1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 23 /* All Rights Reserved */ 24 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/types.h> 34 #include <sys/sysmacros.h> 35 #include <sys/param.h> 36 #include <sys/errno.h> 37 #include <sys/signal.h> 38 #include <sys/stat.h> 39 #include <sys/proc.h> 40 #include <sys/cred.h> 41 #include <sys/user.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/stream.h> 45 #include <sys/strsubr.h> 46 #include <sys/stropts.h> 47 #include <sys/tihdr.h> 48 #include <sys/var.h> 49 #include <sys/poll.h> 50 #include <sys/termio.h> 51 #include <sys/ttold.h> 52 #include <sys/systm.h> 53 #include <sys/uio.h> 54 #include <sys/cmn_err.h> 55 #include <sys/sad.h> 56 #include <sys/priocntl.h> 57 #include <sys/jioctl.h> 58 #include <sys/procset.h> 59 #include <sys/session.h> 60 #include <sys/kmem.h> 61 #include <sys/filio.h> 62 #include <sys/vtrace.h> 63 #include <sys/debug.h> 64 #include <sys/strredir.h> 65 #include <sys/fs/fifonode.h> 66 #include <sys/fs/snode.h> 67 #include <sys/strlog.h> 68 #include <sys/strsun.h> 69 #include <sys/project.h> 70 #include <sys/kbio.h> 71 #include <sys/msio.h> 72 #include <sys/tty.h> 73 #include <sys/ptyvar.h> 74 #include <sys/vuid_event.h> 75 #include <sys/modctl.h> 76 #include <sys/sunddi.h> 77 #include <sys/sunldi_impl.h> 78 #include <sys/autoconf.h> 79 #include <sys/policy.h> 80 81 /* 82 * what is mblk_pull_len? 83 * 84 * If a streams message consists of many short messages, 85 * a performance degradation occurs from copyout overhead. 86 * To decrease the per mblk overhead, messages that are 87 * likely to consist of many small mblks are pulled up into 88 * one continuous chunk of memory. 89 * 90 * To avoid the processing overhead of examining every 91 * mblk, a quick heuristic is used. If the first mblk in 92 * the message is shorter than mblk_pull_len, it is likely 93 * that the rest of the mblk will be short. 94 * 95 * This heuristic was decided upon after performance tests 96 * indicated that anything more complex slowed down the main 97 * code path. 98 */ 99 #define MBLK_PULL_LEN 64 100 uint32_t mblk_pull_len = MBLK_PULL_LEN; 101 102 /* 103 * The sgttyb_handling flag controls the handling of the old BSD 104 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 105 * 106 * 0 - Emit no warnings at all and retain old, broken behavior. 107 * 1 - Emit no warnings and silently handle new semantics. 108 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 109 * (once per system invocation). Handle with new semantics. 110 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 111 * made (so that offenders drop core and are easy to debug). 112 * 113 * The "new semantics" are that TIOCGETP returns B38400 for 114 * sg_[io]speed if the corresponding value is over B38400, and that 115 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 116 * bit rate." 117 */ 118 int sgttyb_handling = 1; 119 static boolean_t sgttyb_complaint; 120 121 /* don't push drcompat module by default on Style-2 streams */ 122 static int push_drcompat = 0; 123 124 /* 125 * id value used to distinguish between different ioctl messages 126 */ 127 static uint32_t ioc_id; 128 129 static void putback(struct stdata *, queue_t *, mblk_t *, int); 130 static void strcleanall(struct vnode *); 131 static int strwsrv(queue_t *); 132 133 /* 134 * qinit and module_info structures for stream head read and write queues 135 */ 136 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 137 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 138 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 139 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 140 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 141 FIFOLOWAT }; 142 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 143 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 144 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 145 146 extern kmutex_t strresources; /* protects global resources */ 147 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 148 kmutex_t sad_lock; /* protects sad drivers autopush */ 149 150 static boolean_t msghasdata(mblk_t *bp); 151 #define msgnodata(bp) (!msghasdata(bp)) 152 153 /* 154 * Stream head locking notes: 155 * There are four monitors associated with the stream head: 156 * 1. v_stream monitor: in stropen() and strclose() v_lock 157 * is held while the association of vnode and stream 158 * head is established or tested for. 159 * 2. open/close/push/pop monitor: sd_lock is held while each 160 * thread bids for exclusive access to this monitor 161 * for opening or closing a stream. In addition, this 162 * monitor is entered during pushes and pops. This 163 * guarantees that during plumbing operations there 164 * is only one thread trying to change the plumbing. 165 * Any other threads present in the stream are only 166 * using the plumbing. 167 * 3. read/write monitor: in the case of read, a thread holds 168 * sd_lock while trying to get data from the stream 169 * head queue. if there is none to fulfill a read 170 * request, it sets RSLEEP and calls cv_wait_sig() down 171 * in strwaitq() to await the arrival of new data. 172 * when new data arrives in strrput(), sd_lock is acquired 173 * before testing for RSLEEP and calling cv_broadcast(). 174 * the behavior of strwrite(), strwsrv(), and WSLEEP 175 * mirror this. 176 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 177 * thread is doing an ioctl at a time. 178 */ 179 180 static int 181 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 182 int anchor, cred_t *crp) 183 { 184 int error; 185 fmodsw_impl_t *fp; 186 187 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 188 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 189 return (error); 190 } 191 if (stp->sd_pushcnt >= nstrpush) { 192 return (EINVAL); 193 } 194 195 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 196 stp->sd_flag |= STREOPENFAIL; 197 return (EINVAL); 198 } 199 200 /* 201 * push new module and call its open routine via qattach 202 */ 203 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 204 return (error); 205 206 /* 207 * Check to see if caller wants a STREAMS anchor 208 * put at this place in the stream, and add if so. 209 */ 210 mutex_enter(&stp->sd_lock); 211 if (anchor == stp->sd_pushcnt) 212 stp->sd_anchor = stp->sd_pushcnt; 213 mutex_exit(&stp->sd_lock); 214 215 return (0); 216 } 217 218 /* 219 * Open a stream device. 220 */ 221 int 222 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 223 { 224 struct stdata *stp; 225 queue_t *qp; 226 int s; 227 dev_t dummydev; 228 struct autopush *ap; 229 int error = 0; 230 ssize_t rmin, rmax; 231 int cloneopen; 232 queue_t *brq; 233 major_t major; 234 235 #ifdef C2_AUDIT 236 if (audit_active) 237 audit_stropen(vp, devp, flag, crp); 238 #endif 239 240 /* 241 * If the stream already exists, wait for any open in progress 242 * to complete, then call the open function of each module and 243 * driver in the stream. Otherwise create the stream. 244 */ 245 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 246 retry: 247 mutex_enter(&vp->v_lock); 248 if ((stp = vp->v_stream) != NULL) { 249 250 /* 251 * Waiting for stream to be created to device 252 * due to another open. 253 */ 254 mutex_exit(&vp->v_lock); 255 256 if (STRMATED(stp)) { 257 struct stdata *strmatep = stp->sd_mate; 258 259 STRLOCKMATES(stp); 260 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 261 if (flag & (FNDELAY|FNONBLOCK)) { 262 error = EAGAIN; 263 mutex_exit(&strmatep->sd_lock); 264 goto ckreturn; 265 } 266 mutex_exit(&stp->sd_lock); 267 if (!cv_wait_sig(&strmatep->sd_monitor, 268 &strmatep->sd_lock)) { 269 error = EINTR; 270 mutex_exit(&strmatep->sd_lock); 271 mutex_enter(&stp->sd_lock); 272 goto ckreturn; 273 } 274 mutex_exit(&strmatep->sd_lock); 275 goto retry; 276 } 277 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 278 if (flag & (FNDELAY|FNONBLOCK)) { 279 error = EAGAIN; 280 mutex_exit(&strmatep->sd_lock); 281 goto ckreturn; 282 } 283 mutex_exit(&strmatep->sd_lock); 284 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { 285 error = EINTR; 286 goto ckreturn; 287 } 288 mutex_exit(&stp->sd_lock); 289 goto retry; 290 } 291 292 if (stp->sd_flag & (STRDERR|STWRERR)) { 293 error = EIO; 294 mutex_exit(&strmatep->sd_lock); 295 goto ckreturn; 296 } 297 298 stp->sd_flag |= STWOPEN; 299 STRUNLOCKMATES(stp); 300 } else { 301 mutex_enter(&stp->sd_lock); 302 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 303 if (flag & (FNDELAY|FNONBLOCK)) { 304 error = EAGAIN; 305 goto ckreturn; 306 } 307 if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { 308 error = EINTR; 309 goto ckreturn; 310 } 311 mutex_exit(&stp->sd_lock); 312 goto retry; /* could be clone! */ 313 } 314 315 if (stp->sd_flag & (STRDERR|STWRERR)) { 316 error = EIO; 317 goto ckreturn; 318 } 319 320 stp->sd_flag |= STWOPEN; 321 mutex_exit(&stp->sd_lock); 322 } 323 324 /* 325 * Open all modules and devices down stream to notify 326 * that another user is streaming. For modules, set the 327 * last argument to MODOPEN and do not pass any open flags. 328 * Ignore dummydev since this is not the first open. 329 */ 330 claimstr(stp->sd_wrq); 331 qp = stp->sd_wrq; 332 while (_SAMESTR(qp)) { 333 qp = qp->q_next; 334 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 335 break; 336 } 337 releasestr(stp->sd_wrq); 338 mutex_enter(&stp->sd_lock); 339 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 340 stp->sd_rerror = 0; 341 stp->sd_werror = 0; 342 ckreturn: 343 cv_broadcast(&stp->sd_monitor); 344 mutex_exit(&stp->sd_lock); 345 return (error); 346 } 347 348 /* 349 * This vnode isn't streaming. SPECFS already 350 * checked for multiple vnodes pointing to the 351 * same stream, so create a stream to the driver. 352 */ 353 qp = allocq(); 354 stp = shalloc(qp); 355 356 /* 357 * Initialize stream head. shalloc() has given us 358 * exclusive access, and we have the vnode locked; 359 * we can do whatever we want with stp. 360 */ 361 stp->sd_flag = STWOPEN; 362 stp->sd_siglist = NULL; 363 stp->sd_pollist.ph_list = NULL; 364 stp->sd_sigflags = 0; 365 stp->sd_mark = NULL; 366 stp->sd_closetime = STRTIMOUT; 367 stp->sd_sidp = NULL; 368 stp->sd_pgidp = NULL; 369 stp->sd_vnode = vp; 370 stp->sd_rerror = 0; 371 stp->sd_werror = 0; 372 stp->sd_wroff = 0; 373 stp->sd_iocblk = NULL; 374 stp->sd_pushcnt = 0; 375 stp->sd_qn_minpsz = 0; 376 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 377 stp->sd_maxblk = INFPSZ; 378 qp->q_ptr = _WR(qp)->q_ptr = stp; 379 STREAM(qp) = STREAM(_WR(qp)) = stp; 380 vp->v_stream = stp; 381 mutex_exit(&vp->v_lock); 382 if (vp->v_type == VFIFO) { 383 stp->sd_flag |= OLDNDELAY; 384 /* 385 * This means, both for pipes and fifos 386 * strwrite will send SIGPIPE if the other 387 * end is closed. For putmsg it depends 388 * on whether it is a XPG4_2 application 389 * or not 390 */ 391 stp->sd_wput_opt = SW_SIGPIPE; 392 393 /* setq might sleep in kmem_alloc - avoid holding locks. */ 394 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 395 SQ_CI|SQ_CO, B_FALSE); 396 397 set_qend(qp); 398 stp->sd_strtab = fifo_getinfo(); 399 _WR(qp)->q_nfsrv = _WR(qp); 400 qp->q_nfsrv = qp; 401 /* 402 * Wake up others that are waiting for stream to be created. 403 */ 404 mutex_enter(&stp->sd_lock); 405 /* 406 * nothing is be pushed on stream yet, so 407 * optimized stream head packetsizes are just that 408 * of the read queue 409 */ 410 stp->sd_qn_minpsz = qp->q_minpsz; 411 stp->sd_qn_maxpsz = qp->q_maxpsz; 412 stp->sd_flag &= ~STWOPEN; 413 goto fifo_opendone; 414 } 415 /* setq might sleep in kmem_alloc - avoid holding locks. */ 416 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 417 418 set_qend(qp); 419 420 /* 421 * Open driver and create stream to it (via qattach). 422 */ 423 cloneopen = (getmajor(*devp) == clone_major); 424 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 425 mutex_enter(&vp->v_lock); 426 vp->v_stream = NULL; 427 mutex_exit(&vp->v_lock); 428 mutex_enter(&stp->sd_lock); 429 cv_broadcast(&stp->sd_monitor); 430 mutex_exit(&stp->sd_lock); 431 freeq(_RD(qp)); 432 shfree(stp); 433 return (error); 434 } 435 /* 436 * Set sd_strtab after open in order to handle clonable drivers 437 */ 438 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 439 440 /* 441 * Historical note: dummydev used to be be prior to the initial 442 * open (via qattach above), which made the value seen 443 * inconsistent between an I_PUSH and an autopush of a module. 444 */ 445 dummydev = *devp; 446 447 /* 448 * For clone open of old style (Q not associated) network driver, 449 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 450 */ 451 brq = _RD(_WR(qp)->q_next); 452 major = getmajor(*devp); 453 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 454 ((brq->q_flag & _QASSOCIATED) == 0)) { 455 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp) != 0) 456 cmn_err(CE_WARN, "cannot push " DRMODNAME 457 " streams module"); 458 } 459 460 /* 461 * check for autopush 462 */ 463 mutex_enter(&sad_lock); 464 ap = strphash(getemajor(*devp)); 465 #define DEVT(ap) makedevice(ap->ap_major, ap->ap_minor) 466 #define DEVLT(ap) makedevice(ap->ap_major, ap->ap_lastminor) 467 468 while (ap) { 469 if (ap->ap_major == (getemajor(*devp))) { 470 if (ap->ap_type == SAP_ALL) 471 break; 472 else if ((ap->ap_type == SAP_ONE) && 473 (getminor(DEVT(ap)) == getminor(*devp))) 474 break; 475 else if (ap->ap_type == SAP_RANGE && 476 getminor(*devp) >= getminor(DEVT(ap)) && 477 getminor(*devp) <= getminor(DEVLT(ap))) 478 break; 479 } 480 ap = ap->ap_nextp; 481 } 482 if (ap == NULL) { 483 mutex_exit(&sad_lock); 484 goto opendone; 485 } 486 ap->ap_cnt++; 487 mutex_exit(&sad_lock); 488 for (s = 0; s < ap->ap_npush; s++) { 489 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 490 ap->ap_anchor, crp); 491 if (error != 0) 492 break; 493 } 494 mutex_enter(&sad_lock); 495 if (--(ap->ap_cnt) <= 0) 496 ap_free(ap); 497 mutex_exit(&sad_lock); 498 499 /* 500 * let specfs know that open failed part way through 501 */ 502 503 if (error) { 504 mutex_enter(&stp->sd_lock); 505 stp->sd_flag |= STREOPENFAIL; 506 mutex_exit(&stp->sd_lock); 507 } 508 509 opendone: 510 511 /* 512 * Wake up others that are waiting for stream to be created. 513 */ 514 mutex_enter(&stp->sd_lock); 515 stp->sd_flag &= ~STWOPEN; 516 517 /* 518 * As a performance concern we are caching the values of 519 * q_minpsz and q_maxpsz of the module below the stream 520 * head in the stream head. 521 */ 522 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 523 rmin = stp->sd_wrq->q_next->q_minpsz; 524 rmax = stp->sd_wrq->q_next->q_maxpsz; 525 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 526 527 /* do this processing here as a performance concern */ 528 if (strmsgsz != 0) { 529 if (rmax == INFPSZ) 530 rmax = strmsgsz; 531 else 532 rmax = MIN(strmsgsz, rmax); 533 } 534 535 mutex_enter(QLOCK(stp->sd_wrq)); 536 stp->sd_qn_minpsz = rmin; 537 stp->sd_qn_maxpsz = rmax; 538 mutex_exit(QLOCK(stp->sd_wrq)); 539 540 fifo_opendone: 541 cv_broadcast(&stp->sd_monitor); 542 mutex_exit(&stp->sd_lock); 543 return (error); 544 } 545 546 static int strsink(queue_t *, mblk_t *); 547 static struct qinit deadrend = { 548 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 549 }; 550 static struct qinit deadwend = { 551 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 552 }; 553 554 /* 555 * Close a stream. 556 * This is called from closef() on the last close of an open stream. 557 * Strclean() will already have removed the siglist and pollist 558 * information, so all that remains is to remove all multiplexor links 559 * for the stream, pop all the modules (and the driver), and free the 560 * stream structure. 561 */ 562 563 int 564 strclose(struct vnode *vp, int flag, cred_t *crp) 565 { 566 struct stdata *stp; 567 queue_t *qp; 568 int rval; 569 int freestp = 1; 570 queue_t *rmq; 571 572 #ifdef C2_AUDIT 573 if (audit_active) 574 audit_strclose(vp, flag, crp); 575 #endif 576 577 TRACE_1(TR_FAC_STREAMS_FR, 578 TR_STRCLOSE, "strclose:%p", vp); 579 ASSERT(vp->v_stream); 580 581 stp = vp->v_stream; 582 ASSERT(!(stp->sd_flag & STPLEX)); 583 qp = stp->sd_wrq; 584 585 /* 586 * Needed so that strpoll will return non-zero for this fd. 587 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 588 */ 589 mutex_enter(&stp->sd_lock); 590 stp->sd_flag |= STRHUP; 591 mutex_exit(&stp->sd_lock); 592 593 /* 594 * Since we call pollwakeup in close() now, the poll list should 595 * be empty in most cases. The only exception is the layered devices 596 * (e.g. the console drivers with redirection modules pushed on top 597 * of it). 598 */ 599 if (stp->sd_pollist.ph_list != NULL) { 600 pollwakeup(&stp->sd_pollist, POLLERR); 601 pollhead_clean(&stp->sd_pollist); 602 } 603 ASSERT(stp->sd_pollist.ph_list == NULL); 604 ASSERT(stp->sd_sidp == NULL); 605 ASSERT(stp->sd_pgidp == NULL); 606 607 /* 608 * If the registered process or process group did not have an 609 * open instance of this stream then strclean would not be 610 * called. Thus at the time of closing all remaining siglist entries 611 * are removed. 612 */ 613 if (stp->sd_siglist != NULL) 614 strcleanall(vp); 615 616 ASSERT(stp->sd_siglist == NULL); 617 ASSERT(stp->sd_sigflags == 0); 618 619 if (STRMATED(stp)) { 620 struct stdata *strmatep = stp->sd_mate; 621 int waited = 1; 622 623 STRLOCKMATES(stp); 624 while (waited) { 625 waited = 0; 626 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 627 mutex_exit(&strmatep->sd_lock); 628 cv_wait(&stp->sd_monitor, &stp->sd_lock); 629 mutex_exit(&stp->sd_lock); 630 STRLOCKMATES(stp); 631 waited = 1; 632 } 633 while (strmatep->sd_flag & 634 (STWOPEN|STRCLOSE|STRPLUMB)) { 635 mutex_exit(&stp->sd_lock); 636 cv_wait(&strmatep->sd_monitor, 637 &strmatep->sd_lock); 638 mutex_exit(&strmatep->sd_lock); 639 STRLOCKMATES(stp); 640 waited = 1; 641 } 642 } 643 stp->sd_flag |= STRCLOSE; 644 STRUNLOCKMATES(stp); 645 } else { 646 mutex_enter(&stp->sd_lock); 647 stp->sd_flag |= STRCLOSE; 648 mutex_exit(&stp->sd_lock); 649 } 650 651 ASSERT(qp->q_first == NULL); /* No more delayed write */ 652 653 /* Check if an I_LINK was ever done on this stream */ 654 if (stp->sd_flag & STRHASLINKS) { 655 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval); 656 } 657 658 while (_SAMESTR(qp)) { 659 /* 660 * Holding sd_lock prevents q_next from changing in 661 * this stream. 662 */ 663 mutex_enter(&stp->sd_lock); 664 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 665 666 /* 667 * sleep until awakened by strwsrv() or timeout 668 */ 669 for (;;) { 670 mutex_enter(QLOCK(qp->q_next)); 671 if (!(qp->q_next->q_mblkcnt)) { 672 mutex_exit(QLOCK(qp->q_next)); 673 break; 674 } 675 stp->sd_flag |= WSLEEP; 676 677 /* ensure strwsrv gets enabled */ 678 qp->q_next->q_flag |= QWANTW; 679 mutex_exit(QLOCK(qp->q_next)); 680 /* get out if we timed out or recv'd a signal */ 681 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 682 stp->sd_closetime, 0) <= 0) { 683 break; 684 } 685 } 686 stp->sd_flag &= ~WSLEEP; 687 } 688 mutex_exit(&stp->sd_lock); 689 690 rmq = qp->q_next; 691 if (rmq->q_flag & QISDRV) { 692 ASSERT(!_SAMESTR(rmq)); 693 wait_sq_svc(_RD(qp)->q_syncq); 694 } 695 696 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 697 } 698 699 /* Prevent qenable from re-enabling the stream head queue */ 700 disable_svc(_RD(qp)); 701 702 /* 703 * Wait until service procedure of each queue is 704 * run, if QINSERVICE is set. 705 */ 706 wait_svc(_RD(qp)); 707 708 /* 709 * Now, flush both queues. 710 */ 711 flushq(_RD(qp), FLUSHALL); 712 flushq(qp, FLUSHALL); 713 714 /* 715 * If the write queue of the stream head is pointing to a 716 * read queue, we have a twisted stream. If the read queue 717 * is alive, convert the stream head queues into a dead end. 718 * If the read queue is dead, free the dead pair. 719 */ 720 if (qp->q_next && !_SAMESTR(qp)) { 721 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 722 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 723 shfree(qp->q_next->q_stream); 724 freeq(qp->q_next); 725 freeq(_RD(qp)); 726 } else if (qp->q_next == _RD(qp)) { /* fifo */ 727 freeq(_RD(qp)); 728 } else { /* pipe */ 729 freestp = 0; 730 /* 731 * The q_info pointers are never accessed when 732 * SQLOCK is held. 733 */ 734 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 735 mutex_enter(SQLOCK(qp->q_syncq)); 736 qp->q_qinfo = &deadwend; 737 _RD(qp)->q_qinfo = &deadrend; 738 mutex_exit(SQLOCK(qp->q_syncq)); 739 } 740 } else { 741 freeq(_RD(qp)); /* free stream head queue pair */ 742 } 743 744 mutex_enter(&vp->v_lock); 745 if (stp->sd_iocblk) { 746 if (stp->sd_iocblk != (mblk_t *)-1) { 747 freemsg(stp->sd_iocblk); 748 } 749 stp->sd_iocblk = NULL; 750 } 751 stp->sd_vnode = NULL; 752 vp->v_stream = NULL; 753 mutex_exit(&vp->v_lock); 754 mutex_enter(&stp->sd_lock); 755 stp->sd_flag &= ~STRCLOSE; 756 cv_broadcast(&stp->sd_monitor); 757 mutex_exit(&stp->sd_lock); 758 759 if (freestp) 760 shfree(stp); 761 return (0); 762 } 763 764 static int 765 strsink(queue_t *q, mblk_t *bp) 766 { 767 struct copyresp *resp; 768 769 switch (bp->b_datap->db_type) { 770 case M_FLUSH: 771 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 772 *bp->b_rptr &= ~FLUSHR; 773 bp->b_flag |= MSGNOLOOP; 774 /* 775 * Protect against the driver passing up 776 * messages after it has done a qprocsoff. 777 */ 778 if (_OTHERQ(q)->q_next == NULL) 779 freemsg(bp); 780 else 781 qreply(q, bp); 782 } else { 783 freemsg(bp); 784 } 785 break; 786 787 case M_COPYIN: 788 case M_COPYOUT: 789 if (bp->b_cont) { 790 freemsg(bp->b_cont); 791 bp->b_cont = NULL; 792 } 793 bp->b_datap->db_type = M_IOCDATA; 794 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 795 resp = (struct copyresp *)bp->b_rptr; 796 resp->cp_rval = (caddr_t)1; /* failure */ 797 /* 798 * Protect against the driver passing up 799 * messages after it has done a qprocsoff. 800 */ 801 if (_OTHERQ(q)->q_next == NULL) 802 freemsg(bp); 803 else 804 qreply(q, bp); 805 break; 806 807 case M_IOCTL: 808 if (bp->b_cont) { 809 freemsg(bp->b_cont); 810 bp->b_cont = NULL; 811 } 812 bp->b_datap->db_type = M_IOCNAK; 813 /* 814 * Protect against the driver passing up 815 * messages after it has done a qprocsoff. 816 */ 817 if (_OTHERQ(q)->q_next == NULL) 818 freemsg(bp); 819 else 820 qreply(q, bp); 821 break; 822 823 default: 824 freemsg(bp); 825 break; 826 } 827 828 return (0); 829 } 830 831 /* 832 * Clean up after a process when it closes a stream. This is called 833 * from closef for all closes, whereas strclose is called only for the 834 * last close on a stream. The siglist is scanned for entries for the 835 * current process, and these are removed. 836 */ 837 void 838 strclean(struct vnode *vp) 839 { 840 strsig_t *ssp, *pssp, *tssp; 841 stdata_t *stp; 842 int update = 0; 843 844 TRACE_1(TR_FAC_STREAMS_FR, 845 TR_STRCLEAN, "strclean:%p", vp); 846 stp = vp->v_stream; 847 pssp = NULL; 848 mutex_enter(&stp->sd_lock); 849 ssp = stp->sd_siglist; 850 while (ssp) { 851 if (ssp->ss_pidp == curproc->p_pidp) { 852 tssp = ssp->ss_next; 853 if (pssp) 854 pssp->ss_next = tssp; 855 else 856 stp->sd_siglist = tssp; 857 mutex_enter(&pidlock); 858 PID_RELE(ssp->ss_pidp); 859 mutex_exit(&pidlock); 860 kmem_free(ssp, sizeof (strsig_t)); 861 update = 1; 862 ssp = tssp; 863 } else { 864 pssp = ssp; 865 ssp = ssp->ss_next; 866 } 867 } 868 if (update) { 869 stp->sd_sigflags = 0; 870 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 871 stp->sd_sigflags |= ssp->ss_events; 872 } 873 mutex_exit(&stp->sd_lock); 874 } 875 876 /* 877 * Used on the last close to remove any remaining items on the siglist. 878 * These could be present on the siglist due to I_ESETSIG calls that 879 * use process groups or processed that do not have an open file descriptor 880 * for this stream (Such entries would not be removed by strclean). 881 */ 882 static void 883 strcleanall(struct vnode *vp) 884 { 885 strsig_t *ssp, *nssp; 886 stdata_t *stp; 887 888 stp = vp->v_stream; 889 mutex_enter(&stp->sd_lock); 890 ssp = stp->sd_siglist; 891 stp->sd_siglist = NULL; 892 while (ssp) { 893 nssp = ssp->ss_next; 894 mutex_enter(&pidlock); 895 PID_RELE(ssp->ss_pidp); 896 mutex_exit(&pidlock); 897 kmem_free(ssp, sizeof (strsig_t)); 898 ssp = nssp; 899 } 900 stp->sd_sigflags = 0; 901 mutex_exit(&stp->sd_lock); 902 } 903 904 /* 905 * Retrieve the next message from the logical stream head read queue 906 * using either rwnext (if sync stream) or getq_noenab. 907 * It is the callers responsibility to call qbackenable after 908 * it is finished with the message. The caller should not call 909 * qbackenable until after any putback calls to avoid spurious backenabling. 910 */ 911 mblk_t * 912 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 913 int *errorp) 914 { 915 mblk_t *bp; 916 int error; 917 918 ASSERT(MUTEX_HELD(&stp->sd_lock)); 919 /* Holding sd_lock prevents the read queue from changing */ 920 921 if (uiop != NULL && stp->sd_struiordq != NULL && 922 q->q_first == NULL && 923 (!first || (stp->sd_wakeq & RSLEEP))) { 924 /* 925 * Stream supports rwnext() for the read side. 926 * If this is the first time we're called by e.g. strread 927 * only do the downcall if there is a deferred wakeup 928 * (registered in sd_wakeq). 929 */ 930 struiod_t uiod; 931 932 if (first) 933 stp->sd_wakeq &= ~RSLEEP; 934 935 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 936 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 937 uiod.d_mp = 0; 938 /* 939 * Mark that a thread is in rwnext on the read side 940 * to prevent strrput from nacking ioctls immediately. 941 * When the last concurrent rwnext returns 942 * the ioctls are nack'ed. 943 */ 944 ASSERT(MUTEX_HELD(&stp->sd_lock)); 945 stp->sd_struiodnak++; 946 /* 947 * Note: rwnext will drop sd_lock. 948 */ 949 error = rwnext(q, &uiod); 950 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 951 mutex_enter(&stp->sd_lock); 952 stp->sd_struiodnak--; 953 while (stp->sd_struiodnak == 0 && 954 ((bp = stp->sd_struionak) != NULL)) { 955 stp->sd_struionak = bp->b_next; 956 bp->b_next = NULL; 957 bp->b_datap->db_type = M_IOCNAK; 958 /* 959 * Protect against the driver passing up 960 * messages after it has done a qprocsoff. 961 */ 962 if (_OTHERQ(q)->q_next == NULL) 963 freemsg(bp); 964 else { 965 mutex_exit(&stp->sd_lock); 966 qreply(q, bp); 967 mutex_enter(&stp->sd_lock); 968 } 969 } 970 ASSERT(MUTEX_HELD(&stp->sd_lock)); 971 if (error == 0 || error == EWOULDBLOCK) { 972 if ((bp = uiod.d_mp) != NULL) { 973 *errorp = 0; 974 ASSERT(MUTEX_HELD(&stp->sd_lock)); 975 return (bp); 976 } 977 error = 0; 978 } else if (error == EINVAL) { 979 /* 980 * The stream plumbing must have 981 * changed while we were away, so 982 * just turn off rwnext()s. 983 */ 984 error = 0; 985 } else if (error == EBUSY) { 986 /* 987 * The module might have data in transit using putnext 988 * Fall back on waiting + getq. 989 */ 990 error = 0; 991 } else { 992 *errorp = error; 993 ASSERT(MUTEX_HELD(&stp->sd_lock)); 994 return (NULL); 995 } 996 /* 997 * Try a getq in case a rwnext() generated mblk 998 * has bubbled up via strrput(). 999 */ 1000 } 1001 *errorp = 0; 1002 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1003 return (getq_noenab(q)); 1004 } 1005 1006 /* 1007 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1008 * If the message does not fit in the uio the remainder of it is returned; 1009 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1010 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1011 * the error code, the message is consumed, and NULL is returned. 1012 */ 1013 static mblk_t * 1014 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1015 { 1016 int error; 1017 ptrdiff_t n; 1018 mblk_t *nbp; 1019 1020 ASSERT(bp->b_wptr >= bp->b_rptr); 1021 1022 do { 1023 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1024 ASSERT(n > 0); 1025 1026 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1027 if (error != 0) { 1028 freemsg(bp); 1029 *errorp = error; 1030 return (NULL); 1031 } 1032 } 1033 1034 bp->b_rptr += n; 1035 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1036 nbp = bp; 1037 bp = bp->b_cont; 1038 freeb(nbp); 1039 } 1040 } while (bp != NULL && uiop->uio_resid > 0); 1041 1042 *errorp = 0; 1043 return (bp); 1044 } 1045 1046 /* 1047 * Read a stream according to the mode flags in sd_flag: 1048 * 1049 * (default mode) - Byte stream, msg boundaries are ignored 1050 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1051 * any data remaining in msg 1052 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1053 * any remaining data on head of read queue 1054 * 1055 * Consume readable messages on the front of the queue until 1056 * ttolwp(curthread)->lwp_count 1057 * is satisfied, the readable messages are exhausted, or a message 1058 * boundary is reached in a message mode. If no data was read and 1059 * the stream was not opened with the NDELAY flag, block until data arrives. 1060 * Otherwise return the data read and update the count. 1061 * 1062 * In default mode a 0 length message signifies end-of-file and terminates 1063 * a read in progress. The 0 length message is removed from the queue 1064 * only if it is the only message read (no data is read). 1065 * 1066 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1067 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1068 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1069 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1070 * are unlinked from and M_DATA blocks in the message, the protos are 1071 * thrown away, and the data is read. 1072 */ 1073 /* ARGSUSED */ 1074 int 1075 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1076 { 1077 struct stdata *stp; 1078 mblk_t *bp, *nbp; 1079 queue_t *q; 1080 int error = 0; 1081 uint_t old_sd_flag; 1082 int first; 1083 char rflg; 1084 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1085 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1086 short delim; 1087 unsigned char pri = 0; 1088 char waitflag; 1089 unsigned char type; 1090 1091 TRACE_1(TR_FAC_STREAMS_FR, 1092 TR_STRREAD_ENTER, "strread:%p", vp); 1093 ASSERT(vp->v_stream); 1094 stp = vp->v_stream; 1095 1096 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) 1097 if (error = straccess(stp, JCREAD)) 1098 return (error); 1099 1100 mutex_enter(&stp->sd_lock); 1101 if (stp->sd_flag & (STRDERR|STPLEX)) { 1102 error = strgeterr(stp, STRDERR|STPLEX, 0); 1103 if (error != 0) { 1104 mutex_exit(&stp->sd_lock); 1105 return (error); 1106 } 1107 } 1108 1109 /* 1110 * Loop terminates when uiop->uio_resid == 0. 1111 */ 1112 rflg = 0; 1113 waitflag = READWAIT; 1114 q = _RD(stp->sd_wrq); 1115 for (;;) { 1116 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1117 old_sd_flag = stp->sd_flag; 1118 mark = 0; 1119 delim = 0; 1120 first = 1; 1121 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1122 int done = 0; 1123 1124 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1125 1126 if (error != 0) 1127 goto oops; 1128 1129 if (stp->sd_flag & (STRHUP|STREOF)) { 1130 goto oops; 1131 } 1132 if (rflg && !(stp->sd_flag & STRDELIM)) { 1133 goto oops; 1134 } 1135 /* 1136 * If a read(fd,buf,0) has been done, there is no 1137 * need to sleep. We always have zero bytes to 1138 * return. 1139 */ 1140 if (uiop->uio_resid == 0) { 1141 goto oops; 1142 } 1143 1144 qbackenable(q, 0); 1145 1146 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1147 "strread calls strwaitq:%p, %p, %p", 1148 vp, uiop, crp); 1149 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1150 uiop->uio_fmode, -1, &done)) != 0 || done) { 1151 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1152 "strread error or done:%p, %p, %p", 1153 vp, uiop, crp); 1154 if ((uiop->uio_fmode & FNDELAY) && 1155 (stp->sd_flag & OLDNDELAY) && 1156 (error == EAGAIN)) 1157 error = 0; 1158 goto oops; 1159 } 1160 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1161 "strread awakes:%p, %p, %p", vp, uiop, crp); 1162 if (stp->sd_sidp != NULL && 1163 stp->sd_vnode->v_type != VFIFO) { 1164 mutex_exit(&stp->sd_lock); 1165 if (error = straccess(stp, JCREAD)) 1166 goto oops1; 1167 mutex_enter(&stp->sd_lock); 1168 } 1169 first = 0; 1170 } 1171 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1172 ASSERT(bp); 1173 pri = bp->b_band; 1174 /* 1175 * Extract any mark information. If the message is not 1176 * completely consumed this information will be put in the mblk 1177 * that is putback. 1178 * If MSGMARKNEXT is set and the message is completely consumed 1179 * the STRATMARK flag will be set below. Likewise, if 1180 * MSGNOTMARKNEXT is set and the message is 1181 * completely consumed STRNOTATMARK will be set. 1182 * 1183 * For some unknown reason strread only breaks the read at the 1184 * last mark. 1185 */ 1186 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1187 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1188 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1189 if (mark != 0 && bp == stp->sd_mark) { 1190 if (rflg) { 1191 putback(stp, q, bp, pri); 1192 goto oops; 1193 } 1194 mark |= _LASTMARK; 1195 stp->sd_mark = NULL; 1196 } 1197 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1198 delim = 1; 1199 mutex_exit(&stp->sd_lock); 1200 1201 if (STREAM_NEEDSERVICE(stp)) 1202 stream_runservice(stp); 1203 1204 type = bp->b_datap->db_type; 1205 1206 switch (type) { 1207 1208 case M_DATA: 1209 ismdata: 1210 if (msgnodata(bp)) { 1211 if (mark || delim) { 1212 freemsg(bp); 1213 } else if (rflg) { 1214 1215 /* 1216 * If already read data put zero 1217 * length message back on queue else 1218 * free msg and return 0. 1219 */ 1220 bp->b_band = pri; 1221 mutex_enter(&stp->sd_lock); 1222 putback(stp, q, bp, pri); 1223 mutex_exit(&stp->sd_lock); 1224 } else { 1225 freemsg(bp); 1226 } 1227 error = 0; 1228 goto oops1; 1229 } 1230 1231 rflg = 1; 1232 waitflag |= NOINTR; 1233 bp = struiocopyout(bp, uiop, &error); 1234 if (error != 0) 1235 goto oops1; 1236 1237 mutex_enter(&stp->sd_lock); 1238 if (bp) { 1239 /* 1240 * Have remaining data in message. 1241 * Free msg if in discard mode. 1242 */ 1243 if (stp->sd_read_opt & RD_MSGDIS) { 1244 freemsg(bp); 1245 } else { 1246 bp->b_band = pri; 1247 if ((mark & _LASTMARK) && 1248 (stp->sd_mark == NULL)) 1249 stp->sd_mark = bp; 1250 bp->b_flag |= mark & ~_LASTMARK; 1251 if (delim) 1252 bp->b_flag |= MSGDELIM; 1253 if (msgnodata(bp)) 1254 freemsg(bp); 1255 else 1256 putback(stp, q, bp, pri); 1257 } 1258 } else { 1259 /* 1260 * Consumed the complete message. 1261 * Move the MSG*MARKNEXT information 1262 * to the stream head just in case 1263 * the read queue becomes empty. 1264 * 1265 * If the stream head was at the mark 1266 * (STRATMARK) before we dropped sd_lock above 1267 * and some data was consumed then we have 1268 * moved past the mark thus STRATMARK is 1269 * cleared. However, if a message arrived in 1270 * strrput during the copyout above causing 1271 * STRATMARK to be set we can not clear that 1272 * flag. 1273 */ 1274 if (mark & 1275 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1276 if (mark & MSGMARKNEXT) { 1277 stp->sd_flag &= ~STRNOTATMARK; 1278 stp->sd_flag |= STRATMARK; 1279 } else if (mark & MSGNOTMARKNEXT) { 1280 stp->sd_flag &= ~STRATMARK; 1281 stp->sd_flag |= STRNOTATMARK; 1282 } else { 1283 stp->sd_flag &= 1284 ~(STRATMARK|STRNOTATMARK); 1285 } 1286 } else if (rflg && (old_sd_flag & STRATMARK)) { 1287 stp->sd_flag &= ~STRATMARK; 1288 } 1289 } 1290 1291 /* 1292 * Check for signal messages at the front of the read 1293 * queue and generate the signal(s) if appropriate. 1294 * The only signal that can be on queue is M_SIG at 1295 * this point. 1296 */ 1297 while ((((bp = q->q_first)) != NULL) && 1298 (bp->b_datap->db_type == M_SIG)) { 1299 bp = getq_noenab(q); 1300 /* 1301 * sd_lock is held so the content of the 1302 * read queue can not change. 1303 */ 1304 ASSERT(bp != NULL && 1305 bp->b_datap->db_type == M_SIG); 1306 strsignal_nolock(stp, *bp->b_rptr, 1307 (int32_t)bp->b_band); 1308 mutex_exit(&stp->sd_lock); 1309 freemsg(bp); 1310 if (STREAM_NEEDSERVICE(stp)) 1311 stream_runservice(stp); 1312 mutex_enter(&stp->sd_lock); 1313 } 1314 1315 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1316 delim || 1317 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1318 goto oops; 1319 } 1320 continue; 1321 1322 case M_SIG: 1323 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1324 freemsg(bp); 1325 mutex_enter(&stp->sd_lock); 1326 continue; 1327 1328 case M_PROTO: 1329 case M_PCPROTO: 1330 /* 1331 * Only data messages are readable. 1332 * Any others generate an error, unless 1333 * RD_PROTDIS or RD_PROTDAT is set. 1334 */ 1335 if (stp->sd_read_opt & RD_PROTDAT) { 1336 for (nbp = bp; nbp; nbp = nbp->b_next) { 1337 if ((nbp->b_datap->db_type == M_PROTO) || 1338 (nbp->b_datap->db_type == M_PCPROTO)) 1339 nbp->b_datap->db_type = M_DATA; 1340 else 1341 break; 1342 } 1343 /* 1344 * clear stream head hi pri flag based on 1345 * first message 1346 */ 1347 if (type == M_PCPROTO) { 1348 mutex_enter(&stp->sd_lock); 1349 stp->sd_flag &= ~STRPRI; 1350 mutex_exit(&stp->sd_lock); 1351 } 1352 goto ismdata; 1353 } else if (stp->sd_read_opt & RD_PROTDIS) { 1354 /* 1355 * discard non-data messages 1356 */ 1357 while (bp && 1358 ((bp->b_datap->db_type == M_PROTO) || 1359 (bp->b_datap->db_type == M_PCPROTO))) { 1360 nbp = unlinkb(bp); 1361 freeb(bp); 1362 bp = nbp; 1363 } 1364 /* 1365 * clear stream head hi pri flag based on 1366 * first message 1367 */ 1368 if (type == M_PCPROTO) { 1369 mutex_enter(&stp->sd_lock); 1370 stp->sd_flag &= ~STRPRI; 1371 mutex_exit(&stp->sd_lock); 1372 } 1373 if (bp) { 1374 bp->b_band = pri; 1375 goto ismdata; 1376 } else { 1377 break; 1378 } 1379 } 1380 /* FALLTHRU */ 1381 case M_PASSFP: 1382 if ((bp->b_datap->db_type == M_PASSFP) && 1383 (stp->sd_read_opt & RD_PROTDIS)) { 1384 freemsg(bp); 1385 break; 1386 } 1387 mutex_enter(&stp->sd_lock); 1388 putback(stp, q, bp, pri); 1389 mutex_exit(&stp->sd_lock); 1390 if (rflg == 0) 1391 error = EBADMSG; 1392 goto oops1; 1393 1394 default: 1395 /* 1396 * Garbage on stream head read queue. 1397 */ 1398 cmn_err(CE_WARN, "bad %x found at stream head\n", 1399 bp->b_datap->db_type); 1400 freemsg(bp); 1401 goto oops1; 1402 } 1403 mutex_enter(&stp->sd_lock); 1404 } 1405 oops: 1406 mutex_exit(&stp->sd_lock); 1407 oops1: 1408 qbackenable(q, pri); 1409 return (error); 1410 #undef _LASTMARK 1411 } 1412 1413 /* 1414 * Default processing of M_PROTO/M_PCPROTO messages. 1415 * Determine which wakeups and signals are needed. 1416 * This can be replaced by a user-specified procedure for kernel users 1417 * of STREAMS. 1418 */ 1419 /* ARGSUSED */ 1420 mblk_t * 1421 strrput_proto(vnode_t *vp, mblk_t *mp, 1422 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1423 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1424 { 1425 *wakeups = RSLEEP; 1426 *allmsgsigs = 0; 1427 1428 switch (mp->b_datap->db_type) { 1429 case M_PROTO: 1430 if (mp->b_band == 0) { 1431 *firstmsgsigs = S_INPUT | S_RDNORM; 1432 *pollwakeups = POLLIN | POLLRDNORM; 1433 } else { 1434 *firstmsgsigs = S_INPUT | S_RDBAND; 1435 *pollwakeups = POLLIN | POLLRDBAND; 1436 } 1437 break; 1438 case M_PCPROTO: 1439 *firstmsgsigs = S_HIPRI; 1440 *pollwakeups = POLLPRI; 1441 break; 1442 } 1443 return (mp); 1444 } 1445 1446 /* 1447 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1448 * M_PASSFP messages. 1449 * Determine which wakeups and signals are needed. 1450 * This can be replaced by a user-specified procedure for kernel users 1451 * of STREAMS. 1452 */ 1453 /* ARGSUSED */ 1454 mblk_t * 1455 strrput_misc(vnode_t *vp, mblk_t *mp, 1456 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1457 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1458 { 1459 *wakeups = 0; 1460 *firstmsgsigs = 0; 1461 *allmsgsigs = 0; 1462 *pollwakeups = 0; 1463 return (mp); 1464 } 1465 1466 /* 1467 * Stream read put procedure. Called from downstream driver/module 1468 * with messages for the stream head. Data, protocol, and in-stream 1469 * signal messages are placed on the queue, others are handled directly. 1470 */ 1471 int 1472 strrput(queue_t *q, mblk_t *bp) 1473 { 1474 struct stdata *stp; 1475 ulong_t rput_opt; 1476 strwakeup_t wakeups; 1477 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1478 strsigset_t allmsgsigs; /* Signals for all messages */ 1479 strsigset_t signals; /* Signals events to generate */ 1480 strpollset_t pollwakeups; 1481 mblk_t *nextbp; 1482 uchar_t band = 0; 1483 int hipri_sig; 1484 1485 stp = (struct stdata *)q->q_ptr; 1486 /* 1487 * Use rput_opt for optimized access to the SR_ flags except 1488 * SR_POLLIN. That flag has to be checked under sd_lock since it 1489 * is modified by strpoll(). 1490 */ 1491 rput_opt = stp->sd_rput_opt; 1492 1493 ASSERT(qclaimed(q)); 1494 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1495 "strrput called with message type:q %p bp %p", q, bp); 1496 1497 /* 1498 * Perform initial processing and pass to the parameterized functions. 1499 */ 1500 ASSERT(bp->b_next == NULL); 1501 1502 switch (bp->b_datap->db_type) { 1503 case M_DATA: 1504 /* 1505 * sockfs is the only consumer of STREOF and when it is set, 1506 * it implies that the receiver is not interested in receiving 1507 * any more data, hence the mblk is freed to prevent unnecessary 1508 * message queueing at the stream head. 1509 */ 1510 if (stp->sd_flag == STREOF) { 1511 freemsg(bp); 1512 return (0); 1513 } 1514 if ((rput_opt & SR_IGN_ZEROLEN) && 1515 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1516 /* 1517 * Ignore zero-length M_DATA messages. These might be 1518 * generated by some transports. 1519 * The zero-length M_DATA messages, even if they 1520 * are ignored, should effect the atmark tracking and 1521 * should wake up a thread sleeping in strwaitmark. 1522 */ 1523 mutex_enter(&stp->sd_lock); 1524 if (bp->b_flag & MSGMARKNEXT) { 1525 /* 1526 * Record the position of the mark either 1527 * in q_last or in STRATMARK. 1528 */ 1529 if (q->q_last != NULL) { 1530 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1531 q->q_last->b_flag |= MSGMARKNEXT; 1532 } else { 1533 stp->sd_flag &= ~STRNOTATMARK; 1534 stp->sd_flag |= STRATMARK; 1535 } 1536 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1537 /* 1538 * Record that this is not the position of 1539 * the mark either in q_last or in 1540 * STRNOTATMARK. 1541 */ 1542 if (q->q_last != NULL) { 1543 q->q_last->b_flag &= ~MSGMARKNEXT; 1544 q->q_last->b_flag |= MSGNOTMARKNEXT; 1545 } else { 1546 stp->sd_flag &= ~STRATMARK; 1547 stp->sd_flag |= STRNOTATMARK; 1548 } 1549 } 1550 if (stp->sd_flag & RSLEEP) { 1551 stp->sd_flag &= ~RSLEEP; 1552 cv_broadcast(&q->q_wait); 1553 } 1554 mutex_exit(&stp->sd_lock); 1555 freemsg(bp); 1556 return (0); 1557 } 1558 wakeups = RSLEEP; 1559 if (bp->b_band == 0) { 1560 firstmsgsigs = S_INPUT | S_RDNORM; 1561 pollwakeups = POLLIN | POLLRDNORM; 1562 } else { 1563 firstmsgsigs = S_INPUT | S_RDBAND; 1564 pollwakeups = POLLIN | POLLRDBAND; 1565 } 1566 if (rput_opt & SR_SIGALLDATA) 1567 allmsgsigs = firstmsgsigs; 1568 else 1569 allmsgsigs = 0; 1570 1571 mutex_enter(&stp->sd_lock); 1572 if ((rput_opt & SR_CONSOL_DATA) && 1573 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1574 /* 1575 * Consolidate on M_DATA message onto an M_DATA, 1576 * M_PROTO, or M_PCPROTO by merging it with q_last. 1577 * The consolidation does not take place if 1578 * the old message is marked with either of the 1579 * marks or the delim flag or if the new 1580 * message is marked with MSGMARK. The MSGMARK 1581 * check is needed to handle the odd semantics of 1582 * MSGMARK where essentially the whole message 1583 * is to be treated as marked. 1584 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1585 * new message to the front of the b_cont chain. 1586 */ 1587 mblk_t *lbp; 1588 1589 lbp = q->q_last; 1590 if (lbp != NULL && 1591 (lbp->b_datap->db_type == M_DATA || 1592 lbp->b_datap->db_type == M_PROTO || 1593 lbp->b_datap->db_type == M_PCPROTO) && 1594 !(lbp->b_flag & (MSGDELIM|MSGMARK| 1595 MSGMARKNEXT))) { 1596 rmvq_noenab(q, lbp); 1597 /* 1598 * The first message in the b_cont list 1599 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1600 * We need to handle the case where we 1601 * are appending 1602 * 1603 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1604 * 2) a MSGMARKNEXT to a plain message. 1605 * 3) a MSGNOTMARKNEXT to a plain message 1606 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1607 * message. 1608 * 1609 * Thus we never append a MSGMARKNEXT or 1610 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1611 */ 1612 if (bp->b_flag & MSGMARKNEXT) { 1613 lbp->b_flag |= MSGMARKNEXT; 1614 lbp->b_flag &= ~MSGNOTMARKNEXT; 1615 bp->b_flag &= ~MSGMARKNEXT; 1616 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1617 lbp->b_flag |= MSGNOTMARKNEXT; 1618 bp->b_flag &= ~MSGNOTMARKNEXT; 1619 } 1620 1621 linkb(lbp, bp); 1622 bp = lbp; 1623 /* 1624 * The new message logically isn't the first 1625 * even though the q_first check below thinks 1626 * it is. Clear the firstmsgsigs to make it 1627 * not appear to be first. 1628 */ 1629 firstmsgsigs = 0; 1630 } 1631 } 1632 break; 1633 1634 case M_PASSFP: 1635 wakeups = RSLEEP; 1636 allmsgsigs = 0; 1637 if (bp->b_band == 0) { 1638 firstmsgsigs = S_INPUT | S_RDNORM; 1639 pollwakeups = POLLIN | POLLRDNORM; 1640 } else { 1641 firstmsgsigs = S_INPUT | S_RDBAND; 1642 pollwakeups = POLLIN | POLLRDBAND; 1643 } 1644 mutex_enter(&stp->sd_lock); 1645 break; 1646 1647 case M_PROTO: 1648 case M_PCPROTO: 1649 ASSERT(stp->sd_rprotofunc != NULL); 1650 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1651 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1652 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1653 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1654 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1655 POLLWRBAND) 1656 1657 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1658 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1659 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1660 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1661 1662 mutex_enter(&stp->sd_lock); 1663 break; 1664 1665 default: 1666 ASSERT(stp->sd_rmiscfunc != NULL); 1667 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1668 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1669 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1670 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1671 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1672 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1673 #undef ALLSIG 1674 #undef ALLPOLL 1675 mutex_enter(&stp->sd_lock); 1676 break; 1677 } 1678 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1679 1680 /* By default generate superset of signals */ 1681 signals = (firstmsgsigs | allmsgsigs); 1682 1683 /* 1684 * The proto and misc functions can return multiple messages 1685 * as a b_next chain. Such messages are processed separately. 1686 */ 1687 one_more: 1688 hipri_sig = 0; 1689 if (bp == NULL) { 1690 nextbp = NULL; 1691 } else { 1692 nextbp = bp->b_next; 1693 bp->b_next = NULL; 1694 1695 switch (bp->b_datap->db_type) { 1696 case M_PCPROTO: 1697 /* 1698 * Only one priority protocol message is allowed at the 1699 * stream head at a time. 1700 */ 1701 if (stp->sd_flag & STRPRI) { 1702 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1703 "M_PCPROTO already at head"); 1704 freemsg(bp); 1705 mutex_exit(&stp->sd_lock); 1706 goto done; 1707 } 1708 stp->sd_flag |= STRPRI; 1709 hipri_sig = 1; 1710 /* FALLTHRU */ 1711 case M_DATA: 1712 case M_PROTO: 1713 case M_PASSFP: 1714 band = bp->b_band; 1715 /* 1716 * Marking doesn't work well when messages 1717 * are marked in more than one band. We only 1718 * remember the last message received, even if 1719 * it is placed on the queue ahead of other 1720 * marked messages. 1721 */ 1722 if (bp->b_flag & MSGMARK) 1723 stp->sd_mark = bp; 1724 (void) putq(q, bp); 1725 1726 /* 1727 * If message is a PCPROTO message, always use 1728 * firstmsgsigs to determine if a signal should be 1729 * sent as strrput is the only place to send 1730 * signals for PCPROTO. Other messages are based on 1731 * the STRGETINPROG flag. The flag determines if 1732 * strrput or (k)strgetmsg will be responsible for 1733 * sending the signals, in the firstmsgsigs case. 1734 */ 1735 if ((hipri_sig == 1) || 1736 (((stp->sd_flag & STRGETINPROG) == 0) && 1737 (q->q_first == bp))) 1738 signals = (firstmsgsigs | allmsgsigs); 1739 else 1740 signals = allmsgsigs; 1741 break; 1742 1743 default: 1744 mutex_exit(&stp->sd_lock); 1745 (void) strrput_nondata(q, bp); 1746 mutex_enter(&stp->sd_lock); 1747 break; 1748 } 1749 } 1750 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1751 /* 1752 * Wake sleeping read/getmsg and cancel deferred wakeup 1753 */ 1754 if (wakeups & RSLEEP) 1755 stp->sd_wakeq &= ~RSLEEP; 1756 1757 wakeups &= stp->sd_flag; 1758 if (wakeups & RSLEEP) { 1759 stp->sd_flag &= ~RSLEEP; 1760 cv_broadcast(&q->q_wait); 1761 } 1762 if (wakeups & WSLEEP) { 1763 stp->sd_flag &= ~WSLEEP; 1764 cv_broadcast(&_WR(q)->q_wait); 1765 } 1766 1767 if (pollwakeups != 0) { 1768 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1769 /* 1770 * Can't use rput_opt since it was not 1771 * read when sd_lock was held and SR_POLLIN is changed 1772 * by strpoll() under sd_lock. 1773 */ 1774 if (!(stp->sd_rput_opt & SR_POLLIN)) 1775 goto no_pollwake; 1776 stp->sd_rput_opt &= ~SR_POLLIN; 1777 } 1778 mutex_exit(&stp->sd_lock); 1779 pollwakeup(&stp->sd_pollist, pollwakeups); 1780 mutex_enter(&stp->sd_lock); 1781 } 1782 no_pollwake: 1783 1784 /* 1785 * strsendsig can handle multiple signals with a 1786 * single call. 1787 */ 1788 if (stp->sd_sigflags & signals) 1789 strsendsig(stp->sd_siglist, signals, band, 0); 1790 mutex_exit(&stp->sd_lock); 1791 1792 1793 done: 1794 if (nextbp == NULL) 1795 return (0); 1796 1797 /* 1798 * Any signals were handled the first time. 1799 * Wakeups and pollwakeups are redone to avoid any race 1800 * conditions - all the messages are not queued until the 1801 * last message has been processed by strrput. 1802 */ 1803 bp = nextbp; 1804 signals = firstmsgsigs = allmsgsigs = 0; 1805 mutex_enter(&stp->sd_lock); 1806 goto one_more; 1807 } 1808 1809 static void 1810 log_dupioc(queue_t *rq, mblk_t *bp) 1811 { 1812 queue_t *wq, *qp; 1813 char *modnames, *mnp, *dname; 1814 size_t maxmodstr; 1815 boolean_t islast; 1816 1817 /* 1818 * Allocate a buffer large enough to hold the names of nstrpush modules 1819 * and one driver, with spaces between and NUL terminator. If we can't 1820 * get memory, then we'll just log the driver name. 1821 */ 1822 maxmodstr = nstrpush * (FMNAMESZ + 1); 1823 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1824 1825 /* march down write side to print log message down to the driver */ 1826 wq = WR(rq); 1827 1828 /* make sure q_next doesn't shift around while we're grabbing data */ 1829 claimstr(wq); 1830 qp = wq->q_next; 1831 do { 1832 if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL) 1833 dname = "?"; 1834 islast = !SAMESTR(qp) || qp->q_next == NULL; 1835 if (modnames == NULL) { 1836 /* 1837 * If we don't have memory, then get the driver name in 1838 * the log where we can see it. Note that memory 1839 * pressure is a possible cause of these sorts of bugs. 1840 */ 1841 if (islast) { 1842 modnames = dname; 1843 maxmodstr = 0; 1844 } 1845 } else { 1846 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1847 if (!islast) 1848 *mnp++ = ' '; 1849 } 1850 qp = qp->q_next; 1851 } while (!islast); 1852 releasestr(wq); 1853 /* Cannot happen unless stream head is corrupt. */ 1854 ASSERT(modnames != NULL); 1855 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1856 SL_CONSOLE|SL_TRACE|SL_ERROR, 1857 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1858 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1859 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1860 if (maxmodstr != 0) 1861 kmem_free(modnames, maxmodstr); 1862 } 1863 1864 int 1865 strrput_nondata(queue_t *q, mblk_t *bp) 1866 { 1867 struct stdata *stp; 1868 struct iocblk *iocbp; 1869 struct stroptions *sop; 1870 struct copyreq *reqp; 1871 struct copyresp *resp; 1872 unsigned char bpri; 1873 unsigned char flushed_already = 0; 1874 1875 stp = (struct stdata *)q->q_ptr; 1876 1877 ASSERT(!(stp->sd_flag & STPLEX)); 1878 ASSERT(qclaimed(q)); 1879 1880 switch (bp->b_datap->db_type) { 1881 case M_ERROR: 1882 /* 1883 * An error has occurred downstream, the errno is in the first 1884 * bytes of the message. 1885 */ 1886 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1887 unsigned char rw = 0; 1888 1889 mutex_enter(&stp->sd_lock); 1890 if (*bp->b_rptr != NOERROR) { /* read error */ 1891 if (*bp->b_rptr != 0) { 1892 if (stp->sd_flag & STRDERR) 1893 flushed_already |= FLUSHR; 1894 stp->sd_flag |= STRDERR; 1895 rw |= FLUSHR; 1896 } else { 1897 stp->sd_flag &= ~STRDERR; 1898 } 1899 stp->sd_rerror = *bp->b_rptr; 1900 } 1901 bp->b_rptr++; 1902 if (*bp->b_rptr != NOERROR) { /* write error */ 1903 if (*bp->b_rptr != 0) { 1904 if (stp->sd_flag & STWRERR) 1905 flushed_already |= FLUSHW; 1906 stp->sd_flag |= STWRERR; 1907 rw |= FLUSHW; 1908 } else { 1909 stp->sd_flag &= ~STWRERR; 1910 } 1911 stp->sd_werror = *bp->b_rptr; 1912 } 1913 if (rw) { 1914 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1915 "strrput cv_broadcast:q %p, bp %p", 1916 q, bp); 1917 cv_broadcast(&q->q_wait); /* readers */ 1918 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1919 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1920 1921 mutex_exit(&stp->sd_lock); 1922 pollwakeup(&stp->sd_pollist, POLLERR); 1923 mutex_enter(&stp->sd_lock); 1924 1925 if (stp->sd_sigflags & S_ERROR) 1926 strsendsig(stp->sd_siglist, S_ERROR, 0, 1927 ((rw & FLUSHR) ? stp->sd_rerror : 1928 stp->sd_werror)); 1929 mutex_exit(&stp->sd_lock); 1930 /* 1931 * Send the M_FLUSH only 1932 * for the first M_ERROR 1933 * message on the stream 1934 */ 1935 if (flushed_already == rw) { 1936 freemsg(bp); 1937 return (0); 1938 } 1939 1940 bp->b_datap->db_type = M_FLUSH; 1941 *bp->b_rptr = rw; 1942 bp->b_wptr = bp->b_rptr + 1; 1943 /* 1944 * Protect against the driver 1945 * passing up messages after 1946 * it has done a qprocsoff 1947 */ 1948 if (_OTHERQ(q)->q_next == NULL) 1949 freemsg(bp); 1950 else 1951 qreply(q, bp); 1952 return (0); 1953 } else 1954 mutex_exit(&stp->sd_lock); 1955 } else if (*bp->b_rptr != 0) { /* Old flavor */ 1956 if (stp->sd_flag & (STRDERR|STWRERR)) 1957 flushed_already = FLUSHRW; 1958 mutex_enter(&stp->sd_lock); 1959 stp->sd_flag |= (STRDERR|STWRERR); 1960 stp->sd_rerror = *bp->b_rptr; 1961 stp->sd_werror = *bp->b_rptr; 1962 TRACE_2(TR_FAC_STREAMS_FR, 1963 TR_STRRPUT_WAKE2, 1964 "strrput wakeup #2:q %p, bp %p", q, bp); 1965 cv_broadcast(&q->q_wait); /* the readers */ 1966 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 1967 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1968 1969 mutex_exit(&stp->sd_lock); 1970 pollwakeup(&stp->sd_pollist, POLLERR); 1971 mutex_enter(&stp->sd_lock); 1972 1973 if (stp->sd_sigflags & S_ERROR) 1974 strsendsig(stp->sd_siglist, S_ERROR, 0, 1975 (stp->sd_werror ? stp->sd_werror : 1976 stp->sd_rerror)); 1977 mutex_exit(&stp->sd_lock); 1978 1979 /* 1980 * Send the M_FLUSH only 1981 * for the first M_ERROR 1982 * message on the stream 1983 */ 1984 if (flushed_already != FLUSHRW) { 1985 bp->b_datap->db_type = M_FLUSH; 1986 *bp->b_rptr = FLUSHRW; 1987 /* 1988 * Protect against the driver passing up 1989 * messages after it has done a 1990 * qprocsoff. 1991 */ 1992 if (_OTHERQ(q)->q_next == NULL) 1993 freemsg(bp); 1994 else 1995 qreply(q, bp); 1996 return (0); 1997 } 1998 } 1999 freemsg(bp); 2000 return (0); 2001 2002 case M_HANGUP: 2003 2004 freemsg(bp); 2005 mutex_enter(&stp->sd_lock); 2006 stp->sd_werror = ENXIO; 2007 stp->sd_flag |= STRHUP; 2008 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2009 2010 /* 2011 * send signal if controlling tty 2012 */ 2013 2014 if (stp->sd_sidp) { 2015 prsignal(stp->sd_sidp, SIGHUP); 2016 if (stp->sd_sidp != stp->sd_pgidp) 2017 pgsignal(stp->sd_pgidp, SIGTSTP); 2018 } 2019 2020 /* 2021 * wake up read, write, and exception pollers and 2022 * reset wakeup mechanism. 2023 */ 2024 cv_broadcast(&q->q_wait); /* the readers */ 2025 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2026 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2027 mutex_exit(&stp->sd_lock); 2028 strhup(stp); 2029 return (0); 2030 2031 case M_UNHANGUP: 2032 freemsg(bp); 2033 mutex_enter(&stp->sd_lock); 2034 stp->sd_werror = 0; 2035 stp->sd_flag &= ~STRHUP; 2036 mutex_exit(&stp->sd_lock); 2037 return (0); 2038 2039 case M_SIG: 2040 /* 2041 * Someone downstream wants to post a signal. The 2042 * signal to post is contained in the first byte of the 2043 * message. If the message would go on the front of 2044 * the queue, send a signal to the process group 2045 * (if not SIGPOLL) or to the siglist processes 2046 * (SIGPOLL). If something is already on the queue, 2047 * OR if we are delivering a delayed suspend (*sigh* 2048 * another "tty" hack) and there's no one sleeping already, 2049 * just enqueue the message. 2050 */ 2051 mutex_enter(&stp->sd_lock); 2052 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2053 !(stp->sd_flag & RSLEEP))) { 2054 (void) putq(q, bp); 2055 mutex_exit(&stp->sd_lock); 2056 return (0); 2057 } 2058 mutex_exit(&stp->sd_lock); 2059 /* FALLTHRU */ 2060 2061 case M_PCSIG: 2062 /* 2063 * Don't enqueue, just post the signal. 2064 */ 2065 strsignal(stp, *bp->b_rptr, 0L); 2066 freemsg(bp); 2067 return (0); 2068 2069 case M_FLUSH: 2070 /* 2071 * Flush queues. The indication of which queues to flush 2072 * is in the first byte of the message. If the read queue 2073 * is specified, then flush it. If FLUSHBAND is set, just 2074 * flush the band specified by the second byte of the message. 2075 * 2076 * If a module has issued a M_SETOPT to not flush hi 2077 * priority messages off of the stream head, then pass this 2078 * flag into the flushq code to preserve such messages. 2079 */ 2080 2081 if (*bp->b_rptr & FLUSHR) { 2082 mutex_enter(&stp->sd_lock); 2083 if (*bp->b_rptr & FLUSHBAND) { 2084 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2085 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2086 } else 2087 flushq_common(q, FLUSHALL, 2088 stp->sd_read_opt & RFLUSHPCPROT); 2089 if ((q->q_first == NULL) || 2090 (q->q_first->b_datap->db_type < QPCTL)) 2091 stp->sd_flag &= ~STRPRI; 2092 else { 2093 ASSERT(stp->sd_flag & STRPRI); 2094 } 2095 mutex_exit(&stp->sd_lock); 2096 } 2097 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2098 *bp->b_rptr &= ~FLUSHR; 2099 bp->b_flag |= MSGNOLOOP; 2100 /* 2101 * Protect against the driver passing up 2102 * messages after it has done a qprocsoff. 2103 */ 2104 if (_OTHERQ(q)->q_next == NULL) 2105 freemsg(bp); 2106 else 2107 qreply(q, bp); 2108 return (0); 2109 } 2110 freemsg(bp); 2111 return (0); 2112 2113 case M_IOCACK: 2114 case M_IOCNAK: 2115 iocbp = (struct iocblk *)bp->b_rptr; 2116 /* 2117 * If not waiting for ACK or NAK then just free msg. 2118 * If incorrect id sequence number then just free msg. 2119 * If already have ACK or NAK for user then this is a 2120 * duplicate, display a warning and free the msg. 2121 */ 2122 mutex_enter(&stp->sd_lock); 2123 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2124 (stp->sd_iocid != iocbp->ioc_id)) { 2125 /* 2126 * If the ACK/NAK is a dup, display a message 2127 * Dup is when sd_iocid == ioc_id, and 2128 * sd_iocblk == <valid ptr> or -1 (the former 2129 * is when an ioctl has been put on the stream 2130 * head, but has not yet been consumed, the 2131 * later is when it has been consumed). 2132 */ 2133 if ((stp->sd_iocid == iocbp->ioc_id) && 2134 (stp->sd_iocblk != NULL)) { 2135 log_dupioc(q, bp); 2136 } 2137 freemsg(bp); 2138 mutex_exit(&stp->sd_lock); 2139 return (0); 2140 } 2141 2142 /* 2143 * Assign ACK or NAK to user and wake up. 2144 */ 2145 stp->sd_iocblk = bp; 2146 cv_broadcast(&stp->sd_monitor); 2147 mutex_exit(&stp->sd_lock); 2148 return (0); 2149 2150 case M_COPYIN: 2151 case M_COPYOUT: 2152 reqp = (struct copyreq *)bp->b_rptr; 2153 2154 /* 2155 * If not waiting for ACK or NAK then just fail request. 2156 * If already have ACK, NAK, or copy request, then just 2157 * fail request. 2158 * If incorrect id sequence number then just fail request. 2159 */ 2160 mutex_enter(&stp->sd_lock); 2161 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2162 (stp->sd_iocid != reqp->cq_id)) { 2163 if (bp->b_cont) { 2164 freemsg(bp->b_cont); 2165 bp->b_cont = NULL; 2166 } 2167 bp->b_datap->db_type = M_IOCDATA; 2168 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2169 resp = (struct copyresp *)bp->b_rptr; 2170 resp->cp_rval = (caddr_t)1; /* failure */ 2171 mutex_exit(&stp->sd_lock); 2172 putnext(stp->sd_wrq, bp); 2173 return (0); 2174 } 2175 2176 /* 2177 * Assign copy request to user and wake up. 2178 */ 2179 stp->sd_iocblk = bp; 2180 cv_broadcast(&stp->sd_monitor); 2181 mutex_exit(&stp->sd_lock); 2182 return (0); 2183 2184 case M_SETOPTS: 2185 /* 2186 * Set stream head options (read option, write offset, 2187 * min/max packet size, and/or high/low water marks for 2188 * the read side only). 2189 */ 2190 2191 bpri = 0; 2192 sop = (struct stroptions *)bp->b_rptr; 2193 mutex_enter(&stp->sd_lock); 2194 if (sop->so_flags & SO_READOPT) { 2195 switch (sop->so_readopt & RMODEMASK) { 2196 case RNORM: 2197 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2198 break; 2199 2200 case RMSGD: 2201 stp->sd_read_opt = 2202 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2203 RD_MSGDIS); 2204 break; 2205 2206 case RMSGN: 2207 stp->sd_read_opt = 2208 ((stp->sd_read_opt & ~RD_MSGDIS) | 2209 RD_MSGNODIS); 2210 break; 2211 } 2212 switch (sop->so_readopt & RPROTMASK) { 2213 case RPROTNORM: 2214 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2215 break; 2216 2217 case RPROTDAT: 2218 stp->sd_read_opt = 2219 ((stp->sd_read_opt & ~RD_PROTDIS) | 2220 RD_PROTDAT); 2221 break; 2222 2223 case RPROTDIS: 2224 stp->sd_read_opt = 2225 ((stp->sd_read_opt & ~RD_PROTDAT) | 2226 RD_PROTDIS); 2227 break; 2228 } 2229 switch (sop->so_readopt & RFLUSHMASK) { 2230 case RFLUSHPCPROT: 2231 /* 2232 * This sets the stream head to NOT flush 2233 * M_PCPROTO messages. 2234 */ 2235 stp->sd_read_opt |= RFLUSHPCPROT; 2236 break; 2237 } 2238 } 2239 if (sop->so_flags & SO_ERROPT) { 2240 switch (sop->so_erropt & RERRMASK) { 2241 case RERRNORM: 2242 stp->sd_flag &= ~STRDERRNONPERSIST; 2243 break; 2244 case RERRNONPERSIST: 2245 stp->sd_flag |= STRDERRNONPERSIST; 2246 break; 2247 } 2248 switch (sop->so_erropt & WERRMASK) { 2249 case WERRNORM: 2250 stp->sd_flag &= ~STWRERRNONPERSIST; 2251 break; 2252 case WERRNONPERSIST: 2253 stp->sd_flag |= STWRERRNONPERSIST; 2254 break; 2255 } 2256 } 2257 if (sop->so_flags & SO_COPYOPT) { 2258 if (sop->so_copyopt & ZCVMSAFE) { 2259 stp->sd_copyflag |= STZCVMSAFE; 2260 stp->sd_copyflag &= ~STZCVMUNSAFE; 2261 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2262 stp->sd_copyflag |= STZCVMUNSAFE; 2263 stp->sd_copyflag &= ~STZCVMSAFE; 2264 } 2265 2266 if (sop->so_copyopt & COPYCACHED) { 2267 stp->sd_copyflag |= STRCOPYCACHED; 2268 } 2269 } 2270 if (sop->so_flags & SO_WROFF) 2271 stp->sd_wroff = sop->so_wroff; 2272 if (sop->so_flags & SO_MINPSZ) 2273 q->q_minpsz = sop->so_minpsz; 2274 if (sop->so_flags & SO_MAXPSZ) 2275 q->q_maxpsz = sop->so_maxpsz; 2276 if (sop->so_flags & SO_MAXBLK) 2277 stp->sd_maxblk = sop->so_maxblk; 2278 if (sop->so_flags & SO_HIWAT) { 2279 if (sop->so_flags & SO_BAND) { 2280 if (strqset(q, QHIWAT, sop->so_band, sop->so_hiwat)) 2281 cmn_err(CE_WARN, 2282 "strrput: could not allocate qband\n"); 2283 else 2284 bpri = sop->so_band; 2285 } else { 2286 q->q_hiwat = sop->so_hiwat; 2287 } 2288 } 2289 if (sop->so_flags & SO_LOWAT) { 2290 if (sop->so_flags & SO_BAND) { 2291 if (strqset(q, QLOWAT, sop->so_band, sop->so_lowat)) 2292 cmn_err(CE_WARN, 2293 "strrput: could not allocate qband\n"); 2294 else 2295 bpri = sop->so_band; 2296 } else { 2297 q->q_lowat = sop->so_lowat; 2298 } 2299 } 2300 if (sop->so_flags & SO_MREADON) 2301 stp->sd_flag |= SNDMREAD; 2302 if (sop->so_flags & SO_MREADOFF) 2303 stp->sd_flag &= ~SNDMREAD; 2304 if (sop->so_flags & SO_NDELON) 2305 stp->sd_flag |= OLDNDELAY; 2306 if (sop->so_flags & SO_NDELOFF) 2307 stp->sd_flag &= ~OLDNDELAY; 2308 if (sop->so_flags & SO_ISTTY) 2309 stp->sd_flag |= STRISTTY; 2310 if (sop->so_flags & SO_ISNTTY) 2311 stp->sd_flag &= ~STRISTTY; 2312 if (sop->so_flags & SO_TOSTOP) 2313 stp->sd_flag |= STRTOSTOP; 2314 if (sop->so_flags & SO_TONSTOP) 2315 stp->sd_flag &= ~STRTOSTOP; 2316 if (sop->so_flags & SO_DELIM) 2317 stp->sd_flag |= STRDELIM; 2318 if (sop->so_flags & SO_NODELIM) 2319 stp->sd_flag &= ~STRDELIM; 2320 2321 mutex_exit(&stp->sd_lock); 2322 freemsg(bp); 2323 2324 /* Check backenable in case the water marks changed */ 2325 qbackenable(q, bpri); 2326 return (0); 2327 2328 /* 2329 * The following set of cases deal with situations where two stream 2330 * heads are connected to each other (twisted streams). These messages 2331 * have no meaning at the stream head. 2332 */ 2333 case M_BREAK: 2334 case M_CTL: 2335 case M_DELAY: 2336 case M_START: 2337 case M_STOP: 2338 case M_IOCDATA: 2339 case M_STARTI: 2340 case M_STOPI: 2341 freemsg(bp); 2342 return (0); 2343 2344 case M_IOCTL: 2345 /* 2346 * Always NAK this condition 2347 * (makes no sense) 2348 * If there is one or more threads in the read side 2349 * rwnext we have to defer the nacking until that thread 2350 * returns (in strget). 2351 */ 2352 mutex_enter(&stp->sd_lock); 2353 if (stp->sd_struiodnak != 0) { 2354 /* 2355 * Defer NAK to the streamhead. Queue at the end 2356 * the list. 2357 */ 2358 mblk_t *mp = stp->sd_struionak; 2359 2360 while (mp && mp->b_next) 2361 mp = mp->b_next; 2362 if (mp) 2363 mp->b_next = bp; 2364 else 2365 stp->sd_struionak = bp; 2366 bp->b_next = NULL; 2367 mutex_exit(&stp->sd_lock); 2368 return (0); 2369 } 2370 mutex_exit(&stp->sd_lock); 2371 2372 bp->b_datap->db_type = M_IOCNAK; 2373 /* 2374 * Protect against the driver passing up 2375 * messages after it has done a qprocsoff. 2376 */ 2377 if (_OTHERQ(q)->q_next == NULL) 2378 freemsg(bp); 2379 else 2380 qreply(q, bp); 2381 return (0); 2382 2383 default: 2384 #ifdef DEBUG 2385 cmn_err(CE_WARN, 2386 "bad message type %x received at stream head\n", 2387 bp->b_datap->db_type); 2388 #endif 2389 freemsg(bp); 2390 return (0); 2391 } 2392 2393 /* NOTREACHED */ 2394 } 2395 2396 /* 2397 * Check if the stream pointed to by `stp' can be written to, and return an 2398 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2399 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2400 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2401 */ 2402 static int 2403 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2404 { 2405 int error; 2406 2407 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2408 2409 /* 2410 * For modem support, POSIX states that on writes, EIO should 2411 * be returned if the stream has been hung up. 2412 */ 2413 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2414 error = EIO; 2415 else 2416 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2417 2418 if (error != 0) { 2419 if (!(stp->sd_flag & STPLEX) && 2420 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2421 tsignal(curthread, SIGPIPE); 2422 error = EPIPE; 2423 } 2424 } 2425 2426 return (error); 2427 } 2428 2429 /* 2430 * Copyin and send data down a stream. 2431 * The caller will allocate and copyin any control part that precedes the 2432 * message and pass than in as mctl. 2433 * 2434 * Caller should *not* hold sd_lock. 2435 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2436 * under sd_lock in order to avoid missing a backenabling wakeup. 2437 * 2438 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2439 * 2440 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2441 * For sync streams we can only ignore flow control by reverting to using 2442 * putnext. 2443 * 2444 * If sd_maxblk is less than *iosize this routine might return without 2445 * transferring all of *iosize. In all cases, on return *iosize will contain 2446 * the amount of data that was transferred. 2447 */ 2448 static int 2449 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2450 int b_flag, int pri, int flags) 2451 { 2452 struiod_t uiod; 2453 mblk_t *mp; 2454 queue_t *wqp = stp->sd_wrq; 2455 int error = 0; 2456 ssize_t count = *iosize; 2457 cred_t *cr; 2458 2459 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2460 2461 if (uiop != NULL && count >= 0) 2462 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2463 2464 if (!(flags & STRUIO_POSTPONE)) { 2465 /* 2466 * Use regular canputnext, strmakedata, putnext sequence. 2467 */ 2468 if (pri == 0) { 2469 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2470 freemsg(mctl); 2471 return (EWOULDBLOCK); 2472 } 2473 } else { 2474 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2475 freemsg(mctl); 2476 return (EWOULDBLOCK); 2477 } 2478 } 2479 2480 if ((error = strmakedata(iosize, uiop, stp, flags, 2481 &mp)) != 0) { 2482 freemsg(mctl); 2483 /* 2484 * need to change return code to ENOMEM 2485 * so that this is not confused with 2486 * flow control, EAGAIN. 2487 */ 2488 2489 if (error == EAGAIN) 2490 return (ENOMEM); 2491 else 2492 return (error); 2493 } 2494 if (mctl != NULL) { 2495 if (mctl->b_cont == NULL) 2496 mctl->b_cont = mp; 2497 else if (mp != NULL) 2498 linkb(mctl, mp); 2499 mp = mctl; 2500 /* 2501 * Note that for interrupt thread, the CRED() is 2502 * NULL. Don't bother with the pid either. 2503 */ 2504 if ((cr = CRED()) != NULL) { 2505 mblk_setcred(mp, cr); 2506 DB_CPID(mp) = curproc->p_pid; 2507 } 2508 } else if (mp == NULL) 2509 return (0); 2510 2511 mp->b_flag |= b_flag; 2512 mp->b_band = (uchar_t)pri; 2513 2514 if (flags & MSG_IGNFLOW) { 2515 /* 2516 * XXX Hack: Don't get stuck running service 2517 * procedures. This is needed for sockfs when 2518 * sending the unbind message out of the rput 2519 * procedure - we don't want a put procedure 2520 * to run service procedures. 2521 */ 2522 putnext(wqp, mp); 2523 } else { 2524 stream_willservice(stp); 2525 putnext(wqp, mp); 2526 stream_runservice(stp); 2527 } 2528 return (0); 2529 } 2530 /* 2531 * Stream supports rwnext() for the write side. 2532 */ 2533 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2534 freemsg(mctl); 2535 /* 2536 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2537 */ 2538 return (error == EAGAIN ? ENOMEM : error); 2539 } 2540 if (mctl != NULL) { 2541 if (mctl->b_cont == NULL) 2542 mctl->b_cont = mp; 2543 else if (mp != NULL) 2544 linkb(mctl, mp); 2545 mp = mctl; 2546 /* 2547 * Note that for interrupt thread, the CRED() is 2548 * NULL. Don't bother with the pid either. 2549 */ 2550 if ((cr = CRED()) != NULL) { 2551 mblk_setcred(mp, cr); 2552 DB_CPID(mp) = curproc->p_pid; 2553 } 2554 } else if (mp == NULL) { 2555 return (0); 2556 } 2557 2558 mp->b_flag |= b_flag; 2559 mp->b_band = (uchar_t)pri; 2560 2561 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2562 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2563 uiod.d_uio.uio_offset = 0; 2564 uiod.d_mp = mp; 2565 error = rwnext(wqp, &uiod); 2566 if (! uiod.d_mp) { 2567 uioskip(uiop, *iosize); 2568 return (error); 2569 } 2570 ASSERT(mp == uiod.d_mp); 2571 if (error == EINVAL) { 2572 /* 2573 * The stream plumbing must have changed while 2574 * we were away, so just turn off rwnext()s. 2575 */ 2576 error = 0; 2577 } else if (error == EBUSY || error == EWOULDBLOCK) { 2578 /* 2579 * Couldn't enter a perimeter or took a page fault, 2580 * so fall-back to putnext(). 2581 */ 2582 error = 0; 2583 } else { 2584 freemsg(mp); 2585 return (error); 2586 } 2587 /* Have to check canput before consuming data from the uio */ 2588 if (pri == 0) { 2589 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2590 freemsg(mp); 2591 return (EWOULDBLOCK); 2592 } 2593 } else { 2594 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2595 freemsg(mp); 2596 return (EWOULDBLOCK); 2597 } 2598 } 2599 ASSERT(mp == uiod.d_mp); 2600 /* Copyin data from the uio */ 2601 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2602 freemsg(mp); 2603 return (error); 2604 } 2605 uioskip(uiop, *iosize); 2606 if (flags & MSG_IGNFLOW) { 2607 /* 2608 * XXX Hack: Don't get stuck running service procedures. 2609 * This is needed for sockfs when sending the unbind message 2610 * out of the rput procedure - we don't want a put procedure 2611 * to run service procedures. 2612 */ 2613 putnext(wqp, mp); 2614 } else { 2615 stream_willservice(stp); 2616 putnext(wqp, mp); 2617 stream_runservice(stp); 2618 } 2619 return (0); 2620 } 2621 2622 /* 2623 * Write attempts to break the write request into messages conforming 2624 * with the minimum and maximum packet sizes set downstream. 2625 * 2626 * Write will not block if downstream queue is full and 2627 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2628 * 2629 * A write of zero bytes gets packaged into a zero length message and sent 2630 * downstream like any other message. 2631 * 2632 * If buffers of the requested sizes are not available, the write will 2633 * sleep until the buffers become available. 2634 * 2635 * Write (if specified) will supply a write offset in a message if it 2636 * makes sense. This can be specified by downstream modules as part of 2637 * a M_SETOPTS message. Write will not supply the write offset if it 2638 * cannot supply any data in a buffer. In other words, write will never 2639 * send down an empty packet due to a write offset. 2640 */ 2641 /* ARGSUSED2 */ 2642 int 2643 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2644 { 2645 struct stdata *stp; 2646 struct queue *wqp; 2647 ssize_t rmin, rmax; 2648 ssize_t iosize; 2649 char waitflag; 2650 int tempmode; 2651 int error = 0; 2652 int b_flag; 2653 2654 ASSERT(vp->v_stream); 2655 stp = vp->v_stream; 2656 2657 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) 2658 if ((error = straccess(stp, JCWRITE)) != 0) 2659 return (error); 2660 2661 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2662 mutex_enter(&stp->sd_lock); 2663 error = strwriteable(stp, B_TRUE, B_TRUE); 2664 mutex_exit(&stp->sd_lock); 2665 if (error != 0) 2666 return (error); 2667 } 2668 2669 wqp = stp->sd_wrq; 2670 2671 /* get these values from them cached in the stream head */ 2672 rmin = stp->sd_qn_minpsz; 2673 rmax = stp->sd_qn_maxpsz; 2674 2675 /* 2676 * Check the min/max packet size constraints. If min packet size 2677 * is non-zero, the write cannot be split into multiple messages 2678 * and still guarantee the size constraints. 2679 */ 2680 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2681 2682 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2683 if (rmax == 0) { 2684 return (0); 2685 } 2686 if (rmin > 0) { 2687 if (uiop->uio_resid < rmin) { 2688 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2689 "strwrite out:q %p out %d error %d", 2690 wqp, 0, ERANGE); 2691 return (ERANGE); 2692 } 2693 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2694 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2695 "strwrite out:q %p out %d error %d", 2696 wqp, 1, ERANGE); 2697 return (ERANGE); 2698 } 2699 } 2700 2701 /* 2702 * Do until count satisfied or error. 2703 */ 2704 waitflag = WRITEWAIT; 2705 if (stp->sd_flag & OLDNDELAY) 2706 tempmode = uiop->uio_fmode & ~FNDELAY; 2707 else 2708 tempmode = uiop->uio_fmode; 2709 2710 if (rmax == INFPSZ) 2711 rmax = uiop->uio_resid; 2712 2713 /* 2714 * Note that tempmode does not get used in strput/strmakedata 2715 * but only in strwaitq. The other routines use uio_fmode 2716 * unmodified. 2717 */ 2718 2719 /* LINTED: constant in conditional context */ 2720 while (1) { /* breaks when uio_resid reaches zero */ 2721 /* 2722 * Determine the size of the next message to be 2723 * packaged. May have to break write into several 2724 * messages based on max packet size. 2725 */ 2726 iosize = MIN(uiop->uio_resid, rmax); 2727 2728 /* 2729 * Put block downstream when flow control allows it. 2730 */ 2731 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2732 b_flag = MSGDELIM; 2733 else 2734 b_flag = 0; 2735 2736 for (;;) { 2737 int done = 0; 2738 2739 error = strput(stp, NULL, uiop, &iosize, b_flag, 2740 0, 0); 2741 if (error == 0) 2742 break; 2743 if (error != EWOULDBLOCK) 2744 goto out; 2745 2746 mutex_enter(&stp->sd_lock); 2747 /* 2748 * Check for a missed wakeup. 2749 * Needed since strput did not hold sd_lock across 2750 * the canputnext. 2751 */ 2752 if (canputnext(wqp)) { 2753 /* Try again */ 2754 mutex_exit(&stp->sd_lock); 2755 continue; 2756 } 2757 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2758 "strwrite wait:q %p wait", wqp); 2759 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2760 tempmode, -1, &done)) != 0 || done) { 2761 mutex_exit(&stp->sd_lock); 2762 if ((vp->v_type == VFIFO) && 2763 (uiop->uio_fmode & FNDELAY) && 2764 (error == EAGAIN)) 2765 error = 0; 2766 goto out; 2767 } 2768 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2769 "strwrite wake:q %p awakes", wqp); 2770 mutex_exit(&stp->sd_lock); 2771 if (stp->sd_sidp != NULL && 2772 stp->sd_vnode->v_type != VFIFO) 2773 if (error = straccess(stp, JCWRITE)) 2774 goto out; 2775 } 2776 waitflag |= NOINTR; 2777 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2778 "strwrite resid:q %p uiop %p", wqp, uiop); 2779 if (uiop->uio_resid) { 2780 /* Recheck for errors - needed for sockets */ 2781 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2782 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2783 mutex_enter(&stp->sd_lock); 2784 error = strwriteable(stp, B_FALSE, B_TRUE); 2785 mutex_exit(&stp->sd_lock); 2786 if (error != 0) 2787 return (error); 2788 } 2789 continue; 2790 } 2791 break; 2792 } 2793 out: 2794 /* 2795 * For historical reasons, applications expect EAGAIN when a data 2796 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2797 */ 2798 if (error == ENOMEM) 2799 error = EAGAIN; 2800 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2801 "strwrite out:q %p out %d error %d", wqp, 2, error); 2802 return (error); 2803 } 2804 2805 /* 2806 * kstrwritemp() has very similar semantics as that of strwrite(). 2807 * The main difference is it obtains mblks from the caller and also 2808 * does not do any copy as done in strwrite() from user buffers to 2809 * kernel buffers. 2810 * 2811 * 2812 * Currently, this routine is used by sendfile to send data allocated 2813 * within the kernel without any copying. This interface does not use the 2814 * synchronous stream interface as synch. stream interface implies 2815 * copying. 2816 */ 2817 int 2818 kstrwritemp(struct vnode *vp, mblk_t *mp, ushort_t fmode) 2819 { 2820 struct stdata *stp; 2821 struct queue *wqp; 2822 char waitflag; 2823 int tempmode; 2824 int error; 2825 int done = 0; 2826 2827 ASSERT(vp->v_stream); 2828 stp = vp->v_stream; 2829 2830 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2831 mutex_enter(&stp->sd_lock); 2832 error = strwriteable(stp, B_FALSE, B_TRUE); 2833 mutex_exit(&stp->sd_lock); 2834 if (error != 0) 2835 return (error); 2836 } 2837 2838 /* 2839 * First, check for flow control without grabbing the sd_lock. 2840 * If we would block, re-check with the lock. This is similar 2841 * to the logic used by strwrite(). 2842 */ 2843 wqp = stp->sd_wrq; 2844 if (canputnext(wqp)) { 2845 putnext(wqp, mp); 2846 return (0); 2847 } 2848 2849 waitflag = WRITEWAIT; 2850 if (stp->sd_flag & OLDNDELAY) 2851 tempmode = fmode & ~FNDELAY; 2852 else 2853 tempmode = fmode; 2854 2855 mutex_enter(&stp->sd_lock); 2856 do { 2857 if (canputnext(wqp)) { 2858 mutex_exit(&stp->sd_lock); 2859 putnext(wqp, mp); 2860 return (0); 2861 } 2862 error = strwaitq(stp, waitflag, (ssize_t)0, tempmode, -1, 2863 &done); 2864 } while (error == 0 && !done); 2865 2866 mutex_exit(&stp->sd_lock); 2867 /* 2868 * EAGAIN tells the application to try again. ENOMEM 2869 * is returned only if the memory allocation size 2870 * exceeds the physical limits of the system. ENOMEM 2871 * can't be true here. 2872 */ 2873 if (error == ENOMEM) 2874 error = EAGAIN; 2875 return (error); 2876 } 2877 2878 /* 2879 * Stream head write service routine. 2880 * Its job is to wake up any sleeping writers when a queue 2881 * downstream needs data (part of the flow control in putq and getq). 2882 * It also must wake anyone sleeping on a poll(). 2883 * For stream head right below mux module, it must also invoke put procedure 2884 * of next downstream module. 2885 */ 2886 int 2887 strwsrv(queue_t *q) 2888 { 2889 struct stdata *stp; 2890 queue_t *tq; 2891 qband_t *qbp; 2892 int i; 2893 qband_t *myqbp; 2894 int isevent; 2895 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2896 2897 TRACE_1(TR_FAC_STREAMS_FR, 2898 TR_STRWSRV, "strwsrv:q %p", q); 2899 stp = (struct stdata *)q->q_ptr; 2900 ASSERT(qclaimed(q)); 2901 mutex_enter(&stp->sd_lock); 2902 ASSERT(!(stp->sd_flag & STPLEX)); 2903 2904 if (stp->sd_flag & WSLEEP) { 2905 stp->sd_flag &= ~WSLEEP; 2906 cv_broadcast(&q->q_wait); 2907 } 2908 mutex_exit(&stp->sd_lock); 2909 2910 /* The other end of a stream pipe went away. */ 2911 if ((tq = q->q_next) == NULL) { 2912 return (0); 2913 } 2914 2915 /* Find the next module forward that has a service procedure */ 2916 claimstr(q); 2917 tq = q->q_nfsrv; 2918 ASSERT(tq != NULL); 2919 2920 if ((q->q_flag & QBACK)) { 2921 if ((tq->q_flag & QFULL)) { 2922 mutex_enter(QLOCK(tq)); 2923 if (!(tq->q_flag & QFULL)) { 2924 mutex_exit(QLOCK(tq)); 2925 goto wakeup; 2926 } 2927 /* 2928 * The queue must have become full again. Set QWANTW 2929 * again so strwsrv will be back enabled when 2930 * the queue becomes non-full next time. 2931 */ 2932 tq->q_flag |= QWANTW; 2933 mutex_exit(QLOCK(tq)); 2934 } else { 2935 wakeup: 2936 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2937 mutex_enter(&stp->sd_lock); 2938 if (stp->sd_sigflags & S_WRNORM) 2939 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2940 mutex_exit(&stp->sd_lock); 2941 } 2942 } 2943 2944 isevent = 0; 2945 i = 1; 2946 bzero((caddr_t)qbf, NBAND); 2947 mutex_enter(QLOCK(tq)); 2948 if ((myqbp = q->q_bandp) != NULL) 2949 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2950 ASSERT(myqbp); 2951 if ((myqbp->qb_flag & QB_BACK)) { 2952 if (qbp->qb_flag & QB_FULL) { 2953 /* 2954 * The band must have become full again. 2955 * Set QB_WANTW again so strwsrv will 2956 * be back enabled when the band becomes 2957 * non-full next time. 2958 */ 2959 qbp->qb_flag |= QB_WANTW; 2960 } else { 2961 isevent = 1; 2962 qbf[i] = 1; 2963 } 2964 } 2965 myqbp = myqbp->qb_next; 2966 i++; 2967 } 2968 mutex_exit(QLOCK(tq)); 2969 2970 if (isevent) { 2971 for (i = tq->q_nband; i; i--) { 2972 if (qbf[i]) { 2973 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2974 mutex_enter(&stp->sd_lock); 2975 if (stp->sd_sigflags & S_WRBAND) 2976 strsendsig(stp->sd_siglist, S_WRBAND, 2977 (uchar_t)i, 0); 2978 mutex_exit(&stp->sd_lock); 2979 } 2980 } 2981 } 2982 2983 releasestr(q); 2984 return (0); 2985 } 2986 2987 /* 2988 * Special case of strcopyin/strcopyout for copying 2989 * struct strioctl that can deal with both data 2990 * models. 2991 */ 2992 2993 #ifdef _LP64 2994 2995 static int 2996 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 2997 { 2998 struct strioctl32 strioc32; 2999 struct strioctl *striocp; 3000 3001 if (copyflag & U_TO_K) { 3002 ASSERT((copyflag & K_TO_K) == 0); 3003 3004 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3005 if (copyin(from, &strioc32, sizeof (strioc32))) 3006 return (EFAULT); 3007 3008 striocp = (struct strioctl *)to; 3009 striocp->ic_cmd = strioc32.ic_cmd; 3010 striocp->ic_timout = strioc32.ic_timout; 3011 striocp->ic_len = strioc32.ic_len; 3012 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3013 3014 } else { /* NATIVE data model */ 3015 if (copyin(from, to, sizeof (struct strioctl))) { 3016 return (EFAULT); 3017 } else { 3018 return (0); 3019 } 3020 } 3021 } else { 3022 ASSERT(copyflag & K_TO_K); 3023 bcopy(from, to, sizeof (struct strioctl)); 3024 } 3025 return (0); 3026 } 3027 3028 static int 3029 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3030 { 3031 struct strioctl32 strioc32; 3032 struct strioctl *striocp; 3033 3034 if (copyflag & U_TO_K) { 3035 ASSERT((copyflag & K_TO_K) == 0); 3036 3037 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3038 striocp = (struct strioctl *)from; 3039 strioc32.ic_cmd = striocp->ic_cmd; 3040 strioc32.ic_timout = striocp->ic_timout; 3041 strioc32.ic_len = striocp->ic_len; 3042 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3043 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3044 striocp->ic_dp); 3045 3046 if (copyout(&strioc32, to, sizeof (strioc32))) 3047 return (EFAULT); 3048 3049 } else { /* NATIVE data model */ 3050 if (copyout(from, to, sizeof (struct strioctl))) { 3051 return (EFAULT); 3052 } else { 3053 return (0); 3054 } 3055 } 3056 } else { 3057 ASSERT(copyflag & K_TO_K); 3058 bcopy(from, to, sizeof (struct strioctl)); 3059 } 3060 return (0); 3061 } 3062 3063 #else /* ! _LP64 */ 3064 3065 /* ARGSUSED2 */ 3066 static int 3067 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3068 { 3069 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3070 } 3071 3072 /* ARGSUSED2 */ 3073 static int 3074 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3075 { 3076 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3077 } 3078 3079 #endif /* _LP64 */ 3080 3081 /* 3082 * Determine type of job control semantics expected by user. The 3083 * possibilities are: 3084 * JCREAD - Behaves like read() on fd; send SIGTTIN 3085 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3086 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3087 * JCGETP - Gets a value in the stream; no signals. 3088 * See straccess in strsubr.c for usage of these values. 3089 * 3090 * This routine also returns -1 for I_STR as a special case; the 3091 * caller must call again with the real ioctl number for 3092 * classification. 3093 */ 3094 static int 3095 job_control_type(int cmd) 3096 { 3097 switch (cmd) { 3098 case I_STR: 3099 return (-1); 3100 3101 case I_RECVFD: 3102 case I_E_RECVFD: 3103 return (JCREAD); 3104 3105 case I_FDINSERT: 3106 case I_SENDFD: 3107 return (JCWRITE); 3108 3109 case TCSETA: 3110 case TCSETAW: 3111 case TCSETAF: 3112 case TCSBRK: 3113 case TCXONC: 3114 case TCFLSH: 3115 case TCDSET: /* Obsolete */ 3116 case TIOCSWINSZ: 3117 case TCSETS: 3118 case TCSETSW: 3119 case TCSETSF: 3120 case TIOCSETD: 3121 case TIOCHPCL: 3122 case TIOCSETP: 3123 case TIOCSETN: 3124 case TIOCEXCL: 3125 case TIOCNXCL: 3126 case TIOCFLUSH: 3127 case TIOCSETC: 3128 case TIOCLBIS: 3129 case TIOCLBIC: 3130 case TIOCLSET: 3131 case TIOCSBRK: 3132 case TIOCCBRK: 3133 case TIOCSDTR: 3134 case TIOCCDTR: 3135 case TIOCSLTC: 3136 case TIOCSTOP: 3137 case TIOCSTART: 3138 case TIOCSTI: 3139 case TIOCSPGRP: 3140 case TIOCMSET: 3141 case TIOCMBIS: 3142 case TIOCMBIC: 3143 case TIOCREMOTE: 3144 case TIOCSIGNAL: 3145 case LDSETT: 3146 case LDSMAP: /* Obsolete */ 3147 case DIOCSETP: 3148 case I_FLUSH: 3149 case I_SRDOPT: 3150 case I_SETSIG: 3151 case I_SWROPT: 3152 case I_FLUSHBAND: 3153 case I_SETCLTIME: 3154 case I_SERROPT: 3155 case I_ESETSIG: 3156 case FIONBIO: 3157 case FIOASYNC: 3158 case FIOSETOWN: 3159 case JBOOT: /* Obsolete */ 3160 case JTERM: /* Obsolete */ 3161 case JTIMOM: /* Obsolete */ 3162 case JZOMBOOT: /* Obsolete */ 3163 case JAGENT: /* Obsolete */ 3164 case JTRUN: /* Obsolete */ 3165 case JXTPROTO: /* Obsolete */ 3166 return (JCSETP); 3167 } 3168 3169 return (JCGETP); 3170 } 3171 3172 /* 3173 * ioctl for streams 3174 */ 3175 int 3176 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3177 cred_t *crp, int *rvalp) 3178 { 3179 struct stdata *stp; 3180 struct strioctl strioc; 3181 struct uio uio; 3182 struct iovec iov; 3183 int access; 3184 mblk_t *mp; 3185 int error = 0; 3186 int done = 0; 3187 ssize_t rmin, rmax; 3188 queue_t *wrq; 3189 queue_t *rdq; 3190 boolean_t kioctl = B_FALSE; 3191 3192 if (flag & FKIOCTL) { 3193 copyflag = K_TO_K; 3194 kioctl = B_TRUE; 3195 } 3196 ASSERT(vp->v_stream); 3197 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3198 stp = vp->v_stream; 3199 3200 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3201 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3202 3203 #ifdef C2_AUDIT 3204 if (audit_active) 3205 audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp); 3206 #endif 3207 3208 /* 3209 * If the copy is kernel to kernel, make sure that the FNATIVE 3210 * flag is set. After this it would be a serious error to have 3211 * no model flag. 3212 */ 3213 if (copyflag == K_TO_K) 3214 flag = (flag & ~FMODELS) | FNATIVE; 3215 3216 ASSERT((flag & FMODELS) != 0); 3217 3218 wrq = stp->sd_wrq; 3219 rdq = _RD(wrq); 3220 3221 access = job_control_type(cmd); 3222 3223 /* We should never see these here, should be handled by iwscn */ 3224 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3225 return (EINVAL); 3226 3227 if (access != -1 && stp->sd_sidp != NULL && 3228 stp->sd_vnode->v_type != VFIFO) 3229 if (error = straccess(stp, access)) 3230 return (error); 3231 3232 /* 3233 * Check for sgttyb-related ioctls first, and complain as 3234 * necessary. 3235 */ 3236 switch (cmd) { 3237 case TIOCGETP: 3238 case TIOCSETP: 3239 case TIOCSETN: 3240 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3241 sgttyb_complaint = B_TRUE; 3242 cmn_err(CE_NOTE, 3243 "application used obsolete TIOC[GS]ET"); 3244 } 3245 if (sgttyb_handling >= 3) { 3246 tsignal(curthread, SIGSYS); 3247 return (EIO); 3248 } 3249 break; 3250 } 3251 3252 mutex_enter(&stp->sd_lock); 3253 3254 switch (cmd) { 3255 case I_RECVFD: 3256 case I_E_RECVFD: 3257 case I_PEEK: 3258 case I_NREAD: 3259 case FIONREAD: 3260 case FIORDCHK: 3261 case I_ATMARK: 3262 case FIONBIO: 3263 case FIOASYNC: 3264 if (stp->sd_flag & (STRDERR|STPLEX)) { 3265 error = strgeterr(stp, STRDERR|STPLEX, 0); 3266 if (error != 0) { 3267 mutex_exit(&stp->sd_lock); 3268 return (error); 3269 } 3270 } 3271 break; 3272 3273 default: 3274 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3275 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3276 if (error != 0) { 3277 mutex_exit(&stp->sd_lock); 3278 return (error); 3279 } 3280 } 3281 } 3282 3283 mutex_exit(&stp->sd_lock); 3284 3285 switch (cmd) { 3286 default: 3287 /* 3288 * The stream head has hardcoded knowledge of a 3289 * miscellaneous collection of terminal-, keyboard- and 3290 * mouse-related ioctls, enumerated below. This hardcoded 3291 * knowledge allows the stream head to automatically 3292 * convert transparent ioctl requests made by userland 3293 * programs into I_STR ioctls which many old STREAMS 3294 * modules and drivers require. 3295 * 3296 * No new ioctls should ever be added to this list. 3297 * Instead, the STREAMS module or driver should be written 3298 * to either handle transparent ioctls or require any 3299 * userland programs to use I_STR ioctls (by returning 3300 * EINVAL to any transparent ioctl requests). 3301 * 3302 * More importantly, removing ioctls from this list should 3303 * be done with the utmost care, since our STREAMS modules 3304 * and drivers *count* on the stream head performing this 3305 * conversion, and thus may panic while processing 3306 * transparent ioctl request for one of these ioctls (keep 3307 * in mind that third party modules and drivers may have 3308 * similar problems). 3309 */ 3310 if (((cmd & IOCTYPE) == LDIOC) || 3311 ((cmd & IOCTYPE) == tIOC) || 3312 ((cmd & IOCTYPE) == TIOC) || 3313 ((cmd & IOCTYPE) == KIOC) || 3314 ((cmd & IOCTYPE) == MSIOC) || 3315 ((cmd & IOCTYPE) == VUIOC)) { 3316 /* 3317 * The ioctl is a tty ioctl - set up strioc buffer 3318 * and call strdoioctl() to do the work. 3319 */ 3320 if (stp->sd_flag & STRHUP) 3321 return (ENXIO); 3322 strioc.ic_cmd = cmd; 3323 strioc.ic_timout = INFTIM; 3324 3325 switch (cmd) { 3326 3327 case TCXONC: 3328 case TCSBRK: 3329 case TCFLSH: 3330 case TCDSET: 3331 { 3332 int native_arg = (int)arg; 3333 strioc.ic_len = sizeof (int); 3334 strioc.ic_dp = (char *)&native_arg; 3335 return (strdoioctl(stp, &strioc, flag, 3336 K_TO_K, crp, rvalp)); 3337 } 3338 3339 case TCSETA: 3340 case TCSETAW: 3341 case TCSETAF: 3342 strioc.ic_len = sizeof (struct termio); 3343 strioc.ic_dp = (char *)arg; 3344 return (strdoioctl(stp, &strioc, flag, 3345 copyflag, crp, rvalp)); 3346 3347 case TCSETS: 3348 case TCSETSW: 3349 case TCSETSF: 3350 strioc.ic_len = sizeof (struct termios); 3351 strioc.ic_dp = (char *)arg; 3352 return (strdoioctl(stp, &strioc, flag, 3353 copyflag, crp, rvalp)); 3354 3355 case LDSETT: 3356 strioc.ic_len = sizeof (struct termcb); 3357 strioc.ic_dp = (char *)arg; 3358 return (strdoioctl(stp, &strioc, flag, 3359 copyflag, crp, rvalp)); 3360 3361 case TIOCSETP: 3362 strioc.ic_len = sizeof (struct sgttyb); 3363 strioc.ic_dp = (char *)arg; 3364 return (strdoioctl(stp, &strioc, flag, 3365 copyflag, crp, rvalp)); 3366 3367 case TIOCSTI: 3368 if ((flag & FREAD) == 0 && 3369 secpolicy_sti(crp) != 0) { 3370 return (EPERM); 3371 } 3372 if (stp->sd_sidp != 3373 ttoproc(curthread)->p_sessp->s_sidp && 3374 secpolicy_sti(crp) != 0) { 3375 return (EACCES); 3376 } 3377 3378 strioc.ic_len = sizeof (char); 3379 strioc.ic_dp = (char *)arg; 3380 return (strdoioctl(stp, &strioc, flag, 3381 copyflag, crp, rvalp)); 3382 3383 case TIOCSWINSZ: 3384 strioc.ic_len = sizeof (struct winsize); 3385 strioc.ic_dp = (char *)arg; 3386 return (strdoioctl(stp, &strioc, flag, 3387 copyflag, crp, rvalp)); 3388 3389 case TIOCSSIZE: 3390 strioc.ic_len = sizeof (struct ttysize); 3391 strioc.ic_dp = (char *)arg; 3392 return (strdoioctl(stp, &strioc, flag, 3393 copyflag, crp, rvalp)); 3394 3395 case TIOCSSOFTCAR: 3396 case KIOCTRANS: 3397 case KIOCTRANSABLE: 3398 case KIOCCMD: 3399 case KIOCSDIRECT: 3400 case KIOCSCOMPAT: 3401 case KIOCSKABORTEN: 3402 case KIOCSRPTDELAY: 3403 case KIOCSRPTRATE: 3404 case VUIDSFORMAT: 3405 case TIOCSPPS: 3406 strioc.ic_len = sizeof (int); 3407 strioc.ic_dp = (char *)arg; 3408 return (strdoioctl(stp, &strioc, flag, 3409 copyflag, crp, rvalp)); 3410 3411 case KIOCSETKEY: 3412 case KIOCGETKEY: 3413 strioc.ic_len = sizeof (struct kiockey); 3414 strioc.ic_dp = (char *)arg; 3415 return (strdoioctl(stp, &strioc, flag, 3416 copyflag, crp, rvalp)); 3417 3418 case KIOCSKEY: 3419 case KIOCGKEY: 3420 strioc.ic_len = sizeof (struct kiockeymap); 3421 strioc.ic_dp = (char *)arg; 3422 return (strdoioctl(stp, &strioc, flag, 3423 copyflag, crp, rvalp)); 3424 3425 case KIOCSLED: 3426 /* arg is a pointer to char */ 3427 strioc.ic_len = sizeof (char); 3428 strioc.ic_dp = (char *)arg; 3429 return (strdoioctl(stp, &strioc, flag, 3430 copyflag, crp, rvalp)); 3431 3432 case MSIOSETPARMS: 3433 strioc.ic_len = sizeof (Ms_parms); 3434 strioc.ic_dp = (char *)arg; 3435 return (strdoioctl(stp, &strioc, flag, 3436 copyflag, crp, rvalp)); 3437 3438 case VUIDSADDR: 3439 case VUIDGADDR: 3440 strioc.ic_len = sizeof (struct vuid_addr_probe); 3441 strioc.ic_dp = (char *)arg; 3442 return (strdoioctl(stp, &strioc, flag, 3443 copyflag, crp, rvalp)); 3444 3445 /* 3446 * These M_IOCTL's don't require any data to be sent 3447 * downstream, and the driver will allocate and link 3448 * on its own mblk_t upon M_IOCACK -- thus we set 3449 * ic_len to zero and set ic_dp to arg so we know 3450 * where to copyout to later. 3451 */ 3452 case TIOCGSOFTCAR: 3453 case TIOCGWINSZ: 3454 case TIOCGSIZE: 3455 case KIOCGTRANS: 3456 case KIOCGTRANSABLE: 3457 case KIOCTYPE: 3458 case KIOCGDIRECT: 3459 case KIOCGCOMPAT: 3460 case KIOCLAYOUT: 3461 case KIOCGLED: 3462 case MSIOGETPARMS: 3463 case MSIOBUTTONS: 3464 case VUIDGFORMAT: 3465 case TIOCGPPS: 3466 case TIOCGPPSEV: 3467 case TCGETA: 3468 case TCGETS: 3469 case LDGETT: 3470 case TIOCGETP: 3471 case KIOCGRPTDELAY: 3472 case KIOCGRPTRATE: 3473 strioc.ic_len = 0; 3474 strioc.ic_dp = (char *)arg; 3475 return (strdoioctl(stp, &strioc, flag, 3476 copyflag, crp, rvalp)); 3477 } 3478 } 3479 3480 /* 3481 * Unknown cmd - send it down as a transparent ioctl. 3482 */ 3483 strioc.ic_cmd = cmd; 3484 strioc.ic_timout = INFTIM; 3485 strioc.ic_len = TRANSPARENT; 3486 strioc.ic_dp = (char *)&arg; 3487 3488 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3489 3490 case I_STR: 3491 /* 3492 * Stream ioctl. Read in an strioctl buffer from the user 3493 * along with any data specified and send it downstream. 3494 * Strdoioctl will wait allow only one ioctl message at 3495 * a time, and waits for the acknowledgement. 3496 */ 3497 3498 if (stp->sd_flag & STRHUP) 3499 return (ENXIO); 3500 3501 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3502 copyflag); 3503 if (error != 0) 3504 return (error); 3505 3506 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3507 return (EINVAL); 3508 3509 access = job_control_type(strioc.ic_cmd); 3510 if (access != -1 && stp->sd_sidp != NULL && 3511 stp->sd_vnode->v_type != VFIFO && 3512 (error = straccess(stp, access)) != 0) 3513 return (error); 3514 3515 /* 3516 * The I_STR facility provides a trap door for malicious 3517 * code to send down bogus streamio(7I) ioctl commands to 3518 * unsuspecting STREAMS modules and drivers which expect to 3519 * only get these messages from the stream head. 3520 * Explicitly prohibit any streamio ioctls which can be 3521 * passed downstream by the stream head. Note that we do 3522 * not block all streamio ioctls because the ioctl 3523 * numberspace is not well managed and thus it's possible 3524 * that a module or driver's ioctl numbers may accidentally 3525 * collide with them. 3526 */ 3527 switch (strioc.ic_cmd) { 3528 case I_LINK: 3529 case I_PLINK: 3530 case I_UNLINK: 3531 case I_PUNLINK: 3532 case _I_GETPEERCRED: 3533 case _I_PLINK_LH: 3534 return (EINVAL); 3535 } 3536 3537 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3538 if (error == 0) { 3539 error = strcopyout_strioctl(&strioc, (void *)arg, 3540 flag, copyflag); 3541 } 3542 return (error); 3543 3544 case I_NREAD: 3545 /* 3546 * Return number of bytes of data in first message 3547 * in queue in "arg" and return the number of messages 3548 * in queue in return value. 3549 */ 3550 { 3551 size_t size; 3552 int retval; 3553 int count = 0; 3554 3555 mutex_enter(QLOCK(rdq)); 3556 3557 size = msgdsize(rdq->q_first); 3558 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3559 count++; 3560 3561 mutex_exit(QLOCK(rdq)); 3562 if (stp->sd_struiordq) { 3563 infod_t infod; 3564 3565 infod.d_cmd = INFOD_COUNT; 3566 infod.d_count = 0; 3567 if (count == 0) { 3568 infod.d_cmd |= INFOD_FIRSTBYTES; 3569 infod.d_bytes = 0; 3570 } 3571 infod.d_res = 0; 3572 (void) infonext(rdq, &infod); 3573 count += infod.d_count; 3574 if (infod.d_res & INFOD_FIRSTBYTES) 3575 size = infod.d_bytes; 3576 } 3577 3578 /* 3579 * Drop down from size_t to the "int" required by the 3580 * interface. Cap at INT_MAX. 3581 */ 3582 retval = MIN(size, INT_MAX); 3583 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3584 copyflag); 3585 if (!error) 3586 *rvalp = count; 3587 return (error); 3588 } 3589 3590 case FIONREAD: 3591 /* 3592 * Return number of bytes of data in all data messages 3593 * in queue in "arg". 3594 */ 3595 { 3596 size_t size = 0; 3597 int retval; 3598 3599 mutex_enter(QLOCK(rdq)); 3600 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3601 size += msgdsize(mp); 3602 mutex_exit(QLOCK(rdq)); 3603 3604 if (stp->sd_struiordq) { 3605 infod_t infod; 3606 3607 infod.d_cmd = INFOD_BYTES; 3608 infod.d_res = 0; 3609 infod.d_bytes = 0; 3610 (void) infonext(rdq, &infod); 3611 size += infod.d_bytes; 3612 } 3613 3614 /* 3615 * Drop down from size_t to the "int" required by the 3616 * interface. Cap at INT_MAX. 3617 */ 3618 retval = MIN(size, INT_MAX); 3619 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3620 copyflag); 3621 3622 *rvalp = 0; 3623 return (error); 3624 } 3625 case FIORDCHK: 3626 /* 3627 * FIORDCHK does not use arg value (like FIONREAD), 3628 * instead a count is returned. I_NREAD value may 3629 * not be accurate but safe. The real thing to do is 3630 * to add the msgdsizes of all data messages until 3631 * a non-data message. 3632 */ 3633 { 3634 size_t size = 0; 3635 3636 mutex_enter(QLOCK(rdq)); 3637 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3638 size += msgdsize(mp); 3639 mutex_exit(QLOCK(rdq)); 3640 3641 if (stp->sd_struiordq) { 3642 infod_t infod; 3643 3644 infod.d_cmd = INFOD_BYTES; 3645 infod.d_res = 0; 3646 infod.d_bytes = 0; 3647 (void) infonext(rdq, &infod); 3648 size += infod.d_bytes; 3649 } 3650 3651 /* 3652 * Since ioctl returns an int, and memory sizes under 3653 * LP64 may not fit, we return INT_MAX if the count was 3654 * actually greater. 3655 */ 3656 *rvalp = MIN(size, INT_MAX); 3657 return (0); 3658 } 3659 3660 case I_FIND: 3661 /* 3662 * Get module name. 3663 */ 3664 { 3665 char mname[FMNAMESZ + 1]; 3666 queue_t *q; 3667 3668 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3669 mname, FMNAMESZ + 1, NULL); 3670 if (error) 3671 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3672 3673 /* 3674 * Return EINVAL if we're handed a bogus module name. 3675 */ 3676 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3677 TRACE_0(TR_FAC_STREAMS_FR, 3678 TR_I_CANT_FIND, "couldn't I_FIND"); 3679 return (EINVAL); 3680 } 3681 3682 *rvalp = 0; 3683 3684 /* Look downstream to see if module is there. */ 3685 claimstr(stp->sd_wrq); 3686 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3687 if (q->q_flag&QREADR) { 3688 q = NULL; 3689 break; 3690 } 3691 if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0) 3692 break; 3693 } 3694 releasestr(stp->sd_wrq); 3695 3696 *rvalp = (q ? 1 : 0); 3697 return (error); 3698 } 3699 3700 case I_PUSH: 3701 case __I_PUSH_NOCTTY: 3702 /* 3703 * Push a module. 3704 * For the case __I_PUSH_NOCTTY push a module but 3705 * do not allocate controlling tty. See bugid 4025044 3706 */ 3707 3708 { 3709 char mname[FMNAMESZ + 1]; 3710 fmodsw_impl_t *fp; 3711 dev_t dummydev; 3712 3713 if (stp->sd_flag & STRHUP) 3714 return (ENXIO); 3715 3716 /* 3717 * Get module name and look up in fmodsw. 3718 */ 3719 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3720 mname, FMNAMESZ + 1, NULL); 3721 if (error) 3722 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3723 3724 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3725 NULL) 3726 return (EINVAL); 3727 3728 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3729 "I_PUSH:fp %p stp %p", fp, stp); 3730 3731 if (error = strstartplumb(stp, flag, cmd)) { 3732 fmodsw_rele(fp); 3733 return (error); 3734 } 3735 3736 /* 3737 * See if any more modules can be pushed on this stream. 3738 * Note that this check must be done after strstartplumb() 3739 * since otherwise multiple threads issuing I_PUSHes on 3740 * the same stream will be able to exceed nstrpush. 3741 */ 3742 mutex_enter(&stp->sd_lock); 3743 if (stp->sd_pushcnt >= nstrpush) { 3744 fmodsw_rele(fp); 3745 strendplumb(stp); 3746 mutex_exit(&stp->sd_lock); 3747 return (EINVAL); 3748 } 3749 mutex_exit(&stp->sd_lock); 3750 3751 /* 3752 * Push new module and call its open routine 3753 * via qattach(). Modules don't change device 3754 * numbers, so just ignore dummydev here. 3755 */ 3756 dummydev = vp->v_rdev; 3757 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3758 B_FALSE)) == 0) { 3759 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3760 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3761 /* 3762 * try to allocate it as a controlling terminal 3763 */ 3764 stralloctty(stp); 3765 } 3766 } 3767 3768 mutex_enter(&stp->sd_lock); 3769 3770 /* 3771 * As a performance concern we are caching the values of 3772 * q_minpsz and q_maxpsz of the module below the stream 3773 * head in the stream head. 3774 */ 3775 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3776 rmin = stp->sd_wrq->q_next->q_minpsz; 3777 rmax = stp->sd_wrq->q_next->q_maxpsz; 3778 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3779 3780 /* Do this processing here as a performance concern */ 3781 if (strmsgsz != 0) { 3782 if (rmax == INFPSZ) 3783 rmax = strmsgsz; 3784 else { 3785 if (vp->v_type == VFIFO) 3786 rmax = MIN(PIPE_BUF, rmax); 3787 else rmax = MIN(strmsgsz, rmax); 3788 } 3789 } 3790 3791 mutex_enter(QLOCK(wrq)); 3792 stp->sd_qn_minpsz = rmin; 3793 stp->sd_qn_maxpsz = rmax; 3794 mutex_exit(QLOCK(wrq)); 3795 3796 strendplumb(stp); 3797 mutex_exit(&stp->sd_lock); 3798 return (error); 3799 } 3800 3801 case I_POP: 3802 { 3803 queue_t *q; 3804 3805 if (stp->sd_flag & STRHUP) 3806 return (ENXIO); 3807 if (!wrq->q_next) /* for broken pipes */ 3808 return (EINVAL); 3809 3810 if (error = strstartplumb(stp, flag, cmd)) 3811 return (error); 3812 3813 /* 3814 * If there is an anchor on this stream and popping 3815 * the current module would attempt to pop through the 3816 * anchor, then disallow the pop unless we have sufficient 3817 * privileges; take the cheapest (non-locking) check 3818 * first. 3819 */ 3820 if (secpolicy_net_config(crp, B_TRUE) != 0) { 3821 mutex_enter(&stp->sd_lock); 3822 /* 3823 * Anchors only apply if there's at least one 3824 * module on the stream (sd_pushcnt > 0). 3825 */ 3826 if (stp->sd_pushcnt > 0 && 3827 stp->sd_pushcnt == stp->sd_anchor && 3828 stp->sd_vnode->v_type != VFIFO) { 3829 strendplumb(stp); 3830 mutex_exit(&stp->sd_lock); 3831 /* Audit and report error */ 3832 return (secpolicy_net_config(crp, B_FALSE)); 3833 } 3834 mutex_exit(&stp->sd_lock); 3835 } 3836 3837 q = wrq->q_next; 3838 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3839 "I_POP:%p from %p", q, stp); 3840 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3841 error = EINVAL; 3842 } else { 3843 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3844 error = 0; 3845 } 3846 mutex_enter(&stp->sd_lock); 3847 3848 /* 3849 * As a performance concern we are caching the values of 3850 * q_minpsz and q_maxpsz of the module below the stream 3851 * head in the stream head. 3852 */ 3853 mutex_enter(QLOCK(wrq->q_next)); 3854 rmin = wrq->q_next->q_minpsz; 3855 rmax = wrq->q_next->q_maxpsz; 3856 mutex_exit(QLOCK(wrq->q_next)); 3857 3858 /* Do this processing here as a performance concern */ 3859 if (strmsgsz != 0) { 3860 if (rmax == INFPSZ) 3861 rmax = strmsgsz; 3862 else { 3863 if (vp->v_type == VFIFO) 3864 rmax = MIN(PIPE_BUF, rmax); 3865 else rmax = MIN(strmsgsz, rmax); 3866 } 3867 } 3868 3869 mutex_enter(QLOCK(wrq)); 3870 stp->sd_qn_minpsz = rmin; 3871 stp->sd_qn_maxpsz = rmax; 3872 mutex_exit(QLOCK(wrq)); 3873 3874 /* If we popped through the anchor, then reset the anchor. */ 3875 if (stp->sd_pushcnt < stp->sd_anchor) 3876 stp->sd_anchor = 0; 3877 3878 strendplumb(stp); 3879 mutex_exit(&stp->sd_lock); 3880 return (error); 3881 } 3882 3883 case _I_MUXID2FD: 3884 { 3885 /* 3886 * Create a fd for a I_PLINK'ed lower stream with a given 3887 * muxid. With the fd, application can send down ioctls, 3888 * like I_LIST, to the previously I_PLINK'ed stream. Note 3889 * that after getting the fd, the application has to do an 3890 * I_PUNLINK on the muxid before it can do any operation 3891 * on the lower stream. This is required by spec1170. 3892 * 3893 * The fd used to do this ioctl should point to the same 3894 * controlling device used to do the I_PLINK. If it uses 3895 * a different stream or an invalid muxid, I_MUXID2FD will 3896 * fail. The error code is set to EINVAL. 3897 * 3898 * The intended use of this interface is the following. 3899 * An application I_PLINK'ed a stream and exits. The fd 3900 * to the lower stream is gone. Another application 3901 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3902 */ 3903 int muxid = (int)arg; 3904 int fd; 3905 linkinfo_t *linkp; 3906 struct file *fp; 3907 3908 /* 3909 * Do not allow the wildcard muxid. This ioctl is not 3910 * intended to find arbitrary link. 3911 */ 3912 if (muxid == 0) { 3913 return (EINVAL); 3914 } 3915 3916 mutex_enter(&muxifier); 3917 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST); 3918 if (linkp == NULL) { 3919 mutex_exit(&muxifier); 3920 return (EINVAL); 3921 } 3922 3923 if ((fd = ufalloc(0)) == -1) { 3924 mutex_exit(&muxifier); 3925 return (EMFILE); 3926 } 3927 fp = linkp->li_fpdown; 3928 mutex_enter(&fp->f_tlock); 3929 fp->f_count++; 3930 mutex_exit(&fp->f_tlock); 3931 mutex_exit(&muxifier); 3932 setf(fd, fp); 3933 *rvalp = fd; 3934 return (0); 3935 } 3936 3937 case _I_INSERT: 3938 { 3939 /* 3940 * To insert a module to a given position in a stream. 3941 * In the first release, only allow privileged user 3942 * to use this ioctl. 3943 * 3944 * Note that we do not plan to support this ioctl 3945 * on pipes in the first release. We want to learn more 3946 * about the implications of these ioctls before extending 3947 * their support. And we do not think these features are 3948 * valuable for pipes. 3949 * 3950 * Neither do we support O/C hot stream. Note that only 3951 * the upper streams of TCP/IP stack are O/C hot streams. 3952 * The lower IP stream is not. 3953 * When there is a O/C cold barrier, we only allow inserts 3954 * above the barrier. 3955 */ 3956 STRUCT_DECL(strmodconf, strmodinsert); 3957 char mod_name[FMNAMESZ + 1]; 3958 fmodsw_impl_t *fp; 3959 dev_t dummydev; 3960 queue_t *tmp_wrq; 3961 int pos; 3962 boolean_t is_insert; 3963 3964 STRUCT_INIT(strmodinsert, flag); 3965 if (stp->sd_flag & STRHUP) 3966 return (ENXIO); 3967 if (STRMATED(stp)) 3968 return (EINVAL); 3969 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 3970 return (error); 3971 3972 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 3973 STRUCT_SIZE(strmodinsert), copyflag); 3974 if (error) 3975 return (error); 3976 3977 /* 3978 * Get module name and look up in fmodsw. 3979 */ 3980 error = (copyflag & U_TO_K ? copyinstr : 3981 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 3982 mod_name, FMNAMESZ + 1, NULL); 3983 if (error) 3984 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3985 3986 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 3987 NULL) 3988 return (EINVAL); 3989 3990 if (error = strstartplumb(stp, flag, cmd)) { 3991 fmodsw_rele(fp); 3992 return (error); 3993 } 3994 3995 /* 3996 * Is this _I_INSERT just like an I_PUSH? We need to know 3997 * this because we do some optimizations if this is a 3998 * module being pushed. 3999 */ 4000 pos = STRUCT_FGET(strmodinsert, pos); 4001 is_insert = (pos != 0); 4002 4003 /* 4004 * Make sure pos is valid. Even though it is not an I_PUSH, 4005 * we impose the same limit on the number of modules in a 4006 * stream. 4007 */ 4008 mutex_enter(&stp->sd_lock); 4009 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4010 pos > stp->sd_pushcnt) { 4011 fmodsw_rele(fp); 4012 strendplumb(stp); 4013 mutex_exit(&stp->sd_lock); 4014 return (EINVAL); 4015 } 4016 mutex_exit(&stp->sd_lock); 4017 4018 /* 4019 * First find the correct position this module to 4020 * be inserted. We don't need to call claimstr() 4021 * as the stream should not be changing at this point. 4022 * 4023 * Insert new module and call its open routine 4024 * via qattach(). Modules don't change device 4025 * numbers, so just ignore dummydev here. 4026 */ 4027 for (tmp_wrq = stp->sd_wrq; pos > 0; 4028 tmp_wrq = tmp_wrq->q_next, pos--) { 4029 ASSERT(SAMESTR(tmp_wrq)); 4030 } 4031 dummydev = vp->v_rdev; 4032 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4033 fp, is_insert)) != 0) { 4034 mutex_enter(&stp->sd_lock); 4035 strendplumb(stp); 4036 mutex_exit(&stp->sd_lock); 4037 return (error); 4038 } 4039 4040 mutex_enter(&stp->sd_lock); 4041 4042 /* 4043 * As a performance concern we are caching the values of 4044 * q_minpsz and q_maxpsz of the module below the stream 4045 * head in the stream head. 4046 */ 4047 if (!is_insert) { 4048 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4049 rmin = stp->sd_wrq->q_next->q_minpsz; 4050 rmax = stp->sd_wrq->q_next->q_maxpsz; 4051 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4052 4053 /* Do this processing here as a performance concern */ 4054 if (strmsgsz != 0) { 4055 if (rmax == INFPSZ) { 4056 rmax = strmsgsz; 4057 } else { 4058 rmax = MIN(strmsgsz, rmax); 4059 } 4060 } 4061 4062 mutex_enter(QLOCK(wrq)); 4063 stp->sd_qn_minpsz = rmin; 4064 stp->sd_qn_maxpsz = rmax; 4065 mutex_exit(QLOCK(wrq)); 4066 } 4067 4068 /* 4069 * Need to update the anchor value if this module is 4070 * inserted below the anchor point. 4071 */ 4072 if (stp->sd_anchor != 0) { 4073 pos = STRUCT_FGET(strmodinsert, pos); 4074 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4075 stp->sd_anchor++; 4076 } 4077 4078 strendplumb(stp); 4079 mutex_exit(&stp->sd_lock); 4080 return (0); 4081 } 4082 4083 case _I_REMOVE: 4084 { 4085 /* 4086 * To remove a module with a given name in a stream. The 4087 * caller of this ioctl needs to provide both the name and 4088 * the position of the module to be removed. This eliminates 4089 * the ambiguity of removal if a module is inserted/pushed 4090 * multiple times in a stream. In the first release, only 4091 * allow privileged user to use this ioctl. 4092 * 4093 * Note that we do not plan to support this ioctl 4094 * on pipes in the first release. We want to learn more 4095 * about the implications of these ioctls before extending 4096 * their support. And we do not think these features are 4097 * valuable for pipes. 4098 * 4099 * Neither do we support O/C hot stream. Note that only 4100 * the upper streams of TCP/IP stack are O/C hot streams. 4101 * The lower IP stream is not. 4102 * When there is a O/C cold barrier we do not allow removal 4103 * below the barrier. 4104 * 4105 * Also note that _I_REMOVE cannot be used to remove a 4106 * driver or the stream head. 4107 */ 4108 STRUCT_DECL(strmodconf, strmodremove); 4109 queue_t *q; 4110 int pos; 4111 char mod_name[FMNAMESZ + 1]; 4112 boolean_t is_remove; 4113 4114 STRUCT_INIT(strmodremove, flag); 4115 if (stp->sd_flag & STRHUP) 4116 return (ENXIO); 4117 if (STRMATED(stp)) 4118 return (EINVAL); 4119 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4120 return (error); 4121 4122 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4123 STRUCT_SIZE(strmodremove), copyflag); 4124 if (error) 4125 return (error); 4126 4127 error = (copyflag & U_TO_K ? copyinstr : 4128 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4129 mod_name, FMNAMESZ + 1, NULL); 4130 if (error) 4131 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4132 4133 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4134 return (error); 4135 4136 /* 4137 * Match the name of given module to the name of module at 4138 * the given position. 4139 */ 4140 pos = STRUCT_FGET(strmodremove, pos); 4141 4142 is_remove = (pos != 0); 4143 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4144 q = q->q_next, pos--) 4145 ; 4146 if (pos > 0 || ! SAMESTR(q) || 4147 strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name, 4148 strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) { 4149 mutex_enter(&stp->sd_lock); 4150 strendplumb(stp); 4151 mutex_exit(&stp->sd_lock); 4152 return (EINVAL); 4153 } 4154 4155 ASSERT(!(q->q_flag & QREADR)); 4156 qdetach(_RD(q), 1, flag, crp, is_remove); 4157 4158 mutex_enter(&stp->sd_lock); 4159 4160 /* 4161 * As a performance concern we are caching the values of 4162 * q_minpsz and q_maxpsz of the module below the stream 4163 * head in the stream head. 4164 */ 4165 if (!is_remove) { 4166 mutex_enter(QLOCK(wrq->q_next)); 4167 rmin = wrq->q_next->q_minpsz; 4168 rmax = wrq->q_next->q_maxpsz; 4169 mutex_exit(QLOCK(wrq->q_next)); 4170 4171 /* Do this processing here as a performance concern */ 4172 if (strmsgsz != 0) { 4173 if (rmax == INFPSZ) 4174 rmax = strmsgsz; 4175 else { 4176 if (vp->v_type == VFIFO) 4177 rmax = MIN(PIPE_BUF, rmax); 4178 else rmax = MIN(strmsgsz, rmax); 4179 } 4180 } 4181 4182 mutex_enter(QLOCK(wrq)); 4183 stp->sd_qn_minpsz = rmin; 4184 stp->sd_qn_maxpsz = rmax; 4185 mutex_exit(QLOCK(wrq)); 4186 } 4187 4188 /* 4189 * Need to update the anchor value if this module is removed 4190 * at or below the anchor point. If the removed module is at 4191 * the anchor point, remove the anchor for this stream if 4192 * there is no module above the anchor point. Otherwise, if 4193 * the removed module is below the anchor point, decrement the 4194 * anchor point by 1. 4195 */ 4196 if (stp->sd_anchor != 0) { 4197 pos = STRUCT_FGET(strmodremove, pos); 4198 if (pos == 0) 4199 stp->sd_anchor = 0; 4200 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4201 stp->sd_anchor--; 4202 } 4203 4204 strendplumb(stp); 4205 mutex_exit(&stp->sd_lock); 4206 return (0); 4207 } 4208 4209 case I_ANCHOR: 4210 /* 4211 * Set the anchor position on the stream to reside at 4212 * the top module (in other words, the top module 4213 * cannot be popped). Anchors with a FIFO make no 4214 * obvious sense, so they're not allowed. 4215 */ 4216 mutex_enter(&stp->sd_lock); 4217 4218 if (stp->sd_vnode->v_type == VFIFO) { 4219 mutex_exit(&stp->sd_lock); 4220 return (EINVAL); 4221 } 4222 4223 stp->sd_anchor = stp->sd_pushcnt; 4224 4225 mutex_exit(&stp->sd_lock); 4226 return (0); 4227 4228 case I_LOOK: 4229 /* 4230 * Get name of first module downstream. 4231 * If no module, return an error. 4232 */ 4233 { 4234 claimstr(wrq); 4235 if (_SAMESTR(wrq) && wrq->q_next->q_next) { 4236 char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname; 4237 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4238 copyflag); 4239 releasestr(wrq); 4240 return (error); 4241 } 4242 releasestr(wrq); 4243 return (EINVAL); 4244 } 4245 4246 case I_LINK: 4247 case I_PLINK: 4248 /* 4249 * Link a multiplexor. 4250 */ 4251 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); 4252 4253 case _I_PLINK_LH: 4254 /* 4255 * Link a multiplexor: Call must originate from kernel. 4256 */ 4257 if (kioctl) 4258 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4259 4260 return (EINVAL); 4261 case I_UNLINK: 4262 case I_PUNLINK: 4263 /* 4264 * Unlink a multiplexor. 4265 * If arg is -1, unlink all links for which this is the 4266 * controlling stream. Otherwise, arg is an index number 4267 * for a link to be removed. 4268 */ 4269 { 4270 struct linkinfo *linkp; 4271 int native_arg = (int)arg; 4272 int type; 4273 4274 TRACE_1(TR_FAC_STREAMS_FR, 4275 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4276 if (vp->v_type == VFIFO) { 4277 return (EINVAL); 4278 } 4279 if (cmd == I_UNLINK) 4280 type = LINKNORMAL; 4281 else /* I_PUNLINK */ 4282 type = LINKPERSIST; 4283 if (native_arg == 0) { 4284 return (EINVAL); 4285 } 4286 if (native_arg == MUXID_ALL) 4287 error = munlinkall(stp, type, crp, rvalp); 4288 else { 4289 mutex_enter(&muxifier); 4290 if (!(linkp = findlinks(stp, (int)arg, type))) { 4291 /* invalid user supplied index number */ 4292 mutex_exit(&muxifier); 4293 return (EINVAL); 4294 } 4295 /* munlink drops the muxifier lock */ 4296 error = munlink(stp, linkp, type, crp, rvalp); 4297 } 4298 return (error); 4299 } 4300 4301 case I_FLUSH: 4302 /* 4303 * send a flush message downstream 4304 * flush message can indicate 4305 * FLUSHR - flush read queue 4306 * FLUSHW - flush write queue 4307 * FLUSHRW - flush read/write queue 4308 */ 4309 if (stp->sd_flag & STRHUP) 4310 return (ENXIO); 4311 if (arg & ~FLUSHRW) 4312 return (EINVAL); 4313 4314 for (;;) { 4315 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4316 break; 4317 } 4318 if (error = strwaitbuf(1, BPRI_HI)) { 4319 return (error); 4320 } 4321 } 4322 4323 /* 4324 * Send down an unsupported ioctl and wait for the nack 4325 * in order to allow the M_FLUSH to propagate back 4326 * up to the stream head. 4327 * Replaces if (qready()) runqueues(); 4328 */ 4329 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4330 strioc.ic_timout = 0; 4331 strioc.ic_len = 0; 4332 strioc.ic_dp = NULL; 4333 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4334 *rvalp = 0; 4335 return (0); 4336 4337 case I_FLUSHBAND: 4338 { 4339 struct bandinfo binfo; 4340 4341 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4342 copyflag); 4343 if (error) 4344 return (error); 4345 if (stp->sd_flag & STRHUP) 4346 return (ENXIO); 4347 if (binfo.bi_flag & ~FLUSHRW) 4348 return (EINVAL); 4349 while (!(mp = allocb(2, BPRI_HI))) { 4350 if (error = strwaitbuf(2, BPRI_HI)) 4351 return (error); 4352 } 4353 mp->b_datap->db_type = M_FLUSH; 4354 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4355 *mp->b_wptr++ = binfo.bi_pri; 4356 putnext(stp->sd_wrq, mp); 4357 /* 4358 * Send down an unsupported ioctl and wait for the nack 4359 * in order to allow the M_FLUSH to propagate back 4360 * up to the stream head. 4361 * Replaces if (qready()) runqueues(); 4362 */ 4363 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4364 strioc.ic_timout = 0; 4365 strioc.ic_len = 0; 4366 strioc.ic_dp = NULL; 4367 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4368 *rvalp = 0; 4369 return (0); 4370 } 4371 4372 case I_SRDOPT: 4373 /* 4374 * Set read options 4375 * 4376 * RNORM - default stream mode 4377 * RMSGN - message no discard 4378 * RMSGD - message discard 4379 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4380 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4381 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4382 */ 4383 if (arg & ~(RMODEMASK | RPROTMASK)) 4384 return (EINVAL); 4385 4386 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4387 return (EINVAL); 4388 4389 mutex_enter(&stp->sd_lock); 4390 switch (arg & RMODEMASK) { 4391 case RNORM: 4392 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4393 break; 4394 case RMSGD: 4395 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4396 RD_MSGDIS; 4397 break; 4398 case RMSGN: 4399 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4400 RD_MSGNODIS; 4401 break; 4402 } 4403 4404 switch (arg & RPROTMASK) { 4405 case RPROTNORM: 4406 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4407 break; 4408 4409 case RPROTDAT: 4410 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4411 RD_PROTDAT); 4412 break; 4413 4414 case RPROTDIS: 4415 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4416 RD_PROTDIS); 4417 break; 4418 } 4419 mutex_exit(&stp->sd_lock); 4420 return (0); 4421 4422 case I_GRDOPT: 4423 /* 4424 * Get read option and return the value 4425 * to spot pointed to by arg 4426 */ 4427 { 4428 int rdopt; 4429 4430 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4431 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4432 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4433 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4434 4435 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4436 copyflag)); 4437 } 4438 4439 case I_SERROPT: 4440 /* 4441 * Set error options 4442 * 4443 * RERRNORM - persistent read errors 4444 * RERRNONPERSIST - non-persistent read errors 4445 * WERRNORM - persistent write errors 4446 * WERRNONPERSIST - non-persistent write errors 4447 */ 4448 if (arg & ~(RERRMASK | WERRMASK)) 4449 return (EINVAL); 4450 4451 mutex_enter(&stp->sd_lock); 4452 switch (arg & RERRMASK) { 4453 case RERRNORM: 4454 stp->sd_flag &= ~STRDERRNONPERSIST; 4455 break; 4456 case RERRNONPERSIST: 4457 stp->sd_flag |= STRDERRNONPERSIST; 4458 break; 4459 } 4460 switch (arg & WERRMASK) { 4461 case WERRNORM: 4462 stp->sd_flag &= ~STWRERRNONPERSIST; 4463 break; 4464 case WERRNONPERSIST: 4465 stp->sd_flag |= STWRERRNONPERSIST; 4466 break; 4467 } 4468 mutex_exit(&stp->sd_lock); 4469 return (0); 4470 4471 case I_GERROPT: 4472 /* 4473 * Get error option and return the value 4474 * to spot pointed to by arg 4475 */ 4476 { 4477 int erropt = 0; 4478 4479 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4480 RERRNORM; 4481 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4482 WERRNORM; 4483 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4484 copyflag)); 4485 } 4486 4487 case I_SETSIG: 4488 /* 4489 * Register the calling proc to receive the SIGPOLL 4490 * signal based on the events given in arg. If 4491 * arg is zero, remove the proc from register list. 4492 */ 4493 { 4494 strsig_t *ssp, *pssp; 4495 struct pid *pidp; 4496 4497 pssp = NULL; 4498 pidp = curproc->p_pidp; 4499 /* 4500 * Hold sd_lock to prevent traversal of sd_siglist while 4501 * it is modified. 4502 */ 4503 mutex_enter(&stp->sd_lock); 4504 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4505 pssp = ssp, ssp = ssp->ss_next) 4506 ; 4507 4508 if (arg) { 4509 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4510 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4511 mutex_exit(&stp->sd_lock); 4512 return (EINVAL); 4513 } 4514 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4515 mutex_exit(&stp->sd_lock); 4516 return (EINVAL); 4517 } 4518 4519 /* 4520 * If proc not already registered, add it 4521 * to list. 4522 */ 4523 if (!ssp) { 4524 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4525 ssp->ss_pidp = pidp; 4526 ssp->ss_pid = pidp->pid_id; 4527 ssp->ss_next = NULL; 4528 if (pssp) 4529 pssp->ss_next = ssp; 4530 else 4531 stp->sd_siglist = ssp; 4532 mutex_enter(&pidlock); 4533 PID_HOLD(pidp); 4534 mutex_exit(&pidlock); 4535 } 4536 4537 /* 4538 * Set events. 4539 */ 4540 ssp->ss_events = (int)arg; 4541 } else { 4542 /* 4543 * Remove proc from register list. 4544 */ 4545 if (ssp) { 4546 mutex_enter(&pidlock); 4547 PID_RELE(pidp); 4548 mutex_exit(&pidlock); 4549 if (pssp) 4550 pssp->ss_next = ssp->ss_next; 4551 else 4552 stp->sd_siglist = ssp->ss_next; 4553 kmem_free(ssp, sizeof (strsig_t)); 4554 } else { 4555 mutex_exit(&stp->sd_lock); 4556 return (EINVAL); 4557 } 4558 } 4559 4560 /* 4561 * Recalculate OR of sig events. 4562 */ 4563 stp->sd_sigflags = 0; 4564 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4565 stp->sd_sigflags |= ssp->ss_events; 4566 mutex_exit(&stp->sd_lock); 4567 return (0); 4568 } 4569 4570 case I_GETSIG: 4571 /* 4572 * Return (in arg) the current registration of events 4573 * for which the calling proc is to be signaled. 4574 */ 4575 { 4576 struct strsig *ssp; 4577 struct pid *pidp; 4578 4579 pidp = curproc->p_pidp; 4580 mutex_enter(&stp->sd_lock); 4581 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4582 if (ssp->ss_pidp == pidp) { 4583 error = strcopyout(&ssp->ss_events, (void *)arg, 4584 sizeof (int), copyflag); 4585 mutex_exit(&stp->sd_lock); 4586 return (error); 4587 } 4588 mutex_exit(&stp->sd_lock); 4589 return (EINVAL); 4590 } 4591 4592 case I_ESETSIG: 4593 /* 4594 * Register the ss_pid to receive the SIGPOLL 4595 * signal based on the events is ss_events arg. If 4596 * ss_events is zero, remove the proc from register list. 4597 */ 4598 { 4599 struct strsig *ssp, *pssp; 4600 struct proc *proc; 4601 struct pid *pidp; 4602 pid_t pid; 4603 struct strsigset ss; 4604 4605 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4606 if (error) 4607 return (error); 4608 4609 pid = ss.ss_pid; 4610 4611 if (ss.ss_events != 0) { 4612 /* 4613 * Permissions check by sending signal 0. 4614 * Note that when kill fails it does a set_errno 4615 * causing the system call to fail. 4616 */ 4617 error = kill(pid, 0); 4618 if (error) { 4619 return (error); 4620 } 4621 } 4622 mutex_enter(&pidlock); 4623 if (pid == 0) 4624 proc = curproc; 4625 else if (pid < 0) 4626 proc = pgfind(-pid); 4627 else 4628 proc = prfind(pid); 4629 if (proc == NULL) { 4630 mutex_exit(&pidlock); 4631 return (ESRCH); 4632 } 4633 if (pid < 0) 4634 pidp = proc->p_pgidp; 4635 else 4636 pidp = proc->p_pidp; 4637 ASSERT(pidp); 4638 /* 4639 * Get a hold on the pid structure while referencing it. 4640 * There is a separate PID_HOLD should it be inserted 4641 * in the list below. 4642 */ 4643 PID_HOLD(pidp); 4644 mutex_exit(&pidlock); 4645 4646 pssp = NULL; 4647 /* 4648 * Hold sd_lock to prevent traversal of sd_siglist while 4649 * it is modified. 4650 */ 4651 mutex_enter(&stp->sd_lock); 4652 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4653 pssp = ssp, ssp = ssp->ss_next) 4654 ; 4655 4656 if (ss.ss_events) { 4657 if (ss.ss_events & 4658 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4659 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4660 mutex_exit(&stp->sd_lock); 4661 mutex_enter(&pidlock); 4662 PID_RELE(pidp); 4663 mutex_exit(&pidlock); 4664 return (EINVAL); 4665 } 4666 if ((ss.ss_events & S_BANDURG) && 4667 !(ss.ss_events & S_RDBAND)) { 4668 mutex_exit(&stp->sd_lock); 4669 mutex_enter(&pidlock); 4670 PID_RELE(pidp); 4671 mutex_exit(&pidlock); 4672 return (EINVAL); 4673 } 4674 4675 /* 4676 * If proc not already registered, add it 4677 * to list. 4678 */ 4679 if (!ssp) { 4680 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4681 ssp->ss_pidp = pidp; 4682 ssp->ss_pid = pid; 4683 ssp->ss_next = NULL; 4684 if (pssp) 4685 pssp->ss_next = ssp; 4686 else 4687 stp->sd_siglist = ssp; 4688 mutex_enter(&pidlock); 4689 PID_HOLD(pidp); 4690 mutex_exit(&pidlock); 4691 } 4692 4693 /* 4694 * Set events. 4695 */ 4696 ssp->ss_events = ss.ss_events; 4697 } else { 4698 /* 4699 * Remove proc from register list. 4700 */ 4701 if (ssp) { 4702 mutex_enter(&pidlock); 4703 PID_RELE(pidp); 4704 mutex_exit(&pidlock); 4705 if (pssp) 4706 pssp->ss_next = ssp->ss_next; 4707 else 4708 stp->sd_siglist = ssp->ss_next; 4709 kmem_free(ssp, sizeof (strsig_t)); 4710 } else { 4711 mutex_exit(&stp->sd_lock); 4712 mutex_enter(&pidlock); 4713 PID_RELE(pidp); 4714 mutex_exit(&pidlock); 4715 return (EINVAL); 4716 } 4717 } 4718 4719 /* 4720 * Recalculate OR of sig events. 4721 */ 4722 stp->sd_sigflags = 0; 4723 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4724 stp->sd_sigflags |= ssp->ss_events; 4725 mutex_exit(&stp->sd_lock); 4726 mutex_enter(&pidlock); 4727 PID_RELE(pidp); 4728 mutex_exit(&pidlock); 4729 return (0); 4730 } 4731 4732 case I_EGETSIG: 4733 /* 4734 * Return (in arg) the current registration of events 4735 * for which the calling proc is to be signaled. 4736 */ 4737 { 4738 struct strsig *ssp; 4739 struct proc *proc; 4740 pid_t pid; 4741 struct pid *pidp; 4742 struct strsigset ss; 4743 4744 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4745 if (error) 4746 return (error); 4747 4748 pid = ss.ss_pid; 4749 mutex_enter(&pidlock); 4750 if (pid == 0) 4751 proc = curproc; 4752 else if (pid < 0) 4753 proc = pgfind(-pid); 4754 else 4755 proc = prfind(pid); 4756 if (proc == NULL) { 4757 mutex_exit(&pidlock); 4758 return (ESRCH); 4759 } 4760 if (pid < 0) 4761 pidp = proc->p_pgidp; 4762 else 4763 pidp = proc->p_pidp; 4764 4765 /* Prevent the pidp from being reassigned */ 4766 PID_HOLD(pidp); 4767 mutex_exit(&pidlock); 4768 4769 mutex_enter(&stp->sd_lock); 4770 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4771 if (ssp->ss_pid == pid) { 4772 ss.ss_pid = ssp->ss_pid; 4773 ss.ss_events = ssp->ss_events; 4774 error = strcopyout(&ss, (void *)arg, 4775 sizeof (struct strsigset), copyflag); 4776 mutex_exit(&stp->sd_lock); 4777 mutex_enter(&pidlock); 4778 PID_RELE(pidp); 4779 mutex_exit(&pidlock); 4780 return (error); 4781 } 4782 mutex_exit(&stp->sd_lock); 4783 mutex_enter(&pidlock); 4784 PID_RELE(pidp); 4785 mutex_exit(&pidlock); 4786 return (EINVAL); 4787 } 4788 4789 case I_PEEK: 4790 { 4791 STRUCT_DECL(strpeek, strpeek); 4792 size_t n; 4793 mblk_t *fmp, *tmp_mp = NULL; 4794 4795 STRUCT_INIT(strpeek, flag); 4796 4797 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4798 STRUCT_SIZE(strpeek), copyflag); 4799 if (error) 4800 return (error); 4801 4802 mutex_enter(QLOCK(rdq)); 4803 /* 4804 * Skip the invalid messages 4805 */ 4806 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4807 if (mp->b_datap->db_type != M_SIG) 4808 break; 4809 4810 /* 4811 * If user has requested to peek at a high priority message 4812 * and first message is not, return 0 4813 */ 4814 if (mp != NULL) { 4815 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4816 queclass(mp) == QNORM) { 4817 *rvalp = 0; 4818 mutex_exit(QLOCK(rdq)); 4819 return (0); 4820 } 4821 } else if (stp->sd_struiordq == NULL || 4822 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4823 /* 4824 * No mblks to look at at the streamhead and 4825 * 1). This isn't a synch stream or 4826 * 2). This is a synch stream but caller wants high 4827 * priority messages which is not supported by 4828 * the synch stream. (it only supports QNORM) 4829 */ 4830 *rvalp = 0; 4831 mutex_exit(QLOCK(rdq)); 4832 return (0); 4833 } 4834 4835 fmp = mp; 4836 4837 if (mp && mp->b_datap->db_type == M_PASSFP) { 4838 mutex_exit(QLOCK(rdq)); 4839 return (EBADMSG); 4840 } 4841 4842 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4843 mp->b_datap->db_type == M_PROTO || 4844 mp->b_datap->db_type == M_DATA); 4845 4846 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4847 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4848 } else { 4849 STRUCT_FSET(strpeek, flags, 0); 4850 } 4851 4852 4853 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 4854 mutex_exit(QLOCK(rdq)); 4855 return (ENOSR); 4856 } 4857 mutex_exit(QLOCK(rdq)); 4858 4859 /* 4860 * set mp = tmp_mp, so that I_PEEK processing can continue. 4861 * tmp_mp is used to free the dup'd message. 4862 */ 4863 mp = tmp_mp; 4864 4865 uio.uio_fmode = 0; 4866 uio.uio_extflg = UIO_COPY_CACHED; 4867 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 4868 UIO_SYSSPACE; 4869 uio.uio_limit = 0; 4870 /* 4871 * First process PROTO blocks, if any. 4872 * If user doesn't want to get ctl info by setting maxlen <= 0, 4873 * then set len to -1/0 and skip control blocks part. 4874 */ 4875 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 4876 STRUCT_FSET(strpeek, ctlbuf.len, -1); 4877 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 4878 STRUCT_FSET(strpeek, ctlbuf.len, 0); 4879 else { 4880 int ctl_part = 0; 4881 4882 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 4883 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 4884 uio.uio_iov = &iov; 4885 uio.uio_resid = iov.iov_len; 4886 uio.uio_loffset = 0; 4887 uio.uio_iovcnt = 1; 4888 while (mp && mp->b_datap->db_type != M_DATA && 4889 uio.uio_resid >= 0) { 4890 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 4891 mp->b_datap->db_type == M_PROTO : 4892 mp->b_datap->db_type == M_PCPROTO); 4893 4894 if ((n = MIN(uio.uio_resid, 4895 mp->b_wptr - mp->b_rptr)) != 0 && 4896 (error = uiomove((char *)mp->b_rptr, n, 4897 UIO_READ, &uio)) != 0) { 4898 freemsg(tmp_mp); 4899 return (error); 4900 } 4901 ctl_part = 1; 4902 mp = mp->b_cont; 4903 } 4904 /* No ctl message */ 4905 if (ctl_part == 0) 4906 STRUCT_FSET(strpeek, ctlbuf.len, -1); 4907 else 4908 STRUCT_FSET(strpeek, ctlbuf.len, 4909 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 4910 uio.uio_resid); 4911 } 4912 4913 /* 4914 * Now process DATA blocks, if any. 4915 * If user doesn't want to get data info by setting maxlen <= 0, 4916 * then set len to -1/0 and skip data blocks part. 4917 */ 4918 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 4919 STRUCT_FSET(strpeek, databuf.len, -1); 4920 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 4921 STRUCT_FSET(strpeek, databuf.len, 0); 4922 else { 4923 int data_part = 0; 4924 4925 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 4926 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 4927 uio.uio_iov = &iov; 4928 uio.uio_resid = iov.iov_len; 4929 uio.uio_loffset = 0; 4930 uio.uio_iovcnt = 1; 4931 while (mp && uio.uio_resid) { 4932 if (mp->b_datap->db_type == M_DATA) { 4933 if ((n = MIN(uio.uio_resid, 4934 mp->b_wptr - mp->b_rptr)) != 0 && 4935 (error = uiomove((char *)mp->b_rptr, 4936 n, UIO_READ, &uio)) != 0) { 4937 freemsg(tmp_mp); 4938 return (error); 4939 } 4940 data_part = 1; 4941 } 4942 ASSERT(data_part == 0 || 4943 mp->b_datap->db_type == M_DATA); 4944 mp = mp->b_cont; 4945 } 4946 /* No data message */ 4947 if (data_part == 0) 4948 STRUCT_FSET(strpeek, databuf.len, -1); 4949 else 4950 STRUCT_FSET(strpeek, databuf.len, 4951 STRUCT_FGET(strpeek, databuf.maxlen) - 4952 uio.uio_resid); 4953 } 4954 freemsg(tmp_mp); 4955 4956 /* 4957 * It is a synch stream and user wants to get 4958 * data (maxlen > 0). 4959 * uio setup is done by the codes that process DATA 4960 * blocks above. 4961 */ 4962 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 4963 infod_t infod; 4964 4965 infod.d_cmd = INFOD_COPYOUT; 4966 infod.d_res = 0; 4967 infod.d_uiop = &uio; 4968 error = infonext(rdq, &infod); 4969 if (error == EINVAL || error == EBUSY) 4970 error = 0; 4971 if (error) 4972 return (error); 4973 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 4974 databuf.maxlen) - uio.uio_resid); 4975 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 4976 /* 4977 * No data found by the infonext(). 4978 */ 4979 STRUCT_FSET(strpeek, databuf.len, -1); 4980 } 4981 } 4982 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 4983 STRUCT_SIZE(strpeek), copyflag); 4984 if (error) { 4985 return (error); 4986 } 4987 /* 4988 * If there is no message retrieved, set return code to 0 4989 * otherwise, set it to 1. 4990 */ 4991 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 4992 STRUCT_FGET(strpeek, databuf.len) == -1) 4993 *rvalp = 0; 4994 else 4995 *rvalp = 1; 4996 return (0); 4997 } 4998 4999 case I_FDINSERT: 5000 { 5001 STRUCT_DECL(strfdinsert, strfdinsert); 5002 struct file *resftp; 5003 struct stdata *resstp; 5004 t_uscalar_t ival; 5005 ssize_t msgsize; 5006 struct strbuf mctl; 5007 5008 STRUCT_INIT(strfdinsert, flag); 5009 if (stp->sd_flag & STRHUP) 5010 return (ENXIO); 5011 /* 5012 * STRDERR, STWRERR and STPLEX tested above. 5013 */ 5014 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5015 STRUCT_SIZE(strfdinsert), copyflag); 5016 if (error) 5017 return (error); 5018 5019 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5020 (STRUCT_FGET(strfdinsert, offset) % 5021 sizeof (t_uscalar_t)) != 0) 5022 return (EINVAL); 5023 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5024 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5025 releasef(STRUCT_FGET(strfdinsert, fildes)); 5026 return (EINVAL); 5027 } 5028 } else 5029 return (EINVAL); 5030 5031 mutex_enter(&resstp->sd_lock); 5032 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5033 error = strgeterr(resstp, 5034 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5035 if (error != 0) { 5036 mutex_exit(&resstp->sd_lock); 5037 releasef(STRUCT_FGET(strfdinsert, fildes)); 5038 return (error); 5039 } 5040 } 5041 mutex_exit(&resstp->sd_lock); 5042 5043 #ifdef _ILP32 5044 { 5045 queue_t *q; 5046 queue_t *mate = NULL; 5047 5048 /* get read queue of stream terminus */ 5049 claimstr(resstp->sd_wrq); 5050 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5051 q = q->q_next) 5052 if (!STRMATED(resstp) && STREAM(q) != resstp && 5053 mate == NULL) { 5054 ASSERT(q->q_qinfo->qi_srvp); 5055 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5056 claimstr(q); 5057 mate = q; 5058 } 5059 q = _RD(q); 5060 if (mate) 5061 releasestr(mate); 5062 releasestr(resstp->sd_wrq); 5063 ival = (t_uscalar_t)q; 5064 } 5065 #else 5066 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5067 #endif /* _ILP32 */ 5068 5069 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5070 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5071 releasef(STRUCT_FGET(strfdinsert, fildes)); 5072 return (EINVAL); 5073 } 5074 5075 /* 5076 * Check for legal flag value. 5077 */ 5078 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5079 releasef(STRUCT_FGET(strfdinsert, fildes)); 5080 return (EINVAL); 5081 } 5082 5083 /* get these values from those cached in the stream head */ 5084 mutex_enter(QLOCK(stp->sd_wrq)); 5085 rmin = stp->sd_qn_minpsz; 5086 rmax = stp->sd_qn_maxpsz; 5087 mutex_exit(QLOCK(stp->sd_wrq)); 5088 5089 /* 5090 * Make sure ctl and data sizes together fall within 5091 * the limits of the max and min receive packet sizes 5092 * and do not exceed system limit. A negative data 5093 * length means that no data part is to be sent. 5094 */ 5095 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5096 if (rmax == 0) { 5097 releasef(STRUCT_FGET(strfdinsert, fildes)); 5098 return (ERANGE); 5099 } 5100 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5101 msgsize = 0; 5102 if ((msgsize < rmin) || 5103 ((msgsize > rmax) && (rmax != INFPSZ)) || 5104 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5105 releasef(STRUCT_FGET(strfdinsert, fildes)); 5106 return (ERANGE); 5107 } 5108 5109 mutex_enter(&stp->sd_lock); 5110 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5111 !canputnext(stp->sd_wrq)) { 5112 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5113 flag, -1, &done)) != 0 || done) { 5114 mutex_exit(&stp->sd_lock); 5115 releasef(STRUCT_FGET(strfdinsert, fildes)); 5116 return (error); 5117 } 5118 if (stp->sd_sidp != NULL && 5119 stp->sd_vnode->v_type != VFIFO) { 5120 mutex_exit(&stp->sd_lock); 5121 if (error = straccess(stp, access)) { 5122 releasef( 5123 STRUCT_FGET(strfdinsert, fildes)); 5124 return (error); 5125 } 5126 mutex_enter(&stp->sd_lock); 5127 } 5128 } 5129 mutex_exit(&stp->sd_lock); 5130 5131 /* 5132 * Copy strfdinsert.ctlbuf into native form of 5133 * ctlbuf to pass down into strmakemsg(). 5134 */ 5135 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5136 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5137 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5138 5139 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5140 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5141 uio.uio_iov = &iov; 5142 uio.uio_iovcnt = 1; 5143 uio.uio_loffset = 0; 5144 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5145 UIO_SYSSPACE; 5146 uio.uio_fmode = 0; 5147 uio.uio_extflg = UIO_COPY_CACHED; 5148 uio.uio_resid = iov.iov_len; 5149 if ((error = strmakemsg(&mctl, 5150 &msgsize, &uio, stp, 5151 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5152 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5153 releasef(STRUCT_FGET(strfdinsert, fildes)); 5154 return (error); 5155 } 5156 5157 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5158 5159 /* 5160 * Place the possibly reencoded queue pointer 'offset' bytes 5161 * from the start of the control portion of the message. 5162 */ 5163 *((t_uscalar_t *)(mp->b_rptr + 5164 STRUCT_FGET(strfdinsert, offset))) = ival; 5165 5166 /* 5167 * Put message downstream. 5168 */ 5169 stream_willservice(stp); 5170 putnext(stp->sd_wrq, mp); 5171 stream_runservice(stp); 5172 releasef(STRUCT_FGET(strfdinsert, fildes)); 5173 return (error); 5174 } 5175 5176 case I_SENDFD: 5177 { 5178 struct file *fp; 5179 5180 if ((fp = getf((int)arg)) == NULL) 5181 return (EBADF); 5182 error = do_sendfp(stp, fp, crp); 5183 #ifdef C2_AUDIT 5184 if (audit_active) { 5185 audit_fdsend((int)arg, fp, error); 5186 } 5187 #endif 5188 releasef((int)arg); 5189 return (error); 5190 } 5191 5192 case I_RECVFD: 5193 case I_E_RECVFD: 5194 { 5195 struct k_strrecvfd *srf; 5196 int i, fd; 5197 5198 mutex_enter(&stp->sd_lock); 5199 while (!(mp = getq(rdq))) { 5200 if (stp->sd_flag & (STRHUP|STREOF)) { 5201 mutex_exit(&stp->sd_lock); 5202 return (ENXIO); 5203 } 5204 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5205 flag, -1, &done)) != 0 || done) { 5206 mutex_exit(&stp->sd_lock); 5207 return (error); 5208 } 5209 if (stp->sd_sidp != NULL && 5210 stp->sd_vnode->v_type != VFIFO) { 5211 mutex_exit(&stp->sd_lock); 5212 if (error = straccess(stp, access)) 5213 return (error); 5214 mutex_enter(&stp->sd_lock); 5215 } 5216 } 5217 if (mp->b_datap->db_type != M_PASSFP) { 5218 putback(stp, rdq, mp, mp->b_band); 5219 mutex_exit(&stp->sd_lock); 5220 return (EBADMSG); 5221 } 5222 mutex_exit(&stp->sd_lock); 5223 5224 srf = (struct k_strrecvfd *)mp->b_rptr; 5225 if ((fd = ufalloc(0)) == -1) { 5226 mutex_enter(&stp->sd_lock); 5227 putback(stp, rdq, mp, mp->b_band); 5228 mutex_exit(&stp->sd_lock); 5229 return (EMFILE); 5230 } 5231 if (cmd == I_RECVFD) { 5232 struct o_strrecvfd ostrfd; 5233 5234 /* check to see if uid/gid values are too large. */ 5235 5236 if (srf->uid > (o_uid_t)USHRT_MAX || 5237 srf->gid > (o_gid_t)USHRT_MAX) { 5238 mutex_enter(&stp->sd_lock); 5239 putback(stp, rdq, mp, mp->b_band); 5240 mutex_exit(&stp->sd_lock); 5241 setf(fd, NULL); /* release fd entry */ 5242 return (EOVERFLOW); 5243 } 5244 5245 ostrfd.fd = fd; 5246 ostrfd.uid = (o_uid_t)srf->uid; 5247 ostrfd.gid = (o_gid_t)srf->gid; 5248 5249 /* Null the filler bits */ 5250 for (i = 0; i < 8; i++) 5251 ostrfd.fill[i] = 0; 5252 5253 error = strcopyout(&ostrfd, (void *)arg, 5254 sizeof (struct o_strrecvfd), copyflag); 5255 } else { /* I_E_RECVFD */ 5256 struct strrecvfd strfd; 5257 5258 strfd.fd = fd; 5259 strfd.uid = srf->uid; 5260 strfd.gid = srf->gid; 5261 5262 /* null the filler bits */ 5263 for (i = 0; i < 8; i++) 5264 strfd.fill[i] = 0; 5265 5266 error = strcopyout(&strfd, (void *)arg, 5267 sizeof (struct strrecvfd), copyflag); 5268 } 5269 5270 if (error) { 5271 setf(fd, NULL); /* release fd entry */ 5272 mutex_enter(&stp->sd_lock); 5273 putback(stp, rdq, mp, mp->b_band); 5274 mutex_exit(&stp->sd_lock); 5275 return (error); 5276 } 5277 #ifdef C2_AUDIT 5278 if (audit_active) { 5279 audit_fdrecv(fd, srf->fp); 5280 } 5281 #endif 5282 5283 /* 5284 * Always increment f_count since the freemsg() below will 5285 * always call free_passfp() which performs a closef(). 5286 */ 5287 mutex_enter(&srf->fp->f_tlock); 5288 srf->fp->f_count++; 5289 mutex_exit(&srf->fp->f_tlock); 5290 setf(fd, srf->fp); 5291 freemsg(mp); 5292 return (0); 5293 } 5294 5295 case I_SWROPT: 5296 /* 5297 * Set/clear the write options. arg is a bit 5298 * mask with any of the following bits set... 5299 * SNDZERO - send zero length message 5300 * SNDPIPE - send sigpipe to process if 5301 * sd_werror is set and process is 5302 * doing a write or putmsg. 5303 * The new stream head write options should reflect 5304 * what is in arg. 5305 */ 5306 if (arg & ~(SNDZERO|SNDPIPE)) 5307 return (EINVAL); 5308 5309 mutex_enter(&stp->sd_lock); 5310 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5311 if (arg & SNDZERO) 5312 stp->sd_wput_opt |= SW_SNDZERO; 5313 if (arg & SNDPIPE) 5314 stp->sd_wput_opt |= SW_SIGPIPE; 5315 mutex_exit(&stp->sd_lock); 5316 return (0); 5317 5318 case I_GWROPT: 5319 { 5320 int wropt = 0; 5321 5322 if (stp->sd_wput_opt & SW_SNDZERO) 5323 wropt |= SNDZERO; 5324 if (stp->sd_wput_opt & SW_SIGPIPE) 5325 wropt |= SNDPIPE; 5326 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5327 copyflag)); 5328 } 5329 5330 case I_LIST: 5331 /* 5332 * Returns all the modules found on this stream, 5333 * upto the driver. If argument is NULL, return the 5334 * number of modules (including driver). If argument 5335 * is not NULL, copy the names into the structure 5336 * provided. 5337 */ 5338 5339 { 5340 queue_t *q; 5341 int num_modules, space_allocated; 5342 STRUCT_DECL(str_list, strlist); 5343 struct str_mlist *mlist_ptr; 5344 5345 if (arg == NULL) { /* Return number of modules plus driver */ 5346 q = stp->sd_wrq; 5347 if (stp->sd_vnode->v_type == VFIFO) { 5348 *rvalp = stp->sd_pushcnt; 5349 } else { 5350 *rvalp = stp->sd_pushcnt + 1; 5351 } 5352 } else { 5353 STRUCT_INIT(strlist, flag); 5354 5355 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5356 STRUCT_SIZE(strlist), copyflag); 5357 if (error) 5358 return (error); 5359 5360 space_allocated = STRUCT_FGET(strlist, sl_nmods); 5361 if ((space_allocated) <= 0) 5362 return (EINVAL); 5363 claimstr(stp->sd_wrq); 5364 q = stp->sd_wrq; 5365 num_modules = 0; 5366 while (_SAMESTR(q) && (space_allocated != 0)) { 5367 char *name = 5368 q->q_next->q_qinfo->qi_minfo->mi_idname; 5369 5370 mlist_ptr = STRUCT_FGETP(strlist, sl_modlist); 5371 5372 error = strcopyout(name, mlist_ptr, 5373 strlen(name) + 1, copyflag); 5374 5375 if (error) { 5376 releasestr(stp->sd_wrq); 5377 return (error); 5378 } 5379 q = q->q_next; 5380 space_allocated--; 5381 num_modules++; 5382 mlist_ptr = 5383 (struct str_mlist *)((uintptr_t)mlist_ptr + 5384 sizeof (struct str_mlist)); 5385 STRUCT_FSETP(strlist, sl_modlist, mlist_ptr); 5386 } 5387 releasestr(stp->sd_wrq); 5388 error = strcopyout(&num_modules, (void *)arg, 5389 sizeof (int), copyflag); 5390 } 5391 return (error); 5392 } 5393 5394 case I_CKBAND: 5395 { 5396 queue_t *q; 5397 qband_t *qbp; 5398 5399 if ((arg < 0) || (arg >= NBAND)) 5400 return (EINVAL); 5401 q = _RD(stp->sd_wrq); 5402 mutex_enter(QLOCK(q)); 5403 if (arg > (int)q->q_nband) { 5404 *rvalp = 0; 5405 } else { 5406 if (arg == 0) { 5407 if (q->q_first) 5408 *rvalp = 1; 5409 else 5410 *rvalp = 0; 5411 } else { 5412 qbp = q->q_bandp; 5413 while (--arg > 0) 5414 qbp = qbp->qb_next; 5415 if (qbp->qb_first) 5416 *rvalp = 1; 5417 else 5418 *rvalp = 0; 5419 } 5420 } 5421 mutex_exit(QLOCK(q)); 5422 return (0); 5423 } 5424 5425 case I_GETBAND: 5426 { 5427 int intpri; 5428 queue_t *q; 5429 5430 q = _RD(stp->sd_wrq); 5431 mutex_enter(QLOCK(q)); 5432 mp = q->q_first; 5433 if (!mp) { 5434 mutex_exit(QLOCK(q)); 5435 return (ENODATA); 5436 } 5437 intpri = (int)mp->b_band; 5438 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5439 copyflag); 5440 mutex_exit(QLOCK(q)); 5441 return (error); 5442 } 5443 5444 case I_ATMARK: 5445 { 5446 queue_t *q; 5447 5448 if (arg & ~(ANYMARK|LASTMARK)) 5449 return (EINVAL); 5450 q = _RD(stp->sd_wrq); 5451 mutex_enter(&stp->sd_lock); 5452 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5453 *rvalp = 1; 5454 } else { 5455 mutex_enter(QLOCK(q)); 5456 mp = q->q_first; 5457 5458 if (mp == NULL) 5459 *rvalp = 0; 5460 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5461 *rvalp = 1; 5462 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5463 *rvalp = 1; 5464 else 5465 *rvalp = 0; 5466 mutex_exit(QLOCK(q)); 5467 } 5468 mutex_exit(&stp->sd_lock); 5469 return (0); 5470 } 5471 5472 case I_CANPUT: 5473 { 5474 char band; 5475 5476 if ((arg < 0) || (arg >= NBAND)) 5477 return (EINVAL); 5478 band = (char)arg; 5479 *rvalp = bcanputnext(stp->sd_wrq, band); 5480 return (0); 5481 } 5482 5483 case I_SETCLTIME: 5484 { 5485 int closetime; 5486 5487 error = strcopyin((void *)arg, &closetime, sizeof (int), 5488 copyflag); 5489 if (error) 5490 return (error); 5491 if (closetime < 0) 5492 return (EINVAL); 5493 5494 stp->sd_closetime = closetime; 5495 return (0); 5496 } 5497 5498 case I_GETCLTIME: 5499 { 5500 int closetime; 5501 5502 closetime = stp->sd_closetime; 5503 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5504 copyflag)); 5505 } 5506 5507 case TIOCGSID: 5508 { 5509 pid_t sid; 5510 5511 mutex_enter(&pidlock); 5512 if (stp->sd_sidp == NULL) { 5513 mutex_exit(&pidlock); 5514 return (ENOTTY); 5515 } 5516 sid = stp->sd_sidp->pid_id; 5517 mutex_exit(&pidlock); 5518 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5519 copyflag)); 5520 } 5521 5522 case TIOCSPGRP: 5523 { 5524 pid_t pgrp; 5525 proc_t *q; 5526 pid_t sid, fg_pgid, bg_pgid; 5527 5528 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5529 copyflag)) 5530 return (error); 5531 mutex_enter(&stp->sd_lock); 5532 mutex_enter(&pidlock); 5533 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5534 mutex_exit(&pidlock); 5535 mutex_exit(&stp->sd_lock); 5536 return (ENOTTY); 5537 } 5538 if (pgrp == stp->sd_pgidp->pid_id) { 5539 mutex_exit(&pidlock); 5540 mutex_exit(&stp->sd_lock); 5541 return (0); 5542 } 5543 if (pgrp <= 0 || pgrp >= maxpid) { 5544 mutex_exit(&pidlock); 5545 mutex_exit(&stp->sd_lock); 5546 return (EINVAL); 5547 } 5548 if ((q = pgfind(pgrp)) == NULL || 5549 q->p_sessp != ttoproc(curthread)->p_sessp) { 5550 mutex_exit(&pidlock); 5551 mutex_exit(&stp->sd_lock); 5552 return (EPERM); 5553 } 5554 sid = stp->sd_sidp->pid_id; 5555 fg_pgid = q->p_pgrp; 5556 bg_pgid = stp->sd_pgidp->pid_id; 5557 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5558 PID_RELE(stp->sd_pgidp); 5559 stp->sd_pgidp = q->p_pgidp; 5560 PID_HOLD(stp->sd_pgidp); 5561 mutex_exit(&pidlock); 5562 mutex_exit(&stp->sd_lock); 5563 return (0); 5564 } 5565 5566 case TIOCGPGRP: 5567 { 5568 pid_t pgrp; 5569 5570 mutex_enter(&pidlock); 5571 if (stp->sd_sidp == NULL) { 5572 mutex_exit(&pidlock); 5573 return (ENOTTY); 5574 } 5575 pgrp = stp->sd_pgidp->pid_id; 5576 mutex_exit(&pidlock); 5577 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5578 copyflag)); 5579 } 5580 5581 case FIONBIO: 5582 case FIOASYNC: 5583 return (0); /* handled by the upper layer */ 5584 } 5585 } 5586 5587 /* 5588 * Custom free routine used for M_PASSFP messages. 5589 */ 5590 static void 5591 free_passfp(struct k_strrecvfd *srf) 5592 { 5593 (void) closef(srf->fp); 5594 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5595 } 5596 5597 /* ARGSUSED */ 5598 int 5599 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5600 { 5601 queue_t *qp, *nextqp; 5602 struct k_strrecvfd *srf; 5603 mblk_t *mp; 5604 frtn_t *frtnp; 5605 size_t bufsize; 5606 queue_t *mate = NULL; 5607 syncq_t *sq = NULL; 5608 int retval = 0; 5609 5610 if (stp->sd_flag & STRHUP) 5611 return (ENXIO); 5612 5613 claimstr(stp->sd_wrq); 5614 5615 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5616 if (STRMATED(stp)) { 5617 qp = _RD(stp->sd_mate->sd_wrq); 5618 claimstr(qp); 5619 mate = qp; 5620 } else { /* Not already mated. */ 5621 5622 /* 5623 * Walk the stream to the end of this one. 5624 * assumes that the claimstr() will prevent 5625 * plumbing between the stream head and the 5626 * driver from changing 5627 */ 5628 qp = stp->sd_wrq; 5629 5630 /* 5631 * Loop until we reach the end of this stream. 5632 * On completion, qp points to the write queue 5633 * at the end of the stream, or the read queue 5634 * at the stream head if this is a fifo. 5635 */ 5636 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5637 ; 5638 5639 /* 5640 * Just in case we get a q_next which is NULL, but 5641 * not at the end of the stream. This is actually 5642 * broken, so we set an assert to catch it in 5643 * debug, and set an error and return if not debug. 5644 */ 5645 ASSERT(qp); 5646 if (qp == NULL) { 5647 releasestr(stp->sd_wrq); 5648 return (EINVAL); 5649 } 5650 5651 /* 5652 * Enter the syncq for the driver, so (hopefully) 5653 * the queue values will not change on us. 5654 * XXXX - This will only prevent the race IFF only 5655 * the write side modifies the q_next member, and 5656 * the put procedure is protected by at least 5657 * MT_PERQ. 5658 */ 5659 if ((sq = qp->q_syncq) != NULL) 5660 entersq(sq, SQ_PUT); 5661 5662 /* Now get the q_next value from this qp. */ 5663 nextqp = qp->q_next; 5664 5665 /* 5666 * If nextqp exists and the other stream is different 5667 * from this one claim the stream, set the mate, and 5668 * get the read queue at the stream head of the other 5669 * stream. Assumes that nextqp was at least valid when 5670 * we got it. Hopefully the entersq of the driver 5671 * will prevent it from changing on us. 5672 */ 5673 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5674 ASSERT(qp->q_qinfo->qi_srvp); 5675 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5676 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5677 claimstr(nextqp); 5678 5679 /* Make sure we still have a q_next */ 5680 if (nextqp != qp->q_next) { 5681 releasestr(stp->sd_wrq); 5682 releasestr(nextqp); 5683 return (EINVAL); 5684 } 5685 5686 qp = _RD(STREAM(nextqp)->sd_wrq); 5687 mate = qp; 5688 } 5689 /* If we entered the synq above, leave it. */ 5690 if (sq != NULL) 5691 leavesq(sq, SQ_PUT); 5692 } /* STRMATED(STP) */ 5693 5694 /* XXX prevents substitution of the ops vector */ 5695 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5696 retval = EINVAL; 5697 goto out; 5698 } 5699 5700 if (qp->q_flag & QFULL) { 5701 retval = EAGAIN; 5702 goto out; 5703 } 5704 5705 /* 5706 * Since M_PASSFP messages include a file descriptor, we use 5707 * esballoc() and specify a custom free routine (free_passfp()) that 5708 * will close the descriptor as part of freeing the message. For 5709 * convenience, we stash the frtn_t right after the data block. 5710 */ 5711 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5712 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5713 if (srf == NULL) { 5714 retval = EAGAIN; 5715 goto out; 5716 } 5717 5718 frtnp = (frtn_t *)(srf + 1); 5719 frtnp->free_arg = (caddr_t)srf; 5720 frtnp->free_func = free_passfp; 5721 5722 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5723 if (mp == NULL) { 5724 kmem_free(srf, bufsize); 5725 retval = EAGAIN; 5726 goto out; 5727 } 5728 mp->b_wptr += sizeof (struct k_strrecvfd); 5729 mp->b_datap->db_type = M_PASSFP; 5730 5731 srf->fp = fp; 5732 srf->uid = crgetuid(curthread->t_cred); 5733 srf->gid = crgetgid(curthread->t_cred); 5734 mutex_enter(&fp->f_tlock); 5735 fp->f_count++; 5736 mutex_exit(&fp->f_tlock); 5737 5738 put(qp, mp); 5739 out: 5740 releasestr(stp->sd_wrq); 5741 if (mate) 5742 releasestr(mate); 5743 return (retval); 5744 } 5745 5746 /* 5747 * Send an ioctl message downstream and wait for acknowledgement. 5748 * flags may be set to either U_TO_K or K_TO_K and a combination 5749 * of STR_NOERROR or STR_NOSIG 5750 * STR_NOSIG: Signals are essentially ignored or held and have 5751 * no effect for the duration of the call. 5752 * STR_NOERROR: Ignores stream head read, write and hup errors. 5753 * Additionally, if an existing ioctl times out, it is assumed 5754 * lost and and this ioctl will continue as if the previous ioctl had 5755 * finished. ETIME may be returned if this ioctl times out (i.e. 5756 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5757 * the ioc_error indicates that the driver/module had problems, 5758 * an EFAULT was found when accessing user data, a lack of 5759 * resources, etc. 5760 */ 5761 int 5762 strdoioctl( 5763 struct stdata *stp, 5764 struct strioctl *strioc, 5765 int fflags, /* file flags with model info */ 5766 int flag, 5767 cred_t *crp, 5768 int *rvalp) 5769 { 5770 mblk_t *bp; 5771 struct iocblk *iocbp; 5772 struct copyreq *reqp; 5773 struct copyresp *resp; 5774 int id; 5775 int transparent = 0; 5776 int error = 0; 5777 int len = 0; 5778 caddr_t taddr; 5779 int copyflag = (flag & (U_TO_K | K_TO_K)); 5780 int sigflag = (flag & STR_NOSIG); 5781 int errs; 5782 uint_t waitflags; 5783 5784 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5785 ASSERT((fflags & FMODELS) != 0); 5786 5787 TRACE_2(TR_FAC_STREAMS_FR, 5788 TR_STRDOIOCTL, 5789 "strdoioctl:stp %p strioc %p", stp, strioc); 5790 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5791 transparent = 1; 5792 strioc->ic_len = sizeof (intptr_t); 5793 } 5794 5795 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5796 return (EINVAL); 5797 5798 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5799 crp)) == NULL) 5800 return (error); 5801 5802 bzero(bp->b_wptr, sizeof (union ioctypes)); 5803 5804 iocbp = (struct iocblk *)bp->b_wptr; 5805 iocbp->ioc_count = strioc->ic_len; 5806 iocbp->ioc_cmd = strioc->ic_cmd; 5807 iocbp->ioc_flag = (fflags & FMODELS); 5808 5809 crhold(crp); 5810 iocbp->ioc_cr = crp; 5811 DB_TYPE(bp) = M_IOCTL; 5812 DB_CPID(bp) = curproc->p_pid; 5813 bp->b_wptr += sizeof (struct iocblk); 5814 5815 if (flag & STR_NOERROR) 5816 errs = STPLEX; 5817 else 5818 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5819 5820 /* 5821 * If there is data to copy into ioctl block, do so. 5822 */ 5823 if (iocbp->ioc_count > 0) { 5824 if (transparent) 5825 /* 5826 * Note: STR_NOERROR does not have an effect 5827 * in putiocd() 5828 */ 5829 id = K_TO_K | sigflag; 5830 else 5831 id = flag; 5832 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5833 freemsg(bp); 5834 crfree(crp); 5835 return (error); 5836 } 5837 5838 /* 5839 * We could have slept copying in user pages. 5840 * Recheck the stream head state (the other end 5841 * of a pipe could have gone away). 5842 */ 5843 if (stp->sd_flag & errs) { 5844 mutex_enter(&stp->sd_lock); 5845 error = strgeterr(stp, errs, 0); 5846 mutex_exit(&stp->sd_lock); 5847 if (error != 0) { 5848 freemsg(bp); 5849 crfree(crp); 5850 return (error); 5851 } 5852 } 5853 } 5854 if (transparent) 5855 iocbp->ioc_count = TRANSPARENT; 5856 5857 /* 5858 * Block for up to STRTIMOUT milliseconds if there is an outstanding 5859 * ioctl for this stream already running. All processes 5860 * sleeping here will be awakened as a result of an ACK 5861 * or NAK being received for the outstanding ioctl, or 5862 * as a result of the timer expiring on the outstanding 5863 * ioctl (a failure), or as a result of any waiting 5864 * process's timer expiring (also a failure). 5865 */ 5866 5867 error = 0; 5868 mutex_enter(&stp->sd_lock); 5869 while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) { 5870 clock_t cv_rval; 5871 5872 TRACE_0(TR_FAC_STREAMS_FR, 5873 TR_STRDOIOCTL_WAIT, 5874 "strdoioctl sleeps - IOCWAIT"); 5875 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 5876 STRTIMOUT, sigflag); 5877 if (cv_rval <= 0) { 5878 if (cv_rval == 0) { 5879 error = EINTR; 5880 } else { 5881 if (flag & STR_NOERROR) { 5882 /* 5883 * Terminating current ioctl in 5884 * progress -- assume it got lost and 5885 * wake up the other thread so that the 5886 * operation completes. 5887 */ 5888 if (!(stp->sd_flag & IOCWAITNE)) { 5889 stp->sd_flag |= IOCWAITNE; 5890 cv_broadcast(&stp->sd_monitor); 5891 } 5892 /* 5893 * Otherwise, there's a running 5894 * STR_NOERROR -- we have no choice 5895 * here but to wait forever (or until 5896 * interrupted). 5897 */ 5898 } else { 5899 /* 5900 * pending ioctl has caused 5901 * us to time out 5902 */ 5903 error = ETIME; 5904 } 5905 } 5906 } else if ((stp->sd_flag & errs)) { 5907 error = strgeterr(stp, errs, 0); 5908 } 5909 if (error) { 5910 mutex_exit(&stp->sd_lock); 5911 freemsg(bp); 5912 crfree(crp); 5913 return (error); 5914 } 5915 } 5916 5917 /* 5918 * Have control of ioctl mechanism. 5919 * Send down ioctl packet and wait for response. 5920 */ 5921 if (stp->sd_iocblk != (mblk_t *)-1) { 5922 freemsg(stp->sd_iocblk); 5923 } 5924 stp->sd_iocblk = NULL; 5925 5926 /* 5927 * If this is marked with 'noerror' (internal; mostly 5928 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 5929 * in here by setting IOCWAITNE. 5930 */ 5931 waitflags = IOCWAIT; 5932 if (flag & STR_NOERROR) 5933 waitflags |= IOCWAITNE; 5934 5935 stp->sd_flag |= waitflags; 5936 5937 /* 5938 * Assign sequence number. 5939 */ 5940 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 5941 5942 mutex_exit(&stp->sd_lock); 5943 5944 TRACE_1(TR_FAC_STREAMS_FR, 5945 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 5946 stream_willservice(stp); 5947 putnext(stp->sd_wrq, bp); 5948 stream_runservice(stp); 5949 5950 /* 5951 * Timed wait for acknowledgment. The wait time is limited by the 5952 * timeout value, which must be a positive integer (number of 5953 * milliseconds to wait, or 0 (use default value of STRTIMOUT 5954 * milliseconds), or -1 (wait forever). This will be awakened 5955 * either by an ACK/NAK message arriving, the timer expiring, or 5956 * the timer expiring on another ioctl waiting for control of the 5957 * mechanism. 5958 */ 5959 waitioc: 5960 mutex_enter(&stp->sd_lock); 5961 5962 5963 /* 5964 * If the reply has already arrived, don't sleep. If awakened from 5965 * the sleep, fail only if the reply has not arrived by then. 5966 * Otherwise, process the reply. 5967 */ 5968 while (!stp->sd_iocblk) { 5969 clock_t cv_rval; 5970 5971 if (stp->sd_flag & errs) { 5972 error = strgeterr(stp, errs, 0); 5973 if (error != 0) { 5974 stp->sd_flag &= ~waitflags; 5975 cv_broadcast(&stp->sd_iocmonitor); 5976 mutex_exit(&stp->sd_lock); 5977 crfree(crp); 5978 return (error); 5979 } 5980 } 5981 5982 TRACE_0(TR_FAC_STREAMS_FR, 5983 TR_STRDOIOCTL_WAIT2, 5984 "strdoioctl sleeps awaiting reply"); 5985 ASSERT(error == 0); 5986 5987 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 5988 (strioc->ic_timout ? 5989 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 5990 5991 /* 5992 * There are four possible cases here: interrupt, timeout, 5993 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 5994 * valid M_IOCTL reply). 5995 * 5996 * If we've been awakened by a STR_NOERROR ioctl on some other 5997 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 5998 * will be set. Pretend as if we just timed out. Note that 5999 * this other thread waited at least STRTIMOUT before trying to 6000 * awaken our thread, so this is indistinguishable (even for 6001 * INFTIM) from the case where we failed with ETIME waiting on 6002 * IOCWAIT in the prior loop. 6003 */ 6004 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6005 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6006 cv_rval = -1; 6007 } 6008 6009 /* 6010 * note: STR_NOERROR does not protect 6011 * us here.. use ic_timout < 0 6012 */ 6013 if (cv_rval <= 0) { 6014 if (cv_rval == 0) { 6015 error = EINTR; 6016 } else { 6017 error = ETIME; 6018 } 6019 /* 6020 * A message could have come in after we were scheduled 6021 * but before we were actually run. 6022 */ 6023 bp = stp->sd_iocblk; 6024 stp->sd_iocblk = NULL; 6025 if (bp != NULL) { 6026 if ((bp->b_datap->db_type == M_COPYIN) || 6027 (bp->b_datap->db_type == M_COPYOUT)) { 6028 mutex_exit(&stp->sd_lock); 6029 if (bp->b_cont) { 6030 freemsg(bp->b_cont); 6031 bp->b_cont = NULL; 6032 } 6033 bp->b_datap->db_type = M_IOCDATA; 6034 bp->b_wptr = bp->b_rptr + 6035 sizeof (struct copyresp); 6036 resp = (struct copyresp *)bp->b_rptr; 6037 resp->cp_rval = 6038 (caddr_t)1; /* failure */ 6039 stream_willservice(stp); 6040 putnext(stp->sd_wrq, bp); 6041 stream_runservice(stp); 6042 mutex_enter(&stp->sd_lock); 6043 } else { 6044 freemsg(bp); 6045 } 6046 } 6047 stp->sd_flag &= ~waitflags; 6048 cv_broadcast(&stp->sd_iocmonitor); 6049 mutex_exit(&stp->sd_lock); 6050 crfree(crp); 6051 return (error); 6052 } 6053 } 6054 bp = stp->sd_iocblk; 6055 /* 6056 * Note: it is strictly impossible to get here with sd_iocblk set to 6057 * -1. This is because the initial loop above doesn't allow any new 6058 * ioctls into the fray until all others have passed this point. 6059 */ 6060 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6061 TRACE_1(TR_FAC_STREAMS_FR, 6062 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6063 if ((bp->b_datap->db_type == M_IOCACK) || 6064 (bp->b_datap->db_type == M_IOCNAK)) { 6065 /* for detection of duplicate ioctl replies */ 6066 stp->sd_iocblk = (mblk_t *)-1; 6067 stp->sd_flag &= ~waitflags; 6068 cv_broadcast(&stp->sd_iocmonitor); 6069 mutex_exit(&stp->sd_lock); 6070 } else { 6071 /* 6072 * flags not cleared here because we're still doing 6073 * copy in/out for ioctl. 6074 */ 6075 stp->sd_iocblk = NULL; 6076 mutex_exit(&stp->sd_lock); 6077 } 6078 6079 6080 /* 6081 * Have received acknowledgment. 6082 */ 6083 6084 switch (bp->b_datap->db_type) { 6085 case M_IOCACK: 6086 /* 6087 * Positive ack. 6088 */ 6089 iocbp = (struct iocblk *)bp->b_rptr; 6090 6091 /* 6092 * Set error if indicated. 6093 */ 6094 if (iocbp->ioc_error) { 6095 error = iocbp->ioc_error; 6096 break; 6097 } 6098 6099 /* 6100 * Set return value. 6101 */ 6102 *rvalp = iocbp->ioc_rval; 6103 6104 /* 6105 * Data may have been returned in ACK message (ioc_count > 0). 6106 * If so, copy it out to the user's buffer. 6107 */ 6108 if (iocbp->ioc_count && !transparent) { 6109 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6110 break; 6111 } 6112 if (!transparent) { 6113 if (len) /* an M_COPYOUT was used with I_STR */ 6114 strioc->ic_len = len; 6115 else 6116 strioc->ic_len = (int)iocbp->ioc_count; 6117 } 6118 break; 6119 6120 case M_IOCNAK: 6121 /* 6122 * Negative ack. 6123 * 6124 * The only thing to do is set error as specified 6125 * in neg ack packet. 6126 */ 6127 iocbp = (struct iocblk *)bp->b_rptr; 6128 6129 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6130 break; 6131 6132 case M_COPYIN: 6133 /* 6134 * Driver or module has requested user ioctl data. 6135 */ 6136 reqp = (struct copyreq *)bp->b_rptr; 6137 6138 /* 6139 * M_COPYIN should *never* have a message attached, though 6140 * it's harmless if it does -- thus, panic on a DEBUG 6141 * kernel and just free it on a non-DEBUG build. 6142 */ 6143 ASSERT(bp->b_cont == NULL); 6144 if (bp->b_cont != NULL) { 6145 freemsg(bp->b_cont); 6146 bp->b_cont = NULL; 6147 } 6148 6149 error = putiocd(bp, reqp->cq_addr, flag, crp); 6150 if (error && bp->b_cont) { 6151 freemsg(bp->b_cont); 6152 bp->b_cont = NULL; 6153 } 6154 6155 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6156 bp->b_datap->db_type = M_IOCDATA; 6157 6158 mblk_setcred(bp, crp); 6159 DB_CPID(bp) = curproc->p_pid; 6160 resp = (struct copyresp *)bp->b_rptr; 6161 resp->cp_rval = (caddr_t)(uintptr_t)error; 6162 resp->cp_flag = (fflags & FMODELS); 6163 6164 stream_willservice(stp); 6165 putnext(stp->sd_wrq, bp); 6166 stream_runservice(stp); 6167 6168 if (error) { 6169 mutex_enter(&stp->sd_lock); 6170 stp->sd_flag &= ~waitflags; 6171 cv_broadcast(&stp->sd_iocmonitor); 6172 mutex_exit(&stp->sd_lock); 6173 crfree(crp); 6174 return (error); 6175 } 6176 6177 goto waitioc; 6178 6179 case M_COPYOUT: 6180 /* 6181 * Driver or module has ioctl data for a user. 6182 */ 6183 reqp = (struct copyreq *)bp->b_rptr; 6184 ASSERT(bp->b_cont != NULL); 6185 6186 /* 6187 * Always (transparent or non-transparent ) 6188 * use the address specified in the request 6189 */ 6190 taddr = reqp->cq_addr; 6191 if (!transparent) 6192 len = (int)reqp->cq_size; 6193 6194 /* copyout data to the provided address */ 6195 error = getiocd(bp, taddr, copyflag); 6196 6197 freemsg(bp->b_cont); 6198 bp->b_cont = NULL; 6199 6200 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6201 bp->b_datap->db_type = M_IOCDATA; 6202 6203 mblk_setcred(bp, crp); 6204 DB_CPID(bp) = curproc->p_pid; 6205 resp = (struct copyresp *)bp->b_rptr; 6206 resp->cp_rval = (caddr_t)(uintptr_t)error; 6207 resp->cp_flag = (fflags & FMODELS); 6208 6209 stream_willservice(stp); 6210 putnext(stp->sd_wrq, bp); 6211 stream_runservice(stp); 6212 6213 if (error) { 6214 mutex_enter(&stp->sd_lock); 6215 stp->sd_flag &= ~waitflags; 6216 cv_broadcast(&stp->sd_iocmonitor); 6217 mutex_exit(&stp->sd_lock); 6218 crfree(crp); 6219 return (error); 6220 } 6221 goto waitioc; 6222 6223 default: 6224 ASSERT(0); 6225 mutex_enter(&stp->sd_lock); 6226 stp->sd_flag &= ~waitflags; 6227 cv_broadcast(&stp->sd_iocmonitor); 6228 mutex_exit(&stp->sd_lock); 6229 break; 6230 } 6231 6232 freemsg(bp); 6233 crfree(crp); 6234 return (error); 6235 } 6236 6237 /* 6238 * For the SunOS keyboard driver. 6239 * Return the next available "ioctl" sequence number. 6240 * Exported, so that streams modules can send "ioctl" messages 6241 * downstream from their open routine. 6242 */ 6243 int 6244 getiocseqno(void) 6245 { 6246 int i; 6247 6248 mutex_enter(&strresources); 6249 i = ++ioc_id; 6250 mutex_exit(&strresources); 6251 return (i); 6252 } 6253 6254 /* 6255 * Get the next message from the read queue. If the message is 6256 * priority, STRPRI will have been set by strrput(). This flag 6257 * should be reset only when the entire message at the front of the 6258 * queue as been consumed. 6259 * 6260 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6261 */ 6262 int 6263 strgetmsg( 6264 struct vnode *vp, 6265 struct strbuf *mctl, 6266 struct strbuf *mdata, 6267 unsigned char *prip, 6268 int *flagsp, 6269 int fmode, 6270 rval_t *rvp) 6271 { 6272 struct stdata *stp; 6273 mblk_t *bp, *nbp; 6274 mblk_t *savemp = NULL; 6275 mblk_t *savemptail = NULL; 6276 uint_t old_sd_flag; 6277 int flg; 6278 int more = 0; 6279 int error = 0; 6280 char first = 1; 6281 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6282 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6283 unsigned char pri = 0; 6284 queue_t *q; 6285 int pr = 0; /* Partial read successful */ 6286 struct uio uios; 6287 struct uio *uiop = &uios; 6288 struct iovec iovs; 6289 unsigned char type; 6290 6291 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6292 "strgetmsg:%p", vp); 6293 6294 ASSERT(vp->v_stream); 6295 stp = vp->v_stream; 6296 rvp->r_val1 = 0; 6297 6298 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) 6299 if (error = straccess(stp, JCREAD)) 6300 return (error); 6301 6302 /* Fast check of flags before acquiring the lock */ 6303 if (stp->sd_flag & (STRDERR|STPLEX)) { 6304 mutex_enter(&stp->sd_lock); 6305 error = strgeterr(stp, STRDERR|STPLEX, 0); 6306 mutex_exit(&stp->sd_lock); 6307 if (error != 0) 6308 return (error); 6309 } 6310 6311 switch (*flagsp) { 6312 case MSG_HIPRI: 6313 if (*prip != 0) 6314 return (EINVAL); 6315 break; 6316 6317 case MSG_ANY: 6318 case MSG_BAND: 6319 break; 6320 6321 default: 6322 return (EINVAL); 6323 } 6324 /* 6325 * Setup uio and iov for data part 6326 */ 6327 iovs.iov_base = mdata->buf; 6328 iovs.iov_len = mdata->maxlen; 6329 uios.uio_iov = &iovs; 6330 uios.uio_iovcnt = 1; 6331 uios.uio_loffset = 0; 6332 uios.uio_segflg = UIO_USERSPACE; 6333 uios.uio_fmode = 0; 6334 uios.uio_extflg = UIO_COPY_CACHED; 6335 uios.uio_resid = mdata->maxlen; 6336 uios.uio_offset = 0; 6337 6338 q = _RD(stp->sd_wrq); 6339 mutex_enter(&stp->sd_lock); 6340 old_sd_flag = stp->sd_flag; 6341 mark = 0; 6342 for (;;) { 6343 int done = 0; 6344 mblk_t *q_first = q->q_first; 6345 6346 /* 6347 * Get the next message of appropriate priority 6348 * from the stream head. If the caller is interested 6349 * in band or hipri messages, then they should already 6350 * be enqueued at the stream head. On the other hand 6351 * if the caller wants normal (band 0) messages, they 6352 * might be deferred in a synchronous stream and they 6353 * will need to be pulled up. 6354 * 6355 * After we have dequeued a message, we might find that 6356 * it was a deferred M_SIG that was enqueued at the 6357 * stream head. It must now be posted as part of the 6358 * read by calling strsignal_nolock(). 6359 * 6360 * Also note that strrput does not enqueue an M_PCSIG, 6361 * and there cannot be more than one hipri message, 6362 * so there was no need to have the M_PCSIG case. 6363 * 6364 * At some time it might be nice to try and wrap the 6365 * functionality of kstrgetmsg() and strgetmsg() into 6366 * a common routine so to reduce the amount of replicated 6367 * code (since they are extremely similar). 6368 */ 6369 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6370 /* Asking for normal, band0 data */ 6371 bp = strget(stp, q, uiop, first, &error); 6372 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6373 if (bp != NULL) { 6374 if (bp->b_datap->db_type == M_SIG) { 6375 strsignal_nolock(stp, *bp->b_rptr, 6376 (int32_t)bp->b_band); 6377 continue; 6378 } else { 6379 break; 6380 } 6381 } 6382 if (error != 0) { 6383 goto getmout; 6384 } 6385 6386 /* 6387 * We can't depend on the value of STRPRI here because 6388 * the stream head may be in transit. Therefore, we 6389 * must look at the type of the first message to 6390 * determine if a high priority messages is waiting 6391 */ 6392 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6393 q_first->b_datap->db_type >= QPCTL && 6394 (bp = getq_noenab(q)) != NULL) { 6395 /* Asked for HIPRI and got one */ 6396 ASSERT(bp->b_datap->db_type >= QPCTL); 6397 break; 6398 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6399 ((q_first->b_band >= *prip) || 6400 q_first->b_datap->db_type >= QPCTL) && 6401 (bp = getq_noenab(q)) != NULL) { 6402 /* 6403 * Asked for at least band "prip" and got either at 6404 * least that band or a hipri message. 6405 */ 6406 ASSERT(bp->b_band >= *prip || 6407 bp->b_datap->db_type >= QPCTL); 6408 if (bp->b_datap->db_type == M_SIG) { 6409 strsignal_nolock(stp, *bp->b_rptr, 6410 (int32_t)bp->b_band); 6411 continue; 6412 } else { 6413 break; 6414 } 6415 } 6416 6417 /* No data. Time to sleep? */ 6418 qbackenable(q, 0); 6419 6420 /* 6421 * If STRHUP or STREOF, return 0 length control and data. 6422 * If resid is 0, then a read(fd,buf,0) was done. Do not 6423 * sleep to satisfy this request because by default we have 6424 * zero bytes to return. 6425 */ 6426 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6427 mdata->maxlen == 0)) { 6428 mctl->len = mdata->len = 0; 6429 *flagsp = 0; 6430 mutex_exit(&stp->sd_lock); 6431 return (0); 6432 } 6433 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6434 "strgetmsg calls strwaitq:%p, %p", 6435 vp, uiop); 6436 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6437 &done)) != 0) || done) { 6438 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6439 "strgetmsg error or done:%p, %p", 6440 vp, uiop); 6441 mutex_exit(&stp->sd_lock); 6442 return (error); 6443 } 6444 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6445 "strgetmsg awakes:%p, %p", vp, uiop); 6446 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { 6447 mutex_exit(&stp->sd_lock); 6448 if (error = straccess(stp, JCREAD)) 6449 return (error); 6450 mutex_enter(&stp->sd_lock); 6451 } 6452 first = 0; 6453 } 6454 ASSERT(bp != NULL); 6455 /* 6456 * Extract any mark information. If the message is not completely 6457 * consumed this information will be put in the mblk 6458 * that is putback. 6459 * If MSGMARKNEXT is set and the message is completely consumed 6460 * the STRATMARK flag will be set below. Likewise, if 6461 * MSGNOTMARKNEXT is set and the message is 6462 * completely consumed STRNOTATMARK will be set. 6463 */ 6464 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6465 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6466 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6467 if (mark != 0 && bp == stp->sd_mark) { 6468 mark |= _LASTMARK; 6469 stp->sd_mark = NULL; 6470 } 6471 /* 6472 * keep track of the original message type and priority 6473 */ 6474 pri = bp->b_band; 6475 type = bp->b_datap->db_type; 6476 if (type == M_PASSFP) { 6477 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6478 stp->sd_mark = bp; 6479 bp->b_flag |= mark & ~_LASTMARK; 6480 putback(stp, q, bp, pri); 6481 qbackenable(q, pri); 6482 mutex_exit(&stp->sd_lock); 6483 return (EBADMSG); 6484 } 6485 ASSERT(type != M_SIG); 6486 6487 /* 6488 * Set this flag so strrput will not generate signals. Need to 6489 * make sure this flag is cleared before leaving this routine 6490 * else signals will stop being sent. 6491 */ 6492 stp->sd_flag |= STRGETINPROG; 6493 mutex_exit(&stp->sd_lock); 6494 6495 if (STREAM_NEEDSERVICE(stp)) 6496 stream_runservice(stp); 6497 6498 /* 6499 * Set HIPRI flag if message is priority. 6500 */ 6501 if (type >= QPCTL) 6502 flg = MSG_HIPRI; 6503 else 6504 flg = MSG_BAND; 6505 6506 /* 6507 * First process PROTO or PCPROTO blocks, if any. 6508 */ 6509 if (mctl->maxlen >= 0 && type != M_DATA) { 6510 size_t n, bcnt; 6511 char *ubuf; 6512 6513 bcnt = mctl->maxlen; 6514 ubuf = mctl->buf; 6515 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6516 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6517 copyout(bp->b_rptr, ubuf, n)) { 6518 error = EFAULT; 6519 mutex_enter(&stp->sd_lock); 6520 /* 6521 * clear stream head pri flag based on 6522 * first message type 6523 */ 6524 if (type >= QPCTL) { 6525 ASSERT(type == M_PCPROTO); 6526 stp->sd_flag &= ~STRPRI; 6527 } 6528 more = 0; 6529 freemsg(bp); 6530 goto getmout; 6531 } 6532 ubuf += n; 6533 bp->b_rptr += n; 6534 if (bp->b_rptr >= bp->b_wptr) { 6535 nbp = bp; 6536 bp = bp->b_cont; 6537 freeb(nbp); 6538 } 6539 ASSERT(n <= bcnt); 6540 bcnt -= n; 6541 if (bcnt == 0) 6542 break; 6543 } 6544 mctl->len = mctl->maxlen - bcnt; 6545 } else 6546 mctl->len = -1; 6547 6548 if (bp && bp->b_datap->db_type != M_DATA) { 6549 /* 6550 * More PROTO blocks in msg. 6551 */ 6552 more |= MORECTL; 6553 savemp = bp; 6554 while (bp && bp->b_datap->db_type != M_DATA) { 6555 savemptail = bp; 6556 bp = bp->b_cont; 6557 } 6558 savemptail->b_cont = NULL; 6559 } 6560 6561 /* 6562 * Now process DATA blocks, if any. 6563 */ 6564 if (mdata->maxlen >= 0 && bp) { 6565 /* 6566 * struiocopyout will consume a potential zero-length 6567 * M_DATA even if uio_resid is zero. 6568 */ 6569 size_t oldresid = uiop->uio_resid; 6570 6571 bp = struiocopyout(bp, uiop, &error); 6572 if (error != 0) { 6573 mutex_enter(&stp->sd_lock); 6574 /* 6575 * clear stream head hi pri flag based on 6576 * first message 6577 */ 6578 if (type >= QPCTL) { 6579 ASSERT(type == M_PCPROTO); 6580 stp->sd_flag &= ~STRPRI; 6581 } 6582 more = 0; 6583 freemsg(savemp); 6584 goto getmout; 6585 } 6586 /* 6587 * (pr == 1) indicates a partial read. 6588 */ 6589 if (oldresid > uiop->uio_resid) 6590 pr = 1; 6591 mdata->len = mdata->maxlen - uiop->uio_resid; 6592 } else 6593 mdata->len = -1; 6594 6595 if (bp) { /* more data blocks in msg */ 6596 more |= MOREDATA; 6597 if (savemp) 6598 savemptail->b_cont = bp; 6599 else 6600 savemp = bp; 6601 } 6602 6603 mutex_enter(&stp->sd_lock); 6604 if (savemp) { 6605 if (pr && (savemp->b_datap->db_type == M_DATA) && 6606 msgnodata(savemp)) { 6607 /* 6608 * Avoid queuing a zero-length tail part of 6609 * a message. pr=1 indicates that we read some of 6610 * the message. 6611 */ 6612 freemsg(savemp); 6613 more &= ~MOREDATA; 6614 /* 6615 * clear stream head hi pri flag based on 6616 * first message 6617 */ 6618 if (type >= QPCTL) { 6619 ASSERT(type == M_PCPROTO); 6620 stp->sd_flag &= ~STRPRI; 6621 } 6622 } else { 6623 savemp->b_band = pri; 6624 /* 6625 * If the first message was HIPRI and the one we're 6626 * putting back isn't, then clear STRPRI, otherwise 6627 * set STRPRI again. Note that we must set STRPRI 6628 * again since the flush logic in strrput_nondata() 6629 * may have cleared it while we had sd_lock dropped. 6630 */ 6631 if (type >= QPCTL) { 6632 ASSERT(type == M_PCPROTO); 6633 if (queclass(savemp) < QPCTL) 6634 stp->sd_flag &= ~STRPRI; 6635 else 6636 stp->sd_flag |= STRPRI; 6637 } else if (queclass(savemp) >= QPCTL) { 6638 /* 6639 * The first message was not a HIPRI message, 6640 * but the one we are about to putback is. 6641 * For simplicitly, we do not allow for HIPRI 6642 * messages to be embedded in the message 6643 * body, so just force it to same type as 6644 * first message. 6645 */ 6646 ASSERT(type == M_DATA || type == M_PROTO); 6647 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6648 savemp->b_datap->db_type = type; 6649 } 6650 if (mark != 0) { 6651 savemp->b_flag |= mark & ~_LASTMARK; 6652 if ((mark & _LASTMARK) && 6653 (stp->sd_mark == NULL)) { 6654 /* 6655 * If another marked message arrived 6656 * while sd_lock was not held sd_mark 6657 * would be non-NULL. 6658 */ 6659 stp->sd_mark = savemp; 6660 } 6661 } 6662 putback(stp, q, savemp, pri); 6663 } 6664 } else { 6665 /* 6666 * The complete message was consumed. 6667 * 6668 * If another M_PCPROTO arrived while sd_lock was not held 6669 * it would have been discarded since STRPRI was still set. 6670 * 6671 * Move the MSG*MARKNEXT information 6672 * to the stream head just in case 6673 * the read queue becomes empty. 6674 * clear stream head hi pri flag based on 6675 * first message 6676 * 6677 * If the stream head was at the mark 6678 * (STRATMARK) before we dropped sd_lock above 6679 * and some data was consumed then we have 6680 * moved past the mark thus STRATMARK is 6681 * cleared. However, if a message arrived in 6682 * strrput during the copyout above causing 6683 * STRATMARK to be set we can not clear that 6684 * flag. 6685 */ 6686 if (type >= QPCTL) { 6687 ASSERT(type == M_PCPROTO); 6688 stp->sd_flag &= ~STRPRI; 6689 } 6690 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6691 if (mark & MSGMARKNEXT) { 6692 stp->sd_flag &= ~STRNOTATMARK; 6693 stp->sd_flag |= STRATMARK; 6694 } else if (mark & MSGNOTMARKNEXT) { 6695 stp->sd_flag &= ~STRATMARK; 6696 stp->sd_flag |= STRNOTATMARK; 6697 } else { 6698 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6699 } 6700 } else if (pr && (old_sd_flag & STRATMARK)) { 6701 stp->sd_flag &= ~STRATMARK; 6702 } 6703 } 6704 6705 *flagsp = flg; 6706 *prip = pri; 6707 6708 /* 6709 * Getmsg cleanup processing - if the state of the queue has changed 6710 * some signals may need to be sent and/or poll awakened. 6711 */ 6712 getmout: 6713 qbackenable(q, pri); 6714 6715 /* 6716 * We dropped the stream head lock above. Send all M_SIG messages 6717 * before processing stream head for SIGPOLL messages. 6718 */ 6719 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6720 while ((bp = q->q_first) != NULL && 6721 (bp->b_datap->db_type == M_SIG)) { 6722 /* 6723 * sd_lock is held so the content of the read queue can not 6724 * change. 6725 */ 6726 bp = getq(q); 6727 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 6728 6729 strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); 6730 mutex_exit(&stp->sd_lock); 6731 freemsg(bp); 6732 if (STREAM_NEEDSERVICE(stp)) 6733 stream_runservice(stp); 6734 mutex_enter(&stp->sd_lock); 6735 } 6736 6737 /* 6738 * stream head cannot change while we make the determination 6739 * whether or not to send a signal. Drop the flag to allow strrput 6740 * to send firstmsgsigs again. 6741 */ 6742 stp->sd_flag &= ~STRGETINPROG; 6743 6744 /* 6745 * If the type of message at the front of the queue changed 6746 * due to the receive the appropriate signals and pollwakeup events 6747 * are generated. The type of changes are: 6748 * Processed a hipri message, q_first is not hipri. 6749 * Processed a band X message, and q_first is band Y. 6750 * The generated signals and pollwakeups are identical to what 6751 * strrput() generates should the message that is now on q_first 6752 * arrive to an empty read queue. 6753 * 6754 * Note: only strrput will send a signal for a hipri message. 6755 */ 6756 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 6757 strsigset_t signals = 0; 6758 strpollset_t pollwakeups = 0; 6759 6760 if (flg & MSG_HIPRI) { 6761 /* 6762 * Removed a hipri message. Regular data at 6763 * the front of the queue. 6764 */ 6765 if (bp->b_band == 0) { 6766 signals = S_INPUT | S_RDNORM; 6767 pollwakeups = POLLIN | POLLRDNORM; 6768 } else { 6769 signals = S_INPUT | S_RDBAND; 6770 pollwakeups = POLLIN | POLLRDBAND; 6771 } 6772 } else if (pri != bp->b_band) { 6773 /* 6774 * The band is different for the new q_first. 6775 */ 6776 if (bp->b_band == 0) { 6777 signals = S_RDNORM; 6778 pollwakeups = POLLIN | POLLRDNORM; 6779 } else { 6780 signals = S_RDBAND; 6781 pollwakeups = POLLIN | POLLRDBAND; 6782 } 6783 } 6784 6785 if (pollwakeups != 0) { 6786 if (pollwakeups == (POLLIN | POLLRDNORM)) { 6787 if (!(stp->sd_rput_opt & SR_POLLIN)) 6788 goto no_pollwake; 6789 stp->sd_rput_opt &= ~SR_POLLIN; 6790 } 6791 mutex_exit(&stp->sd_lock); 6792 pollwakeup(&stp->sd_pollist, pollwakeups); 6793 mutex_enter(&stp->sd_lock); 6794 } 6795 no_pollwake: 6796 6797 if (stp->sd_sigflags & signals) 6798 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 6799 } 6800 mutex_exit(&stp->sd_lock); 6801 6802 rvp->r_val1 = more; 6803 return (error); 6804 #undef _LASTMARK 6805 } 6806 6807 /* 6808 * Get the next message from the read queue. If the message is 6809 * priority, STRPRI will have been set by strrput(). This flag 6810 * should be reset only when the entire message at the front of the 6811 * queue as been consumed. 6812 * 6813 * If uiop is NULL all data is returned in mctlp. 6814 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 6815 * not enabled. 6816 * The timeout parameter is in milliseconds; -1 for infinity. 6817 * This routine handles the consolidation private flags: 6818 * MSG_IGNERROR Ignore any stream head error except STPLEX. 6819 * MSG_DELAYERROR Defer the error check until the queue is empty. 6820 * MSG_HOLDSIG Hold signals while waiting for data. 6821 * MSG_IPEEK Only peek at messages. 6822 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 6823 * that doesn't fit. 6824 * MSG_NOMARK If the message is marked leave it on the queue. 6825 * 6826 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6827 */ 6828 int 6829 kstrgetmsg( 6830 struct vnode *vp, 6831 mblk_t **mctlp, 6832 struct uio *uiop, 6833 unsigned char *prip, 6834 int *flagsp, 6835 clock_t timout, 6836 rval_t *rvp) 6837 { 6838 struct stdata *stp; 6839 mblk_t *bp, *nbp; 6840 mblk_t *savemp = NULL; 6841 mblk_t *savemptail = NULL; 6842 int flags; 6843 uint_t old_sd_flag; 6844 int flg; 6845 int more = 0; 6846 int error = 0; 6847 char first = 1; 6848 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6849 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6850 unsigned char pri = 0; 6851 queue_t *q; 6852 int pr = 0; /* Partial read successful */ 6853 unsigned char type; 6854 6855 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 6856 "kstrgetmsg:%p", vp); 6857 6858 ASSERT(vp->v_stream); 6859 stp = vp->v_stream; 6860 rvp->r_val1 = 0; 6861 6862 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) 6863 if (error = straccess(stp, JCREAD)) 6864 return (error); 6865 6866 flags = *flagsp; 6867 /* Fast check of flags before acquiring the lock */ 6868 if (stp->sd_flag & (STRDERR|STPLEX)) { 6869 if ((stp->sd_flag & STPLEX) || 6870 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 6871 mutex_enter(&stp->sd_lock); 6872 error = strgeterr(stp, STRDERR|STPLEX, 6873 (flags & MSG_IPEEK)); 6874 mutex_exit(&stp->sd_lock); 6875 if (error != 0) 6876 return (error); 6877 } 6878 } 6879 6880 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 6881 case MSG_HIPRI: 6882 if (*prip != 0) 6883 return (EINVAL); 6884 break; 6885 6886 case MSG_ANY: 6887 case MSG_BAND: 6888 break; 6889 6890 default: 6891 return (EINVAL); 6892 } 6893 6894 retry: 6895 q = _RD(stp->sd_wrq); 6896 mutex_enter(&stp->sd_lock); 6897 old_sd_flag = stp->sd_flag; 6898 mark = 0; 6899 for (;;) { 6900 int done = 0; 6901 int waitflag; 6902 int fmode; 6903 mblk_t *q_first = q->q_first; 6904 6905 /* 6906 * This section of the code operates just like the code 6907 * in strgetmsg(). There is a comment there about what 6908 * is going on here. 6909 */ 6910 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 6911 /* Asking for normal, band0 data */ 6912 bp = strget(stp, q, uiop, first, &error); 6913 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6914 if (bp != NULL) { 6915 if (bp->b_datap->db_type == M_SIG) { 6916 strsignal_nolock(stp, *bp->b_rptr, 6917 (int32_t)bp->b_band); 6918 continue; 6919 } else { 6920 break; 6921 } 6922 } 6923 if (error != 0) { 6924 goto getmout; 6925 } 6926 /* 6927 * We can't depend on the value of STRPRI here because 6928 * the stream head may be in transit. Therefore, we 6929 * must look at the type of the first message to 6930 * determine if a high priority messages is waiting 6931 */ 6932 } else if ((flags & MSG_HIPRI) && q_first != NULL && 6933 q_first->b_datap->db_type >= QPCTL && 6934 (bp = getq_noenab(q)) != NULL) { 6935 ASSERT(bp->b_datap->db_type >= QPCTL); 6936 break; 6937 } else if ((flags & MSG_BAND) && q_first != NULL && 6938 ((q_first->b_band >= *prip) || 6939 q_first->b_datap->db_type >= QPCTL) && 6940 (bp = getq_noenab(q)) != NULL) { 6941 /* 6942 * Asked for at least band "prip" and got either at 6943 * least that band or a hipri message. 6944 */ 6945 ASSERT(bp->b_band >= *prip || 6946 bp->b_datap->db_type >= QPCTL); 6947 if (bp->b_datap->db_type == M_SIG) { 6948 strsignal_nolock(stp, *bp->b_rptr, 6949 (int32_t)bp->b_band); 6950 continue; 6951 } else { 6952 break; 6953 } 6954 } 6955 6956 /* No data. Time to sleep? */ 6957 qbackenable(q, 0); 6958 6959 /* 6960 * Delayed error notification? 6961 */ 6962 if ((stp->sd_flag & (STRDERR|STPLEX)) && 6963 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 6964 error = strgeterr(stp, STRDERR|STPLEX, 6965 (flags & MSG_IPEEK)); 6966 if (error != 0) { 6967 mutex_exit(&stp->sd_lock); 6968 return (error); 6969 } 6970 } 6971 6972 /* 6973 * If STRHUP or STREOF, return 0 length control and data. 6974 * If a read(fd,buf,0) has been done, do not sleep, just 6975 * return. 6976 * 6977 * If mctlp == NULL and uiop == NULL, then the code will 6978 * do the strwaitq. This is an understood way of saying 6979 * sleep "polling" until a message is received. 6980 */ 6981 if ((stp->sd_flag & (STRHUP|STREOF)) || 6982 (uiop != NULL && uiop->uio_resid == 0)) { 6983 if (mctlp != NULL) 6984 *mctlp = NULL; 6985 *flagsp = 0; 6986 mutex_exit(&stp->sd_lock); 6987 return (0); 6988 } 6989 6990 waitflag = GETWAIT; 6991 if (flags & 6992 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 6993 if (flags & MSG_HOLDSIG) 6994 waitflag |= STR_NOSIG; 6995 if (flags & MSG_IGNERROR) 6996 waitflag |= STR_NOERROR; 6997 if (flags & MSG_IPEEK) 6998 waitflag |= STR_PEEK; 6999 if (flags & MSG_DELAYERROR) 7000 waitflag |= STR_DELAYERR; 7001 } 7002 if (uiop != NULL) 7003 fmode = uiop->uio_fmode; 7004 else 7005 fmode = 0; 7006 7007 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7008 "kstrgetmsg calls strwaitq:%p, %p", 7009 vp, uiop); 7010 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7011 fmode, timout, &done)) != 0) || done) { 7012 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7013 "kstrgetmsg error or done:%p, %p", 7014 vp, uiop); 7015 mutex_exit(&stp->sd_lock); 7016 return (error); 7017 } 7018 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7019 "kstrgetmsg awakes:%p, %p", vp, uiop); 7020 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { 7021 mutex_exit(&stp->sd_lock); 7022 if (error = straccess(stp, JCREAD)) 7023 return (error); 7024 mutex_enter(&stp->sd_lock); 7025 } 7026 first = 0; 7027 } 7028 ASSERT(bp != NULL); 7029 /* 7030 * Extract any mark information. If the message is not completely 7031 * consumed this information will be put in the mblk 7032 * that is putback. 7033 * If MSGMARKNEXT is set and the message is completely consumed 7034 * the STRATMARK flag will be set below. Likewise, if 7035 * MSGNOTMARKNEXT is set and the message is 7036 * completely consumed STRNOTATMARK will be set. 7037 */ 7038 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7039 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7040 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7041 pri = bp->b_band; 7042 if (mark != 0) { 7043 /* 7044 * If the caller doesn't want the mark return. 7045 * Used to implement MSG_WAITALL in sockets. 7046 */ 7047 if (flags & MSG_NOMARK) { 7048 putback(stp, q, bp, pri); 7049 qbackenable(q, pri); 7050 mutex_exit(&stp->sd_lock); 7051 return (EWOULDBLOCK); 7052 } 7053 if (bp == stp->sd_mark) { 7054 mark |= _LASTMARK; 7055 stp->sd_mark = NULL; 7056 } 7057 } 7058 7059 /* 7060 * keep track of the first message type 7061 */ 7062 type = bp->b_datap->db_type; 7063 7064 if (bp->b_datap->db_type == M_PASSFP) { 7065 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7066 stp->sd_mark = bp; 7067 bp->b_flag |= mark & ~_LASTMARK; 7068 putback(stp, q, bp, pri); 7069 qbackenable(q, pri); 7070 mutex_exit(&stp->sd_lock); 7071 return (EBADMSG); 7072 } 7073 ASSERT(type != M_SIG); 7074 7075 if (flags & MSG_IPEEK) { 7076 /* 7077 * Clear any struioflag - we do the uiomove over again 7078 * when peeking since it simplifies the code. 7079 * 7080 * Dup the message and put the original back on the queue. 7081 * If dupmsg() fails, try again with copymsg() to see if 7082 * there is indeed a shortage of memory. dupmsg() may fail 7083 * if db_ref in any of the messages reaches its limit. 7084 */ 7085 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7086 /* 7087 * Restore the state of the stream head since we 7088 * need to drop sd_lock (strwaitbuf is sleeping). 7089 */ 7090 size_t size = msgdsize(bp); 7091 7092 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7093 stp->sd_mark = bp; 7094 bp->b_flag |= mark & ~_LASTMARK; 7095 putback(stp, q, bp, pri); 7096 mutex_exit(&stp->sd_lock); 7097 error = strwaitbuf(size, BPRI_HI); 7098 if (error) { 7099 /* 7100 * There is no net change to the queue thus 7101 * no need to qbackenable. 7102 */ 7103 return (error); 7104 } 7105 goto retry; 7106 } 7107 7108 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7109 stp->sd_mark = bp; 7110 bp->b_flag |= mark & ~_LASTMARK; 7111 putback(stp, q, bp, pri); 7112 bp = nbp; 7113 } 7114 7115 /* 7116 * Set this flag so strrput will not generate signals. Need to 7117 * make sure this flag is cleared before leaving this routine 7118 * else signals will stop being sent. 7119 */ 7120 stp->sd_flag |= STRGETINPROG; 7121 mutex_exit(&stp->sd_lock); 7122 7123 if (STREAM_NEEDSERVICE(stp)) 7124 stream_runservice(stp); 7125 7126 /* 7127 * Set HIPRI flag if message is priority. 7128 */ 7129 if (type >= QPCTL) 7130 flg = MSG_HIPRI; 7131 else 7132 flg = MSG_BAND; 7133 7134 /* 7135 * First process PROTO or PCPROTO blocks, if any. 7136 */ 7137 if (mctlp != NULL && type != M_DATA) { 7138 mblk_t *nbp; 7139 7140 *mctlp = bp; 7141 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7142 bp = bp->b_cont; 7143 nbp = bp->b_cont; 7144 bp->b_cont = NULL; 7145 bp = nbp; 7146 } 7147 7148 if (bp && bp->b_datap->db_type != M_DATA) { 7149 /* 7150 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7151 */ 7152 more |= MORECTL; 7153 savemp = bp; 7154 while (bp && bp->b_datap->db_type != M_DATA) { 7155 savemptail = bp; 7156 bp = bp->b_cont; 7157 } 7158 savemptail->b_cont = NULL; 7159 } 7160 7161 /* 7162 * Now process DATA blocks, if any. 7163 */ 7164 if (uiop == NULL) { 7165 /* Append data to tail of mctlp */ 7166 if (mctlp != NULL) { 7167 mblk_t **mpp = mctlp; 7168 7169 while (*mpp != NULL) 7170 mpp = &((*mpp)->b_cont); 7171 *mpp = bp; 7172 bp = NULL; 7173 } 7174 } else if (uiop->uio_resid >= 0 && bp) { 7175 size_t oldresid = uiop->uio_resid; 7176 7177 /* 7178 * If a streams message is likely to consist 7179 * of many small mblks, it is pulled up into 7180 * one continuous chunk of memory. 7181 * see longer comment at top of page 7182 * by mblk_pull_len declaration. 7183 */ 7184 7185 if (MBLKL(bp) < mblk_pull_len) { 7186 (void) pullupmsg(bp, -1); 7187 } 7188 7189 bp = struiocopyout(bp, uiop, &error); 7190 if (error != 0) { 7191 if (mctlp != NULL) { 7192 freemsg(*mctlp); 7193 *mctlp = NULL; 7194 } else 7195 freemsg(savemp); 7196 mutex_enter(&stp->sd_lock); 7197 /* 7198 * clear stream head hi pri flag based on 7199 * first message 7200 */ 7201 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7202 ASSERT(type == M_PCPROTO); 7203 stp->sd_flag &= ~STRPRI; 7204 } 7205 more = 0; 7206 goto getmout; 7207 } 7208 /* 7209 * (pr == 1) indicates a partial read. 7210 */ 7211 if (oldresid > uiop->uio_resid) 7212 pr = 1; 7213 } 7214 7215 if (bp) { /* more data blocks in msg */ 7216 more |= MOREDATA; 7217 if (savemp) 7218 savemptail->b_cont = bp; 7219 else 7220 savemp = bp; 7221 } 7222 7223 mutex_enter(&stp->sd_lock); 7224 if (savemp) { 7225 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7226 /* 7227 * When MSG_DISCARDTAIL is set or 7228 * when peeking discard any tail. When peeking this 7229 * is the tail of the dup that was copied out - the 7230 * message has already been putback on the queue. 7231 * Return MOREDATA to the caller even though the data 7232 * is discarded. This is used by sockets (to 7233 * set MSG_TRUNC). 7234 */ 7235 freemsg(savemp); 7236 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7237 ASSERT(type == M_PCPROTO); 7238 stp->sd_flag &= ~STRPRI; 7239 } 7240 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7241 msgnodata(savemp)) { 7242 /* 7243 * Avoid queuing a zero-length tail part of 7244 * a message. pr=1 indicates that we read some of 7245 * the message. 7246 */ 7247 freemsg(savemp); 7248 more &= ~MOREDATA; 7249 if (type >= QPCTL) { 7250 ASSERT(type == M_PCPROTO); 7251 stp->sd_flag &= ~STRPRI; 7252 } 7253 } else { 7254 savemp->b_band = pri; 7255 /* 7256 * If the first message was HIPRI and the one we're 7257 * putting back isn't, then clear STRPRI, otherwise 7258 * set STRPRI again. Note that we must set STRPRI 7259 * again since the flush logic in strrput_nondata() 7260 * may have cleared it while we had sd_lock dropped. 7261 */ 7262 if (type >= QPCTL) { 7263 ASSERT(type == M_PCPROTO); 7264 if (queclass(savemp) < QPCTL) 7265 stp->sd_flag &= ~STRPRI; 7266 else 7267 stp->sd_flag |= STRPRI; 7268 } else if (queclass(savemp) >= QPCTL) { 7269 /* 7270 * The first message was not a HIPRI message, 7271 * but the one we are about to putback is. 7272 * For simplicitly, we do not allow for HIPRI 7273 * messages to be embedded in the message 7274 * body, so just force it to same type as 7275 * first message. 7276 */ 7277 ASSERT(type == M_DATA || type == M_PROTO); 7278 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7279 savemp->b_datap->db_type = type; 7280 } 7281 if (mark != 0) { 7282 if ((mark & _LASTMARK) && 7283 (stp->sd_mark == NULL)) { 7284 /* 7285 * If another marked message arrived 7286 * while sd_lock was not held sd_mark 7287 * would be non-NULL. 7288 */ 7289 stp->sd_mark = savemp; 7290 } 7291 savemp->b_flag |= mark & ~_LASTMARK; 7292 } 7293 putback(stp, q, savemp, pri); 7294 } 7295 } else if (!(flags & MSG_IPEEK)) { 7296 /* 7297 * The complete message was consumed. 7298 * 7299 * If another M_PCPROTO arrived while sd_lock was not held 7300 * it would have been discarded since STRPRI was still set. 7301 * 7302 * Move the MSG*MARKNEXT information 7303 * to the stream head just in case 7304 * the read queue becomes empty. 7305 * clear stream head hi pri flag based on 7306 * first message 7307 * 7308 * If the stream head was at the mark 7309 * (STRATMARK) before we dropped sd_lock above 7310 * and some data was consumed then we have 7311 * moved past the mark thus STRATMARK is 7312 * cleared. However, if a message arrived in 7313 * strrput during the copyout above causing 7314 * STRATMARK to be set we can not clear that 7315 * flag. 7316 * XXX A "perimeter" would help by single-threading strrput, 7317 * strread, strgetmsg and kstrgetmsg. 7318 */ 7319 if (type >= QPCTL) { 7320 ASSERT(type == M_PCPROTO); 7321 stp->sd_flag &= ~STRPRI; 7322 } 7323 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7324 if (mark & MSGMARKNEXT) { 7325 stp->sd_flag &= ~STRNOTATMARK; 7326 stp->sd_flag |= STRATMARK; 7327 } else if (mark & MSGNOTMARKNEXT) { 7328 stp->sd_flag &= ~STRATMARK; 7329 stp->sd_flag |= STRNOTATMARK; 7330 } else { 7331 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7332 } 7333 } else if (pr && (old_sd_flag & STRATMARK)) { 7334 stp->sd_flag &= ~STRATMARK; 7335 } 7336 } 7337 7338 *flagsp = flg; 7339 *prip = pri; 7340 7341 /* 7342 * Getmsg cleanup processing - if the state of the queue has changed 7343 * some signals may need to be sent and/or poll awakened. 7344 */ 7345 getmout: 7346 qbackenable(q, pri); 7347 7348 /* 7349 * We dropped the stream head lock above. Send all M_SIG messages 7350 * before processing stream head for SIGPOLL messages. 7351 */ 7352 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7353 while ((bp = q->q_first) != NULL && 7354 (bp->b_datap->db_type == M_SIG)) { 7355 /* 7356 * sd_lock is held so the content of the read queue can not 7357 * change. 7358 */ 7359 bp = getq(q); 7360 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7361 7362 strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); 7363 mutex_exit(&stp->sd_lock); 7364 freemsg(bp); 7365 if (STREAM_NEEDSERVICE(stp)) 7366 stream_runservice(stp); 7367 mutex_enter(&stp->sd_lock); 7368 } 7369 7370 /* 7371 * stream head cannot change while we make the determination 7372 * whether or not to send a signal. Drop the flag to allow strrput 7373 * to send firstmsgsigs again. 7374 */ 7375 stp->sd_flag &= ~STRGETINPROG; 7376 7377 /* 7378 * If the type of message at the front of the queue changed 7379 * due to the receive the appropriate signals and pollwakeup events 7380 * are generated. The type of changes are: 7381 * Processed a hipri message, q_first is not hipri. 7382 * Processed a band X message, and q_first is band Y. 7383 * The generated signals and pollwakeups are identical to what 7384 * strrput() generates should the message that is now on q_first 7385 * arrive to an empty read queue. 7386 * 7387 * Note: only strrput will send a signal for a hipri message. 7388 */ 7389 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7390 strsigset_t signals = 0; 7391 strpollset_t pollwakeups = 0; 7392 7393 if (flg & MSG_HIPRI) { 7394 /* 7395 * Removed a hipri message. Regular data at 7396 * the front of the queue. 7397 */ 7398 if (bp->b_band == 0) { 7399 signals = S_INPUT | S_RDNORM; 7400 pollwakeups = POLLIN | POLLRDNORM; 7401 } else { 7402 signals = S_INPUT | S_RDBAND; 7403 pollwakeups = POLLIN | POLLRDBAND; 7404 } 7405 } else if (pri != bp->b_band) { 7406 /* 7407 * The band is different for the new q_first. 7408 */ 7409 if (bp->b_band == 0) { 7410 signals = S_RDNORM; 7411 pollwakeups = POLLIN | POLLRDNORM; 7412 } else { 7413 signals = S_RDBAND; 7414 pollwakeups = POLLIN | POLLRDBAND; 7415 } 7416 } 7417 7418 if (pollwakeups != 0) { 7419 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7420 if (!(stp->sd_rput_opt & SR_POLLIN)) 7421 goto no_pollwake; 7422 stp->sd_rput_opt &= ~SR_POLLIN; 7423 } 7424 mutex_exit(&stp->sd_lock); 7425 pollwakeup(&stp->sd_pollist, pollwakeups); 7426 mutex_enter(&stp->sd_lock); 7427 } 7428 no_pollwake: 7429 7430 if (stp->sd_sigflags & signals) 7431 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7432 } 7433 mutex_exit(&stp->sd_lock); 7434 7435 rvp->r_val1 = more; 7436 return (error); 7437 #undef _LASTMARK 7438 } 7439 7440 /* 7441 * Put a message downstream. 7442 * 7443 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7444 */ 7445 int 7446 strputmsg( 7447 struct vnode *vp, 7448 struct strbuf *mctl, 7449 struct strbuf *mdata, 7450 unsigned char pri, 7451 int flag, 7452 int fmode) 7453 { 7454 struct stdata *stp; 7455 queue_t *wqp; 7456 mblk_t *mp; 7457 ssize_t msgsize; 7458 ssize_t rmin, rmax; 7459 int error; 7460 struct uio uios; 7461 struct uio *uiop = &uios; 7462 struct iovec iovs; 7463 int xpg4 = 0; 7464 7465 ASSERT(vp->v_stream); 7466 stp = vp->v_stream; 7467 wqp = stp->sd_wrq; 7468 7469 /* 7470 * If it is an XPG4 application, we need to send 7471 * SIGPIPE below 7472 */ 7473 7474 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7475 flag &= ~MSG_XPG4; 7476 7477 #ifdef C2_AUDIT 7478 if (audit_active) 7479 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7480 #endif 7481 7482 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) 7483 if (error = straccess(stp, JCWRITE)) 7484 return (error); 7485 7486 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7487 mutex_enter(&stp->sd_lock); 7488 error = strwriteable(stp, B_FALSE, xpg4); 7489 mutex_exit(&stp->sd_lock); 7490 if (error != 0) 7491 return (error); 7492 } 7493 7494 /* 7495 * Check for legal flag value. 7496 */ 7497 switch (flag) { 7498 case MSG_HIPRI: 7499 if ((mctl->len < 0) || (pri != 0)) 7500 return (EINVAL); 7501 break; 7502 case MSG_BAND: 7503 break; 7504 7505 default: 7506 return (EINVAL); 7507 } 7508 7509 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7510 "strputmsg in:stp %p", stp); 7511 7512 /* get these values from those cached in the stream head */ 7513 rmin = stp->sd_qn_minpsz; 7514 rmax = stp->sd_qn_maxpsz; 7515 7516 /* 7517 * Make sure ctl and data sizes together fall within the 7518 * limits of the max and min receive packet sizes and do 7519 * not exceed system limit. 7520 */ 7521 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7522 if (rmax == 0) { 7523 return (ERANGE); 7524 } 7525 /* 7526 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7527 * Needed to prevent partial failures in the strmakedata loop. 7528 */ 7529 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7530 rmax = stp->sd_maxblk; 7531 7532 if ((msgsize = mdata->len) < 0) { 7533 msgsize = 0; 7534 rmin = 0; /* no range check for NULL data part */ 7535 } 7536 if ((msgsize < rmin) || 7537 ((msgsize > rmax) && (rmax != INFPSZ)) || 7538 (mctl->len > strctlsz)) { 7539 return (ERANGE); 7540 } 7541 7542 /* 7543 * Setup uio and iov for data part 7544 */ 7545 iovs.iov_base = mdata->buf; 7546 iovs.iov_len = msgsize; 7547 uios.uio_iov = &iovs; 7548 uios.uio_iovcnt = 1; 7549 uios.uio_loffset = 0; 7550 uios.uio_segflg = UIO_USERSPACE; 7551 uios.uio_fmode = fmode; 7552 uios.uio_extflg = UIO_COPY_DEFAULT; 7553 uios.uio_resid = msgsize; 7554 uios.uio_offset = 0; 7555 7556 /* Ignore flow control in strput for HIPRI */ 7557 if (flag & MSG_HIPRI) 7558 flag |= MSG_IGNFLOW; 7559 7560 for (;;) { 7561 int done = 0; 7562 7563 /* 7564 * strput will always free the ctl mblk - even when strput 7565 * fails. 7566 */ 7567 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7568 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7569 "strputmsg out:stp %p out %d error %d", 7570 stp, 1, error); 7571 return (error); 7572 } 7573 /* 7574 * Verify that the whole message can be transferred by 7575 * strput. 7576 */ 7577 ASSERT(stp->sd_maxblk == INFPSZ || 7578 stp->sd_maxblk >= mdata->len); 7579 7580 msgsize = mdata->len; 7581 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7582 mdata->len = msgsize; 7583 7584 if (error == 0) 7585 break; 7586 7587 if (error != EWOULDBLOCK) 7588 goto out; 7589 7590 mutex_enter(&stp->sd_lock); 7591 /* 7592 * Check for a missed wakeup. 7593 * Needed since strput did not hold sd_lock across 7594 * the canputnext. 7595 */ 7596 if (bcanputnext(wqp, pri)) { 7597 /* Try again */ 7598 mutex_exit(&stp->sd_lock); 7599 continue; 7600 } 7601 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7602 "strputmsg wait:stp %p waits pri %d", stp, pri); 7603 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7604 &done)) != 0) || done) { 7605 mutex_exit(&stp->sd_lock); 7606 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7607 "strputmsg out:q %p out %d error %d", 7608 stp, 0, error); 7609 return (error); 7610 } 7611 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7612 "strputmsg wake:stp %p wakes", stp); 7613 mutex_exit(&stp->sd_lock); 7614 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) 7615 if (error = straccess(stp, JCWRITE)) 7616 return (error); 7617 } 7618 out: 7619 /* 7620 * For historic reasons, applications expect EAGAIN 7621 * when data mblk could not be allocated. so change 7622 * ENOMEM back to EAGAIN 7623 */ 7624 if (error == ENOMEM) 7625 error = EAGAIN; 7626 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7627 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7628 return (error); 7629 } 7630 7631 /* 7632 * Put a message downstream. 7633 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7634 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7635 * and the fmode parameter. 7636 * 7637 * This routine handles the consolidation private flags: 7638 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7639 * MSG_HOLDSIG Hold signals while waiting for data. 7640 * MSG_IGNFLOW Don't check streams flow control. 7641 * 7642 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7643 */ 7644 int 7645 kstrputmsg( 7646 struct vnode *vp, 7647 mblk_t *mctl, 7648 struct uio *uiop, 7649 ssize_t msgsize, 7650 unsigned char pri, 7651 int flag, 7652 int fmode) 7653 { 7654 struct stdata *stp; 7655 queue_t *wqp; 7656 ssize_t rmin, rmax; 7657 int error; 7658 7659 ASSERT(vp->v_stream); 7660 stp = vp->v_stream; 7661 wqp = stp->sd_wrq; 7662 #ifdef C2_AUDIT 7663 if (audit_active) 7664 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7665 #endif 7666 7667 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { 7668 if (error = straccess(stp, JCWRITE)) { 7669 freemsg(mctl); 7670 return (error); 7671 } 7672 } 7673 7674 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7675 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7676 mutex_enter(&stp->sd_lock); 7677 error = strwriteable(stp, B_FALSE, B_TRUE); 7678 mutex_exit(&stp->sd_lock); 7679 if (error != 0) { 7680 freemsg(mctl); 7681 return (error); 7682 } 7683 } 7684 } 7685 7686 /* 7687 * Check for legal flag value. 7688 */ 7689 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 7690 case MSG_HIPRI: 7691 if ((mctl == NULL) || (pri != 0)) { 7692 freemsg(mctl); 7693 return (EINVAL); 7694 } 7695 break; 7696 case MSG_BAND: 7697 break; 7698 7699 default: 7700 freemsg(mctl); 7701 return (EINVAL); 7702 } 7703 7704 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 7705 "kstrputmsg in:stp %p", stp); 7706 7707 /* get these values from those cached in the stream head */ 7708 rmin = stp->sd_qn_minpsz; 7709 rmax = stp->sd_qn_maxpsz; 7710 7711 /* 7712 * Make sure ctl and data sizes together fall within the 7713 * limits of the max and min receive packet sizes and do 7714 * not exceed system limit. 7715 */ 7716 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7717 if (rmax == 0) { 7718 freemsg(mctl); 7719 return (ERANGE); 7720 } 7721 /* 7722 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7723 * Needed to prevent partial failures in the strmakedata loop. 7724 */ 7725 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7726 rmax = stp->sd_maxblk; 7727 7728 if (uiop == NULL) { 7729 msgsize = -1; 7730 rmin = -1; /* no range check for NULL data part */ 7731 } else { 7732 /* Use uio flags as well as the fmode parameter flags */ 7733 fmode |= uiop->uio_fmode; 7734 7735 if ((msgsize < rmin) || 7736 ((msgsize > rmax) && (rmax != INFPSZ))) { 7737 freemsg(mctl); 7738 return (ERANGE); 7739 } 7740 } 7741 7742 /* Ignore flow control in strput for HIPRI */ 7743 if (flag & MSG_HIPRI) 7744 flag |= MSG_IGNFLOW; 7745 7746 for (;;) { 7747 int done = 0; 7748 int waitflag; 7749 mblk_t *mp; 7750 7751 /* 7752 * strput will always free the ctl mblk - even when strput 7753 * fails. If MSG_IGNFLOW is set then any error returned 7754 * will cause us to break the loop, so we don't need a copy 7755 * of the message. If MSG_IGNFLOW is not set, then we can 7756 * get hit by flow control and be forced to try again. In 7757 * this case we need to have a copy of the message. We 7758 * do this using copymsg since the message may get modified 7759 * by something below us. 7760 * 7761 * We've observed that many TPI providers do not check db_ref 7762 * on the control messages but blindly reuse them for the 7763 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 7764 * friendly to such providers than using dupmsg. Also, note 7765 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 7766 * Only data messages are subject to flow control, hence 7767 * subject to this copymsg. 7768 */ 7769 if (flag & MSG_IGNFLOW) { 7770 mp = mctl; 7771 mctl = NULL; 7772 } else { 7773 do { 7774 /* 7775 * If a message has a free pointer, the message 7776 * must be dupmsg to maintain this pointer. 7777 * Code using this facility must be sure 7778 * that modules below will not change the 7779 * contents of the dblk without checking db_ref 7780 * first. If db_ref is > 1, then the module 7781 * needs to do a copymsg first. Otherwise, 7782 * the contents of the dblk may become 7783 * inconsistent because the freesmg/freeb below 7784 * may end up calling atomic_add_32_nv. 7785 * The atomic_add_32_nv in freeb (accessing 7786 * all of db_ref, db_type, db_flags, and 7787 * db_struioflag) does not prevent other threads 7788 * from concurrently trying to modify e.g. 7789 * db_type. 7790 */ 7791 if (mctl->b_datap->db_frtnp != NULL) 7792 mp = dupmsg(mctl); 7793 else 7794 mp = copymsg(mctl); 7795 7796 if (mp != NULL || mctl == NULL) 7797 break; 7798 7799 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 7800 if (error) { 7801 freemsg(mctl); 7802 return (error); 7803 } 7804 } while (mp == NULL); 7805 } 7806 /* 7807 * Verify that all of msgsize can be transferred by 7808 * strput. 7809 */ 7810 ASSERT(stp->sd_maxblk == INFPSZ || 7811 stp->sd_maxblk >= msgsize); 7812 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7813 if (error == 0) 7814 break; 7815 7816 if (error != EWOULDBLOCK) 7817 goto out; 7818 7819 /* 7820 * IF MSG_IGNFLOW is set we should have broken out of loop 7821 * above. 7822 */ 7823 ASSERT(!(flag & MSG_IGNFLOW)); 7824 mutex_enter(&stp->sd_lock); 7825 /* 7826 * Check for a missed wakeup. 7827 * Needed since strput did not hold sd_lock across 7828 * the canputnext. 7829 */ 7830 if (bcanputnext(wqp, pri)) { 7831 /* Try again */ 7832 mutex_exit(&stp->sd_lock); 7833 continue; 7834 } 7835 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 7836 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 7837 7838 waitflag = WRITEWAIT; 7839 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 7840 if (flag & MSG_HOLDSIG) 7841 waitflag |= STR_NOSIG; 7842 if (flag & MSG_IGNERROR) 7843 waitflag |= STR_NOERROR; 7844 } 7845 if (((error = strwaitq(stp, waitflag, 7846 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 7847 mutex_exit(&stp->sd_lock); 7848 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 7849 "kstrputmsg out:stp %p out %d error %d", 7850 stp, 0, error); 7851 freemsg(mctl); 7852 return (error); 7853 } 7854 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 7855 "kstrputmsg wake:stp %p wakes", stp); 7856 mutex_exit(&stp->sd_lock); 7857 if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { 7858 if (error = straccess(stp, JCWRITE)) { 7859 freemsg(mctl); 7860 return (error); 7861 } 7862 } 7863 } 7864 out: 7865 freemsg(mctl); 7866 /* 7867 * For historic reasons, applications expect EAGAIN 7868 * when data mblk could not be allocated. so change 7869 * ENOMEM back to EAGAIN 7870 */ 7871 if (error == ENOMEM) 7872 error = EAGAIN; 7873 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 7874 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 7875 return (error); 7876 } 7877 7878 /* 7879 * Determines whether the necessary conditions are set on a stream 7880 * for it to be readable, writeable, or have exceptions. 7881 * 7882 * strpoll handles the consolidation private events: 7883 * POLLNOERR Do not return POLLERR even if there are stream 7884 * head errors. 7885 * Used by sockfs. 7886 * POLLRDDATA Do not return POLLIN unless at least one message on 7887 * the queue contains one or more M_DATA mblks. Thus 7888 * when this flag is set a queue with only 7889 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 7890 * Used by sockfs to ignore T_EXDATA_IND messages. 7891 * 7892 * Note: POLLRDDATA assumes that synch streams only return messages with 7893 * an M_DATA attached (i.e. not messages consisting of only 7894 * an M_PROTO/M_PCPROTO part). 7895 */ 7896 int 7897 strpoll( 7898 struct stdata *stp, 7899 short events_arg, 7900 int anyyet, 7901 short *reventsp, 7902 struct pollhead **phpp) 7903 { 7904 int events = (ushort_t)events_arg; 7905 int retevents = 0; 7906 mblk_t *mp; 7907 qband_t *qbp; 7908 long sd_flags = stp->sd_flag; 7909 int headlocked = 0; 7910 7911 /* 7912 * For performance, a single 'if' tests for most possible edge 7913 * conditions in one shot 7914 */ 7915 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 7916 if (sd_flags & STPLEX) { 7917 *reventsp = POLLNVAL; 7918 return (EINVAL); 7919 } 7920 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 7921 (sd_flags & STRDERR)) || 7922 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 7923 (sd_flags & STWRERR))) { 7924 if (!(events & POLLNOERR)) { 7925 *reventsp = POLLERR; 7926 return (0); 7927 } 7928 } 7929 } 7930 if (sd_flags & STRHUP) { 7931 retevents |= POLLHUP; 7932 } else if (events & (POLLWRNORM | POLLWRBAND)) { 7933 queue_t *tq; 7934 queue_t *qp = stp->sd_wrq; 7935 7936 claimstr(qp); 7937 /* Find next module forward that has a service procedure */ 7938 tq = qp->q_next->q_nfsrv; 7939 ASSERT(tq != NULL); 7940 7941 polllock(&stp->sd_pollist, QLOCK(tq)); 7942 if (events & POLLWRNORM) { 7943 queue_t *sqp; 7944 7945 if (tq->q_flag & QFULL) 7946 /* ensure backq svc procedure runs */ 7947 tq->q_flag |= QWANTW; 7948 else if ((sqp = stp->sd_struiowrq) != NULL) { 7949 /* Check sync stream barrier write q */ 7950 mutex_exit(QLOCK(tq)); 7951 polllock(&stp->sd_pollist, QLOCK(sqp)); 7952 if (sqp->q_flag & QFULL) 7953 /* ensure pollwakeup() is done */ 7954 sqp->q_flag |= QWANTWSYNC; 7955 else 7956 retevents |= POLLOUT; 7957 /* More write events to process ??? */ 7958 if (! (events & POLLWRBAND)) { 7959 mutex_exit(QLOCK(sqp)); 7960 releasestr(qp); 7961 goto chkrd; 7962 } 7963 mutex_exit(QLOCK(sqp)); 7964 polllock(&stp->sd_pollist, QLOCK(tq)); 7965 } else 7966 retevents |= POLLOUT; 7967 } 7968 if (events & POLLWRBAND) { 7969 qbp = tq->q_bandp; 7970 if (qbp) { 7971 while (qbp) { 7972 if (qbp->qb_flag & QB_FULL) 7973 qbp->qb_flag |= QB_WANTW; 7974 else 7975 retevents |= POLLWRBAND; 7976 qbp = qbp->qb_next; 7977 } 7978 } else { 7979 retevents |= POLLWRBAND; 7980 } 7981 } 7982 mutex_exit(QLOCK(tq)); 7983 releasestr(qp); 7984 } 7985 chkrd: 7986 if (sd_flags & STRPRI) { 7987 retevents |= (events & POLLPRI); 7988 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 7989 queue_t *qp = _RD(stp->sd_wrq); 7990 int normevents = (events & (POLLIN | POLLRDNORM)); 7991 7992 /* 7993 * Note: Need to do polllock() here since ps_lock may be 7994 * held. See bug 4191544. 7995 */ 7996 polllock(&stp->sd_pollist, &stp->sd_lock); 7997 headlocked = 1; 7998 mp = qp->q_first; 7999 while (mp) { 8000 /* 8001 * For POLLRDDATA we scan b_cont and b_next until we 8002 * find an M_DATA. 8003 */ 8004 if ((events & POLLRDDATA) && 8005 mp->b_datap->db_type != M_DATA) { 8006 mblk_t *nmp = mp->b_cont; 8007 8008 while (nmp != NULL && 8009 nmp->b_datap->db_type != M_DATA) 8010 nmp = nmp->b_cont; 8011 if (nmp == NULL) { 8012 mp = mp->b_next; 8013 continue; 8014 } 8015 } 8016 if (mp->b_band == 0) 8017 retevents |= normevents; 8018 else 8019 retevents |= (events & (POLLIN | POLLRDBAND)); 8020 break; 8021 } 8022 if (! (retevents & normevents) && 8023 (stp->sd_wakeq & RSLEEP)) { 8024 /* 8025 * Sync stream barrier read queue has data. 8026 */ 8027 retevents |= normevents; 8028 } 8029 /* Treat eof as normal data */ 8030 if (sd_flags & STREOF) 8031 retevents |= normevents; 8032 } 8033 8034 *reventsp = (short)retevents; 8035 if (retevents) { 8036 if (headlocked) 8037 mutex_exit(&stp->sd_lock); 8038 return (0); 8039 } 8040 8041 /* 8042 * If poll() has not found any events yet, set up event cell 8043 * to wake up the poll if a requested event occurs on this 8044 * stream. Check for collisions with outstanding poll requests. 8045 */ 8046 if (!anyyet) { 8047 *phpp = &stp->sd_pollist; 8048 if (headlocked == 0) { 8049 polllock(&stp->sd_pollist, &stp->sd_lock); 8050 headlocked = 1; 8051 } 8052 stp->sd_rput_opt |= SR_POLLIN; 8053 } 8054 if (headlocked) 8055 mutex_exit(&stp->sd_lock); 8056 return (0); 8057 } 8058 8059 /* 8060 * The purpose of putback() is to assure sleeping polls/reads 8061 * are awakened when there are no new messages arriving at the, 8062 * stream head, and a message is placed back on the read queue. 8063 * 8064 * sd_lock must be held when messages are placed back on stream 8065 * head. (getq() holds sd_lock when it removes messages from 8066 * the queue) 8067 */ 8068 8069 static void 8070 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8071 { 8072 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8073 (void) putbq(q, bp); 8074 /* 8075 * A message may have come in when the sd_lock was dropped in the 8076 * calling routine. If this is the case and STR*ATMARK info was 8077 * received, need to move that from the stream head to the q_last 8078 * so that SIOCATMARK can return the proper value. 8079 */ 8080 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8081 unsigned short *flagp = &q->q_last->b_flag; 8082 uint_t b_flag = (uint_t)*flagp; 8083 8084 if (stp->sd_flag & STRATMARK) { 8085 b_flag &= ~MSGNOTMARKNEXT; 8086 b_flag |= MSGMARKNEXT; 8087 stp->sd_flag &= ~STRATMARK; 8088 } else { 8089 b_flag &= ~MSGMARKNEXT; 8090 b_flag |= MSGNOTMARKNEXT; 8091 stp->sd_flag &= ~STRNOTATMARK; 8092 } 8093 *flagp = (unsigned short) b_flag; 8094 } 8095 8096 #ifdef DEBUG 8097 /* 8098 * Make sure that the flags are not messed up. 8099 */ 8100 { 8101 mblk_t *mp; 8102 mp = q->q_last; 8103 while (mp != NULL) { 8104 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8105 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8106 mp = mp->b_cont; 8107 } 8108 } 8109 #endif 8110 if (q->q_first == bp) { 8111 short pollevents; 8112 8113 if (stp->sd_flag & RSLEEP) { 8114 stp->sd_flag &= ~RSLEEP; 8115 cv_broadcast(&q->q_wait); 8116 } 8117 if (stp->sd_flag & STRPRI) { 8118 pollevents = POLLPRI; 8119 } else { 8120 if (band == 0) { 8121 if (!(stp->sd_rput_opt & SR_POLLIN)) 8122 return; 8123 stp->sd_rput_opt &= ~SR_POLLIN; 8124 pollevents = POLLIN | POLLRDNORM; 8125 } else { 8126 pollevents = POLLIN | POLLRDBAND; 8127 } 8128 } 8129 mutex_exit(&stp->sd_lock); 8130 pollwakeup(&stp->sd_pollist, pollevents); 8131 mutex_enter(&stp->sd_lock); 8132 } 8133 } 8134 8135 /* 8136 * Return the held vnode attached to the stream head of a 8137 * given queue 8138 * It is the responsibility of the calling routine to ensure 8139 * that the queue does not go away (e.g. pop). 8140 */ 8141 vnode_t * 8142 strq2vp(queue_t *qp) 8143 { 8144 vnode_t *vp; 8145 vp = STREAM(qp)->sd_vnode; 8146 ASSERT(vp != NULL); 8147 VN_HOLD(vp); 8148 return (vp); 8149 } 8150 8151 /* 8152 * return the stream head write queue for the given vp 8153 * It is the responsibility of the calling routine to ensure 8154 * that the stream or vnode do not close. 8155 */ 8156 queue_t * 8157 strvp2wq(vnode_t *vp) 8158 { 8159 ASSERT(vp->v_stream != NULL); 8160 return (vp->v_stream->sd_wrq); 8161 } 8162 8163 /* 8164 * pollwakeup stream head 8165 * It is the responsibility of the calling routine to ensure 8166 * that the stream or vnode do not close. 8167 */ 8168 void 8169 strpollwakeup(vnode_t *vp, short event) 8170 { 8171 ASSERT(vp->v_stream); 8172 pollwakeup(&vp->v_stream->sd_pollist, event); 8173 } 8174 8175 /* 8176 * Mate the stream heads of two vnodes together. If the two vnodes are the 8177 * same, we just make the write-side point at the read-side -- otherwise, 8178 * we do a full mate. Only works on vnodes associated with streams that are 8179 * still being built and thus have only a stream head. 8180 */ 8181 void 8182 strmate(vnode_t *vp1, vnode_t *vp2) 8183 { 8184 queue_t *wrq1 = strvp2wq(vp1); 8185 queue_t *wrq2 = strvp2wq(vp2); 8186 8187 /* 8188 * Verify that there are no modules on the stream yet. We also 8189 * rely on the stream head always having a service procedure to 8190 * avoid tweaking q_nfsrv. 8191 */ 8192 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8193 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8194 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8195 8196 /* 8197 * If the queues are the same, just twist; otherwise do a full mate. 8198 */ 8199 if (wrq1 == wrq2) { 8200 wrq1->q_next = _RD(wrq1); 8201 } else { 8202 wrq1->q_next = _RD(wrq2); 8203 wrq2->q_next = _RD(wrq1); 8204 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8205 STREAM(wrq1)->sd_flag |= STRMATE; 8206 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8207 STREAM(wrq2)->sd_flag |= STRMATE; 8208 } 8209 } 8210 8211 /* 8212 * XXX will go away when console is correctly fixed. 8213 * Clean up the console PIDS, from previous I_SETSIG, 8214 * called only for cnopen which never calls strclean(). 8215 */ 8216 void 8217 str_cn_clean(struct vnode *vp) 8218 { 8219 strsig_t *ssp, *pssp, *tssp; 8220 struct stdata *stp; 8221 struct pid *pidp; 8222 int update = 0; 8223 8224 ASSERT(vp->v_stream); 8225 stp = vp->v_stream; 8226 pssp = NULL; 8227 mutex_enter(&stp->sd_lock); 8228 ssp = stp->sd_siglist; 8229 while (ssp) { 8230 mutex_enter(&pidlock); 8231 pidp = ssp->ss_pidp; 8232 /* 8233 * Get rid of PID if the proc is gone. 8234 */ 8235 if (pidp->pid_prinactive) { 8236 tssp = ssp->ss_next; 8237 if (pssp) 8238 pssp->ss_next = tssp; 8239 else 8240 stp->sd_siglist = tssp; 8241 ASSERT(pidp->pid_ref <= 1); 8242 PID_RELE(ssp->ss_pidp); 8243 mutex_exit(&pidlock); 8244 kmem_free(ssp, sizeof (strsig_t)); 8245 update = 1; 8246 ssp = tssp; 8247 continue; 8248 } else 8249 mutex_exit(&pidlock); 8250 pssp = ssp; 8251 ssp = ssp->ss_next; 8252 } 8253 if (update) { 8254 stp->sd_sigflags = 0; 8255 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8256 stp->sd_sigflags |= ssp->ss_events; 8257 } 8258 mutex_exit(&stp->sd_lock); 8259 } 8260 8261 /* 8262 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8263 */ 8264 static boolean_t 8265 msghasdata(mblk_t *bp) 8266 { 8267 for (; bp; bp = bp->b_cont) 8268 if (bp->b_datap->db_type == M_DATA) { 8269 ASSERT(bp->b_wptr >= bp->b_rptr); 8270 if (bp->b_wptr > bp->b_rptr) 8271 return (B_TRUE); 8272 } 8273 return (B_FALSE); 8274 } 8275