqp = _WR(qp);
1228 
1229 	ASSERT(qp->q_flag & QREADR);
1230 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1231 
1232 	dummydev = *devp;
1233 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1234 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1235 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1236 		mutex_enter(&STREAM(qp)->sd_lock);
1237 		qp->q_stream->sd_flag |= STREOPENFAIL;
1238 		mutex_exit(&STREAM(qp)->sd_lock);
1239 		return (error);
1240 	}
1241 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1242 
1243 	/*
1244 	 * successful open should have done qprocson()
1245 	 */
1246 	ASSERT(qprocsareon(_RD(qp)));
1247 	return (0);
1248 }
1249 
1250 /*
1251  * Detach a stream module or device.
1252  * If clmode == 1 then the module or driver was opened and its
1253  * close routine must be called. If clmode == 0, the module
1254  * or driver was never opened or the open failed, and so its close
1255  * should not be called.
1256  */
1257 void
1258 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1259 {
1260 	queue_t *wqp = _WR(qp);
1261 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1262 
1263 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1264 		stream_runservice(STREAM(qp));
1265 
1266 	if (clmode) {
1267 		/*
1268 		 * Make sure that all the messages on the write side syncq are
1269 		 * processed and nothing is left. Since we are closing, no new
1270 		 * messages may appear there.
1271 		 */
1272 		wait_q_syncq(wqp);
1273 
1274 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1275 		if (is_remove) {
1276 			mutex_enter(QLOCK(qp));
1277 			qp->q_flag |= _QREMOVING;
1278 			mutex_exit(QLOCK(qp));
1279 		}
1280 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1281 		/*
1282 		 * Check that qprocsoff() was actually called.
1283 		 */
1284 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1285 
1286 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1287 	} else {
1288 		disable_svc(qp);
1289 	}
1290 
1291 	/*
1292 	 * Allow any threads blocked in entersq to proceed and discover
1293 	 * the QWCLOSE is set.
1294 	 * Note: This assumes that all users of entersq check QWCLOSE.
1295 	 * Currently runservice is the only entersq that can happen
1296 	 * after removeq has finished.
1297 	 * Removeq will have discarded all messages destined to the closing
1298 	 * pair of queues from the syncq.
1299 	 * NOTE: Calling a function inside an assert is unconventional.
1300 	 * However, it does not cause any problem since flush_syncq() does
1301 	 * not change any state except when it returns non-zero i.e.
1302 	 * when the assert will trigger.
1303 	 */
1304 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1305 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1306 	ASSERT((qp->q_flag & QPERMOD) ||
1307 	    ((qp->q_syncq->sq_head == NULL) &&
1308 	    (wqp->q_syncq->sq_head == NULL)));
1309 
1310 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1311 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1312 	if (qp->q_fp != NULL)
1313 		fmodsw_rele(qp->q_fp);
1314 
1315 	/* freeq removes us from the outer perimeter if any */
1316 	freeq(qp);
1317 }
1318 
1319 /* Prevent service procedures from being called */
1320 void
1321 disable_svc(queue_t *qp)
1322 {
1323 	queue_t *wqp = _WR(qp);
1324 
1325 	ASSERT(qp->q_flag & QREADR);
1326 	mutex_enter(QLOCK(qp));
1327 	qp->q_flag |= QWCLOSE;
1328 	mutex_exit(QLOCK(qp));
1329 	mutex_enter(QLOCK(wqp));
1330 	wqp->q_flag |= QWCLOSE;
1331 	mutex_exit(QLOCK(wqp));
1332 }
1333 
1334 /* Allow service procedures to be called again */
1335 void
1336 enable_svc(queue_t *qp)
1337 {
1338 	queue_t *wqp = _WR(qp);
1339 
1340 	ASSERT(qp->q_flag & QREADR);
1341 	mutex_enter(QLOCK(qp));
1342 	qp->q_flag &= ~QWCLOSE;
1343 	mutex_exit(QLOCK(qp));
1344 	mutex_enter(QLOCK(wqp));
1345 	wqp->q_flag &= ~QWCLOSE;
1346 	mutex_exit(QLOCK(wqp));
1347 }
1348 
1349 /*
1350  * Remove queue from qhead/qtail if it is enabled.
1351  * Only reset QENAB if the queue was removed from the runlist.
1352  * A queue goes through 3 stages:
1353  *	It is on the service list and QENAB is set.
1354  *	It is removed from the service list but QENAB is still set.
1355  *	QENAB gets changed to QINSERVICE.
1356  *	QINSERVICE is reset (when the service procedure is done)
1357  * Thus we can not reset QENAB unless we actually removed it from the service
1358  * queue.
1359  */
1360 void
1361 remove_runlist(queue_t *qp)
1362 {
1363 	if (qp->q_flag & QENAB && qhead != NULL) {
1364 		queue_t *q_chase;
1365 		queue_t *q_curr;
1366 		int removed;
1367 
1368 		mutex_enter(&service_queue);
1369 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1370 		mutex_exit(&service_queue);
1371 		if (removed) {
1372 			STRSTAT(qremoved);
1373 			qp->q_flag &= ~QENAB;
1374 		}
1375 	}
1376 }
1377 
1378 
1379 /*
1380  * Wait for any pending service processing to complete.
1381  * The removal of queues from the runlist is not atomic with the
1382  * clearing of the QENABLED flag and setting the INSERVICE flag.
1383  * consequently it is possible for remove_runlist in strclose
1384  * to not find the queue on the runlist but for it to be QENABLED
1385  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1386  * as well as INSERVICE.
1387  */
1388 void
1389 wait_svc(queue_t *qp)
1390 {
1391 	queue_t *wqp = _WR(qp);
1392 
1393 	ASSERT(qp->q_flag & QREADR);
1394 
1395 	/*
1396 	 * Try to remove queues from qhead/qtail list.
1397 	 */
1398 	if (qhead != NULL) {
1399 		remove_runlist(qp);
1400 		remove_runlist(wqp);
1401 	}
1402 	/*
1403 	 * Wait till the syncqs associated with the queue disappear from the
1404 	 * background processing list.
1405 	 * This only needs to be done for non-PERMOD perimeters since
1406 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1407 	 * when the last module/driver is unloaded.
1408 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1409 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1410 	 * functions remove the queue from its syncq list, so sqthread will not
1411 	 * try to access the queue.
1412 	 */
1413 	if (!(qp->q_flag & QPERMOD)) {
1414 		syncq_t *rsq = qp->q_syncq;
1415 		syncq_t *wsq = wqp->q_syncq;
1416 
1417 		/*
1418 		 * Disable rsq and wsq and wait for any background processing of
1419 		 * syncq to complete.
1420 		 */
1421 		wait_sq_svc(rsq);
1422 		if (wsq != rsq)
1423 			wait_sq_svc(wsq);
1424 	}
1425 
1426 	mutex_enter(QLOCK(qp));
1427 	while (qp->q_flag & (QINSERVICE|QENAB))
1428 		cv_wait(&qp->q_wait, QLOCK(qp));
1429 	mutex_exit(QLOCK(qp));
1430 	mutex_enter(QLOCK(wqp));
1431 	while (wqp->q_flag & (QINSERVICE|QENAB))
1432 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1433 	mutex_exit(QLOCK(wqp));
1434 }
1435 
1436 /*
1437  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1438  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1439  * also be set, and is passed through to allocb_cred_wait().
1440  *
1441  * Returns errno on failure, zero on success.
1442  */
1443 int
1444 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1445 {
1446 	mblk_t *tmp;
1447 	ssize_t  count;
1448 	int error = 0;
1449 
1450 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1451 	    (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1452 
1453 	if (bp->b_datap->db_type == M_IOCTL) {
1454 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1455 	} else {
1456 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1457 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1458 	}
1459 	/*
1460 	 * strdoioctl validates ioc_count, so if this assert fails it
1461 	 * cannot be due to user error.
1462 	 */
1463 	ASSERT(count >= 0);
1464 
1465 	if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr,
1466 	    curproc->p_pid)) == NULL) {
1467 		return (error);
1468 	}
1469 	error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1470 	if (error != 0) {
1471 		freeb(tmp);
1472 		return (error);
1473 	}
1474 	DB_CPID(tmp) = curproc->p_pid;
1475 	tmp->b_wptr += count;
1476 	bp->b_cont = tmp;
1477 
1478 	return (0);
1479 }
1480 
1481 /*
1482  * Copy ioctl data to user-land. Return non-zero errno on failure,
1483  * 0 for success.
1484  */
1485 int
1486 getiocd(mblk_t *bp, char *arg, int copymode)
1487 {
1488 	ssize_t count;
1489 	size_t  n;
1490 	int	error;
1491 
1492 	if (bp->b_datap->db_type == M_IOCACK)
1493 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1494 	else {
1495 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1496 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1497 	}
1498 	ASSERT(count >= 0);
1499 
1500 	for (bp = bp->b_cont; bp && count;
1501 	    count -= n, bp = bp->b_cont, arg += n) {
1502 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1503 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1504 		if (error)
1505 			return (error);
1506 	}
1507 	ASSERT(count == 0);
1508 	return (0);
1509 }
1510 
1511 /*
1512  * Allocate a linkinfo entry given the write queue of the
1513  * bottom module of the top stream and the write queue of the
1514  * stream head of the bottom stream.
1515  */
1516 linkinfo_t *
1517 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1518 {
1519 	linkinfo_t *linkp;
1520 
1521 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1522 
1523 	linkp->li_lblk.l_qtop = qup;
1524 	linkp->li_lblk.l_qbot = qdown;
1525 	linkp->li_fpdown = fpdown;
1526 
1527 	mutex_enter(&strresources);
1528 	linkp->li_next = linkinfo_list;
1529 	linkp->li_prev = NULL;
1530 	if (linkp->li_next)
1531 		linkp->li_next->li_prev = linkp;
1532 	linkinfo_list = linkp;
1533 	linkp->li_lblk.l_index = ++lnk_id;
1534 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1535 	mutex_exit(&strresources);
1536 
1537 	return (linkp);
1538 }
1539 
1540 /*
1541  * Free a linkinfo entry.
1542  */
1543 void
1544 lbfree(linkinfo_t *linkp)
1545 {
1546 	mutex_enter(&strresources);
1547 	if (linkp->li_next)
1548 		linkp->li_next->li_prev = linkp->li_prev;
1549 	if (linkp->li_prev)
1550 		linkp->li_prev->li_next = linkp->li_next;
1551 	else
1552 		linkinfo_list = linkp->li_next;
1553 	mutex_exit(&strresources);
1554 
1555 	kmem_cache_free(linkinfo_cache, linkp);
1556 }
1557 
1558 /*
1559  * Check for a potential linking cycle.
1560  * Return 1 if a link will result in a cycle,
1561  * and 0 otherwise.
1562  */
1563 int
1564 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1565 {
1566 	struct mux_node *np;
1567 	struct mux_edge *ep;
1568 	int i;
1569 	major_t lomaj;
1570 	major_t upmaj;
1571 	/*
1572 	 * if the lower stream is a pipe/FIFO, return, since link
1573 	 * cycles can not happen on pipes/FIFOs
1574 	 */
1575 	if (lostp->sd_vnode->v_type == VFIFO)
1576 		return (0);
1577 
1578 	for (i = 0; i < ss->ss_devcnt; i++) {
1579 		np = &ss->ss_mux_nodes[i];
1580 		MUX_CLEAR(np);
1581 	}
1582 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1583 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1584 	np = &ss->ss_mux_nodes[lomaj];
1585 	for (;;) {
1586 		if (!MUX_DIDVISIT(np)) {
1587 			if (np->mn_imaj == upmaj)
1588 				return (1);
1589 			if (np->mn_outp == NULL) {
1590 				MUX_VISIT(np);
1591 				if (np->mn_originp == NULL)
1592 					return (0);
1593 				np = np->mn_originp;
1594 				continue;
1595 			}
1596 			MUX_VISIT(np);
1597 			np->mn_startp = np->mn_outp;
1598 		} else {
1599 			if (np->mn_startp == NULL) {
1600 				if (np->mn_originp == NULL)
1601 					return (0);
1602 				else {
1603 					np = np->mn_originp;
1604 					continue;
1605 				}
1606 			}
1607 			/*
1608 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1609 			 * ignore the edge and move on. ep->me_nodep gets
1610 			 * set to NULL in mux_addedge() if it is a FIFO.
1611 			 *
1612 			 */
1613 			ep = np->mn_startp;
1614 			np->mn_startp = ep->me_nextp;
1615 			if (ep->me_nodep == NULL)
1616 				continue;
1617 			ep->me_nodep->mn_originp = np;
1618 			np = ep->me_nodep;
1619 		}
1620 	}
1621 }
1622 
1623 /*
1624  * Find linkinfo entry corresponding to the parameters.
1625  */
1626 linkinfo_t *
1627 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1628 {
1629 	linkinfo_t *linkp;
1630 	struct mux_edge *mep;
1631 	struct mux_node *mnp;
1632 	queue_t *qup;
1633 
1634 	mutex_enter(&strresources);
1635 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1636 		qup = getendq(stp->sd_wrq);
1637 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1638 			if ((qup == linkp->li_lblk.l_qtop) &&
1639 			    (!index || (index == linkp->li_lblk.l_index))) {
1640 				mutex_exit(&strresources);
1641 				return (linkp);
1642 			}
1643 		}
1644 	} else {
1645 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1646 		mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1647 		mep = mnp->mn_outp;
1648 		while (mep) {
1649 			if ((index == 0) || (index == mep->me_muxid))
1650 				break;
1651 			mep = mep->me_nextp;
1652 		}
1653 		if (!mep) {
1654 			mutex_exit(&strresources);
1655 			return (NULL);
1656 		}
1657 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1658 			if ((!linkp->li_lblk.l_qtop) &&
1659 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1660 				mutex_exit(&strresources);
1661 				return (linkp);
1662 			}
1663 		}
1664 	}
1665 	mutex_exit(&strresources);
1666 	return (NULL);
1667 }
1668 
1669 /*
1670  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1671  * last queue on the chain and return it.
1672  */
1673 queue_t *
1674 getendq(queue_t *q)
1675 {
1676 	ASSERT(q != NULL);
1677 	while (_SAMESTR(q))
1678 		q = q->q_next;
1679 	return (q);
1680 }
1681 
1682 /*
1683  * Wait for the syncq count to drop to zero.
1684  * sq could be either outer or inner.
1685  */
1686 
1687 static void
1688 wait_syncq(syncq_t *sq)
1689 {
1690 	uint16_t count;
1691 
1692 	mutex_enter(SQLOCK(sq));
1693 	count = sq->sq_count;
1694 	SQ_PUTLOCKS_ENTER(sq);
1695 	SUM_SQ_PUTCOUNTS(sq, count);
1696 	while (count != 0) {
1697 		sq->sq_flags |= SQ_WANTWAKEUP;
1698 		SQ_PUTLOCKS_EXIT(sq);
1699 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1700 		count = sq->sq_count;
1701 		SQ_PUTLOCKS_ENTER(sq);
1702 		SUM_SQ_PUTCOUNTS(sq, count);
1703 	}
1704 	SQ_PUTLOCKS_EXIT(sq);
1705 	mutex_exit(SQLOCK(sq));
1706 }
1707 
1708 /*
1709  * Wait while there are any messages for the queue in its syncq.
1710  */
1711 static void
1712 wait_q_syncq(queue_t *q)
1713 {
1714 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1715 		syncq_t *sq = q->q_syncq;
1716 
1717 		mutex_enter(SQLOCK(sq));
1718 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1719 			sq->sq_flags |= SQ_WANTWAKEUP;
1720 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1721 		}
1722 		mutex_exit(SQLOCK(sq));
1723 	}
1724 }
1725 
1726 
1727 int
1728 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1729     int lhlink)
1730 {
1731 	struct stdata *stp;
1732 	struct strioctl strioc;
1733 	struct linkinfo *linkp;
1734 	struct stdata *stpdown;
1735 	struct streamtab *str;
1736 	queue_t *passq;
1737 	syncq_t *passyncq;
1738 	queue_t *rq;
1739 	cdevsw_impl_t *dp;
1740 	uint32_t qflag;
1741 	uint32_t sqtype;
1742 	perdm_t *dmp;
1743 	int error = 0;
1744 	netstack_t *ns;
1745 	str_stack_t *ss;
1746 
1747 	stp = vp->v_stream;
1748 	TRACE_1(TR_FAC_STREAMS_FR,
1749 	    TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1750 	/*
1751 	 * Test for invalid upper stream
1752 	 */
1753 	if (stp->sd_flag & STRHUP) {
1754 		return (ENXIO);
1755 	}
1756 	if (vp->v_type == VFIFO) {
1757 		return (EINVAL);
1758 	}
1759 	if (stp->sd_strtab == NULL) {
1760 		return (EINVAL);
1761 	}
1762 	if (!stp->sd_strtab->st_muxwinit) {
1763 		return (EINVAL);
1764 	}
1765 	if (fpdown == NULL) {
1766 		return (EBADF);
1767 	}
1768 	ns = netstack_find_by_cred(crp);
1769 	ASSERT(ns != NULL);
1770 	ss = ns->netstack_str;
1771 	ASSERT(ss != NULL);
1772 
1773 	if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1774 		netstack_rele(ss->ss_netstack);
1775 		return (EINVAL);
1776 	}
1777 	mutex_enter(&muxifier);
1778 	if (stp->sd_flag & STPLEX) {
1779 		mutex_exit(&muxifier);
1780 		netstack_rele(ss->ss_netstack);
1781 		return (ENXIO);
1782 	}
1783 
1784 	/*
1785 	 * Test for invalid lower stream.
1786 	 * The check for the v_type != VFIFO and having a major
1787 	 * number not >= devcnt is done to avoid problems with
1788 	 * adding mux_node entry past the end of mux_nodes[].
1789 	 * For FIFO's we don't add an entry so this isn't a
1790 	 * problem.
1791 	 */
1792 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1793 	    (stpdown == stp) || (stpdown->sd_flag &
1794 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1795 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1796 	    (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1797 	    linkcycle(stp, stpdown, ss)) {
1798 		mutex_exit(&muxifier);
1799 		netstack_rele(ss->ss_netstack);
1800 		return (EINVAL);
1801 	}
1802 	TRACE_1(TR_FAC_STREAMS_FR,
1803 	    TR_STPDOWN, "stpdown:%p", stpdown);
1804 	rq = getendq(stp->sd_wrq);
1805 	if (cmd == I_PLINK)
1806 		rq = NULL;
1807 
1808 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1809 
1810 	strioc.ic_cmd = cmd;
1811 	strioc.ic_timout = INFTIM;
1812 	strioc.ic_len = sizeof (struct linkblk);
1813 	strioc.ic_dp = (char *)&linkp->li_lblk;
1814 
1815 	/*
1816 	 * STRPLUMB protects plumbing changes and should be set before
1817 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1818 	 * and cleared in the end of mlink when passthru queue is removed.
1819 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1820 	 * queue is in-place (it is not a proper module and doesn't have open
1821 	 * entry point).
1822 	 *
1823 	 * STPLEX prevents any threads from entering the stream from above. It
1824 	 * can't be set before the call to link_addpassthru() because putnext
1825 	 * from below may cause stream head I/O routines to be called and these
1826 	 * routines assert that STPLEX is not set. After link_addpassthru()
1827 	 * nothing may come from below since the pass queue syncq is blocked.
1828 	 * Note also that STPLEX should be cleared before the call to
1829 	 * link_rempassthru() since when messages start flowing to the stream
1830 	 * head (e.g. because of message propagation from the pass queue) stream
1831 	 * head I/O routines may be called with STPLEX flag set.
1832 	 *
1833 	 * When STPLEX is set, nothing may come into the stream from above and
1834 	 * it is safe to do a setq which will change stream head. So, the
1835 	 * correct sequence of actions is:
1836 	 *
1837 	 * 1) Set STRPLUMB
1838 	 * 2) Call link_addpassthru()
1839 	 * 3) Set STPLEX
1840 	 * 4) Call setq and update the stream state
1841 	 * 5) Clear STPLEX
1842 	 * 6) Call link_rempassthru()
1843 	 * 7) Clear STRPLUMB
1844 	 *
1845 	 * The same sequence applies to munlink() code.
1846 	 */
1847 	mutex_enter(&stpdown->sd_lock);
1848 	stpdown->sd_flag |= STRPLUMB;
1849 	mutex_exit(&stpdown->sd_lock);
1850 	/*
1851 	 * Add passthru queue below lower mux. This will block
1852 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1853 	 */
1854 	passq = link_addpassthru(stpdown);
1855 
1856 	mutex_enter(&stpdown->sd_lock);
1857 	stpdown->sd_flag |= STPLEX;
1858 	mutex_exit(&stpdown->sd_lock);
1859 
1860 	rq = _RD(stpdown->sd_wrq);
1861 	/*
1862 	 * There may be messages in the streamhead's syncq due to messages
1863 	 * that arrived before link_addpassthru() was done. To avoid
1864 	 * background processing of the syncq happening simultaneous with
1865 	 * setq processing, we disable the streamhead syncq and wait until
1866 	 * existing background thread finishes working on it.
1867 	 */
1868 	wait_sq_svc(rq->q_syncq);
1869 	passyncq = passq->q_syncq;
1870 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1871 		blocksq(passyncq, SQ_BLOCKED, 0);
1872 
1873 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1874 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1875 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1876 
1877 	/* setq might sleep in allocator - avoid holding locks. */
1878 	/* Note: we are holding muxifier here. */
1879 
1880 	str = stp->sd_strtab;
1881 	dp = &devimpl[getmajor(vp->v_rdev)];
1882 	ASSERT(dp->d_str == str);
1883 
1884 	qflag = dp->d_qflag;
1885 	sqtype = dp->d_sqtype;
1886 
1887 	/* create perdm_t if needed */
1888 	if (NEED_DM(dp->d_dmp, qflag))
1889 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1890 
1891 	dmp = dp->d_dmp;
1892 
1893 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1894 	    B_TRUE);
1895 
1896 	/*
1897 	 * XXX Remove any "odd" messages from the queue.
1898 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1899 	 */
1900 	error = strdoioctl(stp, &strioc, FNATIVE,
1901 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1902 	if (error != 0) {
1903 		lbfree(linkp);
1904 
1905 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1906 			blocksq(passyncq, SQ_BLOCKED, 0);
1907 		/*
1908 		 * Restore the stream head queue and then remove
1909 		 * the passq. Turn off STPLEX before we turn on
1910 		 * the stream by removing the passq.
1911 		 */
1912 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1913 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1914 		    B_TRUE);
1915 
1916 		mutex_enter(&stpdown->sd_lock);
1917 		stpdown->sd_flag &= ~STPLEX;
1918 		mutex_exit(&stpdown->sd_lock);
1919 
1920 		link_rempassthru(passq);
1921 
1922 		mutex_enter(&stpdown->sd_lock);
1923 		stpdown->sd_flag &= ~STRPLUMB;
1924 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1925 		cv_broadcast(&stpdown->sd_monitor);
1926 		mutex_exit(&stpdown->sd_lock);
1927 
1928 		mutex_exit(&muxifier);
1929 		netstack_rele(ss->ss_netstack);
1930 		return (error);
1931 	}
1932 	mutex_enter(&fpdown->f_tlock);
1933 	fpdown->f_count++;
1934 	mutex_exit(&fpdown->f_tlock);
1935 
1936 	/*
1937 	 * if we've made it here the linkage is all set up so we should also
1938 	 * set up the layered driver linkages
1939 	 */
1940 
1941 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1942 	if (cmd == I_LINK) {
1943 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1944 	} else {
1945 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1946 	}
1947 
1948 	link_rempassthru(passq);
1949 
1950 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1951 
1952 	/*
1953 	 * Mark the upper stream as having dependent links
1954 	 * so that strclose can clean it up.
1955 	 */
1956 	if (cmd == I_LINK) {
1957 		mutex_enter(&stp->sd_lock);
1958 		stp->sd_flag |= STRHASLINKS;
1959 		mutex_exit(&stp->sd_lock);
1960 	}
1961 	/*
1962 	 * Wake up any other processes that may have been
1963 	 * waiting on the lower stream. These will all
1964 	 * error out.
1965 	 */
1966 	mutex_enter(&stpdown->sd_lock);
1967 	/* The passthru module is removed so we may release STRPLUMB */
1968 	stpdown->sd_flag &= ~STRPLUMB;
1969 	cv_broadcast(&rq->q_wait);
1970 	cv_broadcast(&_WR(rq)->q_wait);
1971 	cv_broadcast(&stpdown->sd_monitor);
1972 	mutex_exit(&stpdown->sd_lock);
1973 	mutex_exit(&muxifier);
1974 	*rvalp = linkp->li_lblk.l_index;
1975 	netstack_rele(ss->ss_netstack);
1976 	return (0);
1977 }
1978 
1979 int
1980 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1981 {
1982 	int		ret;
1983 	struct file	*fpdown;
1984 
1985 	fpdown = getf(arg);
1986 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1987 	if (fpdown != NULL)
1988 		releasef(arg);
1989 	return (ret);
1990 }
1991 
1992 /*
1993  * Unlink a multiplexor link. Stp is the controlling stream for the
1994  * link, and linkp points to the link's entry in the linkinfo list.
1995  * The muxifier lock must be held on entry and is dropped on exit.
1996  *
1997  * NOTE : Currently it is assumed that mux would process all the messages
1998  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
1999  * of the mux to handle all the messages that arrive before UNLINK.
2000  * If the mux has to send down messages on its lower stream before
2001  * ACKing I_UNLINK, then it *should* know to handle messages even
2002  * after the UNLINK is acked (actually it should be able to handle till we
2003  * re-block the read side of the pass queue here). If the mux does not
2004  * open up the lower stream, any messages that arrive during UNLINK
2005  * will be put in the stream head. In the case of lower stream opening
2006  * up, some messages might land in the stream head depending on when
2007  * the message arrived and when the read side of the pass queue was
2008  * re-blocked.
2009  */
2010 int
2011 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2012     str_stack_t *ss)
2013 {
2014 	struct strioctl strioc;
2015 	struct stdata *stpdown;
2016 	queue_t *rq, *wrq;
2017 	queue_t	*passq;
2018 	syncq_t *passyncq;
2019 	int error = 0;
2020 	file_t *fpdown;
2021 
2022 	ASSERT(MUTEX_HELD(&muxifier));
2023 
2024 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2025 
2026 	/*
2027 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2028 	 */
2029 	mutex_enter(&stpdown->sd_lock);
2030 	stpdown->sd_flag |= STRPLUMB;
2031 	mutex_exit(&stpdown->sd_lock);
2032 
2033 	/*
2034 	 * Add passthru queue below lower mux. This will block
2035 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2036 	 */
2037 	passq = link_addpassthru(stpdown);
2038 
2039 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2040 		strioc.ic_cmd = I_UNLINK;
2041 	else
2042 		strioc.ic_cmd = I_PUNLINK;
2043 	strioc.ic_timout = INFTIM;
2044 	strioc.ic_len = sizeof (struct linkblk);
2045 	strioc.ic_dp = (char *)&linkp->li_lblk;
2046 
2047 	error = strdoioctl(stp, &strioc, FNATIVE,
2048 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2049 
2050 	/*
2051 	 * If there was an error and this is not called via strclose,
2052 	 * return to the user. Otherwise, pretend there was no error
2053 	 * and close the link.
2054 	 */
2055 	if (error) {
2056 		if (flag & LINKCLOSE) {
2057 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2058 			    "unlink ioctl, closing anyway (%d)\n", error);
2059 		} else {
2060 			link_rempassthru(passq);
2061 			mutex_enter(&stpdown->sd_lock);
2062 			stpdown->sd_flag &= ~STRPLUMB;
2063 			cv_broadcast(&stpdown->sd_monitor);
2064 			mutex_exit(&stpdown->sd_lock);
2065 			mutex_exit(&muxifier);
2066 			return (error);
2067 		}
2068 	}
2069 
2070 	mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2071 	fpdown = linkp->li_fpdown;
2072 	lbfree(linkp);
2073 
2074 	/*
2075 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2076 	 * can slow others down. It's okay to since attempts to mlink() this
2077 	 * stream will be stopped because STPLEX is still set in the stdata
2078 	 * structure, and munlink() is stopped because mux_rmvedge() and
2079 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2080 	 * respectively.  Note that we defer the closef() of fpdown until
2081 	 * after we drop muxifier since strclose() can call munlinkall().
2082 	 */
2083 	mutex_exit(&muxifier);
2084 
2085 	wrq = stpdown->sd_wrq;
2086 	rq = _RD(wrq);
2087 
2088 	/*
2089 	 * Get rid of outstanding service procedure runs, before we make
2090 	 * it a stream head, since a stream head doesn't have any service
2091 	 * procedure.
2092 	 */
2093 	disable_svc(rq);
2094 	wait_svc(rq);
2095 
2096 	/*
2097 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2098 	 * is queued up to be finished. mux should take care that nothing is
2099 	 * send down to this queue. We should do it now as we're going to block
2100 	 * passyncq if it was unblocked.
2101 	 */
2102 	if (wrq->q_flag & QPERMOD) {
2103 		syncq_t	*sq = wrq->q_syncq;
2104 
2105 		mutex_enter(SQLOCK(sq));
2106 		while (wrq->q_sqflags & Q_SQQUEUED) {
2107 			sq->sq_flags |= SQ_WANTWAKEUP;
2108 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2109 		}
2110 		mutex_exit(SQLOCK(sq));
2111 	}
2112 	passyncq = passq->q_syncq;
2113 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2114 
2115 		syncq_t *sq, *outer;
2116 
2117 		/*
2118 		 * Messages could be flowing from underneath. We will
2119 		 * block the read side of the passq. This would be
2120 		 * sufficient for QPAIR and QPERQ muxes to ensure
2121 		 * that no data is flowing up into this queue
2122 		 * and hence no thread active in this instance of
2123 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2124 		 * could be messages on the inner and outer/inner
2125 		 * syncqs respectively. We will wait for them to drain.
2126 		 * Because passq is blocked messages end up in the syncq
2127 		 * And qfill_syncq could possibly end up setting QFULL
2128 		 * which will access the rq->q_flag. Hence, we have to
2129 		 * acquire the QLOCK in setq.
2130 		 *
2131 		 * XXX Messages can also flow from top into this
2132 		 * queue though the unlink is over (Ex. some instance
2133 		 * in putnext() called from top that has still not
2134 		 * accessed this queue. And also putq(lowerq) ?).
2135 		 * Solution : How about blocking the l_qtop queue ?
2136 		 * Do we really care about such pure D_MP muxes ?
2137 		 */
2138 
2139 		blocksq(passyncq, SQ_BLOCKED, 0);
2140 
2141 		sq = rq->q_syncq;
2142 		if ((outer = sq->sq_outer) != NULL) {
2143 
2144 			/*
2145 			 * We have to just wait for the outer sq_count
2146 			 * drop to zero. As this does not prevent new
2147 			 * messages to enter the outer perimeter, this
2148 			 * is subject to starvation.
2149 			 *
2150 			 * NOTE :Because of blocksq above, messages could
2151 			 * be in the inner syncq only because of some
2152 			 * thread holding the outer perimeter exclusively.
2153 			 * Hence it would be sufficient to wait for the
2154 			 * exclusive holder of the outer perimeter to drain
2155 			 * the inner and outer syncqs. But we will not depend
2156 			 * on this feature and hence check the inner syncqs
2157 			 * separately.
2158 			 */
2159 			wait_syncq(outer);
2160 		}
2161 
2162 
2163 		/*
2164 		 * There could be messages destined for
2165 		 * this queue. Let the exclusive holder
2166 		 * drain it.
2167 		 */
2168 
2169 		wait_syncq(sq);
2170 		ASSERT((rq->q_flag & QPERMOD) ||
2171 		    ((rq->q_syncq->sq_head == NULL) &&
2172 		    (_WR(rq)->q_syncq->sq_head == NULL)));
2173 	}
2174 
2175 	/*
2176 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2177 	 * case as we don't disable its syncq or remove it off the syncq
2178 	 * service list.
2179 	 */
2180 	if (rq->q_flag & QPERMOD) {
2181 		syncq_t	*sq = rq->q_syncq;
2182 
2183 		mutex_enter(SQLOCK(sq));
2184 		while (rq->q_sqflags & Q_SQQUEUED) {
2185 			sq->sq_flags |= SQ_WANTWAKEUP;
2186 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2187 		}
2188 		mutex_exit(SQLOCK(sq));
2189 	}
2190 
2191 	/*
2192 	 * flush_syncq changes states only when there are some messages to
2193 	 * free, i.e. when it returns non-zero value to return.
2194 	 */
2195 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2196 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2197 
2198 	/*
2199 	 * Nobody else should know about this queue now.
2200 	 * If the mux did not process the messages before
2201 	 * acking the I_UNLINK, free them now.
2202 	 */
2203 
2204 	flushq(rq, FLUSHALL);
2205 	flushq(_WR(rq), FLUSHALL);
2206 
2207 	/*
2208 	 * Convert the mux lower queue into a stream head queue.
2209 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2210 	 */
2211 	rq->q_ptr = wrq->q_ptr = stpdown;
2212 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2213 
2214 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2215 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2216 
2217 	enable_svc(rq);
2218 
2219 	/*
2220 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2221 	 * needs to be set to prevent reopen() of the stream - such reopen may
2222 	 * try to call non-existent pass queue open routine and panic.
2223 	 */
2224 	mutex_enter(&stpdown->sd_lock);
2225 	stpdown->sd_flag &= ~STPLEX;
2226 	mutex_exit(&stpdown->sd_lock);
2227 
2228 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2229 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2230 
2231 	/* clean up the layered driver linkages */
2232 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2233 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2234 	} else {
2235 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2236 	}
2237 
2238 	link_rempassthru(passq);
2239 
2240 	/*
2241 	 * Now all plumbing changes are finished and STRPLUMB is no
2242 	 * longer needed.
2243 	 */
2244 	mutex_enter(&stpdown->sd_lock);
2245 	stpdown->sd_flag &= ~STRPLUMB;
2246 	cv_broadcast(&stpdown->sd_monitor);
2247 	mutex_exit(&stpdown->sd_lock);
2248 
2249 	(void) closef(fpdown);
2250 	return (0);
2251 }
2252 
2253 /*
2254  * Unlink all multiplexor links for which stp is the controlling stream.
2255  * Return 0, or a non-zero errno on failure.
2256  */
2257 int
2258 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2259 {
2260 	linkinfo_t *linkp;
2261 	int error = 0;
2262 
2263 	mutex_enter(&muxifier);
2264 	while (linkp = findlinks(stp, 0, flag, ss)) {
2265 		/*
2266 		 * munlink() releases the muxifier lock.
2267 		 */
2268 		if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2269 			return (error);
2270 		mutex_enter(&muxifier);
2271 	}
2272 	mutex_exit(&muxifier);
2273 	return (0);
2274 }
2275 
2276 /*
2277  * A multiplexor link has been made. Add an
2278  * edge to the directed graph.
2279  */
2280 void
2281 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2282 {
2283 	struct mux_node *np;
2284 	struct mux_edge *ep;
2285 	major_t upmaj;
2286 	major_t lomaj;
2287 
2288 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2289 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2290 	np = &ss->ss_mux_nodes[upmaj];
2291 	if (np->mn_outp) {
2292 		ep = np->mn_outp;
2293 		while (ep->me_nextp)
2294 			ep = ep->me_nextp;
2295 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2296 		ep = ep->me_nextp;
2297 	} else {
2298 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2299 		ep = np->mn_outp;
2300 	}
2301 	ep->me_nextp = NULL;
2302 	ep->me_muxid = muxid;
2303 	/*
2304 	 * Save the dev_t for the purposes of str_stack_shutdown.
2305 	 * str_stack_shutdown assumes that the device allows reopen, since
2306 	 * this dev_t is the one after any cloning by xx_open().
2307 	 * Would prefer finding the dev_t from before any cloning,
2308 	 * but specfs doesn't retain that.
2309 	 */
2310 	ep->me_dev = upstp->sd_vnode->v_rdev;
2311 	if (lostp->sd_vnode->v_type == VFIFO)
2312 		ep->me_nodep = NULL;
2313 	else
2314 		ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2315 }
2316 
2317 /*
2318  * A multiplexor link has been removed. Remove the
2319  * edge in the directed graph.
2320  */
2321 void
2322 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2323 {
2324 	struct mux_node *np;
2325 	struct mux_edge *ep;
2326 	struct mux_edge *pep = NULL;
2327 	major_t upmaj;
2328 
2329 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2330 	np = &ss->ss_mux_nodes[upmaj];
2331 	ASSERT(np->mn_outp != NULL);
2332 	ep = np->mn_outp;
2333 	while (ep) {
2334 		if (ep->me_muxid == muxid) {
2335 			if (pep)
2336 				pep->me_nextp = ep->me_nextp;
2337 			else
2338 				np->mn_outp = ep->me_nextp;
2339 			kmem_free(ep, sizeof (struct mux_edge));
2340 			return;
2341 		}
2342 		pep = ep;
2343 		ep = ep->me_nextp;
2344 	}
2345 	ASSERT(0);	/* should not reach here */
2346 }
2347 
2348 /*
2349  * Translate the device flags (from conf.h) to the corresponding
2350  * qflag and sq_flag (type) values.
2351  */
2352 int
2353 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2354     uint32_t *sqtypep)
2355 {
2356 	uint32_t qflag = 0;
2357 	uint32_t sqtype = 0;
2358 
2359 	if (devflag & _D_OLD)
2360 		goto bad;
2361 
2362 	/* Inner perimeter presence and scope */
2363 	switch (devflag & D_MTINNER_MASK) {
2364 	case D_MP:
2365 		qflag |= QMTSAFE;
2366 		sqtype |= SQ_CI;
2367 		break;
2368 	case D_MTPERQ|D_MP:
2369 		qflag |= QPERQ;
2370 		break;
2371 	case D_MTQPAIR|D_MP:
2372 		qflag |= QPAIR;
2373 		break;
2374 	case D_MTPERMOD|D_MP:
2375 		qflag |= QPERMOD;
2376 		break;
2377 	default:
2378 		goto bad;
2379 	}
2380 
2381 	/* Outer perimeter */
2382 	if (devflag & D_MTOUTPERIM) {
2383 		switch (devflag & D_MTINNER_MASK) {
2384 		case D_MP:
2385 		case D_MTPERQ|D_MP:
2386 		case D_MTQPAIR|D_MP:
2387 			break;
2388 		default:
2389 			goto bad;
2390 		}
2391 		qflag |= QMTOUTPERIM;
2392 	}
2393 
2394 	/* Inner perimeter modifiers */
2395 	if (devflag & D_MTINNER_MOD) {
2396 		switch (devflag & D_MTINNER_MASK) {
2397 		case D_MP:
2398 			goto bad;
2399 		default:
2400 			break;
2401 		}
2402 		if (devflag & D_MTPUTSHARED)
2403 			sqtype |= SQ_CIPUT;
2404 		if (devflag & _D_MTOCSHARED) {
2405 			/*
2406 			 * The code in putnext assumes that it has the
2407 			 * highest concurrency by not checking sq_count.
2408 			 * Thus _D_MTOCSHARED can only be supported when
2409 			 * D_MTPUTSHARED is set.
2410 			 */
2411 			if (!(devflag & D_MTPUTSHARED))
2412 				goto bad;
2413 			sqtype |= SQ_CIOC;
2414 		}
2415 		if (devflag & _D_MTCBSHARED) {
2416 			/*
2417 			 * The code in putnext assumes that it has the
2418 			 * highest concurrency by not checking sq_count.
2419 			 * Thus _D_MTCBSHARED can only be supported when
2420 			 * D_MTPUTSHARED is set.
2421 			 */
2422 			if (!(devflag & D_MTPUTSHARED))
2423 				goto bad;
2424 			sqtype |= SQ_CICB;
2425 		}
2426 		if (devflag & _D_MTSVCSHARED) {
2427 			/*
2428 			 * The code in putnext assumes that it has the
2429 			 * highest concurrency by not checking sq_count.
2430 			 * Thus _D_MTSVCSHARED can only be supported when
2431 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2432 			 * supported only for QPERMOD.
2433 			 */
2434 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2435 				goto bad;
2436 			sqtype |= SQ_CISVC;
2437 		}
2438 	}
2439 
2440 	/* Default outer perimeter concurrency */
2441 	sqtype |= SQ_CO;
2442 
2443 	/* Outer perimeter modifiers */
2444 	if (devflag & D_MTOCEXCL) {
2445 		if (!(devflag & D_MTOUTPERIM)) {
2446 			/* No outer perimeter */
2447 			goto bad;
2448 		}
2449 		sqtype &= ~SQ_COOC;
2450 	}
2451 
2452 	/* Synchronous Streams extended qinit structure */
2453 	if (devflag & D_SYNCSTR)
2454 		qflag |= QSYNCSTR;
2455 
2456 	/*
2457 	 * Private flag used by a transport module to indicate
2458 	 * to sockfs that it supports direct-access mode without
2459 	 * having to go through STREAMS.
2460 	 */
2461 	if (devflag & _D_DIRECT) {
2462 		/* Reject unless the module is fully-MT (no perimeter) */
2463 		if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2464 			goto bad;
2465 		qflag |= _QDIRECT;
2466 	}
2467 
2468 	/*
2469 	 * Private flag used to indicate that a streams module should only
2470 	 * be pushed once. The TTY streams modules have this flag since if
2471 	 * libc believes itself to be an xpg4 process then it will
2472 	 * automatically and unconditionally push them when a PTS device is
2473 	 * opened. If an application is not aware of this then without this
2474 	 * flag we would end up with duplicate modules.
2475 	 */
2476 	if (devflag & _D_SINGLE_INSTANCE)
2477 		qflag |= _QSINGLE_INSTANCE;
2478 
2479 	*qflagp = qflag;
2480 	*sqtypep = sqtype;
2481 	return (0);
2482 
2483 bad:
2484 	cmn_err(CE_WARN,
2485 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2486 	    (int)(qflag & D_MTSAFETY_MASK),
2487 	    stp->st_rdinit->qi_minfo->mi_idname);
2488 
2489 	return (EINVAL);
2490 }
2491 
2492 /*
2493  * Set the interface values for a pair of queues (qinit structure,
2494  * packet sizes, water marks).
2495  * setq assumes that the caller does not have a claim (entersq or claimq)
2496  * on the queue.
2497  */
2498 void
2499 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2500     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2501 {
2502 	queue_t *wq;
2503 	syncq_t	*sq, *outer;
2504 
2505 	ASSERT(rq->q_flag & QREADR);
2506 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2507 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2508 
2509 	wq = _WR(rq);
2510 	rq->q_qinfo = rinit;
2511 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2512 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2513 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2514 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2515 	wq->q_qinfo = winit;
2516 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2517 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2518 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2519 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2520 
2521 	/* Remove old syncqs */
2522 	sq = rq->q_syncq;
2523 	outer = sq->sq_outer;
2524 	if (outer != NULL) {
2525 		ASSERT(wq->q_syncq->sq_outer == outer);
2526 		outer_remove(outer, rq->q_syncq);
2527 		if (wq->q_syncq != rq->q_syncq)
2528 			outer_remove(outer, wq->q_syncq);
2529 	}
2530 	ASSERT(sq->sq_outer == NULL);
2531 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2532 
2533 	if (sq != SQ(rq)) {
2534 		if (!(rq->q_flag & QPERMOD))
2535 			free_syncq(sq);
2536 		if (wq->q_syncq == rq->q_syncq)
2537 			wq->q_syncq = NULL;
2538 		rq->q_syncq = NULL;
2539 	}
2540 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2541 	    wq->q_syncq != SQ(rq)) {
2542 		free_syncq(wq->q_syncq);
2543 		wq->q_syncq = NULL;
2544 	}
2545 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2546 	    rq->q_syncq->sq_tail == NULL));
2547 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2548 	    wq->q_syncq->sq_tail == NULL));
2549 
2550 	if (!(rq->q_flag & QPERMOD) &&
2551 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2552 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2553 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2554 		    rq->q_syncq->sq_nciputctrl, 0);
2555 		ASSERT(ciputctrl_cache != NULL);
2556 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2557 		rq->q_syncq->sq_ciputctrl = NULL;
2558 		rq->q_syncq->sq_nciputctrl = 0;
2559 	}
2560 
2561 	if (!(wq->q_flag & QPERMOD) &&
2562 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2563 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2564 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2565 		    wq->q_syncq->sq_nciputctrl, 0);
2566 		ASSERT(ciputctrl_cache != NULL);
2567 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2568 		wq->q_syncq->sq_ciputctrl = NULL;
2569 		wq->q_syncq->sq_nciputctrl = 0;
2570 	}
2571 
2572 	sq = SQ(rq);
2573 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2574 	ASSERT(sq->sq_outer == NULL);
2575 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2576 
2577 	/*
2578 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2579 	 * bits in sq_flag based on the sqtype.
2580 	 */
2581 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2582 
2583 	rq->q_syncq = wq->q_syncq = sq;
2584 	sq->sq_type = sqtype;
2585 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2586 
2587 	/*
2588 	 *  We are making sq_svcflags zero,
2589 	 *  resetting SQ_DISABLED in case it was set by
2590 	 *  wait_svc() in the munlink path.
2591 	 *
2592 	 */
2593 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2594 	sq->sq_svcflags = 0;
2595 
2596 	/*
2597 	 * We need to acquire the lock here for the mlink and munlink case,
2598 	 * where canputnext, backenable, etc can access the q_flag.
2599 	 */
2600 	if (lock_needed) {
2601 		mutex_enter(QLOCK(rq));
2602 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2603 		mutex_exit(QLOCK(rq));
2604 		mutex_enter(QLOCK(wq));
2605 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2606 		mutex_exit(QLOCK(wq));
2607 	} else {
2608 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2609 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2610 	}
2611 
2612 	if (qflag & QPERQ) {
2613 		/* Allocate a separate syncq for the write side */
2614 		sq = new_syncq();
2615 		sq->sq_type = rq->q_syncq->sq_type;
2616 		sq->sq_flags = rq->q_syncq->sq_flags;
2617 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2618 		    sq->sq_oprev == NULL);
2619 		wq->q_syncq = sq;
2620 	}
2621 	if (qflag & QPERMOD) {
2622 		sq = dmp->dm_sq;
2623 
2624 		/*
2625 		 * Assert that we do have an inner perimeter syncq and that it
2626 		 * does not have an outer perimeter associated with it.
2627 		 */
2628 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2629 		    sq->sq_oprev == NULL);
2630 		rq->q_syncq = wq->q_syncq = sq;
2631 	}
2632 	if (qflag & QMTOUTPERIM) {
2633 		outer = dmp->dm_sq;
2634 
2635 		ASSERT(outer->sq_outer == NULL);
2636 		outer_insert(outer, rq->q_syncq);
2637 		if (wq->q_syncq != rq->q_syncq)
2638 			outer_insert(outer, wq->q_syncq);
2639 	}
2640 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2641 	    (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2642 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2643 	    (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2644 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2645 
2646 	/*
2647 	 * Initialize struio() types.
2648 	 */
2649 	rq->q_struiot =
2650 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2651 	wq->q_struiot =
2652 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2653 }
2654 
2655 perdm_t *
2656 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2657 {
2658 	syncq_t	*sq;
2659 	perdm_t	**pp;
2660 	perdm_t	*p;
2661 	perdm_t	*dmp;
2662 
2663 	ASSERT(str != NULL);
2664 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2665 
2666 	rw_enter(&perdm_rwlock, RW_READER);
2667 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2668 		if (p->dm_str == str) {	/* found one */
2669 			atomic_inc_32(&(p->dm_ref));
2670 			rw_exit(&perdm_rwlock);
2671 			return (p);
2672 		}
2673 	}
2674 	rw_exit(&perdm_rwlock);
2675 
2676 	sq = new_syncq();
2677 	if (qflag & QPERMOD) {
2678 		sq->sq_type = sqtype | SQ_PERMOD;
2679 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2680 	} else {
2681 		ASSERT(qflag & QMTOUTPERIM);
2682 		sq->sq_onext = sq->sq_oprev = sq;
2683 	}
2684 
2685 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2686 	dmp->dm_sq = sq;
2687 	dmp->dm_str = str;
2688 	dmp->dm_ref = 1;
2689 	dmp->dm_next = NULL;
2690 
2691 	rw_enter(&perdm_rwlock, RW_WRITER);
2692 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2693 		if (p->dm_str == str) {	/* already present */
2694 			p->dm_ref++;
2695 			rw_exit(&perdm_rwlock);
2696 			free_syncq(sq);
2697 			kmem_free(dmp, sizeof (perdm_t));
2698 			return (p);
2699 		}
2700 	}
2701 
2702 	*pp = dmp;
2703 	rw_exit(&perdm_rwlock);
2704 	return (dmp);
2705 }
2706 
2707 void
2708 rele_dm(perdm_t *dmp)
2709 {
2710 	perdm_t **pp;
2711 	perdm_t *p;
2712 
2713 	rw_enter(&perdm_rwlock, RW_WRITER);
2714 	ASSERT(dmp->dm_ref > 0);
2715 
2716 	if (--dmp->dm_ref > 0) {
2717 		rw_exit(&perdm_rwlock);
2718 		return;
2719 	}
2720 
2721 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2722 		if (p == dmp)
2723 			break;
2724 	ASSERT(p == dmp);
2725 	*pp = p->dm_next;
2726 	rw_exit(&perdm_rwlock);
2727 
2728 	/*
2729 	 * Wait for any background processing that relies on the
2730 	 * syncq to complete before it is freed.
2731 	 */
2732 	wait_sq_svc(p->dm_sq);
2733 	free_syncq(p->dm_sq);
2734 	kmem_free(p, sizeof (perdm_t));
2735 }
2736 
2737 /*
2738  * Make a protocol message given control and data buffers.
2739  * n.b., this can block; be careful of what locks you hold when calling it.
2740  *
2741  * If sd_maxblk is less than *iosize this routine can fail part way through
2742  * (due to an allocation failure). In this case on return *iosize will contain
2743  * the amount that was consumed. Otherwise *iosize will not be modified
2744  * i.e. it will contain the amount that was consumed.
2745  */
2746 int
2747 strmakemsg(
2748 	struct strbuf *mctl,
2749 	ssize_t *iosize,
2750 	struct uio *uiop,
2751 	stdata_t *stp,
2752 	int32_t flag,
2753 	mblk_t **mpp)
2754 {
2755 	mblk_t *mpctl = NULL;
2756 	mblk_t *mpdata = NULL;
2757 	int error;
2758 
2759 	ASSERT(uiop != NULL);
2760 
2761 	*mpp = NULL;
2762 	/* Create control part, if any */
2763 	if ((mctl != NULL) && (mctl->len >= 0)) {
2764 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2765 		if (error)
2766 			return (error);
2767 	}
2768 	/* Create data part, if any */
2769 	if (*iosize >= 0) {
2770 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2771 		if (error) {
2772 			freemsg(mpctl);
2773 			return (error);
2774 		}
2775 	}
2776 	if (mpctl != NULL) {
2777 		if (mpdata != NULL)
2778 			linkb(mpctl, mpdata);
2779 		*mpp = mpctl;
2780 	} else {
2781 		*mpp = mpdata;
2782 	}
2783 	return (0);
2784 }
2785 
2786 /*
2787  * Make the control part of a protocol message given a control buffer.
2788  * n.b., this can block; be careful of what locks you hold when calling it.
2789  */
2790 int
2791 strmakectl(
2792 	struct strbuf *mctl,
2793 	int32_t flag,
2794 	int32_t fflag,
2795 	mblk_t **mpp)
2796 {
2797 	mblk_t *bp = NULL;
2798 	unsigned char msgtype;
2799 	int error = 0;
2800 	cred_t *cr = CRED();
2801 
2802 	/* We do not support interrupt threads using the stream head to send */
2803 	ASSERT(cr != NULL);
2804 
2805 	*mpp = NULL;
2806 	/*
2807 	 * Create control part of message, if any.
2808 	 */
2809 	if ((mctl != NULL) && (mctl->len >= 0)) {
2810 		caddr_t base;
2811 		int ctlcount;
2812 		int allocsz;
2813 
2814 		if (flag & RS_HIPRI)
2815 			msgtype = M_PCPROTO;
2816 		else
2817 			msgtype = M_PROTO;
2818 
2819 		ctlcount = mctl->len;
2820 		base = mctl->buf;
2821 
2822 		/*
2823 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2824 		 * blocks by increasing the size to something more usable.
2825 		 */
2826 		allocsz = MAX(ctlcount, 64);
2827 
2828 		/*
2829 		 * Range checking has already been done; simply try
2830 		 * to allocate a message block for the ctl part.
2831 		 */
2832 		while ((bp = allocb_cred(allocsz, cr,
2833 		    curproc->p_pid)) == NULL) {
2834 			if (fflag & (FNDELAY|FNONBLOCK))
2835 				return (EAGAIN);
2836 			if (error = strwaitbuf(allocsz, BPRI_MED))
2837 				return (error);
2838 		}
2839 
2840 		bp->b_datap->db_type = msgtype;
2841 		if (copyin(base, bp->b_wptr, ctlcount)) {
2842 			freeb(bp);
2843 			return (EFAULT);
2844 		}
2845 		bp->b_wptr += ctlcount;
2846 	}
2847 	*mpp = bp;
2848 	return (0);
2849 }
2850 
2851 /*
2852  * Make a protocol message given data buffers.
2853  * n.b., this can block; be careful of what locks you hold when calling it.
2854  *
2855  * If sd_maxblk is less than *iosize this routine can fail part way through
2856  * (due to an allocation failure). In this case on return *iosize will contain
2857  * the amount that was consumed. Otherwise *iosize will not be modified
2858  * i.e. it will contain the amount that was consumed.
2859  */
2860 int
2861 strmakedata(
2862 	ssize_t   *iosize,
2863 	struct uio *uiop,
2864 	stdata_t *stp,
2865 	int32_t flag,
2866 	mblk_t **mpp)
2867 {
2868 	mblk_t *mp = NULL;
2869 	mblk_t *bp;
2870 	int wroff = (int)stp->sd_wroff;
2871 	int tail_len = (int)stp->sd_tail;
2872 	int extra = wroff + tail_len;
2873 	int error = 0;
2874 	ssize_t maxblk;
2875 	ssize_t count = *iosize;
2876 	cred_t *cr;
2877 
2878 	*mpp = NULL;
2879 	if (count < 0)
2880 		return (0);
2881 
2882 	/* We do not support interrupt threads using the stream head to send */
2883 	cr = CRED();
2884 	ASSERT(cr != NULL);
2885 
2886 	maxblk = stp->sd_maxblk;
2887 	if (maxblk == INFPSZ)
2888 		maxblk = count;
2889 
2890 	/*
2891 	 * Create data part of message, if any.
2892 	 */
2893 	do {
2894 		ssize_t size;
2895 		dblk_t  *dp;
2896 
2897 		ASSERT(uiop);
2898 
2899 		size = MIN(count, maxblk);
2900 
2901 		while ((bp = allocb_cred(size + extra, cr,
2902 		    curproc->p_pid)) == NULL) {
2903 			error = EAGAIN;
2904 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2905 			    (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2906 				if (count == *iosize) {
2907 					freemsg(mp);
2908 					return (error);
2909 				} else {
2910 					*iosize -= count;
2911 					*mpp = mp;
2912 					return (0);
2913 				}
2914 			}
2915 		}
2916 		dp = bp->b_datap;
2917 		dp->db_cpid = curproc->p_pid;
2918 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2919 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2920 
2921 		if (flag & STRUIO_POSTPONE) {
2922 			/*
2923 			 * Setup the stream uio portion of the
2924 			 * dblk for subsequent use by struioget().
2925 			 */
2926 			dp->db_struioflag = STRUIO_SPEC;
2927 			dp->db_cksumstart = 0;
2928 			dp->db_cksumstuff = 0;
2929 			dp->db_cksumend = size;
2930 			*(long long *)dp->db_struioun.data = 0ll;
2931 			bp->b_wptr += size;
2932 		} else {
2933 			if (stp->sd_copyflag & STRCOPYCACHED)
2934 				uiop->uio_extflg |= UIO_COPY_CACHED;
2935 
2936 			if (size != 0) {
2937 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2938 				    uiop);
2939 				if (error != 0) {
2940 					freeb(bp);
2941 					freemsg(mp);
2942 					return (error);
2943 				}
2944 			}
2945 			bp->b_wptr += size;
2946 
2947 			if (stp->sd_wputdatafunc != NULL) {
2948 				mblk_t *newbp;
2949 
2950 				newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2951 				    bp, NULL, NULL, NULL, NULL);
2952 				if (newbp == NULL) {
2953 					freeb(bp);
2954 					freemsg(mp);
2955 					return (ECOMM);
2956 				}
2957 				bp = newbp;
2958 			}
2959 		}
2960 
2961 		count -= size;
2962 
2963 		if (mp == NULL)
2964 			mp = bp;
2965 		else
2966 			linkb(mp, bp);
2967 	} while (count > 0);
2968 
2969 	*mpp = mp;
2970 	return (0);
2971 }
2972 
2973 /*
2974  * Wait for a buffer to become available. Return non-zero errno
2975  * if not able to wait, 0 if buffer is probably there.
2976  */
2977 int
2978 strwaitbuf(size_t size, int pri)
2979 {
2980 	bufcall_id_t id;
2981 
2982 	mutex_enter(&bcall_monitor);
2983 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2984 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2985 		mutex_exit(&bcall_monitor);
2986 		return (ENOSR);
2987 	}
2988 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2989 		unbufcall(id);
2990 		mutex_exit(&bcall_monitor);
2991 		return (EINTR);
2992 	}
2993 	unbufcall(id);
2994 	mutex_exit(&bcall_monitor);
2995 	return (0);
2996 }
2997 
2998 /*
2999  * This function waits for a read or write event to happen on a stream.
3000  * fmode can specify FNDELAY and/or FNONBLOCK.
3001  * The timeout is in ms with -1 meaning infinite.
3002  * The flag values work as follows:
3003  *	READWAIT	Check for read side errors, send M_READ
3004  *	GETWAIT		Check for read side errors, no M_READ
3005  *	WRITEWAIT	Check for write side errors.
3006  *	NOINTR		Do not return error if nonblocking or timeout.
3007  * 	STR_NOERROR	Ignore all errors except STPLEX.
3008  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
3009  *	STR_PEEK	Pass through the strgeterr().
3010  */
3011 int
3012 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
3013     int *done)
3014 {
3015 	int slpflg, errs;
3016 	int error;
3017 	kcondvar_t *sleepon;
3018 	mblk_t *mp;
3019 	ssize_t *rd_count;
3020 	clock_t rval;
3021 
3022 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3023 	if ((flag & READWAIT) || (flag & GETWAIT)) {
3024 		slpflg = RSLEEP;
3025 		sleepon = &_RD(stp->sd_wrq)->q_wait;
3026 		errs = STRDERR|STPLEX;
3027 	} else {
3028 		slpflg = WSLEEP;
3029 		sleepon = &stp->sd_wrq->q_wait;
3030 		errs = STWRERR|STRHUP|STPLEX;
3031 	}
3032 	if (flag & STR_NOERROR)
3033 		errs = STPLEX;
3034 
3035 	if (stp->sd_wakeq & slpflg) {
3036 		/*
3037 		 * A strwakeq() is pending, no need to sleep.
3038 		 */
3039 		stp->sd_wakeq &= ~slpflg;
3040 		*done = 0;
3041 		return (0);
3042 	}
3043 
3044 	if (stp->sd_flag & errs) {
3045 		/*
3046 		 * Check for errors before going to sleep since the
3047 		 * caller might not have checked this while holding
3048 		 * sd_lock.
3049 		 */
3050 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3051 		if (error != 0) {
3052 			*done = 1;
3053 			return (error);
3054 		}
3055 	}
3056 
3057 	/*
3058 	 * If any module downstream has requested read notification
3059 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3060 	 * down stream.
3061 	 */
3062 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3063 		mutex_exit(&stp->sd_lock);
3064 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3065 		    (flag & STR_NOSIG), &error))) {
3066 			mutex_enter(&stp->sd_lock);
3067 			*done = 1;
3068 			return (error);
3069 		}
3070 		mp->b_datap->db_type = M_READ;
3071 		rd_count = (ssize_t *)mp->b_wptr;
3072 		*rd_count = count;
3073 		mp->b_wptr += sizeof (ssize_t);
3074 		/*
3075 		 * Send the number of bytes requested by the
3076 		 * read as the argument to M_READ.
3077 		 */
3078 		stream_willservice(stp);
3079 		putnext(stp->sd_wrq, mp);
3080 		stream_runservice(stp);
3081 		mutex_enter(&stp->sd_lock);
3082 
3083 		/*
3084 		 * If any data arrived due to inline processing
3085 		 * of putnext(), don't sleep.
3086 		 */
3087 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3088 			*done = 0;
3089 			return (0);
3090 		}
3091 	}
3092 
3093 	if (fmode & (FNDELAY|FNONBLOCK)) {
3094 		if (!(flag & NOINTR))
3095 			error = EAGAIN;
3096 		else
3097 			error = 0;
3098 		*done = 1;
3099 		return (error);
3100 	}
3101 
3102 	stp->sd_flag |= slpflg;
3103 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3104 	    "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3105 	    stp, flag, count, fmode, done);
3106 
3107 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3108 	if (rval > 0) {
3109 		/* EMPTY */
3110 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3111 		    "strwaitq awakes(2):%X, %X, %X, %X, %X",
3112 		    stp, flag, count, fmode, done);
3113 	} else if (rval == 0) {
3114 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3115 		    "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3116 		    stp, flag, count, fmode, done);
3117 		stp->sd_flag &= ~slpflg;
3118 		cv_broadcast(sleepon);
3119 		if (!(flag & NOINTR))
3120 			error = EINTR;
3121 		else
3122 			error = 0;
3123 		*done = 1;
3124 		return (error);
3125 	} else {
3126 		/* timeout */
3127 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3128 		    "strwaitq timeout:%p, %X, %lX, %X, %p",
3129 		    stp, flag, count, fmode, done);
3130 		*done = 1;
3131 		if (!(flag & NOINTR))
3132 			return (ETIME);
3133 		else
3134 			return (0);
3135 	}
3136 	/*
3137 	 * If the caller implements delayed errors (i.e. queued after data)
3138 	 * we can not check for errors here since data as well as an
3139 	 * error might have arrived at the stream head. We return to
3140 	 * have the caller check the read queue before checking for errors.
3141 	 */
3142 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3143 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3144 		if (error != 0) {
3145 			*done = 1;
3146 			return (error);
3147 		}
3148 	}
3149 	*done = 0;
3150 	return (0);
3151 }
3152 
3153 /*
3154  * Perform job control discipline access checks.
3155  * Return 0 for success and the errno for failure.
3156  */
3157 
3158 #define	cantsend(p, t, sig) \
3159 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3160 
3161 int
3162 straccess(struct stdata *stp, enum jcaccess mode)
3163 {
3164 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3165 	kthread_t *t = curthread;
3166 	proc_t *p = ttoproc(t);
3167 	sess_t *sp;
3168 
3169 	ASSERT(mutex_owned(&stp->sd_lock));
3170 
3171 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3172 		return (0);
3173 
3174 	mutex_enter(&p->p_lock);		/* protects p_pgidp */
3175 
3176 	for (;;) {
3177 		mutex_enter(&p->p_splock);	/* protects p->p_sessp */
3178 		sp = p->p_sessp;
3179 		mutex_enter(&sp->s_lock);	/* protects sp->* */
3180 
3181 		/*
3182 		 * If this is not the calling process's controlling terminal
3183 		 * or if the calling process is already in the foreground
3184 		 * then allow access.
3185 		 */
3186 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3187 		    p->p_pgidp == stp->sd_pgidp) {
3188 			mutex_exit(&sp->s_lock);
3189 			mutex_exit(&p->p_splock);
3190 			mutex_exit(&p->p_lock);
3191 			return (0);
3192 		}
3193 
3194 		/*
3195 		 * Check to see if controlling terminal has been deallocated.
3196 		 */
3197 		if (sp->s_vp == NULL) {
3198 			if (!cantsend(p, t, SIGHUP))
3199 				sigtoproc(p, t, SIGHUP);
3200 			mutex_exit(&sp->s_lock);
3201 			mutex_exit(&p->p_splock);
3202 			mutex_exit(&p->p_lock);
3203 			return (EIO);
3204 		}
3205 
3206 		mutex_exit(&sp->s_lock);
3207 		mutex_exit(&p->p_splock);
3208 
3209 		if (mode == JCGETP) {
3210 			mutex_exit(&p->p_lock);
3211 			return (0);
3212 		}
3213 
3214 		if (mode == JCREAD) {
3215 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3216 				mutex_exit(&p->p_lock);
3217 				return (EIO);
3218 			}
3219 			mutex_exit(&p->p_lock);
3220 			mutex_exit(&stp->sd_lock);
3221 			pgsignal(p->p_pgidp, SIGTTIN);
3222 			mutex_enter(&stp->sd_lock);
3223 			mutex_enter(&p->p_lock);
3224 		} else {  /* mode == JCWRITE or JCSETP */
3225 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3226 			    cantsend(p, t, SIGTTOU)) {
3227 				mutex_exit(&p->p_lock);
3228 				return (0);
3229 			}
3230 			if (p->p_detached) {
3231 				mutex_exit(&p->p_lock);
3232 				return (EIO);
3233 			}
3234 			mutex_exit(&p->p_lock);
3235 			mutex_exit(&stp->sd_lock);
3236 			pgsignal(p->p_pgidp, SIGTTOU);
3237 			mutex_enter(&stp->sd_lock);
3238 			mutex_enter(&p->p_lock);
3239 		}
3240 
3241 		/*
3242 		 * We call cv_wait_sig_swap() to cause the appropriate
3243 		 * action for the jobcontrol signal to take place.
3244 		 * If the signal is being caught, we will take the
3245 		 * EINTR error return.  Otherwise, the default action
3246 		 * of causing the process to stop will take place.
3247 		 * In this case, we rely on the periodic cv_broadcast() on
3248 		 * &lbolt_cv to wake us up to loop around and test again.
3249 		 * We can't get here if the signal is ignored or
3250 		 * if the current thread is blocking the signal.
3251 		 */
3252 		mutex_exit(&stp->sd_lock);
3253 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3254 			mutex_exit(&p->p_lock);
3255 			mutex_enter(&stp->sd_lock);
3256 			return (EINTR);
3257 		}
3258 		mutex_exit(&p->p_lock);
3259 		mutex_enter(&stp->sd_lock);
3260 		mutex_enter(&p->p_lock);
3261 	}
3262 }
3263 
3264 /*
3265  * Return size of message of block type (bp->b_datap->db_type)
3266  */
3267 size_t
3268 xmsgsize(mblk_t *bp)
3269 {
3270 	unsigned char type;
3271 	size_t count = 0;
3272 
3273 	type = bp->b_datap->db_type;
3274 
3275 	for (; bp; bp = bp->b_cont) {
3276 		if (type != bp->b_datap->db_type)
3277 			break;
3278 		ASSERT(bp->b_wptr >= bp->b_rptr);
3279 		count += bp->b_wptr - bp->b_rptr;
3280 	}
3281 	return (count);
3282 }
3283 
3284 /*
3285  * Allocate a stream head.
3286  */
3287 struct stdata *
3288 shalloc(queue_t *qp)
3289 {
3290 	stdata_t *stp;
3291 
3292 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3293 
3294 	stp->sd_wrq = _WR(qp);
3295 	stp->sd_strtab = NULL;
3296 	stp->sd_iocid = 0;
3297 	stp->sd_mate = NULL;
3298 	stp->sd_freezer = NULL;
3299 	stp->sd_refcnt = 0;
3300 	stp->sd_wakeq = 0;
3301 	stp->sd_anchor = 0;
3302 	stp->sd_struiowrq = NULL;
3303 	stp->sd_struiordq = NULL;
3304 	stp->sd_struiodnak = 0;
3305 	stp->sd_struionak = NULL;
3306 	stp->sd_t_audit_data = NULL;
3307 	stp->sd_rput_opt = 0;
3308 	stp->sd_wput_opt = 0;
3309 	stp->sd_read_opt = 0;
3310 	stp->sd_rprotofunc = strrput_proto;
3311 	stp->sd_rmiscfunc = strrput_misc;
3312 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3313 	stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3314 	stp->sd_ciputctrl = NULL;
3315 	stp->sd_nciputctrl = 0;
3316 	stp->sd_qhead = NULL;
3317 	stp->sd_qtail = NULL;
3318 	stp->sd_servid = NULL;
3319 	stp->sd_nqueues = 0;
3320 	stp->sd_svcflags = 0;
3321 	stp->sd_copyflag = 0;
3322 
3323 	return (stp);
3324 }
3325 
3326 /*
3327  * Free a stream head.
3328  */
3329 void
3330 shfree(stdata_t *stp)
3331 {
3332 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3333 
3334 	stp->sd_wrq = NULL;
3335 
3336 	mutex_enter(&stp->sd_qlock);
3337 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3338 		STRSTAT(strwaits);
3339 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3340 	}
3341 	mutex_exit(&stp->sd_qlock);
3342 
3343 	if (stp->sd_ciputctrl != NULL) {
3344 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3345 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3346 		    stp->sd_nciputctrl, 0);
3347 		ASSERT(ciputctrl_cache != NULL);
3348 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3349 		stp->sd_ciputctrl = NULL;
3350 		stp->sd_nciputctrl = 0;
3351 	}
3352 	ASSERT(stp->sd_qhead == NULL);
3353 	ASSERT(stp->sd_qtail == NULL);
3354 	ASSERT(stp->sd_nqueues == 0);
3355 	kmem_cache_free(stream_head_cache, stp);
3356 }
3357 
3358 /*
3359  * Allocate a pair of queues and a syncq for the pair
3360  */
3361 queue_t *
3362 allocq(void)
3363 {
3364 	queinfo_t *qip;
3365 	queue_t *qp, *wqp;
3366 	syncq_t	*sq;
3367 
3368 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3369 
3370 	qp = &qip->qu_rqueue;
3371 	wqp = &qip->qu_wqueue;
3372 	sq = &qip->qu_syncq;
3373 
3374 	qp->q_last	= NULL;
3375 	qp->q_next	= NULL;
3376 	qp->q_ptr	= NULL;
3377 	qp->q_flag	= QUSE | QREADR;
3378 	qp->q_bandp	= NULL;
3379 	qp->q_stream	= NULL;
3380 	qp->q_syncq	= sq;
3381 	qp->q_nband	= 0;
3382 	qp->q_nfsrv	= NULL;
3383 	qp->q_draining	= 0;
3384 	qp->q_syncqmsgs	= 0;
3385 	qp->q_spri	= 0;
3386 	qp->q_qtstamp	= 0;
3387 	qp->q_sqtstamp	= 0;
3388 	qp->q_fp	= NULL;
3389 
3390 	wqp->q_last	= NULL;
3391 	wqp->q_next	= NULL;
3392 	wqp->q_ptr	= NULL;
3393 	wqp->q_flag	= QUSE;
3394 	wqp->q_bandp	= NULL;
3395 	wqp->q_stream	= NULL;
3396 	wqp->q_syncq	= sq;
3397 	wqp->q_nband	= 0;
3398 	wqp->q_nfsrv	= NULL;
3399 	wqp->q_draining	= 0;
3400 	wqp->q_syncqmsgs = 0;
3401 	wqp->q_qtstamp	= 0;
3402 	wqp->q_sqtstamp	= 0;
3403 	wqp->q_spri	= 0;
3404 
3405 	sq->sq_count	= 0;
3406 	sq->sq_rmqcount	= 0;
3407 	sq->sq_flags	= 0;
3408 	sq->sq_type	= 0;
3409 	sq->sq_callbflags = 0;
3410 	sq->sq_cancelid	= 0;
3411 	sq->sq_ciputctrl = NULL;
3412 	sq->sq_nciputctrl = 0;
3413 	sq->sq_needexcl = 0;
3414 	sq->sq_svcflags = 0;
3415 
3416 	return (qp);
3417 }
3418 
3419 /*
3420  * Free a pair of queues and the "attached" syncq.
3421  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3422  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3423  */
3424 void
3425 freeq(queue_t *qp)
3426 {
3427 	qband_t *qbp, *nqbp;
3428 	syncq_t *sq, *outer;
3429 	queue_t *wqp = _WR(qp);
3430 
3431 	ASSERT(qp->q_flag & QREADR);
3432 
3433 	/*
3434 	 * If a previously dispatched taskq job is scheduled to run
3435 	 * sync_service() or a service routine is scheduled for the
3436 	 * queues about to be freed, wait here until all service is
3437 	 * done on the queue and all associated queues and syncqs.
3438 	 */
3439 	wait_svc(qp);
3440 
3441 	(void) flush_syncq(qp->q_syncq, qp);
3442 	(void) flush_syncq(wqp->q_syncq, wqp);
3443 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3444 
3445 	/*
3446 	 * Flush the queues before q_next is set to NULL This is needed
3447 	 * in order to backenable any downstream queue before we go away.
3448 	 * Note: we are already removed from the stream so that the
3449 	 * backenabling will not cause any messages to be delivered to our
3450 	 * put procedures.
3451 	 */
3452 	flushq(qp, FLUSHALL);
3453 	flushq(wqp, FLUSHALL);
3454 
3455 	/* Tidy up - removeq only does a half-remove from stream */
3456 	qp->q_next = wqp->q_next = NULL;
3457 	ASSERT(!(qp->q_flag & QENAB));
3458 	ASSERT(!(wqp->q_flag & QENAB));
3459 
3460 	outer = qp->q_syncq->sq_outer;
3461 	if (outer != NULL) {
3462 		outer_remove(outer, qp->q_syncq);
3463 		if (wqp->q_syncq != qp->q_syncq)
3464 			outer_remove(outer, wqp->q_syncq);
3465 	}
3466 	/*
3467 	 * Free any syncqs that are outside what allocq returned.
3468 	 */
3469 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3470 		free_syncq(qp->q_syncq);
3471 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3472 		free_syncq(wqp->q_syncq);
3473 
3474 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3475 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3476 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3477 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3478 	sq = SQ(qp);
3479 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3480 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3481 	ASSERT(sq->sq_outer == NULL);
3482 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3483 	ASSERT(sq->sq_callbpend == NULL);
3484 	ASSERT(sq->sq_needexcl == 0);
3485 
3486 	if (sq->sq_ciputctrl != NULL) {
3487 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3488 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3489 		    sq->sq_nciputctrl, 0);
3490 		ASSERT(ciputctrl_cache != NULL);
3491 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3492 		sq->sq_ciputctrl = NULL;
3493 		sq->sq_nciputctrl = 0;
3494 	}
3495 
3496 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3497 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3498 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3499 
3500 	qp->q_flag &= ~QUSE;
3501 	wqp->q_flag &= ~QUSE;
3502 
3503 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3504 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3505 
3506 	qbp = qp->q_bandp;
3507 	while (qbp) {
3508 		nqbp = qbp->qb_next;
3509 		freeband(qbp);
3510 		qbp = nqbp;
3511 	}
3512 	qbp = wqp->q_bandp;
3513 	while (qbp) {
3514 		nqbp = qbp->qb_next;
3515 		freeband(qbp);
3516 		qbp = nqbp;
3517 	}
3518 	kmem_cache_free(queue_cache, qp);
3519 }
3520 
3521 /*
3522  * Allocate a qband structure.
3523  */
3524 qband_t *
3525 allocband(void)
3526 {
3527 	qband_t *qbp;
3528 
3529 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3530 	if (qbp == NULL)
3531 		return (NULL);
3532 
3533 	qbp->qb_next	= NULL;
3534 	qbp->qb_count	= 0;
3535 	qbp->qb_mblkcnt	= 0;
3536 	qbp->qb_first	= NULL;
3537 	qbp->qb_last	= NULL;
3538 	qbp->qb_flag	= 0;
3539 
3540 	return (qbp);
3541 }
3542 
3543 /*
3544  * Free a qband structure.
3545  */
3546 void
3547 freeband(qband_t *qbp)
3548 {
3549 	kmem_cache_free(qband_cache, qbp);
3550 }
3551 
3552 /*
3553  * Just like putnextctl(9F), except that allocb_wait() is used.
3554  *
3555  * Consolidation Private, and of course only callable from the stream head or
3556  * routines that may block.
3557  */
3558 int
3559 putnextctl_wait(queue_t *q, int type)
3560 {
3561 	mblk_t *bp;
3562 	int error;
3563 
3564 	if ((datamsg(type) && (type != M_DELAY)) ||
3565 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3566 		return (0);
3567 
3568 	bp->b_datap->db_type = (unsigned char)type;
3569 	putnext(q, bp);
3570 	return (1);
3571 }
3572 
3573 /*
3574  * Run any possible bufcalls.
3575  */
3576 void
3577 runbufcalls(void)
3578 {
3579 	strbufcall_t *bcp;
3580 
3581 	mutex_enter(&bcall_monitor);
3582 	mutex_enter(&strbcall_lock);
3583 
3584 	if (strbcalls.bc_head) {
3585 		size_t count;
3586 		int nevent;
3587 
3588 		/*
3589 		 * count how many events are on the list
3590 		 * now so we can check to avoid looping
3591 		 * in low memory situations
3592 		 */
3593 		nevent = 0;
3594 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3595 			nevent++;
3596 
3597 		/*
3598 		 * get estimate of available memory from kmem_avail().
3599 		 * awake all bufcall functions waiting for
3600 		 * memory whose request could be satisfied
3601 		 * by 'count' memory and let 'em fight for it.
3602 		 */
3603 		count = kmem_avail();
3604 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3605 			STRSTAT(bufcalls);
3606 			--nevent;
3607 			if (bcp->bc_size <= count) {
3608 				bcp->bc_executor = curthread;
3609 				mutex_exit(&strbcall_lock);
3610 				(*bcp->bc_func)(bcp->bc_arg);
3611 				mutex_enter(&strbcall_lock);
3612 				bcp->bc_executor = NULL;
3613 				cv_broadcast(&bcall_cv);
3614 				strbcalls.bc_head = bcp->bc_next;
3615 				kmem_free(bcp, sizeof (strbufcall_t));
3616 			} else {
3617 				/*
3618 				 * too big, try again later - note
3619 				 * that nevent was decremented above
3620 				 * so we won't retry this one on this
3621 				 * iteration of the loop
3622 				 */
3623 				if (bcp->bc_next != NULL) {
3624 					strbcalls.bc_head = bcp->bc_next;
3625 					bcp->bc_next = NULL;
3626 					strbcalls.bc_tail->bc_next = bcp;
3627 					strbcalls.bc_tail = bcp;
3628 				}
3629 			}
3630 		}
3631 		if (strbcalls.bc_head == NULL)
3632 			strbcalls.bc_tail = NULL;
3633 	}
3634 
3635 	mutex_exit(&strbcall_lock);
3636 	mutex_exit(&bcall_monitor);
3637 }
3638 
3639 
3640 /*
3641  * Actually run queue's service routine.
3642  */
3643 static void
3644 runservice(queue_t *q)
3645 {
3646 	qband_t *qbp;
3647 
3648 	ASSERT(q->q_qinfo->qi_srvp);
3649 again:
3650 	entersq(q->q_syncq, SQ_SVC);
3651 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3652 	    "runservice starts:%p", q);
3653 
3654 	if (!(q->q_flag & QWCLOSE))
3655 		(*q->q_qinfo->qi_srvp)(q);
3656 
3657 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3658 	    "runservice ends:(%p)", q);
3659 
3660 	leavesq(q->q_syncq, SQ_SVC);
3661 
3662 	mutex_enter(QLOCK(q));
3663 	if (q->q_flag & QENAB) {
3664 		q->q_flag &= ~QENAB;
3665 		mutex_exit(QLOCK(q));
3666 		goto again;
3667 	}
3668 	q->q_flag &= ~QINSERVICE;
3669 	q->q_flag &= ~QBACK;
3670 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3671 		qbp->qb_flag &= ~QB_BACK;
3672 	/*
3673 	 * Wakeup thread waiting for the service procedure
3674 	 * to be run (strclose and qdetach).
3675 	 */
3676 	cv_broadcast(&q->q_wait);
3677 
3678 	mutex_exit(QLOCK(q));
3679 }
3680 
3681 /*
3682  * Background processing of bufcalls.
3683  */
3684 void
3685 streams_bufcall_service(void)
3686 {
3687 	callb_cpr_t	cprinfo;
3688 
3689 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3690 	    "streams_bufcall_service");
3691 
3692 	mutex_enter(&strbcall_lock);
3693 
3694 	for (;;) {
3695 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3696 			mutex_exit(&strbcall_lock);
3697 			runbufcalls();
3698 			mutex_enter(&strbcall_lock);
3699 		}
3700 		if (strbcalls.bc_head != NULL) {
3701 			STRSTAT(bcwaits);
3702 			/* Wait for memory to become available */
3703 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3704 			(void) cv_reltimedwait(&memavail_cv, &strbcall_lock,
3705 			    SEC_TO_TICK(60), TR_CLOCK_TICK);
3706 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3707 		}
3708 
3709 		/* Wait for new work to arrive */
3710 		if (strbcalls.bc_head == NULL) {
3711 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3712 			cv_wait(&strbcall_cv, &strbcall_lock);
3713 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3714 		}
3715 	}
3716 }
3717 
3718 /*
3719  * Background processing of streams background tasks which failed
3720  * taskq_dispatch.
3721  */
3722 static void
3723 streams_qbkgrnd_service(void)
3724 {
3725 	callb_cpr_t cprinfo;
3726 	queue_t *q;
3727 
3728 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3729 	    "streams_bkgrnd_service");
3730 
3731 	mutex_enter(&service_queue);
3732 
3733 	for (;;) {
3734 		/*
3735 		 * Wait for work to arrive.
3736 		 */
3737 		while ((freebs_list == NULL) && (qhead == NULL)) {
3738 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3739 			cv_wait(&services_to_run, &service_queue);
3740 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3741 		}
3742 		/*
3743 		 * Handle all pending freebs requests to free memory.
3744 		 */
3745 		while (freebs_list != NULL) {
3746 			mblk_t *mp = freebs_list;
3747 			freebs_list = mp->b_next;
3748 			mutex_exit(&service_queue);
3749 			mblk_free(mp);
3750 			mutex_enter(&service_queue);
3751 		}
3752 		/*
3753 		 * Run pending queues.
3754 		 */
3755 		while (qhead != NULL) {
3756 			DQ(q, qhead, qtail, q_link);
3757 			ASSERT(q != NULL);
3758 			mutex_exit(&service_queue);
3759 			queue_service(q);
3760 			mutex_enter(&service_queue);
3761 		}
3762 		ASSERT(qhead == NULL && qtail == NULL);
3763 	}
3764 }
3765 
3766 /*
3767  * Background processing of streams background tasks which failed
3768  * taskq_dispatch.
3769  */
3770 static void
3771 streams_sqbkgrnd_service(void)
3772 {
3773 	callb_cpr_t cprinfo;
3774 	syncq_t *sq;
3775 
3776 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3777 	    "streams_sqbkgrnd_service");
3778 
3779 	mutex_enter(&service_queue);
3780 
3781 	for (;;) {
3782 		/*
3783 		 * Wait for work to arrive.
3784 		 */
3785 		while (sqhead == NULL) {
3786 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3787 			cv_wait(&syncqs_to_run, &service_queue);
3788 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3789 		}
3790 
3791 		/*
3792 		 * Run pending syncqs.
3793 		 */
3794 		while (sqhead != NULL) {
3795 			DQ(sq, sqhead, sqtail, sq_next);
3796 			ASSERT(sq != NULL);
3797 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3798 			mutex_exit(&service_queue);
3799 			syncq_service(sq);
3800 			mutex_enter(&service_queue);
3801 		}
3802 	}
3803 }
3804 
3805 /*
3806  * Disable the syncq and wait for background syncq processing to complete.
3807  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3808  * list.
3809  */
3810 void
3811 wait_sq_svc(syncq_t *sq)
3812 {
3813 	mutex_enter(SQLOCK(sq));
3814 	sq->sq_svcflags |= SQ_DISABLED;
3815 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3816 		syncq_t *sq_chase;
3817 		syncq_t *sq_curr;
3818 		int removed;
3819 
3820 		ASSERT(sq->sq_servcount == 1);
3821 		mutex_enter(&service_queue);
3822 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3823 		mutex_exit(&service_queue);
3824 		if (removed) {
3825 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3826 			sq->sq_servcount = 0;
3827 			STRSTAT(sqremoved);
3828 			goto done;
3829 		}
3830 	}
3831 	while (sq->sq_servcount != 0) {
3832 		sq->sq_flags |= SQ_WANTWAKEUP;
3833 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3834 	}
3835 done:
3836 	mutex_exit(SQLOCK(sq));
3837 }
3838 
3839 /*
3840  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3841  * Add the argument to the end of the sqhead list and set the flag
3842  * indicating this syncq has been enabled.  If it has already been
3843  * enabled, don't do anything.
3844  * This routine assumes that SQLOCK is held.
3845  * NOTE that the lock order is to have the SQLOCK first,
3846  * so if the service_syncq lock is held, we need to release it
3847  * before acquiring the SQLOCK (mostly relevant for the background
3848  * thread, and this seems to be common among the STREAMS global locks).
3849  * Note that the sq_svcflags are protected by the SQLOCK.
3850  */
3851 void
3852 sqenable(syncq_t *sq)
3853 {
3854 	/*
3855 	 * This is probably not important except for where I believe it
3856 	 * is being called.  At that point, it should be held (and it
3857 	 * is a pain to release it just for this routine, so don't do
3858 	 * it).
3859 	 */
3860 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3861 
3862 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3863 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3864 
3865 	/*
3866 	 * Do not put on list if background thread is scheduled or
3867 	 * syncq is disabled.
3868 	 */
3869 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3870 		return;
3871 
3872 	/*
3873 	 * Check whether we should enable sq at all.
3874 	 * Non PERMOD syncqs may be drained by at most one thread.
3875 	 * PERMOD syncqs may be drained by several threads but we limit the
3876 	 * total amount to the lesser of
3877 	 *	Number of queues on the squeue and
3878 	 *	Number of CPUs.
3879 	 */
3880 	if (sq->sq_servcount != 0) {
3881 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3882 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3883 			STRSTAT(sqtoomany);
3884 			return;
3885 		}
3886 	}
3887 
3888 	sq->sq_tstamp = ddi_get_lbolt();
3889 	STRSTAT(sqenables);
3890 
3891 	/* Attempt a taskq dispatch */
3892 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3893 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3894 	if (sq->sq_servid != NULL) {
3895 		sq->sq_servcount++;
3896 		return;
3897 	}
3898 
3899 	/*
3900 	 * This taskq dispatch failed, but a previous one may have succeeded.
3901 	 * Don't try to schedule on the background thread whilst there is
3902 	 * outstanding taskq processing.
3903 	 */
3904 	if (sq->sq_servcount != 0)
3905 		return;
3906 
3907 	/*
3908 	 * System is low on resources and can't perform a non-sleeping
3909 	 * dispatch. Schedule the syncq for a background thread and mark the
3910 	 * syncq to avoid any further taskq dispatch attempts.
3911 	 */
3912 	mutex_enter(&service_queue);
3913 	STRSTAT(taskqfails);
3914 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3915 	sq->sq_svcflags |= SQ_BGTHREAD;
3916 	sq->sq_servcount = 1;
3917 	cv_signal(&syncqs_to_run);
3918 	mutex_exit(&service_queue);
3919 }
3920 
3921 /*
3922  * Note: fifo_close() depends on the mblk_t on the queue being freed
3923  * asynchronously. The asynchronous freeing of messages breaks the
3924  * recursive call chain of fifo_close() while there are I_SENDFD type of
3925  * messages referring to other file pointers on the queue. Then when
3926  * closing pipes it can avoid stack overflow in case of daisy-chained
3927  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3928  * share the same fifolock_t).
3929  *
3930  * No need to kpreempt_disable to access cpu_seqid.  If we migrate and
3931  * the esb queue does not match the new CPU, that is OK.
3932  */
3933 void
3934 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3935 {
3936 	int qindex = CPU->cpu_seqid >> esbq_log2_cpus_per_q;
3937 	esb_queue_t *eqp;
3938 
3939 	ASSERT(dbp->db_mblk == mp);
3940 	ASSERT(qindex < esbq_nelem);
3941 
3942 	eqp = system_esbq_array;
3943 	if (eqp != NULL) {
3944 		eqp += qindex;
3945 	} else {
3946 		mutex_enter(&esbq_lock);
3947 		if (kmem_ready && system_esbq_array == NULL)
3948 			system_esbq_array = (esb_queue_t *)kmem_zalloc(
3949 			    esbq_nelem * sizeof (esb_queue_t), KM_NOSLEEP);
3950 		mutex_exit(&esbq_lock);
3951 		eqp = system_esbq_array;
3952 		if (eqp != NULL)
3953 			eqp += qindex;
3954 		else
3955 			eqp = &system_esbq;
3956 	}
3957 
3958 	/*
3959 	 * Check data sanity. The dblock should have non-empty free function.
3960 	 * It is better to panic here then later when the dblock is freed
3961 	 * asynchronously when the context is lost.
3962 	 */
3963 	if (dbp->db_frtnp->free_func == NULL) {
3964 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3965 		    (void *)dbp);
3966 	}
3967 
3968 	mutex_enter(&eqp->eq_lock);
3969 	/* queue the new mblk on the esballoc queue */
3970 	if (eqp->eq_head == NULL) {
3971 		eqp->eq_head = eqp->eq_tail = mp;
3972 	} else {
3973 		eqp->eq_tail->b_next = mp;
3974 		eqp->eq_tail = mp;
3975 	}
3976 	eqp->eq_len++;
3977 
3978 	/* If we're the first thread to reach the threshold, process */
3979 	if (eqp->eq_len >= esbq_max_qlen &&
3980 	    !(eqp->eq_flags & ESBQ_PROCESSING))
3981 		esballoc_process_queue(eqp);
3982 
3983 	esballoc_set_timer(eqp, esbq_timeout);
3984 	mutex_exit(&eqp->eq_lock);
3985 }
3986 
3987 static void
3988 esballoc_process_queue(esb_queue_t *eqp)
3989 {
3990 	mblk_t	*mp;
3991 
3992 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
3993 
3994 	eqp->eq_flags |= ESBQ_PROCESSING;
3995 
3996 	do {
3997 		/*
3998 		 * Detach the message chain for processing.
3999 		 */
4000 		mp = eqp->eq_head;
4001 		eqp->eq_tail->b_next = NULL;
4002 		eqp->eq_head = eqp->eq_tail = NULL;
4003 		eqp->eq_len = 0;
4004 		mutex_exit(&eqp->eq_lock);
4005 
4006 		/*
4007 		 * Process the message chain.
4008 		 */
4009 		esballoc_enqueue_mblk(mp);
4010 		mutex_enter(&eqp->eq_lock);
4011 	} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
4012 
4013 	eqp->eq_flags &= ~ESBQ_PROCESSING;
4014 }
4015 
4016 /*
4017  * taskq callback routine to free esballoced mblk's
4018  */
4019 static void
4020 esballoc_mblk_free(mblk_t *mp)
4021 {
4022 	mblk_t	*nextmp;
4023 
4024 	for (; mp != NULL; mp = nextmp) {
4025 		nextmp = mp->b_next;
4026 		mp->b_next = NULL;
4027 		mblk_free(mp);
4028 	}
4029 }
4030 
4031 static void
4032 esballoc_enqueue_mblk(mblk_t *mp)
4033 {
4034 
4035 	if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4036 	    TQ_NOSLEEP) == NULL) {
4037 		mblk_t *first_mp = mp;
4038 		/*
4039 		 * System is low on resources and can't perform a non-sleeping
4040 		 * dispatch. Schedule for a background thread.
4041 		 */
4042 		mutex_enter(&service_queue);
4043 		STRSTAT(taskqfails);
4044 
4045 		while (mp->b_next != NULL)
4046 			mp = mp->b_next;
4047 
4048 		mp->b_next = freebs_list;
4049 		freebs_list = first_mp;
4050 		cv_signal(&services_to_run);
4051 		mutex_exit(&service_queue);
4052 	}
4053 }
4054 
4055 static void
4056 esballoc_timer(void *arg)
4057 {
4058 	esb_queue_t *eqp = arg;
4059 
4060 	mutex_enter(&eqp->eq_lock);
4061 	eqp->eq_flags &= ~ESBQ_TIMER;
4062 
4063 	if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4064 	    eqp->eq_len > 0)
4065 		esballoc_process_queue(eqp);
4066 
4067 	esballoc_set_timer(eqp, esbq_timeout);
4068 	mutex_exit(&eqp->eq_lock);
4069 }
4070 
4071 static void
4072 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4073 {
4074 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
4075 
4076 	if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4077 		(void) timeout(esballoc_timer, eqp, eq_timeout);
4078 		eqp->eq_flags |= ESBQ_TIMER;
4079 	}
4080 }
4081 
4082 /*
4083  * Setup esbq array length based upon NCPU scaled by CPUs per
4084  * queue. Use static system_esbq until kmem_ready and we can
4085  * create an array in freebs_enqueue().
4086  */
4087 void
4088 esballoc_queue_init(void)
4089 {
4090 	esbq_log2_cpus_per_q = highbit(esbq_cpus_per_q - 1);
4091 	esbq_cpus_per_q = 1 << esbq_log2_cpus_per_q;
4092 	esbq_nelem = howmany(NCPU, esbq_cpus_per_q);
4093 	system_esbq.eq_len = 0;
4094 	system_esbq.eq_head = system_esbq.eq_tail = NULL;
4095 	system_esbq.eq_flags = 0;
4096 }
4097 
4098 /*
4099  * Set the QBACK or QB_BACK flag in the given queue for
4100  * the given priority band.
4101  */
4102 void
4103 setqback(queue_t *q, unsigned char pri)
4104 {
4105 	int i;
4106 	qband_t *qbp;
4107 	qband_t **qbpp;
4108 
4109 	ASSERT(MUTEX_HELD(QLOCK(q)));
4110 	if (pri != 0) {
4111 		if (pri > q->q_nband) {
4112 			qbpp = &q->q_bandp;
4113 			while (*qbpp)
4114 				qbpp = &(*qbpp)->qb_next;
4115 			while (pri > q->q_nband) {
4116 				if ((*qbpp = allocband()) == NULL) {
4117 					cmn_err(CE_WARN,
4118 					    "setqback: can't allocate qband\n");
4119 					return;
4120 				}
4121 				(*qbpp)->qb_hiwat = q->q_hiwat;
4122 				(*qbpp)->qb_lowat = q->q_lowat;
4123 				q->q_nband++;
4124 				qbpp = &(*qbpp)->qb_next;
4125 			}
4126 		}
4127 		qbp = q->q_bandp;
4128 		i = pri;
4129 		while (--i)
4130 			qbp = qbp->qb_next;
4131 		qbp->qb_flag |= QB_BACK;
4132 	} else {
4133 		q->q_flag |= QBACK;
4134 	}
4135 }
4136 
4137 int
4138 strcopyin(void *from, void *to, size_t len, int copyflag)
4139 {
4140 	if (copyflag & U_TO_K) {
4141 		ASSERT((copyflag & K_TO_K) == 0);
4142 		if (copyin(from, to, len))
4143 			return (EFAULT);
4144 	} else {
4145 		ASSERT(copyflag & K_TO_K);
4146 		bcopy(from, to, len);
4147 	}
4148 	return (0);
4149 }
4150 
4151 int
4152 strcopyout(void *from, void *to, size_t len, int copyflag)
4153 {
4154 	if (copyflag & U_TO_K) {
4155 		if (copyout(from, to, len))
4156 			return (EFAULT);
4157 	} else {
4158 		ASSERT(copyflag & K_TO_K);
4159 		bcopy(from, to, len);
4160 	}
4161 	return (0);
4162 }
4163 
4164 /*
4165  * strsignal_nolock() posts a signal to the process(es) at the stream head.
4166  * It assumes that the stream head lock is already held, whereas strsignal()
4167  * acquires the lock first.  This routine was created because a few callers
4168  * release the stream head lock before calling only to re-acquire it after
4169  * it returns.
4170  */
4171 void
4172 strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
4173 {
4174 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4175 	switch (sig) {
4176 	case SIGPOLL:
4177 		if (stp->sd_sigflags & S_MSG)
4178 			strsendsig(stp->sd_siglist, S_MSG, band, 0);
4179 		break;
4180 	default:
4181 		if (stp->sd_pgidp)
4182 			pgsignal(stp->sd_pgidp, sig);
4183 		break;
4184 	}
4185 }
4186 
4187 void
4188 strsignal(stdata_t *stp, int sig, int32_t band)
4189 {
4190 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4191 	    "strsignal:%p, %X, %X", stp, sig, band);
4192 
4193 	mutex_enter(&stp->sd_lock);
4194 	switch (sig) {
4195 	case SIGPOLL:
4196 		if (stp->sd_sigflags & S_MSG)
4197 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4198 		break;
4199 
4200 	default:
4201 		if (stp->sd_pgidp) {
4202 			pgsignal(stp->sd_pgidp, sig);
4203 		}
4204 		break;
4205 	}
4206 	mutex_exit(&stp->sd_lock);
4207 }
4208 
4209 void
4210 strhup(stdata_t *stp)
4211 {
4212 	ASSERT(mutex_owned(&stp->sd_lock));
4213 	pollwakeup(&stp->sd_pollist, POLLHUP);
4214 	if (stp->sd_sigflags & S_HANGUP)
4215 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4216 }
4217 
4218 /*
4219  * Backenable the first queue upstream from `q' with a service procedure.
4220  */
4221 void
4222 backenable(queue_t *q, uchar_t pri)
4223 {
4224 	queue_t	*nq;
4225 
4226 	/*
4227 	 * Our presence might not prevent other modules in our own
4228 	 * stream from popping/pushing since the caller of getq might not
4229 	 * have a claim on the queue (some drivers do a getq on somebody
4230 	 * else's queue - they know that the queue itself is not going away
4231 	 * but the framework has to guarantee q_next in that stream).
4232 	 */
4233 	claimstr(q);
4234 
4235 	/* Find nearest back queue with service proc */
4236 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4237 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4238 	}
4239 
4240 	if (nq) {
4241 		kthread_t *freezer;
4242 		/*
4243 		 * backenable can be called either with no locks held
4244 		 * or with the stream frozen (the latter occurs when a module
4245 		 * calls rmvq with the stream frozen). If the stream is frozen
4246 		 * by the caller the caller will hold all qlocks in the stream.
4247 		 * Note that a frozen stream doesn't freeze a mated stream,
4248 		 * so we explicitly check for that.
4249 		 */
4250 		freezer = STREAM(q)->sd_freezer;
4251 		if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4252 			mutex_enter(QLOCK(nq));
4253 		}
4254 #ifdef DEBUG
4255 		else {
4256 			ASSERT(frozenstr(q));
4257 			ASSERT(MUTEX_HELD(QLOCK(q)));
4258 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4259 		}
4260 #endif
4261 		setqback(nq, pri);
4262 		qenable_locked(nq);
4263 		if (freezer != curthread || STREAM(q) != STREAM(nq))
4264 			mutex_exit(QLOCK(nq));
4265 	}
4266 	releasestr(q);
4267 }
4268 
4269 /*
4270  * Return the appropriate errno when one of flags_to_check is set
4271  * in sd_flags. Uses the exported error routines if they are set.
4272  * Will return 0 if non error is set (or if the exported error routines
4273  * do not return an error).
4274  *
4275  * If there is both a read and write error to check, we prefer the read error.
4276  * Also, give preference to recorded errno's over the error functions.
4277  * The flags that are handled are:
4278  *	STPLEX		return EINVAL
4279  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4280  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4281  *	STRHUP		return sd_werror
4282  *
4283  * If the caller indicates that the operation is a peek, a nonpersistent error
4284  * is not cleared.
4285  */
4286 int
4287 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4288 {
4289 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4290 	int error = 0;
4291 
4292 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4293 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4294 	if (sd_flag & STPLEX)
4295 		error = EINVAL;
4296 	else if (sd_flag & STRDERR) {
4297 		error = stp->sd_rerror;
4298 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4299 			/*
4300 			 * Read errors are non-persistent i.e. discarded once
4301 			 * returned to a non-peeking caller,
4302 			 */
4303 			stp->sd_rerror = 0;
4304 			stp->sd_flag &= ~STRDERR;
4305 		}
4306 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4307 			int clearerr = 0;
4308 
4309 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4310 			    &clearerr);
4311 			if (clearerr) {
4312 				stp->sd_flag &= ~STRDERR;
4313 				stp->sd_rderrfunc = NULL;
4314 			}
4315 		}
4316 	} else if (sd_flag & STWRERR) {
4317 		error = stp->sd_werror;
4318 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4319 			/*
4320 			 * Write errors are non-persistent i.e. discarded once
4321 			 * returned to a non-peeking caller,
4322 			 */
4323 			stp->sd_werror = 0;
4324 			stp->sd_flag &= ~STWRERR;
4325 		}
4326 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4327 			int clearerr = 0;
4328 
4329 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4330 			    &clearerr);
4331 			if (clearerr) {
4332 				stp->sd_flag &= ~STWRERR;
4333 				stp->sd_wrerrfunc = NULL;
4334 			}
4335 		}
4336 	} else if (sd_flag & STRHUP) {
4337 		/* sd_werror set when STRHUP */
4338 		error = stp->sd_werror;
4339 	}
4340 	return (error);
4341 }
4342 
4343 
4344 /*
4345  * Single-thread open/close/push/pop
4346  * for twisted streams also
4347  */
4348 int
4349 strstartplumb(stdata_t *stp, int flag, int cmd)
4350 {
4351 	int waited = 1;
4352 	int error = 0;
4353 
4354 	if (STRMATED(stp)) {
4355 		struct stdata *stmatep = stp->sd_mate;
4356 
4357 		STRLOCKMATES(stp);
4358 		while (waited) {
4359 			waited = 0;
4360 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4361 				if ((cmd == I_POP) &&
4362 				    (flag & (FNDELAY|FNONBLOCK))) {
4363 					STRUNLOCKMATES(stp);
4364 					return (EAGAIN);
4365 				}
4366 				waited = 1;
4367 				mutex_exit(&stp->sd_lock);
4368 				if (!cv_wait_sig(&stmatep->sd_monitor,
4369 				    &stmatep->sd_lock)) {
4370 					mutex_exit(&stmatep->sd_lock);
4371 					return (EINTR);
4372 				}
4373 				mutex_exit(&stmatep->sd_lock);
4374 				STRLOCKMATES(stp);
4375 			}
4376 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4377 				if ((cmd == I_POP) &&
4378 				    (flag & (FNDELAY|FNONBLOCK))) {
4379 					STRUNLOCKMATES(stp);
4380 					return (EAGAIN);
4381 				}
4382 				waited = 1;
4383 				mutex_exit(&stmatep->sd_lock);
4384 				if (!cv_wait_sig(&stp->sd_monitor,
4385 				    &stp->sd_lock)) {
4386 					mutex_exit(&stp->sd_lock);
4387 					return (EINTR);
4388 				}
4389 				mutex_exit(&stp->sd_lock);
4390 				STRLOCKMATES(stp);
4391 			}
4392 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4393 				error = strgeterr(stp,
4394 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4395 				if (error != 0) {
4396 					STRUNLOCKMATES(stp);
4397 					return (error);
4398 				}
4399 			}
4400 		}
4401 		stp->sd_flag |= STRPLUMB;
4402 		STRUNLOCKMATES(stp);
4403 	} else {
4404 		mutex_enter(&stp->sd_lock);
4405 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4406 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4407 			    (flag & (FNDELAY|FNONBLOCK))) {
4408 				mutex_exit(&stp->sd_lock);
4409 				return (EAGAIN);
4410 			}
4411 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4412 				mutex_exit(&stp->sd_lock);
4413 				return (EINTR);
4414 			}
4415 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4416 				error = strgeterr(stp,
4417 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4418 				if (error != 0) {
4419 					mutex_exit(&stp->sd_lock);
4420 					return (error);
4421 				}
4422 			}
4423 		}
4424 		stp->sd_flag |= STRPLUMB;
4425 		mutex_exit(&stp->sd_lock);
4426 	}
4427 	return (0);
4428 }
4429 
4430 /*
4431  * Complete the plumbing operation associated with stream `stp'.
4432  */
4433 void
4434 strendplumb(stdata_t *stp)
4435 {
4436 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4437 	ASSERT(stp->sd_flag & STRPLUMB);
4438 	stp->sd_flag &= ~STRPLUMB;
4439 	cv_broadcast(&stp->sd_monitor);
4440 }
4441 
4442 /*
4443  * This describes how the STREAMS framework handles synchronization
4444  * during open/push and close/pop.
4445  * The key interfaces for open and close are qprocson and qprocsoff,
4446  * respectively. While the close case in general is harder both open
4447  * have close have significant similarities.
4448  *
4449  * During close the STREAMS framework has to both ensure that there
4450  * are no stale references to the queue pair (and syncq) that
4451  * are being closed and also provide the guarantees that are documented
4452  * in qprocsoff(9F).
4453  * If there are stale references to the queue that is closing it can
4454  * result in kernel memory corruption or kernel panics.
4455  *
4456  * Note that is it up to the module/driver to ensure that it itself
4457  * does not have any stale references to the closing queues once its close
4458  * routine returns. This includes:
4459  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4460  *    associated with the queues. For timeout and bufcall callbacks the
4461  *    module/driver also has to ensure (or wait for) any callbacks that
4462  *    are in progress.
4463  *  - If the module/driver is using esballoc it has to ensure that any
4464  *    esballoc free functions do not refer to a queue that has closed.
4465  *    (Note that in general the close routine can not wait for the esballoc'ed
4466  *    messages to be freed since that can cause a deadlock.)
4467  *  - Cancelling any interrupts that refer to the closing queues and
4468  *    also ensuring that there are no interrupts in progress that will
4469  *    refer to the closing queues once the close routine returns.
4470  *  - For multiplexors removing any driver global state that refers to
4471  *    the closing queue and also ensuring that there are no threads in
4472  *    the multiplexor that has picked up a queue pointer but not yet
4473  *    finished using it.
4474  *
4475  * In addition, a driver/module can only reference the q_next pointer
4476  * in its open, close, put, or service procedures or in a
4477  * qtimeout/qbufcall callback procedure executing "on" the correct
4478  * stream. Thus it can not reference the q_next pointer in an interrupt
4479  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4480  * it can not reference q_next of a different queue e.g. in a mux that
4481  * passes messages from one queues put/service procedure to another queue.
4482  * In all the cases when the driver/module can not access the q_next
4483  * field it must use the *next* versions e.g. canputnext instead of
4484  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4485  *
4486  *
4487  * Assuming that the driver/module conforms to the above constraints
4488  * the STREAMS framework has to avoid stale references to q_next for all
4489  * the framework internal cases which include (but are not limited to):
4490  *  - Threads in canput/canputnext/backenable and elsewhere that are
4491  *    walking q_next.
4492  *  - Messages on a syncq that have a reference to the queue through b_queue.
4493  *  - Messages on an outer perimeter (syncq) that have a reference to the
4494  *    queue through b_queue.
4495  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4496  *    Note that only canput and bcanput use q_nfsrv without any locking.
4497  *
4498  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4499  * after qprocsoff returns, the framework has to ensure that no threads can
4500  * enter the put or service routines for the closing read or write-side queue.
4501  * In addition to preventing "direct" entry into the put procedures
4502  * the framework also has to prevent messages being drained from
4503  * the syncq or the outer perimeter.
4504  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4505  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4506  * qprocsoff has returned.
4507  * Note that if a module/driver uses put(9F) on one of its own queues
4508  * it is up to the module/driver to ensure that the put() doesn't
4509  * get called when the queue is closing.
4510  *
4511  *
4512  * The framework aspects of the above "contract" is implemented by
4513  * qprocsoff, removeq, and strlock:
4514  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4515  *    entering the service procedures.
4516  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4517  *    canputnext, backenable etc from dereferencing the q_next that will
4518  *    soon change.
4519  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4520  *    or other q_next walker that uses claimstr/releasestr to finish.
4521  *  - optionally for every syncq in the stream strlock acquires all the
4522  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4523  *    that no thread executes in the put or service procedures and that no
4524  *    thread is draining into the module/driver. This ensures that no
4525  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4526  *    currently executing hence no such thread can end up with the old stale
4527  *    q_next value and no canput/backenable can have the old stale
4528  *    q_nfsrv/q_next.
4529  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4530  *    have either finished or observed the QWCLOSE flag and gone away.
4531  */
4532 
4533 
4534 /*
4535  * Get all the locks necessary to change q_next.
4536  *
4537  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the
4538  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4539  * the only threads inside the syncq are threads currently calling removeq().
4540  * Since threads calling removeq() are in the process of removing their queues
4541  * from the stream, we do not need to worry about them accessing a stale q_next
4542  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4543  * for them can cause deadlock).
4544  *
4545  * This routine is subject to starvation since it does not set any flag to
4546  * prevent threads from entering a module in the stream (i.e. sq_count can
4547  * increase on some syncq while it is waiting on some other syncq).
4548  *
4549  * Assumes that only one thread attempts to call strlock for a given
4550  * stream. If this is not the case the two threads would deadlock.
4551  * This assumption is guaranteed since strlock is only called by insertq
4552  * and removeq and streams plumbing changes are single-threaded for
4553  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4554  *
4555  * For pipes, it is not difficult to atomically designate a pair of streams
4556  * to be mated. Once mated atomically by the framework the twisted pair remain
4557  * configured that way until dismantled atomically by the framework.
4558  * When plumbing takes place on a twisted stream it is necessary to ensure that
4559  * this operation is done exclusively on the twisted stream since two such
4560  * operations, each initiated on different ends of the pipe will deadlock
4561  * waiting for each other to complete.
4562  *
4563  * On entry, no locks should be held.
4564  * The locks acquired and held by strlock depends on a few factors.
4565  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4566  *   and held on exit and all sq_count are at an acceptable level.
4567  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4568  *   sd_refcnt being zero.
4569  */
4570 
4571 static void
4572 strlock(struct stdata *stp, sqlist_t *sqlist)
4573 {
4574 	syncql_t *sql, *sql2;
4575 retry:
4576 	/*
4577 	 * Wait for any claimstr to go away.
4578 	 */
4579 	if (STRMATED(stp)) {
4580 		struct stdata *stp1, *stp2;
4581 
4582 		STRLOCKMATES(stp);
4583 		/*
4584 		 * Note that the selection of locking order is not
4585 		 * important, just that they are always acquired in
4586 		 * the same order.  To assure this, we choose this
4587 		 * order based on the value of the pointer, and since
4588 		 * the pointer will not change for the life of this
4589 		 * pair, we will always grab the locks in the same
4590 		 * order (and hence, prevent deadlocks).
4591 		 */
4592 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4593 			stp1 = stp;
4594 			stp2 = stp->sd_mate;
4595 		} else {
4596 			stp2 = stp;
4597 			stp1 = stp->sd_mate;
4598 		}
4599 		mutex_enter(&stp1->sd_reflock);
4600 		if (stp1->sd_refcnt > 0) {
4601 			STRUNLOCKMATES(stp);
4602 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4603 			mutex_exit(&stp1->sd_reflock);
4604 			goto retry;
4605 		}
4606 		mutex_enter(&stp2->sd_reflock);
4607 		if (stp2->sd_refcnt > 0) {
4608 			STRUNLOCKMATES(stp);
4609 			mutex_exit(&stp1->sd_reflock);
4610 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4611 			mutex_exit(&stp2->sd_reflock);
4612 			goto retry;
4613 		}
4614 		STREAM_PUTLOCKS_ENTER(stp1);
4615 		STREAM_PUTLOCKS_ENTER(stp2);
4616 	} else {
4617 		mutex_enter(&stp->sd_lock);
4618 		mutex_enter(&stp->sd_reflock);
4619 		while (stp->sd_refcnt > 0) {
4620 			mutex_exit(&stp->sd_lock);
4621 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4622 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4623 				mutex_exit(&stp->sd_reflock);
4624 				mutex_enter(&stp->sd_lock);
4625 				mutex_enter(&stp->sd_reflock);
4626 			}
4627 		}
4628 		STREAM_PUTLOCKS_ENTER(stp);
4629 	}
4630 
4631 	if (sqlist == NULL)
4632 		return;
4633 
4634 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4635 		syncq_t *sq = sql->sql_sq;
4636 		uint16_t count;
4637 
4638 		mutex_enter(SQLOCK(sq));
4639 		count = sq->sq_count;
4640 		ASSERT(sq->sq_rmqcount <= count);
4641 		SQ_PUTLOCKS_ENTER(sq);
4642 		SUM_SQ_PUTCOUNTS(sq, count);
4643 		if (count == sq->sq_rmqcount)
4644 			continue;
4645 
4646 		/* Failed - drop all locks that we have acquired so far */
4647 		if (STRMATED(stp)) {
4648 			STREAM_PUTLOCKS_EXIT(stp);
4649 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4650 			STRUNLOCKMATES(stp);
4651 			mutex_exit(&stp->sd_reflock);
4652 			mutex_exit(&stp->sd_mate->sd_reflock);
4653 		} else {
4654 			STREAM_PUTLOCKS_EXIT(stp);
4655 			mutex_exit(&stp->sd_lock);
4656 			mutex_exit(&stp->sd_reflock);
4657 		}
4658 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4659 		    sql2 = sql2->sql_next) {
4660 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4661 			mutex_exit(SQLOCK(sql2->sql_sq));
4662 		}
4663 
4664 		/*
4665 		 * The wait loop below may starve when there are many threads
4666 		 * claiming the syncq. This is especially a problem with permod
4667 		 * syncqs (IP). To lessen the impact of the problem we increment
4668 		 * sq_needexcl and clear fastbits so that putnexts will slow
4669 		 * down and call sqenable instead of draining right away.
4670 		 */
4671 		sq->sq_needexcl++;
4672 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4673 		while (count > sq->sq_rmqcount) {
4674 			sq->sq_flags |= SQ_WANTWAKEUP;
4675 			SQ_PUTLOCKS_EXIT(sq);
4676 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4677 			count = sq->sq_count;
4678 			SQ_PUTLOCKS_ENTER(sq);
4679 			SUM_SQ_PUTCOUNTS(sq, count);
4680 		}
4681 		sq->sq_needexcl--;
4682 		if (sq->sq_needexcl == 0)
4683 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4684 		SQ_PUTLOCKS_EXIT(sq);
4685 		ASSERT(count == sq->sq_rmqcount);
4686 		mutex_exit(SQLOCK(sq));
4687 		goto retry;
4688 	}
4689 }
4690 
4691 /*
4692  * Drop all the locks that strlock acquired.
4693  */
4694 static void
4695 strunlock(struct stdata *stp, sqlist_t *sqlist)
4696 {
4697 	syncql_t *sql;
4698 
4699 	if (STRMATED(stp)) {
4700 		STREAM_PUTLOCKS_EXIT(stp);
4701 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4702 		STRUNLOCKMATES(stp);
4703 		mutex_exit(&stp->sd_reflock);
4704 		mutex_exit(&stp->sd_mate->sd_reflock);
4705 	} else {
4706 		STREAM_PUTLOCKS_EXIT(stp);
4707 		mutex_exit(&stp->sd_lock);
4708 		mutex_exit(&stp->sd_reflock);
4709 	}
4710 
4711 	if (sqlist == NULL)
4712 		return;
4713 
4714 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4715 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4716 		mutex_exit(SQLOCK(sql->sql_sq));
4717 	}
4718 }
4719 
4720 /*
4721  * When the module has service procedure, we need check if the next
4722  * module which has service procedure is in flow control to trigger
4723  * the backenable.
4724  */
4725 static void
4726 backenable_insertedq(queue_t *q)
4727 {
4728 	qband_t	*qbp;
4729 
4730 	claimstr(q);
4731 	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4732 		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4733 			backenable(q, 0);
4734 
4735 		qbp = q->q_next->q_nfsrv->q_bandp;
4736 		for (; qbp != NULL; qbp = qbp->qb_next)
4737 			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4738 				backenable(q, qbp->qb_first->b_band);
4739 	}
4740 	releasestr(q);
4741 }
4742 
4743 /*
4744  * Given two read queues, insert a new single one after another.
4745  *
4746  * This routine acquires all the necessary locks in order to change
4747  * q_next and related pointer using strlock().
4748  * It depends on the stream head ensuring that there are no concurrent
4749  * insertq or removeq on the same stream. The stream head ensures this
4750  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4751  *
4752  * Note that no syncq locks are held during the q_next change. This is
4753  * applied to all streams since, unlike removeq, there is no problem of stale
4754  * pointers when adding a module to the stream. Thus drivers/modules that do a
4755  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4756  * applied this optimization to all streams.
4757  */
4758 void
4759 insertq(struct stdata *stp, queue_t *new)
4760 {
4761 	queue_t	*after;
4762 	queue_t *wafter;
4763 	queue_t *wnew = _WR(new);
4764 	boolean_t have_fifo = B_FALSE;
4765 
4766 	if (new->q_flag & _QINSERTING) {
4767 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4768 		after = new->q_next;
4769 		wafter = _WR(new->q_next);
4770 	} else {
4771 		after = _RD(stp->sd_wrq);
4772 		wafter = stp->sd_wrq;
4773 	}
4774 
4775 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4776 	    "insertq:%p, %p", after, new);
4777 	ASSERT(after->q_flag & QREADR);
4778 	ASSERT(new->q_flag & QREADR);
4779 
4780 	strlock(stp, NULL);
4781 
4782 	/* Do we have a FIFO? */
4783 	if (wafter->q_next == after) {
4784 		have_fifo = B_TRUE;
4785 		wnew->q_next = new;
4786 	} else {
4787 		wnew->q_next = wafter->q_next;
4788 	}
4789 	new->q_next = after;
4790 
4791 	set_nfsrv_ptr(new, wnew, after, wafter);
4792 	/*
4793 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4794 	 * so only reset this flag after calling it.
4795 	 */
4796 	new->q_flag &= ~_QINSERTING;
4797 
4798 	if (have_fifo) {
4799 		wafter->q_next = wnew;
4800 	} else {
4801 		if (wafter->q_next)
4802 			_OTHERQ(wafter->q_next)->q_next = new;
4803 		wafter->q_next = wnew;
4804 	}
4805 
4806 	set_qend(new);
4807 	/* The QEND flag might have to be updated for the upstream guy */
4808 	set_qend(after);
4809 
4810 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4811 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4812 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4813 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4814 	strsetuio(stp);
4815 
4816 	/*
4817 	 * If this was a module insertion, bump the push count.
4818 	 */
4819 	if (!(new->q_flag & QISDRV))
4820 		stp->sd_pushcnt++;
4821 
4822 	strunlock(stp, NULL);
4823 
4824 	/* check if the write Q needs backenable */
4825 	backenable_insertedq(wnew);
4826 
4827 	/* check if the read Q needs backenable */
4828 	backenable_insertedq(new);
4829 }
4830 
4831 /*
4832  * Given a read queue, unlink it from any neighbors.
4833  *
4834  * This routine acquires all the necessary locks in order to
4835  * change q_next and related pointers and also guard against
4836  * stale references (e.g. through q_next) to the queue that
4837  * is being removed. It also plays part of the role in ensuring
4838  * that the module's/driver's put procedure doesn't get called
4839  * after qprocsoff returns.
4840  *
4841  * Removeq depends on the stream head ensuring that there are
4842  * no concurrent insertq or removeq on the same stream. The
4843  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4844  * STRPLUMB.
4845  *
4846  * The set of locks needed to remove the queue is different in
4847  * different cases:
4848  *
4849  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4850  * waiting for the syncq reference count to drop to 0 indicating that no
4851  * non-close threads are present anywhere in the stream. This ensures that any
4852  * module/driver can reference q_next in its open, close, put, or service
4853  * procedures.
4854  *
4855  * The sq_rmqcount counter tracks the number of threads inside removeq().
4856  * strlock() ensures that there is either no threads executing inside perimeter
4857  * or there is only a thread calling qprocsoff().
4858  *
4859  * strlock() compares the value of sq_count with the number of threads inside
4860  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4861  * any threads waiting in strlock() when the sq_rmqcount increases.
4862  */
4863 
4864 void
4865 removeq(queue_t *qp)
4866 {
4867 	queue_t *wqp = _WR(qp);
4868 	struct stdata *stp = STREAM(qp);
4869 	sqlist_t *sqlist = NULL;
4870 	boolean_t isdriver;
4871 	int moved;
4872 	syncq_t *sq = qp->q_syncq;
4873 	syncq_t *wsq = wqp->q_syncq;
4874 
4875 	ASSERT(stp);
4876 
4877 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4878 	    "removeq:%p %p", qp, wqp);
4879 	ASSERT(qp->q_flag&QREADR);
4880 
4881 	/*
4882 	 * For queues using Synchronous streams, we must wait for all threads in
4883 	 * rwnext() to drain out before proceeding.
4884 	 */
4885 	if (qp->q_flag & QSYNCSTR) {
4886 		/* First, we need wakeup any threads blocked in rwnext() */
4887 		mutex_enter(SQLOCK(sq));
4888 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4889 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4890 			cv_broadcast(&sq->sq_wait);
4891 		}
4892 		mutex_exit(SQLOCK(sq));
4893 
4894 		if (wsq != sq) {
4895 			mutex_enter(SQLOCK(wsq));
4896 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4897 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4898 				cv_broadcast(&wsq->sq_wait);
4899 			}
4900 			mutex_exit(SQLOCK(wsq));
4901 		}
4902 
4903 		mutex_enter(QLOCK(qp));
4904 		while (qp->q_rwcnt > 0) {
4905 			qp->q_flag |= QWANTRMQSYNC;
4906 			cv_wait(&qp->q_wait, QLOCK(qp));
4907 		}
4908 		mutex_exit(QLOCK(qp));
4909 
4910 		mutex_enter(QLOCK(wqp));
4911 		while (wqp->q_rwcnt > 0) {
4912 			wqp->q_flag |= QWANTRMQSYNC;
4913 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4914 		}
4915 		mutex_exit(QLOCK(wqp));
4916 	}
4917 
4918 	mutex_enter(SQLOCK(sq));
4919 	sq->sq_rmqcount++;
4920 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4921 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4922 		cv_broadcast(&sq->sq_wait);
4923 	}
4924 	mutex_exit(SQLOCK(sq));
4925 
4926 	isdriver = (qp->q_flag & QISDRV);
4927 
4928 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4929 	strlock(stp, sqlist);
4930 
4931 	reset_nfsrv_ptr(qp, wqp);
4932 
4933 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4934 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4935 	/* Do we have a FIFO? */
4936 	if (wqp->q_next == qp) {
4937 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4938 	} else {
4939 		if (wqp->q_next)
4940 			backq(qp)->q_next = qp->q_next;
4941 		if (qp->q_next)
4942 			backq(wqp)->q_next = wqp->q_next;
4943 	}
4944 
4945 	/* The QEND flag might have to be updated for the upstream guy */
4946 	if (qp->q_next)
4947 		set_qend(qp->q_next);
4948 
4949 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4950 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4951 
4952 	/*
4953 	 * Move any messages destined for the put procedures to the next
4954 	 * syncq in line. Otherwise free them.
4955 	 */
4956 	moved = 0;
4957 	/*
4958 	 * Quick check to see whether there are any messages or events.
4959 	 */
4960 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4961 		moved += propagate_syncq(qp);
4962 	if (wqp->q_syncqmsgs != 0 ||
4963 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4964 		moved += propagate_syncq(wqp);
4965 
4966 	strsetuio(stp);
4967 
4968 	/*
4969 	 * If this was a module removal, decrement the push count.
4970 	 */
4971 	if (!isdriver)
4972 		stp->sd_pushcnt--;
4973 
4974 	strunlock(stp, sqlist);
4975 	sqlist_free(sqlist);
4976 
4977 	/*
4978 	 * Make sure any messages that were propagated are drained.
4979 	 * Also clear any QFULL bit caused by messages that were propagated.
4980 	 */
4981 
4982 	if (qp->q_next != NULL) {
4983 		clr_qfull(qp);
4984 		/*
4985 		 * For the driver calling qprocsoff, propagate_syncq
4986 		 * frees all the messages instead of putting it in
4987 		 * the stream head
4988 		 */
4989 		if (!isdriver && (moved > 0))
4990 			emptysq(qp->q_next->q_syncq);
4991 	}
4992 	if (wqp->q_next != NULL) {
4993 		clr_qfull(wqp);
4994 		/*
4995 		 * We come here for any pop of a module except for the
4996 		 * case of driver being removed. We don't call emptysq
4997 		 * if we did not move any messages. This will avoid holding
4998 		 * PERMOD syncq locks in emptysq
4999 		 */
5000 		if (moved > 0)
5001 			emptysq(wqp->q_next->q_syncq);
5002 	}
5003 
5004 	mutex_enter(SQLOCK(sq));
5005 	sq->sq_rmqcount--;
5006 	mutex_exit(SQLOCK(sq));
5007 }
5008 
5009 /*
5010  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
5011  * SQ_WRITER) on a syncq.
5012  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
5013  * sync queue and waits until sq_count reaches maxcnt.
5014  *
5015  * If maxcnt is -1 there's no need to grab sq_putlocks since the caller
5016  * does not care about putnext threads that are in the middle of calling put
5017  * entry points.
5018  *
5019  * This routine is used for both inner and outer syncqs.
5020  */
5021 static void
5022 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
5023 {
5024 	uint16_t count = 0;
5025 
5026 	mutex_enter(SQLOCK(sq));
5027 	/*
5028 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
5029 	 * SQ_FROZEN will be set if there is a frozen stream that has a
5030 	 * queue which also refers to this "shared" syncq.
5031 	 * SQ_BLOCKED will be set if there is "off" queue which also
5032 	 * refers to this "shared" syncq.
5033 	 */
5034 	if (maxcnt != -1) {
5035 		count = sq->sq_count;
5036 		SQ_PUTLOCKS_ENTER(sq);
5037 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5038 		SUM_SQ_PUTCOUNTS(sq, count);
5039 	}
5040 	sq->sq_needexcl++;
5041 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5042 
5043 	while ((sq->sq_flags & flag) ||
5044 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
5045 		sq->sq_flags |= SQ_WANTWAKEUP;
5046 		if (maxcnt != -1) {
5047 			SQ_PUTLOCKS_EXIT(sq);
5048 		}
5049 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5050 		if (maxcnt != -1) {
5051 			count = sq->sq_count;
5052 			SQ_PUTLOCKS_ENTER(sq);
5053 			SUM_SQ_PUTCOUNTS(sq, count);
5054 		}
5055 	}
5056 	sq->sq_needexcl--;
5057 	sq->sq_flags |= flag;
5058 	ASSERT(maxcnt == -1 || count == maxcnt);
5059 	if (maxcnt != -1) {
5060 		if (sq->sq_needexcl == 0) {
5061 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5062 		}
5063 		SQ_PUTLOCKS_EXIT(sq);
5064 	} else if (sq->sq_needexcl == 0) {
5065 		SQ_PUTCOUNT_SETFAST(sq);
5066 	}
5067 
5068 	mutex_exit(SQLOCK(sq));
5069 }
5070 
5071 /*
5072  * Reset a flag that was set with blocksq.
5073  *
5074  * Can not use this routine to reset SQ_WRITER.
5075  *
5076  * If "isouter" is set then the syncq is assumed to be an outer perimeter
5077  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5078  * to handle the queued qwriter operations.
5079  *
5080  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5081  * sq_putlocks are used.
5082  */
5083 static void
5084 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5085 {
5086 	uint16_t flags;
5087 
5088 	mutex_enter(SQLOCK(sq));
5089 	ASSERT(resetflag != SQ_WRITER);
5090 	ASSERT(sq->sq_flags & resetflag);
5091 	flags = sq->sq_flags & ~resetflag;
5092 	sq->sq_flags = flags;
5093 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5094 		if (flags & SQ_WANTWAKEUP) {
5095 			flags &= ~SQ_WANTWAKEUP;
5096 			cv_broadcast(&sq->sq_wait);
5097 		}
5098 		sq->sq_flags = flags;
5099 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5100 			if (!isouter) {
5101 				/* drain_syncq drops SQLOCK */
5102 				drain_syncq(sq);
5103 				return;
5104 			}
5105 		}
5106 	}
5107 	mutex_exit(SQLOCK(sq));
5108 }
5109 
5110 /*
5111  * Reset a flag that was set with blocksq.
5112  * Does not drain the syncq. Use emptysq() for that.
5113  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5114  *
5115  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5116  * sq_putlocks are used.
5117  */
5118 static int
5119 dropsq(syncq_t *sq, uint16_t resetflag)
5120 {
5121 	uint16_t flags;
5122 
5123 	mutex_enter(SQLOCK(sq));
5124 	ASSERT(sq->sq_flags & resetflag);
5125 	flags = sq->sq_flags & ~resetflag;
5126 	if (flags & SQ_WANTWAKEUP) {
5127 		flags &= ~SQ_WANTWAKEUP;
5128 		cv_broadcast(&sq->sq_wait);
5129 	}
5130 	sq->sq_flags = flags;
5131 	mutex_exit(SQLOCK(sq));
5132 	if (flags & SQ_QUEUED)
5133 		return (1);
5134 	return (0);
5135 }
5136 
5137 /*
5138  * Empty all the messages on a syncq.
5139  *
5140  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5141  * sq_putlocks are used.
5142  */
5143 static void
5144 emptysq(syncq_t *sq)
5145 {
5146 	uint16_t flags;
5147 
5148 	mutex_enter(SQLOCK(sq));
5149 	flags = sq->sq_flags;
5150 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5151 		/*
5152 		 * To prevent potential recursive invocation of drain_syncq we
5153 		 * do not call drain_syncq if count is non-zero.
5154 		 */
5155 		if (sq->sq_count == 0) {
5156 			/* drain_syncq() drops SQLOCK */
5157 			drain_syncq(sq);
5158 			return;
5159 		} else
5160 			sqenable(sq);
5161 	}
5162 	mutex_exit(SQLOCK(sq));
5163 }
5164 
5165 /*
5166  * Ordered insert while removing duplicates.
5167  */
5168 static void
5169 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5170 {
5171 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5172 
5173 	prev_sqlpp = &sqlist->sqlist_head;
5174 	while ((sqlp = *prev_sqlpp) != NULL) {
5175 		if (sqlp->sql_sq >= sqp) {
5176 			if (sqlp->sql_sq == sqp)	/* duplicate */
5177 				return;
5178 			break;
5179 		}
5180 		prev_sqlpp = &sqlp->sql_next;
5181 	}
5182 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5183 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5184 	new_sqlp->sql_next = sqlp;
5185 	new_sqlp->sql_sq = sqp;
5186 	*prev_sqlpp = new_sqlp;
5187 }
5188 
5189 /*
5190  * Walk the write side queues until we hit either the driver
5191  * or a twist in the stream (_SAMESTR will return false in both
5192  * these cases) then turn around and walk the read side queues
5193  * back up to the stream head.
5194  */
5195 static void
5196 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5197 {
5198 	while (q != NULL) {
5199 		sqlist_insert(sqlist, q->q_syncq);
5200 
5201 		if (_SAMESTR(q))
5202 			q = q->q_next;
5203 		else if (!(q->q_flag & QREADR))
5204 			q = _RD(q);
5205 		else
5206 			q = NULL;
5207 	}
5208 }
5209 
5210 /*
5211  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5212  * associated with the "q" parameter. The resulting list is sorted in a
5213  * canonical order and is free of duplicates.
5214  * Assumes the passed queue is a _RD(q).
5215  */
5216 static sqlist_t *
5217 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5218 {
5219 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5220 
5221 	/*
5222 	 * start with the current queue/qpair
5223 	 */
5224 	ASSERT(q->q_flag & QREADR);
5225 
5226 	sqlist_insert(sqlist, q->q_syncq);
5227 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5228 
5229 	sqlist_insertall(sqlist, stp->sd_wrq);
5230 	if (do_twist)
5231 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5232 
5233 	return (sqlist);
5234 }
5235 
5236 static sqlist_t *
5237 sqlist_alloc(struct stdata *stp, int kmflag)
5238 {
5239 	size_t sqlist_size;
5240 	sqlist_t *sqlist;
5241 
5242 	/*
5243 	 * Allocate 2 syncql_t's for each pushed module. Note that
5244 	 * the sqlist_t structure already has 4 syncql_t's built in:
5245 	 * 2 for the stream head, and 2 for the driver/other stream head.
5246 	 */
5247 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5248 	    sizeof (sqlist_t);
5249 	if (STRMATED(stp))
5250 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5251 	sqlist = kmem_alloc(sqlist_size, kmflag);
5252 
5253 	sqlist->sqlist_head = NULL;
5254 	sqlist->sqlist_size = sqlist_size;
5255 	sqlist->sqlist_index = 0;
5256 
5257 	return (sqlist);
5258 }
5259 
5260 /*
5261  * Free the list created by sqlist_alloc()
5262  */
5263 static void
5264 sqlist_free(sqlist_t *sqlist)
5265 {
5266 	kmem_free(sqlist, sqlist->sqlist_size);
5267 }
5268 
5269 /*
5270  * Prevent any new entries into any syncq in this stream.
5271  * Used by freezestr.
5272  */
5273 void
5274 strblock(queue_t *q)
5275 {
5276 	struct stdata	*stp;
5277 	syncql_t	*sql;
5278 	sqlist_t	*sqlist;
5279 
5280 	q = _RD(q);
5281 
5282 	stp = STREAM(q);
5283 	ASSERT(stp != NULL);
5284 
5285 	/*
5286 	 * Get a sorted list with all the duplicates removed containing
5287 	 * all the syncqs referenced by this stream.
5288 	 */
5289 	sqlist = sqlist_build(q, stp, B_FALSE);
5290 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5291 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5292 	sqlist_free(sqlist);
5293 }
5294 
5295 /*
5296  * Release the block on new entries into this stream
5297  */
5298 void
5299 strunblock(queue_t *q)
5300 {
5301 	struct stdata	*stp;
5302 	syncql_t	*sql;
5303 	sqlist_t	*sqlist;
5304 	int		drain_needed;
5305 
5306 	q = _RD(q);
5307 
5308 	/*
5309 	 * Get a sorted list with all the duplicates removed containing
5310 	 * all the syncqs referenced by this stream.
5311 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5312 	 * starting to drain them; otherwise the draining might
5313 	 * cause a freezestr in some module on the stream (which
5314 	 * would deadlock).
5315 	 */
5316 	stp = STREAM(q);
5317 	ASSERT(stp != NULL);
5318 	sqlist = sqlist_build(q, stp, B_FALSE);
5319 	drain_needed = 0;
5320 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5321 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5322 	if (drain_needed) {
5323 		for (sql = sqlist->sqlist_head; sql != NULL;
5324 		    sql = sql->sql_next)
5325 			emptysq(sql->sql_sq);
5326 	}
5327 	sqlist_free(sqlist);
5328 }
5329 
5330 #ifdef DEBUG
5331 static int
5332 qprocsareon(queue_t *rq)
5333 {
5334 	if (rq->q_next == NULL)
5335 		return (0);
5336 	return (_WR(rq->q_next)->q_next == _WR(rq));
5337 }
5338 
5339 int
5340 qclaimed(queue_t *q)
5341 {
5342 	uint_t count;
5343 
5344 	count = q->q_syncq->sq_count;
5345 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5346 	return (count != 0);
5347 }
5348 
5349 /*
5350  * Check if anyone has frozen this stream with freezestr
5351  */
5352 int
5353 frozenstr(queue_t *q)
5354 {
5355 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5356 }
5357 #endif /* DEBUG */
5358 
5359 /*
5360  * Enter a queue.
5361  * Obsoleted interface. Should not be used.
5362  */
5363 void
5364 enterq(queue_t *q)
5365 {
5366 	entersq(q->q_syncq, SQ_CALLBACK);
5367 }
5368 
5369 void
5370 leaveq(queue_t *q)
5371 {
5372 	leavesq(q->q_syncq, SQ_CALLBACK);
5373 }
5374 
5375 /*
5376  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5377  * to check.
5378  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5379  * calls and the running of open, close and service procedures.
5380  *
5381  * If c_inner bit is set no need to grab sq_putlocks since we don't care
5382  * if other threads have entered or are entering put entry point.
5383  *
5384  * If c_inner bit is set it might have been possible to use
5385  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5386  * open/close path for IP) but since the count may need to be decremented in
5387  * qwait() we wouldn't know which counter to decrement. Currently counter is
5388  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5389  * in the future we might use curthread id bits to select the counter and this
5390  * would stay constant across routine calls.
5391  */
5392 void
5393 entersq(syncq_t *sq, int entrypoint)
5394 {
5395 	uint16_t	count = 0;
5396 	uint16_t	flags;
5397 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5398 	uint16_t	type;
5399 	uint_t		c_inner = entrypoint & SQ_CI;
5400 	uint_t		c_outer = entrypoint & SQ_CO;
5401 
5402 	/*
5403 	 * Increment ref count to keep closes out of this queue.
5404 	 */
5405 	ASSERT(sq);
5406 	ASSERT(c_inner && c_outer);
5407 	mutex_enter(SQLOCK(sq));
5408 	flags = sq->sq_flags;
5409 	type = sq->sq_type;
5410 	if (!(type & c_inner)) {
5411 		/* Make sure all putcounts now use slowlock. */
5412 		count = sq->sq_count;
5413 		SQ_PUTLOCKS_ENTER(sq);
5414 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5415 		SUM_SQ_PUTCOUNTS(sq, count);
5416 		sq->sq_needexcl++;
5417 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5418 		waitflags |= SQ_MESSAGES;
5419 	}
5420 	/*
5421 	 * Wait until we can enter the inner perimeter.
5422 	 * If we want exclusive access we wait until sq_count is 0.
5423 	 * We have to do this before entering the outer perimeter in order
5424 	 * to preserve put/close message ordering.
5425 	 */
5426 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5427 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5428 		if (!(type & c_inner)) {
5429 			SQ_PUTLOCKS_EXIT(sq);
5430 		}
5431 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5432 		if (!(type & c_inner)) {
5433 			count = sq->sq_count;
5434 			SQ_PUTLOCKS_ENTER(sq);
5435 			SUM_SQ_PUTCOUNTS(sq, count);
5436 		}
5437 		flags = sq->sq_flags;
5438 	}
5439 
5440 	if (!(type & c_inner)) {
5441 		ASSERT(sq->sq_needexcl > 0);
5442 		sq->sq_needexcl--;
5443 		if (sq->sq_needexcl == 0) {
5444 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5445 		}
5446 	}
5447 
5448 	/* Check if we need to enter the outer perimeter */
5449 	if (!(type & c_outer)) {
5450 		/*
5451 		 * We have to enter the outer perimeter exclusively before
5452 		 * we can increment sq_count to avoid deadlock. This implies
5453 		 * that we have to re-check sq_flags and sq_count.
5454 		 *
5455 		 * is it possible to have c_inner set when c_outer is not set?
5456 		 */
5457 		if (!(type & c_inner)) {
5458 			SQ_PUTLOCKS_EXIT(sq);
5459 		}
5460 		mutex_exit(SQLOCK(sq));
5461 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5462 		mutex_enter(SQLOCK(sq));
5463 		flags = sq->sq_flags;
5464 		/*
5465 		 * there should be no need to recheck sq_putcounts
5466 		 * because outer_enter() has already waited for them to clear
5467 		 * after setting SQ_WRITER.
5468 		 */
5469 		count = sq->sq_count;
5470 #ifdef DEBUG
5471 		/*
5472 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5473 		 * of doing an ASSERT internally. Others should do
5474 		 * something like
5475 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5476 		 * without the need to #ifdef DEBUG it.
5477 		 */
5478 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5479 #endif
5480 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5481 		    (!(type & c_inner) && count != 0)) {
5482 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5483 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5484 			count = sq->sq_count;
5485 			flags = sq->sq_flags;
5486 		}
5487 	}
5488 
5489 	sq->sq_count++;
5490 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5491 	if (!(type & c_inner)) {
5492 		/* Exclusive entry */
5493 		ASSERT(sq->sq_count == 1);
5494 		sq->sq_flags |= SQ_EXCL;
5495 		if (type & c_outer) {
5496 			SQ_PUTLOCKS_EXIT(sq);
5497 		}
5498 	}
5499 	mutex_exit(SQLOCK(sq));
5500 }
5501 
5502 /*
5503  * Leave a syncq. Announce to framework that closes may proceed.
5504  * c_inner and c_outer specify which concurrency bits to check.
5505  *
5506  * Must never be called from driver or module put entry point.
5507  *
5508  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5509  * sq_putlocks are used.
5510  */
5511 void
5512 leavesq(syncq_t *sq, int entrypoint)
5513 {
5514 	uint16_t	flags;
5515 	uint16_t	type;
5516 	uint_t		c_outer = entrypoint & SQ_CO;
5517 #ifdef DEBUG
5518 	uint_t		c_inner = entrypoint & SQ_CI;
5519 #endif
5520 
5521 	/*
5522 	 * Decrement ref count, drain the syncq if possible, and wake up
5523 	 * any waiting close.
5524 	 */
5525 	ASSERT(sq);
5526 	ASSERT(c_inner && c_outer);
5527 	mutex_enter(SQLOCK(sq));
5528 	flags = sq->sq_flags;
5529 	type = sq->sq_type;
5530 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5531 
5532 		if (flags & SQ_WANTWAKEUP) {
5533 			flags &= ~SQ_WANTWAKEUP;
5534 			cv_broadcast(&sq->sq_wait);
5535 		}
5536 		if (flags & SQ_WANTEXWAKEUP) {
5537 			flags &= ~SQ_WANTEXWAKEUP;
5538 			cv_broadcast(&sq->sq_exitwait);
5539 		}
5540 
5541 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5542 			/*
5543 			 * The syncq needs to be drained. "Exit" the syncq
5544 			 * before calling drain_syncq.
5545 			 */
5546 			ASSERT(sq->sq_count != 0);
5547 			sq->sq_count--;
5548 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5549 			sq->sq_flags = flags & ~SQ_EXCL;
5550 			drain_syncq(sq);
5551 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5552 			/* Check if we need to exit the outer perimeter */
5553 			/* XXX will this ever be true? */
5554 			if (!(type & c_outer))
5555 				outer_exit(sq->sq_outer);
5556 			return;
5557 		}
5558 	}
5559 	ASSERT(sq->sq_count != 0);
5560 	sq->sq_count--;
5561 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5562 	sq->sq_flags = flags & ~SQ_EXCL;
5563 	mutex_exit(SQLOCK(sq));
5564 
5565 	/* Check if we need to exit the outer perimeter */
5566 	if (!(sq->sq_type & c_outer))
5567 		outer_exit(sq->sq_outer);
5568 }
5569 
5570 /*
5571  * Prevent q_next from changing in this stream by incrementing sq_count.
5572  *
5573  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5574  * sq_putlocks are used.
5575  */
5576 void
5577 claimq(queue_t *qp)
5578 {
5579 	syncq_t	*sq = qp->q_syncq;
5580 
5581 	mutex_enter(SQLOCK(sq));
5582 	sq->sq_count++;
5583 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5584 	mutex_exit(SQLOCK(sq));
5585 }
5586 
5587 /*
5588  * Undo claimq.
5589  *
5590  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5591  * sq_putlocks are used.
5592  */
5593 void
5594 releaseq(queue_t *qp)
5595 {
5596 	syncq_t	*sq = qp->q_syncq;
5597 	uint16_t flags;
5598 
5599 	mutex_enter(SQLOCK(sq));
5600 	ASSERT(sq->sq_count > 0);
5601 	sq->sq_count--;
5602 
5603 	flags = sq->sq_flags;
5604 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5605 		if (flags & SQ_WANTWAKEUP) {
5606 			flags &= ~SQ_WANTWAKEUP;
5607 			cv_broadcast(&sq->sq_wait);
5608 		}
5609 		sq->sq_flags = flags;
5610 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5611 			/*
5612 			 * To prevent potential recursive invocation of
5613 			 * drain_syncq we do not call drain_syncq if count is
5614 			 * non-zero.
5615 			 */
5616 			if (sq->sq_count == 0) {
5617 				drain_syncq(sq);
5618 				return;
5619 			} else
5620 				sqenable(sq);
5621 		}
5622 	}
5623 	mutex_exit(SQLOCK(sq));
5624 }
5625 
5626 /*
5627  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5628  */
5629 void
5630 claimstr(queue_t *qp)
5631 {
5632 	struct stdata *stp = STREAM(qp);
5633 
5634 	mutex_enter(&stp->sd_reflock);
5635 	stp->sd_refcnt++;
5636 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5637 	mutex_exit(&stp->sd_reflock);
5638 }
5639 
5640 /*
5641  * Undo claimstr.
5642  */
5643 void
5644 releasestr(queue_t *qp)
5645 {
5646 	struct stdata *stp = STREAM(qp);
5647 
5648 	mutex_enter(&stp->sd_reflock);
5649 	ASSERT(stp->sd_refcnt != 0);
5650 	if (--stp->sd_refcnt == 0)
5651 		cv_broadcast(&stp->sd_refmonitor);
5652 	mutex_exit(&stp->sd_reflock);
5653 }
5654 
5655 static syncq_t *
5656 new_syncq(void)
5657 {
5658 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5659 }
5660 
5661 static void
5662 free_syncq(syncq_t *sq)
5663 {
5664 	ASSERT(sq->sq_head == NULL);
5665 	ASSERT(sq->sq_outer == NULL);
5666 	ASSERT(sq->sq_callbpend == NULL);
5667 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5668 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5669 
5670 	if (sq->sq_ciputctrl != NULL) {
5671 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5672 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5673 		    sq->sq_nciputctrl, 0);
5674 		ASSERT(ciputctrl_cache != NULL);
5675 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5676 	}
5677 
5678 	sq->sq_tail = NULL;
5679 	sq->sq_evhead = NULL;
5680 	sq->sq_evtail = NULL;
5681 	sq->sq_ciputctrl = NULL;
5682 	sq->sq_nciputctrl = 0;
5683 	sq->sq_count = 0;
5684 	sq->sq_rmqcount = 0;
5685 	sq->sq_callbflags = 0;
5686 	sq->sq_cancelid = 0;
5687 	sq->sq_next = NULL;
5688 	sq->sq_needexcl = 0;
5689 	sq->sq_svcflags = 0;
5690 	sq->sq_nqueues = 0;
5691 	sq->sq_pri = 0;
5692 	sq->sq_onext = NULL;
5693 	sq->sq_oprev = NULL;
5694 	sq->sq_flags = 0;
5695 	sq->sq_type = 0;
5696 	sq->sq_servcount = 0;
5697 
5698 	kmem_cache_free(syncq_cache, sq);
5699 }
5700 
5701 /* Outer perimeter code */
5702 
5703 /*
5704  * The outer syncq uses the fields and flags in the syncq slightly
5705  * differently from the inner syncqs.
5706  *	sq_count	Incremented when there are pending or running
5707  *			writers at the outer perimeter to prevent the set of
5708  *			inner syncqs that belong to the outer perimeter from
5709  *			changing.
5710  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5711  *
5712  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5713  *			inner syncqs are added to or removed from the
5714  *			outer perimeter.
5715  *	SQ_QUEUED	sq_head/tail has messages or events queued.
5716  *
5717  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5718  *			setting the SQ_WRITER flag.
5719  */
5720 
5721 /*
5722  * Get write access at the outer perimeter.
5723  * Note that read access is done by entersq, putnext, and put by simply
5724  * incrementing sq_count in the inner syncq.
5725  *
5726  * Waits until "flags" is no longer set in the outer to prevent multiple
5727  * threads from having write access at the same time. SQ_WRITER has to be part
5728  * of "flags".
5729  *
5730  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5731  * until the outer_exit is finished.
5732  *
5733  * outer_enter is vulnerable to starvation since it does not prevent new
5734  * threads from entering the inner syncqs while it is waiting for sq_count to
5735  * go to zero.
5736  */
5737 void
5738 outer_enter(syncq_t *outer, uint16_t flags)
5739 {
5740 	syncq_t	*sq;
5741 	int	wait_needed;
5742 	uint16_t	count;
5743 
5744 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5745 	    outer->sq_oprev != NULL);
5746 	ASSERT(flags & SQ_WRITER);
5747 
5748 retry:
5749 	mutex_enter(SQLOCK(outer));
5750 	while (outer->sq_flags & flags) {
5751 		outer->sq_flags |= SQ_WANTWAKEUP;
5752 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5753 	}
5754 
5755 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5756 	outer->sq_flags |= SQ_WRITER;
5757 	outer->sq_count++;
5758 	ASSERT(outer->sq_count != 0);	/* wraparound */
5759 	wait_needed = 0;
5760 	/*
5761 	 * Set SQ_WRITER on all the inner syncqs while holding
5762 	 * the SQLOCK on the outer syncq. This ensures that the changing
5763 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5764 	 */
5765 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5766 		mutex_enter(SQLOCK(sq));
5767 		count = sq->sq_count;
5768 		SQ_PUTLOCKS_ENTER(sq);
5769 		sq->sq_flags |= SQ_WRITER;
5770 		SUM_SQ_PUTCOUNTS(sq, count);
5771 		if (count != 0)
5772 			wait_needed = 1;
5773 		SQ_PUTLOCKS_EXIT(sq);
5774 		mutex_exit(SQLOCK(sq));
5775 	}
5776 	mutex_exit(SQLOCK(outer));
5777 
5778 	/*
5779 	 * Get everybody out of the syncqs sequentially.
5780 	 * Note that we don't actually need to acquire the PUTLOCKS, since
5781 	 * we have already cleared the fastbit, and set QWRITER.  By
5782 	 * definition, the count can not increase since putnext will
5783 	 * take the slowlock path (and the purpose of acquiring the
5784 	 * putlocks was to make sure it didn't increase while we were
5785 	 * waiting).
5786 	 *
5787 	 * Note that we still acquire the PUTLOCKS to be safe.
5788 	 */
5789 	if (wait_needed) {
5790 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5791 			mutex_enter(SQLOCK(sq));
5792 			count = sq->sq_count;
5793 			SQ_PUTLOCKS_ENTER(sq);
5794 			SUM_SQ_PUTCOUNTS(sq, count);
5795 			while (count != 0) {
5796 				sq->sq_flags |= SQ_WANTWAKEUP;
5797 				SQ_PUTLOCKS_EXIT(sq);
5798 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5799 				count = sq->sq_count;
5800 				SQ_PUTLOCKS_ENTER(sq);
5801 				SUM_SQ_PUTCOUNTS(sq, count);
5802 			}
5803 			SQ_PUTLOCKS_EXIT(sq);
5804 			mutex_exit(SQLOCK(sq));
5805 		}
5806 		/*
5807 		 * Verify that none of the flags got set while we
5808 		 * were waiting for the sq_counts to drop.
5809 		 * If this happens we exit and retry entering the
5810 		 * outer perimeter.
5811 		 */
5812 		mutex_enter(SQLOCK(outer));
5813 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5814 			mutex_exit(SQLOCK(outer));
5815 			outer_exit(outer);
5816 			goto retry;
5817 		}
5818 		mutex_exit(SQLOCK(outer));
5819 	}
5820 }
5821 
5822 /*
5823  * Drop the write access at the outer perimeter.
5824  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5825  * decrementing sq_count.
5826  */
5827 void
5828 outer_exit(syncq_t *outer)
5829 {
5830 	syncq_t	*sq;
5831 	int	 drain_needed;
5832 	uint16_t flags;
5833 
5834 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5835 	    outer->sq_oprev != NULL);
5836 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5837 
5838 	/*
5839 	 * Atomically (from the perspective of threads calling become_writer)
5840 	 * drop the write access at the outer perimeter by holding
5841 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5842 	 * SQ_WRITER.
5843 	 * This defines a locking order between the outer perimeter
5844 	 * SQLOCK and the inner perimeter SQLOCKs.
5845 	 */
5846 	mutex_enter(SQLOCK(outer));
5847 	flags = outer->sq_flags;
5848 	ASSERT(outer->sq_flags & SQ_WRITER);
5849 	if (flags & SQ_QUEUED) {
5850 		write_now(outer);
5851 		flags = outer->sq_flags;
5852 	}
5853 
5854 	/*
5855 	 * sq_onext is stable since sq_count has not yet been decreased.
5856 	 * Reset the SQ_WRITER flags in all syncqs.
5857 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5858 	 * inner syncqs.
5859 	 */
5860 	drain_needed = 0;
5861 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5862 		drain_needed += dropsq(sq, SQ_WRITER);
5863 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5864 	flags &= ~SQ_WRITER;
5865 	if (drain_needed) {
5866 		outer->sq_flags = flags;
5867 		mutex_exit(SQLOCK(outer));
5868 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5869 			emptysq(sq);
5870 		mutex_enter(SQLOCK(outer));
5871 		flags = outer->sq_flags;
5872 	}
5873 	if (flags & SQ_WANTWAKEUP) {
5874 		flags &= ~SQ_WANTWAKEUP;
5875 		cv_broadcast(&outer->sq_wait);
5876 	}
5877 	outer->sq_flags = flags;
5878 	ASSERT(outer->sq_count > 0);
5879 	outer->sq_count--;
5880 	mutex_exit(SQLOCK(outer));
5881 }
5882 
5883 /*
5884  * Add another syncq to an outer perimeter.
5885  * Block out all other access to the outer perimeter while it is being
5886  * changed using blocksq.
5887  * Assumes that the caller has *not* done an outer_enter.
5888  *
5889  * Vulnerable to starvation in blocksq.
5890  */
5891 static void
5892 outer_insert(syncq_t *outer, syncq_t *sq)
5893 {
5894 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5895 	    outer->sq_oprev != NULL);
5896 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5897 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5898 
5899 	/* Get exclusive access to the outer perimeter list */
5900 	blocksq(outer, SQ_BLOCKED, 0);
5901 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5902 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5903 
5904 	mutex_enter(SQLOCK(sq));
5905 	sq->sq_outer = outer;
5906 	outer->sq_onext->sq_oprev = sq;
5907 	sq->sq_onext = outer->sq_onext;
5908 	outer->sq_onext = sq;
5909 	sq->sq_oprev = outer;
5910 	mutex_exit(SQLOCK(sq));
5911 	unblocksq(outer, SQ_BLOCKED, 1);
5912 }
5913 
5914 /*
5915  * Remove a syncq from an outer perimeter.
5916  * Block out all other access to the outer perimeter while it is being
5917  * changed using blocksq.
5918  * Assumes that the caller has *not* done an outer_enter.
5919  *
5920  * Vulnerable to starvation in blocksq.
5921  */
5922 static void
5923 outer_remove(syncq_t *outer, syncq_t *sq)
5924 {
5925 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5926 	    outer->sq_oprev != NULL);
5927 	ASSERT(sq->sq_outer == outer);
5928 
5929 	/* Get exclusive access to the outer perimeter list */
5930 	blocksq(outer, SQ_BLOCKED, 0);
5931 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5932 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5933 
5934 	mutex_enter(SQLOCK(sq));
5935 	sq->sq_outer = NULL;
5936 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5937 	sq->sq_oprev->sq_onext = sq->sq_onext;
5938 	sq->sq_oprev = sq->sq_onext = NULL;
5939 	mutex_exit(SQLOCK(sq));
5940 	unblocksq(outer, SQ_BLOCKED, 1);
5941 }
5942 
5943 /*
5944  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5945  * If this is the first callback for this outer perimeter then add
5946  * this outer perimeter to the list of outer perimeters that
5947  * the qwriter_outer_thread will process.
5948  *
5949  * Increments sq_count in the outer syncq to prevent the membership
5950  * of the outer perimeter (in terms of inner syncqs) to change while
5951  * the callback is pending.
5952  */
5953 static void
5954 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5955 {
5956 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5957 
5958 	mp->b_prev = (mblk_t *)func;
5959 	mp->b_queue = q;
5960 	mp->b_next = NULL;
5961 	outer->sq_count++;	/* Decremented when dequeued */
5962 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5963 	if (outer->sq_evhead == NULL) {
5964 		/* First message. */
5965 		outer->sq_evhead = outer->sq_evtail = mp;
5966 		outer->sq_flags |= SQ_EVENTS;
5967 		mutex_exit(SQLOCK(outer));
5968 		STRSTAT(qwr_outer);
5969 		(void) taskq_dispatch(streams_taskq,
5970 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5971 	} else {
5972 		ASSERT(outer->sq_flags & SQ_EVENTS);
5973 		outer->sq_evtail->b_next = mp;
5974 		outer->sq_evtail = mp;
5975 		mutex_exit(SQLOCK(outer));
5976 	}
5977 }
5978 
5979 /*
5980  * Try and upgrade to write access at the outer perimeter. If this can
5981  * not be done without blocking then queue the callback to be done
5982  * by the qwriter_outer_thread.
5983  *
5984  * This routine can only be called from put or service procedures plus
5985  * asynchronous callback routines that have properly entered the queue (with
5986  * entersq). Thus qwriter(OUTER) assumes the caller has one claim on the syncq
5987  * associated with q.
5988  */
5989 void
5990 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5991 {
5992 	syncq_t	*osq, *sq, *outer;
5993 	int	failed;
5994 	uint16_t flags;
5995 
5996 	osq = q->q_syncq;
5997 	outer = osq->sq_outer;
5998 	if (outer == NULL)
5999 		panic("qwriter(PERIM_OUTER): no outer perimeter");
6000 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6001 	    outer->sq_oprev != NULL);
6002 
6003 	mutex_enter(SQLOCK(outer));
6004 	flags = outer->sq_flags;
6005 	/*
6006 	 * If some thread is traversing sq_next, or if we are blocked by
6007 	 * outer_insert or outer_remove, or if the we already have queued
6008 	 * callbacks, then queue this callback for later processing.
6009 	 *
6010 	 * Also queue the qwriter for an interrupt thread in order
6011 	 * to reduce the time spent running at high IPL.
6012 	 * to identify there are events.
6013 	 */
6014 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
6015 		/*
6016 		 * Queue the become_writer request.
6017 		 * The queueing is atomic under SQLOCK(outer) in order
6018 		 * to synchronize with outer_exit.
6019 		 * queue_writer will drop the outer SQLOCK
6020 		 */
6021 		if (flags & SQ_BLOCKED) {
6022 			/* Must set SQ_WRITER on inner perimeter */
6023 			mutex_enter(SQLOCK(osq));
6024 			osq->sq_flags |= SQ_WRITER;
6025 			mutex_exit(SQLOCK(osq));
6026 		} else {
6027 			if (!(flags & SQ_WRITER)) {
6028 				/*
6029 				 * The outer could have been SQ_BLOCKED thus
6030 				 * SQ_WRITER might not be set on the inner.
6031 				 */
6032 				mutex_enter(SQLOCK(osq));
6033 				osq->sq_flags |= SQ_WRITER;
6034 				mutex_exit(SQLOCK(osq));
6035 			}
6036 			ASSERT(osq->sq_flags & SQ_WRITER);
6037 		}
6038 		queue_writer(outer, func, q, mp);
6039 		return;
6040 	}
6041 	/*
6042 	 * We are half-way to exclusive access to the outer perimeter.
6043 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6044 	 * while the inner syncqs are traversed.
6045 	 */
6046 	outer->sq_count++;
6047 	ASSERT(outer->sq_count != 0);	/* wraparound */
6048 	flags |= SQ_WRITER;
6049 	/*
6050 	 * Check if we can run the function immediately. Mark all
6051 	 * syncqs with the writer flag to prevent new entries into
6052 	 * put and service procedures.
6053 	 *
6054 	 * Set SQ_WRITER on all the inner syncqs while holding
6055 	 * the SQLOCK on the outer syncq. This ensures that the changing
6056 	 * of SQ_WRITER is atomic under the outer SQLOCK.
6057 	 */
6058 	failed = 0;
6059 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6060 		uint16_t count;
6061 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
6062 
6063 		mutex_enter(SQLOCK(sq));
6064 		count = sq->sq_count;
6065 		SQ_PUTLOCKS_ENTER(sq);
6066 		SUM_SQ_PUTCOUNTS(sq, count);
6067 		if (sq->sq_count > maxcnt)
6068 			failed = 1;
6069 		sq->sq_flags |= SQ_WRITER;
6070 		SQ_PUTLOCKS_EXIT(sq);
6071 		mutex_exit(SQLOCK(sq));
6072 	}
6073 	if (failed) {
6074 		/*
6075 		 * Some other thread has a read claim on the outer perimeter.
6076 		 * Queue the callback for deferred processing.
6077 		 *
6078 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6079 		 * so that other qwriter(OUTER) calls will queue their
6080 		 * callbacks as well. queue_writer increments sq_count so we
6081 		 * decrement to compensate for the our increment.
6082 		 *
6083 		 * Dropping SQ_WRITER enables the writer thread to work
6084 		 * on this outer perimeter.
6085 		 */
6086 		outer->sq_flags = flags;
6087 		queue_writer(outer, func, q, mp);
6088 		/* queue_writer dropper the lock */
6089 		mutex_enter(SQLOCK(outer));
6090 		ASSERT(outer->sq_count > 0);
6091 		outer->sq_count--;
6092 		ASSERT(outer->sq_flags & SQ_WRITER);
6093 		flags = outer->sq_flags;
6094 		flags &= ~SQ_WRITER;
6095 		if (flags & SQ_WANTWAKEUP) {
6096 			flags &= ~SQ_WANTWAKEUP;
6097 			cv_broadcast(&outer->sq_wait);
6098 		}
6099 		outer->sq_flags = flags;
6100 		mutex_exit(SQLOCK(outer));
6101 		return;
6102 	} else {
6103 		outer->sq_flags = flags;
6104 		mutex_exit(SQLOCK(outer));
6105 	}
6106 
6107 	/* Can run it immediately */
6108 	(*func)(q, mp);
6109 
6110 	outer_exit(outer);
6111 }
6112 
6113 /*
6114  * Dequeue all writer callbacks from the outer perimeter and run them.
6115  */
6116 static void
6117 write_now(syncq_t *outer)
6118 {
6119 	mblk_t		*mp;
6120 	queue_t		*q;
6121 	void	(*func)();
6122 
6123 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6124 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6125 	    outer->sq_oprev != NULL);
6126 	while ((mp = outer->sq_evhead) != NULL) {
6127 		/*
6128 		 * queues cannot be placed on the queuelist on the outer
6129 		 * perimeter.
6130 		 */
6131 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6132 		ASSERT((outer->sq_flags & SQ_EVENTS));
6133 
6134 		outer->sq_evhead = mp->b_next;
6135 		if (outer->sq_evhead == NULL) {
6136 			outer->sq_evtail = NULL;
6137 			outer->sq_flags &= ~SQ_EVENTS;
6138 		}
6139 		ASSERT(outer->sq_count != 0);
6140 		outer->sq_count--;	/* Incremented when enqueued. */
6141 		mutex_exit(SQLOCK(outer));
6142 		/*
6143 		 * Drop the message if the queue is closing.
6144 		 * Make sure that the queue is "claimed" when the callback
6145 		 * is run in order to satisfy various ASSERTs.
6146 		 */
6147 		q = mp->b_queue;
6148 		func = (void (*)())mp->b_prev;
6149 		ASSERT(func != NULL);
6150 		mp->b_next = mp->b_prev = NULL;
6151 		if (q->q_flag & QWCLOSE) {
6152 			freemsg(mp);
6153 		} else {
6154 			claimq(q);
6155 			(*func)(q, mp);
6156 			releaseq(q);
6157 		}
6158 		mutex_enter(SQLOCK(outer));
6159 	}
6160 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6161 }
6162 
6163 /*
6164  * The list of messages on the inner syncq is effectively hashed
6165  * by destination queue.  These destination queues are doubly
6166  * linked lists (hopefully) in priority order.  Messages are then
6167  * put on the queue referenced by the q_sqhead/q_sqtail elements.
6168  * Additional messages are linked together by the b_next/b_prev
6169  * elements in the mblk, with (similar to putq()) the first message
6170  * having a NULL b_prev and the last message having a NULL b_next.
6171  *
6172  * Events, such as qwriter callbacks, are put onto a list in FIFO
6173  * order referenced by sq_evhead, and sq_evtail.  This is a singly
6174  * linked list, and messages here MUST be processed in the order queued.
6175  */
6176 
6177 /*
6178  * Run the events on the syncq event list (sq_evhead).
6179  * Assumes there is only one claim on the syncq, it is
6180  * already exclusive (SQ_EXCL set), and the SQLOCK held.
6181  * Messages here are processed in order, with the SQ_EXCL bit
6182  * held all the way through till the last message is processed.
6183  */
6184 void
6185 sq_run_events(syncq_t *sq)
6186 {
6187 	mblk_t		*bp;
6188 	queue_t		*qp;
6189 	uint16_t	flags = sq->sq_flags;
6190 	void		(*func)();
6191 
6192 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6193 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6194 	    sq->sq_oprev == NULL) ||
6195 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6196 	    sq->sq_oprev != NULL));
6197 
6198 	ASSERT(flags & SQ_EXCL);
6199 	ASSERT(sq->sq_count == 1);
6200 
6201 	/*
6202 	 * We need to process all of the events on this list.  It
6203 	 * is possible that new events will be added while we are
6204 	 * away processing a callback, so on every loop, we start
6205 	 * back at the beginning of the list.
6206 	 */
6207 	/*
6208 	 * We have to reaccess sq_evhead since there is a
6209 	 * possibility of a new entry while we were running
6210 	 * the callback.
6211 	 */
6212 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6213 		ASSERT(bp->b_queue->q_syncq == sq);
6214 		ASSERT(sq->sq_flags & SQ_EVENTS);
6215 
6216 		qp = bp->b_queue;
6217 		func = (void (*)())bp->b_prev;
6218 		ASSERT(func != NULL);
6219 
6220 		/*
6221 		 * Messages from the event queue must be taken off in
6222 		 * FIFO order.
6223 		 */
6224 		ASSERT(sq->sq_evhead == bp);
6225 		sq->sq_evhead = bp->b_next;
6226 
6227 		if (bp->b_next == NULL) {
6228 			/* Deleting last */
6229 			ASSERT(sq->sq_evtail == bp);
6230 			sq->sq_evtail = NULL;
6231 			sq->sq_flags &= ~SQ_EVENTS;
6232 		}
6233 		bp->b_prev = bp->b_next = NULL;
6234 		ASSERT(bp->b_datap->db_ref != 0);
6235 
6236 		mutex_exit(SQLOCK(sq));
6237 
6238 		(*func)(qp, bp);
6239 
6240 		mutex_enter(SQLOCK(sq));
6241 		/*
6242 		 * re-read the flags, since they could have changed.
6243 		 */
6244 		flags = sq->sq_flags;
6245 		ASSERT(flags & SQ_EXCL);
6246 	}
6247 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6248 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6249 
6250 	if (flags & SQ_WANTWAKEUP) {
6251 		flags &= ~SQ_WANTWAKEUP;
6252 		cv_broadcast(&sq->sq_wait);
6253 	}
6254 	if (flags & SQ_WANTEXWAKEUP) {
6255 		flags &= ~SQ_WANTEXWAKEUP;
6256 		cv_broadcast(&sq->sq_exitwait);
6257 	}
6258 	sq->sq_flags = flags;
6259 }
6260 
6261 /*
6262  * Put messages on the event list.
6263  * If we can go exclusive now, do so and process the event list, otherwise
6264  * let the last claim service this list (or wake the sqthread).
6265  * This procedure assumes SQLOCK is held.  To run the event list, it
6266  * must be called with no claims.
6267  */
6268 static void
6269 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6270 {
6271 	uint16_t count;
6272 
6273 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6274 	ASSERT(func != NULL);
6275 
6276 	/*
6277 	 * This is a callback.  Add it to the list of callbacks
6278 	 * and see about upgrading.
6279 	 */
6280 	mp->b_prev = (mblk_t *)func;
6281 	mp->b_queue = q;
6282 	mp->b_next = NULL;
6283 	if (sq->sq_evhead == NULL) {
6284 		sq->sq_evhead = sq->sq_evtail = mp;
6285 		sq->sq_flags |= SQ_EVENTS;
6286 	} else {
6287 		ASSERT(sq->sq_evtail != NULL);
6288 		ASSERT(sq->sq_evtail->b_next == NULL);
6289 		ASSERT(sq->sq_flags & SQ_EVENTS);
6290 		sq->sq_evtail->b_next = mp;
6291 		sq->sq_evtail = mp;
6292 	}
6293 	/*
6294 	 * We have set SQ_EVENTS, so threads will have to
6295 	 * unwind out of the perimeter, and new entries will
6296 	 * not grab a putlock.  But we still need to know
6297 	 * how many threads have already made a claim to the
6298 	 * syncq, so grab the putlocks, and sum the counts.
6299 	 * If there are no claims on the syncq, we can upgrade
6300 	 * to exclusive, and run the event list.
6301 	 * NOTE: We hold the SQLOCK, so we can just grab the
6302 	 * putlocks.
6303 	 */
6304 	count = sq->sq_count;
6305 	SQ_PUTLOCKS_ENTER(sq);
6306 	SUM_SQ_PUTCOUNTS(sq, count);
6307 	/*
6308 	 * We have no claim, so we need to check if there
6309 	 * are no others, then we can upgrade.
6310 	 */
6311 	/*
6312 	 * There are currently no claims on
6313 	 * the syncq by this thread (at least on this entry). The thread who has
6314 	 * the claim should drain syncq.
6315 	 */
6316 	if (count > 0) {
6317 		/*
6318 		 * Can't upgrade - other threads inside.
6319 		 */
6320 		SQ_PUTLOCKS_EXIT(sq);
6321 		mutex_exit(SQLOCK(sq));
6322 		return;
6323 	}
6324 	/*
6325 	 * Need to set SQ_EXCL and make a claim on the syncq.
6326 	 */
6327 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6328 	sq->sq_flags |= SQ_EXCL;
6329 	ASSERT(sq->sq_count == 0);
6330 	sq->sq_count++;
6331 	SQ_PUTLOCKS_EXIT(sq);
6332 
6333 	/* Process the events list */
6334 	sq_run_events(sq);
6335 
6336 	/*
6337 	 * Release our claim...
6338 	 */
6339 	sq->sq_count--;
6340 
6341 	/*
6342 	 * And release SQ_EXCL.
6343 	 * We don't need to acquire the putlocks to release
6344 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6345 	 */
6346 	sq->sq_flags &= ~SQ_EXCL;
6347 
6348 	/*
6349 	 * sq_run_events should have released SQ_EXCL
6350 	 */
6351 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6352 
6353 	/*
6354 	 * If anything happened while we were running the
6355 	 * events (or was there before), we need to process
6356 	 * them now.  We shouldn't be exclusive sine we
6357 	 * released the perimeter above (plus, we asserted
6358 	 * for it).
6359 	 */
6360 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6361 		drain_syncq(sq);
6362 	else
6363 		mutex_exit(SQLOCK(sq));
6364 }
6365 
6366 /*
6367  * Perform delayed processing. The caller has to make sure that it is safe
6368  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6369  * set).
6370  *
6371  * Assume that the caller has NO claims on the syncq.  However, a claim
6372  * on the syncq does not indicate that a thread is draining the syncq.
6373  * There may be more claims on the syncq than there are threads draining
6374  * (i.e.  #_threads_draining <= sq_count)
6375  *
6376  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6377  * in order to preserve qwriter(OUTER) ordering constraints.
6378  *
6379  * sq_putcount only needs to be checked when dispatching the queued
6380  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6381  */
6382 void
6383 drain_syncq(syncq_t *sq)
6384 {
6385 	queue_t		*qp;
6386 	uint16_t	count;
6387 	uint16_t	type = sq->sq_type;
6388 	uint16_t	flags = sq->sq_flags;
6389 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6390 
6391 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6392 	    "drain_syncq start:%p", sq);
6393 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6394 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6395 	    sq->sq_oprev == NULL) ||
6396 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6397 	    sq->sq_oprev != NULL));
6398 
6399 	/*
6400 	 * Drop SQ_SERVICE flag.
6401 	 */
6402 	if (bg_service)
6403 		sq->sq_svcflags &= ~SQ_SERVICE;
6404 
6405 	/*
6406 	 * If SQ_EXCL is set, someone else is processing this syncq - let them
6407 	 * finish the job.
6408 	 */
6409 	if (flags & SQ_EXCL) {
6410 		if (bg_service) {
6411 			ASSERT(sq->sq_servcount != 0);
6412 			sq->sq_servcount--;
6413 		}
6414 		mutex_exit(SQLOCK(sq));
6415 		return;
6416 	}
6417 
6418 	/*
6419 	 * This routine can be called by a background thread if
6420 	 * it was scheduled by a hi-priority thread.  SO, if there are
6421 	 * NOT messages queued, return (remember, we have the SQLOCK,
6422 	 * and it cannot change until we release it). Wakeup any waiters also.
6423 	 */
6424 	if (!(flags & SQ_QUEUED)) {
6425 		if (flags & SQ_WANTWAKEUP) {
6426 			flags &= ~SQ_WANTWAKEUP;
6427 			cv_broadcast(&sq->sq_wait);
6428 		}
6429 		if (flags & SQ_WANTEXWAKEUP) {
6430 			flags &= ~SQ_WANTEXWAKEUP;
6431 			cv_broadcast(&sq->sq_exitwait);
6432 		}
6433 		sq->sq_flags = flags;
6434 		if (bg_service) {
6435 			ASSERT(sq->sq_servcount != 0);
6436 			sq->sq_servcount--;
6437 		}
6438 		mutex_exit(SQLOCK(sq));
6439 		return;
6440 	}
6441 
6442 	/*
6443 	 * If this is not a concurrent put perimeter, we need to
6444 	 * become exclusive to drain.  Also, if not CIPUT, we would
6445 	 * not have acquired a putlock, so we don't need to check
6446 	 * the putcounts.  If not entering with a claim, we test
6447 	 * for sq_count == 0.
6448 	 */
6449 	type = sq->sq_type;
6450 	if (!(type & SQ_CIPUT)) {
6451 		if (sq->sq_count > 1) {
6452 			if (bg_service) {
6453 				ASSERT(sq->sq_servcount != 0);
6454 				sq->sq_servcount--;
6455 			}
6456 			mutex_exit(SQLOCK(sq));
6457 			return;
6458 		}
6459 		sq->sq_flags |= SQ_EXCL;
6460 	}
6461 
6462 	/*
6463 	 * This is where we make a claim to the syncq.
6464 	 * This can either be done by incrementing a putlock, or
6465 	 * the sq_count.  But since we already have the SQLOCK
6466 	 * here, we just bump the sq_count.
6467 	 *
6468 	 * Note that after we make a claim, we need to let the code
6469 	 * fall through to the end of this routine to clean itself
6470 	 * up.  A return in the while loop will put the syncq in a
6471 	 * very bad state.
6472 	 */
6473 	sq->sq_count++;
6474 	ASSERT(sq->sq_count != 0);	/* wraparound */
6475 
6476 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6477 		/*
6478 		 * If we are told to stayaway or went exclusive,
6479 		 * we are done.
6480 		 */
6481 		if (flags & (SQ_STAYAWAY)) {
6482 			break;
6483 		}
6484 
6485 		/*
6486 		 * If there are events to run, do so.
6487 		 * We have one claim to the syncq, so if there are
6488 		 * more than one, other threads are running.
6489 		 */
6490 		if (sq->sq_evhead != NULL) {
6491 			ASSERT(sq->sq_flags & SQ_EVENTS);
6492 
6493 			count = sq->sq_count;
6494 			SQ_PUTLOCKS_ENTER(sq);
6495 			SUM_SQ_PUTCOUNTS(sq, count);
6496 			if (count > 1) {
6497 				SQ_PUTLOCKS_EXIT(sq);
6498 				/* Can't upgrade - other threads inside */
6499 				break;
6500 			}
6501 			ASSERT((flags & SQ_EXCL) == 0);
6502 			sq->sq_flags = flags | SQ_EXCL;
6503 			SQ_PUTLOCKS_EXIT(sq);
6504 			/*
6505 			 * we have the only claim, run the events,
6506 			 * sq_run_events will clear the SQ_EXCL flag.
6507 			 */
6508 			sq_run_events(sq);
6509 
6510 			/*
6511 			 * If this is a CIPUT perimeter, we need
6512 			 * to drop the SQ_EXCL flag so we can properly
6513 			 * continue draining the syncq.
6514 			 */
6515 			if (type & SQ_CIPUT) {
6516 				ASSERT(sq->sq_flags & SQ_EXCL);
6517 				sq->sq_flags &= ~SQ_EXCL;
6518 			}
6519 
6520 			/*
6521 			 * And go back to the beginning just in case
6522 			 * anything changed while we were away.
6523 			 */
6524 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6525 			continue;
6526 		}
6527 
6528 		ASSERT(sq->sq_evhead == NULL);
6529 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6530 
6531 		/*
6532 		 * Find the queue that is not draining.
6533 		 *
6534 		 * q_draining is protected by QLOCK which we do not hold.
6535 		 * But if it was set, then a thread was draining, and if it gets
6536 		 * cleared, then it was because the thread has successfully
6537 		 * drained the syncq, or a GOAWAY state occurred. For the GOAWAY
6538 		 * state to happen, a thread needs the SQLOCK which we hold, and
6539 		 * if there was such a flag, we would have already seen it.
6540 		 */
6541 
6542 		for (qp = sq->sq_head;
6543 		    qp != NULL && (qp->q_draining ||
6544 		    (qp->q_sqflags & Q_SQDRAINING));
6545 		    qp = qp->q_sqnext)
6546 			;
6547 
6548 		if (qp == NULL)
6549 			break;
6550 
6551 		/*
6552 		 * We have a queue to work on, and we hold the
6553 		 * SQLOCK and one claim, call qdrain_syncq.
6554 		 * This means we need to release the SQLOCK and
6555 		 * acquire the QLOCK (OK since we have a claim).
6556 		 * Note that qdrain_syncq will actually dequeue
6557 		 * this queue from the sq_head list when it is
6558 		 * convinced all the work is done and release
6559 		 * the QLOCK before returning.
6560 		 */
6561 		qp->q_sqflags |= Q_SQDRAINING;
6562 		mutex_exit(SQLOCK(sq));
6563 		mutex_enter(QLOCK(qp));
6564 		qdrain_syncq(sq, qp);
6565 		mutex_enter(SQLOCK(sq));
6566 
6567 		/* The queue is drained */
6568 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6569 		qp->q_sqflags &= ~Q_SQDRAINING;
6570 		/*
6571 		 * NOTE: After this point qp should not be used since it may be
6572 		 * closed.
6573 		 */
6574 	}
6575 
6576 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6577 	flags = sq->sq_flags;
6578 
6579 	/*
6580 	 * sq->sq_head cannot change because we hold the
6581 	 * sqlock. However, a thread CAN decide that it is no longer
6582 	 * going to drain that queue.  However, this should be due to
6583 	 * a GOAWAY state, and we should see that here.
6584 	 *
6585 	 * This loop is not very efficient. One solution may be adding a second
6586 	 * pointer to the "draining" queue, but it is difficult to do when
6587 	 * queues are inserted in the middle due to priority ordering. Another
6588 	 * possibility is to yank the queue out of the sq list and put it onto
6589 	 * the "draining list" and then put it back if it can't be drained.
6590 	 */
6591 
6592 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6593 	    (type & SQ_CI) || sq->sq_head->q_draining);
6594 
6595 	/* Drop SQ_EXCL for non-CIPUT perimeters */
6596 	if (!(type & SQ_CIPUT))
6597 		flags &= ~SQ_EXCL;
6598 	ASSERT((flags & SQ_EXCL) == 0);
6599 
6600 	/* Wake up any waiters. */
6601 	if (flags & SQ_WANTWAKEUP) {
6602 		flags &= ~SQ_WANTWAKEUP;
6603 		cv_broadcast(&sq->sq_wait);
6604 	}
6605 	if (flags & SQ_WANTEXWAKEUP) {
6606 		flags &= ~SQ_WANTEXWAKEUP;
6607 		cv_broadcast(&sq->sq_exitwait);
6608 	}
6609 	sq->sq_flags = flags;
6610 
6611 	ASSERT(sq->sq_count != 0);
6612 	/* Release our claim. */
6613 	sq->sq_count--;
6614 
6615 	if (bg_service) {
6616 		ASSERT(sq->sq_servcount != 0);
6617 		sq->sq_servcount--;
6618 	}
6619 
6620 	mutex_exit(SQLOCK(sq));
6621 
6622 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6623 	    "drain_syncq end:%p", sq);
6624 }
6625 
6626 
6627 /*
6628  *
6629  * qdrain_syncq can be called (currently) from only one of two places:
6630  *	drain_syncq
6631  * 	putnext  (or some variation of it).
6632  * and eventually
6633  * 	qwait(_sig)
6634  *
6635  * If called from drain_syncq, we found it in the list of queues needing
6636  * service, so there is work to be done (or it wouldn't be in the list).
6637  *
6638  * If called from some putnext variation, it was because the
6639  * perimeter is open, but messages are blocking a putnext and
6640  * there is not a thread working on it.  Now a thread could start
6641  * working on it while we are getting ready to do so ourself, but
6642  * the thread would set the q_draining flag, and we can spin out.
6643  *
6644  * As for qwait(_sig), I think I shall let it continue to call
6645  * drain_syncq directly (after all, it will get here eventually).
6646  *
6647  * qdrain_syncq has to terminate when:
6648  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6649  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6650  *
6651  * ASSUMES:
6652  *	One claim
6653  * 	QLOCK held
6654  * 	SQLOCK not held
6655  *	Will release QLOCK before returning
6656  */
6657 void
6658 qdrain_syncq(syncq_t *sq, queue_t *q)
6659 {
6660 	mblk_t		*bp;
6661 #ifdef DEBUG
6662 	uint16_t	count;
6663 #endif
6664 
6665 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6666 	    "drain_syncq start:%p", sq);
6667 	ASSERT(q->q_syncq == sq);
6668 	ASSERT(MUTEX_HELD(QLOCK(q)));
6669 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6670 	/*
6671 	 * For non-CIPUT perimeters, we should be called with the exclusive bit
6672 	 * set already. For CIPUT perimeters, we will be doing a concurrent
6673 	 * drain, so it better not be set.
6674 	 */
6675 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6676 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6677 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6678 	/*
6679 	 * All outer pointers are set, or none of them are
6680 	 */
6681 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6682 	    sq->sq_oprev == NULL) ||
6683 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6684 	    sq->sq_oprev != NULL));
6685 #ifdef DEBUG
6686 	count = sq->sq_count;
6687 	/*
6688 	 * This is OK without the putlocks, because we have one
6689 	 * claim either from the sq_count, or a putcount.  We could
6690 	 * get an erroneous value from other counts, but ours won't
6691 	 * change, so one way or another, we will have at least a
6692 	 * value of one.
6693 	 */
6694 	SUM_SQ_PUTCOUNTS(sq, count);
6695 	ASSERT(count >= 1);
6696 #endif /* DEBUG */
6697 
6698 	/*
6699 	 * The first thing to do is find out if a thread is already draining
6700 	 * this queue. If so, we are done, just return.
6701 	 */
6702 	if (q->q_draining) {
6703 		mutex_exit(QLOCK(q));
6704 		return;
6705 	}
6706 
6707 	/*
6708 	 * If the perimeter is exclusive, there is nothing we can do right now,
6709 	 * go away. Note that there is nothing to prevent this case from
6710 	 * changing right after this check, but the spin-out will catch it.
6711 	 */
6712 
6713 	/* Tell other threads that we are draining this queue */
6714 	q->q_draining = 1;	/* Protected by QLOCK */
6715 
6716 	/*
6717 	 * If there is nothing to do, clear QFULL as necessary. This caters for
6718 	 * the case where an empty queue was enqueued onto the syncq.
6719 	 */
6720 	if (q->q_sqhead == NULL) {
6721 		ASSERT(q->q_syncqmsgs == 0);
6722 		mutex_exit(QLOCK(q));
6723 		clr_qfull(q);
6724 		mutex_enter(QLOCK(q));
6725 	}
6726 
6727 	/*
6728 	 * Note that q_sqhead must be re-checked here in case another message
6729 	 * was enqueued whilst QLOCK was dropped during the call to clr_qfull.
6730 	 */
6731 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6732 		/*
6733 		 * Because we can enter this routine just because a putnext is
6734 		 * blocked, we need to spin out if the perimeter wants to go
6735 		 * exclusive as well as just blocked. We need to spin out also
6736 		 * if events are queued on the syncq.
6737 		 * Don't check for SQ_EXCL, because non-CIPUT perimeters would
6738 		 * set it, and it can't become exclusive while we hold a claim.
6739 		 */
6740 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6741 			break;
6742 		}
6743 
6744 #ifdef DEBUG
6745 		/*
6746 		 * Since we are in qdrain_syncq, we already know the queue,
6747 		 * but for sanity, we want to check this against the qp that
6748 		 * was passed in by bp->b_queue.
6749 		 */
6750 
6751 		ASSERT(bp->b_queue == q);
6752 		ASSERT(bp->b_queue->q_syncq == sq);
6753 		bp->b_queue = NULL;
6754 
6755 		/*
6756 		 * We would have the following check in the DEBUG code:
6757 		 *
6758 		 * if (bp->b_prev != NULL)  {
6759 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6760 		 * }
6761 		 *
6762 		 * This can't be done, however, since IP modifies qinfo
6763 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6764 		 * qinfo), invalidating the check.
6765 		 * So the assignment to func is left here, but the ASSERT itself
6766 		 * is removed until the whole issue is resolved.
6767 		 */
6768 #endif
6769 		ASSERT(q->q_sqhead == bp);
6770 		q->q_sqhead = bp->b_next;
6771 		bp->b_prev = bp->b_next = NULL;
6772 		ASSERT(q->q_syncqmsgs > 0);
6773 		mutex_exit(QLOCK(q));
6774 
6775 		ASSERT(bp->b_datap->db_ref != 0);
6776 
6777 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6778 
6779 		mutex_enter(QLOCK(q));
6780 
6781 		/*
6782 		 * q_syncqmsgs should only be decremented after executing the
6783 		 * put procedure to avoid message re-ordering. This is due to an
6784 		 * optimisation in putnext() which can call the put procedure
6785 		 * directly if it sees q_syncqmsgs == 0 (despite Q_SQQUEUED
6786 		 * being set).
6787 		 *
6788 		 * We also need to clear QFULL in the next service procedure
6789 		 * queue if this is the last message destined for that queue.
6790 		 *
6791 		 * It would make better sense to have some sort of tunable for
6792 		 * the low water mark, but these semantics are not yet defined.
6793 		 * So, alas, we use a constant.
6794 		 */
6795 		if (--q->q_syncqmsgs == 0) {
6796 			mutex_exit(QLOCK(q));
6797 			clr_qfull(q);
6798 			mutex_enter(QLOCK(q));
6799 		}
6800 
6801 		/*
6802 		 * Always clear SQ_EXCL when CIPUT in order to handle
6803 		 * qwriter(INNER). The putp() can call qwriter and get exclusive
6804 		 * access IFF this is the only claim. So, we need to test for
6805 		 * this possibility, acquire the mutex and clear the bit.
6806 		 */
6807 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6808 			mutex_enter(SQLOCK(sq));
6809 			sq->sq_flags &= ~SQ_EXCL;
6810 			mutex_exit(SQLOCK(sq));
6811 		}
6812 	}
6813 
6814 	/*
6815 	 * We should either have no messages on this queue, or we were told to
6816 	 * goaway by a waiter (which we will wake up at the end of this
6817 	 * function).
6818 	 */
6819 	ASSERT((q->q_sqhead == NULL) ||
6820 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6821 
6822 	ASSERT(MUTEX_HELD(QLOCK(q)));
6823 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6824 
6825 	/* Remove the q from the syncq list if all the messages are drained. */
6826 	if (q->q_sqhead == NULL) {
6827 		ASSERT(q->q_syncqmsgs == 0);
6828 		mutex_enter(SQLOCK(sq));
6829 		if (q->q_sqflags & Q_SQQUEUED)
6830 			SQRM_Q(sq, q);
6831 		mutex_exit(SQLOCK(sq));
6832 		/*
6833 		 * Since the queue is removed from the list, reset its priority.
6834 		 */
6835 		q->q_spri = 0;
6836 	}
6837 
6838 	/*
6839 	 * Remember, the q_draining flag is used to let another thread know
6840 	 * that there is a thread currently draining the messages for a queue.
6841 	 * Since we are now done with this queue (even if there may be messages
6842 	 * still there), we need to clear this flag so some thread will work on
6843 	 * it if needed.
6844 	 */
6845 	ASSERT(q->q_draining);
6846 	q->q_draining = 0;
6847 
6848 	/* Called with a claim, so OK to drop all locks. */
6849 	mutex_exit(QLOCK(q));
6850 
6851 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6852 	    "drain_syncq end:%p", sq);
6853 }
6854 /* END OF QDRAIN_SYNCQ  */
6855 
6856 
6857 /*
6858  * This is the mate to qdrain_syncq, except that it is putting the message onto
6859  * the queue instead of draining. Since the message is destined for the queue
6860  * that is selected, there is no need to identify the function because the
6861  * message is intended for the put routine for the queue. For debug kernels,
6862  * this routine will do it anyway just in case.
6863  *
6864  * After the message is enqueued on the syncq, it calls putnext_tail()
6865  * which will schedule a background thread to actually process the message.
6866  *
6867  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6868  * SQLOCK(sq) and QLOCK(q) are not held.
6869  */
6870 void
6871 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6872 {
6873 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6874 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6875 	ASSERT(sq->sq_count > 0);
6876 	ASSERT(q->q_syncq == sq);
6877 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6878 	    sq->sq_oprev == NULL) ||
6879 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6880 	    sq->sq_oprev != NULL));
6881 
6882 	mutex_enter(QLOCK(q));
6883 
6884 #ifdef DEBUG
6885 	/*
6886 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6887 	 * to trace the queue that the message is intended for.  Note
6888 	 * that the original use was to identify the queue and function
6889 	 * to call on the drain.  In the new syncq, we have the context
6890 	 * of the queue that we are draining, so call it's putproc and
6891 	 * don't rely on the saved values.  But for debug this is still
6892 	 * useful information.
6893 	 */
6894 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6895 	mp->b_queue = q;
6896 	mp->b_next = NULL;
6897 #endif
6898 	ASSERT(q->q_syncq == sq);
6899 	/*
6900 	 * Enqueue the message on the list.
6901 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6902 	 * protect it.  So it's ok to acquire SQLOCK after SQPUT_MP().
6903 	 */
6904 	SQPUT_MP(q, mp);
6905 	mutex_enter(SQLOCK(sq));
6906 
6907 	/*
6908 	 * And queue on syncq for scheduling, if not already queued.
6909 	 * Note that we need the SQLOCK for this, and for testing flags
6910 	 * at the end to see if we will drain.  So grab it now, and
6911 	 * release it before we call qdrain_syncq or return.
6912 	 */
6913 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6914 		q->q_spri = curthread->t_pri;
6915 		SQPUT_Q(sq, q);
6916 	}
6917 #ifdef DEBUG
6918 	else {
6919 		/*
6920 		 * All of these conditions MUST be true!
6921 		 */
6922 		ASSERT(sq->sq_tail != NULL);
6923 		if (sq->sq_tail == sq->sq_head) {
6924 			ASSERT((q->q_sqprev == NULL) &&
6925 			    (q->q_sqnext == NULL));
6926 		} else {
6927 			ASSERT((q->q_sqprev != NULL) ||
6928 			    (q->q_sqnext != NULL));
6929 		}
6930 		ASSERT(sq->sq_flags & SQ_QUEUED);
6931 		ASSERT(q->q_syncqmsgs != 0);
6932 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6933 	}
6934 #endif
6935 	mutex_exit(QLOCK(q));
6936 	/*
6937 	 * SQLOCK is still held, so sq_count can be safely decremented.
6938 	 */
6939 	sq->sq_count--;
6940 
6941 	putnext_tail(sq, q, 0);
6942 	/* Should not reference sq or q after this point. */
6943 }
6944 
6945 /*  End of qfill_syncq  */
6946 
6947 /*
6948  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6949  * that would be put into qp by drain_syncq.
6950  * Used when deleting the syncq (qp == NULL) or when detaching
6951  * a queue (qp != NULL).
6952  * Return non-zero if one or more messages were freed.
6953  *
6954  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
6955  * sq_putlocks are used.
6956  *
6957  * NOTE: This function assumes that it is called from the close() context and
6958  * that all the queues in the syncq are going away. For this reason it doesn't
6959  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6960  * currently valid, but it is useful to rethink this function to behave properly
6961  * in other cases.
6962  */
6963 int
6964 flush_syncq(syncq_t *sq, queue_t *qp)
6965 {
6966 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6967 	queue_t		*q;
6968 	int		ret = 0;
6969 
6970 	mutex_enter(SQLOCK(sq));
6971 
6972 	/*
6973 	 * Before we leave, we need to make sure there are no
6974 	 * events listed for this queue.  All events for this queue
6975 	 * will just be freed.
6976 	 */
6977 	if (qp != NULL && sq->sq_evhead != NULL) {
6978 		ASSERT(sq->sq_flags & SQ_EVENTS);
6979 
6980 		mp_prev = NULL;
6981 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6982 			mp_next = bp->b_next;
6983 			if (bp->b_queue == qp) {
6984 				/* Delete this message */
6985 				if (mp_prev != NULL) {
6986 					mp_prev->b_next = mp_next;
6987 					/*
6988 					 * Update sq_evtail if the last element
6989 					 * is removed.
6990 					 */
6991 					if (bp == sq->sq_evtail) {
6992 						ASSERT(mp_next == NULL);
6993 						sq->sq_evtail = mp_prev;
6994 					}
6995 				} else
6996 					sq->sq_evhead = mp_next;
6997 				if (sq->sq_evhead == NULL)
6998 					sq->sq_flags &= ~SQ_EVENTS;
6999 				bp->b_prev = bp->b_next = NULL;
7000 				freemsg(bp);
7001 				ret++;
7002 			} else {
7003 				mp_prev = bp;
7004 			}
7005 		}
7006 	}
7007 
7008 	/*
7009 	 * Walk sq_head and:
7010 	 *	- match qp if qp is set, remove it's messages
7011 	 *	- all if qp is not set
7012 	 */
7013 	q = sq->sq_head;
7014 	while (q != NULL) {
7015 		ASSERT(q->q_syncq == sq);
7016 		if ((qp == NULL) || (qp == q)) {
7017 			/*
7018 			 * Yank the messages as a list off the queue
7019 			 */
7020 			mp_head = q->q_sqhead;
7021 			/*
7022 			 * We do not have QLOCK(q) here (which is safe due to
7023 			 * assumptions mentioned above). To obtain the lock we
7024 			 * need to release SQLOCK which may allow lots of things
7025 			 * to change upon us. This place requires more analysis.
7026 			 */
7027 			q->q_sqhead = q->q_sqtail = NULL;
7028 			ASSERT(mp_head->b_queue &&
7029 			    mp_head->b_queue->q_syncq == sq);
7030 
7031 			/*
7032 			 * Free each of the messages.
7033 			 */
7034 			for (bp = mp_head; bp != NULL; bp = mp_next) {
7035 				mp_next = bp->b_next;
7036 				bp->b_prev = bp->b_next = NULL;
7037 				freemsg(bp);
7038 				ret++;
7039 			}
7040 			/*
7041 			 * Now remove the queue from the syncq.
7042 			 */
7043 			ASSERT(q->q_sqflags & Q_SQQUEUED);
7044 			SQRM_Q(sq, q);
7045 			q->q_spri = 0;
7046 			q->q_syncqmsgs = 0;
7047 
7048 			/*
7049 			 * If qp was specified, we are done with it and are
7050 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
7051 			 * waiters while we still have the SQLOCK.
7052 			 */
7053 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7054 				sq->sq_flags &= ~SQ_WANTWAKEUP;
7055 				cv_broadcast(&sq->sq_wait);
7056 			}
7057 			/* Drop SQLOCK across clr_qfull */
7058 			mutex_exit(SQLOCK(sq));
7059 
7060 			/*
7061 			 * We avoid doing the test that drain_syncq does and
7062 			 * unconditionally clear qfull for every flushed
7063 			 * message. Since flush_syncq is only called during
7064 			 * close this should not be a problem.
7065 			 */
7066 			clr_qfull(q);
7067 			if (qp != NULL) {
7068 				return (ret);
7069 			} else {
7070 				mutex_enter(SQLOCK(sq));
7071 				/*
7072 				 * The head was removed by SQRM_Q above.
7073 				 * reread the new head and flush it.
7074 				 */
7075 				q = sq->sq_head;
7076 			}
7077 		} else {
7078 			q = q->q_sqnext;
7079 		}
7080 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
7081 	}
7082 
7083 	if (sq->sq_flags & SQ_WANTWAKEUP) {
7084 		sq->sq_flags &= ~SQ_WANTWAKEUP;
7085 		cv_broadcast(&sq->sq_wait);
7086 	}
7087 
7088 	mutex_exit(SQLOCK(sq));
7089 	return (ret);
7090 }
7091 
7092 /*
7093  * Propagate all messages from a syncq to the next syncq that are associated
7094  * with the specified queue. If the queue is attached to a driver or if the
7095  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7096  *
7097  * Assumes that the stream is strlock()'ed. We don't come here if there
7098  * are no messages to propagate.
7099  *
7100  * NOTE : If the queue is attached to a driver, all the messages are freed
7101  * as there is no point in propagating the messages from the driver syncq
7102  * to the closing stream head which will in turn get freed later.
7103  */
7104 static int
7105 propagate_syncq(queue_t *qp)
7106 {
7107 	mblk_t		*bp, *head, *tail, *prev, *next;
7108 	syncq_t 	*sq;
7109 	queue_t		*nqp;
7110 	syncq_t		*nsq;
7111 	boolean_t	isdriver;
7112 	int 		moved = 0;
7113 	uint16_t	flags;
7114 	pri_t		priority = curthread->t_pri;
7115 #ifdef DEBUG
7116 	void		(*func)();
7117 #endif
7118 
7119 	sq = qp->q_syncq;
7120 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7121 	/* debug macro */
7122 	SQ_PUTLOCKS_HELD(sq);
7123 	/*
7124 	 * As entersq() does not increment the sq_count for
7125 	 * the write side, check sq_count for non-QPERQ
7126 	 * perimeters alone.
7127 	 */
7128 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7129 
7130 	/*
7131 	 * propagate_syncq() can be called because of either messages on the
7132 	 * queue syncq or because on events on the queue syncq. Do actual
7133 	 * message propagations if there are any messages.
7134 	 */
7135 	if (qp->q_syncqmsgs) {
7136 		isdriver = (qp->q_flag & QISDRV);
7137 
7138 		if (!isdriver) {
7139 			nqp = qp->q_next;
7140 			nsq = nqp->q_syncq;
7141 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7142 			/* debug macro */
7143 			SQ_PUTLOCKS_HELD(nsq);
7144 #ifdef DEBUG
7145 			func = (void (*)())nqp->q_qinfo->qi_putp;
7146 #endif
7147 		}
7148 
7149 		SQRM_Q(sq, qp);
7150 		priority = MAX(qp->q_spri, priority);
7151 		qp->q_spri = 0;
7152 		head = qp->q_sqhead;
7153 		tail = qp->q_sqtail;
7154 		qp->q_sqhead = qp->q_sqtail = NULL;
7155 		qp->q_syncqmsgs = 0;
7156 
7157 		/*
7158 		 * Walk the list of messages, and free them if this is a driver,
7159 		 * otherwise reset the b_prev and b_queue value to the new putp.
7160 		 * Afterward, we will just add the head to the end of the next
7161 		 * syncq, and point the tail to the end of this one.
7162 		 */
7163 
7164 		for (bp = head; bp != NULL; bp = next) {
7165 			next = bp->b_next;
7166 			if (isdriver) {
7167 				bp->b_prev = bp->b_next = NULL;
7168 				freemsg(bp);
7169 				continue;
7170 			}
7171 			/* Change the q values for this message */
7172 			bp->b_queue = nqp;
7173 #ifdef DEBUG
7174 			bp->b_prev = (mblk_t *)func;
7175 #endif
7176 			moved++;
7177 		}
7178 		/*
7179 		 * Attach list of messages to the end of the new queue (if there
7180 		 * is a list of messages).
7181 		 */
7182 
7183 		if (!isdriver && head != NULL) {
7184 			ASSERT(tail != NULL);
7185 			if (nqp->q_sqhead == NULL) {
7186 				nqp->q_sqhead = head;
7187 			} else {
7188 				ASSERT(nqp->q_sqtail != NULL);
7189 				nqp->q_sqtail->b_next = head;
7190 			}
7191 			nqp->q_sqtail = tail;
7192 			/*
7193 			 * When messages are moved from high priority queue to
7194 			 * another queue, the destination queue priority is
7195 			 * upgraded.
7196 			 */
7197 
7198 			if (priority > nqp->q_spri)
7199 				nqp->q_spri = priority;
7200 
7201 			SQPUT_Q(nsq, nqp);
7202 
7203 			nqp->q_syncqmsgs += moved;
7204 			ASSERT(nqp->q_syncqmsgs != 0);
7205 		}
7206 	}
7207 
7208 	/*
7209 	 * Before we leave, we need to make sure there are no
7210 	 * events listed for this queue.  All events for this queue
7211 	 * will just be freed.
7212 	 */
7213 	if (sq->sq_evhead != NULL) {
7214 		ASSERT(sq->sq_flags & SQ_EVENTS);
7215 		prev = NULL;
7216 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7217 			next = bp->b_next;
7218 			if (bp->b_queue == qp) {
7219 				/* Delete this message */
7220 				if (prev != NULL) {
7221 					prev->b_next = next;
7222 					/*
7223 					 * Update sq_evtail if the last element
7224 					 * is removed.
7225 					 */
7226 					if (bp == sq->sq_evtail) {
7227 						ASSERT(next == NULL);
7228 						sq->sq_evtail = prev;
7229 					}
7230 				} else
7231 					sq->sq_evhead = next;
7232 				if (sq->sq_evhead == NULL)
7233 					sq->sq_flags &= ~SQ_EVENTS;
7234 				bp->b_prev = bp->b_next = NULL;
7235 				freemsg(bp);
7236 			} else {
7237 				prev = bp;
7238 			}
7239 		}
7240 	}
7241 
7242 	flags = sq->sq_flags;
7243 
7244 	/* Wake up any waiter before leaving. */
7245 	if (flags & SQ_WANTWAKEUP) {
7246 		flags &= ~SQ_WANTWAKEUP;
7247 		cv_broadcast(&sq->sq_wait);
7248 	}
7249 	sq->sq_flags = flags;
7250 
7251 	return (moved);
7252 }
7253 
7254 /*
7255  * Try and upgrade to exclusive access at the inner perimeter. If this can
7256  * not be done without blocking then request will be queued on the syncq
7257  * and drain_syncq will run it later.
7258  *
7259  * This routine can only be called from put or service procedures plus
7260  * asynchronous callback routines that have properly entered the queue (with
7261  * entersq). Thus qwriter_inner assumes the caller has one claim on the syncq
7262  * associated with q.
7263  */
7264 void
7265 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7266 {
7267 	syncq_t	*sq = q->q_syncq;
7268 	uint16_t count;
7269 
7270 	mutex_enter(SQLOCK(sq));
7271 	count = sq->sq_count;
7272 	SQ_PUTLOCKS_ENTER(sq);
7273 	SUM_SQ_PUTCOUNTS(sq, count);
7274 	ASSERT(count >= 1);
7275 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7276 
7277 	if (count == 1) {
7278 		/*
7279 		 * Can upgrade. This case also handles nested qwriter calls
7280 		 * (when the qwriter callback function calls qwriter). In that
7281 		 * case SQ_EXCL is already set.
7282 		 */
7283 		sq->sq_flags |= SQ_EXCL;
7284 		SQ_PUTLOCKS_EXIT(sq);
7285 		mutex_exit(SQLOCK(sq));
7286 		(*func)(q, mp);
7287 		/*
7288 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7289 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7290 		 * until putnext, leavesq, or drain_syncq drops it.
7291 		 * That way we handle nested qwriter(INNER) without dropping
7292 		 * SQ_EXCL until the outermost qwriter callback routine is
7293 		 * done.
7294 		 */
7295 		return;
7296 	}
7297 	SQ_PUTLOCKS_EXIT(sq);
7298 	sqfill_events(sq, q, mp, func);
7299 }
7300 
7301 /*
7302  * Synchronous callback support functions
7303  */
7304 
7305 /*
7306  * Allocate a callback parameter structure.
7307  * Assumes that caller initializes the flags and the id.
7308  * Acquires SQLOCK(sq) if non-NULL is returned.
7309  */
7310 callbparams_t *
7311 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7312 {
7313 	callbparams_t *cbp;
7314 	size_t size = sizeof (callbparams_t);
7315 
7316 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7317 
7318 	/*
7319 	 * Only try tryhard allocation if the caller is ready to panic.
7320 	 * Otherwise just fail.
7321 	 */
7322 	if (cbp == NULL) {
7323 		if (kmflags & KM_PANIC)
7324 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7325 			    &size, kmflags);
7326 		else
7327 			return (NULL);
7328 	}
7329 
7330 	ASSERT(size >= sizeof (callbparams_t));
7331 	cbp->cbp_size = size;
7332 	cbp->cbp_sq = sq;
7333 	cbp->cbp_func = func;
7334 	cbp->cbp_arg = arg;
7335 	mutex_enter(SQLOCK(sq));
7336 	cbp->cbp_next = sq->sq_callbpend;
7337 	sq->sq_callbpend = cbp;
7338 	return (cbp);
7339 }
7340 
7341 void
7342 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7343 {
7344 	callbparams_t **pp, *p;
7345 
7346 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7347 
7348 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7349 		if (p == cbp) {
7350 			*pp = p->cbp_next;
7351 			kmem_free(p, p->cbp_size);
7352 			return;
7353 		}
7354 	}
7355 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7356 	    "callbparams_free: not found\n"));
7357 }
7358 
7359 void
7360 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7361 {
7362 	callbparams_t **pp, *p;
7363 
7364 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7365 
7366 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7367 		if (p->cbp_id == id && p->cbp_flags == flag) {
7368 			*pp = p->cbp_next;
7369 			kmem_free(p, p->cbp_size);
7370 			return;
7371 		}
7372 	}
7373 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7374 	    "callbparams_free_id: not found\n"));
7375 }
7376 
7377 /*
7378  * Callback wrapper function used by once-only callbacks that can be
7379  * cancelled (qtimeout and qbufcall)
7380  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7381  * cancelled by the qun* functions.
7382  */
7383 void
7384 qcallbwrapper(void *arg)
7385 {
7386 	callbparams_t *cbp = arg;
7387 	syncq_t	*sq;
7388 	uint16_t count = 0;
7389 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7390 	uint16_t type;
7391 
7392 	sq = cbp->cbp_sq;
7393 	mutex_enter(SQLOCK(sq));
7394 	type = sq->sq_type;
7395 	if (!(type & SQ_CICB)) {
7396 		count = sq->sq_count;
7397 		SQ_PUTLOCKS_ENTER(sq);
7398 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7399 		SUM_SQ_PUTCOUNTS(sq, count);
7400 		sq->sq_needexcl++;
7401 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7402 		waitflags |= SQ_MESSAGES;
7403 	}
7404 	/* Can not handle exclusive entry at outer perimeter */
7405 	ASSERT(type & SQ_COCB);
7406 
7407 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7408 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7409 		    (sq->sq_cancelid == cbp->cbp_id)) {
7410 			/* timeout has been cancelled */
7411 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7412 			callbparams_free(sq, cbp);
7413 			if (!(type & SQ_CICB)) {
7414 				ASSERT(sq->sq_needexcl > 0);
7415 				sq->sq_needexcl--;
7416 				if (sq->sq_needexcl == 0) {
7417 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7418 				}
7419 				SQ_PUTLOCKS_EXIT(sq);
7420 			}
7421 			mutex_exit(SQLOCK(sq));
7422 			return;
7423 		}
7424 		sq->sq_flags |= SQ_WANTWAKEUP;
7425 		if (!(type & SQ_CICB)) {
7426 			SQ_PUTLOCKS_EXIT(sq);
7427 		}
7428 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7429 		if (!(type & SQ_CICB)) {
7430 			count = sq->sq_count;
7431 			SQ_PUTLOCKS_ENTER(sq);
7432 			SUM_SQ_PUTCOUNTS(sq, count);
7433 		}
7434 	}
7435 
7436 	sq->sq_count++;
7437 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7438 	if (!(type & SQ_CICB)) {
7439 		ASSERT(count == 0);
7440 		sq->sq_flags |= SQ_EXCL;
7441 		ASSERT(sq->sq_needexcl > 0);
7442 		sq->sq_needexcl--;
7443 		if (sq->sq_needexcl == 0) {
7444 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7445 		}
7446 		SQ_PUTLOCKS_EXIT(sq);
7447 	}
7448 
7449 	mutex_exit(SQLOCK(sq));
7450 
7451 	cbp->cbp_func(cbp->cbp_arg);
7452 
7453 	/*
7454 	 * We drop the lock only for leavesq to re-acquire it.
7455 	 * Possible optimization is inline of leavesq.
7456 	 */
7457 	mutex_enter(SQLOCK(sq));
7458 	callbparams_free(sq, cbp);
7459 	mutex_exit(SQLOCK(sq));
7460 	leavesq(sq, SQ_CALLBACK);
7461 }
7462 
7463 /*
7464  * No need to grab sq_putlocks here. See comment in strsubr.h that
7465  * explains when sq_putlocks are used.
7466  *
7467  * sq_count (or one of the sq_putcounts) has already been
7468  * decremented by the caller, and if SQ_QUEUED, we need to call
7469  * drain_syncq (the global syncq drain).
7470  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7471  * one of two states, non-CIPUT perimeter, and we need to clear
7472  * it, or we went exclusive in the put procedure.  In any case,
7473  * we want to clear the bit now, and it is probably easier to do
7474  * this at the beginning of this function (remember, we hold
7475  * the SQLOCK).  Lastly, if there are other messages queued
7476  * on the syncq (and not for our destination), enable the syncq
7477  * for background work.
7478  */
7479 
7480 /* ARGSUSED */
7481 void
7482 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7483 {
7484 	uint16_t	flags = sq->sq_flags;
7485 
7486 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7487 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7488 
7489 	/* Clear SQ_EXCL if set in passflags */
7490 	if (passflags & SQ_EXCL) {
7491 		flags &= ~SQ_EXCL;
7492 	}
7493 	if (flags & SQ_WANTWAKEUP) {
7494 		flags &= ~SQ_WANTWAKEUP;
7495 		cv_broadcast(&sq->sq_wait);
7496 	}
7497 	if (flags & SQ_WANTEXWAKEUP) {
7498 		flags &= ~SQ_WANTEXWAKEUP;
7499 		cv_broadcast(&sq->sq_exitwait);
7500 	}
7501 	sq->sq_flags = flags;
7502 
7503 	/*
7504 	 * We have cleared SQ_EXCL if we were asked to, and started
7505 	 * the wakeup process for waiters.  If there are no writers
7506 	 * then we need to drain the syncq if we were told to, or
7507 	 * enable the background thread to do it.
7508 	 */
7509 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7510 		if ((passflags & SQ_QUEUED) ||
7511 		    (sq->sq_svcflags & SQ_DISABLED)) {
7512 			/* drain_syncq will take care of events in the list */
7513 			drain_syncq(sq);
7514 			return;
7515 		} else if (flags & SQ_QUEUED) {
7516 			sqenable(sq);
7517 		}
7518 	}
7519 	/* Drop the SQLOCK on exit */
7520 	mutex_exit(SQLOCK(sq));
7521 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7522 	    "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7523 }
7524 
7525 void
7526 set_qend(queue_t *q)
7527 {
7528 	mutex_enter(QLOCK(q));
7529 	if (!O_SAMESTR(q))
7530 		q->q_flag |= QEND;
7531 	else
7532 		q->q_flag &= ~QEND;
7533 	mutex_exit(QLOCK(q));
7534 	q = _OTHERQ(q);
7535 	mutex_enter(QLOCK(q));
7536 	if (!O_SAMESTR(q))
7537 		q->q_flag |= QEND;
7538 	else
7539 		q->q_flag &= ~QEND;
7540 	mutex_exit(QLOCK(q));
7541 }
7542 
7543 /*
7544  * Set QFULL in next service procedure queue (that cares) if not already
7545  * set and if there are already more messages on the syncq than
7546  * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7547  * any syncq.
7548  *
7549  * The fq here is the next queue with a service procedure.  This is where
7550  * we would fail canputnext, so this is where we need to set QFULL.
7551  * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7552  *
7553  * We already have QLOCK at this point. To avoid cross-locks with
7554  * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7555  * SQLOCK and sd_reflock, we need to drop respective locks first.
7556  */
7557 void
7558 set_qfull(queue_t *q)
7559 {
7560 	queue_t		*fq = NULL;
7561 
7562 	ASSERT(MUTEX_HELD(QLOCK(q)));
7563 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7564 	    (q->q_syncqmsgs > sq_max_size)) {
7565 		if ((fq = q->q_nfsrv) == q) {
7566 			fq->q_flag |= QFULL;
7567 		} else {
7568 			mutex_exit(QLOCK(q));
7569 			mutex_enter(QLOCK(fq));
7570 			fq->q_flag |= QFULL;
7571 			mutex_exit(QLOCK(fq));
7572 			mutex_enter(QLOCK(q));
7573 		}
7574 	}
7575 }
7576 
7577 void
7578 clr_qfull(queue_t *q)
7579 {
7580 	queue_t	*oq = q;
7581 
7582 	q = q->q_nfsrv;
7583 	/* Fast check if there is any work to do before getting the lock. */
7584 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7585 		return;
7586 	}
7587 
7588 	/*
7589 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7590 	 * for QFULL being set.
7591 	 */
7592 	mutex_enter(QLOCK(q));
7593 	/*
7594 	 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7595 	 * Hence clear the QFULL.
7596 	 * If both q_count and q_mblkcnt are less than the hiwat mark,
7597 	 * clear the QFULL.
7598 	 */
7599 	if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7600 	    (q->q_mblkcnt < q->q_hiwat))) {
7601 		q->q_flag &= ~QFULL;
7602 		/*
7603 		 * A little more confusing, how about this way:
7604 		 * if someone wants to write,
7605 		 * AND
7606 		 *    both counts are less than the lowat mark
7607 		 *    OR
7608 		 *    the lowat mark is zero
7609 		 * THEN
7610 		 * backenable
7611 		 */
7612 		if ((q->q_flag & QWANTW) &&
7613 		    (((q->q_count < q->q_lowat) &&
7614 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7615 			q->q_flag &= ~QWANTW;
7616 			mutex_exit(QLOCK(q));
7617 			backenable(oq, 0);
7618 		} else
7619 			mutex_exit(QLOCK(q));
7620 	} else
7621 		mutex_exit(QLOCK(q));
7622 }
7623 
7624 /*
7625  * Set the forward service procedure pointer.
7626  *
7627  * Called at insert-time to cache a queue's next forward service procedure in
7628  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7629  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7630  * inserted does not have a service procedure, then q_nfsrv points to the next
7631  * queue forward that has a service procedure.  If the queue is at the logical
7632  * end of the stream (driver for write side, stream head for the read side)
7633  * and does not have a service procedure, then q_nfsrv also points to itself.
7634  */
7635 void
7636 set_nfsrv_ptr(
7637 	queue_t  *rnew,		/* read queue pointer to new module */
7638 	queue_t  *wnew,		/* write queue pointer to new module */
7639 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7640 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7641 {
7642 	queue_t *qp;
7643 
7644 	if (prev_wq->q_next == NULL) {
7645 		/*
7646 		 * Insert the driver, initialize the driver and stream head.
7647 		 * In this case, prev_rq/prev_wq should be the stream head.
7648 		 * _I_INSERT does not allow inserting a driver.  Make sure
7649 		 * that it is not an insertion.
7650 		 */
7651 		ASSERT(!(rnew->q_flag & _QINSERTING));
7652 		wnew->q_nfsrv = wnew;
7653 		if (rnew->q_qinfo->qi_srvp)
7654 			rnew->q_nfsrv = rnew;
7655 		else
7656 			rnew->q_nfsrv = prev_rq;
7657 		prev_rq->q_nfsrv = prev_rq;
7658 		prev_wq->q_nfsrv = prev_wq;
7659 	} else {
7660 		/*
7661 		 * set up read side q_nfsrv pointer.  This MUST be done
7662 		 * before setting the write side, because the setting of
7663 		 * the write side for a fifo may depend on it.
7664 		 *
7665 		 * Suppose we have a fifo that only has pipemod pushed.
7666 		 * pipemod has no read or write service procedures, so
7667 		 * nfsrv for both pipemod queues points to prev_rq (the
7668 		 * stream read head).  Now push bufmod (which has only a
7669 		 * read service procedure).  Doing the write side first,
7670 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7671 		 * is WRONG; the next queue forward from wnew with a
7672 		 * service procedure will be rnew, not the stream read head.
7673 		 * Since the downstream queue (which in the case of a fifo
7674 		 * is the read queue rnew) can affect upstream queues, it
7675 		 * needs to be done first.  Setting up the read side first
7676 		 * sets nfsrv for both pipemod queues to rnew and then
7677 		 * when the write side is set up, wnew-q_nfsrv will also
7678 		 * point to rnew.
7679 		 */
7680 		if (rnew->q_qinfo->qi_srvp) {
7681 			/*
7682 			 * use _OTHERQ() because, if this is a pipe, next
7683 			 * module may have been pushed from other end and
7684 			 * q_next could be a read queue.
7685 			 */
7686 			qp = _OTHERQ(prev_wq->q_next);
7687 			while (qp && qp->q_nfsrv != qp) {
7688 				qp->q_nfsrv = rnew;
7689 				qp = backq(qp);
7690 			}
7691 			rnew->q_nfsrv = rnew;
7692 		} else
7693 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7694 
7695 		/* set up write side q_nfsrv pointer */
7696 		if (wnew->q_qinfo->qi_srvp) {
7697 			wnew->q_nfsrv = wnew;
7698 
7699 			/*
7700 			 * For insertion, need to update nfsrv of the modules
7701 			 * above which do not have a service routine.
7702 			 */
7703 			if (rnew->q_flag & _QINSERTING) {
7704 				for (qp = prev_wq;
7705 				    qp != NULL && qp->q_nfsrv != qp;
7706 				    qp = backq(qp)) {
7707 					qp->q_nfsrv = wnew->q_nfsrv;
7708 				}
7709 			}
7710 		} else {
7711 			if (prev_wq->q_next == prev_rq)
7712 				/*
7713 				 * Since prev_wq/prev_rq are the middle of a
7714 				 * fifo, wnew/rnew will also be the middle of
7715 				 * a fifo and wnew's nfsrv is same as rnew's.
7716 				 */
7717 				wnew->q_nfsrv = rnew->q_nfsrv;
7718 			else
7719 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7720 		}
7721 	}
7722 }
7723 
7724 /*
7725  * Reset the forward service procedure pointer; called at remove-time.
7726  */
7727 void
7728 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7729 {
7730 	queue_t *tmp_qp;
7731 
7732 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7733 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7734 		for (tmp_qp = backq(wqp);
7735 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7736 		    tmp_qp = backq(tmp_qp)) {
7737 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7738 		}
7739 	}
7740 
7741 	/* reset the read side q_nfsrv pointer */
7742 	if (rqp->q_qinfo->qi_srvp) {
7743 		if (wqp->q_next) {	/* non-driver case */
7744 			tmp_qp = _OTHERQ(wqp->q_next);
7745 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7746 				/* Note that rqp->q_next cannot be NULL */
7747 				ASSERT(rqp->q_next != NULL);
7748 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7749 				tmp_qp = backq(tmp_qp);
7750 			}
7751 		}
7752 	}
7753 }
7754 
7755 /*
7756  * This routine should be called after all stream geometry changes to update
7757  * the stream head cached struio() rd/wr queue pointers. Note must be called
7758  * with the streamlock()ed.
7759  *
7760  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7761  *	 an explicit synchronous barrier module queue. That is, a queue that
7762  *	 has specified a struio() type.
7763  */
7764 static void
7765 strsetuio(stdata_t *stp)
7766 {
7767 	queue_t *wrq;
7768 
7769 	if (stp->sd_flag & STPLEX) {
7770 		/*
7771 		 * Not streamhead, but a mux, so no Synchronous STREAMS.
7772 		 */
7773 		stp->sd_struiowrq = NULL;
7774 		stp->sd_struiordq = NULL;
7775 		return;
7776 	}
7777 	/*
7778 	 * Scan the write queue(s) while synchronous
7779 	 * until we find a qinfo uio type specified.
7780 	 */
7781 	wrq = stp->sd_wrq->q_next;
7782 	while (wrq) {
7783 		if (wrq->q_struiot == STRUIOT_NONE) {
7784 			wrq = 0;
7785 			break;
7786 		}
7787 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7788 			break;
7789 		if (! _SAMESTR(wrq)) {
7790 			wrq = 0;
7791 			break;
7792 		}
7793 		wrq = wrq->q_next;
7794 	}
7795 	stp->sd_struiowrq = wrq;
7796 	/*
7797 	 * Scan the read queue(s) while synchronous
7798 	 * until we find a qinfo uio type specified.
7799 	 */
7800 	wrq = stp->sd_wrq->q_next;
7801 	while (wrq) {
7802 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7803 			wrq = 0;
7804 			break;
7805 		}
7806 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7807 			break;
7808 		if (! _SAMESTR(wrq)) {
7809 			wrq = 0;
7810 			break;
7811 		}
7812 		wrq = wrq->q_next;
7813 	}
7814 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7815 }
7816 
7817 /*
7818  * pass_wput, unblocks the passthru queues, so that
7819  * messages can arrive at muxs lower read queue, before
7820  * I_LINK/I_UNLINK is acked/nacked.
7821  */
7822 static void
7823 pass_wput(queue_t *q, mblk_t *mp)
7824 {
7825 	syncq_t *sq;
7826 
7827 	sq = _RD(q)->q_syncq;
7828 	if (sq->sq_flags & SQ_BLOCKED)
7829 		unblocksq(sq, SQ_BLOCKED, 0);
7830 	putnext(q, mp);
7831 }
7832 
7833 /*
7834  * Set up queues for the link/unlink.
7835  * Create a new queue and block it and then insert it
7836  * below the stream head on the lower stream.
7837  * This prevents any messages from arriving during the setq
7838  * as well as while the mux is processing the LINK/I_UNLINK.
7839  * The blocked passq is unblocked once the LINK/I_UNLINK has
7840  * been acked or nacked or if a message is generated and sent
7841  * down muxs write put procedure.
7842  * See pass_wput().
7843  *
7844  * After the new queue is inserted, all messages coming from below are
7845  * blocked. The call to strlock will ensure that all activity in the stream head
7846  * read queue syncq is stopped (sq_count drops to zero).
7847  */
7848 static queue_t *
7849 link_addpassthru(stdata_t *stpdown)
7850 {
7851 	queue_t *passq;
7852 	sqlist_t sqlist;
7853 
7854 	passq = allocq();
7855 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7856 	/* setq might sleep in allocator - avoid holding locks. */
7857 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7858 	    SQ_CI|SQ_CO, B_FALSE);
7859 	claimq(passq);
7860 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7861 	insertq(STREAM(passq), passq);
7862 
7863 	/*
7864 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7865 	 * since we are going to change q_ptr in the stream head.  Note that
7866 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7867 	 */
7868 	sqlist.sqlist_head = NULL;
7869 	sqlist.sqlist_index = 0;
7870 	sqlist.sqlist_size = sizeof (sqlist_t);
7871 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7872 	strlock(stpdown, &sqlist);
7873 	strunlock(stpdown, &sqlist);
7874 
7875 	releaseq(passq);
7876 	return (passq);
7877 }
7878 
7879 /*
7880  * Let messages flow up into the mux by removing
7881  * the passq.
7882  */
7883 static void
7884 link_rempassthru(queue_t *passq)
7885 {
7886 	claimq(passq);
7887 	removeq(passq);
7888 	releaseq(passq);
7889 	freeq(passq);
7890 }
7891 
7892 /*
7893  * Wait for the condition variable pointed to by `cvp' to be signaled,
7894  * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7895  * is negative, then there is no time limit.  If `nosigs' is non-zero,
7896  * then the wait will be non-interruptible.
7897  *
7898  * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7899  */
7900 clock_t
7901 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7902 {
7903 	clock_t ret;
7904 
7905 	if (tim < 0) {
7906 		if (nosigs) {
7907 			cv_wait(cvp, mp);
7908 			ret = 1;
7909 		} else {
7910 			ret = cv_wait_sig(cvp, mp);
7911 		}
7912 	} else if (tim > 0) {
7913 		/*
7914 		 * convert milliseconds to clock ticks
7915 		 */
7916 		if (nosigs) {
7917 			ret = cv_reltimedwait(cvp, mp,
7918 			    MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
7919 		} else {
7920 			ret = cv_reltimedwait_sig(cvp, mp,
7921 			    MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
7922 		}
7923 	} else {
7924 		ret = -1;
7925 	}
7926 	return (ret);
7927 }
7928 
7929 /*
7930  * Wait until the stream head can determine if it is at the mark but
7931  * don't wait forever to prevent a race condition between the "mark" state
7932  * in the stream head and any mark state in the caller/user of this routine.
7933  *
7934  * This is used by sockets and for a socket it would be incorrect
7935  * to return a failure for SIOCATMARK when there is no data in the receive
7936  * queue and the marked urgent data is traveling up the stream.
7937  *
7938  * This routine waits until the mark is known by waiting for one of these
7939  * three events:
7940  *	The stream head read queue becoming non-empty (including an EOF).
7941  *	The STRATMARK flag being set (due to a MSGMARKNEXT message).
7942  *	The STRNOTATMARK flag being set (which indicates that the transport
7943  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7944  *	the mark).
7945  *
7946  * The routine returns 1 if the stream is at the mark; 0 if it can
7947  * be determined that the stream is not at the mark.
7948  * If the wait times out and it can't determine
7949  * whether or not the stream might be at the mark the routine will return -1.
7950  *
7951  * Note: This routine should only be used when a mark is pending i.e.,
7952  * in the socket case the SIGURG has been posted.
7953  * Note2: This can not wakeup just because synchronous streams indicate
7954  * that data is available since it is not possible to use the synchronous
7955  * streams interfaces to determine the b_flag value for the data queued below
7956  * the stream head.
7957  */
7958 int
7959 strwaitmark(vnode_t *vp)
7960 {
7961 	struct stdata *stp = vp->v_stream;
7962 	queue_t *rq = _RD(stp->sd_wrq);
7963 	int mark;
7964 
7965 	mutex_enter(&stp->sd_lock);
7966 	while (rq->q_first == NULL &&
7967 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7968 		stp->sd_flag |= RSLEEP;
7969 
7970 		/* Wait for 100 milliseconds for any state change. */
7971 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7972 			mutex_exit(&stp->sd_lock);
7973 			return (-1);
7974 		}
7975 	}
7976 	if (stp->sd_flag & STRATMARK)
7977 		mark = 1;
7978 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7979 		mark = 1;
7980 	else
7981 		mark = 0;
7982 
7983 	mutex_exit(&stp->sd_lock);
7984 	return (mark);
7985 }
7986 
7987 /*
7988  * Set a read side error. If persist is set change the socket error
7989  * to persistent. If errfunc is set install the function as the exported
7990  * error handler.
7991  */
7992 void
7993 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7994 {
7995 	struct stdata *stp = vp->v_stream;
7996 
7997 	mutex_enter(&stp->sd_lock);
7998 	stp->sd_rerror = error;
7999 	if (error == 0 && errfunc == NULL)
8000 		stp->sd_flag &= ~STRDERR;
8001 	else
8002 		stp->sd_flag |= STRDERR;
8003 	if (persist) {
8004 		stp->sd_flag &= ~STRDERRNONPERSIST;
8005 	} else {
8006 		stp->sd_flag |= STRDERRNONPERSIST;
8007 	}
8008 	stp->sd_rderrfunc = errfunc;
8009 	if (error != 0 || errfunc != NULL) {
8010 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8011 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8012 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8013 
8014 		mutex_exit(&stp->sd_lock);
8015 		pollwakeup(&stp->sd_pollist, POLLERR);
8016 		mutex_enter(&stp->sd_lock);
8017 
8018 		if (stp->sd_sigflags & S_ERROR)
8019 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8020 	}
8021 	mutex_exit(&stp->sd_lock);
8022 }
8023 
8024 /*
8025  * Set a write side error. If persist is set change the socket error
8026  * to persistent.
8027  */
8028 void
8029 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8030 {
8031 	struct stdata *stp = vp->v_stream;
8032 
8033 	mutex_enter(&stp->sd_lock);
8034 	stp->sd_werror = error;
8035 	if (error == 0 && errfunc == NULL)
8036 		stp->sd_flag &= ~STWRERR;
8037 	else
8038 		stp->sd_flag |= STWRERR;
8039 	if (persist) {
8040 		stp->sd_flag &= ~STWRERRNONPERSIST;
8041 	} else {
8042 		stp->sd_flag |= STWRERRNONPERSIST;
8043 	}
8044 	stp->sd_wrerrfunc = errfunc;
8045 	if (error != 0 || errfunc != NULL) {
8046 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8047 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8048 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8049 
8050 		mutex_exit(&stp->sd_lock);
8051 		pollwakeup(&stp->sd_pollist, POLLERR);
8052 		mutex_enter(&stp->sd_lock);
8053 
8054 		if (stp->sd_sigflags & S_ERROR)
8055 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8056 	}
8057 	mutex_exit(&stp->sd_lock);
8058 }
8059 
8060 /*
8061  * Make the stream return 0 (EOF) when all data has been read.
8062  * No effect on write side.
8063  */
8064 void
8065 strseteof(vnode_t *vp, int eof)
8066 {
8067 	struct stdata *stp = vp->v_stream;
8068 
8069 	mutex_enter(&stp->sd_lock);
8070 	if (!eof) {
8071 		stp->sd_flag &= ~STREOF;
8072 		mutex_exit(&stp->sd_lock);
8073 		return;
8074 	}
8075 	stp->sd_flag |= STREOF;
8076 	if (stp->sd_flag & RSLEEP) {
8077 		stp->sd_flag &= ~RSLEEP;
8078 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8079 	}
8080 
8081 	mutex_exit(&stp->sd_lock);
8082 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8083 	mutex_enter(&stp->sd_lock);
8084 
8085 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8086 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8087 	mutex_exit(&stp->sd_lock);
8088 }
8089 
8090 void
8091 strflushrq(vnode_t *vp, int flag)
8092 {
8093 	struct stdata *stp = vp->v_stream;
8094 
8095 	mutex_enter(&stp->sd_lock);
8096 	flushq(_RD(stp->sd_wrq), flag);
8097 	mutex_exit(&stp->sd_lock);
8098 }
8099 
8100 void
8101 strsetrputhooks(vnode_t *vp, uint_t flags,
8102     msgfunc_t protofunc, msgfunc_t miscfunc)
8103 {
8104 	struct stdata *stp = vp->v_stream;
8105 
8106 	mutex_enter(&stp->sd_lock);
8107 
8108 	if (protofunc == NULL)
8109 		stp->sd_rprotofunc = strrput_proto;
8110 	else
8111 		stp->sd_rprotofunc = protofunc;
8112 
8113 	if (miscfunc == NULL)
8114 		stp->sd_rmiscfunc = strrput_misc;
8115 	else
8116 		stp->sd_rmiscfunc = miscfunc;
8117 
8118 	if (flags & SH_CONSOL_DATA)
8119 		stp->sd_rput_opt |= SR_CONSOL_DATA;
8120 	else
8121 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8122 
8123 	if (flags & SH_SIGALLDATA)
8124 		stp->sd_rput_opt |= SR_SIGALLDATA;
8125 	else
8126 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
8127 
8128 	if (flags & SH_IGN_ZEROLEN)
8129 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8130 	else
8131 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8132 
8133 	mutex_exit(&stp->sd_lock);
8134 }
8135 
8136 void
8137 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8138 {
8139 	struct stdata *stp = vp->v_stream;
8140 
8141 	mutex_enter(&stp->sd_lock);
8142 	stp->sd_closetime = closetime;
8143 
8144 	if (flags & SH_SIGPIPE)
8145 		stp->sd_wput_opt |= SW_SIGPIPE;
8146 	else
8147 		stp->sd_wput_opt &= ~SW_SIGPIPE;
8148 	if (flags & SH_RECHECK_ERR)
8149 		stp->sd_wput_opt |= SW_RECHECK_ERR;
8150 	else
8151 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8152 
8153 	mutex_exit(&stp->sd_lock);
8154 }
8155 
8156 void
8157 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8158 {
8159 	struct stdata *stp = vp->v_stream;
8160 
8161 	mutex_enter(&stp->sd_lock);
8162 
8163 	stp->sd_rputdatafunc = rdatafunc;
8164 	stp->sd_wputdatafunc = wdatafunc;
8165 
8166 	mutex_exit(&stp->sd_lock);
8167 }
8168 
8169 /* Used within framework when the queue is already locked */
8170 void
8171 qenable_locked(queue_t *q)
8172 {
8173 	stdata_t *stp = STREAM(q);
8174 
8175 	ASSERT(MUTEX_HELD(QLOCK(q)));
8176 
8177 	if (!q->q_qinfo->qi_srvp)
8178 		return;
8179 
8180 	/*
8181 	 * Do not place on run queue if already enabled or closing.
8182 	 */
8183 	if (q->q_flag & (QWCLOSE|QENAB))
8184 		return;
8185 
8186 	/*
8187 	 * mark queue enabled and place on run list if it is not already being
8188 	 * serviced. If it is serviced, the runservice() function will detect
8189 	 * that QENAB is set and call service procedure before clearing
8190 	 * QINSERVICE flag.
8191 	 */
8192 	q->q_flag |= QENAB;
8193 	if (q->q_flag & QINSERVICE)
8194 		return;
8195 
8196 	/* Record the time of qenable */
8197 	q->q_qtstamp = ddi_get_lbolt();
8198 
8199 	/*
8200 	 * Put the queue in the stp list and schedule it for background
8201 	 * processing if it is not already scheduled or if stream head does not
8202 	 * intent to process it in the foreground later by setting
8203 	 * STRS_WILLSERVICE flag.
8204 	 */
8205 	mutex_enter(&stp->sd_qlock);
8206 	/*
8207 	 * If there are already something on the list, stp flags should show
8208 	 * intention to drain it.
8209 	 */
8210 	IMPLY(STREAM_NEEDSERVICE(stp),
8211 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8212 
8213 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8214 	stp->sd_nqueues++;
8215 
8216 	/*
8217 	 * If no one will drain this stream we are the first producer and
8218 	 * need to schedule it for background thread.
8219 	 */
8220 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8221 		/*
8222 		 * No one will service this stream later, so we have to
8223 		 * schedule it now.
8224 		 */
8225 		STRSTAT(stenables);
8226 		stp->sd_svcflags |= STRS_SCHEDULED;
8227 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8228 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8229 
8230 		if (stp->sd_servid == NULL) {
8231 			/*
8232 			 * Task queue failed so fail over to the backup
8233 			 * servicing thread.
8234 			 */
8235 			STRSTAT(taskqfails);
8236 			/*
8237 			 * It is safe to clear STRS_SCHEDULED flag because it
8238 			 * was set by this thread above.
8239 			 */
8240 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8241 
8242 			/*
8243 			 * Failover scheduling is protected by service_queue
8244 			 * lock.
8245 			 */
8246 			mutex_enter(&service_queue);
8247 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8248 			ASSERT(q->q_link == NULL);
8249 			/*
8250 			 * Append the queue to qhead/qtail list.
8251 			 */
8252 			if (qhead == NULL)
8253 				qhead = q;
8254 			else
8255 				qtail->q_link = q;
8256 			qtail = q;
8257 			/*
8258 			 * Clear stp queue list.
8259 			 */
8260 			stp->sd_qhead = stp->sd_qtail = NULL;
8261 			stp->sd_nqueues = 0;
8262 			/*
8263 			 * Wakeup background queue processing thread.
8264 			 */
8265 			cv_signal(&services_to_run);
8266 			mutex_exit(&service_queue);
8267 		}
8268 	}
8269 	mutex_exit(&stp->sd_qlock);
8270 }
8271 
8272 static void
8273 queue_service(queue_t *q)
8274 {
8275 	/*
8276 	 * The queue in the list should have
8277 	 * QENAB flag set and should not have
8278 	 * QINSERVICE flag set. QINSERVICE is
8279 	 * set when the queue is dequeued and
8280 	 * qenable_locked doesn't enqueue a
8281 	 * queue with QINSERVICE set.
8282 	 */
8283 
8284 	ASSERT(!(q->q_flag & QINSERVICE));
8285 	ASSERT((q->q_flag & QENAB));
8286 	mutex_enter(QLOCK(q));
8287 	q->q_flag &= ~QENAB;
8288 	q->q_flag |= QINSERVICE;
8289 	mutex_exit(QLOCK(q));
8290 	runservice(q);
8291 }
8292 
8293 static void
8294 syncq_service(syncq_t *sq)
8295 {
8296 	STRSTAT(syncqservice);
8297 	mutex_enter(SQLOCK(sq));
8298 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8299 	ASSERT(sq->sq_servcount != 0);
8300 	ASSERT(sq->sq_next == NULL);
8301 
8302 	/* if we came here from the background thread, clear the flag */
8303 	if (sq->sq_svcflags & SQ_BGTHREAD)
8304 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8305 
8306 	/* let drain_syncq know that it's being called in the background */
8307 	sq->sq_svcflags |= SQ_SERVICE;
8308 	drain_syncq(sq);
8309 }
8310 
8311 static void
8312 qwriter_outer_service(syncq_t *outer)
8313 {
8314 	/*
8315 	 * Note that SQ_WRITER is used on the outer perimeter
8316 	 * to signal that a qwriter(OUTER) is either investigating
8317 	 * running or that it is actually running a function.
8318 	 */
8319 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8320 
8321 	/*
8322 	 * All inner syncq are empty and have SQ_WRITER set
8323 	 * to block entering the outer perimeter.
8324 	 *
8325 	 * We do not need to explicitly call write_now since
8326 	 * outer_exit does it for us.
8327 	 */
8328 	outer_exit(outer);
8329 }
8330 
8331 static void
8332 mblk_free(mblk_t *mp)
8333 {
8334 	dblk_t *dbp = mp->b_datap;
8335 	frtn_t *frp = dbp->db_frtnp;
8336 
8337 	mp->b_next = NULL;
8338 	if (dbp->db_fthdr != NULL)
8339 		str_ftfree(dbp);
8340 
8341 	ASSERT(dbp->db_fthdr == NULL);
8342 	frp->free_func(frp->free_arg);
8343 	ASSERT(dbp->db_mblk == mp);
8344 
8345 	if (dbp->db_credp != NULL) {
8346 		crfree(dbp->db_credp);
8347 		dbp->db_credp = NULL;
8348 	}
8349 	dbp->db_cpid = -1;
8350 	dbp->db_struioflag = 0;
8351 	dbp->db_struioun.cksum.flags = 0;
8352 
8353 	kmem_cache_free(dbp->db_cache, dbp);
8354 }
8355 
8356 /*
8357  * Background processing of the stream queue list.
8358  */
8359 static void
8360 stream_service(stdata_t *stp)
8361 {
8362 	queue_t *q;
8363 
8364 	mutex_enter(&stp->sd_qlock);
8365 
8366 	STR_SERVICE(stp, q);
8367 
8368 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8369 	stp->sd_servid = NULL;
8370 	cv_signal(&stp->sd_qcv);
8371 	mutex_exit(&stp->sd_qlock);
8372 }
8373 
8374 /*
8375  * Foreground processing of the stream queue list.
8376  */
8377 void
8378 stream_runservice(stdata_t *stp)
8379 {
8380 	queue_t *q;
8381 
8382 	mutex_enter(&stp->sd_qlock);
8383 	STRSTAT(rservice);
8384 	/*
8385 	 * We are going to drain this stream queue list, so qenable_locked will
8386 	 * not schedule it until we finish.
8387 	 */
8388 	stp->sd_svcflags |= STRS_WILLSERVICE;
8389 
8390 	STR_SERVICE(stp, q);
8391 
8392 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8393 	mutex_exit(&stp->sd_qlock);
8394 	/*
8395 	 * Help backup background thread to drain the qhead/qtail list.
8396 	 */
8397 	while (qhead != NULL) {
8398 		STRSTAT(qhelps);
8399 		mutex_enter(&service_queue);
8400 		DQ(q, qhead, qtail, q_link);
8401 		mutex_exit(&service_queue);
8402 		if (q != NULL)
8403 			queue_service(q);
8404 	}
8405 }
8406 
8407 void
8408 stream_willservice(stdata_t *stp)
8409 {
8410 	mutex_enter(&stp->sd_qlock);
8411 	stp->sd_svcflags |= STRS_WILLSERVICE;
8412 	mutex_exit(&stp->sd_qlock);
8413 }
8414 
8415 /*
8416  * Replace the cred currently in the mblk with a different one.
8417  * Also update db_cpid.
8418  */
8419 void
8420 mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid)
8421 {
8422 	dblk_t *dbp = mp->b_datap;
8423 	cred_t *ocr = dbp->db_credp;
8424 
8425 	ASSERT(cr != NULL);
8426 
8427 	if (cr != ocr) {
8428 		crhold(dbp->db_credp = cr);
8429 		if (ocr != NULL)
8430 			crfree(ocr);
8431 	}
8432 	/* Don't overwrite with NOPID */
8433 	if (cpid != NOPID)
8434 		dbp->db_cpid = cpid;
8435 }
8436 
8437 /*
8438  * If the src message has a cred, then replace the cred currently in the mblk
8439  * with it.
8440  * Also update db_cpid.
8441  */
8442 void
8443 mblk_copycred(mblk_t *mp, const mblk_t *src)
8444 {
8445 	dblk_t *dbp = mp->b_datap;
8446 	cred_t *cr, *ocr;
8447 	pid_t cpid;
8448 
8449 	cr = msg_getcred(src, &cpid);
8450 	if (cr == NULL)
8451 		return;
8452 
8453 	ocr = dbp->db_credp;
8454 	if (cr != ocr) {
8455 		crhold(dbp->db_credp = cr);
8456 		if (ocr != NULL)
8457 			crfree(ocr);
8458 	}
8459 	/* Don't overwrite with NOPID */
8460 	if (cpid != NOPID)
8461 		dbp->db_cpid = cpid;
8462 }
8463 
8464 int
8465 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8466     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8467     uint32_t flags, int km_flags)
8468 {
8469 	int rc = 0;
8470 
8471 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8472 	if (mp->b_datap->db_type == M_DATA) {
8473 		/* Associate values for M_DATA type */
8474 		DB_CKSUMSTART(mp) = (intptr_t)start;
8475 		DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8476 		DB_CKSUMEND(mp) = (intptr_t)end;
8477 		DB_CKSUMFLAGS(mp) = flags;
8478 		DB_CKSUM16(mp) = (uint16_t)value;
8479 
8480 	} else {
8481 		pattrinfo_t pa_info;
8482 
8483 		ASSERT(mmd != NULL);
8484 
8485 		pa_info.type = PATTR_HCKSUM;
8486 		pa_info.len = sizeof (pattr_hcksum_t);
8487 
8488 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8489 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8490 
8491 			hck->hcksum_start_offset = start;
8492 			hck->hcksum_stuff_offset = stuff;
8493 			hck->hcksum_end_offset = end;
8494 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8495 			hck->hcksum_flags = flags;
8496 		} else {
8497 			rc = -1;
8498 		}
8499 	}
8500 	return (rc);
8501 }
8502 
8503 void
8504 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8505     uint32_t *start, uint32_t *stuff, uint32_t *end,
8506     uint32_t *value, uint32_t *flags)
8507 {
8508 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8509 	if (mp->b_datap->db_type == M_DATA) {
8510 		if (flags != NULL) {
8511 			*flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
8512 			if ((*flags & (HCK_PARTIALCKSUM |
8513 			    HCK_FULLCKSUM)) != 0) {
8514 				if (value != NULL)
8515 					*value = (uint32_t)DB_CKSUM16(mp);
8516 				if ((*flags & HCK_PARTIALCKSUM) != 0) {
8517 					if (start != NULL)
8518 						*start =
8519 						    (uint32_t)DB_CKSUMSTART(mp);
8520 					if (stuff != NULL)
8521 						*stuff =
8522 						    (uint32_t)DB_CKSUMSTUFF(mp);
8523 					if (end != NULL)
8524 						*end =
8525 						    (uint32_t)DB_CKSUMEND(mp);
8526 				}
8527 			}
8528 		}
8529 	} else {
8530 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8531 
8532 		ASSERT(mmd != NULL);
8533 
8534 		/* get hardware checksum attribute */
8535 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8536 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8537 
8538 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8539 			if (flags != NULL)
8540 				*flags = hck->hcksum_flags;
8541 			if (start != NULL)
8542 				*start = hck->hcksum_start_offset;
8543 			if (stuff != NULL)
8544 				*stuff = hck->hcksum_stuff_offset;
8545 			if (end != NULL)
8546 				*end = hck->hcksum_end_offset;
8547 			if (value != NULL)
8548 				*value = (uint32_t)
8549 				    hck->hcksum_cksum_val.inet_cksum;
8550 		}
8551 	}
8552 }
8553 
8554 void
8555 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8556 {
8557 	ASSERT(DB_TYPE(mp) == M_DATA);
8558 	ASSERT((flags & ~HW_LSO_FLAGS) == 0);
8559 
8560 	/* Set the flags */
8561 	DB_LSOFLAGS(mp) |= flags;
8562 	DB_LSOMSS(mp) = mss;
8563 }
8564 
8565 void
8566 lso_info_cleanup(mblk_t *mp)
8567 {
8568 	ASSERT(DB_TYPE(mp) == M_DATA);
8569 
8570 	/* Clear the flags */
8571 	DB_LSOFLAGS(mp) &= ~HW_LSO_FLAGS;
8572 	DB_LSOMSS(mp) = 0;
8573 }
8574 
8575 /*
8576  * Checksum buffer *bp for len bytes with psum partial checksum,
8577  * or 0 if none, and return the 16 bit partial checksum.
8578  */
8579 unsigned
8580 bcksum(uchar_t *bp, int len, unsigned int psum)
8581 {
8582 	int odd = len & 1;
8583 	extern unsigned int ip_ocsum();
8584 
8585 	if (((intptr_t)bp & 1) == 0 && !odd) {
8586 		/*
8587 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8588 		 */
8589 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8590 	}
8591 	if (((intptr_t)bp & 1) != 0) {
8592 		/*
8593 		 * Bp isn't 16 bit aligned.
8594 		 */
8595 		unsigned int tsum;
8596 
8597 #ifdef _LITTLE_ENDIAN
8598 		psum += *bp;
8599 #else
8600 		psum += *bp << 8;
8601 #endif
8602 		len--;
8603 		bp++;
8604 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8605 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8606 		if (len & 1) {
8607 			bp += len - 1;
8608 #ifdef _LITTLE_ENDIAN
8609 			psum += *bp << 8;
8610 #else
8611 			psum += *bp;
8612 #endif
8613 		}
8614 	} else {
8615 		/*
8616 		 * Bp is 16 bit aligned.
8617 		 */
8618 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8619 		if (odd) {
8620 			bp += len - 1;
8621 #ifdef _LITTLE_ENDIAN
8622 			psum += *bp;
8623 #else
8624 			psum += *bp << 8;
8625 #endif
8626 		}
8627 	}
8628 	/*
8629 	 * Normalize psum to 16 bits before returning the new partial
8630 	 * checksum. The max psum value before normalization is 0x3FDFE.
8631 	 */
8632 	return ((psum >> 16) + (psum & 0xFFFF));
8633 }
8634 
8635 boolean_t
8636 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8637 {
8638 	boolean_t rc;
8639 
8640 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8641 	if (DB_TYPE(mp) == M_DATA) {
8642 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8643 	} else {
8644 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8645 
8646 		ASSERT(mmd != NULL);
8647 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8648 	}
8649 	return (rc);
8650 }
8651 
8652 void
8653 freemsgchain(mblk_t *mp)
8654 {
8655 	mblk_t	*next;
8656 
8657 	while (mp != NULL) {
8658 		next = mp->b_next;
8659 		mp->b_next = NULL;
8660 
8661 		freemsg(mp);
8662 		mp = next;
8663 	}
8664 }
8665 
8666 mblk_t *
8667 copymsgchain(mblk_t *mp)
8668 {
8669 	mblk_t	*nmp = NULL;
8670 	mblk_t	**nmpp = &nmp;
8671 
8672 	for (; mp != NULL; mp = mp->b_next) {
8673 		if ((*nmpp = copymsg(mp)) == NULL) {
8674 			freemsgchain(nmp);
8675 			return (NULL);
8676 		}
8677 
8678 		nmpp = &((*nmpp)->b_next);
8679 	}
8680 
8681 	return (nmp);
8682 }
8683 
8684 /* NOTE: Do not add code after this point. */
8685 #undef QLOCK
8686 
8687 /*
8688  * Replacement for QLOCK macro for those that can't use it.
8689  */
8690 kmutex_t *
8691 QLOCK(queue_t *q)
8692 {
8693 	return (&(q)->q_lock);
8694 }
8695 
8696 /*
8697  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8698  */
8699 #undef runqueues
8700 void
8701 runqueues(void)
8702 {
8703 }
8704 
8705 #undef queuerun
8706 void
8707 queuerun(void)
8708 {
8709 }
8710 
8711 /*
8712  * Initialize the STR stack instance, which tracks autopush and persistent
8713  * links.
8714  */
8715 /* ARGSUSED */
8716 static void *
8717 str_stack_init(netstackid_t stackid, netstack_t *ns)
8718 {
8719 	str_stack_t	*ss;
8720 	int i;
8721 
8722 	ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8723 	ss->ss_netstack = ns;
8724 
8725 	/*
8726 	 * set up autopush
8727 	 */
8728 	sad_initspace(ss);
8729 
8730 	/*
8731 	 * set up mux_node structures.
8732 	 */
8733 	ss->ss_devcnt = devcnt;	/* In case it should change before free */
8734 	ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8735 	    ss->ss_devcnt), KM_SLEEP);
8736 	for (i = 0; i < ss->ss_devcnt; i++)
8737 		ss->ss_mux_nodes[i].mn_imaj = i;
8738 	return (ss);
8739 }
8740 
8741 /*
8742  * Note: run at zone shutdown and not destroy so that the PLINKs are
8743  * gone by the time other cleanup happens from the destroy callbacks.
8744  */
8745 static void
8746 str_stack_shutdown(netstackid_t stackid, void *arg)
8747 {
8748 	str_stack_t *ss = (str_stack_t *)arg;
8749 	int i;
8750 	cred_t *cr;
8751 
8752 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8753 	ASSERT(cr != NULL);
8754 
8755 	/* Undo all the I_PLINKs for this zone */
8756 	for (i = 0; i < ss->ss_devcnt; i++) {
8757 		struct mux_edge		*ep;
8758 		ldi_handle_t		lh;
8759 		ldi_ident_t		li;
8760 		int			ret;
8761 		int			rval;
8762 		dev_t			rdev;
8763 
8764 		ep = ss->ss_mux_nodes[i].mn_outp;
8765 		if (ep == NULL)
8766 			continue;
8767 		ret = ldi_ident_from_major((major_t)i, &li);
8768 		if (ret != 0) {
8769 			continue;
8770 		}
8771 		rdev = ep->me_dev;
8772 		ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8773 		    cr, &lh, li);
8774 		if (ret != 0) {
8775 			ldi_ident_release(li);
8776 			continue;
8777 		}
8778 
8779 		ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8780 		    cr, &rval);
8781 		if (ret) {
8782 			(void) ldi_close(lh, FREAD|FWRITE, cr);
8783 			ldi_ident_release(li);
8784 			continue;
8785 		}
8786 		(void) ldi_close(lh, FREAD|FWRITE, cr);
8787 
8788 		/* Close layered handles */
8789 		ldi_ident_release(li);
8790 	}
8791 	crfree(cr);
8792 
8793 	sad_freespace(ss);
8794 
8795 	kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8796 	ss->ss_mux_nodes = NULL;
8797 }
8798 
8799 /*
8800  * Free the structure; str_stack_shutdown did the other cleanup work.
8801  */
8802 /* ARGSUSED */
8803 static void
8804 str_stack_fini(netstackid_t stackid, void *arg)
8805 {
8806 	str_stack_t	*ss = (str_stack_t *)arg;
8807 
8808 	kmem_free(ss, sizeof (*ss));
8809 }
8810