1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
23
24
25 /*
26 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 * Copyright (c) 2016 by Delphix. All rights reserved.
29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30 * Copyright 2018 Joyent, Inc.
31 * Copyright 2022 Garrett D'Amore
32 */
33
34 #include <sys/types.h>
35 #include <sys/sysmacros.h>
36 #include <sys/param.h>
37 #include <sys/errno.h>
38 #include <sys/signal.h>
39 #include <sys/proc.h>
40 #include <sys/conf.h>
41 #include <sys/cred.h>
42 #include <sys/user.h>
43 #include <sys/vnode.h>
44 #include <sys/file.h>
45 #include <sys/session.h>
46 #include <sys/stream.h>
47 #include <sys/strsubr.h>
48 #include <sys/stropts.h>
49 #include <sys/poll.h>
50 #include <sys/systm.h>
51 #include <sys/cpuvar.h>
52 #include <sys/uio.h>
53 #include <sys/cmn_err.h>
54 #include <sys/priocntl.h>
55 #include <sys/procset.h>
56 #include <sys/vmem.h>
57 #include <sys/bitmap.h>
58 #include <sys/kmem.h>
59 #include <sys/siginfo.h>
60 #include <sys/vtrace.h>
61 #include <sys/callb.h>
62 #include <sys/debug.h>
63 #include <sys/modctl.h>
64 #include <sys/vmsystm.h>
65 #include <vm/page.h>
66 #include <sys/atomic.h>
67 #include <sys/suntpi.h>
68 #include <sys/strlog.h>
69 #include <sys/promif.h>
70 #include <sys/project.h>
71 #include <sys/vm.h>
72 #include <sys/taskq.h>
73 #include <sys/sunddi.h>
74 #include <sys/sunldi_impl.h>
75 #include <sys/strsun.h>
76 #include <sys/isa_defs.h>
77 #include <sys/pattr.h>
78 #include <sys/strft.h>
79 #include <sys/fs/snode.h>
80 #include <sys/zone.h>
81 #include <sys/open.h>
82 #include <sys/sunldi.h>
83 #include <sys/sad.h>
84 #include <sys/netstack.h>
85
86 #define O_SAMESTR(q) (((q)->q_next) && \
87 (((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
88
89 /*
90 * WARNING:
91 * The variables and routines in this file are private, belonging
92 * to the STREAMS subsystem. These should not be used by modules
93 * or drivers. Compatibility will not be guaranteed.
94 */
95
96 /*
97 * Id value used to distinguish between different multiplexor links.
98 */
99 static int32_t lnk_id = 0;
100
101 #define STREAMS_LOPRI MINCLSYSPRI
102 static pri_t streams_lopri = STREAMS_LOPRI;
103
104 #define STRSTAT(x) (str_statistics.x.value.ui64++)
105 typedef struct str_stat {
106 kstat_named_t sqenables;
107 kstat_named_t stenables;
108 kstat_named_t syncqservice;
109 kstat_named_t freebs;
110 kstat_named_t qwr_outer;
111 kstat_named_t rservice;
112 kstat_named_t strwaits;
113 kstat_named_t taskqfails;
114 kstat_named_t bufcalls;
115 kstat_named_t qhelps;
116 kstat_named_t qremoved;
117 kstat_named_t sqremoved;
118 kstat_named_t bcwaits;
119 kstat_named_t sqtoomany;
120 } str_stat_t;
121
122 static str_stat_t str_statistics = {
123 { "sqenables", KSTAT_DATA_UINT64 },
124 { "stenables", KSTAT_DATA_UINT64 },
125 { "syncqservice", KSTAT_DATA_UINT64 },
126 { "freebs", KSTAT_DATA_UINT64 },
127 { "qwr_outer", KSTAT_DATA_UINT64 },
128 { "rservice", KSTAT_DATA_UINT64 },
129 { "strwaits", KSTAT_DATA_UINT64 },
130 { "taskqfails", KSTAT_DATA_UINT64 },
131 { "bufcalls", KSTAT_DATA_UINT64 },
132 { "qhelps", KSTAT_DATA_UINT64 },
133 { "qremoved", KSTAT_DATA_UINT64 },
134 { "sqremoved", KSTAT_DATA_UINT64 },
135 { "bcwaits", KSTAT_DATA_UINT64 },
136 { "sqtoomany", KSTAT_DATA_UINT64 },
137 };
138
139 static kstat_t *str_kstat;
140
141 /*
142 * qrunflag was used previously to control background scheduling of queues. It
143 * is not used anymore, but kept here in case some module still wants to access
144 * it via qready() and setqsched macros.
145 */
146 char qrunflag; /* Unused */
147
148 /*
149 * Most of the streams scheduling is done via task queues. Task queues may fail
150 * for non-sleep dispatches, so there are two backup threads servicing failed
151 * requests for queues and syncqs. Both of these threads also service failed
152 * dispatches freebs requests. Queues are put in the list specified by `qhead'
153 * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
154 * requests are put into `freebs_list' which has no tail pointer. All three
155 * lists are protected by a single `service_queue' lock and use
156 * `services_to_run' condition variable for signaling background threads. Use of
157 * a single lock should not be a problem because it is only used under heavy
158 * loads when task queues start to fail and at that time it may be a good idea
159 * to throttle scheduling requests.
160 *
161 * NOTE: queues and syncqs should be scheduled by two separate threads because
162 * queue servicing may be blocked waiting for a syncq which may be also
163 * scheduled for background execution. This may create a deadlock when only one
164 * thread is used for both.
165 */
166
167 static taskq_t *streams_taskq; /* Used for most STREAMS scheduling */
168
169 static kmutex_t service_queue; /* protects all of servicing vars */
170 static kcondvar_t services_to_run; /* wake up background service thread */
171 static kcondvar_t syncqs_to_run; /* wake up background service thread */
172
173 /*
174 * List of queues scheduled for background processing due to lack of resources
175 * in the task queues. Protected by service_queue lock;
176 */
177 static struct queue *qhead;
178 static struct queue *qtail;
179
180 /*
181 * Same list for syncqs
182 */
183 static syncq_t *sqhead;
184 static syncq_t *sqtail;
185
186 static mblk_t *freebs_list; /* list of buffers to free */
187
188 /*
189 * Backup threads for servicing queues and syncqs
190 */
191 kthread_t *streams_qbkgrnd_thread;
192 kthread_t *streams_sqbkgrnd_thread;
193
194 /*
195 * Bufcalls related variables.
196 */
197 struct bclist strbcalls; /* list of waiting bufcalls */
198 kmutex_t strbcall_lock; /* protects bufcall list (strbcalls) */
199 kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */
200 kmutex_t bcall_monitor; /* sleep/wakeup style monitor */
201 kcondvar_t bcall_cv; /* wait 'till executing bufcall completes */
202 kthread_t *bc_bkgrnd_thread; /* Thread to service bufcall requests */
203
204 kmutex_t strresources; /* protects global resources */
205 kmutex_t muxifier; /* single-threads multiplexor creation */
206
207 static void *str_stack_init(netstackid_t stackid, netstack_t *ns);
208 static void str_stack_shutdown(netstackid_t stackid, void *arg);
209 static void str_stack_fini(netstackid_t stackid, void *arg);
210
211 /*
212 * run_queues is no longer used, but is kept in case some 3rd party
213 * module/driver decides to use it.
214 */
215 int run_queues = 0;
216
217 /*
218 * sq_max_size is the depth of the syncq (in number of messages) before
219 * qfill_syncq() starts QFULL'ing destination queues. As its primary
220 * consumer - IP is no longer D_MTPERMOD, but there may be other
221 * modules/drivers depend on this syncq flow control, we prefer to
222 * choose a large number as the default value. For potential
223 * performance gain, this value is tunable in /etc/system.
224 */
225 int sq_max_size = 10000;
226
227 /*
228 * The number of ciputctrl structures per syncq and stream we create when
229 * needed.
230 */
231 int n_ciputctrl;
232 int max_n_ciputctrl = 16;
233 /*
234 * If n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
235 */
236 int min_n_ciputctrl = 2;
237
238 /*
239 * Per-driver/module syncqs
240 * ========================
241 *
242 * For drivers/modules that use PERMOD or outer syncqs we keep a list of
243 * perdm structures, new entries being added (and new syncqs allocated) when
244 * setq() encounters a module/driver with a streamtab that it hasn't seen
245 * before.
246 * The reason for this mechanism is that some modules and drivers share a
247 * common streamtab and it is necessary for those modules and drivers to also
248 * share a common PERMOD syncq.
249 *
250 * perdm_list --> dm_str == streamtab_1
251 * dm_sq == syncq_1
252 * dm_ref
253 * dm_next --> dm_str == streamtab_2
254 * dm_sq == syncq_2
255 * dm_ref
256 * dm_next --> ... NULL
257 *
258 * The dm_ref field is incremented for each new driver/module that takes
259 * a reference to the perdm structure and hence shares the syncq.
260 * References are held in the fmodsw_impl_t structure for each STREAMS module
261 * or the dev_impl array (indexed by device major number) for each driver.
262 *
263 * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
264 * ^ ^ ^ ^
265 * | ______________/ | |
266 * | / | |
267 * dev_impl: ...|x|y|... module A module B
268 *
269 * When a module/driver is unloaded the reference count is decremented and,
270 * when it falls to zero, the perdm structure is removed from the list and
271 * the syncq is freed (see rele_dm()).
272 */
273 perdm_t *perdm_list = NULL;
274 static krwlock_t perdm_rwlock;
275 cdevsw_impl_t *devimpl;
276
277 extern struct qinit strdata;
278 extern struct qinit stwdata;
279
280 static void runservice(queue_t *);
281 static void streams_bufcall_service(void);
282 static void streams_qbkgrnd_service(void);
283 static void streams_sqbkgrnd_service(void);
284 static syncq_t *new_syncq(void);
285 static void free_syncq(syncq_t *);
286 static void outer_insert(syncq_t *, syncq_t *);
287 static void outer_remove(syncq_t *, syncq_t *);
288 static void write_now(syncq_t *);
289 static void clr_qfull(queue_t *);
290 static void runbufcalls(void);
291 static void sqenable(syncq_t *);
292 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
293 static void wait_q_syncq(queue_t *);
294 static void backenable_insertedq(queue_t *);
295
296 static void queue_service(queue_t *);
297 static void stream_service(stdata_t *);
298 static void syncq_service(syncq_t *);
299 static void qwriter_outer_service(syncq_t *);
300 static void mblk_free(mblk_t *);
301 #ifdef DEBUG
302 static int qprocsareon(queue_t *);
303 #endif
304
305 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
306 static void reset_nfsrv_ptr(queue_t *, queue_t *);
307 void set_qfull(queue_t *);
308
309 static void sq_run_events(syncq_t *);
310 static int propagate_syncq(queue_t *);
311
312 static void blocksq(syncq_t *, ushort_t, int);
313 static void unblocksq(syncq_t *, ushort_t, int);
314 static int dropsq(syncq_t *, uint16_t);
315 static void emptysq(syncq_t *);
316 static sqlist_t *sqlist_alloc(struct stdata *, int);
317 static void sqlist_free(sqlist_t *);
318 static sqlist_t *sqlist_build(queue_t *, struct stdata *, boolean_t);
319 static void sqlist_insert(sqlist_t *, syncq_t *);
320 static void sqlist_insertall(sqlist_t *, queue_t *);
321
322 static void strsetuio(stdata_t *);
323
324 struct kmem_cache *stream_head_cache;
325 struct kmem_cache *queue_cache;
326 struct kmem_cache *syncq_cache;
327 struct kmem_cache *qband_cache;
328 struct kmem_cache *linkinfo_cache;
329 struct kmem_cache *ciputctrl_cache = NULL;
330
331 static linkinfo_t *linkinfo_list;
332
333 /* Global esballoc throttling queue */
334 static esb_queue_t system_esbq;
335
336 /* Array of esballoc throttling queues, of length esbq_nelem */
337 static esb_queue_t *volatile system_esbq_array;
338 static int esbq_nelem;
339 static kmutex_t esbq_lock;
340 static int esbq_log2_cpus_per_q = 0;
341
342 /* Scale the system_esbq length by setting number of CPUs per queue. */
343 uint_t esbq_cpus_per_q = 1;
344
345 /*
346 * esballoc tunable parameters.
347 */
348 int esbq_max_qlen = 0x16; /* throttled queue length */
349 clock_t esbq_timeout = 0x8; /* timeout to process esb queue */
350
351 /*
352 * Routines to handle esballoc queueing.
353 */
354 static void esballoc_process_queue(esb_queue_t *);
355 static void esballoc_enqueue_mblk(mblk_t *);
356 static void esballoc_timer(void *);
357 static void esballoc_set_timer(esb_queue_t *, clock_t);
358 static void esballoc_mblk_free(mblk_t *);
359
360 /*
361 * Qinit structure and Module_info structures
362 * for passthru read and write queues
363 */
364
365 static int pass_rput(queue_t *, mblk_t *);
366 static int pass_wput(queue_t *, mblk_t *);
367 static queue_t *link_addpassthru(stdata_t *);
368 static void link_rempassthru(queue_t *);
369
370 struct module_info passthru_info = {
371 0,
372 "passthru",
373 0,
374 INFPSZ,
375 STRHIGH,
376 STRLOW
377 };
378
379 struct qinit passthru_rinit = {
380 pass_rput,
381 NULL,
382 NULL,
383 NULL,
384 NULL,
385 &passthru_info,
386 NULL
387 };
388
389 struct qinit passthru_winit = {
390 pass_wput,
391 NULL,
392 NULL,
393 NULL,
394 NULL,
395 &passthru_info,
396 NULL
397 };
398
399 /*
400 * Verify correctness of list head/tail pointers.
401 */
402 #define LISTCHECK(head, tail, link) { \
403 EQUIV(head, tail); \
404 IMPLY(tail != NULL, tail->link == NULL); \
405 }
406
407 /*
408 * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
409 * using a `link' field.
410 */
411 #define ENQUEUE(el, head, tail, link) { \
412 ASSERT(el->link == NULL); \
413 LISTCHECK(head, tail, link); \
414 if (head == NULL) \
415 head = el; \
416 else \
417 tail->link = el; \
418 tail = el; \
419 }
420
421 /*
422 * Dequeue the first element of the list denoted by `head' and `tail' pointers
423 * using a `link' field and put result into `el'.
424 */
425 #define DQ(el, head, tail, link) { \
426 LISTCHECK(head, tail, link); \
427 el = head; \
428 if (head != NULL) { \
429 head = head->link; \
430 if (head == NULL) \
431 tail = NULL; \
432 el->link = NULL; \
433 } \
434 }
435
436 /*
437 * Remove `el' from the list using `chase' and `curr' pointers and return result
438 * in `succeed'.
439 */
440 #define RMQ(el, head, tail, link, chase, curr, succeed) { \
441 LISTCHECK(head, tail, link); \
442 chase = NULL; \
443 succeed = 0; \
444 for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
445 chase = curr; \
446 if (curr != NULL) { \
447 succeed = 1; \
448 ASSERT(curr == el); \
449 if (chase != NULL) \
450 chase->link = curr->link; \
451 else \
452 head = curr->link; \
453 curr->link = NULL; \
454 if (curr == tail) \
455 tail = chase; \
456 } \
457 LISTCHECK(head, tail, link); \
458 }
459
460 /* Handling of delayed messages on the inner syncq. */
461
462 /*
463 * DEBUG versions should use function versions (to simplify tracing) and
464 * non-DEBUG kernels should use macro versions.
465 */
466
467 /*
468 * Put a queue on the syncq list of queues.
469 * Assumes SQLOCK held.
470 */
471 #define SQPUT_Q(sq, qp) \
472 { \
473 ASSERT(MUTEX_HELD(SQLOCK(sq))); \
474 if (!(qp->q_sqflags & Q_SQQUEUED)) { \
475 /* The queue should not be linked anywhere */ \
476 ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
477 /* Head and tail may only be NULL simultaneously */ \
478 EQUIV(sq->sq_head, sq->sq_tail); \
479 /* Queue may be only enqueued on its syncq */ \
480 ASSERT(sq == qp->q_syncq); \
481 /* Check the correctness of SQ_MESSAGES flag */ \
482 EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES)); \
483 /* Sanity check first/last elements of the list */ \
484 IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
485 IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
486 /* \
487 * Sanity check of priority field: empty queue should \
488 * have zero priority \
489 * and nqueues equal to zero. \
490 */ \
491 IMPLY(sq->sq_head == NULL, sq->sq_pri == 0); \
492 /* Sanity check of sq_nqueues field */ \
493 EQUIV(sq->sq_head, sq->sq_nqueues); \
494 if (sq->sq_head == NULL) { \
495 sq->sq_head = sq->sq_tail = qp; \
496 sq->sq_flags |= SQ_MESSAGES; \
497 } else if (qp->q_spri == 0) { \
498 qp->q_sqprev = sq->sq_tail; \
499 sq->sq_tail->q_sqnext = qp; \
500 sq->sq_tail = qp; \
501 } else { \
502 /* \
503 * Put this queue in priority order: higher \
504 * priority gets closer to the head. \
505 */ \
506 queue_t **qpp = &sq->sq_tail; \
507 queue_t *qnext = NULL; \
508 \
509 while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
510 qnext = *qpp; \
511 qpp = &(*qpp)->q_sqprev; \
512 } \
513 qp->q_sqnext = qnext; \
514 qp->q_sqprev = *qpp; \
515 if (*qpp != NULL) { \
516 (*qpp)->q_sqnext = qp; \
517 } else { \
518 sq->sq_head = qp; \
519 sq->sq_pri = sq->sq_head->q_spri; \
520 } \
521 *qpp = qp; \
522 } \
523 qp->q_sqflags |= Q_SQQUEUED; \
524 qp->q_sqtstamp = ddi_get_lbolt(); \
525 sq->sq_nqueues++; \
526 } \
527 }
528
529 /*
530 * Remove a queue from the syncq list
531 * Assumes SQLOCK held.
532 */
533 #define SQRM_Q(sq, qp) \
534 { \
535 ASSERT(MUTEX_HELD(SQLOCK(sq))); \
536 ASSERT(qp->q_sqflags & Q_SQQUEUED); \
537 ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL); \
538 ASSERT((sq->sq_flags & SQ_MESSAGES) != 0); \
539 /* Check that the queue is actually in the list */ \
540 ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp); \
541 ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp); \
542 ASSERT(sq->sq_nqueues != 0); \
543 if (qp->q_sqprev == NULL) { \
544 /* First queue on list, make head q_sqnext */ \
545 sq->sq_head = qp->q_sqnext; \
546 } else { \
547 /* Make prev->next == next */ \
548 qp->q_sqprev->q_sqnext = qp->q_sqnext; \
549 } \
550 if (qp->q_sqnext == NULL) { \
551 /* Last queue on list, make tail sqprev */ \
552 sq->sq_tail = qp->q_sqprev; \
553 } else { \
554 /* Make next->prev == prev */ \
555 qp->q_sqnext->q_sqprev = qp->q_sqprev; \
556 } \
557 /* clear out references on this queue */ \
558 qp->q_sqprev = qp->q_sqnext = NULL; \
559 qp->q_sqflags &= ~Q_SQQUEUED; \
560 /* If there is nothing queued, clear SQ_MESSAGES */ \
561 if (sq->sq_head != NULL) { \
562 sq->sq_pri = sq->sq_head->q_spri; \
563 } else { \
564 sq->sq_flags &= ~SQ_MESSAGES; \
565 sq->sq_pri = 0; \
566 } \
567 sq->sq_nqueues--; \
568 ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL || \
569 (sq->sq_flags & SQ_QUEUED) == 0); \
570 }
571
572 /* Hide the definition from the header file. */
573 #ifdef SQPUT_MP
574 #undef SQPUT_MP
575 #endif
576
577 /*
578 * Put a message on the queue syncq.
579 * Assumes QLOCK held.
580 */
581 #define SQPUT_MP(qp, mp) \
582 { \
583 ASSERT(MUTEX_HELD(QLOCK(qp))); \
584 ASSERT(qp->q_sqhead == NULL || \
585 (qp->q_sqtail != NULL && \
586 qp->q_sqtail->b_next == NULL)); \
587 qp->q_syncqmsgs++; \
588 ASSERT(qp->q_syncqmsgs != 0); /* Wraparound */ \
589 if (qp->q_sqhead == NULL) { \
590 qp->q_sqhead = qp->q_sqtail = mp; \
591 } else { \
592 qp->q_sqtail->b_next = mp; \
593 qp->q_sqtail = mp; \
594 } \
595 ASSERT(qp->q_syncqmsgs > 0); \
596 set_qfull(qp); \
597 }
598
599 #define SQ_PUTCOUNT_SETFAST_LOCKED(sq) { \
600 ASSERT(MUTEX_HELD(SQLOCK(sq))); \
601 if ((sq)->sq_ciputctrl != NULL) { \
602 int i; \
603 int nlocks = (sq)->sq_nciputctrl; \
604 ciputctrl_t *cip = (sq)->sq_ciputctrl; \
605 ASSERT((sq)->sq_type & SQ_CIPUT); \
606 for (i = 0; i <= nlocks; i++) { \
607 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
608 cip[i].ciputctrl_count |= SQ_FASTPUT; \
609 } \
610 } \
611 }
612
613
614 #define SQ_PUTCOUNT_CLRFAST_LOCKED(sq) { \
615 ASSERT(MUTEX_HELD(SQLOCK(sq))); \
616 if ((sq)->sq_ciputctrl != NULL) { \
617 int i; \
618 int nlocks = (sq)->sq_nciputctrl; \
619 ciputctrl_t *cip = (sq)->sq_ciputctrl; \
620 ASSERT((sq)->sq_type & SQ_CIPUT); \
621 for (i = 0; i <= nlocks; i++) { \
622 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
623 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \
624 } \
625 } \
626 }
627
628 /*
629 * Run service procedures for all queues in the stream head.
630 */
631 #define STR_SERVICE(stp, q) { \
632 ASSERT(MUTEX_HELD(&stp->sd_qlock)); \
633 while (stp->sd_qhead != NULL) { \
634 DQ(q, stp->sd_qhead, stp->sd_qtail, q_link); \
635 ASSERT(stp->sd_nqueues > 0); \
636 stp->sd_nqueues--; \
637 ASSERT(!(q->q_flag & QINSERVICE)); \
638 mutex_exit(&stp->sd_qlock); \
639 queue_service(q); \
640 mutex_enter(&stp->sd_qlock); \
641 } \
642 ASSERT(stp->sd_nqueues == 0); \
643 ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL)); \
644 }
645
646 /*
647 * Constructor/destructor routines for the stream head cache
648 */
649 /* ARGSUSED */
650 static int
stream_head_constructor(void * buf,void * cdrarg,int kmflags)651 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
652 {
653 stdata_t *stp = buf;
654
655 mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
656 mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
657 mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
658 cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
659 cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
660 cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
661 cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
662 cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
663 stp->sd_wrq = NULL;
664
665 return (0);
666 }
667
668 /* ARGSUSED */
669 static void
stream_head_destructor(void * buf,void * cdrarg)670 stream_head_destructor(void *buf, void *cdrarg)
671 {
672 stdata_t *stp = buf;
673
674 mutex_destroy(&stp->sd_lock);
675 mutex_destroy(&stp->sd_reflock);
676 mutex_destroy(&stp->sd_qlock);
677 cv_destroy(&stp->sd_monitor);
678 cv_destroy(&stp->sd_iocmonitor);
679 cv_destroy(&stp->sd_refmonitor);
680 cv_destroy(&stp->sd_qcv);
681 cv_destroy(&stp->sd_zcopy_wait);
682 }
683
684 /*
685 * Constructor/destructor routines for the queue cache
686 */
687 /* ARGSUSED */
688 static int
queue_constructor(void * buf,void * cdrarg,int kmflags)689 queue_constructor(void *buf, void *cdrarg, int kmflags)
690 {
691 queinfo_t *qip = buf;
692 queue_t *qp = &qip->qu_rqueue;
693 queue_t *wqp = &qip->qu_wqueue;
694 syncq_t *sq = &qip->qu_syncq;
695
696 qp->q_first = NULL;
697 qp->q_link = NULL;
698 qp->q_count = 0;
699 qp->q_mblkcnt = 0;
700 qp->q_sqhead = NULL;
701 qp->q_sqtail = NULL;
702 qp->q_sqnext = NULL;
703 qp->q_sqprev = NULL;
704 qp->q_sqflags = 0;
705 qp->q_rwcnt = 0;
706 qp->q_spri = 0;
707
708 mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
709 cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
710
711 wqp->q_first = NULL;
712 wqp->q_link = NULL;
713 wqp->q_count = 0;
714 wqp->q_mblkcnt = 0;
715 wqp->q_sqhead = NULL;
716 wqp->q_sqtail = NULL;
717 wqp->q_sqnext = NULL;
718 wqp->q_sqprev = NULL;
719 wqp->q_sqflags = 0;
720 wqp->q_rwcnt = 0;
721 wqp->q_spri = 0;
722
723 mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
724 cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
725
726 sq->sq_head = NULL;
727 sq->sq_tail = NULL;
728 sq->sq_evhead = NULL;
729 sq->sq_evtail = NULL;
730 sq->sq_callbpend = NULL;
731 sq->sq_outer = NULL;
732 sq->sq_onext = NULL;
733 sq->sq_oprev = NULL;
734 sq->sq_next = NULL;
735 sq->sq_svcflags = 0;
736 sq->sq_servcount = 0;
737 sq->sq_needexcl = 0;
738 sq->sq_nqueues = 0;
739 sq->sq_pri = 0;
740
741 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
742 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
743 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
744
745 return (0);
746 }
747
748 /* ARGSUSED */
749 static void
queue_destructor(void * buf,void * cdrarg)750 queue_destructor(void *buf, void *cdrarg)
751 {
752 queinfo_t *qip = buf;
753 queue_t *qp = &qip->qu_rqueue;
754 queue_t *wqp = &qip->qu_wqueue;
755 syncq_t *sq = &qip->qu_syncq;
756
757 ASSERT(qp->q_sqhead == NULL);
758 ASSERT(wqp->q_sqhead == NULL);
759 ASSERT(qp->q_sqnext == NULL);
760 ASSERT(wqp->q_sqnext == NULL);
761 ASSERT(qp->q_rwcnt == 0);
762 ASSERT(wqp->q_rwcnt == 0);
763
764 mutex_destroy(&qp->q_lock);
765 cv_destroy(&qp->q_wait);
766
767 mutex_destroy(&wqp->q_lock);
768 cv_destroy(&wqp->q_wait);
769
770 mutex_destroy(&sq->sq_lock);
771 cv_destroy(&sq->sq_wait);
772 cv_destroy(&sq->sq_exitwait);
773 }
774
775 /*
776 * Constructor/destructor routines for the syncq cache
777 */
778 /* ARGSUSED */
779 static int
syncq_constructor(void * buf,void * cdrarg,int kmflags)780 syncq_constructor(void *buf, void *cdrarg, int kmflags)
781 {
782 syncq_t *sq = buf;
783
784 bzero(buf, sizeof (syncq_t));
785
786 mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
787 cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
788 cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
789
790 return (0);
791 }
792
793 /* ARGSUSED */
794 static void
syncq_destructor(void * buf,void * cdrarg)795 syncq_destructor(void *buf, void *cdrarg)
796 {
797 syncq_t *sq = buf;
798
799 ASSERT(sq->sq_head == NULL);
800 ASSERT(sq->sq_tail == NULL);
801 ASSERT(sq->sq_evhead == NULL);
802 ASSERT(sq->sq_evtail == NULL);
803 ASSERT(sq->sq_callbpend == NULL);
804 ASSERT(sq->sq_callbflags == 0);
805 ASSERT(sq->sq_outer == NULL);
806 ASSERT(sq->sq_onext == NULL);
807 ASSERT(sq->sq_oprev == NULL);
808 ASSERT(sq->sq_next == NULL);
809 ASSERT(sq->sq_needexcl == 0);
810 ASSERT(sq->sq_svcflags == 0);
811 ASSERT(sq->sq_servcount == 0);
812 ASSERT(sq->sq_nqueues == 0);
813 ASSERT(sq->sq_pri == 0);
814 ASSERT(sq->sq_count == 0);
815 ASSERT(sq->sq_rmqcount == 0);
816 ASSERT(sq->sq_cancelid == 0);
817 ASSERT(sq->sq_ciputctrl == NULL);
818 ASSERT(sq->sq_nciputctrl == 0);
819 ASSERT(sq->sq_type == 0);
820 ASSERT(sq->sq_flags == 0);
821
822 mutex_destroy(&sq->sq_lock);
823 cv_destroy(&sq->sq_wait);
824 cv_destroy(&sq->sq_exitwait);
825 }
826
827 /* ARGSUSED */
828 static int
ciputctrl_constructor(void * buf,void * cdrarg,int kmflags)829 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
830 {
831 ciputctrl_t *cip = buf;
832 int i;
833
834 for (i = 0; i < n_ciputctrl; i++) {
835 cip[i].ciputctrl_count = SQ_FASTPUT;
836 mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
837 }
838
839 return (0);
840 }
841
842 /* ARGSUSED */
843 static void
ciputctrl_destructor(void * buf,void * cdrarg)844 ciputctrl_destructor(void *buf, void *cdrarg)
845 {
846 ciputctrl_t *cip = buf;
847 int i;
848
849 for (i = 0; i < n_ciputctrl; i++) {
850 ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
851 mutex_destroy(&cip[i].ciputctrl_lock);
852 }
853 }
854
855 /*
856 * Init routine run from main at boot time.
857 */
858 void
strinit(void)859 strinit(void)
860 {
861 int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
862
863 stream_head_cache = kmem_cache_create("stream_head_cache",
864 sizeof (stdata_t), 0,
865 stream_head_constructor, stream_head_destructor, NULL,
866 NULL, NULL, 0);
867
868 queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
869 queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
870
871 syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
872 syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
873
874 qband_cache = kmem_cache_create("qband_cache",
875 sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
876
877 linkinfo_cache = kmem_cache_create("linkinfo_cache",
878 sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
879
880 n_ciputctrl = ncpus;
881 n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
882 ASSERT(n_ciputctrl >= 1);
883 n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
884 if (n_ciputctrl >= min_n_ciputctrl) {
885 ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
886 sizeof (ciputctrl_t) * n_ciputctrl,
887 sizeof (ciputctrl_t), ciputctrl_constructor,
888 ciputctrl_destructor, NULL, NULL, NULL, 0);
889 }
890
891 streams_taskq = system_taskq;
892
893 if (streams_taskq == NULL)
894 panic("strinit: no memory for streams taskq!");
895
896 bc_bkgrnd_thread = thread_create(NULL, 0,
897 streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
898
899 streams_qbkgrnd_thread = thread_create(NULL, 0,
900 streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
901
902 streams_sqbkgrnd_thread = thread_create(NULL, 0,
903 streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
904
905 /*
906 * Create STREAMS kstats.
907 */
908 str_kstat = kstat_create("streams", 0, "strstat",
909 "net", KSTAT_TYPE_NAMED,
910 sizeof (str_statistics) / sizeof (kstat_named_t),
911 KSTAT_FLAG_VIRTUAL);
912
913 if (str_kstat != NULL) {
914 str_kstat->ks_data = &str_statistics;
915 kstat_install(str_kstat);
916 }
917
918 /*
919 * TPI support routine initialisation.
920 */
921 tpi_init();
922
923 /*
924 * Handle to have autopush and persistent link information per
925 * zone.
926 * Note: uses shutdown hook instead of destroy hook so that the
927 * persistent links can be torn down before the destroy hooks
928 * in the TCP/IP stack are called.
929 */
930 netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
931 str_stack_fini);
932 }
933
934 void
str_sendsig(vnode_t * vp,int event,uchar_t band,int error)935 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
936 {
937 struct stdata *stp;
938
939 ASSERT(vp->v_stream);
940 stp = vp->v_stream;
941 /* Have to hold sd_lock to prevent siglist from changing */
942 mutex_enter(&stp->sd_lock);
943 if (stp->sd_sigflags & event)
944 strsendsig(stp->sd_siglist, event, band, error);
945 mutex_exit(&stp->sd_lock);
946 }
947
948 /*
949 * Send the "sevent" set of signals to a process.
950 * This might send more than one signal if the process is registered
951 * for multiple events. The caller should pass in an sevent that only
952 * includes the events for which the process has registered.
953 */
954 static void
dosendsig(proc_t * proc,int events,int sevent,k_siginfo_t * info,uchar_t band,int error)955 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
956 uchar_t band, int error)
957 {
958 ASSERT(MUTEX_HELD(&proc->p_lock));
959
960 info->si_band = 0;
961 info->si_errno = 0;
962
963 if (sevent & S_ERROR) {
964 sevent &= ~S_ERROR;
965 info->si_code = POLL_ERR;
966 info->si_errno = error;
967 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
968 "strsendsig:proc %p info %p", proc, info);
969 sigaddq(proc, NULL, info, KM_NOSLEEP);
970 info->si_errno = 0;
971 }
972 if (sevent & S_HANGUP) {
973 sevent &= ~S_HANGUP;
974 info->si_code = POLL_HUP;
975 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
976 "strsendsig:proc %p info %p", proc, info);
977 sigaddq(proc, NULL, info, KM_NOSLEEP);
978 }
979 if (sevent & S_HIPRI) {
980 sevent &= ~S_HIPRI;
981 info->si_code = POLL_PRI;
982 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
983 "strsendsig:proc %p info %p", proc, info);
984 sigaddq(proc, NULL, info, KM_NOSLEEP);
985 }
986 if (sevent & S_RDBAND) {
987 sevent &= ~S_RDBAND;
988 if (events & S_BANDURG)
989 sigtoproc(proc, NULL, SIGURG);
990 else
991 sigtoproc(proc, NULL, SIGPOLL);
992 }
993 if (sevent & S_WRBAND) {
994 sevent &= ~S_WRBAND;
995 sigtoproc(proc, NULL, SIGPOLL);
996 }
997 if (sevent & S_INPUT) {
998 sevent &= ~S_INPUT;
999 info->si_code = POLL_IN;
1000 info->si_band = band;
1001 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1002 "strsendsig:proc %p info %p", proc, info);
1003 sigaddq(proc, NULL, info, KM_NOSLEEP);
1004 info->si_band = 0;
1005 }
1006 if (sevent & S_OUTPUT) {
1007 sevent &= ~S_OUTPUT;
1008 info->si_code = POLL_OUT;
1009 info->si_band = band;
1010 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1011 "strsendsig:proc %p info %p", proc, info);
1012 sigaddq(proc, NULL, info, KM_NOSLEEP);
1013 info->si_band = 0;
1014 }
1015 if (sevent & S_MSG) {
1016 sevent &= ~S_MSG;
1017 info->si_code = POLL_MSG;
1018 info->si_band = band;
1019 TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1020 "strsendsig:proc %p info %p", proc, info);
1021 sigaddq(proc, NULL, info, KM_NOSLEEP);
1022 info->si_band = 0;
1023 }
1024 if (sevent & S_RDNORM) {
1025 sevent &= ~S_RDNORM;
1026 sigtoproc(proc, NULL, SIGPOLL);
1027 }
1028 if (sevent != 0) {
1029 panic("strsendsig: unknown event(s) %x", sevent);
1030 }
1031 }
1032
1033 /*
1034 * Send SIGPOLL/SIGURG signal to all processes and process groups
1035 * registered on the given signal list that want a signal for at
1036 * least one of the specified events.
1037 *
1038 * Must be called with exclusive access to siglist (caller holding sd_lock).
1039 *
1040 * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1041 * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1042 * while it is in the siglist.
1043 *
1044 * For performance reasons (MP scalability) the code drops pidlock
1045 * when sending signals to a single process.
1046 * When sending to a process group the code holds
1047 * pidlock to prevent the membership in the process group from changing
1048 * while walking the p_pglink list.
1049 */
1050 void
strsendsig(strsig_t * siglist,int event,uchar_t band,int error)1051 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1052 {
1053 strsig_t *ssp;
1054 k_siginfo_t info;
1055 struct pid *pidp;
1056 proc_t *proc;
1057
1058 info.si_signo = SIGPOLL;
1059 info.si_errno = 0;
1060 for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1061 int sevent;
1062
1063 sevent = ssp->ss_events & event;
1064 if (sevent == 0)
1065 continue;
1066
1067 if ((pidp = ssp->ss_pidp) == NULL) {
1068 /* pid was released but still on event list */
1069 continue;
1070 }
1071
1072
1073 if (ssp->ss_pid > 0) {
1074 /*
1075 * XXX This unfortunately still generates
1076 * a signal when a fd is closed but
1077 * the proc is active.
1078 */
1079 ASSERT(ssp->ss_pid == pidp->pid_id);
1080
1081 mutex_enter(&pidlock);
1082 proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1083 if (proc == NULL) {
1084 mutex_exit(&pidlock);
1085 continue;
1086 }
1087 mutex_enter(&proc->p_lock);
1088 mutex_exit(&pidlock);
1089 dosendsig(proc, ssp->ss_events, sevent, &info,
1090 band, error);
1091 mutex_exit(&proc->p_lock);
1092 } else {
1093 /*
1094 * Send to process group. Hold pidlock across
1095 * calls to dosendsig().
1096 */
1097 pid_t pgrp = -ssp->ss_pid;
1098
1099 mutex_enter(&pidlock);
1100 proc = pgfind_zone(pgrp, ALL_ZONES);
1101 while (proc != NULL) {
1102 mutex_enter(&proc->p_lock);
1103 dosendsig(proc, ssp->ss_events, sevent,
1104 &info, band, error);
1105 mutex_exit(&proc->p_lock);
1106 proc = proc->p_pglink;
1107 }
1108 mutex_exit(&pidlock);
1109 }
1110 }
1111 }
1112
1113 /*
1114 * Attach a stream device or module.
1115 * qp is a read queue; the new queue goes in so its next
1116 * read ptr is the argument, and the write queue corresponding
1117 * to the argument points to this queue. Return 0 on success,
1118 * or a non-zero errno on failure.
1119 */
1120 int
qattach(queue_t * qp,dev_t * devp,int oflag,cred_t * crp,fmodsw_impl_t * fp,boolean_t is_insert)1121 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1122 boolean_t is_insert)
1123 {
1124 major_t major;
1125 cdevsw_impl_t *dp;
1126 struct streamtab *str;
1127 queue_t *rq;
1128 queue_t *wrq;
1129 uint32_t qflag;
1130 uint32_t sqtype;
1131 perdm_t *dmp;
1132 int error;
1133 int sflag;
1134
1135 rq = allocq();
1136 wrq = _WR(rq);
1137 STREAM(rq) = STREAM(wrq) = STREAM(qp);
1138
1139 if (fp != NULL) {
1140 str = fp->f_str;
1141 qflag = fp->f_qflag;
1142 sqtype = fp->f_sqtype;
1143 dmp = fp->f_dmp;
1144 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1145 sflag = MODOPEN;
1146
1147 /*
1148 * stash away a pointer to the module structure so we can
1149 * unref it in qdetach.
1150 */
1151 rq->q_fp = fp;
1152 } else {
1153 ASSERT(!is_insert);
1154
1155 major = getmajor(*devp);
1156 dp = &devimpl[major];
1157
1158 str = dp->d_str;
1159 ASSERT(str == STREAMSTAB(major));
1160
1161 qflag = dp->d_qflag;
1162 ASSERT(qflag & QISDRV);
1163 sqtype = dp->d_sqtype;
1164
1165 /* create perdm_t if needed */
1166 if (NEED_DM(dp->d_dmp, qflag))
1167 dp->d_dmp = hold_dm(str, qflag, sqtype);
1168
1169 dmp = dp->d_dmp;
1170 sflag = 0;
1171 }
1172
1173 TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1174 "qattach:qflag == %X(%X)", qflag, *devp);
1175
1176 /* setq might sleep in allocator - avoid holding locks. */
1177 setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1178
1179 /*
1180 * Before calling the module's open routine, set up the q_next
1181 * pointer for inserting a module in the middle of a stream.
1182 *
1183 * Note that we can always set _QINSERTING and set up q_next
1184 * pointer for both inserting and pushing a module. Then there
1185 * is no need for the is_insert parameter. In insertq(), called
1186 * by qprocson(), assume that q_next of the new module always points
1187 * to the correct queue and use it for insertion. Everything should
1188 * work out fine. But in the first release of _I_INSERT, we
1189 * distinguish between inserting and pushing to make sure that
1190 * pushing a module follows the same code path as before.
1191 */
1192 if (is_insert) {
1193 rq->q_flag |= _QINSERTING;
1194 rq->q_next = qp;
1195 }
1196
1197 /*
1198 * If there is an outer perimeter get exclusive access during
1199 * the open procedure. Bump up the reference count on the queue.
1200 */
1201 entersq(rq->q_syncq, SQ_OPENCLOSE);
1202 error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1203 if (error != 0)
1204 goto failed;
1205 leavesq(rq->q_syncq, SQ_OPENCLOSE);
1206 ASSERT(qprocsareon(rq));
1207 return (0);
1208
1209 failed:
1210 rq->q_flag &= ~_QINSERTING;
1211 if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1212 qprocsoff(rq);
1213 leavesq(rq->q_syncq, SQ_OPENCLOSE);
1214 rq->q_next = wrq->q_next = NULL;
1215 qdetach(rq, 0, 0, crp, B_FALSE);
1216 return (error);
1217 }
1218
1219 /*
1220 * Handle second open of stream. For modules, set the
1221 * last argument to MODOPEN and do not pass any open flags.
1222 * Ignore dummydev since this is not the first open.
1223 */
1224 int
qreopen(queue_t * qp,dev_t * devp,int flag,cred_t * crp)1225 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1226 {
1227 int error;
1228 dev_t dummydev;
1229 queue_t *wqp = _WR(qp);
1230
1231 ASSERT(qp->q_flag & QREADR);
1232 entersq(qp->q_syncq, SQ_OPENCLOSE);
1233
1234 dummydev = *devp;
1235 if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1236 (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1237 leavesq(qp->q_syncq, SQ_OPENCLOSE);
1238 mutex_enter(&STREAM(qp)->sd_lock);
1239 qp->q_stream->sd_flag |= STREOPENFAIL;
1240 mutex_exit(&STREAM(qp)->sd_lock);
1241 return (error);
1242 }
1243 leavesq(qp->q_syncq, SQ_OPENCLOSE);
1244
1245 /*
1246 * successful open should have done qprocson()
1247 */
1248 ASSERT(qprocsareon(_RD(qp)));
1249 return (0);
1250 }
1251
1252 /*
1253 * Detach a stream module or device.
1254 * If clmode == 1 then the module or driver was opened and its
1255 * close routine must be called. If clmode == 0, the module
1256 * or driver was never opened or the open failed, and so its close
1257 * should not be called.
1258 */
1259 void
qdetach(queue_t * qp,int clmode,int flag,cred_t * crp,boolean_t is_remove)1260 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1261 {
1262 queue_t *wqp = _WR(qp);
1263 ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1264
1265 if (STREAM_NEEDSERVICE(STREAM(qp)))
1266 stream_runservice(STREAM(qp));
1267
1268 if (clmode) {
1269 /*
1270 * Make sure that all the messages on the write side syncq are
1271 * processed and nothing is left. Since we are closing, no new
1272 * messages may appear there.
1273 */
1274 wait_q_syncq(wqp);
1275
1276 entersq(qp->q_syncq, SQ_OPENCLOSE);
1277 if (is_remove) {
1278 mutex_enter(QLOCK(qp));
1279 qp->q_flag |= _QREMOVING;
1280 mutex_exit(QLOCK(qp));
1281 }
1282 (*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1283 /*
1284 * Check that qprocsoff() was actually called.
1285 */
1286 ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1287
1288 leavesq(qp->q_syncq, SQ_OPENCLOSE);
1289 } else {
1290 disable_svc(qp);
1291 }
1292
1293 /*
1294 * Allow any threads blocked in entersq to proceed and discover
1295 * the QWCLOSE is set.
1296 * Note: This assumes that all users of entersq check QWCLOSE.
1297 * Currently runservice is the only entersq that can happen
1298 * after removeq has finished.
1299 * Removeq will have discarded all messages destined to the closing
1300 * pair of queues from the syncq.
1301 * NOTE: Calling a function inside an assert is unconventional.
1302 * However, it does not cause any problem since flush_syncq() does
1303 * not change any state except when it returns non-zero i.e.
1304 * when the assert will trigger.
1305 */
1306 ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1307 ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1308 ASSERT((qp->q_flag & QPERMOD) ||
1309 ((qp->q_syncq->sq_head == NULL) &&
1310 (wqp->q_syncq->sq_head == NULL)));
1311
1312 /* release any fmodsw_impl_t structure held on behalf of the queue */
1313 ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1314 if (qp->q_fp != NULL)
1315 fmodsw_rele(qp->q_fp);
1316
1317 /* freeq removes us from the outer perimeter if any */
1318 freeq(qp);
1319 }
1320
1321 /* Prevent service procedures from being called */
1322 void
disable_svc(queue_t * qp)1323 disable_svc(queue_t *qp)
1324 {
1325 queue_t *wqp = _WR(qp);
1326
1327 ASSERT(qp->q_flag & QREADR);
1328 mutex_enter(QLOCK(qp));
1329 qp->q_flag |= QWCLOSE;
1330 mutex_exit(QLOCK(qp));
1331 mutex_enter(QLOCK(wqp));
1332 wqp->q_flag |= QWCLOSE;
1333 mutex_exit(QLOCK(wqp));
1334 }
1335
1336 /* Allow service procedures to be called again */
1337 void
enable_svc(queue_t * qp)1338 enable_svc(queue_t *qp)
1339 {
1340 queue_t *wqp = _WR(qp);
1341
1342 ASSERT(qp->q_flag & QREADR);
1343 mutex_enter(QLOCK(qp));
1344 qp->q_flag &= ~QWCLOSE;
1345 mutex_exit(QLOCK(qp));
1346 mutex_enter(QLOCK(wqp));
1347 wqp->q_flag &= ~QWCLOSE;
1348 mutex_exit(QLOCK(wqp));
1349 }
1350
1351 /*
1352 * Remove queue from qhead/qtail if it is enabled.
1353 * Only reset QENAB if the queue was removed from the runlist.
1354 * A queue goes through 3 stages:
1355 * It is on the service list and QENAB is set.
1356 * It is removed from the service list but QENAB is still set.
1357 * QENAB gets changed to QINSERVICE.
1358 * QINSERVICE is reset (when the service procedure is done)
1359 * Thus we can not reset QENAB unless we actually removed it from the service
1360 * queue.
1361 */
1362 void
remove_runlist(queue_t * qp)1363 remove_runlist(queue_t *qp)
1364 {
1365 if (qp->q_flag & QENAB && qhead != NULL) {
1366 queue_t *q_chase;
1367 queue_t *q_curr;
1368 int removed;
1369
1370 mutex_enter(&service_queue);
1371 RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1372 mutex_exit(&service_queue);
1373 if (removed) {
1374 STRSTAT(qremoved);
1375 qp->q_flag &= ~QENAB;
1376 }
1377 }
1378 }
1379
1380
1381 /*
1382 * Wait for any pending service processing to complete.
1383 * The removal of queues from the runlist is not atomic with the
1384 * clearing of the QENABLED flag and setting the INSERVICE flag.
1385 * consequently it is possible for remove_runlist in strclose
1386 * to not find the queue on the runlist but for it to be QENABLED
1387 * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1388 * as well as INSERVICE.
1389 */
1390 void
wait_svc(queue_t * qp)1391 wait_svc(queue_t *qp)
1392 {
1393 queue_t *wqp = _WR(qp);
1394
1395 ASSERT(qp->q_flag & QREADR);
1396
1397 /*
1398 * Try to remove queues from qhead/qtail list.
1399 */
1400 if (qhead != NULL) {
1401 remove_runlist(qp);
1402 remove_runlist(wqp);
1403 }
1404 /*
1405 * Wait till the syncqs associated with the queue disappear from the
1406 * background processing list.
1407 * This only needs to be done for non-PERMOD perimeters since
1408 * for PERMOD perimeters the syncq may be shared and will only be freed
1409 * when the last module/driver is unloaded.
1410 * If for PERMOD perimeters queue was on the syncq list, removeq()
1411 * should call propagate_syncq() or drain_syncq() for it. Both of these
1412 * functions remove the queue from its syncq list, so sqthread will not
1413 * try to access the queue.
1414 */
1415 if (!(qp->q_flag & QPERMOD)) {
1416 syncq_t *rsq = qp->q_syncq;
1417 syncq_t *wsq = wqp->q_syncq;
1418
1419 /*
1420 * Disable rsq and wsq and wait for any background processing of
1421 * syncq to complete.
1422 */
1423 wait_sq_svc(rsq);
1424 if (wsq != rsq)
1425 wait_sq_svc(wsq);
1426 }
1427
1428 mutex_enter(QLOCK(qp));
1429 while (qp->q_flag & (QINSERVICE|QENAB))
1430 cv_wait(&qp->q_wait, QLOCK(qp));
1431 mutex_exit(QLOCK(qp));
1432 mutex_enter(QLOCK(wqp));
1433 while (wqp->q_flag & (QINSERVICE|QENAB))
1434 cv_wait(&wqp->q_wait, QLOCK(wqp));
1435 mutex_exit(QLOCK(wqp));
1436 }
1437
1438 /*
1439 * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1440 * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1441 * also be set, and is passed through to allocb_cred_wait().
1442 *
1443 * Returns errno on failure, zero on success.
1444 */
1445 int
putiocd(mblk_t * bp,char * arg,int flag,cred_t * cr)1446 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1447 {
1448 mblk_t *tmp;
1449 ssize_t count;
1450 int error = 0;
1451
1452 ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1453 (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1454
1455 if (bp->b_datap->db_type == M_IOCTL) {
1456 count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1457 } else {
1458 ASSERT(bp->b_datap->db_type == M_COPYIN);
1459 count = ((struct copyreq *)bp->b_rptr)->cq_size;
1460 }
1461 /*
1462 * strdoioctl validates ioc_count, so if this assert fails it
1463 * cannot be due to user error.
1464 */
1465 ASSERT(count >= 0);
1466
1467 if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr,
1468 curproc->p_pid)) == NULL) {
1469 return (error);
1470 }
1471 error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1472 if (error != 0) {
1473 freeb(tmp);
1474 return (error);
1475 }
1476 DB_CPID(tmp) = curproc->p_pid;
1477 tmp->b_wptr += count;
1478 bp->b_cont = tmp;
1479
1480 return (0);
1481 }
1482
1483 /*
1484 * Copy ioctl data to user-land. Return non-zero errno on failure,
1485 * 0 for success.
1486 */
1487 int
getiocd(mblk_t * bp,char * arg,int copymode)1488 getiocd(mblk_t *bp, char *arg, int copymode)
1489 {
1490 ssize_t count;
1491 size_t n;
1492 int error;
1493
1494 if (bp->b_datap->db_type == M_IOCACK)
1495 count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1496 else {
1497 ASSERT(bp->b_datap->db_type == M_COPYOUT);
1498 count = ((struct copyreq *)bp->b_rptr)->cq_size;
1499 }
1500 ASSERT(count >= 0);
1501
1502 for (bp = bp->b_cont; bp && count;
1503 count -= n, bp = bp->b_cont, arg += n) {
1504 n = MIN(count, bp->b_wptr - bp->b_rptr);
1505 error = strcopyout(bp->b_rptr, arg, n, copymode);
1506 if (error)
1507 return (error);
1508 }
1509 ASSERT(count == 0);
1510 return (0);
1511 }
1512
1513 /*
1514 * Allocate a linkinfo entry given the write queue of the
1515 * bottom module of the top stream and the write queue of the
1516 * stream head of the bottom stream.
1517 */
1518 linkinfo_t *
alloclink(queue_t * qup,queue_t * qdown,file_t * fpdown)1519 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1520 {
1521 linkinfo_t *linkp;
1522
1523 linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1524
1525 linkp->li_lblk.l_qtop = qup;
1526 linkp->li_lblk.l_qbot = qdown;
1527 linkp->li_fpdown = fpdown;
1528
1529 mutex_enter(&strresources);
1530 linkp->li_next = linkinfo_list;
1531 linkp->li_prev = NULL;
1532 if (linkp->li_next)
1533 linkp->li_next->li_prev = linkp;
1534 linkinfo_list = linkp;
1535 linkp->li_lblk.l_index = ++lnk_id;
1536 ASSERT(lnk_id != 0); /* this should never wrap in practice */
1537 mutex_exit(&strresources);
1538
1539 return (linkp);
1540 }
1541
1542 /*
1543 * Free a linkinfo entry.
1544 */
1545 void
lbfree(linkinfo_t * linkp)1546 lbfree(linkinfo_t *linkp)
1547 {
1548 mutex_enter(&strresources);
1549 if (linkp->li_next)
1550 linkp->li_next->li_prev = linkp->li_prev;
1551 if (linkp->li_prev)
1552 linkp->li_prev->li_next = linkp->li_next;
1553 else
1554 linkinfo_list = linkp->li_next;
1555 mutex_exit(&strresources);
1556
1557 kmem_cache_free(linkinfo_cache, linkp);
1558 }
1559
1560 /*
1561 * Check for a potential linking cycle.
1562 * Return 1 if a link will result in a cycle,
1563 * and 0 otherwise.
1564 */
1565 int
linkcycle(stdata_t * upstp,stdata_t * lostp,str_stack_t * ss)1566 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1567 {
1568 struct mux_node *np;
1569 struct mux_edge *ep;
1570 int i;
1571 major_t lomaj;
1572 major_t upmaj;
1573 /*
1574 * if the lower stream is a pipe/FIFO, return, since link
1575 * cycles can not happen on pipes/FIFOs
1576 */
1577 if (lostp->sd_vnode->v_type == VFIFO)
1578 return (0);
1579
1580 for (i = 0; i < ss->ss_devcnt; i++) {
1581 np = &ss->ss_mux_nodes[i];
1582 MUX_CLEAR(np);
1583 }
1584 lomaj = getmajor(lostp->sd_vnode->v_rdev);
1585 upmaj = getmajor(upstp->sd_vnode->v_rdev);
1586 np = &ss->ss_mux_nodes[lomaj];
1587 for (;;) {
1588 if (!MUX_DIDVISIT(np)) {
1589 if (np->mn_imaj == upmaj)
1590 return (1);
1591 if (np->mn_outp == NULL) {
1592 MUX_VISIT(np);
1593 if (np->mn_originp == NULL)
1594 return (0);
1595 np = np->mn_originp;
1596 continue;
1597 }
1598 MUX_VISIT(np);
1599 np->mn_startp = np->mn_outp;
1600 } else {
1601 if (np->mn_startp == NULL) {
1602 if (np->mn_originp == NULL)
1603 return (0);
1604 else {
1605 np = np->mn_originp;
1606 continue;
1607 }
1608 }
1609 /*
1610 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1611 * ignore the edge and move on. ep->me_nodep gets
1612 * set to NULL in mux_addedge() if it is a FIFO.
1613 *
1614 */
1615 ep = np->mn_startp;
1616 np->mn_startp = ep->me_nextp;
1617 if (ep->me_nodep == NULL)
1618 continue;
1619 ep->me_nodep->mn_originp = np;
1620 np = ep->me_nodep;
1621 }
1622 }
1623 }
1624
1625 /*
1626 * Find linkinfo entry corresponding to the parameters.
1627 */
1628 linkinfo_t *
findlinks(stdata_t * stp,int index,int type,str_stack_t * ss)1629 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1630 {
1631 linkinfo_t *linkp;
1632 struct mux_edge *mep;
1633 struct mux_node *mnp;
1634 queue_t *qup;
1635
1636 mutex_enter(&strresources);
1637 if ((type & LINKTYPEMASK) == LINKNORMAL) {
1638 qup = getendq(stp->sd_wrq);
1639 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1640 if ((qup == linkp->li_lblk.l_qtop) &&
1641 (!index || (index == linkp->li_lblk.l_index))) {
1642 mutex_exit(&strresources);
1643 return (linkp);
1644 }
1645 }
1646 } else {
1647 ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1648 mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1649 mep = mnp->mn_outp;
1650 while (mep) {
1651 if ((index == 0) || (index == mep->me_muxid))
1652 break;
1653 mep = mep->me_nextp;
1654 }
1655 if (!mep) {
1656 mutex_exit(&strresources);
1657 return (NULL);
1658 }
1659 for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1660 if ((!linkp->li_lblk.l_qtop) &&
1661 (mep->me_muxid == linkp->li_lblk.l_index)) {
1662 mutex_exit(&strresources);
1663 return (linkp);
1664 }
1665 }
1666 }
1667 mutex_exit(&strresources);
1668 return (NULL);
1669 }
1670
1671 /*
1672 * Given a queue ptr, follow the chain of q_next pointers until you reach the
1673 * last queue on the chain and return it.
1674 */
1675 queue_t *
getendq(queue_t * q)1676 getendq(queue_t *q)
1677 {
1678 ASSERT(q != NULL);
1679 while (_SAMESTR(q))
1680 q = q->q_next;
1681 return (q);
1682 }
1683
1684 /*
1685 * Wait for the syncq count to drop to zero.
1686 * sq could be either outer or inner.
1687 */
1688
1689 static void
wait_syncq(syncq_t * sq)1690 wait_syncq(syncq_t *sq)
1691 {
1692 uint16_t count;
1693
1694 mutex_enter(SQLOCK(sq));
1695 count = sq->sq_count;
1696 SQ_PUTLOCKS_ENTER(sq);
1697 SUM_SQ_PUTCOUNTS(sq, count);
1698 while (count != 0) {
1699 sq->sq_flags |= SQ_WANTWAKEUP;
1700 SQ_PUTLOCKS_EXIT(sq);
1701 cv_wait(&sq->sq_wait, SQLOCK(sq));
1702 count = sq->sq_count;
1703 SQ_PUTLOCKS_ENTER(sq);
1704 SUM_SQ_PUTCOUNTS(sq, count);
1705 }
1706 SQ_PUTLOCKS_EXIT(sq);
1707 mutex_exit(SQLOCK(sq));
1708 }
1709
1710 /*
1711 * Wait while there are any messages for the queue in its syncq.
1712 */
1713 static void
wait_q_syncq(queue_t * q)1714 wait_q_syncq(queue_t *q)
1715 {
1716 if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1717 syncq_t *sq = q->q_syncq;
1718
1719 mutex_enter(SQLOCK(sq));
1720 while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1721 sq->sq_flags |= SQ_WANTWAKEUP;
1722 cv_wait(&sq->sq_wait, SQLOCK(sq));
1723 }
1724 mutex_exit(SQLOCK(sq));
1725 }
1726 }
1727
1728
1729 int
mlink_file(vnode_t * vp,int cmd,struct file * fpdown,cred_t * crp,int * rvalp,int lhlink)1730 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1731 int lhlink)
1732 {
1733 struct stdata *stp;
1734 struct strioctl strioc;
1735 struct linkinfo *linkp;
1736 struct stdata *stpdown;
1737 struct streamtab *str;
1738 queue_t *passq;
1739 syncq_t *passyncq;
1740 queue_t *rq;
1741 cdevsw_impl_t *dp;
1742 uint32_t qflag;
1743 uint32_t sqtype;
1744 perdm_t *dmp;
1745 int error = 0;
1746 netstack_t *ns;
1747 str_stack_t *ss;
1748
1749 stp = vp->v_stream;
1750 TRACE_1(TR_FAC_STREAMS_FR,
1751 TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1752 /*
1753 * Test for invalid upper stream
1754 */
1755 if (stp->sd_flag & STRHUP) {
1756 return (ENXIO);
1757 }
1758 if (vp->v_type == VFIFO) {
1759 return (EINVAL);
1760 }
1761 if (stp->sd_strtab == NULL) {
1762 return (EINVAL);
1763 }
1764 if (!stp->sd_strtab->st_muxwinit) {
1765 return (EINVAL);
1766 }
1767 if (fpdown == NULL) {
1768 return (EBADF);
1769 }
1770 ns = netstack_find_by_cred(crp);
1771 ASSERT(ns != NULL);
1772 ss = ns->netstack_str;
1773 ASSERT(ss != NULL);
1774
1775 if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1776 netstack_rele(ss->ss_netstack);
1777 return (EINVAL);
1778 }
1779 mutex_enter(&muxifier);
1780 if (stp->sd_flag & STPLEX) {
1781 mutex_exit(&muxifier);
1782 netstack_rele(ss->ss_netstack);
1783 return (ENXIO);
1784 }
1785
1786 /*
1787 * Test for invalid lower stream.
1788 * The check for the v_type != VFIFO and having a major
1789 * number not >= devcnt is done to avoid problems with
1790 * adding mux_node entry past the end of mux_nodes[].
1791 * For FIFO's we don't add an entry so this isn't a
1792 * problem.
1793 */
1794 if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1795 (stpdown == stp) || (stpdown->sd_flag &
1796 (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1797 ((stpdown->sd_vnode->v_type != VFIFO) &&
1798 (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1799 linkcycle(stp, stpdown, ss)) {
1800 mutex_exit(&muxifier);
1801 netstack_rele(ss->ss_netstack);
1802 return (EINVAL);
1803 }
1804 TRACE_1(TR_FAC_STREAMS_FR,
1805 TR_STPDOWN, "stpdown:%p", stpdown);
1806 rq = getendq(stp->sd_wrq);
1807 if (cmd == I_PLINK)
1808 rq = NULL;
1809
1810 linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1811
1812 strioc.ic_cmd = cmd;
1813 strioc.ic_timout = INFTIM;
1814 strioc.ic_len = sizeof (struct linkblk);
1815 strioc.ic_dp = (char *)&linkp->li_lblk;
1816
1817 /*
1818 * STRPLUMB protects plumbing changes and should be set before
1819 * link_addpassthru()/link_rempassthru() are called, so it is set here
1820 * and cleared in the end of mlink when passthru queue is removed.
1821 * Setting of STRPLUMB prevents reopens of the stream while passthru
1822 * queue is in-place (it is not a proper module and doesn't have open
1823 * entry point).
1824 *
1825 * STPLEX prevents any threads from entering the stream from above. It
1826 * can't be set before the call to link_addpassthru() because putnext
1827 * from below may cause stream head I/O routines to be called and these
1828 * routines assert that STPLEX is not set. After link_addpassthru()
1829 * nothing may come from below since the pass queue syncq is blocked.
1830 * Note also that STPLEX should be cleared before the call to
1831 * link_rempassthru() since when messages start flowing to the stream
1832 * head (e.g. because of message propagation from the pass queue) stream
1833 * head I/O routines may be called with STPLEX flag set.
1834 *
1835 * When STPLEX is set, nothing may come into the stream from above and
1836 * it is safe to do a setq which will change stream head. So, the
1837 * correct sequence of actions is:
1838 *
1839 * 1) Set STRPLUMB
1840 * 2) Call link_addpassthru()
1841 * 3) Set STPLEX
1842 * 4) Call setq and update the stream state
1843 * 5) Clear STPLEX
1844 * 6) Call link_rempassthru()
1845 * 7) Clear STRPLUMB
1846 *
1847 * The same sequence applies to munlink() code.
1848 */
1849 mutex_enter(&stpdown->sd_lock);
1850 stpdown->sd_flag |= STRPLUMB;
1851 mutex_exit(&stpdown->sd_lock);
1852 /*
1853 * Add passthru queue below lower mux. This will block
1854 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1855 */
1856 passq = link_addpassthru(stpdown);
1857
1858 mutex_enter(&stpdown->sd_lock);
1859 stpdown->sd_flag |= STPLEX;
1860 mutex_exit(&stpdown->sd_lock);
1861
1862 rq = _RD(stpdown->sd_wrq);
1863 /*
1864 * There may be messages in the streamhead's syncq due to messages
1865 * that arrived before link_addpassthru() was done. To avoid
1866 * background processing of the syncq happening simultaneous with
1867 * setq processing, we disable the streamhead syncq and wait until
1868 * existing background thread finishes working on it.
1869 */
1870 wait_sq_svc(rq->q_syncq);
1871 passyncq = passq->q_syncq;
1872 if (!(passyncq->sq_flags & SQ_BLOCKED))
1873 blocksq(passyncq, SQ_BLOCKED, 0);
1874
1875 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1876 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1877 rq->q_ptr = _WR(rq)->q_ptr = NULL;
1878
1879 /* setq might sleep in allocator - avoid holding locks. */
1880 /* Note: we are holding muxifier here. */
1881
1882 str = stp->sd_strtab;
1883 dp = &devimpl[getmajor(vp->v_rdev)];
1884 ASSERT(dp->d_str == str);
1885
1886 qflag = dp->d_qflag;
1887 sqtype = dp->d_sqtype;
1888
1889 /* create perdm_t if needed */
1890 if (NEED_DM(dp->d_dmp, qflag))
1891 dp->d_dmp = hold_dm(str, qflag, sqtype);
1892
1893 dmp = dp->d_dmp;
1894
1895 setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1896 B_TRUE);
1897
1898 /*
1899 * XXX Remove any "odd" messages from the queue.
1900 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1901 */
1902 error = strdoioctl(stp, &strioc, FNATIVE,
1903 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1904 if (error != 0)
1905 goto cleanup;
1906
1907 mutex_enter(&fpdown->f_tlock);
1908 fpdown->f_count++;
1909 mutex_exit(&fpdown->f_tlock);
1910
1911 /*
1912 * if we've made it here the linkage is all set up so we should also
1913 * set up the layered driver linkages
1914 */
1915
1916 ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1917 if (cmd == I_LINK) {
1918 error = ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1919 } else {
1920 error = ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1921 }
1922
1923 if (error != 0) {
1924 mutex_enter(&fpdown->f_tlock);
1925 fpdown->f_count--;
1926 mutex_exit(&fpdown->f_tlock);
1927 goto cleanup;
1928 }
1929
1930 link_rempassthru(passq);
1931
1932 mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1933
1934 /*
1935 * Mark the upper stream as having dependent links
1936 * so that strclose can clean it up.
1937 */
1938 if (cmd == I_LINK) {
1939 mutex_enter(&stp->sd_lock);
1940 stp->sd_flag |= STRHASLINKS;
1941 mutex_exit(&stp->sd_lock);
1942 }
1943 /*
1944 * Wake up any other processes that may have been
1945 * waiting on the lower stream. These will all
1946 * error out.
1947 */
1948 mutex_enter(&stpdown->sd_lock);
1949 /* The passthru module is removed so we may release STRPLUMB */
1950 stpdown->sd_flag &= ~STRPLUMB;
1951 cv_broadcast(&rq->q_wait);
1952 cv_broadcast(&_WR(rq)->q_wait);
1953 cv_broadcast(&stpdown->sd_monitor);
1954 mutex_exit(&stpdown->sd_lock);
1955 mutex_exit(&muxifier);
1956 *rvalp = linkp->li_lblk.l_index;
1957 netstack_rele(ss->ss_netstack);
1958 return (0);
1959
1960 cleanup:
1961 lbfree(linkp);
1962
1963 if (!(passyncq->sq_flags & SQ_BLOCKED))
1964 blocksq(passyncq, SQ_BLOCKED, 0);
1965 /*
1966 * Restore the stream head queue and then remove
1967 * the passq. Turn off STPLEX before we turn on
1968 * the stream by removing the passq.
1969 */
1970 rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1971 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1972 B_TRUE);
1973
1974 mutex_enter(&stpdown->sd_lock);
1975 stpdown->sd_flag &= ~STPLEX;
1976 mutex_exit(&stpdown->sd_lock);
1977
1978 link_rempassthru(passq);
1979
1980 mutex_enter(&stpdown->sd_lock);
1981 stpdown->sd_flag &= ~STRPLUMB;
1982 /* Wakeup anyone waiting for STRPLUMB to clear. */
1983 cv_broadcast(&stpdown->sd_monitor);
1984 mutex_exit(&stpdown->sd_lock);
1985
1986 mutex_exit(&muxifier);
1987 netstack_rele(ss->ss_netstack);
1988 return (error);
1989 }
1990
1991 int
mlink(vnode_t * vp,int cmd,int arg,cred_t * crp,int * rvalp,int lhlink)1992 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1993 {
1994 int ret;
1995 struct file *fpdown;
1996
1997 fpdown = getf(arg);
1998 ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1999 if (fpdown != NULL)
2000 releasef(arg);
2001 return (ret);
2002 }
2003
2004 /*
2005 * Unlink a multiplexor link. Stp is the controlling stream for the
2006 * link, and linkp points to the link's entry in the linkinfo list.
2007 * The muxifier lock must be held on entry and is dropped on exit.
2008 *
2009 * NOTE : Currently it is assumed that mux would process all the messages
2010 * sitting on it's queue before ACKing the UNLINK. It is the responsibility
2011 * of the mux to handle all the messages that arrive before UNLINK.
2012 * If the mux has to send down messages on its lower stream before
2013 * ACKing I_UNLINK, then it *should* know to handle messages even
2014 * after the UNLINK is acked (actually it should be able to handle till we
2015 * re-block the read side of the pass queue here). If the mux does not
2016 * open up the lower stream, any messages that arrive during UNLINK
2017 * will be put in the stream head. In the case of lower stream opening
2018 * up, some messages might land in the stream head depending on when
2019 * the message arrived and when the read side of the pass queue was
2020 * re-blocked.
2021 */
2022 int
munlink(stdata_t * stp,linkinfo_t * linkp,int flag,cred_t * crp,int * rvalp,str_stack_t * ss)2023 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2024 str_stack_t *ss)
2025 {
2026 struct strioctl strioc;
2027 struct stdata *stpdown;
2028 queue_t *rq, *wrq;
2029 queue_t *passq;
2030 syncq_t *passyncq;
2031 int error = 0;
2032 file_t *fpdown;
2033
2034 ASSERT(MUTEX_HELD(&muxifier));
2035
2036 stpdown = linkp->li_fpdown->f_vnode->v_stream;
2037
2038 /*
2039 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2040 */
2041 mutex_enter(&stpdown->sd_lock);
2042 stpdown->sd_flag |= STRPLUMB;
2043 mutex_exit(&stpdown->sd_lock);
2044
2045 /*
2046 * Add passthru queue below lower mux. This will block
2047 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2048 */
2049 passq = link_addpassthru(stpdown);
2050
2051 if ((flag & LINKTYPEMASK) == LINKNORMAL)
2052 strioc.ic_cmd = I_UNLINK;
2053 else
2054 strioc.ic_cmd = I_PUNLINK;
2055 strioc.ic_timout = INFTIM;
2056 strioc.ic_len = sizeof (struct linkblk);
2057 strioc.ic_dp = (char *)&linkp->li_lblk;
2058
2059 error = strdoioctl(stp, &strioc, FNATIVE,
2060 K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2061
2062 /*
2063 * If there was an error and this is not called via strclose,
2064 * return to the user. Otherwise, pretend there was no error
2065 * and close the link.
2066 */
2067 if (error) {
2068 if (flag & LINKCLOSE) {
2069 cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2070 "unlink ioctl, closing anyway (%d)\n", error);
2071 } else {
2072 link_rempassthru(passq);
2073 mutex_enter(&stpdown->sd_lock);
2074 stpdown->sd_flag &= ~STRPLUMB;
2075 cv_broadcast(&stpdown->sd_monitor);
2076 mutex_exit(&stpdown->sd_lock);
2077 mutex_exit(&muxifier);
2078 return (error);
2079 }
2080 }
2081
2082 mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2083 fpdown = linkp->li_fpdown;
2084 lbfree(linkp);
2085
2086 /*
2087 * We go ahead and drop muxifier here--it's a nasty global lock that
2088 * can slow others down. It's okay to since attempts to mlink() this
2089 * stream will be stopped because STPLEX is still set in the stdata
2090 * structure, and munlink() is stopped because mux_rmvedge() and
2091 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2092 * respectively. Note that we defer the closef() of fpdown until
2093 * after we drop muxifier since strclose() can call munlinkall().
2094 */
2095 mutex_exit(&muxifier);
2096
2097 wrq = stpdown->sd_wrq;
2098 rq = _RD(wrq);
2099
2100 /*
2101 * Get rid of outstanding service procedure runs, before we make
2102 * it a stream head, since a stream head doesn't have any service
2103 * procedure.
2104 */
2105 disable_svc(rq);
2106 wait_svc(rq);
2107
2108 /*
2109 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2110 * is queued up to be finished. mux should take care that nothing is
2111 * send down to this queue. We should do it now as we're going to block
2112 * passyncq if it was unblocked.
2113 */
2114 if (wrq->q_flag & QPERMOD) {
2115 syncq_t *sq = wrq->q_syncq;
2116
2117 mutex_enter(SQLOCK(sq));
2118 while (wrq->q_sqflags & Q_SQQUEUED) {
2119 sq->sq_flags |= SQ_WANTWAKEUP;
2120 cv_wait(&sq->sq_wait, SQLOCK(sq));
2121 }
2122 mutex_exit(SQLOCK(sq));
2123 }
2124 passyncq = passq->q_syncq;
2125 if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2126
2127 syncq_t *sq, *outer;
2128
2129 /*
2130 * Messages could be flowing from underneath. We will
2131 * block the read side of the passq. This would be
2132 * sufficient for QPAIR and QPERQ muxes to ensure
2133 * that no data is flowing up into this queue
2134 * and hence no thread active in this instance of
2135 * lower mux. But for QPERMOD and QMTOUTPERIM there
2136 * could be messages on the inner and outer/inner
2137 * syncqs respectively. We will wait for them to drain.
2138 * Because passq is blocked messages end up in the syncq
2139 * And qfill_syncq could possibly end up setting QFULL
2140 * which will access the rq->q_flag. Hence, we have to
2141 * acquire the QLOCK in setq.
2142 *
2143 * XXX Messages can also flow from top into this
2144 * queue though the unlink is over (Ex. some instance
2145 * in putnext() called from top that has still not
2146 * accessed this queue. And also putq(lowerq) ?).
2147 * Solution : How about blocking the l_qtop queue ?
2148 * Do we really care about such pure D_MP muxes ?
2149 */
2150
2151 blocksq(passyncq, SQ_BLOCKED, 0);
2152
2153 sq = rq->q_syncq;
2154 if ((outer = sq->sq_outer) != NULL) {
2155
2156 /*
2157 * We have to just wait for the outer sq_count
2158 * drop to zero. As this does not prevent new
2159 * messages to enter the outer perimeter, this
2160 * is subject to starvation.
2161 *
2162 * NOTE :Because of blocksq above, messages could
2163 * be in the inner syncq only because of some
2164 * thread holding the outer perimeter exclusively.
2165 * Hence it would be sufficient to wait for the
2166 * exclusive holder of the outer perimeter to drain
2167 * the inner and outer syncqs. But we will not depend
2168 * on this feature and hence check the inner syncqs
2169 * separately.
2170 */
2171 wait_syncq(outer);
2172 }
2173
2174
2175 /*
2176 * There could be messages destined for
2177 * this queue. Let the exclusive holder
2178 * drain it.
2179 */
2180
2181 wait_syncq(sq);
2182 ASSERT((rq->q_flag & QPERMOD) ||
2183 ((rq->q_syncq->sq_head == NULL) &&
2184 (_WR(rq)->q_syncq->sq_head == NULL)));
2185 }
2186
2187 /*
2188 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2189 * case as we don't disable its syncq or remove it off the syncq
2190 * service list.
2191 */
2192 if (rq->q_flag & QPERMOD) {
2193 syncq_t *sq = rq->q_syncq;
2194
2195 mutex_enter(SQLOCK(sq));
2196 while (rq->q_sqflags & Q_SQQUEUED) {
2197 sq->sq_flags |= SQ_WANTWAKEUP;
2198 cv_wait(&sq->sq_wait, SQLOCK(sq));
2199 }
2200 mutex_exit(SQLOCK(sq));
2201 }
2202
2203 /*
2204 * flush_syncq changes states only when there are some messages to
2205 * free, i.e. when it returns non-zero value to return.
2206 */
2207 ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2208 ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2209
2210 /*
2211 * Nobody else should know about this queue now.
2212 * If the mux did not process the messages before
2213 * acking the I_UNLINK, free them now.
2214 */
2215
2216 flushq(rq, FLUSHALL);
2217 flushq(_WR(rq), FLUSHALL);
2218
2219 /*
2220 * Convert the mux lower queue into a stream head queue.
2221 * Turn off STPLEX before we turn on the stream by removing the passq.
2222 */
2223 rq->q_ptr = wrq->q_ptr = stpdown;
2224 setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2225
2226 ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2227 ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2228
2229 enable_svc(rq);
2230
2231 /*
2232 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2233 * needs to be set to prevent reopen() of the stream - such reopen may
2234 * try to call non-existent pass queue open routine and panic.
2235 */
2236 mutex_enter(&stpdown->sd_lock);
2237 stpdown->sd_flag &= ~STPLEX;
2238 mutex_exit(&stpdown->sd_lock);
2239
2240 ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2241 ((flag & LINKTYPEMASK) == LINKPERSIST));
2242
2243 /* clean up the layered driver linkages */
2244 if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2245 VERIFY0(ldi_munlink_fp(stp, fpdown, LINKNORMAL));
2246 } else {
2247 VERIFY0(ldi_munlink_fp(stp, fpdown, LINKPERSIST));
2248 }
2249
2250 link_rempassthru(passq);
2251
2252 /*
2253 * Now all plumbing changes are finished and STRPLUMB is no
2254 * longer needed.
2255 */
2256 mutex_enter(&stpdown->sd_lock);
2257 stpdown->sd_flag &= ~STRPLUMB;
2258 cv_broadcast(&stpdown->sd_monitor);
2259 mutex_exit(&stpdown->sd_lock);
2260
2261 (void) closef(fpdown);
2262 return (0);
2263 }
2264
2265 /*
2266 * Unlink all multiplexor links for which stp is the controlling stream.
2267 * Return 0, or a non-zero errno on failure.
2268 */
2269 int
munlinkall(stdata_t * stp,int flag,cred_t * crp,int * rvalp,str_stack_t * ss)2270 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2271 {
2272 linkinfo_t *linkp;
2273 int error = 0;
2274
2275 mutex_enter(&muxifier);
2276 while (linkp = findlinks(stp, 0, flag, ss)) {
2277 /*
2278 * munlink() releases the muxifier lock.
2279 */
2280 if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2281 return (error);
2282 mutex_enter(&muxifier);
2283 }
2284 mutex_exit(&muxifier);
2285 return (0);
2286 }
2287
2288 /*
2289 * A multiplexor link has been made. Add an
2290 * edge to the directed graph.
2291 */
2292 void
mux_addedge(stdata_t * upstp,stdata_t * lostp,int muxid,str_stack_t * ss)2293 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2294 {
2295 struct mux_node *np;
2296 struct mux_edge *ep;
2297 major_t upmaj;
2298 major_t lomaj;
2299
2300 upmaj = getmajor(upstp->sd_vnode->v_rdev);
2301 lomaj = getmajor(lostp->sd_vnode->v_rdev);
2302 np = &ss->ss_mux_nodes[upmaj];
2303 if (np->mn_outp) {
2304 ep = np->mn_outp;
2305 while (ep->me_nextp)
2306 ep = ep->me_nextp;
2307 ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2308 ep = ep->me_nextp;
2309 } else {
2310 np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2311 ep = np->mn_outp;
2312 }
2313 ep->me_nextp = NULL;
2314 ep->me_muxid = muxid;
2315 /*
2316 * Save the dev_t for the purposes of str_stack_shutdown.
2317 * str_stack_shutdown assumes that the device allows reopen, since
2318 * this dev_t is the one after any cloning by xx_open().
2319 * Would prefer finding the dev_t from before any cloning,
2320 * but specfs doesn't retain that.
2321 */
2322 ep->me_dev = upstp->sd_vnode->v_rdev;
2323 if (lostp->sd_vnode->v_type == VFIFO)
2324 ep->me_nodep = NULL;
2325 else
2326 ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2327 }
2328
2329 /*
2330 * A multiplexor link has been removed. Remove the
2331 * edge in the directed graph.
2332 */
2333 void
mux_rmvedge(stdata_t * upstp,int muxid,str_stack_t * ss)2334 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2335 {
2336 struct mux_node *np;
2337 struct mux_edge *ep;
2338 struct mux_edge *pep = NULL;
2339 major_t upmaj;
2340
2341 upmaj = getmajor(upstp->sd_vnode->v_rdev);
2342 np = &ss->ss_mux_nodes[upmaj];
2343 ASSERT(np->mn_outp != NULL);
2344 ep = np->mn_outp;
2345 while (ep) {
2346 if (ep->me_muxid == muxid) {
2347 if (pep)
2348 pep->me_nextp = ep->me_nextp;
2349 else
2350 np->mn_outp = ep->me_nextp;
2351 kmem_free(ep, sizeof (struct mux_edge));
2352 return;
2353 }
2354 pep = ep;
2355 ep = ep->me_nextp;
2356 }
2357 ASSERT(0); /* should not reach here */
2358 }
2359
2360 /*
2361 * Translate the device flags (from conf.h) to the corresponding
2362 * qflag and sq_flag (type) values.
2363 */
2364 int
devflg_to_qflag(struct streamtab * stp,uint32_t devflag,uint32_t * qflagp,uint32_t * sqtypep)2365 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2366 uint32_t *sqtypep)
2367 {
2368 uint32_t qflag = 0;
2369 uint32_t sqtype = 0;
2370
2371 if (devflag & _D_OLD)
2372 goto bad;
2373
2374 /* Inner perimeter presence and scope */
2375 switch (devflag & D_MTINNER_MASK) {
2376 case D_MP:
2377 qflag |= QMTSAFE;
2378 sqtype |= SQ_CI;
2379 break;
2380 case D_MTPERQ|D_MP:
2381 qflag |= QPERQ;
2382 break;
2383 case D_MTQPAIR|D_MP:
2384 qflag |= QPAIR;
2385 break;
2386 case D_MTPERMOD|D_MP:
2387 qflag |= QPERMOD;
2388 break;
2389 default:
2390 goto bad;
2391 }
2392
2393 /* Outer perimeter */
2394 if (devflag & D_MTOUTPERIM) {
2395 switch (devflag & D_MTINNER_MASK) {
2396 case D_MP:
2397 case D_MTPERQ|D_MP:
2398 case D_MTQPAIR|D_MP:
2399 break;
2400 default:
2401 goto bad;
2402 }
2403 qflag |= QMTOUTPERIM;
2404 }
2405
2406 /* Inner perimeter modifiers */
2407 if (devflag & D_MTINNER_MOD) {
2408 switch (devflag & D_MTINNER_MASK) {
2409 case D_MP:
2410 goto bad;
2411 default:
2412 break;
2413 }
2414 if (devflag & D_MTPUTSHARED)
2415 sqtype |= SQ_CIPUT;
2416 if (devflag & _D_MTOCSHARED) {
2417 /*
2418 * The code in putnext assumes that it has the
2419 * highest concurrency by not checking sq_count.
2420 * Thus _D_MTOCSHARED can only be supported when
2421 * D_MTPUTSHARED is set.
2422 */
2423 if (!(devflag & D_MTPUTSHARED))
2424 goto bad;
2425 sqtype |= SQ_CIOC;
2426 }
2427 if (devflag & _D_MTCBSHARED) {
2428 /*
2429 * The code in putnext assumes that it has the
2430 * highest concurrency by not checking sq_count.
2431 * Thus _D_MTCBSHARED can only be supported when
2432 * D_MTPUTSHARED is set.
2433 */
2434 if (!(devflag & D_MTPUTSHARED))
2435 goto bad;
2436 sqtype |= SQ_CICB;
2437 }
2438 if (devflag & _D_MTSVCSHARED) {
2439 /*
2440 * The code in putnext assumes that it has the
2441 * highest concurrency by not checking sq_count.
2442 * Thus _D_MTSVCSHARED can only be supported when
2443 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2444 * supported only for QPERMOD.
2445 */
2446 if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2447 goto bad;
2448 sqtype |= SQ_CISVC;
2449 }
2450 }
2451
2452 /* Default outer perimeter concurrency */
2453 sqtype |= SQ_CO;
2454
2455 /* Outer perimeter modifiers */
2456 if (devflag & D_MTOCEXCL) {
2457 if (!(devflag & D_MTOUTPERIM)) {
2458 /* No outer perimeter */
2459 goto bad;
2460 }
2461 sqtype &= ~SQ_COOC;
2462 }
2463
2464 /* Synchronous Streams extended qinit structure */
2465 if (devflag & D_SYNCSTR)
2466 qflag |= QSYNCSTR;
2467
2468 /*
2469 * Private flag used by a transport module to indicate
2470 * to sockfs that it supports direct-access mode without
2471 * having to go through STREAMS.
2472 */
2473 if (devflag & _D_DIRECT) {
2474 /* Reject unless the module is fully-MT (no perimeter) */
2475 if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2476 goto bad;
2477 qflag |= _QDIRECT;
2478 }
2479
2480 /*
2481 * Private flag used to indicate that a streams module should only
2482 * be pushed once. The TTY streams modules have this flag since if
2483 * libc believes itself to be an xpg4 process then it will
2484 * automatically and unconditionally push them when a PTS device is
2485 * opened. If an application is not aware of this then without this
2486 * flag we would end up with duplicate modules.
2487 */
2488 if (devflag & _D_SINGLE_INSTANCE)
2489 qflag |= _QSINGLE_INSTANCE;
2490
2491 *qflagp = qflag;
2492 *sqtypep = sqtype;
2493 return (0);
2494
2495 bad:
2496 cmn_err(CE_WARN,
2497 "stropen: bad MT flags (0x%x) in driver '%s'",
2498 (int)(qflag & D_MTSAFETY_MASK),
2499 stp->st_rdinit->qi_minfo->mi_idname);
2500
2501 return (EINVAL);
2502 }
2503
2504 /*
2505 * Set the interface values for a pair of queues (qinit structure,
2506 * packet sizes, water marks).
2507 * setq assumes that the caller does not have a claim (entersq or claimq)
2508 * on the queue.
2509 */
2510 void
setq(queue_t * rq,struct qinit * rinit,struct qinit * winit,perdm_t * dmp,uint32_t qflag,uint32_t sqtype,boolean_t lock_needed)2511 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2512 perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2513 {
2514 queue_t *wq;
2515 syncq_t *sq, *outer;
2516
2517 ASSERT(rq->q_flag & QREADR);
2518 ASSERT((qflag & QMT_TYPEMASK) != 0);
2519 IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2520
2521 wq = _WR(rq);
2522 rq->q_qinfo = rinit;
2523 rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2524 rq->q_lowat = rinit->qi_minfo->mi_lowat;
2525 rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2526 rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2527 wq->q_qinfo = winit;
2528 wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2529 wq->q_lowat = winit->qi_minfo->mi_lowat;
2530 wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2531 wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2532
2533 /* Remove old syncqs */
2534 sq = rq->q_syncq;
2535 outer = sq->sq_outer;
2536 if (outer != NULL) {
2537 ASSERT(wq->q_syncq->sq_outer == outer);
2538 outer_remove(outer, rq->q_syncq);
2539 if (wq->q_syncq != rq->q_syncq)
2540 outer_remove(outer, wq->q_syncq);
2541 }
2542 ASSERT(sq->sq_outer == NULL);
2543 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2544
2545 if (sq != SQ(rq)) {
2546 if (!(rq->q_flag & QPERMOD))
2547 free_syncq(sq);
2548 if (wq->q_syncq == rq->q_syncq)
2549 wq->q_syncq = NULL;
2550 rq->q_syncq = NULL;
2551 }
2552 if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2553 wq->q_syncq != SQ(rq)) {
2554 free_syncq(wq->q_syncq);
2555 wq->q_syncq = NULL;
2556 }
2557 ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2558 rq->q_syncq->sq_tail == NULL));
2559 ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2560 wq->q_syncq->sq_tail == NULL));
2561
2562 if (!(rq->q_flag & QPERMOD) &&
2563 rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2564 ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2565 SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2566 rq->q_syncq->sq_nciputctrl, 0);
2567 ASSERT(ciputctrl_cache != NULL);
2568 kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2569 rq->q_syncq->sq_ciputctrl = NULL;
2570 rq->q_syncq->sq_nciputctrl = 0;
2571 }
2572
2573 if (!(wq->q_flag & QPERMOD) &&
2574 wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2575 ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2576 SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2577 wq->q_syncq->sq_nciputctrl, 0);
2578 ASSERT(ciputctrl_cache != NULL);
2579 kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2580 wq->q_syncq->sq_ciputctrl = NULL;
2581 wq->q_syncq->sq_nciputctrl = 0;
2582 }
2583
2584 sq = SQ(rq);
2585 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2586 ASSERT(sq->sq_outer == NULL);
2587 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2588
2589 /*
2590 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2591 * bits in sq_flag based on the sqtype.
2592 */
2593 ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2594
2595 rq->q_syncq = wq->q_syncq = sq;
2596 sq->sq_type = sqtype;
2597 sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2598
2599 /*
2600 * We are making sq_svcflags zero,
2601 * resetting SQ_DISABLED in case it was set by
2602 * wait_svc() in the munlink path.
2603 *
2604 */
2605 ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2606 sq->sq_svcflags = 0;
2607
2608 /*
2609 * We need to acquire the lock here for the mlink and munlink case,
2610 * where canputnext, backenable, etc can access the q_flag.
2611 */
2612 if (lock_needed) {
2613 mutex_enter(QLOCK(rq));
2614 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2615 mutex_exit(QLOCK(rq));
2616 mutex_enter(QLOCK(wq));
2617 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2618 mutex_exit(QLOCK(wq));
2619 } else {
2620 rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2621 wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2622 }
2623
2624 if (qflag & QPERQ) {
2625 /* Allocate a separate syncq for the write side */
2626 sq = new_syncq();
2627 sq->sq_type = rq->q_syncq->sq_type;
2628 sq->sq_flags = rq->q_syncq->sq_flags;
2629 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2630 sq->sq_oprev == NULL);
2631 wq->q_syncq = sq;
2632 }
2633 if (qflag & QPERMOD) {
2634 sq = dmp->dm_sq;
2635
2636 /*
2637 * Assert that we do have an inner perimeter syncq and that it
2638 * does not have an outer perimeter associated with it.
2639 */
2640 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2641 sq->sq_oprev == NULL);
2642 rq->q_syncq = wq->q_syncq = sq;
2643 }
2644 if (qflag & QMTOUTPERIM) {
2645 outer = dmp->dm_sq;
2646
2647 ASSERT(outer->sq_outer == NULL);
2648 outer_insert(outer, rq->q_syncq);
2649 if (wq->q_syncq != rq->q_syncq)
2650 outer_insert(outer, wq->q_syncq);
2651 }
2652 ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2653 (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2654 ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2655 (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2656 ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2657
2658 /*
2659 * Initialize struio() types.
2660 */
2661 rq->q_struiot =
2662 (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2663 wq->q_struiot =
2664 (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2665 }
2666
2667 perdm_t *
hold_dm(struct streamtab * str,uint32_t qflag,uint32_t sqtype)2668 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2669 {
2670 syncq_t *sq;
2671 perdm_t **pp;
2672 perdm_t *p;
2673 perdm_t *dmp;
2674
2675 ASSERT(str != NULL);
2676 ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2677
2678 rw_enter(&perdm_rwlock, RW_READER);
2679 for (p = perdm_list; p != NULL; p = p->dm_next) {
2680 if (p->dm_str == str) { /* found one */
2681 atomic_inc_32(&(p->dm_ref));
2682 rw_exit(&perdm_rwlock);
2683 return (p);
2684 }
2685 }
2686 rw_exit(&perdm_rwlock);
2687
2688 sq = new_syncq();
2689 if (qflag & QPERMOD) {
2690 sq->sq_type = sqtype | SQ_PERMOD;
2691 sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2692 } else {
2693 ASSERT(qflag & QMTOUTPERIM);
2694 sq->sq_onext = sq->sq_oprev = sq;
2695 }
2696
2697 dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2698 dmp->dm_sq = sq;
2699 dmp->dm_str = str;
2700 dmp->dm_ref = 1;
2701 dmp->dm_next = NULL;
2702
2703 rw_enter(&perdm_rwlock, RW_WRITER);
2704 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2705 if (p->dm_str == str) { /* already present */
2706 p->dm_ref++;
2707 rw_exit(&perdm_rwlock);
2708 free_syncq(sq);
2709 kmem_free(dmp, sizeof (perdm_t));
2710 return (p);
2711 }
2712 }
2713
2714 *pp = dmp;
2715 rw_exit(&perdm_rwlock);
2716 return (dmp);
2717 }
2718
2719 void
rele_dm(perdm_t * dmp)2720 rele_dm(perdm_t *dmp)
2721 {
2722 perdm_t **pp;
2723 perdm_t *p;
2724
2725 rw_enter(&perdm_rwlock, RW_WRITER);
2726 ASSERT(dmp->dm_ref > 0);
2727
2728 if (--dmp->dm_ref > 0) {
2729 rw_exit(&perdm_rwlock);
2730 return;
2731 }
2732
2733 for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2734 if (p == dmp)
2735 break;
2736 ASSERT(p == dmp);
2737 *pp = p->dm_next;
2738 rw_exit(&perdm_rwlock);
2739
2740 /*
2741 * Wait for any background processing that relies on the
2742 * syncq to complete before it is freed.
2743 */
2744 wait_sq_svc(p->dm_sq);
2745 free_syncq(p->dm_sq);
2746 kmem_free(p, sizeof (perdm_t));
2747 }
2748
2749 /*
2750 * Make a protocol message given control and data buffers.
2751 * n.b., this can block; be careful of what locks you hold when calling it.
2752 *
2753 * If sd_maxblk is less than *iosize this routine can fail part way through
2754 * (due to an allocation failure). In this case on return *iosize will contain
2755 * the amount that was consumed. Otherwise *iosize will not be modified
2756 * i.e. it will contain the amount that was consumed.
2757 */
2758 int
strmakemsg(struct strbuf * mctl,ssize_t * iosize,struct uio * uiop,stdata_t * stp,int32_t flag,mblk_t ** mpp)2759 strmakemsg(
2760 struct strbuf *mctl,
2761 ssize_t *iosize,
2762 struct uio *uiop,
2763 stdata_t *stp,
2764 int32_t flag,
2765 mblk_t **mpp)
2766 {
2767 mblk_t *mpctl = NULL;
2768 mblk_t *mpdata = NULL;
2769 int error;
2770
2771 ASSERT(uiop != NULL);
2772
2773 *mpp = NULL;
2774 /* Create control part, if any */
2775 if ((mctl != NULL) && (mctl->len >= 0)) {
2776 error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2777 if (error)
2778 return (error);
2779 }
2780 /* Create data part, if any */
2781 if (*iosize >= 0) {
2782 error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2783 if (error) {
2784 freemsg(mpctl);
2785 return (error);
2786 }
2787 }
2788 if (mpctl != NULL) {
2789 if (mpdata != NULL)
2790 linkb(mpctl, mpdata);
2791 *mpp = mpctl;
2792 } else {
2793 *mpp = mpdata;
2794 }
2795 return (0);
2796 }
2797
2798 /*
2799 * Make the control part of a protocol message given a control buffer.
2800 * n.b., this can block; be careful of what locks you hold when calling it.
2801 */
2802 int
strmakectl(struct strbuf * mctl,int32_t flag,int32_t fflag,mblk_t ** mpp)2803 strmakectl(
2804 struct strbuf *mctl,
2805 int32_t flag,
2806 int32_t fflag,
2807 mblk_t **mpp)
2808 {
2809 mblk_t *bp = NULL;
2810 unsigned char msgtype;
2811 int error = 0;
2812 cred_t *cr = CRED();
2813
2814 /* We do not support interrupt threads using the stream head to send */
2815 ASSERT(cr != NULL);
2816
2817 *mpp = NULL;
2818 /*
2819 * Create control part of message, if any.
2820 */
2821 if ((mctl != NULL) && (mctl->len >= 0)) {
2822 caddr_t base;
2823 int ctlcount;
2824 int allocsz;
2825
2826 if (flag & RS_HIPRI)
2827 msgtype = M_PCPROTO;
2828 else
2829 msgtype = M_PROTO;
2830
2831 ctlcount = mctl->len;
2832 base = mctl->buf;
2833
2834 /*
2835 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2836 * blocks by increasing the size to something more usable.
2837 */
2838 allocsz = MAX(ctlcount, 64);
2839
2840 /*
2841 * Range checking has already been done; simply try
2842 * to allocate a message block for the ctl part.
2843 */
2844 while ((bp = allocb_cred(allocsz, cr,
2845 curproc->p_pid)) == NULL) {
2846 if (fflag & (FNDELAY|FNONBLOCK))
2847 return (EAGAIN);
2848 if (error = strwaitbuf(allocsz, BPRI_MED))
2849 return (error);
2850 }
2851
2852 bp->b_datap->db_type = msgtype;
2853 if (copyin(base, bp->b_wptr, ctlcount)) {
2854 freeb(bp);
2855 return (EFAULT);
2856 }
2857 bp->b_wptr += ctlcount;
2858 }
2859 *mpp = bp;
2860 return (0);
2861 }
2862
2863 /*
2864 * Make a protocol message given data buffers.
2865 * n.b., this can block; be careful of what locks you hold when calling it.
2866 *
2867 * If sd_maxblk is less than *iosize this routine can fail part way through
2868 * (due to an allocation failure). In this case on return *iosize will contain
2869 * the amount that was consumed. Otherwise *iosize will not be modified
2870 * i.e. it will contain the amount that was consumed.
2871 */
2872 int
strmakedata(ssize_t * iosize,struct uio * uiop,stdata_t * stp,int32_t flag,mblk_t ** mpp)2873 strmakedata(
2874 ssize_t *iosize,
2875 struct uio *uiop,
2876 stdata_t *stp,
2877 int32_t flag,
2878 mblk_t **mpp)
2879 {
2880 mblk_t *mp = NULL;
2881 mblk_t *bp;
2882 int wroff = (int)stp->sd_wroff;
2883 int tail_len = (int)stp->sd_tail;
2884 int extra = wroff + tail_len;
2885 int error = 0;
2886 ssize_t maxblk;
2887 ssize_t count = *iosize;
2888 cred_t *cr;
2889
2890 *mpp = NULL;
2891 if (count < 0)
2892 return (0);
2893
2894 /* We do not support interrupt threads using the stream head to send */
2895 cr = CRED();
2896 ASSERT(cr != NULL);
2897
2898 maxblk = stp->sd_maxblk;
2899 if (maxblk == INFPSZ)
2900 maxblk = count;
2901
2902 /*
2903 * Create data part of message, if any.
2904 */
2905 do {
2906 ssize_t size;
2907 dblk_t *dp;
2908
2909 ASSERT(uiop);
2910
2911 size = MIN(count, maxblk);
2912
2913 while ((bp = allocb_cred(size + extra, cr,
2914 curproc->p_pid)) == NULL) {
2915 error = EAGAIN;
2916 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2917 (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2918 if (count == *iosize) {
2919 freemsg(mp);
2920 return (error);
2921 } else {
2922 *iosize -= count;
2923 *mpp = mp;
2924 return (0);
2925 }
2926 }
2927 }
2928 dp = bp->b_datap;
2929 dp->db_cpid = curproc->p_pid;
2930 ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2931 bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2932
2933 if (flag & STRUIO_POSTPONE) {
2934 /*
2935 * Setup the stream uio portion of the
2936 * dblk for subsequent use by struioget().
2937 */
2938 dp->db_struioflag = STRUIO_SPEC;
2939 dp->db_cksumstart = 0;
2940 dp->db_cksumstuff = 0;
2941 dp->db_cksumend = size;
2942 *(long long *)dp->db_struioun.data = 0ll;
2943 bp->b_wptr += size;
2944 } else {
2945 if (stp->sd_copyflag & STRCOPYCACHED)
2946 uiop->uio_extflg |= UIO_COPY_CACHED;
2947
2948 if (size != 0) {
2949 error = uiomove(bp->b_wptr, size, UIO_WRITE,
2950 uiop);
2951 if (error != 0) {
2952 freeb(bp);
2953 freemsg(mp);
2954 return (error);
2955 }
2956 }
2957 bp->b_wptr += size;
2958
2959 if (stp->sd_wputdatafunc != NULL) {
2960 mblk_t *newbp;
2961
2962 newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2963 bp, NULL, NULL, NULL, NULL);
2964 if (newbp == NULL) {
2965 freeb(bp);
2966 freemsg(mp);
2967 return (ECOMM);
2968 }
2969 bp = newbp;
2970 }
2971 }
2972
2973 count -= size;
2974
2975 if (mp == NULL)
2976 mp = bp;
2977 else
2978 linkb(mp, bp);
2979 } while (count > 0);
2980
2981 *mpp = mp;
2982 return (0);
2983 }
2984
2985 /*
2986 * Wait for a buffer to become available. Return non-zero errno
2987 * if not able to wait, 0 if buffer is probably there.
2988 */
2989 int
strwaitbuf(size_t size,int pri)2990 strwaitbuf(size_t size, int pri)
2991 {
2992 bufcall_id_t id;
2993
2994 mutex_enter(&bcall_monitor);
2995 if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2996 &ttoproc(curthread)->p_flag_cv)) == 0) {
2997 mutex_exit(&bcall_monitor);
2998 return (ENOSR);
2999 }
3000 if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
3001 unbufcall(id);
3002 mutex_exit(&bcall_monitor);
3003 return (EINTR);
3004 }
3005 unbufcall(id);
3006 mutex_exit(&bcall_monitor);
3007 return (0);
3008 }
3009
3010 /*
3011 * This function waits for a read or write event to happen on a stream.
3012 * fmode can specify FNDELAY and/or FNONBLOCK.
3013 * The timeout is in ms with -1 meaning infinite.
3014 * The flag values work as follows:
3015 * READWAIT Check for read side errors, send M_READ
3016 * GETWAIT Check for read side errors, no M_READ
3017 * WRITEWAIT Check for write side errors.
3018 * NOINTR Do not return error if nonblocking or timeout.
3019 * STR_NOERROR Ignore all errors except STPLEX.
3020 * STR_NOSIG Ignore/hold signals during the duration of the call.
3021 * STR_PEEK Pass through the strgeterr().
3022 */
3023 int
strwaitq(stdata_t * stp,int flag,ssize_t count,int fmode,clock_t timout,int * done)3024 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
3025 int *done)
3026 {
3027 int slpflg, errs;
3028 int error;
3029 kcondvar_t *sleepon;
3030 mblk_t *mp;
3031 ssize_t *rd_count;
3032 clock_t rval;
3033
3034 ASSERT(MUTEX_HELD(&stp->sd_lock));
3035 if ((flag & READWAIT) || (flag & GETWAIT)) {
3036 slpflg = RSLEEP;
3037 sleepon = &_RD(stp->sd_wrq)->q_wait;
3038 errs = STRDERR|STPLEX;
3039 } else {
3040 slpflg = WSLEEP;
3041 sleepon = &stp->sd_wrq->q_wait;
3042 errs = STWRERR|STRHUP|STPLEX;
3043 }
3044 if (flag & STR_NOERROR)
3045 errs = STPLEX;
3046
3047 if (stp->sd_wakeq & slpflg) {
3048 /*
3049 * A strwakeq() is pending, no need to sleep.
3050 */
3051 stp->sd_wakeq &= ~slpflg;
3052 *done = 0;
3053 return (0);
3054 }
3055
3056 if (stp->sd_flag & errs) {
3057 /*
3058 * Check for errors before going to sleep since the
3059 * caller might not have checked this while holding
3060 * sd_lock.
3061 */
3062 error = strgeterr(stp, errs, (flag & STR_PEEK));
3063 if (error != 0) {
3064 *done = 1;
3065 return (error);
3066 }
3067 }
3068
3069 /*
3070 * If any module downstream has requested read notification
3071 * by setting SNDMREAD flag using M_SETOPTS, send a message
3072 * down stream.
3073 */
3074 if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3075 mutex_exit(&stp->sd_lock);
3076 if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3077 (flag & STR_NOSIG), &error))) {
3078 mutex_enter(&stp->sd_lock);
3079 *done = 1;
3080 return (error);
3081 }
3082 mp->b_datap->db_type = M_READ;
3083 rd_count = (ssize_t *)mp->b_wptr;
3084 *rd_count = count;
3085 mp->b_wptr += sizeof (ssize_t);
3086 /*
3087 * Send the number of bytes requested by the
3088 * read as the argument to M_READ.
3089 */
3090 stream_willservice(stp);
3091 putnext(stp->sd_wrq, mp);
3092 stream_runservice(stp);
3093 mutex_enter(&stp->sd_lock);
3094
3095 /*
3096 * If any data arrived due to inline processing
3097 * of putnext(), don't sleep.
3098 */
3099 if (_RD(stp->sd_wrq)->q_first != NULL) {
3100 *done = 0;
3101 return (0);
3102 }
3103 }
3104
3105 if (fmode & (FNDELAY|FNONBLOCK)) {
3106 if (!(flag & NOINTR))
3107 error = EAGAIN;
3108 else
3109 error = 0;
3110 *done = 1;
3111 return (error);
3112 }
3113
3114 stp->sd_flag |= slpflg;
3115 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3116 "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3117 stp, flag, count, fmode, done);
3118
3119 rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3120 if (rval > 0) {
3121 /* EMPTY */
3122 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3123 "strwaitq awakes(2):%X, %X, %X, %X, %X",
3124 stp, flag, count, fmode, done);
3125 } else if (rval == 0) {
3126 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3127 "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3128 stp, flag, count, fmode, done);
3129 stp->sd_flag &= ~slpflg;
3130 cv_broadcast(sleepon);
3131 if (!(flag & NOINTR))
3132 error = EINTR;
3133 else
3134 error = 0;
3135 *done = 1;
3136 return (error);
3137 } else {
3138 /* timeout */
3139 TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3140 "strwaitq timeout:%p, %X, %lX, %X, %p",
3141 stp, flag, count, fmode, done);
3142 *done = 1;
3143 if (!(flag & NOINTR))
3144 return (ETIME);
3145 else
3146 return (0);
3147 }
3148 /*
3149 * If the caller implements delayed errors (i.e. queued after data)
3150 * we can not check for errors here since data as well as an
3151 * error might have arrived at the stream head. We return to
3152 * have the caller check the read queue before checking for errors.
3153 */
3154 if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3155 error = strgeterr(stp, errs, (flag & STR_PEEK));
3156 if (error != 0) {
3157 *done = 1;
3158 return (error);
3159 }
3160 }
3161 *done = 0;
3162 return (0);
3163 }
3164
3165 /*
3166 * Perform job control discipline access checks.
3167 * Return 0 for success and the errno for failure.
3168 */
3169
3170 #define cantsend(p, t, sig) \
3171 (sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3172
3173 int
straccess(struct stdata * stp,enum jcaccess mode)3174 straccess(struct stdata *stp, enum jcaccess mode)
3175 {
3176 extern kcondvar_t lbolt_cv; /* XXX: should be in a header file */
3177 kthread_t *t = curthread;
3178 proc_t *p = ttoproc(t);
3179 sess_t *sp;
3180
3181 ASSERT(mutex_owned(&stp->sd_lock));
3182
3183 if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3184 return (0);
3185
3186 mutex_enter(&p->p_lock); /* protects p_pgidp */
3187
3188 for (;;) {
3189 mutex_enter(&p->p_splock); /* protects p->p_sessp */
3190 sp = p->p_sessp;
3191 mutex_enter(&sp->s_lock); /* protects sp->* */
3192
3193 /*
3194 * If this is not the calling process's controlling terminal
3195 * or if the calling process is already in the foreground
3196 * then allow access.
3197 */
3198 if (sp->s_dev != stp->sd_vnode->v_rdev ||
3199 p->p_pgidp == stp->sd_pgidp) {
3200 mutex_exit(&sp->s_lock);
3201 mutex_exit(&p->p_splock);
3202 mutex_exit(&p->p_lock);
3203 return (0);
3204 }
3205
3206 /*
3207 * Check to see if controlling terminal has been deallocated.
3208 */
3209 if (sp->s_vp == NULL) {
3210 if (!cantsend(p, t, SIGHUP))
3211 sigtoproc(p, t, SIGHUP);
3212 mutex_exit(&sp->s_lock);
3213 mutex_exit(&p->p_splock);
3214 mutex_exit(&p->p_lock);
3215 return (EIO);
3216 }
3217
3218 mutex_exit(&sp->s_lock);
3219 mutex_exit(&p->p_splock);
3220
3221 if (mode == JCGETP) {
3222 mutex_exit(&p->p_lock);
3223 return (0);
3224 }
3225
3226 if (mode == JCREAD) {
3227 if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3228 mutex_exit(&p->p_lock);
3229 return (EIO);
3230 }
3231 mutex_exit(&p->p_lock);
3232 mutex_exit(&stp->sd_lock);
3233 pgsignal(p->p_pgidp, SIGTTIN);
3234 mutex_enter(&stp->sd_lock);
3235 mutex_enter(&p->p_lock);
3236 } else { /* mode == JCWRITE or JCSETP */
3237 if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3238 cantsend(p, t, SIGTTOU)) {
3239 mutex_exit(&p->p_lock);
3240 return (0);
3241 }
3242 if (p->p_detached) {
3243 mutex_exit(&p->p_lock);
3244 return (EIO);
3245 }
3246 mutex_exit(&p->p_lock);
3247 mutex_exit(&stp->sd_lock);
3248 pgsignal(p->p_pgidp, SIGTTOU);
3249 mutex_enter(&stp->sd_lock);
3250 mutex_enter(&p->p_lock);
3251 }
3252
3253 /*
3254 * We call cv_wait_sig_swap() to cause the appropriate
3255 * action for the jobcontrol signal to take place.
3256 * If the signal is being caught, we will take the
3257 * EINTR error return. Otherwise, the default action
3258 * of causing the process to stop will take place.
3259 * In this case, we rely on the periodic cv_broadcast() on
3260 * &lbolt_cv to wake us up to loop around and test again.
3261 * We can't get here if the signal is ignored or
3262 * if the current thread is blocking the signal.
3263 */
3264 mutex_exit(&stp->sd_lock);
3265 if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3266 mutex_exit(&p->p_lock);
3267 mutex_enter(&stp->sd_lock);
3268 return (EINTR);
3269 }
3270 mutex_exit(&p->p_lock);
3271 mutex_enter(&stp->sd_lock);
3272 mutex_enter(&p->p_lock);
3273 }
3274 }
3275
3276 /*
3277 * Return size of message of block type (bp->b_datap->db_type)
3278 */
3279 size_t
xmsgsize(mblk_t * bp)3280 xmsgsize(mblk_t *bp)
3281 {
3282 unsigned char type;
3283 size_t count = 0;
3284
3285 type = bp->b_datap->db_type;
3286
3287 for (; bp; bp = bp->b_cont) {
3288 if (type != bp->b_datap->db_type)
3289 break;
3290 ASSERT(bp->b_wptr >= bp->b_rptr);
3291 count += bp->b_wptr - bp->b_rptr;
3292 }
3293 return (count);
3294 }
3295
3296 /*
3297 * Allocate a stream head.
3298 */
3299 struct stdata *
shalloc(queue_t * qp)3300 shalloc(queue_t *qp)
3301 {
3302 stdata_t *stp;
3303
3304 stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3305
3306 stp->sd_wrq = _WR(qp);
3307 stp->sd_strtab = NULL;
3308 stp->sd_iocid = 0;
3309 stp->sd_mate = NULL;
3310 stp->sd_freezer = NULL;
3311 stp->sd_refcnt = 0;
3312 stp->sd_wakeq = 0;
3313 stp->sd_anchor = 0;
3314 stp->sd_struiowrq = NULL;
3315 stp->sd_struiordq = NULL;
3316 stp->sd_struiodnak = 0;
3317 stp->sd_struionak = NULL;
3318 stp->sd_t_audit_data = NULL;
3319 stp->sd_rput_opt = 0;
3320 stp->sd_wput_opt = 0;
3321 stp->sd_read_opt = 0;
3322 stp->sd_rprotofunc = strrput_proto;
3323 stp->sd_rmiscfunc = strrput_misc;
3324 stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3325 stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3326 stp->sd_ciputctrl = NULL;
3327 stp->sd_nciputctrl = 0;
3328 stp->sd_qhead = NULL;
3329 stp->sd_qtail = NULL;
3330 stp->sd_servid = NULL;
3331 stp->sd_nqueues = 0;
3332 stp->sd_svcflags = 0;
3333 stp->sd_copyflag = 0;
3334
3335 return (stp);
3336 }
3337
3338 /*
3339 * Free a stream head.
3340 */
3341 void
shfree(stdata_t * stp)3342 shfree(stdata_t *stp)
3343 {
3344 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3345
3346 stp->sd_wrq = NULL;
3347
3348 mutex_enter(&stp->sd_qlock);
3349 while (stp->sd_svcflags & STRS_SCHEDULED) {
3350 STRSTAT(strwaits);
3351 cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3352 }
3353 mutex_exit(&stp->sd_qlock);
3354
3355 if (stp->sd_ciputctrl != NULL) {
3356 ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3357 SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3358 stp->sd_nciputctrl, 0);
3359 ASSERT(ciputctrl_cache != NULL);
3360 kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3361 stp->sd_ciputctrl = NULL;
3362 stp->sd_nciputctrl = 0;
3363 }
3364 ASSERT(stp->sd_qhead == NULL);
3365 ASSERT(stp->sd_qtail == NULL);
3366 ASSERT(stp->sd_nqueues == 0);
3367 kmem_cache_free(stream_head_cache, stp);
3368 }
3369
3370 /*
3371 * Allocate a pair of queues and a syncq for the pair
3372 */
3373 queue_t *
allocq(void)3374 allocq(void)
3375 {
3376 queinfo_t *qip;
3377 queue_t *qp, *wqp;
3378 syncq_t *sq;
3379
3380 qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3381
3382 qp = &qip->qu_rqueue;
3383 wqp = &qip->qu_wqueue;
3384 sq = &qip->qu_syncq;
3385
3386 qp->q_last = NULL;
3387 qp->q_next = NULL;
3388 qp->q_ptr = NULL;
3389 qp->q_flag = QUSE | QREADR;
3390 qp->q_bandp = NULL;
3391 qp->q_stream = NULL;
3392 qp->q_syncq = sq;
3393 qp->q_nband = 0;
3394 qp->q_nfsrv = NULL;
3395 qp->q_draining = 0;
3396 qp->q_syncqmsgs = 0;
3397 qp->q_spri = 0;
3398 qp->q_qtstamp = 0;
3399 qp->q_sqtstamp = 0;
3400 qp->q_fp = NULL;
3401
3402 wqp->q_last = NULL;
3403 wqp->q_next = NULL;
3404 wqp->q_ptr = NULL;
3405 wqp->q_flag = QUSE;
3406 wqp->q_bandp = NULL;
3407 wqp->q_stream = NULL;
3408 wqp->q_syncq = sq;
3409 wqp->q_nband = 0;
3410 wqp->q_nfsrv = NULL;
3411 wqp->q_draining = 0;
3412 wqp->q_syncqmsgs = 0;
3413 wqp->q_qtstamp = 0;
3414 wqp->q_sqtstamp = 0;
3415 wqp->q_spri = 0;
3416
3417 sq->sq_count = 0;
3418 sq->sq_rmqcount = 0;
3419 sq->sq_flags = 0;
3420 sq->sq_type = 0;
3421 sq->sq_callbflags = 0;
3422 sq->sq_cancelid = 0;
3423 sq->sq_ciputctrl = NULL;
3424 sq->sq_nciputctrl = 0;
3425 sq->sq_needexcl = 0;
3426 sq->sq_svcflags = 0;
3427
3428 return (qp);
3429 }
3430
3431 /*
3432 * Free a pair of queues and the "attached" syncq.
3433 * Discard any messages left on the syncq(s), remove the syncq(s) from the
3434 * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3435 */
3436 void
freeq(queue_t * qp)3437 freeq(queue_t *qp)
3438 {
3439 qband_t *qbp, *nqbp;
3440 syncq_t *sq, *outer;
3441 queue_t *wqp = _WR(qp);
3442
3443 ASSERT(qp->q_flag & QREADR);
3444
3445 /*
3446 * If a previously dispatched taskq job is scheduled to run
3447 * sync_service() or a service routine is scheduled for the
3448 * queues about to be freed, wait here until all service is
3449 * done on the queue and all associated queues and syncqs.
3450 */
3451 wait_svc(qp);
3452
3453 (void) flush_syncq(qp->q_syncq, qp);
3454 (void) flush_syncq(wqp->q_syncq, wqp);
3455 ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3456
3457 /*
3458 * Flush the queues before q_next is set to NULL This is needed
3459 * in order to backenable any downstream queue before we go away.
3460 * Note: we are already removed from the stream so that the
3461 * backenabling will not cause any messages to be delivered to our
3462 * put procedures.
3463 */
3464 flushq(qp, FLUSHALL);
3465 flushq(wqp, FLUSHALL);
3466
3467 /* Tidy up - removeq only does a half-remove from stream */
3468 qp->q_next = wqp->q_next = NULL;
3469 ASSERT(!(qp->q_flag & QENAB));
3470 ASSERT(!(wqp->q_flag & QENAB));
3471
3472 outer = qp->q_syncq->sq_outer;
3473 if (outer != NULL) {
3474 outer_remove(outer, qp->q_syncq);
3475 if (wqp->q_syncq != qp->q_syncq)
3476 outer_remove(outer, wqp->q_syncq);
3477 }
3478 /*
3479 * Free any syncqs that are outside what allocq returned.
3480 */
3481 if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3482 free_syncq(qp->q_syncq);
3483 if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3484 free_syncq(wqp->q_syncq);
3485
3486 ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3487 ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3488 ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3489 ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3490 sq = SQ(qp);
3491 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3492 ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3493 ASSERT(sq->sq_outer == NULL);
3494 ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3495 ASSERT(sq->sq_callbpend == NULL);
3496 ASSERT(sq->sq_needexcl == 0);
3497
3498 if (sq->sq_ciputctrl != NULL) {
3499 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3500 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3501 sq->sq_nciputctrl, 0);
3502 ASSERT(ciputctrl_cache != NULL);
3503 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3504 sq->sq_ciputctrl = NULL;
3505 sq->sq_nciputctrl = 0;
3506 }
3507
3508 ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3509 ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3510 ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3511
3512 qp->q_flag &= ~QUSE;
3513 wqp->q_flag &= ~QUSE;
3514
3515 /* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3516 /* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3517
3518 qbp = qp->q_bandp;
3519 while (qbp) {
3520 nqbp = qbp->qb_next;
3521 freeband(qbp);
3522 qbp = nqbp;
3523 }
3524 qbp = wqp->q_bandp;
3525 while (qbp) {
3526 nqbp = qbp->qb_next;
3527 freeband(qbp);
3528 qbp = nqbp;
3529 }
3530 kmem_cache_free(queue_cache, qp);
3531 }
3532
3533 /*
3534 * Allocate a qband structure.
3535 */
3536 qband_t *
allocband(void)3537 allocband(void)
3538 {
3539 qband_t *qbp;
3540
3541 qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3542 if (qbp == NULL)
3543 return (NULL);
3544
3545 qbp->qb_next = NULL;
3546 qbp->qb_count = 0;
3547 qbp->qb_mblkcnt = 0;
3548 qbp->qb_first = NULL;
3549 qbp->qb_last = NULL;
3550 qbp->qb_flag = 0;
3551
3552 return (qbp);
3553 }
3554
3555 /*
3556 * Free a qband structure.
3557 */
3558 void
freeband(qband_t * qbp)3559 freeband(qband_t *qbp)
3560 {
3561 kmem_cache_free(qband_cache, qbp);
3562 }
3563
3564 /*
3565 * Just like putnextctl(9F), except that allocb_wait() is used.
3566 *
3567 * Consolidation Private, and of course only callable from the stream head or
3568 * routines that may block.
3569 */
3570 int
putnextctl_wait(queue_t * q,int type)3571 putnextctl_wait(queue_t *q, int type)
3572 {
3573 mblk_t *bp;
3574 int error;
3575
3576 if ((datamsg(type) && (type != M_DELAY)) ||
3577 (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3578 return (0);
3579
3580 bp->b_datap->db_type = (unsigned char)type;
3581 putnext(q, bp);
3582 return (1);
3583 }
3584
3585 /*
3586 * Run any possible bufcalls.
3587 */
3588 void
runbufcalls(void)3589 runbufcalls(void)
3590 {
3591 strbufcall_t *bcp;
3592
3593 mutex_enter(&bcall_monitor);
3594 mutex_enter(&strbcall_lock);
3595
3596 if (strbcalls.bc_head) {
3597 size_t count;
3598 int nevent;
3599
3600 /*
3601 * count how many events are on the list
3602 * now so we can check to avoid looping
3603 * in low memory situations
3604 */
3605 nevent = 0;
3606 for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3607 nevent++;
3608
3609 /*
3610 * get estimate of available memory from kmem_avail().
3611 * awake all bufcall functions waiting for
3612 * memory whose request could be satisfied
3613 * by 'count' memory and let 'em fight for it.
3614 */
3615 count = kmem_avail();
3616 while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3617 STRSTAT(bufcalls);
3618 --nevent;
3619 if (bcp->bc_size <= count) {
3620 bcp->bc_executor = curthread;
3621 mutex_exit(&strbcall_lock);
3622 (*bcp->bc_func)(bcp->bc_arg);
3623 mutex_enter(&strbcall_lock);
3624 bcp->bc_executor = NULL;
3625 cv_broadcast(&bcall_cv);
3626 strbcalls.bc_head = bcp->bc_next;
3627 kmem_free(bcp, sizeof (strbufcall_t));
3628 } else {
3629 /*
3630 * too big, try again later - note
3631 * that nevent was decremented above
3632 * so we won't retry this one on this
3633 * iteration of the loop
3634 */
3635 if (bcp->bc_next != NULL) {
3636 strbcalls.bc_head = bcp->bc_next;
3637 bcp->bc_next = NULL;
3638 strbcalls.bc_tail->bc_next = bcp;
3639 strbcalls.bc_tail = bcp;
3640 }
3641 }
3642 }
3643 if (strbcalls.bc_head == NULL)
3644 strbcalls.bc_tail = NULL;
3645 }
3646
3647 mutex_exit(&strbcall_lock);
3648 mutex_exit(&bcall_monitor);
3649 }
3650
3651
3652 /*
3653 * Actually run queue's service routine.
3654 */
3655 static void
runservice(queue_t * q)3656 runservice(queue_t *q)
3657 {
3658 qband_t *qbp;
3659
3660 ASSERT(q->q_qinfo->qi_srvp);
3661 again:
3662 entersq(q->q_syncq, SQ_SVC);
3663 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3664 "runservice starts:%p", q);
3665
3666 if (!(q->q_flag & QWCLOSE))
3667 (*q->q_qinfo->qi_srvp)(q);
3668
3669 TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3670 "runservice ends:(%p)", q);
3671
3672 leavesq(q->q_syncq, SQ_SVC);
3673
3674 mutex_enter(QLOCK(q));
3675 if (q->q_flag & QENAB) {
3676 q->q_flag &= ~QENAB;
3677 mutex_exit(QLOCK(q));
3678 goto again;
3679 }
3680 q->q_flag &= ~QINSERVICE;
3681 q->q_flag &= ~QBACK;
3682 for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3683 qbp->qb_flag &= ~QB_BACK;
3684 /*
3685 * Wakeup thread waiting for the service procedure
3686 * to be run (strclose and qdetach).
3687 */
3688 cv_broadcast(&q->q_wait);
3689
3690 mutex_exit(QLOCK(q));
3691 }
3692
3693 /*
3694 * Background processing of bufcalls.
3695 */
3696 void
streams_bufcall_service(void)3697 streams_bufcall_service(void)
3698 {
3699 callb_cpr_t cprinfo;
3700
3701 CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3702 "streams_bufcall_service");
3703
3704 mutex_enter(&strbcall_lock);
3705
3706 for (;;) {
3707 if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3708 mutex_exit(&strbcall_lock);
3709 runbufcalls();
3710 mutex_enter(&strbcall_lock);
3711 }
3712 if (strbcalls.bc_head != NULL) {
3713 STRSTAT(bcwaits);
3714 /* Wait for memory to become available */
3715 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3716 (void) cv_reltimedwait(&memavail_cv, &strbcall_lock,
3717 SEC_TO_TICK(60), TR_CLOCK_TICK);
3718 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3719 }
3720
3721 /* Wait for new work to arrive */
3722 if (strbcalls.bc_head == NULL) {
3723 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3724 cv_wait(&strbcall_cv, &strbcall_lock);
3725 CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3726 }
3727 }
3728 }
3729
3730 /*
3731 * Background processing of streams background tasks which failed
3732 * taskq_dispatch.
3733 */
3734 static void
streams_qbkgrnd_service(void)3735 streams_qbkgrnd_service(void)
3736 {
3737 callb_cpr_t cprinfo;
3738 queue_t *q;
3739
3740 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3741 "streams_bkgrnd_service");
3742
3743 mutex_enter(&service_queue);
3744
3745 for (;;) {
3746 /*
3747 * Wait for work to arrive.
3748 */
3749 while ((freebs_list == NULL) && (qhead == NULL)) {
3750 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3751 cv_wait(&services_to_run, &service_queue);
3752 CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3753 }
3754 /*
3755 * Handle all pending freebs requests to free memory.
3756 */
3757 while (freebs_list != NULL) {
3758 mblk_t *mp = freebs_list;
3759 freebs_list = mp->b_next;
3760 mutex_exit(&service_queue);
3761 mblk_free(mp);
3762 mutex_enter(&service_queue);
3763 }
3764 /*
3765 * Run pending queues.
3766 */
3767 while (qhead != NULL) {
3768 DQ(q, qhead, qtail, q_link);
3769 ASSERT(q != NULL);
3770 mutex_exit(&service_queue);
3771 queue_service(q);
3772 mutex_enter(&service_queue);
3773 }
3774 ASSERT(qhead == NULL && qtail == NULL);
3775 }
3776 }
3777
3778 /*
3779 * Background processing of streams background tasks which failed
3780 * taskq_dispatch.
3781 */
3782 static void
streams_sqbkgrnd_service(void)3783 streams_sqbkgrnd_service(void)
3784 {
3785 callb_cpr_t cprinfo;
3786 syncq_t *sq;
3787
3788 CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3789 "streams_sqbkgrnd_service");
3790
3791 mutex_enter(&service_queue);
3792
3793 for (;;) {
3794 /*
3795 * Wait for work to arrive.
3796 */
3797 while (sqhead == NULL) {
3798 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3799 cv_wait(&syncqs_to_run, &service_queue);
3800 CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3801 }
3802
3803 /*
3804 * Run pending syncqs.
3805 */
3806 while (sqhead != NULL) {
3807 DQ(sq, sqhead, sqtail, sq_next);
3808 ASSERT(sq != NULL);
3809 ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3810 mutex_exit(&service_queue);
3811 syncq_service(sq);
3812 mutex_enter(&service_queue);
3813 }
3814 }
3815 }
3816
3817 /*
3818 * Disable the syncq and wait for background syncq processing to complete.
3819 * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3820 * list.
3821 */
3822 void
wait_sq_svc(syncq_t * sq)3823 wait_sq_svc(syncq_t *sq)
3824 {
3825 mutex_enter(SQLOCK(sq));
3826 sq->sq_svcflags |= SQ_DISABLED;
3827 if (sq->sq_svcflags & SQ_BGTHREAD) {
3828 syncq_t *sq_chase;
3829 syncq_t *sq_curr;
3830 int removed;
3831
3832 ASSERT(sq->sq_servcount == 1);
3833 mutex_enter(&service_queue);
3834 RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3835 mutex_exit(&service_queue);
3836 if (removed) {
3837 sq->sq_svcflags &= ~SQ_BGTHREAD;
3838 sq->sq_servcount = 0;
3839 STRSTAT(sqremoved);
3840 goto done;
3841 }
3842 }
3843 while (sq->sq_servcount != 0) {
3844 sq->sq_flags |= SQ_WANTWAKEUP;
3845 cv_wait(&sq->sq_wait, SQLOCK(sq));
3846 }
3847 done:
3848 mutex_exit(SQLOCK(sq));
3849 }
3850
3851 /*
3852 * Put a syncq on the list of syncq's to be serviced by the sqthread.
3853 * Add the argument to the end of the sqhead list and set the flag
3854 * indicating this syncq has been enabled. If it has already been
3855 * enabled, don't do anything.
3856 * This routine assumes that SQLOCK is held.
3857 * NOTE that the lock order is to have the SQLOCK first,
3858 * so if the service_syncq lock is held, we need to release it
3859 * before acquiring the SQLOCK (mostly relevant for the background
3860 * thread, and this seems to be common among the STREAMS global locks).
3861 * Note that the sq_svcflags are protected by the SQLOCK.
3862 */
3863 void
sqenable(syncq_t * sq)3864 sqenable(syncq_t *sq)
3865 {
3866 /*
3867 * This is probably not important except for where I believe it
3868 * is being called. At that point, it should be held (and it
3869 * is a pain to release it just for this routine, so don't do
3870 * it).
3871 */
3872 ASSERT(MUTEX_HELD(SQLOCK(sq)));
3873
3874 IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3875 IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3876
3877 /*
3878 * Do not put on list if background thread is scheduled or
3879 * syncq is disabled.
3880 */
3881 if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3882 return;
3883
3884 /*
3885 * Check whether we should enable sq at all.
3886 * Non PERMOD syncqs may be drained by at most one thread.
3887 * PERMOD syncqs may be drained by several threads but we limit the
3888 * total amount to the lesser of
3889 * Number of queues on the squeue and
3890 * Number of CPUs.
3891 */
3892 if (sq->sq_servcount != 0) {
3893 if (((sq->sq_type & SQ_PERMOD) == 0) ||
3894 (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3895 STRSTAT(sqtoomany);
3896 return;
3897 }
3898 }
3899
3900 sq->sq_tstamp = ddi_get_lbolt();
3901 STRSTAT(sqenables);
3902
3903 /* Attempt a taskq dispatch */
3904 sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3905 (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3906 if (sq->sq_servid != NULL) {
3907 sq->sq_servcount++;
3908 return;
3909 }
3910
3911 /*
3912 * This taskq dispatch failed, but a previous one may have succeeded.
3913 * Don't try to schedule on the background thread whilst there is
3914 * outstanding taskq processing.
3915 */
3916 if (sq->sq_servcount != 0)
3917 return;
3918
3919 /*
3920 * System is low on resources and can't perform a non-sleeping
3921 * dispatch. Schedule the syncq for a background thread and mark the
3922 * syncq to avoid any further taskq dispatch attempts.
3923 */
3924 mutex_enter(&service_queue);
3925 STRSTAT(taskqfails);
3926 ENQUEUE(sq, sqhead, sqtail, sq_next);
3927 sq->sq_svcflags |= SQ_BGTHREAD;
3928 sq->sq_servcount = 1;
3929 cv_signal(&syncqs_to_run);
3930 mutex_exit(&service_queue);
3931 }
3932
3933 /*
3934 * Note: fifo_close() depends on the mblk_t on the queue being freed
3935 * asynchronously. The asynchronous freeing of messages breaks the
3936 * recursive call chain of fifo_close() while there are I_SENDFD type of
3937 * messages referring to other file pointers on the queue. Then when
3938 * closing pipes it can avoid stack overflow in case of daisy-chained
3939 * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3940 * share the same fifolock_t).
3941 *
3942 * No need to kpreempt_disable to access cpu_seqid. If we migrate and
3943 * the esb queue does not match the new CPU, that is OK.
3944 */
3945 void
freebs_enqueue(mblk_t * mp,dblk_t * dbp)3946 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3947 {
3948 int qindex = CPU->cpu_seqid >> esbq_log2_cpus_per_q;
3949 esb_queue_t *eqp;
3950
3951 ASSERT(dbp->db_mblk == mp);
3952 ASSERT(qindex < esbq_nelem);
3953
3954 eqp = system_esbq_array;
3955 if (eqp != NULL) {
3956 eqp += qindex;
3957 } else {
3958 mutex_enter(&esbq_lock);
3959 if (kmem_ready && system_esbq_array == NULL)
3960 system_esbq_array = (esb_queue_t *)kmem_zalloc(
3961 esbq_nelem * sizeof (esb_queue_t), KM_NOSLEEP);
3962 mutex_exit(&esbq_lock);
3963 eqp = system_esbq_array;
3964 if (eqp != NULL)
3965 eqp += qindex;
3966 else
3967 eqp = &system_esbq;
3968 }
3969
3970 /*
3971 * Check data sanity. The dblock should have non-empty free function.
3972 * It is better to panic here then later when the dblock is freed
3973 * asynchronously when the context is lost.
3974 */
3975 if (dbp->db_frtnp->free_func == NULL) {
3976 panic("freebs_enqueue: dblock %p has a NULL free callback",
3977 (void *)dbp);
3978 }
3979
3980 mutex_enter(&eqp->eq_lock);
3981 /* queue the new mblk on the esballoc queue */
3982 if (eqp->eq_head == NULL) {
3983 eqp->eq_head = eqp->eq_tail = mp;
3984 } else {
3985 eqp->eq_tail->b_next = mp;
3986 eqp->eq_tail = mp;
3987 }
3988 eqp->eq_len++;
3989
3990 /* If we're the first thread to reach the threshold, process */
3991 if (eqp->eq_len >= esbq_max_qlen &&
3992 !(eqp->eq_flags & ESBQ_PROCESSING))
3993 esballoc_process_queue(eqp);
3994
3995 esballoc_set_timer(eqp, esbq_timeout);
3996 mutex_exit(&eqp->eq_lock);
3997 }
3998
3999 static void
esballoc_process_queue(esb_queue_t * eqp)4000 esballoc_process_queue(esb_queue_t *eqp)
4001 {
4002 mblk_t *mp;
4003
4004 ASSERT(MUTEX_HELD(&eqp->eq_lock));
4005
4006 eqp->eq_flags |= ESBQ_PROCESSING;
4007
4008 do {
4009 /*
4010 * Detach the message chain for processing.
4011 */
4012 mp = eqp->eq_head;
4013 eqp->eq_tail->b_next = NULL;
4014 eqp->eq_head = eqp->eq_tail = NULL;
4015 eqp->eq_len = 0;
4016 mutex_exit(&eqp->eq_lock);
4017
4018 /*
4019 * Process the message chain.
4020 */
4021 esballoc_enqueue_mblk(mp);
4022 mutex_enter(&eqp->eq_lock);
4023 } while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
4024
4025 eqp->eq_flags &= ~ESBQ_PROCESSING;
4026 }
4027
4028 /*
4029 * taskq callback routine to free esballoced mblk's
4030 */
4031 static void
esballoc_mblk_free(mblk_t * mp)4032 esballoc_mblk_free(mblk_t *mp)
4033 {
4034 mblk_t *nextmp;
4035
4036 for (; mp != NULL; mp = nextmp) {
4037 nextmp = mp->b_next;
4038 mp->b_next = NULL;
4039 mblk_free(mp);
4040 }
4041 }
4042
4043 static void
esballoc_enqueue_mblk(mblk_t * mp)4044 esballoc_enqueue_mblk(mblk_t *mp)
4045 {
4046
4047 if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4048 TQ_NOSLEEP) == TASKQID_INVALID) {
4049 mblk_t *first_mp = mp;
4050 /*
4051 * System is low on resources and can't perform a non-sleeping
4052 * dispatch. Schedule for a background thread.
4053 */
4054 mutex_enter(&service_queue);
4055 STRSTAT(taskqfails);
4056
4057 while (mp->b_next != NULL)
4058 mp = mp->b_next;
4059
4060 mp->b_next = freebs_list;
4061 freebs_list = first_mp;
4062 cv_signal(&services_to_run);
4063 mutex_exit(&service_queue);
4064 }
4065 }
4066
4067 static void
esballoc_timer(void * arg)4068 esballoc_timer(void *arg)
4069 {
4070 esb_queue_t *eqp = arg;
4071
4072 mutex_enter(&eqp->eq_lock);
4073 eqp->eq_flags &= ~ESBQ_TIMER;
4074
4075 if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4076 eqp->eq_len > 0)
4077 esballoc_process_queue(eqp);
4078
4079 esballoc_set_timer(eqp, esbq_timeout);
4080 mutex_exit(&eqp->eq_lock);
4081 }
4082
4083 static void
esballoc_set_timer(esb_queue_t * eqp,clock_t eq_timeout)4084 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4085 {
4086 ASSERT(MUTEX_HELD(&eqp->eq_lock));
4087
4088 if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4089 (void) timeout(esballoc_timer, eqp, eq_timeout);
4090 eqp->eq_flags |= ESBQ_TIMER;
4091 }
4092 }
4093
4094 /*
4095 * Setup esbq array length based upon NCPU scaled by CPUs per
4096 * queue. Use static system_esbq until kmem_ready and we can
4097 * create an array in freebs_enqueue().
4098 */
4099 void
esballoc_queue_init(void)4100 esballoc_queue_init(void)
4101 {
4102 esbq_log2_cpus_per_q = highbit(esbq_cpus_per_q - 1);
4103 esbq_cpus_per_q = 1 << esbq_log2_cpus_per_q;
4104 esbq_nelem = howmany(NCPU, esbq_cpus_per_q);
4105 system_esbq.eq_len = 0;
4106 system_esbq.eq_head = system_esbq.eq_tail = NULL;
4107 system_esbq.eq_flags = 0;
4108 }
4109
4110 /*
4111 * Set the QBACK or QB_BACK flag in the given queue for
4112 * the given priority band.
4113 */
4114 void
setqback(queue_t * q,unsigned char pri)4115 setqback(queue_t *q, unsigned char pri)
4116 {
4117 int i;
4118 qband_t *qbp;
4119 qband_t **qbpp;
4120
4121 ASSERT(MUTEX_HELD(QLOCK(q)));
4122 if (pri != 0) {
4123 if (pri > q->q_nband) {
4124 qbpp = &q->q_bandp;
4125 while (*qbpp)
4126 qbpp = &(*qbpp)->qb_next;
4127 while (pri > q->q_nband) {
4128 if ((*qbpp = allocband()) == NULL) {
4129 cmn_err(CE_WARN,
4130 "setqback: can't allocate qband\n");
4131 return;
4132 }
4133 (*qbpp)->qb_hiwat = q->q_hiwat;
4134 (*qbpp)->qb_lowat = q->q_lowat;
4135 q->q_nband++;
4136 qbpp = &(*qbpp)->qb_next;
4137 }
4138 }
4139 qbp = q->q_bandp;
4140 i = pri;
4141 while (--i)
4142 qbp = qbp->qb_next;
4143 qbp->qb_flag |= QB_BACK;
4144 } else {
4145 q->q_flag |= QBACK;
4146 }
4147 }
4148
4149 int
strcopyin(void * from,void * to,size_t len,int copyflag)4150 strcopyin(void *from, void *to, size_t len, int copyflag)
4151 {
4152 if (copyflag & U_TO_K) {
4153 ASSERT((copyflag & K_TO_K) == 0);
4154 if (copyin(from, to, len))
4155 return (EFAULT);
4156 } else {
4157 ASSERT(copyflag & K_TO_K);
4158 bcopy(from, to, len);
4159 }
4160 return (0);
4161 }
4162
4163 int
strcopyout(void * from,void * to,size_t len,int copyflag)4164 strcopyout(void *from, void *to, size_t len, int copyflag)
4165 {
4166 if (copyflag & U_TO_K) {
4167 if (copyout(from, to, len))
4168 return (EFAULT);
4169 } else {
4170 ASSERT(copyflag & K_TO_K);
4171 bcopy(from, to, len);
4172 }
4173 return (0);
4174 }
4175
4176 /*
4177 * strsignal_nolock() posts a signal to the process(es) at the stream head.
4178 * It assumes that the stream head lock is already held, whereas strsignal()
4179 * acquires the lock first. This routine was created because a few callers
4180 * release the stream head lock before calling only to re-acquire it after
4181 * it returns.
4182 */
4183 void
strsignal_nolock(stdata_t * stp,int sig,uchar_t band)4184 strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
4185 {
4186 ASSERT(MUTEX_HELD(&stp->sd_lock));
4187 switch (sig) {
4188 case SIGPOLL:
4189 if (stp->sd_sigflags & S_MSG)
4190 strsendsig(stp->sd_siglist, S_MSG, band, 0);
4191 break;
4192 default:
4193 if (stp->sd_pgidp)
4194 pgsignal(stp->sd_pgidp, sig);
4195 break;
4196 }
4197 }
4198
4199 void
strsignal(stdata_t * stp,int sig,int32_t band)4200 strsignal(stdata_t *stp, int sig, int32_t band)
4201 {
4202 TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4203 "strsignal:%p, %X, %X", stp, sig, band);
4204
4205 mutex_enter(&stp->sd_lock);
4206 switch (sig) {
4207 case SIGPOLL:
4208 if (stp->sd_sigflags & S_MSG)
4209 strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4210 break;
4211
4212 default:
4213 if (stp->sd_pgidp) {
4214 pgsignal(stp->sd_pgidp, sig);
4215 }
4216 break;
4217 }
4218 mutex_exit(&stp->sd_lock);
4219 }
4220
4221 void
strhup(stdata_t * stp)4222 strhup(stdata_t *stp)
4223 {
4224 ASSERT(mutex_owned(&stp->sd_lock));
4225 pollwakeup(&stp->sd_pollist, POLLHUP);
4226 if (stp->sd_sigflags & S_HANGUP)
4227 strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4228 }
4229
4230 /*
4231 * Backenable the first queue upstream from `q' with a service procedure.
4232 */
4233 void
backenable(queue_t * q,uchar_t pri)4234 backenable(queue_t *q, uchar_t pri)
4235 {
4236 queue_t *nq;
4237
4238 /*
4239 * Our presence might not prevent other modules in our own
4240 * stream from popping/pushing since the caller of getq might not
4241 * have a claim on the queue (some drivers do a getq on somebody
4242 * else's queue - they know that the queue itself is not going away
4243 * but the framework has to guarantee q_next in that stream).
4244 */
4245 claimstr(q);
4246
4247 /* Find nearest back queue with service proc */
4248 for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4249 ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4250 }
4251
4252 if (nq) {
4253 kthread_t *freezer;
4254 /*
4255 * backenable can be called either with no locks held
4256 * or with the stream frozen (the latter occurs when a module
4257 * calls rmvq with the stream frozen). If the stream is frozen
4258 * by the caller the caller will hold all qlocks in the stream.
4259 * Note that a frozen stream doesn't freeze a mated stream,
4260 * so we explicitly check for that.
4261 */
4262 freezer = STREAM(q)->sd_freezer;
4263 if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4264 mutex_enter(QLOCK(nq));
4265 }
4266 #ifdef DEBUG
4267 else {
4268 ASSERT(frozenstr(q));
4269 ASSERT(MUTEX_HELD(QLOCK(q)));
4270 ASSERT(MUTEX_HELD(QLOCK(nq)));
4271 }
4272 #endif
4273 setqback(nq, pri);
4274 qenable_locked(nq);
4275 if (freezer != curthread || STREAM(q) != STREAM(nq))
4276 mutex_exit(QLOCK(nq));
4277 }
4278 releasestr(q);
4279 }
4280
4281 /*
4282 * Return the appropriate errno when one of flags_to_check is set
4283 * in sd_flags. Uses the exported error routines if they are set.
4284 * Will return 0 if non error is set (or if the exported error routines
4285 * do not return an error).
4286 *
4287 * If there is both a read and write error to check, we prefer the read error.
4288 * Also, give preference to recorded errno's over the error functions.
4289 * The flags that are handled are:
4290 * STPLEX return EINVAL
4291 * STRDERR return sd_rerror (and clear if STRDERRNONPERSIST)
4292 * STWRERR return sd_werror (and clear if STWRERRNONPERSIST)
4293 * STRHUP return sd_werror
4294 *
4295 * If the caller indicates that the operation is a peek, a nonpersistent error
4296 * is not cleared.
4297 */
4298 int
strgeterr(stdata_t * stp,int32_t flags_to_check,int ispeek)4299 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4300 {
4301 int32_t sd_flag = stp->sd_flag & flags_to_check;
4302 int error = 0;
4303
4304 ASSERT(MUTEX_HELD(&stp->sd_lock));
4305 ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4306 if (sd_flag & STPLEX)
4307 error = EINVAL;
4308 else if (sd_flag & STRDERR) {
4309 error = stp->sd_rerror;
4310 if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4311 /*
4312 * Read errors are non-persistent i.e. discarded once
4313 * returned to a non-peeking caller,
4314 */
4315 stp->sd_rerror = 0;
4316 stp->sd_flag &= ~STRDERR;
4317 }
4318 if (error == 0 && stp->sd_rderrfunc != NULL) {
4319 int clearerr = 0;
4320
4321 error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4322 &clearerr);
4323 if (clearerr) {
4324 stp->sd_flag &= ~STRDERR;
4325 stp->sd_rderrfunc = NULL;
4326 }
4327 }
4328 } else if (sd_flag & STWRERR) {
4329 error = stp->sd_werror;
4330 if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4331 /*
4332 * Write errors are non-persistent i.e. discarded once
4333 * returned to a non-peeking caller,
4334 */
4335 stp->sd_werror = 0;
4336 stp->sd_flag &= ~STWRERR;
4337 }
4338 if (error == 0 && stp->sd_wrerrfunc != NULL) {
4339 int clearerr = 0;
4340
4341 error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4342 &clearerr);
4343 if (clearerr) {
4344 stp->sd_flag &= ~STWRERR;
4345 stp->sd_wrerrfunc = NULL;
4346 }
4347 }
4348 } else if (sd_flag & STRHUP) {
4349 /* sd_werror set when STRHUP */
4350 error = stp->sd_werror;
4351 }
4352 return (error);
4353 }
4354
4355
4356 /*
4357 * Single-thread open/close/push/pop
4358 * for twisted streams also
4359 */
4360 int
strstartplumb(stdata_t * stp,int flag,int cmd)4361 strstartplumb(stdata_t *stp, int flag, int cmd)
4362 {
4363 int waited = 1;
4364 int error = 0;
4365
4366 if (STRMATED(stp)) {
4367 struct stdata *stmatep = stp->sd_mate;
4368
4369 STRLOCKMATES(stp);
4370 while (waited) {
4371 waited = 0;
4372 while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4373 if ((cmd == I_POP) &&
4374 (flag & (FNDELAY|FNONBLOCK))) {
4375 STRUNLOCKMATES(stp);
4376 return (EAGAIN);
4377 }
4378 waited = 1;
4379 mutex_exit(&stp->sd_lock);
4380 if (!cv_wait_sig(&stmatep->sd_monitor,
4381 &stmatep->sd_lock)) {
4382 mutex_exit(&stmatep->sd_lock);
4383 return (EINTR);
4384 }
4385 mutex_exit(&stmatep->sd_lock);
4386 STRLOCKMATES(stp);
4387 }
4388 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4389 if ((cmd == I_POP) &&
4390 (flag & (FNDELAY|FNONBLOCK))) {
4391 STRUNLOCKMATES(stp);
4392 return (EAGAIN);
4393 }
4394 waited = 1;
4395 mutex_exit(&stmatep->sd_lock);
4396 if (!cv_wait_sig(&stp->sd_monitor,
4397 &stp->sd_lock)) {
4398 mutex_exit(&stp->sd_lock);
4399 return (EINTR);
4400 }
4401 mutex_exit(&stp->sd_lock);
4402 STRLOCKMATES(stp);
4403 }
4404 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4405 error = strgeterr(stp,
4406 STRDERR|STWRERR|STRHUP|STPLEX, 0);
4407 if (error != 0) {
4408 STRUNLOCKMATES(stp);
4409 return (error);
4410 }
4411 }
4412 }
4413 stp->sd_flag |= STRPLUMB;
4414 STRUNLOCKMATES(stp);
4415 } else {
4416 mutex_enter(&stp->sd_lock);
4417 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4418 if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4419 (flag & (FNDELAY|FNONBLOCK))) {
4420 mutex_exit(&stp->sd_lock);
4421 return (EAGAIN);
4422 }
4423 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4424 mutex_exit(&stp->sd_lock);
4425 return (EINTR);
4426 }
4427 if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4428 error = strgeterr(stp,
4429 STRDERR|STWRERR|STRHUP|STPLEX, 0);
4430 if (error != 0) {
4431 mutex_exit(&stp->sd_lock);
4432 return (error);
4433 }
4434 }
4435 }
4436 stp->sd_flag |= STRPLUMB;
4437 mutex_exit(&stp->sd_lock);
4438 }
4439 return (0);
4440 }
4441
4442 /*
4443 * Complete the plumbing operation associated with stream `stp'.
4444 */
4445 void
strendplumb(stdata_t * stp)4446 strendplumb(stdata_t *stp)
4447 {
4448 ASSERT(MUTEX_HELD(&stp->sd_lock));
4449 ASSERT(stp->sd_flag & STRPLUMB);
4450 stp->sd_flag &= ~STRPLUMB;
4451 cv_broadcast(&stp->sd_monitor);
4452 }
4453
4454 /*
4455 * This describes how the STREAMS framework handles synchronization
4456 * during open/push and close/pop.
4457 * The key interfaces for open and close are qprocson and qprocsoff,
4458 * respectively. While the close case in general is harder both open
4459 * have close have significant similarities.
4460 *
4461 * During close the STREAMS framework has to both ensure that there
4462 * are no stale references to the queue pair (and syncq) that
4463 * are being closed and also provide the guarantees that are documented
4464 * in qprocsoff(9F).
4465 * If there are stale references to the queue that is closing it can
4466 * result in kernel memory corruption or kernel panics.
4467 *
4468 * Note that is it up to the module/driver to ensure that it itself
4469 * does not have any stale references to the closing queues once its close
4470 * routine returns. This includes:
4471 * - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4472 * associated with the queues. For timeout and bufcall callbacks the
4473 * module/driver also has to ensure (or wait for) any callbacks that
4474 * are in progress.
4475 * - If the module/driver is using esballoc it has to ensure that any
4476 * esballoc free functions do not refer to a queue that has closed.
4477 * (Note that in general the close routine can not wait for the esballoc'ed
4478 * messages to be freed since that can cause a deadlock.)
4479 * - Cancelling any interrupts that refer to the closing queues and
4480 * also ensuring that there are no interrupts in progress that will
4481 * refer to the closing queues once the close routine returns.
4482 * - For multiplexors removing any driver global state that refers to
4483 * the closing queue and also ensuring that there are no threads in
4484 * the multiplexor that has picked up a queue pointer but not yet
4485 * finished using it.
4486 *
4487 * In addition, a driver/module can only reference the q_next pointer
4488 * in its open, close, put, or service procedures or in a
4489 * qtimeout/qbufcall callback procedure executing "on" the correct
4490 * stream. Thus it can not reference the q_next pointer in an interrupt
4491 * routine or a timeout, bufcall or esballoc callback routine. Likewise
4492 * it can not reference q_next of a different queue e.g. in a mux that
4493 * passes messages from one queues put/service procedure to another queue.
4494 * In all the cases when the driver/module can not access the q_next
4495 * field it must use the *next* versions e.g. canputnext instead of
4496 * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4497 *
4498 *
4499 * Assuming that the driver/module conforms to the above constraints
4500 * the STREAMS framework has to avoid stale references to q_next for all
4501 * the framework internal cases which include (but are not limited to):
4502 * - Threads in canput/canputnext/backenable and elsewhere that are
4503 * walking q_next.
4504 * - Messages on a syncq that have a reference to the queue through b_queue.
4505 * - Messages on an outer perimeter (syncq) that have a reference to the
4506 * queue through b_queue.
4507 * - Threads that use q_nfsrv (e.g. canput) to find a queue.
4508 * Note that only canput and bcanput use q_nfsrv without any locking.
4509 *
4510 * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4511 * after qprocsoff returns, the framework has to ensure that no threads can
4512 * enter the put or service routines for the closing read or write-side queue.
4513 * In addition to preventing "direct" entry into the put procedures
4514 * the framework also has to prevent messages being drained from
4515 * the syncq or the outer perimeter.
4516 * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4517 * mechanism to prevent qwriter(PERIM_OUTER) from running after
4518 * qprocsoff has returned.
4519 * Note that if a module/driver uses put(9F) on one of its own queues
4520 * it is up to the module/driver to ensure that the put() doesn't
4521 * get called when the queue is closing.
4522 *
4523 *
4524 * The framework aspects of the above "contract" is implemented by
4525 * qprocsoff, removeq, and strlock:
4526 * - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4527 * entering the service procedures.
4528 * - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4529 * canputnext, backenable etc from dereferencing the q_next that will
4530 * soon change.
4531 * - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4532 * or other q_next walker that uses claimstr/releasestr to finish.
4533 * - optionally for every syncq in the stream strlock acquires all the
4534 * sq_lock's and waits for all sq_counts to drop to a value that indicates
4535 * that no thread executes in the put or service procedures and that no
4536 * thread is draining into the module/driver. This ensures that no
4537 * open, close, put, service, or qtimeout/qbufcall callback procedure is
4538 * currently executing hence no such thread can end up with the old stale
4539 * q_next value and no canput/backenable can have the old stale
4540 * q_nfsrv/q_next.
4541 * - qdetach (wait_svc) makes sure that any scheduled or running threads
4542 * have either finished or observed the QWCLOSE flag and gone away.
4543 */
4544
4545
4546 /*
4547 * Get all the locks necessary to change q_next.
4548 *
4549 * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the
4550 * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4551 * the only threads inside the syncq are threads currently calling removeq().
4552 * Since threads calling removeq() are in the process of removing their queues
4553 * from the stream, we do not need to worry about them accessing a stale q_next
4554 * pointer and thus we do not need to wait for them to exit (in fact, waiting
4555 * for them can cause deadlock).
4556 *
4557 * This routine is subject to starvation since it does not set any flag to
4558 * prevent threads from entering a module in the stream (i.e. sq_count can
4559 * increase on some syncq while it is waiting on some other syncq).
4560 *
4561 * Assumes that only one thread attempts to call strlock for a given
4562 * stream. If this is not the case the two threads would deadlock.
4563 * This assumption is guaranteed since strlock is only called by insertq
4564 * and removeq and streams plumbing changes are single-threaded for
4565 * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4566 *
4567 * For pipes, it is not difficult to atomically designate a pair of streams
4568 * to be mated. Once mated atomically by the framework the twisted pair remain
4569 * configured that way until dismantled atomically by the framework.
4570 * When plumbing takes place on a twisted stream it is necessary to ensure that
4571 * this operation is done exclusively on the twisted stream since two such
4572 * operations, each initiated on different ends of the pipe will deadlock
4573 * waiting for each other to complete.
4574 *
4575 * On entry, no locks should be held.
4576 * The locks acquired and held by strlock depends on a few factors.
4577 * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4578 * and held on exit and all sq_count are at an acceptable level.
4579 * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4580 * sd_refcnt being zero.
4581 */
4582
4583 static void
strlock(struct stdata * stp,sqlist_t * sqlist)4584 strlock(struct stdata *stp, sqlist_t *sqlist)
4585 {
4586 syncql_t *sql, *sql2;
4587 retry:
4588 /*
4589 * Wait for any claimstr to go away.
4590 */
4591 if (STRMATED(stp)) {
4592 struct stdata *stp1, *stp2;
4593
4594 STRLOCKMATES(stp);
4595 /*
4596 * Note that the selection of locking order is not
4597 * important, just that they are always acquired in
4598 * the same order. To assure this, we choose this
4599 * order based on the value of the pointer, and since
4600 * the pointer will not change for the life of this
4601 * pair, we will always grab the locks in the same
4602 * order (and hence, prevent deadlocks).
4603 */
4604 if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4605 stp1 = stp;
4606 stp2 = stp->sd_mate;
4607 } else {
4608 stp2 = stp;
4609 stp1 = stp->sd_mate;
4610 }
4611 mutex_enter(&stp1->sd_reflock);
4612 if (stp1->sd_refcnt > 0) {
4613 STRUNLOCKMATES(stp);
4614 cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4615 mutex_exit(&stp1->sd_reflock);
4616 goto retry;
4617 }
4618 mutex_enter(&stp2->sd_reflock);
4619 if (stp2->sd_refcnt > 0) {
4620 STRUNLOCKMATES(stp);
4621 mutex_exit(&stp1->sd_reflock);
4622 cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4623 mutex_exit(&stp2->sd_reflock);
4624 goto retry;
4625 }
4626 STREAM_PUTLOCKS_ENTER(stp1);
4627 STREAM_PUTLOCKS_ENTER(stp2);
4628 } else {
4629 mutex_enter(&stp->sd_lock);
4630 mutex_enter(&stp->sd_reflock);
4631 while (stp->sd_refcnt > 0) {
4632 mutex_exit(&stp->sd_lock);
4633 cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4634 if (mutex_tryenter(&stp->sd_lock) == 0) {
4635 mutex_exit(&stp->sd_reflock);
4636 mutex_enter(&stp->sd_lock);
4637 mutex_enter(&stp->sd_reflock);
4638 }
4639 }
4640 STREAM_PUTLOCKS_ENTER(stp);
4641 }
4642
4643 if (sqlist == NULL)
4644 return;
4645
4646 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4647 syncq_t *sq = sql->sql_sq;
4648 uint16_t count;
4649
4650 mutex_enter(SQLOCK(sq));
4651 count = sq->sq_count;
4652 ASSERT(sq->sq_rmqcount <= count);
4653 SQ_PUTLOCKS_ENTER(sq);
4654 SUM_SQ_PUTCOUNTS(sq, count);
4655 if (count == sq->sq_rmqcount)
4656 continue;
4657
4658 /* Failed - drop all locks that we have acquired so far */
4659 if (STRMATED(stp)) {
4660 STREAM_PUTLOCKS_EXIT(stp);
4661 STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4662 STRUNLOCKMATES(stp);
4663 mutex_exit(&stp->sd_reflock);
4664 mutex_exit(&stp->sd_mate->sd_reflock);
4665 } else {
4666 STREAM_PUTLOCKS_EXIT(stp);
4667 mutex_exit(&stp->sd_lock);
4668 mutex_exit(&stp->sd_reflock);
4669 }
4670 for (sql2 = sqlist->sqlist_head; sql2 != sql;
4671 sql2 = sql2->sql_next) {
4672 SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4673 mutex_exit(SQLOCK(sql2->sql_sq));
4674 }
4675
4676 /*
4677 * The wait loop below may starve when there are many threads
4678 * claiming the syncq. This is especially a problem with permod
4679 * syncqs (IP). To lessen the impact of the problem we increment
4680 * sq_needexcl and clear fastbits so that putnexts will slow
4681 * down and call sqenable instead of draining right away.
4682 */
4683 sq->sq_needexcl++;
4684 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4685 while (count > sq->sq_rmqcount) {
4686 sq->sq_flags |= SQ_WANTWAKEUP;
4687 SQ_PUTLOCKS_EXIT(sq);
4688 cv_wait(&sq->sq_wait, SQLOCK(sq));
4689 count = sq->sq_count;
4690 SQ_PUTLOCKS_ENTER(sq);
4691 SUM_SQ_PUTCOUNTS(sq, count);
4692 }
4693 sq->sq_needexcl--;
4694 if (sq->sq_needexcl == 0)
4695 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4696 SQ_PUTLOCKS_EXIT(sq);
4697 ASSERT(count == sq->sq_rmqcount);
4698 mutex_exit(SQLOCK(sq));
4699 goto retry;
4700 }
4701 }
4702
4703 /*
4704 * Drop all the locks that strlock acquired.
4705 */
4706 static void
strunlock(struct stdata * stp,sqlist_t * sqlist)4707 strunlock(struct stdata *stp, sqlist_t *sqlist)
4708 {
4709 syncql_t *sql;
4710
4711 if (STRMATED(stp)) {
4712 STREAM_PUTLOCKS_EXIT(stp);
4713 STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4714 STRUNLOCKMATES(stp);
4715 mutex_exit(&stp->sd_reflock);
4716 mutex_exit(&stp->sd_mate->sd_reflock);
4717 } else {
4718 STREAM_PUTLOCKS_EXIT(stp);
4719 mutex_exit(&stp->sd_lock);
4720 mutex_exit(&stp->sd_reflock);
4721 }
4722
4723 if (sqlist == NULL)
4724 return;
4725
4726 for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4727 SQ_PUTLOCKS_EXIT(sql->sql_sq);
4728 mutex_exit(SQLOCK(sql->sql_sq));
4729 }
4730 }
4731
4732 /*
4733 * When the module has service procedure, we need check if the next
4734 * module which has service procedure is in flow control to trigger
4735 * the backenable.
4736 */
4737 static void
backenable_insertedq(queue_t * q)4738 backenable_insertedq(queue_t *q)
4739 {
4740 qband_t *qbp;
4741
4742 claimstr(q);
4743 if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4744 if (q->q_next->q_nfsrv->q_flag & QWANTW)
4745 backenable(q, 0);
4746
4747 qbp = q->q_next->q_nfsrv->q_bandp;
4748 for (; qbp != NULL; qbp = qbp->qb_next)
4749 if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4750 backenable(q, qbp->qb_first->b_band);
4751 }
4752 releasestr(q);
4753 }
4754
4755 /*
4756 * Given two read queues, insert a new single one after another.
4757 *
4758 * This routine acquires all the necessary locks in order to change
4759 * q_next and related pointer using strlock().
4760 * It depends on the stream head ensuring that there are no concurrent
4761 * insertq or removeq on the same stream. The stream head ensures this
4762 * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4763 *
4764 * Note that no syncq locks are held during the q_next change. This is
4765 * applied to all streams since, unlike removeq, there is no problem of stale
4766 * pointers when adding a module to the stream. Thus drivers/modules that do a
4767 * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4768 * applied this optimization to all streams.
4769 */
4770 void
insertq(struct stdata * stp,queue_t * new)4771 insertq(struct stdata *stp, queue_t *new)
4772 {
4773 queue_t *after;
4774 queue_t *wafter;
4775 queue_t *wnew = _WR(new);
4776 boolean_t have_fifo = B_FALSE;
4777
4778 if (new->q_flag & _QINSERTING) {
4779 ASSERT(stp->sd_vnode->v_type != VFIFO);
4780 after = new->q_next;
4781 wafter = _WR(new->q_next);
4782 } else {
4783 after = _RD(stp->sd_wrq);
4784 wafter = stp->sd_wrq;
4785 }
4786
4787 TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4788 "insertq:%p, %p", after, new);
4789 ASSERT(after->q_flag & QREADR);
4790 ASSERT(new->q_flag & QREADR);
4791
4792 strlock(stp, NULL);
4793
4794 /* Do we have a FIFO? */
4795 if (wafter->q_next == after) {
4796 have_fifo = B_TRUE;
4797 wnew->q_next = new;
4798 } else {
4799 wnew->q_next = wafter->q_next;
4800 }
4801 new->q_next = after;
4802
4803 set_nfsrv_ptr(new, wnew, after, wafter);
4804 /*
4805 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4806 * so only reset this flag after calling it.
4807 */
4808 new->q_flag &= ~_QINSERTING;
4809
4810 if (have_fifo) {
4811 wafter->q_next = wnew;
4812 } else {
4813 if (wafter->q_next)
4814 _OTHERQ(wafter->q_next)->q_next = new;
4815 wafter->q_next = wnew;
4816 }
4817
4818 set_qend(new);
4819 /* The QEND flag might have to be updated for the upstream guy */
4820 set_qend(after);
4821
4822 ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4823 ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4824 ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4825 ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4826 strsetuio(stp);
4827
4828 /*
4829 * If this was a module insertion, bump the push count.
4830 */
4831 if (!(new->q_flag & QISDRV))
4832 stp->sd_pushcnt++;
4833
4834 strunlock(stp, NULL);
4835
4836 /* check if the write Q needs backenable */
4837 backenable_insertedq(wnew);
4838
4839 /* check if the read Q needs backenable */
4840 backenable_insertedq(new);
4841 }
4842
4843 /*
4844 * Given a read queue, unlink it from any neighbors.
4845 *
4846 * This routine acquires all the necessary locks in order to
4847 * change q_next and related pointers and also guard against
4848 * stale references (e.g. through q_next) to the queue that
4849 * is being removed. It also plays part of the role in ensuring
4850 * that the module's/driver's put procedure doesn't get called
4851 * after qprocsoff returns.
4852 *
4853 * Removeq depends on the stream head ensuring that there are
4854 * no concurrent insertq or removeq on the same stream. The
4855 * stream head ensures this using the flags STWOPEN, STRCLOSE and
4856 * STRPLUMB.
4857 *
4858 * The set of locks needed to remove the queue is different in
4859 * different cases:
4860 *
4861 * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4862 * waiting for the syncq reference count to drop to 0 indicating that no
4863 * non-close threads are present anywhere in the stream. This ensures that any
4864 * module/driver can reference q_next in its open, close, put, or service
4865 * procedures.
4866 *
4867 * The sq_rmqcount counter tracks the number of threads inside removeq().
4868 * strlock() ensures that there is either no threads executing inside perimeter
4869 * or there is only a thread calling qprocsoff().
4870 *
4871 * strlock() compares the value of sq_count with the number of threads inside
4872 * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4873 * any threads waiting in strlock() when the sq_rmqcount increases.
4874 */
4875
4876 void
removeq(queue_t * qp)4877 removeq(queue_t *qp)
4878 {
4879 queue_t *wqp = _WR(qp);
4880 struct stdata *stp = STREAM(qp);
4881 sqlist_t *sqlist = NULL;
4882 boolean_t isdriver;
4883 int moved;
4884 syncq_t *sq = qp->q_syncq;
4885 syncq_t *wsq = wqp->q_syncq;
4886
4887 ASSERT(stp);
4888
4889 TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4890 "removeq:%p %p", qp, wqp);
4891 ASSERT(qp->q_flag&QREADR);
4892
4893 /*
4894 * For queues using Synchronous streams, we must wait for all threads in
4895 * rwnext() to drain out before proceeding.
4896 */
4897 if (qp->q_flag & QSYNCSTR) {
4898 /* First, we need wakeup any threads blocked in rwnext() */
4899 mutex_enter(SQLOCK(sq));
4900 if (sq->sq_flags & SQ_WANTWAKEUP) {
4901 sq->sq_flags &= ~SQ_WANTWAKEUP;
4902 cv_broadcast(&sq->sq_wait);
4903 }
4904 mutex_exit(SQLOCK(sq));
4905
4906 if (wsq != sq) {
4907 mutex_enter(SQLOCK(wsq));
4908 if (wsq->sq_flags & SQ_WANTWAKEUP) {
4909 wsq->sq_flags &= ~SQ_WANTWAKEUP;
4910 cv_broadcast(&wsq->sq_wait);
4911 }
4912 mutex_exit(SQLOCK(wsq));
4913 }
4914
4915 mutex_enter(QLOCK(qp));
4916 while (qp->q_rwcnt > 0) {
4917 qp->q_flag |= QWANTRMQSYNC;
4918 cv_wait(&qp->q_wait, QLOCK(qp));
4919 }
4920 mutex_exit(QLOCK(qp));
4921
4922 mutex_enter(QLOCK(wqp));
4923 while (wqp->q_rwcnt > 0) {
4924 wqp->q_flag |= QWANTRMQSYNC;
4925 cv_wait(&wqp->q_wait, QLOCK(wqp));
4926 }
4927 mutex_exit(QLOCK(wqp));
4928 }
4929
4930 mutex_enter(SQLOCK(sq));
4931 sq->sq_rmqcount++;
4932 if (sq->sq_flags & SQ_WANTWAKEUP) {
4933 sq->sq_flags &= ~SQ_WANTWAKEUP;
4934 cv_broadcast(&sq->sq_wait);
4935 }
4936 mutex_exit(SQLOCK(sq));
4937
4938 isdriver = (qp->q_flag & QISDRV);
4939
4940 sqlist = sqlist_build(qp, stp, STRMATED(stp));
4941 strlock(stp, sqlist);
4942
4943 reset_nfsrv_ptr(qp, wqp);
4944
4945 ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4946 ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4947 /* Do we have a FIFO? */
4948 if (wqp->q_next == qp) {
4949 stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4950 } else {
4951 if (wqp->q_next)
4952 backq(qp)->q_next = qp->q_next;
4953 if (qp->q_next)
4954 backq(wqp)->q_next = wqp->q_next;
4955 }
4956
4957 /* The QEND flag might have to be updated for the upstream guy */
4958 if (qp->q_next)
4959 set_qend(qp->q_next);
4960
4961 ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4962 ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4963
4964 /*
4965 * Move any messages destined for the put procedures to the next
4966 * syncq in line. Otherwise free them.
4967 */
4968 moved = 0;
4969 /*
4970 * Quick check to see whether there are any messages or events.
4971 */
4972 if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4973 moved += propagate_syncq(qp);
4974 if (wqp->q_syncqmsgs != 0 ||
4975 (wqp->q_syncq->sq_flags & SQ_EVENTS))
4976 moved += propagate_syncq(wqp);
4977
4978 strsetuio(stp);
4979
4980 /*
4981 * If this was a module removal, decrement the push count.
4982 */
4983 if (!isdriver)
4984 stp->sd_pushcnt--;
4985
4986 strunlock(stp, sqlist);
4987 sqlist_free(sqlist);
4988
4989 /*
4990 * Make sure any messages that were propagated are drained.
4991 * Also clear any QFULL bit caused by messages that were propagated.
4992 */
4993
4994 if (qp->q_next != NULL) {
4995 clr_qfull(qp);
4996 /*
4997 * For the driver calling qprocsoff, propagate_syncq
4998 * frees all the messages instead of putting it in
4999 * the stream head
5000 */
5001 if (!isdriver && (moved > 0))
5002 emptysq(qp->q_next->q_syncq);
5003 }
5004 if (wqp->q_next != NULL) {
5005 clr_qfull(wqp);
5006 /*
5007 * We come here for any pop of a module except for the
5008 * case of driver being removed. We don't call emptysq
5009 * if we did not move any messages. This will avoid holding
5010 * PERMOD syncq locks in emptysq
5011 */
5012 if (moved > 0)
5013 emptysq(wqp->q_next->q_syncq);
5014 }
5015
5016 mutex_enter(SQLOCK(sq));
5017 sq->sq_rmqcount--;
5018 mutex_exit(SQLOCK(sq));
5019 }
5020
5021 /*
5022 * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
5023 * SQ_WRITER) on a syncq.
5024 * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
5025 * sync queue and waits until sq_count reaches maxcnt.
5026 *
5027 * If maxcnt is -1 there's no need to grab sq_putlocks since the caller
5028 * does not care about putnext threads that are in the middle of calling put
5029 * entry points.
5030 *
5031 * This routine is used for both inner and outer syncqs.
5032 */
5033 static void
blocksq(syncq_t * sq,ushort_t flag,int maxcnt)5034 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
5035 {
5036 uint16_t count = 0;
5037
5038 mutex_enter(SQLOCK(sq));
5039 /*
5040 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
5041 * SQ_FROZEN will be set if there is a frozen stream that has a
5042 * queue which also refers to this "shared" syncq.
5043 * SQ_BLOCKED will be set if there is "off" queue which also
5044 * refers to this "shared" syncq.
5045 */
5046 if (maxcnt != -1) {
5047 count = sq->sq_count;
5048 SQ_PUTLOCKS_ENTER(sq);
5049 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5050 SUM_SQ_PUTCOUNTS(sq, count);
5051 }
5052 sq->sq_needexcl++;
5053 ASSERT(sq->sq_needexcl != 0); /* wraparound */
5054
5055 while ((sq->sq_flags & flag) ||
5056 (maxcnt != -1 && count > (unsigned)maxcnt)) {
5057 sq->sq_flags |= SQ_WANTWAKEUP;
5058 if (maxcnt != -1) {
5059 SQ_PUTLOCKS_EXIT(sq);
5060 }
5061 cv_wait(&sq->sq_wait, SQLOCK(sq));
5062 if (maxcnt != -1) {
5063 count = sq->sq_count;
5064 SQ_PUTLOCKS_ENTER(sq);
5065 SUM_SQ_PUTCOUNTS(sq, count);
5066 }
5067 }
5068 sq->sq_needexcl--;
5069 sq->sq_flags |= flag;
5070 ASSERT(maxcnt == -1 || count == maxcnt);
5071 if (maxcnt != -1) {
5072 if (sq->sq_needexcl == 0) {
5073 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5074 }
5075 SQ_PUTLOCKS_EXIT(sq);
5076 } else if (sq->sq_needexcl == 0) {
5077 SQ_PUTCOUNT_SETFAST(sq);
5078 }
5079
5080 mutex_exit(SQLOCK(sq));
5081 }
5082
5083 /*
5084 * Reset a flag that was set with blocksq.
5085 *
5086 * Can not use this routine to reset SQ_WRITER.
5087 *
5088 * If "isouter" is set then the syncq is assumed to be an outer perimeter
5089 * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5090 * to handle the queued qwriter operations.
5091 *
5092 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5093 * sq_putlocks are used.
5094 */
5095 static void
unblocksq(syncq_t * sq,uint16_t resetflag,int isouter)5096 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5097 {
5098 uint16_t flags;
5099
5100 mutex_enter(SQLOCK(sq));
5101 ASSERT(resetflag != SQ_WRITER);
5102 ASSERT(sq->sq_flags & resetflag);
5103 flags = sq->sq_flags & ~resetflag;
5104 sq->sq_flags = flags;
5105 if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5106 if (flags & SQ_WANTWAKEUP) {
5107 flags &= ~SQ_WANTWAKEUP;
5108 cv_broadcast(&sq->sq_wait);
5109 }
5110 sq->sq_flags = flags;
5111 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5112 if (!isouter) {
5113 /* drain_syncq drops SQLOCK */
5114 drain_syncq(sq);
5115 return;
5116 }
5117 }
5118 }
5119 mutex_exit(SQLOCK(sq));
5120 }
5121
5122 /*
5123 * Reset a flag that was set with blocksq.
5124 * Does not drain the syncq. Use emptysq() for that.
5125 * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5126 *
5127 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5128 * sq_putlocks are used.
5129 */
5130 static int
dropsq(syncq_t * sq,uint16_t resetflag)5131 dropsq(syncq_t *sq, uint16_t resetflag)
5132 {
5133 uint16_t flags;
5134
5135 mutex_enter(SQLOCK(sq));
5136 ASSERT(sq->sq_flags & resetflag);
5137 flags = sq->sq_flags & ~resetflag;
5138 if (flags & SQ_WANTWAKEUP) {
5139 flags &= ~SQ_WANTWAKEUP;
5140 cv_broadcast(&sq->sq_wait);
5141 }
5142 sq->sq_flags = flags;
5143 mutex_exit(SQLOCK(sq));
5144 if (flags & SQ_QUEUED)
5145 return (1);
5146 return (0);
5147 }
5148
5149 /*
5150 * Empty all the messages on a syncq.
5151 *
5152 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5153 * sq_putlocks are used.
5154 */
5155 static void
emptysq(syncq_t * sq)5156 emptysq(syncq_t *sq)
5157 {
5158 uint16_t flags;
5159
5160 mutex_enter(SQLOCK(sq));
5161 flags = sq->sq_flags;
5162 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5163 /*
5164 * To prevent potential recursive invocation of drain_syncq we
5165 * do not call drain_syncq if count is non-zero.
5166 */
5167 if (sq->sq_count == 0) {
5168 /* drain_syncq() drops SQLOCK */
5169 drain_syncq(sq);
5170 return;
5171 } else
5172 sqenable(sq);
5173 }
5174 mutex_exit(SQLOCK(sq));
5175 }
5176
5177 /*
5178 * Ordered insert while removing duplicates.
5179 */
5180 static void
sqlist_insert(sqlist_t * sqlist,syncq_t * sqp)5181 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5182 {
5183 syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5184
5185 prev_sqlpp = &sqlist->sqlist_head;
5186 while ((sqlp = *prev_sqlpp) != NULL) {
5187 if (sqlp->sql_sq >= sqp) {
5188 if (sqlp->sql_sq == sqp) /* duplicate */
5189 return;
5190 break;
5191 }
5192 prev_sqlpp = &sqlp->sql_next;
5193 }
5194 new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5195 ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5196 new_sqlp->sql_next = sqlp;
5197 new_sqlp->sql_sq = sqp;
5198 *prev_sqlpp = new_sqlp;
5199 }
5200
5201 /*
5202 * Walk the write side queues until we hit either the driver
5203 * or a twist in the stream (_SAMESTR will return false in both
5204 * these cases) then turn around and walk the read side queues
5205 * back up to the stream head.
5206 */
5207 static void
sqlist_insertall(sqlist_t * sqlist,queue_t * q)5208 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5209 {
5210 while (q != NULL) {
5211 sqlist_insert(sqlist, q->q_syncq);
5212
5213 if (_SAMESTR(q))
5214 q = q->q_next;
5215 else if (!(q->q_flag & QREADR))
5216 q = _RD(q);
5217 else
5218 q = NULL;
5219 }
5220 }
5221
5222 /*
5223 * Allocate and build a list of all syncqs in a stream and the syncq(s)
5224 * associated with the "q" parameter. The resulting list is sorted in a
5225 * canonical order and is free of duplicates.
5226 * Assumes the passed queue is a _RD(q).
5227 */
5228 static sqlist_t *
sqlist_build(queue_t * q,struct stdata * stp,boolean_t do_twist)5229 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5230 {
5231 sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5232
5233 /*
5234 * start with the current queue/qpair
5235 */
5236 ASSERT(q->q_flag & QREADR);
5237
5238 sqlist_insert(sqlist, q->q_syncq);
5239 sqlist_insert(sqlist, _WR(q)->q_syncq);
5240
5241 sqlist_insertall(sqlist, stp->sd_wrq);
5242 if (do_twist)
5243 sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5244
5245 return (sqlist);
5246 }
5247
5248 static sqlist_t *
sqlist_alloc(struct stdata * stp,int kmflag)5249 sqlist_alloc(struct stdata *stp, int kmflag)
5250 {
5251 size_t sqlist_size;
5252 sqlist_t *sqlist;
5253
5254 /*
5255 * Allocate 2 syncql_t's for each pushed module. Note that
5256 * the sqlist_t structure already has 4 syncql_t's built in:
5257 * 2 for the stream head, and 2 for the driver/other stream head.
5258 */
5259 sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5260 sizeof (sqlist_t);
5261 if (STRMATED(stp))
5262 sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5263 sqlist = kmem_alloc(sqlist_size, kmflag);
5264
5265 sqlist->sqlist_head = NULL;
5266 sqlist->sqlist_size = sqlist_size;
5267 sqlist->sqlist_index = 0;
5268
5269 return (sqlist);
5270 }
5271
5272 /*
5273 * Free the list created by sqlist_alloc()
5274 */
5275 static void
sqlist_free(sqlist_t * sqlist)5276 sqlist_free(sqlist_t *sqlist)
5277 {
5278 kmem_free(sqlist, sqlist->sqlist_size);
5279 }
5280
5281 /*
5282 * Prevent any new entries into any syncq in this stream.
5283 * Used by freezestr.
5284 */
5285 void
strblock(queue_t * q)5286 strblock(queue_t *q)
5287 {
5288 struct stdata *stp;
5289 syncql_t *sql;
5290 sqlist_t *sqlist;
5291
5292 q = _RD(q);
5293
5294 stp = STREAM(q);
5295 ASSERT(stp != NULL);
5296
5297 /*
5298 * Get a sorted list with all the duplicates removed containing
5299 * all the syncqs referenced by this stream.
5300 */
5301 sqlist = sqlist_build(q, stp, B_FALSE);
5302 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5303 blocksq(sql->sql_sq, SQ_FROZEN, -1);
5304 sqlist_free(sqlist);
5305 }
5306
5307 /*
5308 * Release the block on new entries into this stream
5309 */
5310 void
strunblock(queue_t * q)5311 strunblock(queue_t *q)
5312 {
5313 struct stdata *stp;
5314 syncql_t *sql;
5315 sqlist_t *sqlist;
5316 int drain_needed;
5317
5318 q = _RD(q);
5319
5320 /*
5321 * Get a sorted list with all the duplicates removed containing
5322 * all the syncqs referenced by this stream.
5323 * Have to drop the SQ_FROZEN flag on all the syncqs before
5324 * starting to drain them; otherwise the draining might
5325 * cause a freezestr in some module on the stream (which
5326 * would deadlock).
5327 */
5328 stp = STREAM(q);
5329 ASSERT(stp != NULL);
5330 sqlist = sqlist_build(q, stp, B_FALSE);
5331 drain_needed = 0;
5332 for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5333 drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5334 if (drain_needed) {
5335 for (sql = sqlist->sqlist_head; sql != NULL;
5336 sql = sql->sql_next)
5337 emptysq(sql->sql_sq);
5338 }
5339 sqlist_free(sqlist);
5340 }
5341
5342 #ifdef DEBUG
5343 static int
qprocsareon(queue_t * rq)5344 qprocsareon(queue_t *rq)
5345 {
5346 if (rq->q_next == NULL)
5347 return (0);
5348 return (_WR(rq->q_next)->q_next == _WR(rq));
5349 }
5350
5351 int
qclaimed(queue_t * q)5352 qclaimed(queue_t *q)
5353 {
5354 uint_t count;
5355
5356 count = q->q_syncq->sq_count;
5357 SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5358 return (count != 0);
5359 }
5360
5361 /*
5362 * Check if anyone has frozen this stream with freezestr
5363 */
5364 int
frozenstr(queue_t * q)5365 frozenstr(queue_t *q)
5366 {
5367 return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5368 }
5369 #endif /* DEBUG */
5370
5371 /*
5372 * Enter a queue.
5373 * Obsoleted interface. Should not be used.
5374 */
5375 void
enterq(queue_t * q)5376 enterq(queue_t *q)
5377 {
5378 entersq(q->q_syncq, SQ_CALLBACK);
5379 }
5380
5381 void
leaveq(queue_t * q)5382 leaveq(queue_t *q)
5383 {
5384 leavesq(q->q_syncq, SQ_CALLBACK);
5385 }
5386
5387 /*
5388 * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5389 * to check.
5390 * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5391 * calls and the running of open, close and service procedures.
5392 *
5393 * If c_inner bit is set no need to grab sq_putlocks since we don't care
5394 * if other threads have entered or are entering put entry point.
5395 *
5396 * If c_inner bit is set it might have been possible to use
5397 * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5398 * open/close path for IP) but since the count may need to be decremented in
5399 * qwait() we wouldn't know which counter to decrement. Currently counter is
5400 * selected by current cpu_seqid and current CPU can change at any moment. XXX
5401 * in the future we might use curthread id bits to select the counter and this
5402 * would stay constant across routine calls.
5403 */
5404 void
entersq(syncq_t * sq,int entrypoint)5405 entersq(syncq_t *sq, int entrypoint)
5406 {
5407 uint16_t count = 0;
5408 uint16_t flags;
5409 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5410 uint16_t type;
5411 uint_t c_inner = entrypoint & SQ_CI;
5412 uint_t c_outer = entrypoint & SQ_CO;
5413
5414 /*
5415 * Increment ref count to keep closes out of this queue.
5416 */
5417 ASSERT(sq);
5418 ASSERT(c_inner && c_outer);
5419 mutex_enter(SQLOCK(sq));
5420 flags = sq->sq_flags;
5421 type = sq->sq_type;
5422 if (!(type & c_inner)) {
5423 /* Make sure all putcounts now use slowlock. */
5424 count = sq->sq_count;
5425 SQ_PUTLOCKS_ENTER(sq);
5426 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5427 SUM_SQ_PUTCOUNTS(sq, count);
5428 sq->sq_needexcl++;
5429 ASSERT(sq->sq_needexcl != 0); /* wraparound */
5430 waitflags |= SQ_MESSAGES;
5431 }
5432 /*
5433 * Wait until we can enter the inner perimeter.
5434 * If we want exclusive access we wait until sq_count is 0.
5435 * We have to do this before entering the outer perimeter in order
5436 * to preserve put/close message ordering.
5437 */
5438 while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5439 sq->sq_flags = flags | SQ_WANTWAKEUP;
5440 if (!(type & c_inner)) {
5441 SQ_PUTLOCKS_EXIT(sq);
5442 }
5443 cv_wait(&sq->sq_wait, SQLOCK(sq));
5444 if (!(type & c_inner)) {
5445 count = sq->sq_count;
5446 SQ_PUTLOCKS_ENTER(sq);
5447 SUM_SQ_PUTCOUNTS(sq, count);
5448 }
5449 flags = sq->sq_flags;
5450 }
5451
5452 if (!(type & c_inner)) {
5453 ASSERT(sq->sq_needexcl > 0);
5454 sq->sq_needexcl--;
5455 if (sq->sq_needexcl == 0) {
5456 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5457 }
5458 }
5459
5460 /* Check if we need to enter the outer perimeter */
5461 if (!(type & c_outer)) {
5462 /*
5463 * We have to enter the outer perimeter exclusively before
5464 * we can increment sq_count to avoid deadlock. This implies
5465 * that we have to re-check sq_flags and sq_count.
5466 *
5467 * is it possible to have c_inner set when c_outer is not set?
5468 */
5469 if (!(type & c_inner)) {
5470 SQ_PUTLOCKS_EXIT(sq);
5471 }
5472 mutex_exit(SQLOCK(sq));
5473 outer_enter(sq->sq_outer, SQ_GOAWAY);
5474 mutex_enter(SQLOCK(sq));
5475 flags = sq->sq_flags;
5476 /*
5477 * there should be no need to recheck sq_putcounts
5478 * because outer_enter() has already waited for them to clear
5479 * after setting SQ_WRITER.
5480 */
5481 count = sq->sq_count;
5482 #ifdef DEBUG
5483 /*
5484 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5485 * of doing an ASSERT internally. Others should do
5486 * something like
5487 * ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5488 * without the need to #ifdef DEBUG it.
5489 */
5490 SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5491 #endif
5492 while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5493 (!(type & c_inner) && count != 0)) {
5494 sq->sq_flags = flags | SQ_WANTWAKEUP;
5495 cv_wait(&sq->sq_wait, SQLOCK(sq));
5496 count = sq->sq_count;
5497 flags = sq->sq_flags;
5498 }
5499 }
5500
5501 sq->sq_count++;
5502 ASSERT(sq->sq_count != 0); /* Wraparound */
5503 if (!(type & c_inner)) {
5504 /* Exclusive entry */
5505 ASSERT(sq->sq_count == 1);
5506 sq->sq_flags |= SQ_EXCL;
5507 if (type & c_outer) {
5508 SQ_PUTLOCKS_EXIT(sq);
5509 }
5510 }
5511 mutex_exit(SQLOCK(sq));
5512 }
5513
5514 /*
5515 * Leave a syncq. Announce to framework that closes may proceed.
5516 * c_inner and c_outer specify which concurrency bits to check.
5517 *
5518 * Must never be called from driver or module put entry point.
5519 *
5520 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5521 * sq_putlocks are used.
5522 */
5523 void
leavesq(syncq_t * sq,int entrypoint)5524 leavesq(syncq_t *sq, int entrypoint)
5525 {
5526 uint16_t flags;
5527 uint16_t type;
5528 uint_t c_outer = entrypoint & SQ_CO;
5529 #ifdef DEBUG
5530 uint_t c_inner = entrypoint & SQ_CI;
5531 #endif
5532
5533 /*
5534 * Decrement ref count, drain the syncq if possible, and wake up
5535 * any waiting close.
5536 */
5537 ASSERT(sq);
5538 ASSERT(c_inner && c_outer);
5539 mutex_enter(SQLOCK(sq));
5540 flags = sq->sq_flags;
5541 type = sq->sq_type;
5542 if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5543
5544 if (flags & SQ_WANTWAKEUP) {
5545 flags &= ~SQ_WANTWAKEUP;
5546 cv_broadcast(&sq->sq_wait);
5547 }
5548 if (flags & SQ_WANTEXWAKEUP) {
5549 flags &= ~SQ_WANTEXWAKEUP;
5550 cv_broadcast(&sq->sq_exitwait);
5551 }
5552
5553 if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5554 /*
5555 * The syncq needs to be drained. "Exit" the syncq
5556 * before calling drain_syncq.
5557 */
5558 ASSERT(sq->sq_count != 0);
5559 sq->sq_count--;
5560 ASSERT((flags & SQ_EXCL) || (type & c_inner));
5561 sq->sq_flags = flags & ~SQ_EXCL;
5562 drain_syncq(sq);
5563 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5564 /* Check if we need to exit the outer perimeter */
5565 /* XXX will this ever be true? */
5566 if (!(type & c_outer))
5567 outer_exit(sq->sq_outer);
5568 return;
5569 }
5570 }
5571 ASSERT(sq->sq_count != 0);
5572 sq->sq_count--;
5573 ASSERT((flags & SQ_EXCL) || (type & c_inner));
5574 sq->sq_flags = flags & ~SQ_EXCL;
5575 mutex_exit(SQLOCK(sq));
5576
5577 /* Check if we need to exit the outer perimeter */
5578 if (!(sq->sq_type & c_outer))
5579 outer_exit(sq->sq_outer);
5580 }
5581
5582 /*
5583 * Prevent q_next from changing in this stream by incrementing sq_count.
5584 *
5585 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5586 * sq_putlocks are used.
5587 */
5588 void
claimq(queue_t * qp)5589 claimq(queue_t *qp)
5590 {
5591 syncq_t *sq = qp->q_syncq;
5592
5593 mutex_enter(SQLOCK(sq));
5594 sq->sq_count++;
5595 ASSERT(sq->sq_count != 0); /* Wraparound */
5596 mutex_exit(SQLOCK(sq));
5597 }
5598
5599 /*
5600 * Undo claimq.
5601 *
5602 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5603 * sq_putlocks are used.
5604 */
5605 void
releaseq(queue_t * qp)5606 releaseq(queue_t *qp)
5607 {
5608 syncq_t *sq = qp->q_syncq;
5609 uint16_t flags;
5610
5611 mutex_enter(SQLOCK(sq));
5612 ASSERT(sq->sq_count > 0);
5613 sq->sq_count--;
5614
5615 flags = sq->sq_flags;
5616 if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5617 if (flags & SQ_WANTWAKEUP) {
5618 flags &= ~SQ_WANTWAKEUP;
5619 cv_broadcast(&sq->sq_wait);
5620 }
5621 sq->sq_flags = flags;
5622 if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5623 /*
5624 * To prevent potential recursive invocation of
5625 * drain_syncq we do not call drain_syncq if count is
5626 * non-zero.
5627 */
5628 if (sq->sq_count == 0) {
5629 drain_syncq(sq);
5630 return;
5631 } else
5632 sqenable(sq);
5633 }
5634 }
5635 mutex_exit(SQLOCK(sq));
5636 }
5637
5638 /*
5639 * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5640 */
5641 void
claimstr(queue_t * qp)5642 claimstr(queue_t *qp)
5643 {
5644 struct stdata *stp = STREAM(qp);
5645
5646 mutex_enter(&stp->sd_reflock);
5647 stp->sd_refcnt++;
5648 ASSERT(stp->sd_refcnt != 0); /* Wraparound */
5649 mutex_exit(&stp->sd_reflock);
5650 }
5651
5652 /*
5653 * Undo claimstr.
5654 */
5655 void
releasestr(queue_t * qp)5656 releasestr(queue_t *qp)
5657 {
5658 struct stdata *stp = STREAM(qp);
5659
5660 mutex_enter(&stp->sd_reflock);
5661 ASSERT(stp->sd_refcnt != 0);
5662 if (--stp->sd_refcnt == 0)
5663 cv_broadcast(&stp->sd_refmonitor);
5664 mutex_exit(&stp->sd_reflock);
5665 }
5666
5667 static syncq_t *
new_syncq(void)5668 new_syncq(void)
5669 {
5670 return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5671 }
5672
5673 static void
free_syncq(syncq_t * sq)5674 free_syncq(syncq_t *sq)
5675 {
5676 ASSERT(sq->sq_head == NULL);
5677 ASSERT(sq->sq_outer == NULL);
5678 ASSERT(sq->sq_callbpend == NULL);
5679 ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5680 (sq->sq_onext == sq && sq->sq_oprev == sq));
5681
5682 if (sq->sq_ciputctrl != NULL) {
5683 ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5684 SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5685 sq->sq_nciputctrl, 0);
5686 ASSERT(ciputctrl_cache != NULL);
5687 kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5688 }
5689
5690 sq->sq_tail = NULL;
5691 sq->sq_evhead = NULL;
5692 sq->sq_evtail = NULL;
5693 sq->sq_ciputctrl = NULL;
5694 sq->sq_nciputctrl = 0;
5695 sq->sq_count = 0;
5696 sq->sq_rmqcount = 0;
5697 sq->sq_callbflags = 0;
5698 sq->sq_cancelid = 0;
5699 sq->sq_next = NULL;
5700 sq->sq_needexcl = 0;
5701 sq->sq_svcflags = 0;
5702 sq->sq_nqueues = 0;
5703 sq->sq_pri = 0;
5704 sq->sq_onext = NULL;
5705 sq->sq_oprev = NULL;
5706 sq->sq_flags = 0;
5707 sq->sq_type = 0;
5708 sq->sq_servcount = 0;
5709
5710 kmem_cache_free(syncq_cache, sq);
5711 }
5712
5713 /* Outer perimeter code */
5714
5715 /*
5716 * The outer syncq uses the fields and flags in the syncq slightly
5717 * differently from the inner syncqs.
5718 * sq_count Incremented when there are pending or running
5719 * writers at the outer perimeter to prevent the set of
5720 * inner syncqs that belong to the outer perimeter from
5721 * changing.
5722 * sq_head/tail List of deferred qwriter(OUTER) operations.
5723 *
5724 * SQ_BLOCKED Set to prevent traversing of sq_next,sq_prev while
5725 * inner syncqs are added to or removed from the
5726 * outer perimeter.
5727 * SQ_QUEUED sq_head/tail has messages or events queued.
5728 *
5729 * SQ_WRITER A thread is currently traversing all the inner syncqs
5730 * setting the SQ_WRITER flag.
5731 */
5732
5733 /*
5734 * Get write access at the outer perimeter.
5735 * Note that read access is done by entersq, putnext, and put by simply
5736 * incrementing sq_count in the inner syncq.
5737 *
5738 * Waits until "flags" is no longer set in the outer to prevent multiple
5739 * threads from having write access at the same time. SQ_WRITER has to be part
5740 * of "flags".
5741 *
5742 * Increases sq_count on the outer syncq to keep away outer_insert/remove
5743 * until the outer_exit is finished.
5744 *
5745 * outer_enter is vulnerable to starvation since it does not prevent new
5746 * threads from entering the inner syncqs while it is waiting for sq_count to
5747 * go to zero.
5748 */
5749 void
outer_enter(syncq_t * outer,uint16_t flags)5750 outer_enter(syncq_t *outer, uint16_t flags)
5751 {
5752 syncq_t *sq;
5753 int wait_needed;
5754 uint16_t count;
5755
5756 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5757 outer->sq_oprev != NULL);
5758 ASSERT(flags & SQ_WRITER);
5759
5760 retry:
5761 mutex_enter(SQLOCK(outer));
5762 while (outer->sq_flags & flags) {
5763 outer->sq_flags |= SQ_WANTWAKEUP;
5764 cv_wait(&outer->sq_wait, SQLOCK(outer));
5765 }
5766
5767 ASSERT(!(outer->sq_flags & SQ_WRITER));
5768 outer->sq_flags |= SQ_WRITER;
5769 outer->sq_count++;
5770 ASSERT(outer->sq_count != 0); /* wraparound */
5771 wait_needed = 0;
5772 /*
5773 * Set SQ_WRITER on all the inner syncqs while holding
5774 * the SQLOCK on the outer syncq. This ensures that the changing
5775 * of SQ_WRITER is atomic under the outer SQLOCK.
5776 */
5777 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5778 mutex_enter(SQLOCK(sq));
5779 count = sq->sq_count;
5780 SQ_PUTLOCKS_ENTER(sq);
5781 sq->sq_flags |= SQ_WRITER;
5782 SUM_SQ_PUTCOUNTS(sq, count);
5783 if (count != 0)
5784 wait_needed = 1;
5785 SQ_PUTLOCKS_EXIT(sq);
5786 mutex_exit(SQLOCK(sq));
5787 }
5788 mutex_exit(SQLOCK(outer));
5789
5790 /*
5791 * Get everybody out of the syncqs sequentially.
5792 * Note that we don't actually need to acquire the PUTLOCKS, since
5793 * we have already cleared the fastbit, and set QWRITER. By
5794 * definition, the count can not increase since putnext will
5795 * take the slowlock path (and the purpose of acquiring the
5796 * putlocks was to make sure it didn't increase while we were
5797 * waiting).
5798 *
5799 * Note that we still acquire the PUTLOCKS to be safe.
5800 */
5801 if (wait_needed) {
5802 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5803 mutex_enter(SQLOCK(sq));
5804 count = sq->sq_count;
5805 SQ_PUTLOCKS_ENTER(sq);
5806 SUM_SQ_PUTCOUNTS(sq, count);
5807 while (count != 0) {
5808 sq->sq_flags |= SQ_WANTWAKEUP;
5809 SQ_PUTLOCKS_EXIT(sq);
5810 cv_wait(&sq->sq_wait, SQLOCK(sq));
5811 count = sq->sq_count;
5812 SQ_PUTLOCKS_ENTER(sq);
5813 SUM_SQ_PUTCOUNTS(sq, count);
5814 }
5815 SQ_PUTLOCKS_EXIT(sq);
5816 mutex_exit(SQLOCK(sq));
5817 }
5818 /*
5819 * Verify that none of the flags got set while we
5820 * were waiting for the sq_counts to drop.
5821 * If this happens we exit and retry entering the
5822 * outer perimeter.
5823 */
5824 mutex_enter(SQLOCK(outer));
5825 if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5826 mutex_exit(SQLOCK(outer));
5827 outer_exit(outer);
5828 goto retry;
5829 }
5830 mutex_exit(SQLOCK(outer));
5831 }
5832 }
5833
5834 /*
5835 * Drop the write access at the outer perimeter.
5836 * Read access is dropped implicitly (by putnext, put, and leavesq) by
5837 * decrementing sq_count.
5838 */
5839 void
outer_exit(syncq_t * outer)5840 outer_exit(syncq_t *outer)
5841 {
5842 syncq_t *sq;
5843 int drain_needed;
5844 uint16_t flags;
5845
5846 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5847 outer->sq_oprev != NULL);
5848 ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5849
5850 /*
5851 * Atomically (from the perspective of threads calling become_writer)
5852 * drop the write access at the outer perimeter by holding
5853 * SQLOCK(outer) across all the dropsq calls and the resetting of
5854 * SQ_WRITER.
5855 * This defines a locking order between the outer perimeter
5856 * SQLOCK and the inner perimeter SQLOCKs.
5857 */
5858 mutex_enter(SQLOCK(outer));
5859 flags = outer->sq_flags;
5860 ASSERT(outer->sq_flags & SQ_WRITER);
5861 if (flags & SQ_QUEUED) {
5862 write_now(outer);
5863 flags = outer->sq_flags;
5864 }
5865
5866 /*
5867 * sq_onext is stable since sq_count has not yet been decreased.
5868 * Reset the SQ_WRITER flags in all syncqs.
5869 * After dropping SQ_WRITER on the outer syncq we empty all the
5870 * inner syncqs.
5871 */
5872 drain_needed = 0;
5873 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5874 drain_needed += dropsq(sq, SQ_WRITER);
5875 ASSERT(!(outer->sq_flags & SQ_QUEUED));
5876 flags &= ~SQ_WRITER;
5877 if (drain_needed) {
5878 outer->sq_flags = flags;
5879 mutex_exit(SQLOCK(outer));
5880 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5881 emptysq(sq);
5882 mutex_enter(SQLOCK(outer));
5883 flags = outer->sq_flags;
5884 }
5885 if (flags & SQ_WANTWAKEUP) {
5886 flags &= ~SQ_WANTWAKEUP;
5887 cv_broadcast(&outer->sq_wait);
5888 }
5889 outer->sq_flags = flags;
5890 ASSERT(outer->sq_count > 0);
5891 outer->sq_count--;
5892 mutex_exit(SQLOCK(outer));
5893 }
5894
5895 /*
5896 * Add another syncq to an outer perimeter.
5897 * Block out all other access to the outer perimeter while it is being
5898 * changed using blocksq.
5899 * Assumes that the caller has *not* done an outer_enter.
5900 *
5901 * Vulnerable to starvation in blocksq.
5902 */
5903 static void
outer_insert(syncq_t * outer,syncq_t * sq)5904 outer_insert(syncq_t *outer, syncq_t *sq)
5905 {
5906 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5907 outer->sq_oprev != NULL);
5908 ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5909 sq->sq_oprev == NULL); /* Can't be in an outer perimeter */
5910
5911 /* Get exclusive access to the outer perimeter list */
5912 blocksq(outer, SQ_BLOCKED, 0);
5913 ASSERT(outer->sq_flags & SQ_BLOCKED);
5914 ASSERT(!(outer->sq_flags & SQ_WRITER));
5915
5916 mutex_enter(SQLOCK(sq));
5917 sq->sq_outer = outer;
5918 outer->sq_onext->sq_oprev = sq;
5919 sq->sq_onext = outer->sq_onext;
5920 outer->sq_onext = sq;
5921 sq->sq_oprev = outer;
5922 mutex_exit(SQLOCK(sq));
5923 unblocksq(outer, SQ_BLOCKED, 1);
5924 }
5925
5926 /*
5927 * Remove a syncq from an outer perimeter.
5928 * Block out all other access to the outer perimeter while it is being
5929 * changed using blocksq.
5930 * Assumes that the caller has *not* done an outer_enter.
5931 *
5932 * Vulnerable to starvation in blocksq.
5933 */
5934 static void
outer_remove(syncq_t * outer,syncq_t * sq)5935 outer_remove(syncq_t *outer, syncq_t *sq)
5936 {
5937 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5938 outer->sq_oprev != NULL);
5939 ASSERT(sq->sq_outer == outer);
5940
5941 /* Get exclusive access to the outer perimeter list */
5942 blocksq(outer, SQ_BLOCKED, 0);
5943 ASSERT(outer->sq_flags & SQ_BLOCKED);
5944 ASSERT(!(outer->sq_flags & SQ_WRITER));
5945
5946 mutex_enter(SQLOCK(sq));
5947 sq->sq_outer = NULL;
5948 sq->sq_onext->sq_oprev = sq->sq_oprev;
5949 sq->sq_oprev->sq_onext = sq->sq_onext;
5950 sq->sq_oprev = sq->sq_onext = NULL;
5951 mutex_exit(SQLOCK(sq));
5952 unblocksq(outer, SQ_BLOCKED, 1);
5953 }
5954
5955 /*
5956 * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5957 * If this is the first callback for this outer perimeter then add
5958 * this outer perimeter to the list of outer perimeters that
5959 * the qwriter_outer_thread will process.
5960 *
5961 * Increments sq_count in the outer syncq to prevent the membership
5962 * of the outer perimeter (in terms of inner syncqs) to change while
5963 * the callback is pending.
5964 */
5965 static void
queue_writer(syncq_t * outer,void (* func)(),queue_t * q,mblk_t * mp)5966 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5967 {
5968 ASSERT(MUTEX_HELD(SQLOCK(outer)));
5969
5970 mp->b_prev = (mblk_t *)func;
5971 mp->b_queue = q;
5972 mp->b_next = NULL;
5973 outer->sq_count++; /* Decremented when dequeued */
5974 ASSERT(outer->sq_count != 0); /* Wraparound */
5975 if (outer->sq_evhead == NULL) {
5976 /* First message. */
5977 outer->sq_evhead = outer->sq_evtail = mp;
5978 outer->sq_flags |= SQ_EVENTS;
5979 mutex_exit(SQLOCK(outer));
5980 STRSTAT(qwr_outer);
5981 (void) taskq_dispatch(streams_taskq,
5982 (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5983 } else {
5984 ASSERT(outer->sq_flags & SQ_EVENTS);
5985 outer->sq_evtail->b_next = mp;
5986 outer->sq_evtail = mp;
5987 mutex_exit(SQLOCK(outer));
5988 }
5989 }
5990
5991 /*
5992 * Try and upgrade to write access at the outer perimeter. If this can
5993 * not be done without blocking then queue the callback to be done
5994 * by the qwriter_outer_thread.
5995 *
5996 * This routine can only be called from put or service procedures plus
5997 * asynchronous callback routines that have properly entered the queue (with
5998 * entersq). Thus qwriter(OUTER) assumes the caller has one claim on the syncq
5999 * associated with q.
6000 */
6001 void
qwriter_outer(queue_t * q,mblk_t * mp,void (* func)())6002 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
6003 {
6004 syncq_t *osq, *sq, *outer;
6005 int failed;
6006 uint16_t flags;
6007
6008 osq = q->q_syncq;
6009 outer = osq->sq_outer;
6010 if (outer == NULL)
6011 panic("qwriter(PERIM_OUTER): no outer perimeter");
6012 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6013 outer->sq_oprev != NULL);
6014
6015 mutex_enter(SQLOCK(outer));
6016 flags = outer->sq_flags;
6017 /*
6018 * If some thread is traversing sq_next, or if we are blocked by
6019 * outer_insert or outer_remove, or if the we already have queued
6020 * callbacks, then queue this callback for later processing.
6021 *
6022 * Also queue the qwriter for an interrupt thread in order
6023 * to reduce the time spent running at high IPL.
6024 * to identify there are events.
6025 */
6026 if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
6027 /*
6028 * Queue the become_writer request.
6029 * The queueing is atomic under SQLOCK(outer) in order
6030 * to synchronize with outer_exit.
6031 * queue_writer will drop the outer SQLOCK
6032 */
6033 if (flags & SQ_BLOCKED) {
6034 /* Must set SQ_WRITER on inner perimeter */
6035 mutex_enter(SQLOCK(osq));
6036 osq->sq_flags |= SQ_WRITER;
6037 mutex_exit(SQLOCK(osq));
6038 } else {
6039 if (!(flags & SQ_WRITER)) {
6040 /*
6041 * The outer could have been SQ_BLOCKED thus
6042 * SQ_WRITER might not be set on the inner.
6043 */
6044 mutex_enter(SQLOCK(osq));
6045 osq->sq_flags |= SQ_WRITER;
6046 mutex_exit(SQLOCK(osq));
6047 }
6048 ASSERT(osq->sq_flags & SQ_WRITER);
6049 }
6050 queue_writer(outer, func, q, mp);
6051 return;
6052 }
6053 /*
6054 * We are half-way to exclusive access to the outer perimeter.
6055 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6056 * while the inner syncqs are traversed.
6057 */
6058 outer->sq_count++;
6059 ASSERT(outer->sq_count != 0); /* wraparound */
6060 flags |= SQ_WRITER;
6061 /*
6062 * Check if we can run the function immediately. Mark all
6063 * syncqs with the writer flag to prevent new entries into
6064 * put and service procedures.
6065 *
6066 * Set SQ_WRITER on all the inner syncqs while holding
6067 * the SQLOCK on the outer syncq. This ensures that the changing
6068 * of SQ_WRITER is atomic under the outer SQLOCK.
6069 */
6070 failed = 0;
6071 for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6072 uint16_t count;
6073 uint_t maxcnt = (sq == osq) ? 1 : 0;
6074
6075 mutex_enter(SQLOCK(sq));
6076 count = sq->sq_count;
6077 SQ_PUTLOCKS_ENTER(sq);
6078 SUM_SQ_PUTCOUNTS(sq, count);
6079 if (sq->sq_count > maxcnt)
6080 failed = 1;
6081 sq->sq_flags |= SQ_WRITER;
6082 SQ_PUTLOCKS_EXIT(sq);
6083 mutex_exit(SQLOCK(sq));
6084 }
6085 if (failed) {
6086 /*
6087 * Some other thread has a read claim on the outer perimeter.
6088 * Queue the callback for deferred processing.
6089 *
6090 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6091 * so that other qwriter(OUTER) calls will queue their
6092 * callbacks as well. queue_writer increments sq_count so we
6093 * decrement to compensate for the our increment.
6094 *
6095 * Dropping SQ_WRITER enables the writer thread to work
6096 * on this outer perimeter.
6097 */
6098 outer->sq_flags = flags;
6099 queue_writer(outer, func, q, mp);
6100 /* queue_writer dropper the lock */
6101 mutex_enter(SQLOCK(outer));
6102 ASSERT(outer->sq_count > 0);
6103 outer->sq_count--;
6104 ASSERT(outer->sq_flags & SQ_WRITER);
6105 flags = outer->sq_flags;
6106 flags &= ~SQ_WRITER;
6107 if (flags & SQ_WANTWAKEUP) {
6108 flags &= ~SQ_WANTWAKEUP;
6109 cv_broadcast(&outer->sq_wait);
6110 }
6111 outer->sq_flags = flags;
6112 mutex_exit(SQLOCK(outer));
6113 return;
6114 } else {
6115 outer->sq_flags = flags;
6116 mutex_exit(SQLOCK(outer));
6117 }
6118
6119 /* Can run it immediately */
6120 (*func)(q, mp);
6121
6122 outer_exit(outer);
6123 }
6124
6125 /*
6126 * Dequeue all writer callbacks from the outer perimeter and run them.
6127 */
6128 static void
write_now(syncq_t * outer)6129 write_now(syncq_t *outer)
6130 {
6131 mblk_t *mp;
6132 queue_t *q;
6133 void (*func)();
6134
6135 ASSERT(MUTEX_HELD(SQLOCK(outer)));
6136 ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6137 outer->sq_oprev != NULL);
6138 while ((mp = outer->sq_evhead) != NULL) {
6139 /*
6140 * queues cannot be placed on the queuelist on the outer
6141 * perimeter.
6142 */
6143 ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6144 ASSERT((outer->sq_flags & SQ_EVENTS));
6145
6146 outer->sq_evhead = mp->b_next;
6147 if (outer->sq_evhead == NULL) {
6148 outer->sq_evtail = NULL;
6149 outer->sq_flags &= ~SQ_EVENTS;
6150 }
6151 ASSERT(outer->sq_count != 0);
6152 outer->sq_count--; /* Incremented when enqueued. */
6153 mutex_exit(SQLOCK(outer));
6154 /*
6155 * Drop the message if the queue is closing.
6156 * Make sure that the queue is "claimed" when the callback
6157 * is run in order to satisfy various ASSERTs.
6158 */
6159 q = mp->b_queue;
6160 func = (void (*)())mp->b_prev;
6161 ASSERT(func != NULL);
6162 mp->b_next = mp->b_prev = NULL;
6163 if (q->q_flag & QWCLOSE) {
6164 freemsg(mp);
6165 } else {
6166 claimq(q);
6167 (*func)(q, mp);
6168 releaseq(q);
6169 }
6170 mutex_enter(SQLOCK(outer));
6171 }
6172 ASSERT(MUTEX_HELD(SQLOCK(outer)));
6173 }
6174
6175 /*
6176 * The list of messages on the inner syncq is effectively hashed
6177 * by destination queue. These destination queues are doubly
6178 * linked lists (hopefully) in priority order. Messages are then
6179 * put on the queue referenced by the q_sqhead/q_sqtail elements.
6180 * Additional messages are linked together by the b_next/b_prev
6181 * elements in the mblk, with (similar to putq()) the first message
6182 * having a NULL b_prev and the last message having a NULL b_next.
6183 *
6184 * Events, such as qwriter callbacks, are put onto a list in FIFO
6185 * order referenced by sq_evhead, and sq_evtail. This is a singly
6186 * linked list, and messages here MUST be processed in the order queued.
6187 */
6188
6189 /*
6190 * Run the events on the syncq event list (sq_evhead).
6191 * Assumes there is only one claim on the syncq, it is
6192 * already exclusive (SQ_EXCL set), and the SQLOCK held.
6193 * Messages here are processed in order, with the SQ_EXCL bit
6194 * held all the way through till the last message is processed.
6195 */
6196 void
sq_run_events(syncq_t * sq)6197 sq_run_events(syncq_t *sq)
6198 {
6199 mblk_t *bp;
6200 queue_t *qp;
6201 uint16_t flags = sq->sq_flags;
6202 void (*func)();
6203
6204 ASSERT(MUTEX_HELD(SQLOCK(sq)));
6205 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6206 sq->sq_oprev == NULL) ||
6207 (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6208 sq->sq_oprev != NULL));
6209
6210 ASSERT(flags & SQ_EXCL);
6211 ASSERT(sq->sq_count == 1);
6212
6213 /*
6214 * We need to process all of the events on this list. It
6215 * is possible that new events will be added while we are
6216 * away processing a callback, so on every loop, we start
6217 * back at the beginning of the list.
6218 */
6219 /*
6220 * We have to reaccess sq_evhead since there is a
6221 * possibility of a new entry while we were running
6222 * the callback.
6223 */
6224 for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6225 ASSERT(bp->b_queue->q_syncq == sq);
6226 ASSERT(sq->sq_flags & SQ_EVENTS);
6227
6228 qp = bp->b_queue;
6229 func = (void (*)())bp->b_prev;
6230 ASSERT(func != NULL);
6231
6232 /*
6233 * Messages from the event queue must be taken off in
6234 * FIFO order.
6235 */
6236 ASSERT(sq->sq_evhead == bp);
6237 sq->sq_evhead = bp->b_next;
6238
6239 if (bp->b_next == NULL) {
6240 /* Deleting last */
6241 ASSERT(sq->sq_evtail == bp);
6242 sq->sq_evtail = NULL;
6243 sq->sq_flags &= ~SQ_EVENTS;
6244 }
6245 bp->b_prev = bp->b_next = NULL;
6246 ASSERT(bp->b_datap->db_ref != 0);
6247
6248 mutex_exit(SQLOCK(sq));
6249
6250 (*func)(qp, bp);
6251
6252 mutex_enter(SQLOCK(sq));
6253 /*
6254 * re-read the flags, since they could have changed.
6255 */
6256 flags = sq->sq_flags;
6257 ASSERT(flags & SQ_EXCL);
6258 }
6259 ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6260 ASSERT(!(sq->sq_flags & SQ_EVENTS));
6261
6262 if (flags & SQ_WANTWAKEUP) {
6263 flags &= ~SQ_WANTWAKEUP;
6264 cv_broadcast(&sq->sq_wait);
6265 }
6266 if (flags & SQ_WANTEXWAKEUP) {
6267 flags &= ~SQ_WANTEXWAKEUP;
6268 cv_broadcast(&sq->sq_exitwait);
6269 }
6270 sq->sq_flags = flags;
6271 }
6272
6273 /*
6274 * Put messages on the event list.
6275 * If we can go exclusive now, do so and process the event list, otherwise
6276 * let the last claim service this list (or wake the sqthread).
6277 * This procedure assumes SQLOCK is held. To run the event list, it
6278 * must be called with no claims.
6279 */
6280 static void
sqfill_events(syncq_t * sq,queue_t * q,mblk_t * mp,void (* func)())6281 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6282 {
6283 uint16_t count;
6284
6285 ASSERT(MUTEX_HELD(SQLOCK(sq)));
6286 ASSERT(func != NULL);
6287
6288 /*
6289 * This is a callback. Add it to the list of callbacks
6290 * and see about upgrading.
6291 */
6292 mp->b_prev = (mblk_t *)func;
6293 mp->b_queue = q;
6294 mp->b_next = NULL;
6295 if (sq->sq_evhead == NULL) {
6296 sq->sq_evhead = sq->sq_evtail = mp;
6297 sq->sq_flags |= SQ_EVENTS;
6298 } else {
6299 ASSERT(sq->sq_evtail != NULL);
6300 ASSERT(sq->sq_evtail->b_next == NULL);
6301 ASSERT(sq->sq_flags & SQ_EVENTS);
6302 sq->sq_evtail->b_next = mp;
6303 sq->sq_evtail = mp;
6304 }
6305 /*
6306 * We have set SQ_EVENTS, so threads will have to
6307 * unwind out of the perimeter, and new entries will
6308 * not grab a putlock. But we still need to know
6309 * how many threads have already made a claim to the
6310 * syncq, so grab the putlocks, and sum the counts.
6311 * If there are no claims on the syncq, we can upgrade
6312 * to exclusive, and run the event list.
6313 * NOTE: We hold the SQLOCK, so we can just grab the
6314 * putlocks.
6315 */
6316 count = sq->sq_count;
6317 SQ_PUTLOCKS_ENTER(sq);
6318 SUM_SQ_PUTCOUNTS(sq, count);
6319 /*
6320 * We have no claim, so we need to check if there
6321 * are no others, then we can upgrade.
6322 */
6323 /*
6324 * There are currently no claims on
6325 * the syncq by this thread (at least on this entry). The thread who has
6326 * the claim should drain syncq.
6327 */
6328 if (count > 0) {
6329 /*
6330 * Can't upgrade - other threads inside.
6331 */
6332 SQ_PUTLOCKS_EXIT(sq);
6333 mutex_exit(SQLOCK(sq));
6334 return;
6335 }
6336 /*
6337 * Need to set SQ_EXCL and make a claim on the syncq.
6338 */
6339 ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6340 sq->sq_flags |= SQ_EXCL;
6341 ASSERT(sq->sq_count == 0);
6342 sq->sq_count++;
6343 SQ_PUTLOCKS_EXIT(sq);
6344
6345 /* Process the events list */
6346 sq_run_events(sq);
6347
6348 /*
6349 * Release our claim...
6350 */
6351 sq->sq_count--;
6352
6353 /*
6354 * And release SQ_EXCL.
6355 * We don't need to acquire the putlocks to release
6356 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6357 */
6358 sq->sq_flags &= ~SQ_EXCL;
6359
6360 /*
6361 * sq_run_events should have released SQ_EXCL
6362 */
6363 ASSERT(!(sq->sq_flags & SQ_EXCL));
6364
6365 /*
6366 * If anything happened while we were running the
6367 * events (or was there before), we need to process
6368 * them now. We shouldn't be exclusive sine we
6369 * released the perimeter above (plus, we asserted
6370 * for it).
6371 */
6372 if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6373 drain_syncq(sq);
6374 else
6375 mutex_exit(SQLOCK(sq));
6376 }
6377
6378 /*
6379 * Perform delayed processing. The caller has to make sure that it is safe
6380 * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6381 * set).
6382 *
6383 * Assume that the caller has NO claims on the syncq. However, a claim
6384 * on the syncq does not indicate that a thread is draining the syncq.
6385 * There may be more claims on the syncq than there are threads draining
6386 * (i.e. #_threads_draining <= sq_count)
6387 *
6388 * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6389 * in order to preserve qwriter(OUTER) ordering constraints.
6390 *
6391 * sq_putcount only needs to be checked when dispatching the queued
6392 * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6393 */
6394 void
drain_syncq(syncq_t * sq)6395 drain_syncq(syncq_t *sq)
6396 {
6397 queue_t *qp;
6398 uint16_t count;
6399 uint16_t type = sq->sq_type;
6400 uint16_t flags = sq->sq_flags;
6401 boolean_t bg_service = sq->sq_svcflags & SQ_SERVICE;
6402
6403 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6404 "drain_syncq start:%p", sq);
6405 ASSERT(MUTEX_HELD(SQLOCK(sq)));
6406 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6407 sq->sq_oprev == NULL) ||
6408 (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6409 sq->sq_oprev != NULL));
6410
6411 /*
6412 * Drop SQ_SERVICE flag.
6413 */
6414 if (bg_service)
6415 sq->sq_svcflags &= ~SQ_SERVICE;
6416
6417 /*
6418 * If SQ_EXCL is set, someone else is processing this syncq - let them
6419 * finish the job.
6420 */
6421 if (flags & SQ_EXCL) {
6422 if (bg_service) {
6423 ASSERT(sq->sq_servcount != 0);
6424 sq->sq_servcount--;
6425 }
6426 mutex_exit(SQLOCK(sq));
6427 return;
6428 }
6429
6430 /*
6431 * This routine can be called by a background thread if
6432 * it was scheduled by a hi-priority thread. SO, if there are
6433 * NOT messages queued, return (remember, we have the SQLOCK,
6434 * and it cannot change until we release it). Wakeup any waiters also.
6435 */
6436 if (!(flags & SQ_QUEUED)) {
6437 if (flags & SQ_WANTWAKEUP) {
6438 flags &= ~SQ_WANTWAKEUP;
6439 cv_broadcast(&sq->sq_wait);
6440 }
6441 if (flags & SQ_WANTEXWAKEUP) {
6442 flags &= ~SQ_WANTEXWAKEUP;
6443 cv_broadcast(&sq->sq_exitwait);
6444 }
6445 sq->sq_flags = flags;
6446 if (bg_service) {
6447 ASSERT(sq->sq_servcount != 0);
6448 sq->sq_servcount--;
6449 }
6450 mutex_exit(SQLOCK(sq));
6451 return;
6452 }
6453
6454 /*
6455 * If this is not a concurrent put perimeter, we need to
6456 * become exclusive to drain. Also, if not CIPUT, we would
6457 * not have acquired a putlock, so we don't need to check
6458 * the putcounts. If not entering with a claim, we test
6459 * for sq_count == 0.
6460 */
6461 type = sq->sq_type;
6462 if (!(type & SQ_CIPUT)) {
6463 if (sq->sq_count > 1) {
6464 if (bg_service) {
6465 ASSERT(sq->sq_servcount != 0);
6466 sq->sq_servcount--;
6467 }
6468 mutex_exit(SQLOCK(sq));
6469 return;
6470 }
6471 sq->sq_flags |= SQ_EXCL;
6472 }
6473
6474 /*
6475 * This is where we make a claim to the syncq.
6476 * This can either be done by incrementing a putlock, or
6477 * the sq_count. But since we already have the SQLOCK
6478 * here, we just bump the sq_count.
6479 *
6480 * Note that after we make a claim, we need to let the code
6481 * fall through to the end of this routine to clean itself
6482 * up. A return in the while loop will put the syncq in a
6483 * very bad state.
6484 */
6485 sq->sq_count++;
6486 ASSERT(sq->sq_count != 0); /* wraparound */
6487
6488 while ((flags = sq->sq_flags) & SQ_QUEUED) {
6489 /*
6490 * If we are told to stayaway or went exclusive,
6491 * we are done.
6492 */
6493 if (flags & (SQ_STAYAWAY)) {
6494 break;
6495 }
6496
6497 /*
6498 * If there are events to run, do so.
6499 * We have one claim to the syncq, so if there are
6500 * more than one, other threads are running.
6501 */
6502 if (sq->sq_evhead != NULL) {
6503 ASSERT(sq->sq_flags & SQ_EVENTS);
6504
6505 count = sq->sq_count;
6506 SQ_PUTLOCKS_ENTER(sq);
6507 SUM_SQ_PUTCOUNTS(sq, count);
6508 if (count > 1) {
6509 SQ_PUTLOCKS_EXIT(sq);
6510 /* Can't upgrade - other threads inside */
6511 break;
6512 }
6513 ASSERT((flags & SQ_EXCL) == 0);
6514 sq->sq_flags = flags | SQ_EXCL;
6515 SQ_PUTLOCKS_EXIT(sq);
6516 /*
6517 * we have the only claim, run the events,
6518 * sq_run_events will clear the SQ_EXCL flag.
6519 */
6520 sq_run_events(sq);
6521
6522 /*
6523 * If this is a CIPUT perimeter, we need
6524 * to drop the SQ_EXCL flag so we can properly
6525 * continue draining the syncq.
6526 */
6527 if (type & SQ_CIPUT) {
6528 ASSERT(sq->sq_flags & SQ_EXCL);
6529 sq->sq_flags &= ~SQ_EXCL;
6530 }
6531
6532 /*
6533 * And go back to the beginning just in case
6534 * anything changed while we were away.
6535 */
6536 ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6537 continue;
6538 }
6539
6540 ASSERT(sq->sq_evhead == NULL);
6541 ASSERT(!(sq->sq_flags & SQ_EVENTS));
6542
6543 /*
6544 * Find the queue that is not draining.
6545 *
6546 * q_draining is protected by QLOCK which we do not hold.
6547 * But if it was set, then a thread was draining, and if it gets
6548 * cleared, then it was because the thread has successfully
6549 * drained the syncq, or a GOAWAY state occurred. For the GOAWAY
6550 * state to happen, a thread needs the SQLOCK which we hold, and
6551 * if there was such a flag, we would have already seen it.
6552 */
6553
6554 for (qp = sq->sq_head;
6555 qp != NULL && (qp->q_draining ||
6556 (qp->q_sqflags & Q_SQDRAINING));
6557 qp = qp->q_sqnext)
6558 ;
6559
6560 if (qp == NULL)
6561 break;
6562
6563 /*
6564 * We have a queue to work on, and we hold the
6565 * SQLOCK and one claim, call qdrain_syncq.
6566 * This means we need to release the SQLOCK and
6567 * acquire the QLOCK (OK since we have a claim).
6568 * Note that qdrain_syncq will actually dequeue
6569 * this queue from the sq_head list when it is
6570 * convinced all the work is done and release
6571 * the QLOCK before returning.
6572 */
6573 qp->q_sqflags |= Q_SQDRAINING;
6574 mutex_exit(SQLOCK(sq));
6575 mutex_enter(QLOCK(qp));
6576 qdrain_syncq(sq, qp);
6577 mutex_enter(SQLOCK(sq));
6578
6579 /* The queue is drained */
6580 ASSERT(qp->q_sqflags & Q_SQDRAINING);
6581 qp->q_sqflags &= ~Q_SQDRAINING;
6582 /*
6583 * NOTE: After this point qp should not be used since it may be
6584 * closed.
6585 */
6586 }
6587
6588 ASSERT(MUTEX_HELD(SQLOCK(sq)));
6589 flags = sq->sq_flags;
6590
6591 /*
6592 * sq->sq_head cannot change because we hold the
6593 * sqlock. However, a thread CAN decide that it is no longer
6594 * going to drain that queue. However, this should be due to
6595 * a GOAWAY state, and we should see that here.
6596 *
6597 * This loop is not very efficient. One solution may be adding a second
6598 * pointer to the "draining" queue, but it is difficult to do when
6599 * queues are inserted in the middle due to priority ordering. Another
6600 * possibility is to yank the queue out of the sq list and put it onto
6601 * the "draining list" and then put it back if it can't be drained.
6602 */
6603
6604 ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6605 (type & SQ_CI) || sq->sq_head->q_draining);
6606
6607 /* Drop SQ_EXCL for non-CIPUT perimeters */
6608 if (!(type & SQ_CIPUT))
6609 flags &= ~SQ_EXCL;
6610 ASSERT((flags & SQ_EXCL) == 0);
6611
6612 /* Wake up any waiters. */
6613 if (flags & SQ_WANTWAKEUP) {
6614 flags &= ~SQ_WANTWAKEUP;
6615 cv_broadcast(&sq->sq_wait);
6616 }
6617 if (flags & SQ_WANTEXWAKEUP) {
6618 flags &= ~SQ_WANTEXWAKEUP;
6619 cv_broadcast(&sq->sq_exitwait);
6620 }
6621 sq->sq_flags = flags;
6622
6623 ASSERT(sq->sq_count != 0);
6624 /* Release our claim. */
6625 sq->sq_count--;
6626
6627 if (bg_service) {
6628 ASSERT(sq->sq_servcount != 0);
6629 sq->sq_servcount--;
6630 }
6631
6632 mutex_exit(SQLOCK(sq));
6633
6634 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6635 "drain_syncq end:%p", sq);
6636 }
6637
6638
6639 /*
6640 *
6641 * qdrain_syncq can be called (currently) from only one of two places:
6642 * drain_syncq
6643 * putnext (or some variation of it).
6644 * and eventually
6645 * qwait(_sig)
6646 *
6647 * If called from drain_syncq, we found it in the list of queues needing
6648 * service, so there is work to be done (or it wouldn't be in the list).
6649 *
6650 * If called from some putnext variation, it was because the
6651 * perimeter is open, but messages are blocking a putnext and
6652 * there is not a thread working on it. Now a thread could start
6653 * working on it while we are getting ready to do so ourself, but
6654 * the thread would set the q_draining flag, and we can spin out.
6655 *
6656 * As for qwait(_sig), I think I shall let it continue to call
6657 * drain_syncq directly (after all, it will get here eventually).
6658 *
6659 * qdrain_syncq has to terminate when:
6660 * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6661 * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6662 *
6663 * ASSUMES:
6664 * One claim
6665 * QLOCK held
6666 * SQLOCK not held
6667 * Will release QLOCK before returning
6668 */
6669 void
qdrain_syncq(syncq_t * sq,queue_t * q)6670 qdrain_syncq(syncq_t *sq, queue_t *q)
6671 {
6672 mblk_t *bp;
6673 #ifdef DEBUG
6674 uint16_t count;
6675 #endif
6676
6677 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6678 "drain_syncq start:%p", sq);
6679 ASSERT(q->q_syncq == sq);
6680 ASSERT(MUTEX_HELD(QLOCK(q)));
6681 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6682 /*
6683 * For non-CIPUT perimeters, we should be called with the exclusive bit
6684 * set already. For CIPUT perimeters, we will be doing a concurrent
6685 * drain, so it better not be set.
6686 */
6687 ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6688 ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6689 ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6690 /*
6691 * All outer pointers are set, or none of them are
6692 */
6693 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6694 sq->sq_oprev == NULL) ||
6695 (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6696 sq->sq_oprev != NULL));
6697 #ifdef DEBUG
6698 count = sq->sq_count;
6699 /*
6700 * This is OK without the putlocks, because we have one
6701 * claim either from the sq_count, or a putcount. We could
6702 * get an erroneous value from other counts, but ours won't
6703 * change, so one way or another, we will have at least a
6704 * value of one.
6705 */
6706 SUM_SQ_PUTCOUNTS(sq, count);
6707 ASSERT(count >= 1);
6708 #endif /* DEBUG */
6709
6710 /*
6711 * The first thing to do is find out if a thread is already draining
6712 * this queue. If so, we are done, just return.
6713 */
6714 if (q->q_draining) {
6715 mutex_exit(QLOCK(q));
6716 return;
6717 }
6718
6719 /*
6720 * If the perimeter is exclusive, there is nothing we can do right now,
6721 * go away. Note that there is nothing to prevent this case from
6722 * changing right after this check, but the spin-out will catch it.
6723 */
6724
6725 /* Tell other threads that we are draining this queue */
6726 q->q_draining = 1; /* Protected by QLOCK */
6727
6728 /*
6729 * If there is nothing to do, clear QFULL as necessary. This caters for
6730 * the case where an empty queue was enqueued onto the syncq.
6731 */
6732 if (q->q_sqhead == NULL) {
6733 ASSERT(q->q_syncqmsgs == 0);
6734 mutex_exit(QLOCK(q));
6735 clr_qfull(q);
6736 mutex_enter(QLOCK(q));
6737 }
6738
6739 /*
6740 * Note that q_sqhead must be re-checked here in case another message
6741 * was enqueued whilst QLOCK was dropped during the call to clr_qfull.
6742 */
6743 for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6744 /*
6745 * Because we can enter this routine just because a putnext is
6746 * blocked, we need to spin out if the perimeter wants to go
6747 * exclusive as well as just blocked. We need to spin out also
6748 * if events are queued on the syncq.
6749 * Don't check for SQ_EXCL, because non-CIPUT perimeters would
6750 * set it, and it can't become exclusive while we hold a claim.
6751 */
6752 if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6753 break;
6754 }
6755
6756 #ifdef DEBUG
6757 /*
6758 * Since we are in qdrain_syncq, we already know the queue,
6759 * but for sanity, we want to check this against the qp that
6760 * was passed in by bp->b_queue.
6761 */
6762
6763 ASSERT(bp->b_queue == q);
6764 ASSERT(bp->b_queue->q_syncq == sq);
6765 bp->b_queue = NULL;
6766
6767 /*
6768 * We would have the following check in the DEBUG code:
6769 *
6770 * if (bp->b_prev != NULL) {
6771 * ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6772 * }
6773 *
6774 * This can't be done, however, since IP modifies qinfo
6775 * structure at run-time (switching between IPv4 qinfo and IPv6
6776 * qinfo), invalidating the check.
6777 * So the assignment to func is left here, but the ASSERT itself
6778 * is removed until the whole issue is resolved.
6779 */
6780 #endif
6781 ASSERT(q->q_sqhead == bp);
6782 q->q_sqhead = bp->b_next;
6783 bp->b_prev = bp->b_next = NULL;
6784 ASSERT(q->q_syncqmsgs > 0);
6785 mutex_exit(QLOCK(q));
6786
6787 ASSERT(bp->b_datap->db_ref != 0);
6788
6789 (void) (*q->q_qinfo->qi_putp)(q, bp);
6790
6791 mutex_enter(QLOCK(q));
6792
6793 /*
6794 * q_syncqmsgs should only be decremented after executing the
6795 * put procedure to avoid message re-ordering. This is due to an
6796 * optimisation in putnext() which can call the put procedure
6797 * directly if it sees q_syncqmsgs == 0 (despite Q_SQQUEUED
6798 * being set).
6799 *
6800 * We also need to clear QFULL in the next service procedure
6801 * queue if this is the last message destined for that queue.
6802 *
6803 * It would make better sense to have some sort of tunable for
6804 * the low water mark, but these semantics are not yet defined.
6805 * So, alas, we use a constant.
6806 */
6807 if (--q->q_syncqmsgs == 0) {
6808 mutex_exit(QLOCK(q));
6809 clr_qfull(q);
6810 mutex_enter(QLOCK(q));
6811 }
6812
6813 /*
6814 * Always clear SQ_EXCL when CIPUT in order to handle
6815 * qwriter(INNER). The putp() can call qwriter and get exclusive
6816 * access IFF this is the only claim. So, we need to test for
6817 * this possibility, acquire the mutex and clear the bit.
6818 */
6819 if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6820 mutex_enter(SQLOCK(sq));
6821 sq->sq_flags &= ~SQ_EXCL;
6822 mutex_exit(SQLOCK(sq));
6823 }
6824 }
6825
6826 /*
6827 * We should either have no messages on this queue, or we were told to
6828 * goaway by a waiter (which we will wake up at the end of this
6829 * function).
6830 */
6831 ASSERT((q->q_sqhead == NULL) ||
6832 (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6833
6834 ASSERT(MUTEX_HELD(QLOCK(q)));
6835 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6836
6837 /* Remove the q from the syncq list if all the messages are drained. */
6838 if (q->q_sqhead == NULL) {
6839 ASSERT(q->q_syncqmsgs == 0);
6840 mutex_enter(SQLOCK(sq));
6841 if (q->q_sqflags & Q_SQQUEUED)
6842 SQRM_Q(sq, q);
6843 mutex_exit(SQLOCK(sq));
6844 /*
6845 * Since the queue is removed from the list, reset its priority.
6846 */
6847 q->q_spri = 0;
6848 }
6849
6850 /*
6851 * Remember, the q_draining flag is used to let another thread know
6852 * that there is a thread currently draining the messages for a queue.
6853 * Since we are now done with this queue (even if there may be messages
6854 * still there), we need to clear this flag so some thread will work on
6855 * it if needed.
6856 */
6857 ASSERT(q->q_draining);
6858 q->q_draining = 0;
6859
6860 /* Called with a claim, so OK to drop all locks. */
6861 mutex_exit(QLOCK(q));
6862
6863 TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6864 "drain_syncq end:%p", sq);
6865 }
6866 /* END OF QDRAIN_SYNCQ */
6867
6868
6869 /*
6870 * This is the mate to qdrain_syncq, except that it is putting the message onto
6871 * the queue instead of draining. Since the message is destined for the queue
6872 * that is selected, there is no need to identify the function because the
6873 * message is intended for the put routine for the queue. For debug kernels,
6874 * this routine will do it anyway just in case.
6875 *
6876 * After the message is enqueued on the syncq, it calls putnext_tail()
6877 * which will schedule a background thread to actually process the message.
6878 *
6879 * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6880 * SQLOCK(sq) and QLOCK(q) are not held.
6881 */
6882 void
qfill_syncq(syncq_t * sq,queue_t * q,mblk_t * mp)6883 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6884 {
6885 ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6886 ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6887 ASSERT(sq->sq_count > 0);
6888 ASSERT(q->q_syncq == sq);
6889 ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6890 sq->sq_oprev == NULL) ||
6891 (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6892 sq->sq_oprev != NULL));
6893
6894 mutex_enter(QLOCK(q));
6895
6896 #ifdef DEBUG
6897 /*
6898 * This is used for debug in the qfill_syncq/qdrain_syncq case
6899 * to trace the queue that the message is intended for. Note
6900 * that the original use was to identify the queue and function
6901 * to call on the drain. In the new syncq, we have the context
6902 * of the queue that we are draining, so call it's putproc and
6903 * don't rely on the saved values. But for debug this is still
6904 * useful information.
6905 */
6906 mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6907 mp->b_queue = q;
6908 mp->b_next = NULL;
6909 #endif
6910 ASSERT(q->q_syncq == sq);
6911 /*
6912 * Enqueue the message on the list.
6913 * SQPUT_MP() accesses q_syncqmsgs. We are already holding QLOCK to
6914 * protect it. So it's ok to acquire SQLOCK after SQPUT_MP().
6915 */
6916 SQPUT_MP(q, mp);
6917 mutex_enter(SQLOCK(sq));
6918
6919 /*
6920 * And queue on syncq for scheduling, if not already queued.
6921 * Note that we need the SQLOCK for this, and for testing flags
6922 * at the end to see if we will drain. So grab it now, and
6923 * release it before we call qdrain_syncq or return.
6924 */
6925 if (!(q->q_sqflags & Q_SQQUEUED)) {
6926 q->q_spri = curthread->t_pri;
6927 SQPUT_Q(sq, q);
6928 }
6929 #ifdef DEBUG
6930 else {
6931 /*
6932 * All of these conditions MUST be true!
6933 */
6934 ASSERT(sq->sq_tail != NULL);
6935 if (sq->sq_tail == sq->sq_head) {
6936 ASSERT((q->q_sqprev == NULL) &&
6937 (q->q_sqnext == NULL));
6938 } else {
6939 ASSERT((q->q_sqprev != NULL) ||
6940 (q->q_sqnext != NULL));
6941 }
6942 ASSERT(sq->sq_flags & SQ_QUEUED);
6943 ASSERT(q->q_syncqmsgs != 0);
6944 ASSERT(q->q_sqflags & Q_SQQUEUED);
6945 }
6946 #endif
6947 mutex_exit(QLOCK(q));
6948 /*
6949 * SQLOCK is still held, so sq_count can be safely decremented.
6950 */
6951 sq->sq_count--;
6952
6953 putnext_tail(sq, q, 0);
6954 /* Should not reference sq or q after this point. */
6955 }
6956
6957 /* End of qfill_syncq */
6958
6959 /*
6960 * Remove all messages from a syncq (if qp is NULL) or remove all messages
6961 * that would be put into qp by drain_syncq.
6962 * Used when deleting the syncq (qp == NULL) or when detaching
6963 * a queue (qp != NULL).
6964 * Return non-zero if one or more messages were freed.
6965 *
6966 * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
6967 * sq_putlocks are used.
6968 *
6969 * NOTE: This function assumes that it is called from the close() context and
6970 * that all the queues in the syncq are going away. For this reason it doesn't
6971 * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6972 * currently valid, but it is useful to rethink this function to behave properly
6973 * in other cases.
6974 */
6975 int
flush_syncq(syncq_t * sq,queue_t * qp)6976 flush_syncq(syncq_t *sq, queue_t *qp)
6977 {
6978 mblk_t *bp, *mp_head, *mp_next, *mp_prev;
6979 queue_t *q;
6980 int ret = 0;
6981
6982 mutex_enter(SQLOCK(sq));
6983
6984 /*
6985 * Before we leave, we need to make sure there are no
6986 * events listed for this queue. All events for this queue
6987 * will just be freed.
6988 */
6989 if (qp != NULL && sq->sq_evhead != NULL) {
6990 ASSERT(sq->sq_flags & SQ_EVENTS);
6991
6992 mp_prev = NULL;
6993 for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6994 mp_next = bp->b_next;
6995 if (bp->b_queue == qp) {
6996 /* Delete this message */
6997 if (mp_prev != NULL) {
6998 mp_prev->b_next = mp_next;
6999 /*
7000 * Update sq_evtail if the last element
7001 * is removed.
7002 */
7003 if (bp == sq->sq_evtail) {
7004 ASSERT(mp_next == NULL);
7005 sq->sq_evtail = mp_prev;
7006 }
7007 } else
7008 sq->sq_evhead = mp_next;
7009 if (sq->sq_evhead == NULL)
7010 sq->sq_flags &= ~SQ_EVENTS;
7011 bp->b_prev = bp->b_next = NULL;
7012 freemsg(bp);
7013 ret++;
7014 } else {
7015 mp_prev = bp;
7016 }
7017 }
7018 }
7019
7020 /*
7021 * Walk sq_head and:
7022 * - match qp if qp is set, remove it's messages
7023 * - all if qp is not set
7024 */
7025 q = sq->sq_head;
7026 while (q != NULL) {
7027 ASSERT(q->q_syncq == sq);
7028 if ((qp == NULL) || (qp == q)) {
7029 /*
7030 * Yank the messages as a list off the queue
7031 */
7032 mp_head = q->q_sqhead;
7033 /*
7034 * We do not have QLOCK(q) here (which is safe due to
7035 * assumptions mentioned above). To obtain the lock we
7036 * need to release SQLOCK which may allow lots of things
7037 * to change upon us. This place requires more analysis.
7038 */
7039 q->q_sqhead = q->q_sqtail = NULL;
7040 ASSERT(mp_head->b_queue &&
7041 mp_head->b_queue->q_syncq == sq);
7042
7043 /*
7044 * Free each of the messages.
7045 */
7046 for (bp = mp_head; bp != NULL; bp = mp_next) {
7047 mp_next = bp->b_next;
7048 bp->b_prev = bp->b_next = NULL;
7049 freemsg(bp);
7050 ret++;
7051 }
7052 /*
7053 * Now remove the queue from the syncq.
7054 */
7055 ASSERT(q->q_sqflags & Q_SQQUEUED);
7056 SQRM_Q(sq, q);
7057 q->q_spri = 0;
7058 q->q_syncqmsgs = 0;
7059
7060 /*
7061 * If qp was specified, we are done with it and are
7062 * going to drop SQLOCK(sq) and return. We wakeup syncq
7063 * waiters while we still have the SQLOCK.
7064 */
7065 if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7066 sq->sq_flags &= ~SQ_WANTWAKEUP;
7067 cv_broadcast(&sq->sq_wait);
7068 }
7069 /* Drop SQLOCK across clr_qfull */
7070 mutex_exit(SQLOCK(sq));
7071
7072 /*
7073 * We avoid doing the test that drain_syncq does and
7074 * unconditionally clear qfull for every flushed
7075 * message. Since flush_syncq is only called during
7076 * close this should not be a problem.
7077 */
7078 clr_qfull(q);
7079 if (qp != NULL) {
7080 return (ret);
7081 } else {
7082 mutex_enter(SQLOCK(sq));
7083 /*
7084 * The head was removed by SQRM_Q above.
7085 * reread the new head and flush it.
7086 */
7087 q = sq->sq_head;
7088 }
7089 } else {
7090 q = q->q_sqnext;
7091 }
7092 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7093 }
7094
7095 if (sq->sq_flags & SQ_WANTWAKEUP) {
7096 sq->sq_flags &= ~SQ_WANTWAKEUP;
7097 cv_broadcast(&sq->sq_wait);
7098 }
7099
7100 mutex_exit(SQLOCK(sq));
7101 return (ret);
7102 }
7103
7104 /*
7105 * Propagate all messages from a syncq to the next syncq that are associated
7106 * with the specified queue. If the queue is attached to a driver or if the
7107 * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7108 *
7109 * Assumes that the stream is strlock()'ed. We don't come here if there
7110 * are no messages to propagate.
7111 *
7112 * NOTE : If the queue is attached to a driver, all the messages are freed
7113 * as there is no point in propagating the messages from the driver syncq
7114 * to the closing stream head which will in turn get freed later.
7115 */
7116 static int
propagate_syncq(queue_t * qp)7117 propagate_syncq(queue_t *qp)
7118 {
7119 mblk_t *bp, *head, *tail, *prev, *next;
7120 syncq_t *sq;
7121 queue_t *nqp;
7122 syncq_t *nsq;
7123 boolean_t isdriver;
7124 int moved = 0;
7125 uint16_t flags;
7126 pri_t priority = curthread->t_pri;
7127 #ifdef DEBUG
7128 void (*func)();
7129 #endif
7130
7131 sq = qp->q_syncq;
7132 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7133 /* debug macro */
7134 SQ_PUTLOCKS_HELD(sq);
7135 /*
7136 * As entersq() does not increment the sq_count for
7137 * the write side, check sq_count for non-QPERQ
7138 * perimeters alone.
7139 */
7140 ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7141
7142 /*
7143 * propagate_syncq() can be called because of either messages on the
7144 * queue syncq or because on events on the queue syncq. Do actual
7145 * message propagations if there are any messages.
7146 */
7147 if (qp->q_syncqmsgs) {
7148 isdriver = (qp->q_flag & QISDRV);
7149
7150 if (!isdriver) {
7151 nqp = qp->q_next;
7152 nsq = nqp->q_syncq;
7153 ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7154 /* debug macro */
7155 SQ_PUTLOCKS_HELD(nsq);
7156 #ifdef DEBUG
7157 func = (void (*)())(uintptr_t)nqp->q_qinfo->qi_putp;
7158 #endif
7159 }
7160
7161 SQRM_Q(sq, qp);
7162 priority = MAX(qp->q_spri, priority);
7163 qp->q_spri = 0;
7164 head = qp->q_sqhead;
7165 tail = qp->q_sqtail;
7166 qp->q_sqhead = qp->q_sqtail = NULL;
7167 qp->q_syncqmsgs = 0;
7168
7169 /*
7170 * Walk the list of messages, and free them if this is a driver,
7171 * otherwise reset the b_prev and b_queue value to the new putp.
7172 * Afterward, we will just add the head to the end of the next
7173 * syncq, and point the tail to the end of this one.
7174 */
7175
7176 for (bp = head; bp != NULL; bp = next) {
7177 next = bp->b_next;
7178 if (isdriver) {
7179 bp->b_prev = bp->b_next = NULL;
7180 freemsg(bp);
7181 continue;
7182 }
7183 /* Change the q values for this message */
7184 bp->b_queue = nqp;
7185 #ifdef DEBUG
7186 bp->b_prev = (mblk_t *)func;
7187 #endif
7188 moved++;
7189 }
7190 /*
7191 * Attach list of messages to the end of the new queue (if there
7192 * is a list of messages).
7193 */
7194
7195 if (!isdriver && head != NULL) {
7196 ASSERT(tail != NULL);
7197 if (nqp->q_sqhead == NULL) {
7198 nqp->q_sqhead = head;
7199 } else {
7200 ASSERT(nqp->q_sqtail != NULL);
7201 nqp->q_sqtail->b_next = head;
7202 }
7203 nqp->q_sqtail = tail;
7204 /*
7205 * When messages are moved from high priority queue to
7206 * another queue, the destination queue priority is
7207 * upgraded.
7208 */
7209
7210 if (priority > nqp->q_spri)
7211 nqp->q_spri = priority;
7212
7213 SQPUT_Q(nsq, nqp);
7214
7215 nqp->q_syncqmsgs += moved;
7216 ASSERT(nqp->q_syncqmsgs != 0);
7217 }
7218 }
7219
7220 /*
7221 * Before we leave, we need to make sure there are no
7222 * events listed for this queue. All events for this queue
7223 * will just be freed.
7224 */
7225 if (sq->sq_evhead != NULL) {
7226 ASSERT(sq->sq_flags & SQ_EVENTS);
7227 prev = NULL;
7228 for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7229 next = bp->b_next;
7230 if (bp->b_queue == qp) {
7231 /* Delete this message */
7232 if (prev != NULL) {
7233 prev->b_next = next;
7234 /*
7235 * Update sq_evtail if the last element
7236 * is removed.
7237 */
7238 if (bp == sq->sq_evtail) {
7239 ASSERT(next == NULL);
7240 sq->sq_evtail = prev;
7241 }
7242 } else
7243 sq->sq_evhead = next;
7244 if (sq->sq_evhead == NULL)
7245 sq->sq_flags &= ~SQ_EVENTS;
7246 bp->b_prev = bp->b_next = NULL;
7247 freemsg(bp);
7248 } else {
7249 prev = bp;
7250 }
7251 }
7252 }
7253
7254 flags = sq->sq_flags;
7255
7256 /* Wake up any waiter before leaving. */
7257 if (flags & SQ_WANTWAKEUP) {
7258 flags &= ~SQ_WANTWAKEUP;
7259 cv_broadcast(&sq->sq_wait);
7260 }
7261 sq->sq_flags = flags;
7262
7263 return (moved);
7264 }
7265
7266 /*
7267 * Try and upgrade to exclusive access at the inner perimeter. If this can
7268 * not be done without blocking then request will be queued on the syncq
7269 * and drain_syncq will run it later.
7270 *
7271 * This routine can only be called from put or service procedures plus
7272 * asynchronous callback routines that have properly entered the queue (with
7273 * entersq). Thus qwriter_inner assumes the caller has one claim on the syncq
7274 * associated with q.
7275 */
7276 void
qwriter_inner(queue_t * q,mblk_t * mp,void (* func)())7277 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7278 {
7279 syncq_t *sq = q->q_syncq;
7280 uint16_t count;
7281
7282 mutex_enter(SQLOCK(sq));
7283 count = sq->sq_count;
7284 SQ_PUTLOCKS_ENTER(sq);
7285 SUM_SQ_PUTCOUNTS(sq, count);
7286 ASSERT(count >= 1);
7287 ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7288
7289 if (count == 1) {
7290 /*
7291 * Can upgrade. This case also handles nested qwriter calls
7292 * (when the qwriter callback function calls qwriter). In that
7293 * case SQ_EXCL is already set.
7294 */
7295 sq->sq_flags |= SQ_EXCL;
7296 SQ_PUTLOCKS_EXIT(sq);
7297 mutex_exit(SQLOCK(sq));
7298 (*func)(q, mp);
7299 /*
7300 * Assumes that leavesq, putnext, and drain_syncq will reset
7301 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7302 * until putnext, leavesq, or drain_syncq drops it.
7303 * That way we handle nested qwriter(INNER) without dropping
7304 * SQ_EXCL until the outermost qwriter callback routine is
7305 * done.
7306 */
7307 return;
7308 }
7309 SQ_PUTLOCKS_EXIT(sq);
7310 sqfill_events(sq, q, mp, func);
7311 }
7312
7313 /*
7314 * Synchronous callback support functions
7315 */
7316
7317 /*
7318 * Allocate a callback parameter structure.
7319 * Assumes that caller initializes the flags and the id.
7320 * Acquires SQLOCK(sq) if non-NULL is returned.
7321 */
7322 callbparams_t *
callbparams_alloc(syncq_t * sq,void (* func)(void *),void * arg,int kmflags)7323 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7324 {
7325 callbparams_t *cbp;
7326 size_t size = sizeof (callbparams_t);
7327
7328 cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7329
7330 /*
7331 * Only try tryhard allocation if the caller is ready to panic.
7332 * Otherwise just fail.
7333 */
7334 if (cbp == NULL) {
7335 if (kmflags & KM_PANIC)
7336 cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7337 &size, kmflags);
7338 else
7339 return (NULL);
7340 }
7341
7342 ASSERT(size >= sizeof (callbparams_t));
7343 cbp->cbp_size = size;
7344 cbp->cbp_sq = sq;
7345 cbp->cbp_func = func;
7346 cbp->cbp_arg = arg;
7347 mutex_enter(SQLOCK(sq));
7348 cbp->cbp_next = sq->sq_callbpend;
7349 sq->sq_callbpend = cbp;
7350 return (cbp);
7351 }
7352
7353 void
callbparams_free(syncq_t * sq,callbparams_t * cbp)7354 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7355 {
7356 callbparams_t **pp, *p;
7357
7358 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7359
7360 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7361 if (p == cbp) {
7362 *pp = p->cbp_next;
7363 kmem_free(p, p->cbp_size);
7364 return;
7365 }
7366 }
7367 (void) (STRLOG(0, 0, 0, SL_CONSOLE,
7368 "callbparams_free: not found\n"));
7369 }
7370
7371 void
callbparams_free_id(syncq_t * sq,callbparams_id_t id,int32_t flag)7372 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7373 {
7374 callbparams_t **pp, *p;
7375
7376 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7377
7378 for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7379 if (p->cbp_id == id && p->cbp_flags == flag) {
7380 *pp = p->cbp_next;
7381 kmem_free(p, p->cbp_size);
7382 return;
7383 }
7384 }
7385 (void) (STRLOG(0, 0, 0, SL_CONSOLE,
7386 "callbparams_free_id: not found\n"));
7387 }
7388
7389 /*
7390 * Callback wrapper function used by once-only callbacks that can be
7391 * cancelled (qtimeout and qbufcall)
7392 * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7393 * cancelled by the qun* functions.
7394 */
7395 void
qcallbwrapper(void * arg)7396 qcallbwrapper(void *arg)
7397 {
7398 callbparams_t *cbp = arg;
7399 syncq_t *sq;
7400 uint16_t count = 0;
7401 uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7402 uint16_t type;
7403
7404 sq = cbp->cbp_sq;
7405 mutex_enter(SQLOCK(sq));
7406 type = sq->sq_type;
7407 if (!(type & SQ_CICB)) {
7408 count = sq->sq_count;
7409 SQ_PUTLOCKS_ENTER(sq);
7410 SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7411 SUM_SQ_PUTCOUNTS(sq, count);
7412 sq->sq_needexcl++;
7413 ASSERT(sq->sq_needexcl != 0); /* wraparound */
7414 waitflags |= SQ_MESSAGES;
7415 }
7416 /* Can not handle exclusive entry at outer perimeter */
7417 ASSERT(type & SQ_COCB);
7418
7419 while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7420 if ((sq->sq_callbflags & cbp->cbp_flags) &&
7421 (sq->sq_cancelid == cbp->cbp_id)) {
7422 /* timeout has been cancelled */
7423 sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7424 callbparams_free(sq, cbp);
7425 if (!(type & SQ_CICB)) {
7426 ASSERT(sq->sq_needexcl > 0);
7427 sq->sq_needexcl--;
7428 if (sq->sq_needexcl == 0) {
7429 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7430 }
7431 SQ_PUTLOCKS_EXIT(sq);
7432 }
7433 mutex_exit(SQLOCK(sq));
7434 return;
7435 }
7436 sq->sq_flags |= SQ_WANTWAKEUP;
7437 if (!(type & SQ_CICB)) {
7438 SQ_PUTLOCKS_EXIT(sq);
7439 }
7440 cv_wait(&sq->sq_wait, SQLOCK(sq));
7441 if (!(type & SQ_CICB)) {
7442 count = sq->sq_count;
7443 SQ_PUTLOCKS_ENTER(sq);
7444 SUM_SQ_PUTCOUNTS(sq, count);
7445 }
7446 }
7447
7448 sq->sq_count++;
7449 ASSERT(sq->sq_count != 0); /* Wraparound */
7450 if (!(type & SQ_CICB)) {
7451 ASSERT(count == 0);
7452 sq->sq_flags |= SQ_EXCL;
7453 ASSERT(sq->sq_needexcl > 0);
7454 sq->sq_needexcl--;
7455 if (sq->sq_needexcl == 0) {
7456 SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7457 }
7458 SQ_PUTLOCKS_EXIT(sq);
7459 }
7460
7461 mutex_exit(SQLOCK(sq));
7462
7463 cbp->cbp_func(cbp->cbp_arg);
7464
7465 /*
7466 * We drop the lock only for leavesq to re-acquire it.
7467 * Possible optimization is inline of leavesq.
7468 */
7469 mutex_enter(SQLOCK(sq));
7470 callbparams_free(sq, cbp);
7471 mutex_exit(SQLOCK(sq));
7472 leavesq(sq, SQ_CALLBACK);
7473 }
7474
7475 /*
7476 * No need to grab sq_putlocks here. See comment in strsubr.h that
7477 * explains when sq_putlocks are used.
7478 *
7479 * sq_count (or one of the sq_putcounts) has already been
7480 * decremented by the caller, and if SQ_QUEUED, we need to call
7481 * drain_syncq (the global syncq drain).
7482 * If putnext_tail is called with the SQ_EXCL bit set, we are in
7483 * one of two states, non-CIPUT perimeter, and we need to clear
7484 * it, or we went exclusive in the put procedure. In any case,
7485 * we want to clear the bit now, and it is probably easier to do
7486 * this at the beginning of this function (remember, we hold
7487 * the SQLOCK). Lastly, if there are other messages queued
7488 * on the syncq (and not for our destination), enable the syncq
7489 * for background work.
7490 */
7491
7492 /* ARGSUSED */
7493 void
putnext_tail(syncq_t * sq,queue_t * qp,uint32_t passflags)7494 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7495 {
7496 uint16_t flags = sq->sq_flags;
7497
7498 ASSERT(MUTEX_HELD(SQLOCK(sq)));
7499 ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7500
7501 /* Clear SQ_EXCL if set in passflags */
7502 if (passflags & SQ_EXCL) {
7503 flags &= ~SQ_EXCL;
7504 }
7505 if (flags & SQ_WANTWAKEUP) {
7506 flags &= ~SQ_WANTWAKEUP;
7507 cv_broadcast(&sq->sq_wait);
7508 }
7509 if (flags & SQ_WANTEXWAKEUP) {
7510 flags &= ~SQ_WANTEXWAKEUP;
7511 cv_broadcast(&sq->sq_exitwait);
7512 }
7513 sq->sq_flags = flags;
7514
7515 /*
7516 * We have cleared SQ_EXCL if we were asked to, and started
7517 * the wakeup process for waiters. If there are no writers
7518 * then we need to drain the syncq if we were told to, or
7519 * enable the background thread to do it.
7520 */
7521 if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7522 if ((passflags & SQ_QUEUED) ||
7523 (sq->sq_svcflags & SQ_DISABLED)) {
7524 /* drain_syncq will take care of events in the list */
7525 drain_syncq(sq);
7526 return;
7527 } else if (flags & SQ_QUEUED) {
7528 sqenable(sq);
7529 }
7530 }
7531 /* Drop the SQLOCK on exit */
7532 mutex_exit(SQLOCK(sq));
7533 TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7534 "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7535 }
7536
7537 void
set_qend(queue_t * q)7538 set_qend(queue_t *q)
7539 {
7540 mutex_enter(QLOCK(q));
7541 if (!O_SAMESTR(q))
7542 q->q_flag |= QEND;
7543 else
7544 q->q_flag &= ~QEND;
7545 mutex_exit(QLOCK(q));
7546 q = _OTHERQ(q);
7547 mutex_enter(QLOCK(q));
7548 if (!O_SAMESTR(q))
7549 q->q_flag |= QEND;
7550 else
7551 q->q_flag &= ~QEND;
7552 mutex_exit(QLOCK(q));
7553 }
7554
7555 /*
7556 * Set QFULL in next service procedure queue (that cares) if not already
7557 * set and if there are already more messages on the syncq than
7558 * sq_max_size. If sq_max_size is 0, no flow control will be asserted on
7559 * any syncq.
7560 *
7561 * The fq here is the next queue with a service procedure. This is where
7562 * we would fail canputnext, so this is where we need to set QFULL.
7563 * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7564 *
7565 * We already have QLOCK at this point. To avoid cross-locks with
7566 * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7567 * SQLOCK and sd_reflock, we need to drop respective locks first.
7568 */
7569 void
set_qfull(queue_t * q)7570 set_qfull(queue_t *q)
7571 {
7572 queue_t *fq = NULL;
7573
7574 ASSERT(MUTEX_HELD(QLOCK(q)));
7575 if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7576 (q->q_syncqmsgs > sq_max_size)) {
7577 if ((fq = q->q_nfsrv) == q) {
7578 fq->q_flag |= QFULL;
7579 } else {
7580 mutex_exit(QLOCK(q));
7581 mutex_enter(QLOCK(fq));
7582 fq->q_flag |= QFULL;
7583 mutex_exit(QLOCK(fq));
7584 mutex_enter(QLOCK(q));
7585 }
7586 }
7587 }
7588
7589 void
clr_qfull(queue_t * q)7590 clr_qfull(queue_t *q)
7591 {
7592 queue_t *oq = q;
7593
7594 q = q->q_nfsrv;
7595 /* Fast check if there is any work to do before getting the lock. */
7596 if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7597 return;
7598 }
7599
7600 /*
7601 * Do not reset QFULL (and backenable) if the q_count is the reason
7602 * for QFULL being set.
7603 */
7604 mutex_enter(QLOCK(q));
7605 /*
7606 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7607 * Hence clear the QFULL.
7608 * If both q_count and q_mblkcnt are less than the hiwat mark,
7609 * clear the QFULL.
7610 */
7611 if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7612 (q->q_mblkcnt < q->q_hiwat))) {
7613 q->q_flag &= ~QFULL;
7614 /*
7615 * A little more confusing, how about this way:
7616 * if someone wants to write,
7617 * AND
7618 * both counts are less than the lowat mark
7619 * OR
7620 * the lowat mark is zero
7621 * THEN
7622 * backenable
7623 */
7624 if ((q->q_flag & QWANTW) &&
7625 (((q->q_count < q->q_lowat) &&
7626 (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7627 q->q_flag &= ~QWANTW;
7628 mutex_exit(QLOCK(q));
7629 backenable(oq, 0);
7630 } else
7631 mutex_exit(QLOCK(q));
7632 } else
7633 mutex_exit(QLOCK(q));
7634 }
7635
7636 /*
7637 * Set the forward service procedure pointer.
7638 *
7639 * Called at insert-time to cache a queue's next forward service procedure in
7640 * q_nfsrv; used by canput() and canputnext(). If the queue to be inserted
7641 * has a service procedure then q_nfsrv points to itself. If the queue to be
7642 * inserted does not have a service procedure, then q_nfsrv points to the next
7643 * queue forward that has a service procedure. If the queue is at the logical
7644 * end of the stream (driver for write side, stream head for the read side)
7645 * and does not have a service procedure, then q_nfsrv also points to itself.
7646 */
7647 void
set_nfsrv_ptr(queue_t * rnew,queue_t * wnew,queue_t * prev_rq,queue_t * prev_wq)7648 set_nfsrv_ptr(
7649 queue_t *rnew, /* read queue pointer to new module */
7650 queue_t *wnew, /* write queue pointer to new module */
7651 queue_t *prev_rq, /* read queue pointer to the module above */
7652 queue_t *prev_wq) /* write queue pointer to the module above */
7653 {
7654 queue_t *qp;
7655
7656 if (prev_wq->q_next == NULL) {
7657 /*
7658 * Insert the driver, initialize the driver and stream head.
7659 * In this case, prev_rq/prev_wq should be the stream head.
7660 * _I_INSERT does not allow inserting a driver. Make sure
7661 * that it is not an insertion.
7662 */
7663 ASSERT(!(rnew->q_flag & _QINSERTING));
7664 wnew->q_nfsrv = wnew;
7665 if (rnew->q_qinfo->qi_srvp)
7666 rnew->q_nfsrv = rnew;
7667 else
7668 rnew->q_nfsrv = prev_rq;
7669 prev_rq->q_nfsrv = prev_rq;
7670 prev_wq->q_nfsrv = prev_wq;
7671 } else {
7672 /*
7673 * set up read side q_nfsrv pointer. This MUST be done
7674 * before setting the write side, because the setting of
7675 * the write side for a fifo may depend on it.
7676 *
7677 * Suppose we have a fifo that only has pipemod pushed.
7678 * pipemod has no read or write service procedures, so
7679 * nfsrv for both pipemod queues points to prev_rq (the
7680 * stream read head). Now push bufmod (which has only a
7681 * read service procedure). Doing the write side first,
7682 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7683 * is WRONG; the next queue forward from wnew with a
7684 * service procedure will be rnew, not the stream read head.
7685 * Since the downstream queue (which in the case of a fifo
7686 * is the read queue rnew) can affect upstream queues, it
7687 * needs to be done first. Setting up the read side first
7688 * sets nfsrv for both pipemod queues to rnew and then
7689 * when the write side is set up, wnew-q_nfsrv will also
7690 * point to rnew.
7691 */
7692 if (rnew->q_qinfo->qi_srvp) {
7693 /*
7694 * use _OTHERQ() because, if this is a pipe, next
7695 * module may have been pushed from other end and
7696 * q_next could be a read queue.
7697 */
7698 qp = _OTHERQ(prev_wq->q_next);
7699 while (qp && qp->q_nfsrv != qp) {
7700 qp->q_nfsrv = rnew;
7701 qp = backq(qp);
7702 }
7703 rnew->q_nfsrv = rnew;
7704 } else
7705 rnew->q_nfsrv = prev_rq->q_nfsrv;
7706
7707 /* set up write side q_nfsrv pointer */
7708 if (wnew->q_qinfo->qi_srvp) {
7709 wnew->q_nfsrv = wnew;
7710
7711 /*
7712 * For insertion, need to update nfsrv of the modules
7713 * above which do not have a service routine.
7714 */
7715 if (rnew->q_flag & _QINSERTING) {
7716 for (qp = prev_wq;
7717 qp != NULL && qp->q_nfsrv != qp;
7718 qp = backq(qp)) {
7719 qp->q_nfsrv = wnew->q_nfsrv;
7720 }
7721 }
7722 } else {
7723 if (prev_wq->q_next == prev_rq)
7724 /*
7725 * Since prev_wq/prev_rq are the middle of a
7726 * fifo, wnew/rnew will also be the middle of
7727 * a fifo and wnew's nfsrv is same as rnew's.
7728 */
7729 wnew->q_nfsrv = rnew->q_nfsrv;
7730 else
7731 wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7732 }
7733 }
7734 }
7735
7736 /*
7737 * Reset the forward service procedure pointer; called at remove-time.
7738 */
7739 void
reset_nfsrv_ptr(queue_t * rqp,queue_t * wqp)7740 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7741 {
7742 queue_t *tmp_qp;
7743
7744 /* Reset the write side q_nfsrv pointer for _I_REMOVE */
7745 if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7746 for (tmp_qp = backq(wqp);
7747 tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7748 tmp_qp = backq(tmp_qp)) {
7749 tmp_qp->q_nfsrv = wqp->q_nfsrv;
7750 }
7751 }
7752
7753 /* reset the read side q_nfsrv pointer */
7754 if (rqp->q_qinfo->qi_srvp) {
7755 if (wqp->q_next) { /* non-driver case */
7756 tmp_qp = _OTHERQ(wqp->q_next);
7757 while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7758 /* Note that rqp->q_next cannot be NULL */
7759 ASSERT(rqp->q_next != NULL);
7760 tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7761 tmp_qp = backq(tmp_qp);
7762 }
7763 }
7764 }
7765 }
7766
7767 /*
7768 * This routine should be called after all stream geometry changes to update
7769 * the stream head cached struio() rd/wr queue pointers. Note must be called
7770 * with the streamlock()ed.
7771 *
7772 * Note: only enables Synchronous STREAMS for a side of a Stream which has
7773 * an explicit synchronous barrier module queue. That is, a queue that
7774 * has specified a struio() type.
7775 */
7776 static void
strsetuio(stdata_t * stp)7777 strsetuio(stdata_t *stp)
7778 {
7779 queue_t *wrq;
7780
7781 if (stp->sd_flag & STPLEX) {
7782 /*
7783 * Not streamhead, but a mux, so no Synchronous STREAMS.
7784 */
7785 stp->sd_struiowrq = NULL;
7786 stp->sd_struiordq = NULL;
7787 return;
7788 }
7789 /*
7790 * Scan the write queue(s) while synchronous
7791 * until we find a qinfo uio type specified.
7792 */
7793 wrq = stp->sd_wrq->q_next;
7794 while (wrq) {
7795 if (wrq->q_struiot == STRUIOT_NONE) {
7796 wrq = 0;
7797 break;
7798 }
7799 if (wrq->q_struiot != STRUIOT_DONTCARE)
7800 break;
7801 if (! _SAMESTR(wrq)) {
7802 wrq = 0;
7803 break;
7804 }
7805 wrq = wrq->q_next;
7806 }
7807 stp->sd_struiowrq = wrq;
7808 /*
7809 * Scan the read queue(s) while synchronous
7810 * until we find a qinfo uio type specified.
7811 */
7812 wrq = stp->sd_wrq->q_next;
7813 while (wrq) {
7814 if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7815 wrq = 0;
7816 break;
7817 }
7818 if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7819 break;
7820 if (! _SAMESTR(wrq)) {
7821 wrq = 0;
7822 break;
7823 }
7824 wrq = wrq->q_next;
7825 }
7826 stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7827 }
7828
7829 static int
pass_rput(queue_t * q,mblk_t * mp)7830 pass_rput(queue_t *q, mblk_t *mp)
7831 {
7832 putnext(q, mp);
7833 return (0);
7834 }
7835
7836 /*
7837 * pass_wput, unblocks the passthru queues, so that
7838 * messages can arrive at muxs lower read queue, before
7839 * I_LINK/I_UNLINK is acked/nacked.
7840 */
7841 static int
pass_wput(queue_t * q,mblk_t * mp)7842 pass_wput(queue_t *q, mblk_t *mp)
7843 {
7844 syncq_t *sq;
7845
7846 sq = _RD(q)->q_syncq;
7847 if (sq->sq_flags & SQ_BLOCKED)
7848 unblocksq(sq, SQ_BLOCKED, 0);
7849 putnext(q, mp);
7850 return (0);
7851 }
7852
7853 /*
7854 * Set up queues for the link/unlink.
7855 * Create a new queue and block it and then insert it
7856 * below the stream head on the lower stream.
7857 * This prevents any messages from arriving during the setq
7858 * as well as while the mux is processing the LINK/I_UNLINK.
7859 * The blocked passq is unblocked once the LINK/I_UNLINK has
7860 * been acked or nacked or if a message is generated and sent
7861 * down muxs write put procedure.
7862 * See pass_wput().
7863 *
7864 * After the new queue is inserted, all messages coming from below are
7865 * blocked. The call to strlock will ensure that all activity in the stream head
7866 * read queue syncq is stopped (sq_count drops to zero).
7867 */
7868 static queue_t *
link_addpassthru(stdata_t * stpdown)7869 link_addpassthru(stdata_t *stpdown)
7870 {
7871 queue_t *passq;
7872 sqlist_t sqlist;
7873
7874 passq = allocq();
7875 STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7876 /* setq might sleep in allocator - avoid holding locks. */
7877 setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7878 SQ_CI|SQ_CO, B_FALSE);
7879 claimq(passq);
7880 blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7881 insertq(STREAM(passq), passq);
7882
7883 /*
7884 * Use strlock() to wait for the stream head sq_count to drop to zero
7885 * since we are going to change q_ptr in the stream head. Note that
7886 * insertq() doesn't wait for any syncq counts to drop to zero.
7887 */
7888 sqlist.sqlist_head = NULL;
7889 sqlist.sqlist_index = 0;
7890 sqlist.sqlist_size = sizeof (sqlist_t);
7891 sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7892 strlock(stpdown, &sqlist);
7893 strunlock(stpdown, &sqlist);
7894
7895 releaseq(passq);
7896 return (passq);
7897 }
7898
7899 /*
7900 * Let messages flow up into the mux by removing
7901 * the passq.
7902 */
7903 static void
link_rempassthru(queue_t * passq)7904 link_rempassthru(queue_t *passq)
7905 {
7906 claimq(passq);
7907 removeq(passq);
7908 releaseq(passq);
7909 freeq(passq);
7910 }
7911
7912 /*
7913 * Wait for the condition variable pointed to by `cvp' to be signaled,
7914 * or for `tim' milliseconds to elapse, whichever comes first. If `tim'
7915 * is negative, then there is no time limit. If `nosigs' is non-zero,
7916 * then the wait will be non-interruptible.
7917 *
7918 * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7919 */
7920 clock_t
str_cv_wait(kcondvar_t * cvp,kmutex_t * mp,clock_t tim,int nosigs)7921 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7922 {
7923 clock_t ret;
7924
7925 if (tim < 0) {
7926 if (nosigs) {
7927 cv_wait(cvp, mp);
7928 ret = 1;
7929 } else {
7930 ret = cv_wait_sig(cvp, mp);
7931 }
7932 } else if (tim > 0) {
7933 /*
7934 * convert milliseconds to clock ticks
7935 */
7936 if (nosigs) {
7937 ret = cv_reltimedwait(cvp, mp,
7938 MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
7939 } else {
7940 ret = cv_reltimedwait_sig(cvp, mp,
7941 MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
7942 }
7943 } else {
7944 ret = -1;
7945 }
7946 return (ret);
7947 }
7948
7949 /*
7950 * Wait until the stream head can determine if it is at the mark but
7951 * don't wait forever to prevent a race condition between the "mark" state
7952 * in the stream head and any mark state in the caller/user of this routine.
7953 *
7954 * This is used by sockets and for a socket it would be incorrect
7955 * to return a failure for SIOCATMARK when there is no data in the receive
7956 * queue and the marked urgent data is traveling up the stream.
7957 *
7958 * This routine waits until the mark is known by waiting for one of these
7959 * three events:
7960 * The stream head read queue becoming non-empty (including an EOF).
7961 * The STRATMARK flag being set (due to a MSGMARKNEXT message).
7962 * The STRNOTATMARK flag being set (which indicates that the transport
7963 * has sent a MSGNOTMARKNEXT message to indicate that it is not at
7964 * the mark).
7965 *
7966 * The routine returns 1 if the stream is at the mark; 0 if it can
7967 * be determined that the stream is not at the mark.
7968 * If the wait times out and it can't determine
7969 * whether or not the stream might be at the mark the routine will return -1.
7970 *
7971 * Note: This routine should only be used when a mark is pending i.e.,
7972 * in the socket case the SIGURG has been posted.
7973 * Note2: This can not wakeup just because synchronous streams indicate
7974 * that data is available since it is not possible to use the synchronous
7975 * streams interfaces to determine the b_flag value for the data queued below
7976 * the stream head.
7977 */
7978 int
strwaitmark(vnode_t * vp)7979 strwaitmark(vnode_t *vp)
7980 {
7981 struct stdata *stp = vp->v_stream;
7982 queue_t *rq = _RD(stp->sd_wrq);
7983 int mark;
7984
7985 mutex_enter(&stp->sd_lock);
7986 while (rq->q_first == NULL &&
7987 !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7988 stp->sd_flag |= RSLEEP;
7989
7990 /* Wait for 100 milliseconds for any state change. */
7991 if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7992 mutex_exit(&stp->sd_lock);
7993 return (-1);
7994 }
7995 }
7996 if (stp->sd_flag & STRATMARK)
7997 mark = 1;
7998 else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7999 mark = 1;
8000 else
8001 mark = 0;
8002
8003 mutex_exit(&stp->sd_lock);
8004 return (mark);
8005 }
8006
8007 /*
8008 * Set a read side error. If persist is set change the socket error
8009 * to persistent. If errfunc is set install the function as the exported
8010 * error handler.
8011 */
8012 void
strsetrerror(vnode_t * vp,int error,int persist,errfunc_t errfunc)8013 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8014 {
8015 struct stdata *stp = vp->v_stream;
8016
8017 mutex_enter(&stp->sd_lock);
8018 stp->sd_rerror = error;
8019 if (error == 0 && errfunc == NULL)
8020 stp->sd_flag &= ~STRDERR;
8021 else
8022 stp->sd_flag |= STRDERR;
8023 if (persist) {
8024 stp->sd_flag &= ~STRDERRNONPERSIST;
8025 } else {
8026 stp->sd_flag |= STRDERRNONPERSIST;
8027 }
8028 stp->sd_rderrfunc = errfunc;
8029 if (error != 0 || errfunc != NULL) {
8030 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */
8031 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */
8032 cv_broadcast(&stp->sd_monitor); /* ioctllers */
8033
8034 mutex_exit(&stp->sd_lock);
8035 pollwakeup(&stp->sd_pollist, POLLERR);
8036 mutex_enter(&stp->sd_lock);
8037
8038 if (stp->sd_sigflags & S_ERROR)
8039 strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8040 }
8041 mutex_exit(&stp->sd_lock);
8042 }
8043
8044 /*
8045 * Set a write side error. If persist is set change the socket error
8046 * to persistent.
8047 */
8048 void
strsetwerror(vnode_t * vp,int error,int persist,errfunc_t errfunc)8049 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8050 {
8051 struct stdata *stp = vp->v_stream;
8052
8053 mutex_enter(&stp->sd_lock);
8054 stp->sd_werror = error;
8055 if (error == 0 && errfunc == NULL)
8056 stp->sd_flag &= ~STWRERR;
8057 else
8058 stp->sd_flag |= STWRERR;
8059 if (persist) {
8060 stp->sd_flag &= ~STWRERRNONPERSIST;
8061 } else {
8062 stp->sd_flag |= STWRERRNONPERSIST;
8063 }
8064 stp->sd_wrerrfunc = errfunc;
8065 if (error != 0 || errfunc != NULL) {
8066 cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */
8067 cv_broadcast(&stp->sd_wrq->q_wait); /* writers */
8068 cv_broadcast(&stp->sd_monitor); /* ioctllers */
8069
8070 mutex_exit(&stp->sd_lock);
8071 pollwakeup(&stp->sd_pollist, POLLERR);
8072 mutex_enter(&stp->sd_lock);
8073
8074 if (stp->sd_sigflags & S_ERROR)
8075 strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8076 }
8077 mutex_exit(&stp->sd_lock);
8078 }
8079
8080 /*
8081 * Make the stream return 0 (EOF) when all data has been read.
8082 * No effect on write side.
8083 */
8084 void
strseteof(vnode_t * vp,int eof)8085 strseteof(vnode_t *vp, int eof)
8086 {
8087 struct stdata *stp = vp->v_stream;
8088
8089 mutex_enter(&stp->sd_lock);
8090 if (!eof) {
8091 stp->sd_flag &= ~STREOF;
8092 mutex_exit(&stp->sd_lock);
8093 return;
8094 }
8095 stp->sd_flag |= STREOF;
8096 if (stp->sd_flag & RSLEEP) {
8097 stp->sd_flag &= ~RSLEEP;
8098 cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8099 }
8100
8101 mutex_exit(&stp->sd_lock);
8102 pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8103 mutex_enter(&stp->sd_lock);
8104
8105 if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8106 strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8107 mutex_exit(&stp->sd_lock);
8108 }
8109
8110 void
strflushrq(vnode_t * vp,int flag)8111 strflushrq(vnode_t *vp, int flag)
8112 {
8113 struct stdata *stp = vp->v_stream;
8114
8115 mutex_enter(&stp->sd_lock);
8116 flushq(_RD(stp->sd_wrq), flag);
8117 mutex_exit(&stp->sd_lock);
8118 }
8119
8120 void
strsetrputhooks(vnode_t * vp,uint_t flags,msgfunc_t protofunc,msgfunc_t miscfunc)8121 strsetrputhooks(vnode_t *vp, uint_t flags,
8122 msgfunc_t protofunc, msgfunc_t miscfunc)
8123 {
8124 struct stdata *stp = vp->v_stream;
8125
8126 mutex_enter(&stp->sd_lock);
8127
8128 if (protofunc == NULL)
8129 stp->sd_rprotofunc = strrput_proto;
8130 else
8131 stp->sd_rprotofunc = protofunc;
8132
8133 if (miscfunc == NULL)
8134 stp->sd_rmiscfunc = strrput_misc;
8135 else
8136 stp->sd_rmiscfunc = miscfunc;
8137
8138 if (flags & SH_CONSOL_DATA)
8139 stp->sd_rput_opt |= SR_CONSOL_DATA;
8140 else
8141 stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8142
8143 if (flags & SH_SIGALLDATA)
8144 stp->sd_rput_opt |= SR_SIGALLDATA;
8145 else
8146 stp->sd_rput_opt &= ~SR_SIGALLDATA;
8147
8148 if (flags & SH_IGN_ZEROLEN)
8149 stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8150 else
8151 stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8152
8153 mutex_exit(&stp->sd_lock);
8154 }
8155
8156 void
strsetwputhooks(vnode_t * vp,uint_t flags,clock_t closetime)8157 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8158 {
8159 struct stdata *stp = vp->v_stream;
8160
8161 mutex_enter(&stp->sd_lock);
8162 stp->sd_closetime = closetime;
8163
8164 if (flags & SH_SIGPIPE)
8165 stp->sd_wput_opt |= SW_SIGPIPE;
8166 else
8167 stp->sd_wput_opt &= ~SW_SIGPIPE;
8168 if (flags & SH_RECHECK_ERR)
8169 stp->sd_wput_opt |= SW_RECHECK_ERR;
8170 else
8171 stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8172
8173 mutex_exit(&stp->sd_lock);
8174 }
8175
8176 void
strsetrwputdatahooks(vnode_t * vp,msgfunc_t rdatafunc,msgfunc_t wdatafunc)8177 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8178 {
8179 struct stdata *stp = vp->v_stream;
8180
8181 mutex_enter(&stp->sd_lock);
8182
8183 stp->sd_rputdatafunc = rdatafunc;
8184 stp->sd_wputdatafunc = wdatafunc;
8185
8186 mutex_exit(&stp->sd_lock);
8187 }
8188
8189 /* Used within framework when the queue is already locked */
8190 void
qenable_locked(queue_t * q)8191 qenable_locked(queue_t *q)
8192 {
8193 stdata_t *stp = STREAM(q);
8194
8195 ASSERT(MUTEX_HELD(QLOCK(q)));
8196
8197 if (!q->q_qinfo->qi_srvp)
8198 return;
8199
8200 /*
8201 * Do not place on run queue if already enabled or closing.
8202 */
8203 if (q->q_flag & (QWCLOSE|QENAB))
8204 return;
8205
8206 /*
8207 * mark queue enabled and place on run list if it is not already being
8208 * serviced. If it is serviced, the runservice() function will detect
8209 * that QENAB is set and call service procedure before clearing
8210 * QINSERVICE flag.
8211 */
8212 q->q_flag |= QENAB;
8213 if (q->q_flag & QINSERVICE)
8214 return;
8215
8216 /* Record the time of qenable */
8217 q->q_qtstamp = ddi_get_lbolt();
8218
8219 /*
8220 * Put the queue in the stp list and schedule it for background
8221 * processing if it is not already scheduled or if stream head does not
8222 * intent to process it in the foreground later by setting
8223 * STRS_WILLSERVICE flag.
8224 */
8225 mutex_enter(&stp->sd_qlock);
8226 /*
8227 * If there are already something on the list, stp flags should show
8228 * intention to drain it.
8229 */
8230 IMPLY(STREAM_NEEDSERVICE(stp),
8231 (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8232
8233 ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8234 stp->sd_nqueues++;
8235
8236 /*
8237 * If no one will drain this stream we are the first producer and
8238 * need to schedule it for background thread.
8239 */
8240 if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8241 /*
8242 * No one will service this stream later, so we have to
8243 * schedule it now.
8244 */
8245 STRSTAT(stenables);
8246 stp->sd_svcflags |= STRS_SCHEDULED;
8247 stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8248 (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8249
8250 if (stp->sd_servid == NULL) {
8251 /*
8252 * Task queue failed so fail over to the backup
8253 * servicing thread.
8254 */
8255 STRSTAT(taskqfails);
8256 /*
8257 * It is safe to clear STRS_SCHEDULED flag because it
8258 * was set by this thread above.
8259 */
8260 stp->sd_svcflags &= ~STRS_SCHEDULED;
8261
8262 /*
8263 * Failover scheduling is protected by service_queue
8264 * lock.
8265 */
8266 mutex_enter(&service_queue);
8267 ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8268 ASSERT(q->q_link == NULL);
8269 /*
8270 * Append the queue to qhead/qtail list.
8271 */
8272 if (qhead == NULL)
8273 qhead = q;
8274 else
8275 qtail->q_link = q;
8276 qtail = q;
8277 /*
8278 * Clear stp queue list.
8279 */
8280 stp->sd_qhead = stp->sd_qtail = NULL;
8281 stp->sd_nqueues = 0;
8282 /*
8283 * Wakeup background queue processing thread.
8284 */
8285 cv_signal(&services_to_run);
8286 mutex_exit(&service_queue);
8287 }
8288 }
8289 mutex_exit(&stp->sd_qlock);
8290 }
8291
8292 static void
queue_service(queue_t * q)8293 queue_service(queue_t *q)
8294 {
8295 /*
8296 * The queue in the list should have
8297 * QENAB flag set and should not have
8298 * QINSERVICE flag set. QINSERVICE is
8299 * set when the queue is dequeued and
8300 * qenable_locked doesn't enqueue a
8301 * queue with QINSERVICE set.
8302 */
8303
8304 ASSERT(!(q->q_flag & QINSERVICE));
8305 ASSERT((q->q_flag & QENAB));
8306 mutex_enter(QLOCK(q));
8307 q->q_flag &= ~QENAB;
8308 q->q_flag |= QINSERVICE;
8309 mutex_exit(QLOCK(q));
8310 runservice(q);
8311 }
8312
8313 static void
syncq_service(syncq_t * sq)8314 syncq_service(syncq_t *sq)
8315 {
8316 STRSTAT(syncqservice);
8317 mutex_enter(SQLOCK(sq));
8318 ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8319 ASSERT(sq->sq_servcount != 0);
8320 ASSERT(sq->sq_next == NULL);
8321
8322 /* if we came here from the background thread, clear the flag */
8323 if (sq->sq_svcflags & SQ_BGTHREAD)
8324 sq->sq_svcflags &= ~SQ_BGTHREAD;
8325
8326 /* let drain_syncq know that it's being called in the background */
8327 sq->sq_svcflags |= SQ_SERVICE;
8328 drain_syncq(sq);
8329 }
8330
8331 static void
qwriter_outer_service(syncq_t * outer)8332 qwriter_outer_service(syncq_t *outer)
8333 {
8334 /*
8335 * Note that SQ_WRITER is used on the outer perimeter
8336 * to signal that a qwriter(OUTER) is either investigating
8337 * running or that it is actually running a function.
8338 */
8339 outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8340
8341 /*
8342 * All inner syncq are empty and have SQ_WRITER set
8343 * to block entering the outer perimeter.
8344 *
8345 * We do not need to explicitly call write_now since
8346 * outer_exit does it for us.
8347 */
8348 outer_exit(outer);
8349 }
8350
8351 static void
mblk_free(mblk_t * mp)8352 mblk_free(mblk_t *mp)
8353 {
8354 dblk_t *dbp = mp->b_datap;
8355 frtn_t *frp = dbp->db_frtnp;
8356
8357 mp->b_next = NULL;
8358 if (dbp->db_fthdr != NULL)
8359 str_ftfree(dbp);
8360
8361 ASSERT(dbp->db_fthdr == NULL);
8362 frp->free_func(frp->free_arg);
8363 ASSERT(dbp->db_mblk == mp);
8364
8365 if (dbp->db_credp != NULL) {
8366 crfree(dbp->db_credp);
8367 dbp->db_credp = NULL;
8368 }
8369 dbp->db_cpid = -1;
8370 dbp->db_struioflag = 0;
8371 dbp->db_struioun.cksum.flags = 0;
8372
8373 kmem_cache_free(dbp->db_cache, dbp);
8374 }
8375
8376 /*
8377 * Background processing of the stream queue list.
8378 */
8379 static void
stream_service(stdata_t * stp)8380 stream_service(stdata_t *stp)
8381 {
8382 queue_t *q;
8383
8384 mutex_enter(&stp->sd_qlock);
8385
8386 STR_SERVICE(stp, q);
8387
8388 stp->sd_svcflags &= ~STRS_SCHEDULED;
8389 stp->sd_servid = NULL;
8390 cv_signal(&stp->sd_qcv);
8391 mutex_exit(&stp->sd_qlock);
8392 }
8393
8394 /*
8395 * Foreground processing of the stream queue list.
8396 */
8397 void
stream_runservice(stdata_t * stp)8398 stream_runservice(stdata_t *stp)
8399 {
8400 queue_t *q;
8401
8402 mutex_enter(&stp->sd_qlock);
8403 STRSTAT(rservice);
8404 /*
8405 * We are going to drain this stream queue list, so qenable_locked will
8406 * not schedule it until we finish.
8407 */
8408 stp->sd_svcflags |= STRS_WILLSERVICE;
8409
8410 STR_SERVICE(stp, q);
8411
8412 stp->sd_svcflags &= ~STRS_WILLSERVICE;
8413 mutex_exit(&stp->sd_qlock);
8414 /*
8415 * Help backup background thread to drain the qhead/qtail list.
8416 */
8417 while (qhead != NULL) {
8418 STRSTAT(qhelps);
8419 mutex_enter(&service_queue);
8420 DQ(q, qhead, qtail, q_link);
8421 mutex_exit(&service_queue);
8422 if (q != NULL)
8423 queue_service(q);
8424 }
8425 }
8426
8427 void
stream_willservice(stdata_t * stp)8428 stream_willservice(stdata_t *stp)
8429 {
8430 mutex_enter(&stp->sd_qlock);
8431 stp->sd_svcflags |= STRS_WILLSERVICE;
8432 mutex_exit(&stp->sd_qlock);
8433 }
8434
8435 /*
8436 * Replace the cred currently in the mblk with a different one.
8437 * Also update db_cpid.
8438 */
8439 void
mblk_setcred(mblk_t * mp,cred_t * cr,pid_t cpid)8440 mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid)
8441 {
8442 dblk_t *dbp = mp->b_datap;
8443 cred_t *ocr = dbp->db_credp;
8444
8445 ASSERT(cr != NULL);
8446
8447 if (cr != ocr) {
8448 crhold(dbp->db_credp = cr);
8449 if (ocr != NULL)
8450 crfree(ocr);
8451 }
8452 /* Don't overwrite with NOPID */
8453 if (cpid != NOPID)
8454 dbp->db_cpid = cpid;
8455 }
8456
8457 /*
8458 * If the src message has a cred, then replace the cred currently in the mblk
8459 * with it.
8460 * Also update db_cpid.
8461 */
8462 void
mblk_copycred(mblk_t * mp,const mblk_t * src)8463 mblk_copycred(mblk_t *mp, const mblk_t *src)
8464 {
8465 dblk_t *dbp = mp->b_datap;
8466 cred_t *cr, *ocr;
8467 pid_t cpid;
8468
8469 cr = msg_getcred(src, &cpid);
8470 if (cr == NULL)
8471 return;
8472
8473 ocr = dbp->db_credp;
8474 if (cr != ocr) {
8475 crhold(dbp->db_credp = cr);
8476 if (ocr != NULL)
8477 crfree(ocr);
8478 }
8479 /* Don't overwrite with NOPID */
8480 if (cpid != NOPID)
8481 dbp->db_cpid = cpid;
8482 }
8483
8484 void
lso_info_set(mblk_t * mp,uint32_t mss,uint32_t flags)8485 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8486 {
8487 ASSERT(DB_TYPE(mp) == M_DATA);
8488 ASSERT((flags & ~HW_LSO_FLAGS) == 0);
8489
8490 /* Set the flags */
8491 DB_LSOFLAGS(mp) |= flags;
8492 DB_LSOMSS(mp) = mss;
8493 }
8494
8495 void
lso_info_cleanup(mblk_t * mp)8496 lso_info_cleanup(mblk_t *mp)
8497 {
8498 ASSERT(DB_TYPE(mp) == M_DATA);
8499
8500 /* Clear the flags */
8501 DB_LSOFLAGS(mp) &= ~HW_LSO_FLAGS;
8502 DB_LSOMSS(mp) = 0;
8503 }
8504
8505 /*
8506 * Checksum buffer *bp for len bytes with psum partial checksum,
8507 * or 0 if none, and return the 16 bit partial checksum.
8508 */
8509 unsigned
bcksum(uchar_t * bp,int len,unsigned int psum)8510 bcksum(uchar_t *bp, int len, unsigned int psum)
8511 {
8512 int odd = len & 1;
8513 extern unsigned int ip_ocsum();
8514
8515 if (((intptr_t)bp & 1) == 0 && !odd) {
8516 /*
8517 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8518 */
8519 return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8520 }
8521 if (((intptr_t)bp & 1) != 0) {
8522 /*
8523 * Bp isn't 16 bit aligned.
8524 */
8525 unsigned int tsum;
8526
8527 #ifdef _LITTLE_ENDIAN
8528 psum += *bp;
8529 #else
8530 psum += *bp << 8;
8531 #endif
8532 len--;
8533 bp++;
8534 tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8535 psum += (tsum << 8) & 0xffff | (tsum >> 8);
8536 if (len & 1) {
8537 bp += len - 1;
8538 #ifdef _LITTLE_ENDIAN
8539 psum += *bp << 8;
8540 #else
8541 psum += *bp;
8542 #endif
8543 }
8544 } else {
8545 /*
8546 * Bp is 16 bit aligned.
8547 */
8548 psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8549 if (odd) {
8550 bp += len - 1;
8551 #ifdef _LITTLE_ENDIAN
8552 psum += *bp;
8553 #else
8554 psum += *bp << 8;
8555 #endif
8556 }
8557 }
8558 /*
8559 * Normalize psum to 16 bits before returning the new partial
8560 * checksum. The max psum value before normalization is 0x3FDFE.
8561 */
8562 return ((psum >> 16) + (psum & 0xFFFF));
8563 }
8564
8565 void
freemsgchain(mblk_t * mp)8566 freemsgchain(mblk_t *mp)
8567 {
8568 mblk_t *next;
8569
8570 while (mp != NULL) {
8571 next = mp->b_next;
8572 mp->b_next = NULL;
8573
8574 freemsg(mp);
8575 mp = next;
8576 }
8577 }
8578
8579 mblk_t *
copymsgchain(mblk_t * mp)8580 copymsgchain(mblk_t *mp)
8581 {
8582 mblk_t *nmp = NULL;
8583 mblk_t **nmpp = &nmp;
8584
8585 for (; mp != NULL; mp = mp->b_next) {
8586 if ((*nmpp = copymsg(mp)) == NULL) {
8587 freemsgchain(nmp);
8588 return (NULL);
8589 }
8590
8591 nmpp = &((*nmpp)->b_next);
8592 }
8593
8594 return (nmp);
8595 }
8596
8597 /* NOTE: Do not add code after this point. */
8598 #undef QLOCK
8599
8600 /*
8601 * Replacement for QLOCK macro for those that can't use it.
8602 */
8603 kmutex_t *
QLOCK(queue_t * q)8604 QLOCK(queue_t *q)
8605 {
8606 return (&(q)->q_lock);
8607 }
8608
8609 /*
8610 * Dummy runqueues/queuerun functions functions for backwards compatibility.
8611 */
8612 #undef runqueues
8613 void
runqueues(void)8614 runqueues(void)
8615 {
8616 }
8617
8618 #undef queuerun
8619 void
queuerun(void)8620 queuerun(void)
8621 {
8622 }
8623
8624 /*
8625 * Initialize the STR stack instance, which tracks autopush and persistent
8626 * links.
8627 */
8628 /* ARGSUSED */
8629 static void *
str_stack_init(netstackid_t stackid,netstack_t * ns)8630 str_stack_init(netstackid_t stackid, netstack_t *ns)
8631 {
8632 str_stack_t *ss;
8633 int i;
8634
8635 ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8636 ss->ss_netstack = ns;
8637
8638 /*
8639 * set up autopush
8640 */
8641 sad_initspace(ss);
8642
8643 /*
8644 * set up mux_node structures.
8645 */
8646 ss->ss_devcnt = devcnt; /* In case it should change before free */
8647 ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8648 ss->ss_devcnt), KM_SLEEP);
8649 for (i = 0; i < ss->ss_devcnt; i++)
8650 ss->ss_mux_nodes[i].mn_imaj = i;
8651 return (ss);
8652 }
8653
8654 /*
8655 * Note: run at zone shutdown and not destroy so that the PLINKs are
8656 * gone by the time other cleanup happens from the destroy callbacks.
8657 */
8658 static void
str_stack_shutdown(netstackid_t stackid,void * arg)8659 str_stack_shutdown(netstackid_t stackid, void *arg)
8660 {
8661 str_stack_t *ss = (str_stack_t *)arg;
8662 int i;
8663 cred_t *cr;
8664
8665 cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8666 ASSERT(cr != NULL);
8667
8668 /* Undo all the I_PLINKs for this zone */
8669 for (i = 0; i < ss->ss_devcnt; i++) {
8670 struct mux_edge *ep;
8671 ldi_handle_t lh;
8672 ldi_ident_t li;
8673 int ret;
8674 int rval;
8675 dev_t rdev;
8676
8677 ep = ss->ss_mux_nodes[i].mn_outp;
8678 if (ep == NULL)
8679 continue;
8680 ret = ldi_ident_from_major((major_t)i, &li);
8681 if (ret != 0) {
8682 continue;
8683 }
8684 rdev = ep->me_dev;
8685 ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8686 cr, &lh, li);
8687 if (ret != 0) {
8688 ldi_ident_release(li);
8689 continue;
8690 }
8691
8692 ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8693 cr, &rval);
8694 if (ret) {
8695 (void) ldi_close(lh, FREAD|FWRITE, cr);
8696 ldi_ident_release(li);
8697 continue;
8698 }
8699 (void) ldi_close(lh, FREAD|FWRITE, cr);
8700
8701 /* Close layered handles */
8702 ldi_ident_release(li);
8703 }
8704 crfree(cr);
8705
8706 sad_freespace(ss);
8707
8708 kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8709 ss->ss_mux_nodes = NULL;
8710 }
8711
8712 /*
8713 * Free the structure; str_stack_shutdown did the other cleanup work.
8714 */
8715 /* ARGSUSED */
8716 static void
str_stack_fini(netstackid_t stackid,void * arg)8717 str_stack_fini(netstackid_t stackid, void *arg)
8718 {
8719 str_stack_t *ss = (str_stack_t *)arg;
8720
8721 kmem_free(ss, sizeof (*ss));
8722 }
8723