1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 27 * Copyright 2017 Joyent, Inc. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/errno.h> 34 #include <sys/signal.h> 35 #include <sys/stat.h> 36 #include <sys/proc.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/vnode.h> 40 #include <sys/file.h> 41 #include <sys/stream.h> 42 #include <sys/strsubr.h> 43 #include <sys/stropts.h> 44 #include <sys/tihdr.h> 45 #include <sys/var.h> 46 #include <sys/poll.h> 47 #include <sys/termio.h> 48 #include <sys/ttold.h> 49 #include <sys/systm.h> 50 #include <sys/uio.h> 51 #include <sys/cmn_err.h> 52 #include <sys/sad.h> 53 #include <sys/netstack.h> 54 #include <sys/priocntl.h> 55 #include <sys/jioctl.h> 56 #include <sys/procset.h> 57 #include <sys/session.h> 58 #include <sys/kmem.h> 59 #include <sys/filio.h> 60 #include <sys/vtrace.h> 61 #include <sys/debug.h> 62 #include <sys/strredir.h> 63 #include <sys/fs/fifonode.h> 64 #include <sys/fs/snode.h> 65 #include <sys/strlog.h> 66 #include <sys/strsun.h> 67 #include <sys/project.h> 68 #include <sys/kbio.h> 69 #include <sys/msio.h> 70 #include <sys/tty.h> 71 #include <sys/ptyvar.h> 72 #include <sys/vuid_event.h> 73 #include <sys/modctl.h> 74 #include <sys/sunddi.h> 75 #include <sys/sunldi_impl.h> 76 #include <sys/autoconf.h> 77 #include <sys/policy.h> 78 #include <sys/dld.h> 79 #include <sys/zone.h> 80 #include <c2/audit.h> 81 82 /* 83 * This define helps improve the readability of streams code while 84 * still maintaining a very old streams performance enhancement. The 85 * performance enhancement basically involved having all callers 86 * of straccess() perform the first check that straccess() will do 87 * locally before actually calling straccess(). (There by reducing 88 * the number of unnecessary calls to straccess().) 89 */ 90 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 91 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 92 straccess((x), (y))) 93 94 /* 95 * what is mblk_pull_len? 96 * 97 * If a streams message consists of many short messages, 98 * a performance degradation occurs from copyout overhead. 99 * To decrease the per mblk overhead, messages that are 100 * likely to consist of many small mblks are pulled up into 101 * one continuous chunk of memory. 102 * 103 * To avoid the processing overhead of examining every 104 * mblk, a quick heuristic is used. If the first mblk in 105 * the message is shorter than mblk_pull_len, it is likely 106 * that the rest of the mblk will be short. 107 * 108 * This heuristic was decided upon after performance tests 109 * indicated that anything more complex slowed down the main 110 * code path. 111 */ 112 #define MBLK_PULL_LEN 64 113 uint32_t mblk_pull_len = MBLK_PULL_LEN; 114 115 /* 116 * The sgttyb_handling flag controls the handling of the old BSD 117 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 118 * 119 * 0 - Emit no warnings at all and retain old, broken behavior. 120 * 1 - Emit no warnings and silently handle new semantics. 121 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 122 * (once per system invocation). Handle with new semantics. 123 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 124 * made (so that offenders drop core and are easy to debug). 125 * 126 * The "new semantics" are that TIOCGETP returns B38400 for 127 * sg_[io]speed if the corresponding value is over B38400, and that 128 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 129 * bit rate." 130 */ 131 int sgttyb_handling = 1; 132 static boolean_t sgttyb_complaint; 133 134 /* don't push drcompat module by default on Style-2 streams */ 135 static int push_drcompat = 0; 136 137 /* 138 * id value used to distinguish between different ioctl messages 139 */ 140 static uint32_t ioc_id; 141 142 static void putback(struct stdata *, queue_t *, mblk_t *, int); 143 static void strcleanall(struct vnode *); 144 static int strwsrv(queue_t *); 145 static int strdocmd(struct stdata *, struct strcmd *, cred_t *); 146 147 /* 148 * qinit and module_info structures for stream head read and write queues 149 */ 150 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 151 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 152 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 153 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 154 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 155 FIFOLOWAT }; 156 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 157 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 158 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 159 160 extern kmutex_t strresources; /* protects global resources */ 161 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 162 163 static boolean_t msghasdata(mblk_t *bp); 164 #define msgnodata(bp) (!msghasdata(bp)) 165 166 /* 167 * Stream head locking notes: 168 * There are four monitors associated with the stream head: 169 * 1. v_stream monitor: in stropen() and strclose() v_lock 170 * is held while the association of vnode and stream 171 * head is established or tested for. 172 * 2. open/close/push/pop monitor: sd_lock is held while each 173 * thread bids for exclusive access to this monitor 174 * for opening or closing a stream. In addition, this 175 * monitor is entered during pushes and pops. This 176 * guarantees that during plumbing operations there 177 * is only one thread trying to change the plumbing. 178 * Any other threads present in the stream are only 179 * using the plumbing. 180 * 3. read/write monitor: in the case of read, a thread holds 181 * sd_lock while trying to get data from the stream 182 * head queue. if there is none to fulfill a read 183 * request, it sets RSLEEP and calls cv_wait_sig() down 184 * in strwaitq() to await the arrival of new data. 185 * when new data arrives in strrput(), sd_lock is acquired 186 * before testing for RSLEEP and calling cv_broadcast(). 187 * the behavior of strwrite(), strwsrv(), and WSLEEP 188 * mirror this. 189 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 190 * thread is doing an ioctl at a time. 191 */ 192 193 static int 194 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 195 int anchor, cred_t *crp, uint_t anchor_zoneid) 196 { 197 int error; 198 fmodsw_impl_t *fp; 199 200 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 201 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 202 return (error); 203 } 204 if (stp->sd_pushcnt >= nstrpush) { 205 return (EINVAL); 206 } 207 208 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 209 stp->sd_flag |= STREOPENFAIL; 210 return (EINVAL); 211 } 212 213 /* 214 * push new module and call its open routine via qattach 215 */ 216 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 217 return (error); 218 219 /* 220 * Check to see if caller wants a STREAMS anchor 221 * put at this place in the stream, and add if so. 222 */ 223 mutex_enter(&stp->sd_lock); 224 if (anchor == stp->sd_pushcnt) { 225 stp->sd_anchor = stp->sd_pushcnt; 226 stp->sd_anchorzone = anchor_zoneid; 227 } 228 mutex_exit(&stp->sd_lock); 229 230 return (0); 231 } 232 233 /* 234 * Open a stream device. 235 */ 236 int 237 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 238 { 239 struct stdata *stp; 240 queue_t *qp; 241 int s; 242 dev_t dummydev, savedev; 243 struct autopush *ap; 244 struct dlautopush dlap; 245 int error = 0; 246 ssize_t rmin, rmax; 247 int cloneopen; 248 queue_t *brq; 249 major_t major; 250 str_stack_t *ss; 251 zoneid_t zoneid; 252 uint_t anchor; 253 254 /* 255 * If the stream already exists, wait for any open in progress 256 * to complete, then call the open function of each module and 257 * driver in the stream. Otherwise create the stream. 258 */ 259 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 260 retry: 261 mutex_enter(&vp->v_lock); 262 if ((stp = vp->v_stream) != NULL) { 263 264 /* 265 * Waiting for stream to be created to device 266 * due to another open. 267 */ 268 mutex_exit(&vp->v_lock); 269 270 if (STRMATED(stp)) { 271 struct stdata *strmatep = stp->sd_mate; 272 273 STRLOCKMATES(stp); 274 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 275 if (flag & (FNDELAY|FNONBLOCK)) { 276 error = EAGAIN; 277 mutex_exit(&strmatep->sd_lock); 278 goto ckreturn; 279 } 280 mutex_exit(&stp->sd_lock); 281 if (!cv_wait_sig(&strmatep->sd_monitor, 282 &strmatep->sd_lock)) { 283 error = EINTR; 284 mutex_exit(&strmatep->sd_lock); 285 mutex_enter(&stp->sd_lock); 286 goto ckreturn; 287 } 288 mutex_exit(&strmatep->sd_lock); 289 goto retry; 290 } 291 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 292 if (flag & (FNDELAY|FNONBLOCK)) { 293 error = EAGAIN; 294 mutex_exit(&strmatep->sd_lock); 295 goto ckreturn; 296 } 297 mutex_exit(&strmatep->sd_lock); 298 if (!cv_wait_sig(&stp->sd_monitor, 299 &stp->sd_lock)) { 300 error = EINTR; 301 goto ckreturn; 302 } 303 mutex_exit(&stp->sd_lock); 304 goto retry; 305 } 306 307 if (stp->sd_flag & (STRDERR|STWRERR)) { 308 error = EIO; 309 mutex_exit(&strmatep->sd_lock); 310 goto ckreturn; 311 } 312 313 stp->sd_flag |= STWOPEN; 314 STRUNLOCKMATES(stp); 315 } else { 316 mutex_enter(&stp->sd_lock); 317 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 318 if (flag & (FNDELAY|FNONBLOCK)) { 319 error = EAGAIN; 320 goto ckreturn; 321 } 322 if (!cv_wait_sig(&stp->sd_monitor, 323 &stp->sd_lock)) { 324 error = EINTR; 325 goto ckreturn; 326 } 327 mutex_exit(&stp->sd_lock); 328 goto retry; /* could be clone! */ 329 } 330 331 if (stp->sd_flag & (STRDERR|STWRERR)) { 332 error = EIO; 333 goto ckreturn; 334 } 335 336 stp->sd_flag |= STWOPEN; 337 mutex_exit(&stp->sd_lock); 338 } 339 340 /* 341 * Open all modules and devices down stream to notify 342 * that another user is streaming. For modules, set the 343 * last argument to MODOPEN and do not pass any open flags. 344 * Ignore dummydev since this is not the first open. 345 */ 346 claimstr(stp->sd_wrq); 347 qp = stp->sd_wrq; 348 while (_SAMESTR(qp)) { 349 qp = qp->q_next; 350 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 351 break; 352 } 353 releasestr(stp->sd_wrq); 354 mutex_enter(&stp->sd_lock); 355 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 356 stp->sd_rerror = 0; 357 stp->sd_werror = 0; 358 ckreturn: 359 cv_broadcast(&stp->sd_monitor); 360 mutex_exit(&stp->sd_lock); 361 return (error); 362 } 363 364 /* 365 * This vnode isn't streaming. SPECFS already 366 * checked for multiple vnodes pointing to the 367 * same stream, so create a stream to the driver. 368 */ 369 qp = allocq(); 370 stp = shalloc(qp); 371 372 /* 373 * Initialize stream head. shalloc() has given us 374 * exclusive access, and we have the vnode locked; 375 * we can do whatever we want with stp. 376 */ 377 stp->sd_flag = STWOPEN; 378 stp->sd_siglist = NULL; 379 stp->sd_pollist.ph_list = NULL; 380 stp->sd_sigflags = 0; 381 stp->sd_mark = NULL; 382 stp->sd_closetime = STRTIMOUT; 383 stp->sd_sidp = NULL; 384 stp->sd_pgidp = NULL; 385 stp->sd_vnode = vp; 386 stp->sd_rerror = 0; 387 stp->sd_werror = 0; 388 stp->sd_wroff = 0; 389 stp->sd_tail = 0; 390 stp->sd_iocblk = NULL; 391 stp->sd_cmdblk = NULL; 392 stp->sd_pushcnt = 0; 393 stp->sd_qn_minpsz = 0; 394 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 395 stp->sd_maxblk = INFPSZ; 396 qp->q_ptr = _WR(qp)->q_ptr = stp; 397 STREAM(qp) = STREAM(_WR(qp)) = stp; 398 vp->v_stream = stp; 399 mutex_exit(&vp->v_lock); 400 if (vp->v_type == VFIFO) { 401 stp->sd_flag |= OLDNDELAY; 402 /* 403 * This means, both for pipes and fifos 404 * strwrite will send SIGPIPE if the other 405 * end is closed. For putmsg it depends 406 * on whether it is a XPG4_2 application 407 * or not 408 */ 409 stp->sd_wput_opt = SW_SIGPIPE; 410 411 /* setq might sleep in kmem_alloc - avoid holding locks. */ 412 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 413 SQ_CI|SQ_CO, B_FALSE); 414 415 set_qend(qp); 416 stp->sd_strtab = fifo_getinfo(); 417 _WR(qp)->q_nfsrv = _WR(qp); 418 qp->q_nfsrv = qp; 419 /* 420 * Wake up others that are waiting for stream to be created. 421 */ 422 mutex_enter(&stp->sd_lock); 423 /* 424 * nothing is be pushed on stream yet, so 425 * optimized stream head packetsizes are just that 426 * of the read queue 427 */ 428 stp->sd_qn_minpsz = qp->q_minpsz; 429 stp->sd_qn_maxpsz = qp->q_maxpsz; 430 stp->sd_flag &= ~STWOPEN; 431 goto fifo_opendone; 432 } 433 /* setq might sleep in kmem_alloc - avoid holding locks. */ 434 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 435 436 set_qend(qp); 437 438 /* 439 * Open driver and create stream to it (via qattach). 440 */ 441 savedev = *devp; 442 cloneopen = (getmajor(*devp) == clone_major); 443 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 444 mutex_enter(&vp->v_lock); 445 vp->v_stream = NULL; 446 mutex_exit(&vp->v_lock); 447 mutex_enter(&stp->sd_lock); 448 cv_broadcast(&stp->sd_monitor); 449 mutex_exit(&stp->sd_lock); 450 freeq(_RD(qp)); 451 shfree(stp); 452 return (error); 453 } 454 /* 455 * Set sd_strtab after open in order to handle clonable drivers 456 */ 457 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 458 459 /* 460 * Historical note: dummydev used to be be prior to the initial 461 * open (via qattach above), which made the value seen 462 * inconsistent between an I_PUSH and an autopush of a module. 463 */ 464 dummydev = *devp; 465 466 /* 467 * For clone open of old style (Q not associated) network driver, 468 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 469 */ 470 brq = _RD(_WR(qp)->q_next); 471 major = getmajor(*devp); 472 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 473 ((brq->q_flag & _QASSOCIATED) == 0)) { 474 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 475 cmn_err(CE_WARN, "cannot push " DRMODNAME 476 " streams module"); 477 } 478 479 if (!NETWORK_DRV(major)) { 480 savedev = *devp; 481 } else { 482 /* 483 * For network devices, process differently based on the 484 * return value from dld_autopush(): 485 * 486 * 0: the passed-in device points to a GLDv3 datalink with 487 * per-link autopush configuration; use that configuration 488 * and ignore any per-driver autopush configuration. 489 * 490 * 1: the passed-in device points to a physical GLDv3 491 * datalink without per-link autopush configuration. The 492 * passed in device was changed to refer to the actual 493 * physical device (if it's not already); we use that new 494 * device to look up any per-driver autopush configuration. 495 * 496 * -1: neither of the above cases applied; use the initial 497 * device to look up any per-driver autopush configuration. 498 */ 499 switch (dld_autopush(&savedev, &dlap)) { 500 case 0: 501 zoneid = crgetzoneid(crp); 502 for (s = 0; s < dlap.dap_npush; s++) { 503 error = push_mod(qp, &dummydev, stp, 504 dlap.dap_aplist[s], dlap.dap_anchor, crp, 505 zoneid); 506 if (error != 0) 507 break; 508 } 509 goto opendone; 510 case 1: 511 break; 512 case -1: 513 savedev = *devp; 514 break; 515 } 516 } 517 /* 518 * Find the autopush configuration based on "savedev". Start with the 519 * global zone. If not found check in the local zone. 520 */ 521 zoneid = GLOBAL_ZONEID; 522 retryap: 523 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 524 netstack_str; 525 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 526 netstack_rele(ss->ss_netstack); 527 if (zoneid == GLOBAL_ZONEID) { 528 /* 529 * None found. Also look in the zone's autopush table. 530 */ 531 zoneid = crgetzoneid(crp); 532 if (zoneid != GLOBAL_ZONEID) 533 goto retryap; 534 } 535 goto opendone; 536 } 537 anchor = ap->ap_anchor; 538 zoneid = crgetzoneid(crp); 539 for (s = 0; s < ap->ap_npush; s++) { 540 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 541 anchor, crp, zoneid); 542 if (error != 0) 543 break; 544 } 545 sad_ap_rele(ap, ss); 546 netstack_rele(ss->ss_netstack); 547 548 opendone: 549 550 /* 551 * let specfs know that open failed part way through 552 */ 553 if (error) { 554 mutex_enter(&stp->sd_lock); 555 stp->sd_flag |= STREOPENFAIL; 556 mutex_exit(&stp->sd_lock); 557 } 558 559 /* 560 * Wake up others that are waiting for stream to be created. 561 */ 562 mutex_enter(&stp->sd_lock); 563 stp->sd_flag &= ~STWOPEN; 564 565 /* 566 * As a performance concern we are caching the values of 567 * q_minpsz and q_maxpsz of the module below the stream 568 * head in the stream head. 569 */ 570 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 571 rmin = stp->sd_wrq->q_next->q_minpsz; 572 rmax = stp->sd_wrq->q_next->q_maxpsz; 573 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 574 575 /* do this processing here as a performance concern */ 576 if (strmsgsz != 0) { 577 if (rmax == INFPSZ) 578 rmax = strmsgsz; 579 else 580 rmax = MIN(strmsgsz, rmax); 581 } 582 583 mutex_enter(QLOCK(stp->sd_wrq)); 584 stp->sd_qn_minpsz = rmin; 585 stp->sd_qn_maxpsz = rmax; 586 mutex_exit(QLOCK(stp->sd_wrq)); 587 588 fifo_opendone: 589 cv_broadcast(&stp->sd_monitor); 590 mutex_exit(&stp->sd_lock); 591 return (error); 592 } 593 594 static int strsink(queue_t *, mblk_t *); 595 static struct qinit deadrend = { 596 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 597 }; 598 static struct qinit deadwend = { 599 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 600 }; 601 602 /* 603 * Close a stream. 604 * This is called from closef() on the last close of an open stream. 605 * Strclean() will already have removed the siglist and pollist 606 * information, so all that remains is to remove all multiplexor links 607 * for the stream, pop all the modules (and the driver), and free the 608 * stream structure. 609 */ 610 611 int 612 strclose(struct vnode *vp, int flag, cred_t *crp) 613 { 614 struct stdata *stp; 615 queue_t *qp; 616 int rval; 617 int freestp = 1; 618 queue_t *rmq; 619 620 TRACE_1(TR_FAC_STREAMS_FR, 621 TR_STRCLOSE, "strclose:%p", vp); 622 ASSERT(vp->v_stream); 623 624 stp = vp->v_stream; 625 ASSERT(!(stp->sd_flag & STPLEX)); 626 qp = stp->sd_wrq; 627 628 /* 629 * Needed so that strpoll will return non-zero for this fd. 630 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 631 */ 632 mutex_enter(&stp->sd_lock); 633 stp->sd_flag |= STRHUP; 634 mutex_exit(&stp->sd_lock); 635 636 /* 637 * If the registered process or process group did not have an 638 * open instance of this stream then strclean would not be 639 * called. Thus at the time of closing all remaining siglist entries 640 * are removed. 641 */ 642 if (stp->sd_siglist != NULL) 643 strcleanall(vp); 644 645 ASSERT(stp->sd_siglist == NULL); 646 ASSERT(stp->sd_sigflags == 0); 647 648 if (STRMATED(stp)) { 649 struct stdata *strmatep = stp->sd_mate; 650 int waited = 1; 651 652 STRLOCKMATES(stp); 653 while (waited) { 654 waited = 0; 655 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 656 mutex_exit(&strmatep->sd_lock); 657 cv_wait(&stp->sd_monitor, &stp->sd_lock); 658 mutex_exit(&stp->sd_lock); 659 STRLOCKMATES(stp); 660 waited = 1; 661 } 662 while (strmatep->sd_flag & 663 (STWOPEN|STRCLOSE|STRPLUMB)) { 664 mutex_exit(&stp->sd_lock); 665 cv_wait(&strmatep->sd_monitor, 666 &strmatep->sd_lock); 667 mutex_exit(&strmatep->sd_lock); 668 STRLOCKMATES(stp); 669 waited = 1; 670 } 671 } 672 stp->sd_flag |= STRCLOSE; 673 STRUNLOCKMATES(stp); 674 } else { 675 mutex_enter(&stp->sd_lock); 676 stp->sd_flag |= STRCLOSE; 677 mutex_exit(&stp->sd_lock); 678 } 679 680 ASSERT(qp->q_first == NULL); /* No more delayed write */ 681 682 /* Check if an I_LINK was ever done on this stream */ 683 if (stp->sd_flag & STRHASLINKS) { 684 netstack_t *ns; 685 str_stack_t *ss; 686 687 ns = netstack_find_by_cred(crp); 688 ASSERT(ns != NULL); 689 ss = ns->netstack_str; 690 ASSERT(ss != NULL); 691 692 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 693 netstack_rele(ss->ss_netstack); 694 } 695 696 while (_SAMESTR(qp)) { 697 /* 698 * Holding sd_lock prevents q_next from changing in 699 * this stream. 700 */ 701 mutex_enter(&stp->sd_lock); 702 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 703 704 /* 705 * sleep until awakened by strwsrv() or timeout 706 */ 707 for (;;) { 708 mutex_enter(QLOCK(qp->q_next)); 709 if (!(qp->q_next->q_mblkcnt)) { 710 mutex_exit(QLOCK(qp->q_next)); 711 break; 712 } 713 stp->sd_flag |= WSLEEP; 714 715 /* ensure strwsrv gets enabled */ 716 qp->q_next->q_flag |= QWANTW; 717 mutex_exit(QLOCK(qp->q_next)); 718 /* get out if we timed out or recv'd a signal */ 719 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 720 stp->sd_closetime, 0) <= 0) { 721 break; 722 } 723 } 724 stp->sd_flag &= ~WSLEEP; 725 } 726 mutex_exit(&stp->sd_lock); 727 728 rmq = qp->q_next; 729 if (rmq->q_flag & QISDRV) { 730 ASSERT(!_SAMESTR(rmq)); 731 wait_sq_svc(_RD(qp)->q_syncq); 732 } 733 734 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 735 } 736 737 /* 738 * Since we call pollwakeup in close() now, the poll list should 739 * be empty in most cases. The only exception is the layered devices 740 * (e.g. the console drivers with redirection modules pushed on top 741 * of it). We have to do this after calling qdetach() because 742 * the redirection module won't have torn down the console 743 * redirection until after qdetach() has been invoked. 744 */ 745 if (stp->sd_pollist.ph_list != NULL) { 746 pollwakeup(&stp->sd_pollist, POLLERR); 747 pollhead_clean(&stp->sd_pollist); 748 } 749 ASSERT(stp->sd_pollist.ph_list == NULL); 750 ASSERT(stp->sd_sidp == NULL); 751 ASSERT(stp->sd_pgidp == NULL); 752 753 /* Prevent qenable from re-enabling the stream head queue */ 754 disable_svc(_RD(qp)); 755 756 /* 757 * Wait until service procedure of each queue is 758 * run, if QINSERVICE is set. 759 */ 760 wait_svc(_RD(qp)); 761 762 /* 763 * Now, flush both queues. 764 */ 765 flushq(_RD(qp), FLUSHALL); 766 flushq(qp, FLUSHALL); 767 768 /* 769 * If the write queue of the stream head is pointing to a 770 * read queue, we have a twisted stream. If the read queue 771 * is alive, convert the stream head queues into a dead end. 772 * If the read queue is dead, free the dead pair. 773 */ 774 if (qp->q_next && !_SAMESTR(qp)) { 775 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 776 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 777 shfree(qp->q_next->q_stream); 778 freeq(qp->q_next); 779 freeq(_RD(qp)); 780 } else if (qp->q_next == _RD(qp)) { /* fifo */ 781 freeq(_RD(qp)); 782 } else { /* pipe */ 783 freestp = 0; 784 /* 785 * The q_info pointers are never accessed when 786 * SQLOCK is held. 787 */ 788 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 789 mutex_enter(SQLOCK(qp->q_syncq)); 790 qp->q_qinfo = &deadwend; 791 _RD(qp)->q_qinfo = &deadrend; 792 mutex_exit(SQLOCK(qp->q_syncq)); 793 } 794 } else { 795 freeq(_RD(qp)); /* free stream head queue pair */ 796 } 797 798 mutex_enter(&vp->v_lock); 799 if (stp->sd_iocblk) { 800 if (stp->sd_iocblk != (mblk_t *)-1) { 801 freemsg(stp->sd_iocblk); 802 } 803 stp->sd_iocblk = NULL; 804 } 805 stp->sd_vnode = NULL; 806 vp->v_stream = NULL; 807 mutex_exit(&vp->v_lock); 808 mutex_enter(&stp->sd_lock); 809 freemsg(stp->sd_cmdblk); 810 stp->sd_cmdblk = NULL; 811 stp->sd_flag &= ~STRCLOSE; 812 cv_broadcast(&stp->sd_monitor); 813 mutex_exit(&stp->sd_lock); 814 815 if (freestp) 816 shfree(stp); 817 return (0); 818 } 819 820 static int 821 strsink(queue_t *q, mblk_t *bp) 822 { 823 struct copyresp *resp; 824 825 switch (bp->b_datap->db_type) { 826 case M_FLUSH: 827 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 828 *bp->b_rptr &= ~FLUSHR; 829 bp->b_flag |= MSGNOLOOP; 830 /* 831 * Protect against the driver passing up 832 * messages after it has done a qprocsoff. 833 */ 834 if (_OTHERQ(q)->q_next == NULL) 835 freemsg(bp); 836 else 837 qreply(q, bp); 838 } else { 839 freemsg(bp); 840 } 841 break; 842 843 case M_COPYIN: 844 case M_COPYOUT: 845 if (bp->b_cont) { 846 freemsg(bp->b_cont); 847 bp->b_cont = NULL; 848 } 849 bp->b_datap->db_type = M_IOCDATA; 850 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 851 resp = (struct copyresp *)bp->b_rptr; 852 resp->cp_rval = (caddr_t)1; /* failure */ 853 /* 854 * Protect against the driver passing up 855 * messages after it has done a qprocsoff. 856 */ 857 if (_OTHERQ(q)->q_next == NULL) 858 freemsg(bp); 859 else 860 qreply(q, bp); 861 break; 862 863 case M_IOCTL: 864 if (bp->b_cont) { 865 freemsg(bp->b_cont); 866 bp->b_cont = NULL; 867 } 868 bp->b_datap->db_type = M_IOCNAK; 869 /* 870 * Protect against the driver passing up 871 * messages after it has done a qprocsoff. 872 */ 873 if (_OTHERQ(q)->q_next == NULL) 874 freemsg(bp); 875 else 876 qreply(q, bp); 877 break; 878 879 default: 880 freemsg(bp); 881 break; 882 } 883 884 return (0); 885 } 886 887 /* 888 * Clean up after a process when it closes a stream. This is called 889 * from closef for all closes, whereas strclose is called only for the 890 * last close on a stream. The siglist is scanned for entries for the 891 * current process, and these are removed. 892 */ 893 void 894 strclean(struct vnode *vp) 895 { 896 strsig_t *ssp, *pssp, *tssp; 897 stdata_t *stp; 898 int update = 0; 899 900 TRACE_1(TR_FAC_STREAMS_FR, 901 TR_STRCLEAN, "strclean:%p", vp); 902 stp = vp->v_stream; 903 pssp = NULL; 904 mutex_enter(&stp->sd_lock); 905 ssp = stp->sd_siglist; 906 while (ssp) { 907 if (ssp->ss_pidp == curproc->p_pidp) { 908 tssp = ssp->ss_next; 909 if (pssp) 910 pssp->ss_next = tssp; 911 else 912 stp->sd_siglist = tssp; 913 mutex_enter(&pidlock); 914 PID_RELE(ssp->ss_pidp); 915 mutex_exit(&pidlock); 916 kmem_free(ssp, sizeof (strsig_t)); 917 update = 1; 918 ssp = tssp; 919 } else { 920 pssp = ssp; 921 ssp = ssp->ss_next; 922 } 923 } 924 if (update) { 925 stp->sd_sigflags = 0; 926 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 927 stp->sd_sigflags |= ssp->ss_events; 928 } 929 mutex_exit(&stp->sd_lock); 930 } 931 932 /* 933 * Used on the last close to remove any remaining items on the siglist. 934 * These could be present on the siglist due to I_ESETSIG calls that 935 * use process groups or processed that do not have an open file descriptor 936 * for this stream (Such entries would not be removed by strclean). 937 */ 938 static void 939 strcleanall(struct vnode *vp) 940 { 941 strsig_t *ssp, *nssp; 942 stdata_t *stp; 943 944 stp = vp->v_stream; 945 mutex_enter(&stp->sd_lock); 946 ssp = stp->sd_siglist; 947 stp->sd_siglist = NULL; 948 while (ssp) { 949 nssp = ssp->ss_next; 950 mutex_enter(&pidlock); 951 PID_RELE(ssp->ss_pidp); 952 mutex_exit(&pidlock); 953 kmem_free(ssp, sizeof (strsig_t)); 954 ssp = nssp; 955 } 956 stp->sd_sigflags = 0; 957 mutex_exit(&stp->sd_lock); 958 } 959 960 /* 961 * Retrieve the next message from the logical stream head read queue 962 * using either rwnext (if sync stream) or getq_noenab. 963 * It is the callers responsibility to call qbackenable after 964 * it is finished with the message. The caller should not call 965 * qbackenable until after any putback calls to avoid spurious backenabling. 966 */ 967 mblk_t * 968 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 969 int *errorp) 970 { 971 mblk_t *bp; 972 int error; 973 ssize_t rbytes = 0; 974 975 /* Holding sd_lock prevents the read queue from changing */ 976 ASSERT(MUTEX_HELD(&stp->sd_lock)); 977 978 if (uiop != NULL && stp->sd_struiordq != NULL && 979 q->q_first == NULL && 980 (!first || (stp->sd_wakeq & RSLEEP))) { 981 /* 982 * Stream supports rwnext() for the read side. 983 * If this is the first time we're called by e.g. strread 984 * only do the downcall if there is a deferred wakeup 985 * (registered in sd_wakeq). 986 */ 987 struiod_t uiod; 988 989 if (first) 990 stp->sd_wakeq &= ~RSLEEP; 991 992 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 993 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 994 uiod.d_mp = 0; 995 /* 996 * Mark that a thread is in rwnext on the read side 997 * to prevent strrput from nacking ioctls immediately. 998 * When the last concurrent rwnext returns 999 * the ioctls are nack'ed. 1000 */ 1001 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1002 stp->sd_struiodnak++; 1003 /* 1004 * Note: rwnext will drop sd_lock. 1005 */ 1006 error = rwnext(q, &uiod); 1007 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1008 mutex_enter(&stp->sd_lock); 1009 stp->sd_struiodnak--; 1010 while (stp->sd_struiodnak == 0 && 1011 ((bp = stp->sd_struionak) != NULL)) { 1012 stp->sd_struionak = bp->b_next; 1013 bp->b_next = NULL; 1014 bp->b_datap->db_type = M_IOCNAK; 1015 /* 1016 * Protect against the driver passing up 1017 * messages after it has done a qprocsoff. 1018 */ 1019 if (_OTHERQ(q)->q_next == NULL) 1020 freemsg(bp); 1021 else { 1022 mutex_exit(&stp->sd_lock); 1023 qreply(q, bp); 1024 mutex_enter(&stp->sd_lock); 1025 } 1026 } 1027 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1028 if (error == 0 || error == EWOULDBLOCK) { 1029 if ((bp = uiod.d_mp) != NULL) { 1030 *errorp = 0; 1031 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1032 return (bp); 1033 } 1034 error = 0; 1035 } else if (error == EINVAL) { 1036 /* 1037 * The stream plumbing must have 1038 * changed while we were away, so 1039 * just turn off rwnext()s. 1040 */ 1041 error = 0; 1042 } else if (error == EBUSY) { 1043 /* 1044 * The module might have data in transit using putnext 1045 * Fall back on waiting + getq. 1046 */ 1047 error = 0; 1048 } else { 1049 *errorp = error; 1050 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1051 return (NULL); 1052 } 1053 /* 1054 * Try a getq in case a rwnext() generated mblk 1055 * has bubbled up via strrput(). 1056 */ 1057 } 1058 *errorp = 0; 1059 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1060 1061 /* 1062 * If we have a valid uio, try and use this as a guide for how 1063 * many bytes to retrieve from the queue via getq_noenab(). 1064 * Doing this can avoid unneccesary counting of overlong 1065 * messages in putback(). We currently only do this for sockets 1066 * and only if there is no sd_rputdatafunc hook. 1067 * 1068 * The sd_rputdatafunc hook transforms the entire message 1069 * before any bytes in it can be given to a client. So, rbytes 1070 * must be 0 if there is a hook. 1071 */ 1072 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) && 1073 (stp->sd_rputdatafunc == NULL)) 1074 rbytes = uiop->uio_resid; 1075 1076 return (getq_noenab(q, rbytes)); 1077 } 1078 1079 /* 1080 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1081 * If the message does not fit in the uio the remainder of it is returned; 1082 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1083 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1084 * the error code, the message is consumed, and NULL is returned. 1085 */ 1086 static mblk_t * 1087 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1088 { 1089 int error; 1090 ptrdiff_t n; 1091 mblk_t *nbp; 1092 1093 ASSERT(bp->b_wptr >= bp->b_rptr); 1094 1095 do { 1096 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1097 ASSERT(n > 0); 1098 1099 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1100 if (error != 0) { 1101 freemsg(bp); 1102 *errorp = error; 1103 return (NULL); 1104 } 1105 } 1106 1107 bp->b_rptr += n; 1108 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1109 nbp = bp; 1110 bp = bp->b_cont; 1111 freeb(nbp); 1112 } 1113 } while (bp != NULL && uiop->uio_resid > 0); 1114 1115 *errorp = 0; 1116 return (bp); 1117 } 1118 1119 /* 1120 * Read a stream according to the mode flags in sd_flag: 1121 * 1122 * (default mode) - Byte stream, msg boundaries are ignored 1123 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1124 * any data remaining in msg 1125 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1126 * any remaining data on head of read queue 1127 * 1128 * Consume readable messages on the front of the queue until 1129 * ttolwp(curthread)->lwp_count 1130 * is satisfied, the readable messages are exhausted, or a message 1131 * boundary is reached in a message mode. If no data was read and 1132 * the stream was not opened with the NDELAY flag, block until data arrives. 1133 * Otherwise return the data read and update the count. 1134 * 1135 * In default mode a 0 length message signifies end-of-file and terminates 1136 * a read in progress. The 0 length message is removed from the queue 1137 * only if it is the only message read (no data is read). 1138 * 1139 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1140 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1141 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1142 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1143 * are unlinked from and M_DATA blocks in the message, the protos are 1144 * thrown away, and the data is read. 1145 */ 1146 /* ARGSUSED */ 1147 int 1148 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1149 { 1150 struct stdata *stp; 1151 mblk_t *bp, *nbp; 1152 queue_t *q; 1153 int error = 0; 1154 uint_t old_sd_flag; 1155 int first; 1156 char rflg; 1157 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1158 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1159 short delim; 1160 unsigned char pri = 0; 1161 char waitflag; 1162 unsigned char type; 1163 1164 TRACE_1(TR_FAC_STREAMS_FR, 1165 TR_STRREAD_ENTER, "strread:%p", vp); 1166 ASSERT(vp->v_stream); 1167 stp = vp->v_stream; 1168 1169 mutex_enter(&stp->sd_lock); 1170 1171 if ((error = i_straccess(stp, JCREAD)) != 0) { 1172 mutex_exit(&stp->sd_lock); 1173 return (error); 1174 } 1175 1176 if (stp->sd_flag & (STRDERR|STPLEX)) { 1177 error = strgeterr(stp, STRDERR|STPLEX, 0); 1178 if (error != 0) { 1179 mutex_exit(&stp->sd_lock); 1180 return (error); 1181 } 1182 } 1183 1184 /* 1185 * Loop terminates when uiop->uio_resid == 0. 1186 */ 1187 rflg = 0; 1188 waitflag = READWAIT; 1189 q = _RD(stp->sd_wrq); 1190 for (;;) { 1191 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1192 old_sd_flag = stp->sd_flag; 1193 mark = 0; 1194 delim = 0; 1195 first = 1; 1196 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1197 int done = 0; 1198 1199 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1200 1201 if (error != 0) 1202 goto oops; 1203 1204 if (stp->sd_flag & (STRHUP|STREOF)) { 1205 goto oops; 1206 } 1207 if (rflg && !(stp->sd_flag & STRDELIM)) { 1208 goto oops; 1209 } 1210 /* 1211 * If a read(fd,buf,0) has been done, there is no 1212 * need to sleep. We always have zero bytes to 1213 * return. 1214 */ 1215 if (uiop->uio_resid == 0) { 1216 goto oops; 1217 } 1218 1219 qbackenable(q, 0); 1220 1221 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1222 "strread calls strwaitq:%p, %p, %p", 1223 vp, uiop, crp); 1224 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1225 uiop->uio_fmode, -1, &done)) != 0 || done) { 1226 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1227 "strread error or done:%p, %p, %p", 1228 vp, uiop, crp); 1229 if ((uiop->uio_fmode & FNDELAY) && 1230 (stp->sd_flag & OLDNDELAY) && 1231 (error == EAGAIN)) 1232 error = 0; 1233 goto oops; 1234 } 1235 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1236 "strread awakes:%p, %p, %p", vp, uiop, crp); 1237 if ((error = i_straccess(stp, JCREAD)) != 0) { 1238 goto oops; 1239 } 1240 first = 0; 1241 } 1242 1243 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1244 ASSERT(bp); 1245 pri = bp->b_band; 1246 /* 1247 * Extract any mark information. If the message is not 1248 * completely consumed this information will be put in the mblk 1249 * that is putback. 1250 * If MSGMARKNEXT is set and the message is completely consumed 1251 * the STRATMARK flag will be set below. Likewise, if 1252 * MSGNOTMARKNEXT is set and the message is 1253 * completely consumed STRNOTATMARK will be set. 1254 * 1255 * For some unknown reason strread only breaks the read at the 1256 * last mark. 1257 */ 1258 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1259 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1260 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1261 if (mark != 0 && bp == stp->sd_mark) { 1262 if (rflg) { 1263 putback(stp, q, bp, pri); 1264 goto oops; 1265 } 1266 mark |= _LASTMARK; 1267 stp->sd_mark = NULL; 1268 } 1269 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1270 delim = 1; 1271 mutex_exit(&stp->sd_lock); 1272 1273 if (STREAM_NEEDSERVICE(stp)) 1274 stream_runservice(stp); 1275 1276 type = bp->b_datap->db_type; 1277 1278 switch (type) { 1279 1280 case M_DATA: 1281 ismdata: 1282 if (msgnodata(bp)) { 1283 if (mark || delim) { 1284 freemsg(bp); 1285 } else if (rflg) { 1286 1287 /* 1288 * If already read data put zero 1289 * length message back on queue else 1290 * free msg and return 0. 1291 */ 1292 bp->b_band = pri; 1293 mutex_enter(&stp->sd_lock); 1294 putback(stp, q, bp, pri); 1295 mutex_exit(&stp->sd_lock); 1296 } else { 1297 freemsg(bp); 1298 } 1299 error = 0; 1300 goto oops1; 1301 } 1302 1303 rflg = 1; 1304 waitflag |= NOINTR; 1305 bp = struiocopyout(bp, uiop, &error); 1306 if (error != 0) 1307 goto oops1; 1308 1309 mutex_enter(&stp->sd_lock); 1310 if (bp) { 1311 /* 1312 * Have remaining data in message. 1313 * Free msg if in discard mode. 1314 */ 1315 if (stp->sd_read_opt & RD_MSGDIS) { 1316 freemsg(bp); 1317 } else { 1318 bp->b_band = pri; 1319 if ((mark & _LASTMARK) && 1320 (stp->sd_mark == NULL)) 1321 stp->sd_mark = bp; 1322 bp->b_flag |= mark & ~_LASTMARK; 1323 if (delim) 1324 bp->b_flag |= MSGDELIM; 1325 if (msgnodata(bp)) 1326 freemsg(bp); 1327 else 1328 putback(stp, q, bp, pri); 1329 } 1330 } else { 1331 /* 1332 * Consumed the complete message. 1333 * Move the MSG*MARKNEXT information 1334 * to the stream head just in case 1335 * the read queue becomes empty. 1336 * 1337 * If the stream head was at the mark 1338 * (STRATMARK) before we dropped sd_lock above 1339 * and some data was consumed then we have 1340 * moved past the mark thus STRATMARK is 1341 * cleared. However, if a message arrived in 1342 * strrput during the copyout above causing 1343 * STRATMARK to be set we can not clear that 1344 * flag. 1345 */ 1346 if (mark & 1347 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1348 if (mark & MSGMARKNEXT) { 1349 stp->sd_flag &= ~STRNOTATMARK; 1350 stp->sd_flag |= STRATMARK; 1351 } else if (mark & MSGNOTMARKNEXT) { 1352 stp->sd_flag &= ~STRATMARK; 1353 stp->sd_flag |= STRNOTATMARK; 1354 } else { 1355 stp->sd_flag &= 1356 ~(STRATMARK|STRNOTATMARK); 1357 } 1358 } else if (rflg && (old_sd_flag & STRATMARK)) { 1359 stp->sd_flag &= ~STRATMARK; 1360 } 1361 } 1362 1363 /* 1364 * Check for signal messages at the front of the read 1365 * queue and generate the signal(s) if appropriate. 1366 * The only signal that can be on queue is M_SIG at 1367 * this point. 1368 */ 1369 while ((((bp = q->q_first)) != NULL) && 1370 (bp->b_datap->db_type == M_SIG)) { 1371 bp = getq_noenab(q, 0); 1372 /* 1373 * sd_lock is held so the content of the 1374 * read queue can not change. 1375 */ 1376 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG); 1377 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 1378 mutex_exit(&stp->sd_lock); 1379 freemsg(bp); 1380 if (STREAM_NEEDSERVICE(stp)) 1381 stream_runservice(stp); 1382 mutex_enter(&stp->sd_lock); 1383 } 1384 1385 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1386 delim || 1387 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1388 goto oops; 1389 } 1390 continue; 1391 1392 case M_SIG: 1393 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1394 freemsg(bp); 1395 mutex_enter(&stp->sd_lock); 1396 continue; 1397 1398 case M_PROTO: 1399 case M_PCPROTO: 1400 /* 1401 * Only data messages are readable. 1402 * Any others generate an error, unless 1403 * RD_PROTDIS or RD_PROTDAT is set. 1404 */ 1405 if (stp->sd_read_opt & RD_PROTDAT) { 1406 for (nbp = bp; nbp; nbp = nbp->b_next) { 1407 if ((nbp->b_datap->db_type == 1408 M_PROTO) || 1409 (nbp->b_datap->db_type == 1410 M_PCPROTO)) { 1411 nbp->b_datap->db_type = M_DATA; 1412 } else { 1413 break; 1414 } 1415 } 1416 /* 1417 * clear stream head hi pri flag based on 1418 * first message 1419 */ 1420 if (type == M_PCPROTO) { 1421 mutex_enter(&stp->sd_lock); 1422 stp->sd_flag &= ~STRPRI; 1423 mutex_exit(&stp->sd_lock); 1424 } 1425 goto ismdata; 1426 } else if (stp->sd_read_opt & RD_PROTDIS) { 1427 /* 1428 * discard non-data messages 1429 */ 1430 while (bp && 1431 ((bp->b_datap->db_type == M_PROTO) || 1432 (bp->b_datap->db_type == M_PCPROTO))) { 1433 nbp = unlinkb(bp); 1434 freeb(bp); 1435 bp = nbp; 1436 } 1437 /* 1438 * clear stream head hi pri flag based on 1439 * first message 1440 */ 1441 if (type == M_PCPROTO) { 1442 mutex_enter(&stp->sd_lock); 1443 stp->sd_flag &= ~STRPRI; 1444 mutex_exit(&stp->sd_lock); 1445 } 1446 if (bp) { 1447 bp->b_band = pri; 1448 goto ismdata; 1449 } else { 1450 break; 1451 } 1452 } 1453 /* FALLTHRU */ 1454 case M_PASSFP: 1455 if ((bp->b_datap->db_type == M_PASSFP) && 1456 (stp->sd_read_opt & RD_PROTDIS)) { 1457 freemsg(bp); 1458 break; 1459 } 1460 mutex_enter(&stp->sd_lock); 1461 putback(stp, q, bp, pri); 1462 mutex_exit(&stp->sd_lock); 1463 if (rflg == 0) 1464 error = EBADMSG; 1465 goto oops1; 1466 1467 default: 1468 /* 1469 * Garbage on stream head read queue. 1470 */ 1471 cmn_err(CE_WARN, "bad %x found at stream head\n", 1472 bp->b_datap->db_type); 1473 freemsg(bp); 1474 goto oops1; 1475 } 1476 mutex_enter(&stp->sd_lock); 1477 } 1478 oops: 1479 mutex_exit(&stp->sd_lock); 1480 oops1: 1481 qbackenable(q, pri); 1482 return (error); 1483 #undef _LASTMARK 1484 } 1485 1486 /* 1487 * Default processing of M_PROTO/M_PCPROTO messages. 1488 * Determine which wakeups and signals are needed. 1489 * This can be replaced by a user-specified procedure for kernel users 1490 * of STREAMS. 1491 */ 1492 /* ARGSUSED */ 1493 mblk_t * 1494 strrput_proto(vnode_t *vp, mblk_t *mp, 1495 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1496 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1497 { 1498 *wakeups = RSLEEP; 1499 *allmsgsigs = 0; 1500 1501 switch (mp->b_datap->db_type) { 1502 case M_PROTO: 1503 if (mp->b_band == 0) { 1504 *firstmsgsigs = S_INPUT | S_RDNORM; 1505 *pollwakeups = POLLIN | POLLRDNORM; 1506 } else { 1507 *firstmsgsigs = S_INPUT | S_RDBAND; 1508 *pollwakeups = POLLIN | POLLRDBAND; 1509 } 1510 break; 1511 case M_PCPROTO: 1512 *firstmsgsigs = S_HIPRI; 1513 *pollwakeups = POLLPRI; 1514 break; 1515 } 1516 return (mp); 1517 } 1518 1519 /* 1520 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1521 * M_PASSFP messages. 1522 * Determine which wakeups and signals are needed. 1523 * This can be replaced by a user-specified procedure for kernel users 1524 * of STREAMS. 1525 */ 1526 /* ARGSUSED */ 1527 mblk_t * 1528 strrput_misc(vnode_t *vp, mblk_t *mp, 1529 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1530 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1531 { 1532 *wakeups = 0; 1533 *firstmsgsigs = 0; 1534 *allmsgsigs = 0; 1535 *pollwakeups = 0; 1536 return (mp); 1537 } 1538 1539 /* 1540 * Stream read put procedure. Called from downstream driver/module 1541 * with messages for the stream head. Data, protocol, and in-stream 1542 * signal messages are placed on the queue, others are handled directly. 1543 */ 1544 int 1545 strrput(queue_t *q, mblk_t *bp) 1546 { 1547 struct stdata *stp; 1548 ulong_t rput_opt; 1549 strwakeup_t wakeups; 1550 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1551 strsigset_t allmsgsigs; /* Signals for all messages */ 1552 strsigset_t signals; /* Signals events to generate */ 1553 strpollset_t pollwakeups; 1554 mblk_t *nextbp; 1555 uchar_t band = 0; 1556 int hipri_sig; 1557 1558 stp = (struct stdata *)q->q_ptr; 1559 /* 1560 * Use rput_opt for optimized access to the SR_ flags except 1561 * SR_POLLIN. That flag has to be checked under sd_lock since it 1562 * is modified by strpoll(). 1563 */ 1564 rput_opt = stp->sd_rput_opt; 1565 1566 ASSERT(qclaimed(q)); 1567 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1568 "strrput called with message type:q %p bp %p", q, bp); 1569 1570 /* 1571 * Perform initial processing and pass to the parameterized functions. 1572 */ 1573 ASSERT(bp->b_next == NULL); 1574 1575 switch (bp->b_datap->db_type) { 1576 case M_DATA: 1577 /* 1578 * sockfs is the only consumer of STREOF and when it is set, 1579 * it implies that the receiver is not interested in receiving 1580 * any more data, hence the mblk is freed to prevent unnecessary 1581 * message queueing at the stream head. 1582 */ 1583 if (stp->sd_flag == STREOF) { 1584 freemsg(bp); 1585 return (0); 1586 } 1587 if ((rput_opt & SR_IGN_ZEROLEN) && 1588 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1589 /* 1590 * Ignore zero-length M_DATA messages. These might be 1591 * generated by some transports. 1592 * The zero-length M_DATA messages, even if they 1593 * are ignored, should effect the atmark tracking and 1594 * should wake up a thread sleeping in strwaitmark. 1595 */ 1596 mutex_enter(&stp->sd_lock); 1597 if (bp->b_flag & MSGMARKNEXT) { 1598 /* 1599 * Record the position of the mark either 1600 * in q_last or in STRATMARK. 1601 */ 1602 if (q->q_last != NULL) { 1603 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1604 q->q_last->b_flag |= MSGMARKNEXT; 1605 } else { 1606 stp->sd_flag &= ~STRNOTATMARK; 1607 stp->sd_flag |= STRATMARK; 1608 } 1609 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1610 /* 1611 * Record that this is not the position of 1612 * the mark either in q_last or in 1613 * STRNOTATMARK. 1614 */ 1615 if (q->q_last != NULL) { 1616 q->q_last->b_flag &= ~MSGMARKNEXT; 1617 q->q_last->b_flag |= MSGNOTMARKNEXT; 1618 } else { 1619 stp->sd_flag &= ~STRATMARK; 1620 stp->sd_flag |= STRNOTATMARK; 1621 } 1622 } 1623 if (stp->sd_flag & RSLEEP) { 1624 stp->sd_flag &= ~RSLEEP; 1625 cv_broadcast(&q->q_wait); 1626 } 1627 mutex_exit(&stp->sd_lock); 1628 freemsg(bp); 1629 return (0); 1630 } 1631 wakeups = RSLEEP; 1632 if (bp->b_band == 0) { 1633 firstmsgsigs = S_INPUT | S_RDNORM; 1634 pollwakeups = POLLIN | POLLRDNORM; 1635 } else { 1636 firstmsgsigs = S_INPUT | S_RDBAND; 1637 pollwakeups = POLLIN | POLLRDBAND; 1638 } 1639 if (rput_opt & SR_SIGALLDATA) 1640 allmsgsigs = firstmsgsigs; 1641 else 1642 allmsgsigs = 0; 1643 1644 mutex_enter(&stp->sd_lock); 1645 if ((rput_opt & SR_CONSOL_DATA) && 1646 (q->q_last != NULL) && 1647 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1648 /* 1649 * Consolidate an M_DATA message onto an M_DATA, 1650 * M_PROTO, or M_PCPROTO by merging it with q_last. 1651 * The consolidation does not take place if 1652 * the old message is marked with either of the 1653 * marks or the delim flag or if the new 1654 * message is marked with MSGMARK. The MSGMARK 1655 * check is needed to handle the odd semantics of 1656 * MSGMARK where essentially the whole message 1657 * is to be treated as marked. 1658 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1659 * new message to the front of the b_cont chain. 1660 */ 1661 mblk_t *lbp = q->q_last; 1662 unsigned char db_type = lbp->b_datap->db_type; 1663 1664 if ((db_type == M_DATA || db_type == M_PROTO || 1665 db_type == M_PCPROTO) && 1666 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1667 rmvq_noenab(q, lbp); 1668 /* 1669 * The first message in the b_cont list 1670 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1671 * We need to handle the case where we 1672 * are appending: 1673 * 1674 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1675 * 2) a MSGMARKNEXT to a plain message. 1676 * 3) a MSGNOTMARKNEXT to a plain message 1677 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1678 * message. 1679 * 1680 * Thus we never append a MSGMARKNEXT or 1681 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1682 */ 1683 if (bp->b_flag & MSGMARKNEXT) { 1684 lbp->b_flag |= MSGMARKNEXT; 1685 lbp->b_flag &= ~MSGNOTMARKNEXT; 1686 bp->b_flag &= ~MSGMARKNEXT; 1687 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1688 lbp->b_flag |= MSGNOTMARKNEXT; 1689 bp->b_flag &= ~MSGNOTMARKNEXT; 1690 } 1691 1692 linkb(lbp, bp); 1693 bp = lbp; 1694 /* 1695 * The new message logically isn't the first 1696 * even though the q_first check below thinks 1697 * it is. Clear the firstmsgsigs to make it 1698 * not appear to be first. 1699 */ 1700 firstmsgsigs = 0; 1701 } 1702 } 1703 break; 1704 1705 case M_PASSFP: 1706 wakeups = RSLEEP; 1707 allmsgsigs = 0; 1708 if (bp->b_band == 0) { 1709 firstmsgsigs = S_INPUT | S_RDNORM; 1710 pollwakeups = POLLIN | POLLRDNORM; 1711 } else { 1712 firstmsgsigs = S_INPUT | S_RDBAND; 1713 pollwakeups = POLLIN | POLLRDBAND; 1714 } 1715 mutex_enter(&stp->sd_lock); 1716 break; 1717 1718 case M_PROTO: 1719 case M_PCPROTO: 1720 ASSERT(stp->sd_rprotofunc != NULL); 1721 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1722 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1723 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1724 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1725 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1726 POLLWRBAND) 1727 1728 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1729 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1730 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1731 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1732 1733 mutex_enter(&stp->sd_lock); 1734 break; 1735 1736 default: 1737 ASSERT(stp->sd_rmiscfunc != NULL); 1738 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1739 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1740 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1741 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1742 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1743 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1744 #undef ALLSIG 1745 #undef ALLPOLL 1746 mutex_enter(&stp->sd_lock); 1747 break; 1748 } 1749 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1750 1751 /* By default generate superset of signals */ 1752 signals = (firstmsgsigs | allmsgsigs); 1753 1754 /* 1755 * The proto and misc functions can return multiple messages 1756 * as a b_next chain. Such messages are processed separately. 1757 */ 1758 one_more: 1759 hipri_sig = 0; 1760 if (bp == NULL) { 1761 nextbp = NULL; 1762 } else { 1763 nextbp = bp->b_next; 1764 bp->b_next = NULL; 1765 1766 switch (bp->b_datap->db_type) { 1767 case M_PCPROTO: 1768 /* 1769 * Only one priority protocol message is allowed at the 1770 * stream head at a time. 1771 */ 1772 if (stp->sd_flag & STRPRI) { 1773 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1774 "M_PCPROTO already at head"); 1775 freemsg(bp); 1776 mutex_exit(&stp->sd_lock); 1777 goto done; 1778 } 1779 stp->sd_flag |= STRPRI; 1780 hipri_sig = 1; 1781 /* FALLTHRU */ 1782 case M_DATA: 1783 case M_PROTO: 1784 case M_PASSFP: 1785 band = bp->b_band; 1786 /* 1787 * Marking doesn't work well when messages 1788 * are marked in more than one band. We only 1789 * remember the last message received, even if 1790 * it is placed on the queue ahead of other 1791 * marked messages. 1792 */ 1793 if (bp->b_flag & MSGMARK) 1794 stp->sd_mark = bp; 1795 (void) putq(q, bp); 1796 1797 /* 1798 * If message is a PCPROTO message, always use 1799 * firstmsgsigs to determine if a signal should be 1800 * sent as strrput is the only place to send 1801 * signals for PCPROTO. Other messages are based on 1802 * the STRGETINPROG flag. The flag determines if 1803 * strrput or (k)strgetmsg will be responsible for 1804 * sending the signals, in the firstmsgsigs case. 1805 */ 1806 if ((hipri_sig == 1) || 1807 (((stp->sd_flag & STRGETINPROG) == 0) && 1808 (q->q_first == bp))) 1809 signals = (firstmsgsigs | allmsgsigs); 1810 else 1811 signals = allmsgsigs; 1812 break; 1813 1814 default: 1815 mutex_exit(&stp->sd_lock); 1816 (void) strrput_nondata(q, bp); 1817 mutex_enter(&stp->sd_lock); 1818 break; 1819 } 1820 } 1821 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1822 /* 1823 * Wake sleeping read/getmsg and cancel deferred wakeup 1824 */ 1825 if (wakeups & RSLEEP) 1826 stp->sd_wakeq &= ~RSLEEP; 1827 1828 wakeups &= stp->sd_flag; 1829 if (wakeups & RSLEEP) { 1830 stp->sd_flag &= ~RSLEEP; 1831 cv_broadcast(&q->q_wait); 1832 } 1833 if (wakeups & WSLEEP) { 1834 stp->sd_flag &= ~WSLEEP; 1835 cv_broadcast(&_WR(q)->q_wait); 1836 } 1837 1838 if (pollwakeups != 0) { 1839 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1840 /* 1841 * Can't use rput_opt since it was not 1842 * read when sd_lock was held and SR_POLLIN is changed 1843 * by strpoll() under sd_lock. 1844 */ 1845 if (!(stp->sd_rput_opt & SR_POLLIN)) 1846 goto no_pollwake; 1847 stp->sd_rput_opt &= ~SR_POLLIN; 1848 } 1849 mutex_exit(&stp->sd_lock); 1850 pollwakeup(&stp->sd_pollist, pollwakeups); 1851 mutex_enter(&stp->sd_lock); 1852 } 1853 no_pollwake: 1854 1855 /* 1856 * strsendsig can handle multiple signals with a 1857 * single call. 1858 */ 1859 if (stp->sd_sigflags & signals) 1860 strsendsig(stp->sd_siglist, signals, band, 0); 1861 mutex_exit(&stp->sd_lock); 1862 1863 1864 done: 1865 if (nextbp == NULL) 1866 return (0); 1867 1868 /* 1869 * Any signals were handled the first time. 1870 * Wakeups and pollwakeups are redone to avoid any race 1871 * conditions - all the messages are not queued until the 1872 * last message has been processed by strrput. 1873 */ 1874 bp = nextbp; 1875 signals = firstmsgsigs = allmsgsigs = 0; 1876 mutex_enter(&stp->sd_lock); 1877 goto one_more; 1878 } 1879 1880 static void 1881 log_dupioc(queue_t *rq, mblk_t *bp) 1882 { 1883 queue_t *wq, *qp; 1884 char *modnames, *mnp, *dname; 1885 size_t maxmodstr; 1886 boolean_t islast; 1887 1888 /* 1889 * Allocate a buffer large enough to hold the names of nstrpush modules 1890 * and one driver, with spaces between and NUL terminator. If we can't 1891 * get memory, then we'll just log the driver name. 1892 */ 1893 maxmodstr = nstrpush * (FMNAMESZ + 1); 1894 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1895 1896 /* march down write side to print log message down to the driver */ 1897 wq = WR(rq); 1898 1899 /* make sure q_next doesn't shift around while we're grabbing data */ 1900 claimstr(wq); 1901 qp = wq->q_next; 1902 do { 1903 dname = Q2NAME(qp); 1904 islast = !SAMESTR(qp) || qp->q_next == NULL; 1905 if (modnames == NULL) { 1906 /* 1907 * If we don't have memory, then get the driver name in 1908 * the log where we can see it. Note that memory 1909 * pressure is a possible cause of these sorts of bugs. 1910 */ 1911 if (islast) { 1912 modnames = dname; 1913 maxmodstr = 0; 1914 } 1915 } else { 1916 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1917 if (!islast) 1918 *mnp++ = ' '; 1919 } 1920 qp = qp->q_next; 1921 } while (!islast); 1922 releasestr(wq); 1923 /* Cannot happen unless stream head is corrupt. */ 1924 ASSERT(modnames != NULL); 1925 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1926 SL_CONSOLE|SL_TRACE|SL_ERROR, 1927 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1928 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1929 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1930 if (maxmodstr != 0) 1931 kmem_free(modnames, maxmodstr); 1932 } 1933 1934 int 1935 strrput_nondata(queue_t *q, mblk_t *bp) 1936 { 1937 struct stdata *stp; 1938 struct iocblk *iocbp; 1939 struct stroptions *sop; 1940 struct copyreq *reqp; 1941 struct copyresp *resp; 1942 unsigned char bpri; 1943 unsigned char flushed_already = 0; 1944 1945 stp = (struct stdata *)q->q_ptr; 1946 1947 ASSERT(!(stp->sd_flag & STPLEX)); 1948 ASSERT(qclaimed(q)); 1949 1950 switch (bp->b_datap->db_type) { 1951 case M_ERROR: 1952 /* 1953 * An error has occurred downstream, the errno is in the first 1954 * bytes of the message. 1955 */ 1956 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1957 unsigned char rw = 0; 1958 1959 mutex_enter(&stp->sd_lock); 1960 if (*bp->b_rptr != NOERROR) { /* read error */ 1961 if (*bp->b_rptr != 0) { 1962 if (stp->sd_flag & STRDERR) 1963 flushed_already |= FLUSHR; 1964 stp->sd_flag |= STRDERR; 1965 rw |= FLUSHR; 1966 } else { 1967 stp->sd_flag &= ~STRDERR; 1968 } 1969 stp->sd_rerror = *bp->b_rptr; 1970 } 1971 bp->b_rptr++; 1972 if (*bp->b_rptr != NOERROR) { /* write error */ 1973 if (*bp->b_rptr != 0) { 1974 if (stp->sd_flag & STWRERR) 1975 flushed_already |= FLUSHW; 1976 stp->sd_flag |= STWRERR; 1977 rw |= FLUSHW; 1978 } else { 1979 stp->sd_flag &= ~STWRERR; 1980 } 1981 stp->sd_werror = *bp->b_rptr; 1982 } 1983 if (rw) { 1984 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1985 "strrput cv_broadcast:q %p, bp %p", 1986 q, bp); 1987 cv_broadcast(&q->q_wait); /* readers */ 1988 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1989 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1990 1991 mutex_exit(&stp->sd_lock); 1992 pollwakeup(&stp->sd_pollist, POLLERR); 1993 mutex_enter(&stp->sd_lock); 1994 1995 if (stp->sd_sigflags & S_ERROR) 1996 strsendsig(stp->sd_siglist, S_ERROR, 0, 1997 ((rw & FLUSHR) ? stp->sd_rerror : 1998 stp->sd_werror)); 1999 mutex_exit(&stp->sd_lock); 2000 /* 2001 * Send the M_FLUSH only 2002 * for the first M_ERROR 2003 * message on the stream 2004 */ 2005 if (flushed_already == rw) { 2006 freemsg(bp); 2007 return (0); 2008 } 2009 2010 bp->b_datap->db_type = M_FLUSH; 2011 *bp->b_rptr = rw; 2012 bp->b_wptr = bp->b_rptr + 1; 2013 /* 2014 * Protect against the driver 2015 * passing up messages after 2016 * it has done a qprocsoff 2017 */ 2018 if (_OTHERQ(q)->q_next == NULL) 2019 freemsg(bp); 2020 else 2021 qreply(q, bp); 2022 return (0); 2023 } else 2024 mutex_exit(&stp->sd_lock); 2025 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2026 if (stp->sd_flag & (STRDERR|STWRERR)) 2027 flushed_already = FLUSHRW; 2028 mutex_enter(&stp->sd_lock); 2029 stp->sd_flag |= (STRDERR|STWRERR); 2030 stp->sd_rerror = *bp->b_rptr; 2031 stp->sd_werror = *bp->b_rptr; 2032 TRACE_2(TR_FAC_STREAMS_FR, 2033 TR_STRRPUT_WAKE2, 2034 "strrput wakeup #2:q %p, bp %p", q, bp); 2035 cv_broadcast(&q->q_wait); /* the readers */ 2036 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2037 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2038 2039 mutex_exit(&stp->sd_lock); 2040 pollwakeup(&stp->sd_pollist, POLLERR); 2041 mutex_enter(&stp->sd_lock); 2042 2043 if (stp->sd_sigflags & S_ERROR) 2044 strsendsig(stp->sd_siglist, S_ERROR, 0, 2045 (stp->sd_werror ? stp->sd_werror : 2046 stp->sd_rerror)); 2047 mutex_exit(&stp->sd_lock); 2048 2049 /* 2050 * Send the M_FLUSH only 2051 * for the first M_ERROR 2052 * message on the stream 2053 */ 2054 if (flushed_already != FLUSHRW) { 2055 bp->b_datap->db_type = M_FLUSH; 2056 *bp->b_rptr = FLUSHRW; 2057 /* 2058 * Protect against the driver passing up 2059 * messages after it has done a 2060 * qprocsoff. 2061 */ 2062 if (_OTHERQ(q)->q_next == NULL) 2063 freemsg(bp); 2064 else 2065 qreply(q, bp); 2066 return (0); 2067 } 2068 } 2069 freemsg(bp); 2070 return (0); 2071 2072 case M_HANGUP: 2073 2074 freemsg(bp); 2075 mutex_enter(&stp->sd_lock); 2076 stp->sd_werror = ENXIO; 2077 stp->sd_flag |= STRHUP; 2078 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2079 2080 /* 2081 * send signal if controlling tty 2082 */ 2083 2084 if (stp->sd_sidp) { 2085 prsignal(stp->sd_sidp, SIGHUP); 2086 if (stp->sd_sidp != stp->sd_pgidp) 2087 pgsignal(stp->sd_pgidp, SIGTSTP); 2088 } 2089 2090 /* 2091 * wake up read, write, and exception pollers and 2092 * reset wakeup mechanism. 2093 */ 2094 cv_broadcast(&q->q_wait); /* the readers */ 2095 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2096 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2097 strhup(stp); 2098 mutex_exit(&stp->sd_lock); 2099 return (0); 2100 2101 case M_UNHANGUP: 2102 freemsg(bp); 2103 mutex_enter(&stp->sd_lock); 2104 stp->sd_werror = 0; 2105 stp->sd_flag &= ~STRHUP; 2106 mutex_exit(&stp->sd_lock); 2107 return (0); 2108 2109 case M_SIG: 2110 /* 2111 * Someone downstream wants to post a signal. The 2112 * signal to post is contained in the first byte of the 2113 * message. If the message would go on the front of 2114 * the queue, send a signal to the process group 2115 * (if not SIGPOLL) or to the siglist processes 2116 * (SIGPOLL). If something is already on the queue, 2117 * OR if we are delivering a delayed suspend (*sigh* 2118 * another "tty" hack) and there's no one sleeping already, 2119 * just enqueue the message. 2120 */ 2121 mutex_enter(&stp->sd_lock); 2122 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2123 !(stp->sd_flag & RSLEEP))) { 2124 (void) putq(q, bp); 2125 mutex_exit(&stp->sd_lock); 2126 return (0); 2127 } 2128 mutex_exit(&stp->sd_lock); 2129 /* FALLTHRU */ 2130 2131 case M_PCSIG: 2132 /* 2133 * Don't enqueue, just post the signal. 2134 */ 2135 strsignal(stp, *bp->b_rptr, 0L); 2136 freemsg(bp); 2137 return (0); 2138 2139 case M_CMD: 2140 if (MBLKL(bp) != sizeof (cmdblk_t)) { 2141 freemsg(bp); 2142 return (0); 2143 } 2144 2145 mutex_enter(&stp->sd_lock); 2146 if (stp->sd_flag & STRCMDWAIT) { 2147 ASSERT(stp->sd_cmdblk == NULL); 2148 stp->sd_cmdblk = bp; 2149 cv_broadcast(&stp->sd_monitor); 2150 mutex_exit(&stp->sd_lock); 2151 } else { 2152 mutex_exit(&stp->sd_lock); 2153 freemsg(bp); 2154 } 2155 return (0); 2156 2157 case M_FLUSH: 2158 /* 2159 * Flush queues. The indication of which queues to flush 2160 * is in the first byte of the message. If the read queue 2161 * is specified, then flush it. If FLUSHBAND is set, just 2162 * flush the band specified by the second byte of the message. 2163 * 2164 * If a module has issued a M_SETOPT to not flush hi 2165 * priority messages off of the stream head, then pass this 2166 * flag into the flushq code to preserve such messages. 2167 */ 2168 2169 if (*bp->b_rptr & FLUSHR) { 2170 mutex_enter(&stp->sd_lock); 2171 if (*bp->b_rptr & FLUSHBAND) { 2172 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2173 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2174 } else 2175 flushq_common(q, FLUSHALL, 2176 stp->sd_read_opt & RFLUSHPCPROT); 2177 if ((q->q_first == NULL) || 2178 (q->q_first->b_datap->db_type < QPCTL)) 2179 stp->sd_flag &= ~STRPRI; 2180 else { 2181 ASSERT(stp->sd_flag & STRPRI); 2182 } 2183 mutex_exit(&stp->sd_lock); 2184 } 2185 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2186 *bp->b_rptr &= ~FLUSHR; 2187 bp->b_flag |= MSGNOLOOP; 2188 /* 2189 * Protect against the driver passing up 2190 * messages after it has done a qprocsoff. 2191 */ 2192 if (_OTHERQ(q)->q_next == NULL) 2193 freemsg(bp); 2194 else 2195 qreply(q, bp); 2196 return (0); 2197 } 2198 freemsg(bp); 2199 return (0); 2200 2201 case M_IOCACK: 2202 case M_IOCNAK: 2203 iocbp = (struct iocblk *)bp->b_rptr; 2204 /* 2205 * If not waiting for ACK or NAK then just free msg. 2206 * If incorrect id sequence number then just free msg. 2207 * If already have ACK or NAK for user then this is a 2208 * duplicate, display a warning and free the msg. 2209 */ 2210 mutex_enter(&stp->sd_lock); 2211 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2212 (stp->sd_iocid != iocbp->ioc_id)) { 2213 /* 2214 * If the ACK/NAK is a dup, display a message 2215 * Dup is when sd_iocid == ioc_id, and 2216 * sd_iocblk == <valid ptr> or -1 (the former 2217 * is when an ioctl has been put on the stream 2218 * head, but has not yet been consumed, the 2219 * later is when it has been consumed). 2220 */ 2221 if ((stp->sd_iocid == iocbp->ioc_id) && 2222 (stp->sd_iocblk != NULL)) { 2223 log_dupioc(q, bp); 2224 } 2225 freemsg(bp); 2226 mutex_exit(&stp->sd_lock); 2227 return (0); 2228 } 2229 2230 /* 2231 * Assign ACK or NAK to user and wake up. 2232 */ 2233 stp->sd_iocblk = bp; 2234 cv_broadcast(&stp->sd_monitor); 2235 mutex_exit(&stp->sd_lock); 2236 return (0); 2237 2238 case M_COPYIN: 2239 case M_COPYOUT: 2240 reqp = (struct copyreq *)bp->b_rptr; 2241 2242 /* 2243 * If not waiting for ACK or NAK then just fail request. 2244 * If already have ACK, NAK, or copy request, then just 2245 * fail request. 2246 * If incorrect id sequence number then just fail request. 2247 */ 2248 mutex_enter(&stp->sd_lock); 2249 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2250 (stp->sd_iocid != reqp->cq_id)) { 2251 if (bp->b_cont) { 2252 freemsg(bp->b_cont); 2253 bp->b_cont = NULL; 2254 } 2255 bp->b_datap->db_type = M_IOCDATA; 2256 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2257 resp = (struct copyresp *)bp->b_rptr; 2258 resp->cp_rval = (caddr_t)1; /* failure */ 2259 mutex_exit(&stp->sd_lock); 2260 putnext(stp->sd_wrq, bp); 2261 return (0); 2262 } 2263 2264 /* 2265 * Assign copy request to user and wake up. 2266 */ 2267 stp->sd_iocblk = bp; 2268 cv_broadcast(&stp->sd_monitor); 2269 mutex_exit(&stp->sd_lock); 2270 return (0); 2271 2272 case M_SETOPTS: 2273 /* 2274 * Set stream head options (read option, write offset, 2275 * min/max packet size, and/or high/low water marks for 2276 * the read side only). 2277 */ 2278 2279 bpri = 0; 2280 sop = (struct stroptions *)bp->b_rptr; 2281 mutex_enter(&stp->sd_lock); 2282 if (sop->so_flags & SO_READOPT) { 2283 switch (sop->so_readopt & RMODEMASK) { 2284 case RNORM: 2285 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2286 break; 2287 2288 case RMSGD: 2289 stp->sd_read_opt = 2290 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2291 RD_MSGDIS); 2292 break; 2293 2294 case RMSGN: 2295 stp->sd_read_opt = 2296 ((stp->sd_read_opt & ~RD_MSGDIS) | 2297 RD_MSGNODIS); 2298 break; 2299 } 2300 switch (sop->so_readopt & RPROTMASK) { 2301 case RPROTNORM: 2302 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2303 break; 2304 2305 case RPROTDAT: 2306 stp->sd_read_opt = 2307 ((stp->sd_read_opt & ~RD_PROTDIS) | 2308 RD_PROTDAT); 2309 break; 2310 2311 case RPROTDIS: 2312 stp->sd_read_opt = 2313 ((stp->sd_read_opt & ~RD_PROTDAT) | 2314 RD_PROTDIS); 2315 break; 2316 } 2317 switch (sop->so_readopt & RFLUSHMASK) { 2318 case RFLUSHPCPROT: 2319 /* 2320 * This sets the stream head to NOT flush 2321 * M_PCPROTO messages. 2322 */ 2323 stp->sd_read_opt |= RFLUSHPCPROT; 2324 break; 2325 } 2326 } 2327 if (sop->so_flags & SO_ERROPT) { 2328 switch (sop->so_erropt & RERRMASK) { 2329 case RERRNORM: 2330 stp->sd_flag &= ~STRDERRNONPERSIST; 2331 break; 2332 case RERRNONPERSIST: 2333 stp->sd_flag |= STRDERRNONPERSIST; 2334 break; 2335 } 2336 switch (sop->so_erropt & WERRMASK) { 2337 case WERRNORM: 2338 stp->sd_flag &= ~STWRERRNONPERSIST; 2339 break; 2340 case WERRNONPERSIST: 2341 stp->sd_flag |= STWRERRNONPERSIST; 2342 break; 2343 } 2344 } 2345 if (sop->so_flags & SO_COPYOPT) { 2346 if (sop->so_copyopt & ZCVMSAFE) { 2347 stp->sd_copyflag |= STZCVMSAFE; 2348 stp->sd_copyflag &= ~STZCVMUNSAFE; 2349 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2350 stp->sd_copyflag |= STZCVMUNSAFE; 2351 stp->sd_copyflag &= ~STZCVMSAFE; 2352 } 2353 2354 if (sop->so_copyopt & COPYCACHED) { 2355 stp->sd_copyflag |= STRCOPYCACHED; 2356 } 2357 } 2358 if (sop->so_flags & SO_WROFF) 2359 stp->sd_wroff = sop->so_wroff; 2360 if (sop->so_flags & SO_TAIL) 2361 stp->sd_tail = sop->so_tail; 2362 if (sop->so_flags & SO_MINPSZ) 2363 q->q_minpsz = sop->so_minpsz; 2364 if (sop->so_flags & SO_MAXPSZ) 2365 q->q_maxpsz = sop->so_maxpsz; 2366 if (sop->so_flags & SO_MAXBLK) 2367 stp->sd_maxblk = sop->so_maxblk; 2368 if (sop->so_flags & SO_HIWAT) { 2369 if (sop->so_flags & SO_BAND) { 2370 if (strqset(q, QHIWAT, 2371 sop->so_band, sop->so_hiwat)) { 2372 cmn_err(CE_WARN, "strrput: could not " 2373 "allocate qband\n"); 2374 } else { 2375 bpri = sop->so_band; 2376 } 2377 } else { 2378 q->q_hiwat = sop->so_hiwat; 2379 } 2380 } 2381 if (sop->so_flags & SO_LOWAT) { 2382 if (sop->so_flags & SO_BAND) { 2383 if (strqset(q, QLOWAT, 2384 sop->so_band, sop->so_lowat)) { 2385 cmn_err(CE_WARN, "strrput: could not " 2386 "allocate qband\n"); 2387 } else { 2388 bpri = sop->so_band; 2389 } 2390 } else { 2391 q->q_lowat = sop->so_lowat; 2392 } 2393 } 2394 if (sop->so_flags & SO_MREADON) 2395 stp->sd_flag |= SNDMREAD; 2396 if (sop->so_flags & SO_MREADOFF) 2397 stp->sd_flag &= ~SNDMREAD; 2398 if (sop->so_flags & SO_NDELON) 2399 stp->sd_flag |= OLDNDELAY; 2400 if (sop->so_flags & SO_NDELOFF) 2401 stp->sd_flag &= ~OLDNDELAY; 2402 if (sop->so_flags & SO_ISTTY) 2403 stp->sd_flag |= STRISTTY; 2404 if (sop->so_flags & SO_ISNTTY) 2405 stp->sd_flag &= ~STRISTTY; 2406 if (sop->so_flags & SO_TOSTOP) 2407 stp->sd_flag |= STRTOSTOP; 2408 if (sop->so_flags & SO_TONSTOP) 2409 stp->sd_flag &= ~STRTOSTOP; 2410 if (sop->so_flags & SO_DELIM) 2411 stp->sd_flag |= STRDELIM; 2412 if (sop->so_flags & SO_NODELIM) 2413 stp->sd_flag &= ~STRDELIM; 2414 2415 mutex_exit(&stp->sd_lock); 2416 freemsg(bp); 2417 2418 /* Check backenable in case the water marks changed */ 2419 qbackenable(q, bpri); 2420 return (0); 2421 2422 /* 2423 * The following set of cases deal with situations where two stream 2424 * heads are connected to each other (twisted streams). These messages 2425 * have no meaning at the stream head. 2426 */ 2427 case M_BREAK: 2428 case M_CTL: 2429 case M_DELAY: 2430 case M_START: 2431 case M_STOP: 2432 case M_IOCDATA: 2433 case M_STARTI: 2434 case M_STOPI: 2435 freemsg(bp); 2436 return (0); 2437 2438 case M_IOCTL: 2439 /* 2440 * Always NAK this condition 2441 * (makes no sense) 2442 * If there is one or more threads in the read side 2443 * rwnext we have to defer the nacking until that thread 2444 * returns (in strget). 2445 */ 2446 mutex_enter(&stp->sd_lock); 2447 if (stp->sd_struiodnak != 0) { 2448 /* 2449 * Defer NAK to the streamhead. Queue at the end 2450 * the list. 2451 */ 2452 mblk_t *mp = stp->sd_struionak; 2453 2454 while (mp && mp->b_next) 2455 mp = mp->b_next; 2456 if (mp) 2457 mp->b_next = bp; 2458 else 2459 stp->sd_struionak = bp; 2460 bp->b_next = NULL; 2461 mutex_exit(&stp->sd_lock); 2462 return (0); 2463 } 2464 mutex_exit(&stp->sd_lock); 2465 2466 bp->b_datap->db_type = M_IOCNAK; 2467 /* 2468 * Protect against the driver passing up 2469 * messages after it has done a qprocsoff. 2470 */ 2471 if (_OTHERQ(q)->q_next == NULL) 2472 freemsg(bp); 2473 else 2474 qreply(q, bp); 2475 return (0); 2476 2477 default: 2478 #ifdef DEBUG 2479 cmn_err(CE_WARN, 2480 "bad message type %x received at stream head\n", 2481 bp->b_datap->db_type); 2482 #endif 2483 freemsg(bp); 2484 return (0); 2485 } 2486 2487 /* NOTREACHED */ 2488 } 2489 2490 /* 2491 * Check if the stream pointed to by `stp' can be written to, and return an 2492 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2493 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2494 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2495 */ 2496 static int 2497 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2498 { 2499 int error; 2500 2501 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2502 2503 /* 2504 * For modem support, POSIX states that on writes, EIO should 2505 * be returned if the stream has been hung up. 2506 */ 2507 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2508 error = EIO; 2509 else 2510 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2511 2512 if (error != 0) { 2513 if (!(stp->sd_flag & STPLEX) && 2514 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2515 tsignal(curthread, SIGPIPE); 2516 error = EPIPE; 2517 } 2518 } 2519 2520 return (error); 2521 } 2522 2523 /* 2524 * Copyin and send data down a stream. 2525 * The caller will allocate and copyin any control part that precedes the 2526 * message and pass that in as mctl. 2527 * 2528 * Caller should *not* hold sd_lock. 2529 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2530 * under sd_lock in order to avoid missing a backenabling wakeup. 2531 * 2532 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2533 * 2534 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2535 * For sync streams we can only ignore flow control by reverting to using 2536 * putnext. 2537 * 2538 * If sd_maxblk is less than *iosize this routine might return without 2539 * transferring all of *iosize. In all cases, on return *iosize will contain 2540 * the amount of data that was transferred. 2541 */ 2542 static int 2543 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2544 int b_flag, int pri, int flags) 2545 { 2546 struiod_t uiod; 2547 mblk_t *mp; 2548 queue_t *wqp = stp->sd_wrq; 2549 int error = 0; 2550 ssize_t count = *iosize; 2551 2552 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2553 2554 if (uiop != NULL && count >= 0) 2555 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2556 2557 if (!(flags & STRUIO_POSTPONE)) { 2558 /* 2559 * Use regular canputnext, strmakedata, putnext sequence. 2560 */ 2561 if (pri == 0) { 2562 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2563 freemsg(mctl); 2564 return (EWOULDBLOCK); 2565 } 2566 } else { 2567 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2568 freemsg(mctl); 2569 return (EWOULDBLOCK); 2570 } 2571 } 2572 2573 if ((error = strmakedata(iosize, uiop, stp, flags, 2574 &mp)) != 0) { 2575 freemsg(mctl); 2576 /* 2577 * need to change return code to ENOMEM 2578 * so that this is not confused with 2579 * flow control, EAGAIN. 2580 */ 2581 2582 if (error == EAGAIN) 2583 return (ENOMEM); 2584 else 2585 return (error); 2586 } 2587 if (mctl != NULL) { 2588 if (mctl->b_cont == NULL) 2589 mctl->b_cont = mp; 2590 else if (mp != NULL) 2591 linkb(mctl, mp); 2592 mp = mctl; 2593 } else if (mp == NULL) 2594 return (0); 2595 2596 mp->b_flag |= b_flag; 2597 mp->b_band = (uchar_t)pri; 2598 2599 if (flags & MSG_IGNFLOW) { 2600 /* 2601 * XXX Hack: Don't get stuck running service 2602 * procedures. This is needed for sockfs when 2603 * sending the unbind message out of the rput 2604 * procedure - we don't want a put procedure 2605 * to run service procedures. 2606 */ 2607 putnext(wqp, mp); 2608 } else { 2609 stream_willservice(stp); 2610 putnext(wqp, mp); 2611 stream_runservice(stp); 2612 } 2613 return (0); 2614 } 2615 /* 2616 * Stream supports rwnext() for the write side. 2617 */ 2618 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2619 freemsg(mctl); 2620 /* 2621 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2622 */ 2623 return (error == EAGAIN ? ENOMEM : error); 2624 } 2625 if (mctl != NULL) { 2626 if (mctl->b_cont == NULL) 2627 mctl->b_cont = mp; 2628 else if (mp != NULL) 2629 linkb(mctl, mp); 2630 mp = mctl; 2631 } else if (mp == NULL) { 2632 return (0); 2633 } 2634 2635 mp->b_flag |= b_flag; 2636 mp->b_band = (uchar_t)pri; 2637 2638 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2639 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2640 uiod.d_uio.uio_offset = 0; 2641 uiod.d_mp = mp; 2642 error = rwnext(wqp, &uiod); 2643 if (! uiod.d_mp) { 2644 uioskip(uiop, *iosize); 2645 return (error); 2646 } 2647 ASSERT(mp == uiod.d_mp); 2648 if (error == EINVAL) { 2649 /* 2650 * The stream plumbing must have changed while 2651 * we were away, so just turn off rwnext()s. 2652 */ 2653 error = 0; 2654 } else if (error == EBUSY || error == EWOULDBLOCK) { 2655 /* 2656 * Couldn't enter a perimeter or took a page fault, 2657 * so fall-back to putnext(). 2658 */ 2659 error = 0; 2660 } else { 2661 freemsg(mp); 2662 return (error); 2663 } 2664 /* Have to check canput before consuming data from the uio */ 2665 if (pri == 0) { 2666 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2667 freemsg(mp); 2668 return (EWOULDBLOCK); 2669 } 2670 } else { 2671 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2672 freemsg(mp); 2673 return (EWOULDBLOCK); 2674 } 2675 } 2676 ASSERT(mp == uiod.d_mp); 2677 /* Copyin data from the uio */ 2678 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2679 freemsg(mp); 2680 return (error); 2681 } 2682 uioskip(uiop, *iosize); 2683 if (flags & MSG_IGNFLOW) { 2684 /* 2685 * XXX Hack: Don't get stuck running service procedures. 2686 * This is needed for sockfs when sending the unbind message 2687 * out of the rput procedure - we don't want a put procedure 2688 * to run service procedures. 2689 */ 2690 putnext(wqp, mp); 2691 } else { 2692 stream_willservice(stp); 2693 putnext(wqp, mp); 2694 stream_runservice(stp); 2695 } 2696 return (0); 2697 } 2698 2699 /* 2700 * Write attempts to break the write request into messages conforming 2701 * with the minimum and maximum packet sizes set downstream. 2702 * 2703 * Write will not block if downstream queue is full and 2704 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2705 * 2706 * A write of zero bytes gets packaged into a zero length message and sent 2707 * downstream like any other message. 2708 * 2709 * If buffers of the requested sizes are not available, the write will 2710 * sleep until the buffers become available. 2711 * 2712 * Write (if specified) will supply a write offset in a message if it 2713 * makes sense. This can be specified by downstream modules as part of 2714 * a M_SETOPTS message. Write will not supply the write offset if it 2715 * cannot supply any data in a buffer. In other words, write will never 2716 * send down an empty packet due to a write offset. 2717 */ 2718 /* ARGSUSED2 */ 2719 int 2720 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2721 { 2722 return (strwrite_common(vp, uiop, crp, 0)); 2723 } 2724 2725 /* ARGSUSED2 */ 2726 int 2727 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2728 { 2729 struct stdata *stp; 2730 struct queue *wqp; 2731 ssize_t rmin, rmax; 2732 ssize_t iosize; 2733 int waitflag; 2734 int tempmode; 2735 int error = 0; 2736 int b_flag; 2737 2738 ASSERT(vp->v_stream); 2739 stp = vp->v_stream; 2740 2741 mutex_enter(&stp->sd_lock); 2742 2743 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2744 mutex_exit(&stp->sd_lock); 2745 return (error); 2746 } 2747 2748 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2749 error = strwriteable(stp, B_TRUE, B_TRUE); 2750 if (error != 0) { 2751 mutex_exit(&stp->sd_lock); 2752 return (error); 2753 } 2754 } 2755 2756 mutex_exit(&stp->sd_lock); 2757 2758 wqp = stp->sd_wrq; 2759 2760 /* get these values from them cached in the stream head */ 2761 rmin = stp->sd_qn_minpsz; 2762 rmax = stp->sd_qn_maxpsz; 2763 2764 /* 2765 * Check the min/max packet size constraints. If min packet size 2766 * is non-zero, the write cannot be split into multiple messages 2767 * and still guarantee the size constraints. 2768 */ 2769 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2770 2771 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2772 if (rmax == 0) { 2773 return (0); 2774 } 2775 if (rmin > 0) { 2776 if (uiop->uio_resid < rmin) { 2777 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2778 "strwrite out:q %p out %d error %d", 2779 wqp, 0, ERANGE); 2780 return (ERANGE); 2781 } 2782 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2783 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2784 "strwrite out:q %p out %d error %d", 2785 wqp, 1, ERANGE); 2786 return (ERANGE); 2787 } 2788 } 2789 2790 /* 2791 * Do until count satisfied or error. 2792 */ 2793 waitflag = WRITEWAIT | wflag; 2794 if (stp->sd_flag & OLDNDELAY) 2795 tempmode = uiop->uio_fmode & ~FNDELAY; 2796 else 2797 tempmode = uiop->uio_fmode; 2798 2799 if (rmax == INFPSZ) 2800 rmax = uiop->uio_resid; 2801 2802 /* 2803 * Note that tempmode does not get used in strput/strmakedata 2804 * but only in strwaitq. The other routines use uio_fmode 2805 * unmodified. 2806 */ 2807 2808 /* LINTED: constant in conditional context */ 2809 while (1) { /* breaks when uio_resid reaches zero */ 2810 /* 2811 * Determine the size of the next message to be 2812 * packaged. May have to break write into several 2813 * messages based on max packet size. 2814 */ 2815 iosize = MIN(uiop->uio_resid, rmax); 2816 2817 /* 2818 * Put block downstream when flow control allows it. 2819 */ 2820 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2821 b_flag = MSGDELIM; 2822 else 2823 b_flag = 0; 2824 2825 for (;;) { 2826 int done = 0; 2827 2828 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2829 if (error == 0) 2830 break; 2831 if (error != EWOULDBLOCK) 2832 goto out; 2833 2834 mutex_enter(&stp->sd_lock); 2835 /* 2836 * Check for a missed wakeup. 2837 * Needed since strput did not hold sd_lock across 2838 * the canputnext. 2839 */ 2840 if (canputnext(wqp)) { 2841 /* Try again */ 2842 mutex_exit(&stp->sd_lock); 2843 continue; 2844 } 2845 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2846 "strwrite wait:q %p wait", wqp); 2847 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2848 tempmode, -1, &done)) != 0 || done) { 2849 mutex_exit(&stp->sd_lock); 2850 if ((vp->v_type == VFIFO) && 2851 (uiop->uio_fmode & FNDELAY) && 2852 (error == EAGAIN)) 2853 error = 0; 2854 goto out; 2855 } 2856 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2857 "strwrite wake:q %p awakes", wqp); 2858 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2859 mutex_exit(&stp->sd_lock); 2860 goto out; 2861 } 2862 mutex_exit(&stp->sd_lock); 2863 } 2864 waitflag |= NOINTR; 2865 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2866 "strwrite resid:q %p uiop %p", wqp, uiop); 2867 if (uiop->uio_resid) { 2868 /* Recheck for errors - needed for sockets */ 2869 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2870 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2871 mutex_enter(&stp->sd_lock); 2872 error = strwriteable(stp, B_FALSE, B_TRUE); 2873 mutex_exit(&stp->sd_lock); 2874 if (error != 0) 2875 return (error); 2876 } 2877 continue; 2878 } 2879 break; 2880 } 2881 out: 2882 /* 2883 * For historical reasons, applications expect EAGAIN when a data 2884 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2885 */ 2886 if (error == ENOMEM) 2887 error = EAGAIN; 2888 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2889 "strwrite out:q %p out %d error %d", wqp, 2, error); 2890 return (error); 2891 } 2892 2893 /* 2894 * Stream head write service routine. 2895 * Its job is to wake up any sleeping writers when a queue 2896 * downstream needs data (part of the flow control in putq and getq). 2897 * It also must wake anyone sleeping on a poll(). 2898 * For stream head right below mux module, it must also invoke put procedure 2899 * of next downstream module. 2900 */ 2901 int 2902 strwsrv(queue_t *q) 2903 { 2904 struct stdata *stp; 2905 queue_t *tq; 2906 qband_t *qbp; 2907 int i; 2908 qband_t *myqbp; 2909 int isevent; 2910 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2911 2912 TRACE_1(TR_FAC_STREAMS_FR, 2913 TR_STRWSRV, "strwsrv:q %p", q); 2914 stp = (struct stdata *)q->q_ptr; 2915 ASSERT(qclaimed(q)); 2916 mutex_enter(&stp->sd_lock); 2917 ASSERT(!(stp->sd_flag & STPLEX)); 2918 2919 if (stp->sd_flag & WSLEEP) { 2920 stp->sd_flag &= ~WSLEEP; 2921 cv_broadcast(&q->q_wait); 2922 } 2923 mutex_exit(&stp->sd_lock); 2924 2925 /* The other end of a stream pipe went away. */ 2926 if ((tq = q->q_next) == NULL) { 2927 return (0); 2928 } 2929 2930 /* Find the next module forward that has a service procedure */ 2931 claimstr(q); 2932 tq = q->q_nfsrv; 2933 ASSERT(tq != NULL); 2934 2935 if ((q->q_flag & QBACK)) { 2936 if ((tq->q_flag & QFULL)) { 2937 mutex_enter(QLOCK(tq)); 2938 if (!(tq->q_flag & QFULL)) { 2939 mutex_exit(QLOCK(tq)); 2940 goto wakeup; 2941 } 2942 /* 2943 * The queue must have become full again. Set QWANTW 2944 * again so strwsrv will be back enabled when 2945 * the queue becomes non-full next time. 2946 */ 2947 tq->q_flag |= QWANTW; 2948 mutex_exit(QLOCK(tq)); 2949 } else { 2950 wakeup: 2951 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2952 mutex_enter(&stp->sd_lock); 2953 if (stp->sd_sigflags & S_WRNORM) 2954 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2955 mutex_exit(&stp->sd_lock); 2956 } 2957 } 2958 2959 isevent = 0; 2960 i = 1; 2961 bzero((caddr_t)qbf, NBAND); 2962 mutex_enter(QLOCK(tq)); 2963 if ((myqbp = q->q_bandp) != NULL) 2964 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2965 ASSERT(myqbp); 2966 if ((myqbp->qb_flag & QB_BACK)) { 2967 if (qbp->qb_flag & QB_FULL) { 2968 /* 2969 * The band must have become full again. 2970 * Set QB_WANTW again so strwsrv will 2971 * be back enabled when the band becomes 2972 * non-full next time. 2973 */ 2974 qbp->qb_flag |= QB_WANTW; 2975 } else { 2976 isevent = 1; 2977 qbf[i] = 1; 2978 } 2979 } 2980 myqbp = myqbp->qb_next; 2981 i++; 2982 } 2983 mutex_exit(QLOCK(tq)); 2984 2985 if (isevent) { 2986 for (i = tq->q_nband; i; i--) { 2987 if (qbf[i]) { 2988 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2989 mutex_enter(&stp->sd_lock); 2990 if (stp->sd_sigflags & S_WRBAND) 2991 strsendsig(stp->sd_siglist, S_WRBAND, 2992 (uchar_t)i, 0); 2993 mutex_exit(&stp->sd_lock); 2994 } 2995 } 2996 } 2997 2998 releasestr(q); 2999 return (0); 3000 } 3001 3002 /* 3003 * Special case of strcopyin/strcopyout for copying 3004 * struct strioctl that can deal with both data 3005 * models. 3006 */ 3007 3008 #ifdef _LP64 3009 3010 static int 3011 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3012 { 3013 struct strioctl32 strioc32; 3014 struct strioctl *striocp; 3015 3016 if (copyflag & U_TO_K) { 3017 ASSERT((copyflag & K_TO_K) == 0); 3018 3019 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3020 if (copyin(from, &strioc32, sizeof (strioc32))) 3021 return (EFAULT); 3022 3023 striocp = (struct strioctl *)to; 3024 striocp->ic_cmd = strioc32.ic_cmd; 3025 striocp->ic_timout = strioc32.ic_timout; 3026 striocp->ic_len = strioc32.ic_len; 3027 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3028 3029 } else { /* NATIVE data model */ 3030 if (copyin(from, to, sizeof (struct strioctl))) { 3031 return (EFAULT); 3032 } else { 3033 return (0); 3034 } 3035 } 3036 } else { 3037 ASSERT(copyflag & K_TO_K); 3038 bcopy(from, to, sizeof (struct strioctl)); 3039 } 3040 return (0); 3041 } 3042 3043 static int 3044 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3045 { 3046 struct strioctl32 strioc32; 3047 struct strioctl *striocp; 3048 3049 if (copyflag & U_TO_K) { 3050 ASSERT((copyflag & K_TO_K) == 0); 3051 3052 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3053 striocp = (struct strioctl *)from; 3054 strioc32.ic_cmd = striocp->ic_cmd; 3055 strioc32.ic_timout = striocp->ic_timout; 3056 strioc32.ic_len = striocp->ic_len; 3057 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3058 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3059 striocp->ic_dp); 3060 3061 if (copyout(&strioc32, to, sizeof (strioc32))) 3062 return (EFAULT); 3063 3064 } else { /* NATIVE data model */ 3065 if (copyout(from, to, sizeof (struct strioctl))) { 3066 return (EFAULT); 3067 } else { 3068 return (0); 3069 } 3070 } 3071 } else { 3072 ASSERT(copyflag & K_TO_K); 3073 bcopy(from, to, sizeof (struct strioctl)); 3074 } 3075 return (0); 3076 } 3077 3078 #else /* ! _LP64 */ 3079 3080 /* ARGSUSED2 */ 3081 static int 3082 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3083 { 3084 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3085 } 3086 3087 /* ARGSUSED2 */ 3088 static int 3089 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3090 { 3091 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3092 } 3093 3094 #endif /* _LP64 */ 3095 3096 /* 3097 * Determine type of job control semantics expected by user. The 3098 * possibilities are: 3099 * JCREAD - Behaves like read() on fd; send SIGTTIN 3100 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3101 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3102 * JCGETP - Gets a value in the stream; no signals. 3103 * See straccess in strsubr.c for usage of these values. 3104 * 3105 * This routine also returns -1 for I_STR as a special case; the 3106 * caller must call again with the real ioctl number for 3107 * classification. 3108 */ 3109 static int 3110 job_control_type(int cmd) 3111 { 3112 switch (cmd) { 3113 case I_STR: 3114 return (-1); 3115 3116 case I_RECVFD: 3117 case I_E_RECVFD: 3118 return (JCREAD); 3119 3120 case I_FDINSERT: 3121 case I_SENDFD: 3122 return (JCWRITE); 3123 3124 case TCSETA: 3125 case TCSETAW: 3126 case TCSETAF: 3127 case TCSBRK: 3128 case TCXONC: 3129 case TCFLSH: 3130 case TCDSET: /* Obsolete */ 3131 case TIOCSWINSZ: 3132 case TCSETS: 3133 case TCSETSW: 3134 case TCSETSF: 3135 case TIOCSETD: 3136 case TIOCHPCL: 3137 case TIOCSETP: 3138 case TIOCSETN: 3139 case TIOCEXCL: 3140 case TIOCNXCL: 3141 case TIOCFLUSH: 3142 case TIOCSETC: 3143 case TIOCLBIS: 3144 case TIOCLBIC: 3145 case TIOCLSET: 3146 case TIOCSBRK: 3147 case TIOCCBRK: 3148 case TIOCSDTR: 3149 case TIOCCDTR: 3150 case TIOCSLTC: 3151 case TIOCSTOP: 3152 case TIOCSTART: 3153 case TIOCSTI: 3154 case TIOCSPGRP: 3155 case TIOCMSET: 3156 case TIOCMBIS: 3157 case TIOCMBIC: 3158 case TIOCREMOTE: 3159 case TIOCSIGNAL: 3160 case LDSETT: 3161 case LDSMAP: /* Obsolete */ 3162 case DIOCSETP: 3163 case I_FLUSH: 3164 case I_SRDOPT: 3165 case I_SETSIG: 3166 case I_SWROPT: 3167 case I_FLUSHBAND: 3168 case I_SETCLTIME: 3169 case I_SERROPT: 3170 case I_ESETSIG: 3171 case FIONBIO: 3172 case FIOASYNC: 3173 case FIOSETOWN: 3174 case JBOOT: /* Obsolete */ 3175 case JTERM: /* Obsolete */ 3176 case JTIMOM: /* Obsolete */ 3177 case JZOMBOOT: /* Obsolete */ 3178 case JAGENT: /* Obsolete */ 3179 case JTRUN: /* Obsolete */ 3180 case JXTPROTO: /* Obsolete */ 3181 return (JCSETP); 3182 } 3183 3184 return (JCGETP); 3185 } 3186 3187 /* 3188 * ioctl for streams 3189 */ 3190 int 3191 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3192 cred_t *crp, int *rvalp) 3193 { 3194 struct stdata *stp; 3195 struct strcmd *scp; 3196 struct strioctl strioc; 3197 struct uio uio; 3198 struct iovec iov; 3199 int access; 3200 mblk_t *mp; 3201 int error = 0; 3202 int done = 0; 3203 ssize_t rmin, rmax; 3204 queue_t *wrq; 3205 queue_t *rdq; 3206 boolean_t kioctl = B_FALSE; 3207 uint32_t auditing = AU_AUDITING(); 3208 3209 if (flag & FKIOCTL) { 3210 copyflag = K_TO_K; 3211 kioctl = B_TRUE; 3212 } 3213 ASSERT(vp->v_stream); 3214 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3215 stp = vp->v_stream; 3216 3217 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3218 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3219 3220 /* 3221 * If the copy is kernel to kernel, make sure that the FNATIVE 3222 * flag is set. After this it would be a serious error to have 3223 * no model flag. 3224 */ 3225 if (copyflag == K_TO_K) 3226 flag = (flag & ~FMODELS) | FNATIVE; 3227 3228 ASSERT((flag & FMODELS) != 0); 3229 3230 wrq = stp->sd_wrq; 3231 rdq = _RD(wrq); 3232 3233 access = job_control_type(cmd); 3234 3235 /* We should never see these here, should be handled by iwscn */ 3236 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3237 return (EINVAL); 3238 3239 mutex_enter(&stp->sd_lock); 3240 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3241 mutex_exit(&stp->sd_lock); 3242 return (error); 3243 } 3244 mutex_exit(&stp->sd_lock); 3245 3246 /* 3247 * Check for sgttyb-related ioctls first, and complain as 3248 * necessary. 3249 */ 3250 switch (cmd) { 3251 case TIOCGETP: 3252 case TIOCSETP: 3253 case TIOCSETN: 3254 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3255 sgttyb_complaint = B_TRUE; 3256 cmn_err(CE_NOTE, 3257 "application used obsolete TIOC[GS]ET"); 3258 } 3259 if (sgttyb_handling >= 3) { 3260 tsignal(curthread, SIGSYS); 3261 return (EIO); 3262 } 3263 break; 3264 } 3265 3266 mutex_enter(&stp->sd_lock); 3267 3268 switch (cmd) { 3269 case I_RECVFD: 3270 case I_E_RECVFD: 3271 case I_PEEK: 3272 case I_NREAD: 3273 case FIONREAD: 3274 case FIORDCHK: 3275 case I_ATMARK: 3276 case FIONBIO: 3277 case FIOASYNC: 3278 if (stp->sd_flag & (STRDERR|STPLEX)) { 3279 error = strgeterr(stp, STRDERR|STPLEX, 0); 3280 if (error != 0) { 3281 mutex_exit(&stp->sd_lock); 3282 return (error); 3283 } 3284 } 3285 break; 3286 3287 default: 3288 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3289 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3290 if (error != 0) { 3291 mutex_exit(&stp->sd_lock); 3292 return (error); 3293 } 3294 } 3295 } 3296 3297 mutex_exit(&stp->sd_lock); 3298 3299 switch (cmd) { 3300 default: 3301 /* 3302 * The stream head has hardcoded knowledge of a 3303 * miscellaneous collection of terminal-, keyboard- and 3304 * mouse-related ioctls, enumerated below. This hardcoded 3305 * knowledge allows the stream head to automatically 3306 * convert transparent ioctl requests made by userland 3307 * programs into I_STR ioctls which many old STREAMS 3308 * modules and drivers require. 3309 * 3310 * No new ioctls should ever be added to this list. 3311 * Instead, the STREAMS module or driver should be written 3312 * to either handle transparent ioctls or require any 3313 * userland programs to use I_STR ioctls (by returning 3314 * EINVAL to any transparent ioctl requests). 3315 * 3316 * More importantly, removing ioctls from this list should 3317 * be done with the utmost care, since our STREAMS modules 3318 * and drivers *count* on the stream head performing this 3319 * conversion, and thus may panic while processing 3320 * transparent ioctl request for one of these ioctls (keep 3321 * in mind that third party modules and drivers may have 3322 * similar problems). 3323 */ 3324 if (((cmd & IOCTYPE) == LDIOC) || 3325 ((cmd & IOCTYPE) == tIOC) || 3326 ((cmd & IOCTYPE) == TIOC) || 3327 ((cmd & IOCTYPE) == KIOC) || 3328 ((cmd & IOCTYPE) == MSIOC) || 3329 ((cmd & IOCTYPE) == VUIOC)) { 3330 /* 3331 * The ioctl is a tty ioctl - set up strioc buffer 3332 * and call strdoioctl() to do the work. 3333 */ 3334 if (stp->sd_flag & STRHUP) 3335 return (ENXIO); 3336 strioc.ic_cmd = cmd; 3337 strioc.ic_timout = INFTIM; 3338 3339 switch (cmd) { 3340 3341 case TCXONC: 3342 case TCSBRK: 3343 case TCFLSH: 3344 case TCDSET: 3345 { 3346 int native_arg = (int)arg; 3347 strioc.ic_len = sizeof (int); 3348 strioc.ic_dp = (char *)&native_arg; 3349 return (strdoioctl(stp, &strioc, flag, 3350 K_TO_K, crp, rvalp)); 3351 } 3352 3353 case TCSETA: 3354 case TCSETAW: 3355 case TCSETAF: 3356 strioc.ic_len = sizeof (struct termio); 3357 strioc.ic_dp = (char *)arg; 3358 return (strdoioctl(stp, &strioc, flag, 3359 copyflag, crp, rvalp)); 3360 3361 case TCSETS: 3362 case TCSETSW: 3363 case TCSETSF: 3364 strioc.ic_len = sizeof (struct termios); 3365 strioc.ic_dp = (char *)arg; 3366 return (strdoioctl(stp, &strioc, flag, 3367 copyflag, crp, rvalp)); 3368 3369 case LDSETT: 3370 strioc.ic_len = sizeof (struct termcb); 3371 strioc.ic_dp = (char *)arg; 3372 return (strdoioctl(stp, &strioc, flag, 3373 copyflag, crp, rvalp)); 3374 3375 case TIOCSETP: 3376 strioc.ic_len = sizeof (struct sgttyb); 3377 strioc.ic_dp = (char *)arg; 3378 return (strdoioctl(stp, &strioc, flag, 3379 copyflag, crp, rvalp)); 3380 3381 case TIOCSTI: 3382 if ((flag & FREAD) == 0 && 3383 secpolicy_sti(crp) != 0) { 3384 return (EPERM); 3385 } 3386 mutex_enter(&stp->sd_lock); 3387 mutex_enter(&curproc->p_splock); 3388 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3389 secpolicy_sti(crp) != 0) { 3390 mutex_exit(&curproc->p_splock); 3391 mutex_exit(&stp->sd_lock); 3392 return (EACCES); 3393 } 3394 mutex_exit(&curproc->p_splock); 3395 mutex_exit(&stp->sd_lock); 3396 3397 strioc.ic_len = sizeof (char); 3398 strioc.ic_dp = (char *)arg; 3399 return (strdoioctl(stp, &strioc, flag, 3400 copyflag, crp, rvalp)); 3401 3402 case TIOCSWINSZ: 3403 strioc.ic_len = sizeof (struct winsize); 3404 strioc.ic_dp = (char *)arg; 3405 return (strdoioctl(stp, &strioc, flag, 3406 copyflag, crp, rvalp)); 3407 3408 case TIOCSSIZE: 3409 strioc.ic_len = sizeof (struct ttysize); 3410 strioc.ic_dp = (char *)arg; 3411 return (strdoioctl(stp, &strioc, flag, 3412 copyflag, crp, rvalp)); 3413 3414 case TIOCSSOFTCAR: 3415 case KIOCTRANS: 3416 case KIOCTRANSABLE: 3417 case KIOCCMD: 3418 case KIOCSDIRECT: 3419 case KIOCSCOMPAT: 3420 case KIOCSKABORTEN: 3421 case KIOCSRPTDELAY: 3422 case KIOCSRPTRATE: 3423 case VUIDSFORMAT: 3424 case TIOCSPPS: 3425 strioc.ic_len = sizeof (int); 3426 strioc.ic_dp = (char *)arg; 3427 return (strdoioctl(stp, &strioc, flag, 3428 copyflag, crp, rvalp)); 3429 3430 case KIOCSETKEY: 3431 case KIOCGETKEY: 3432 strioc.ic_len = sizeof (struct kiockey); 3433 strioc.ic_dp = (char *)arg; 3434 return (strdoioctl(stp, &strioc, flag, 3435 copyflag, crp, rvalp)); 3436 3437 case KIOCSKEY: 3438 case KIOCGKEY: 3439 strioc.ic_len = sizeof (struct kiockeymap); 3440 strioc.ic_dp = (char *)arg; 3441 return (strdoioctl(stp, &strioc, flag, 3442 copyflag, crp, rvalp)); 3443 3444 case KIOCSLED: 3445 /* arg is a pointer to char */ 3446 strioc.ic_len = sizeof (char); 3447 strioc.ic_dp = (char *)arg; 3448 return (strdoioctl(stp, &strioc, flag, 3449 copyflag, crp, rvalp)); 3450 3451 case MSIOSETPARMS: 3452 strioc.ic_len = sizeof (Ms_parms); 3453 strioc.ic_dp = (char *)arg; 3454 return (strdoioctl(stp, &strioc, flag, 3455 copyflag, crp, rvalp)); 3456 3457 case VUIDSADDR: 3458 case VUIDGADDR: 3459 strioc.ic_len = sizeof (struct vuid_addr_probe); 3460 strioc.ic_dp = (char *)arg; 3461 return (strdoioctl(stp, &strioc, flag, 3462 copyflag, crp, rvalp)); 3463 3464 /* 3465 * These M_IOCTL's don't require any data to be sent 3466 * downstream, and the driver will allocate and link 3467 * on its own mblk_t upon M_IOCACK -- thus we set 3468 * ic_len to zero and set ic_dp to arg so we know 3469 * where to copyout to later. 3470 */ 3471 case TIOCGSOFTCAR: 3472 case TIOCGWINSZ: 3473 case TIOCGSIZE: 3474 case KIOCGTRANS: 3475 case KIOCGTRANSABLE: 3476 case KIOCTYPE: 3477 case KIOCGDIRECT: 3478 case KIOCGCOMPAT: 3479 case KIOCLAYOUT: 3480 case KIOCGLED: 3481 case MSIOGETPARMS: 3482 case MSIOBUTTONS: 3483 case VUIDGFORMAT: 3484 case TIOCGPPS: 3485 case TIOCGPPSEV: 3486 case TCGETA: 3487 case TCGETS: 3488 case LDGETT: 3489 case TIOCGETP: 3490 case KIOCGRPTDELAY: 3491 case KIOCGRPTRATE: 3492 strioc.ic_len = 0; 3493 strioc.ic_dp = (char *)arg; 3494 return (strdoioctl(stp, &strioc, flag, 3495 copyflag, crp, rvalp)); 3496 } 3497 } 3498 3499 /* 3500 * Unknown cmd - send it down as a transparent ioctl. 3501 */ 3502 strioc.ic_cmd = cmd; 3503 strioc.ic_timout = INFTIM; 3504 strioc.ic_len = TRANSPARENT; 3505 strioc.ic_dp = (char *)&arg; 3506 3507 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3508 3509 case I_STR: 3510 /* 3511 * Stream ioctl. Read in an strioctl buffer from the user 3512 * along with any data specified and send it downstream. 3513 * Strdoioctl will wait allow only one ioctl message at 3514 * a time, and waits for the acknowledgement. 3515 */ 3516 3517 if (stp->sd_flag & STRHUP) 3518 return (ENXIO); 3519 3520 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3521 copyflag); 3522 if (error != 0) 3523 return (error); 3524 3525 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3526 return (EINVAL); 3527 3528 access = job_control_type(strioc.ic_cmd); 3529 mutex_enter(&stp->sd_lock); 3530 if ((access != -1) && 3531 ((error = i_straccess(stp, access)) != 0)) { 3532 mutex_exit(&stp->sd_lock); 3533 return (error); 3534 } 3535 mutex_exit(&stp->sd_lock); 3536 3537 /* 3538 * The I_STR facility provides a trap door for malicious 3539 * code to send down bogus streamio(7I) ioctl commands to 3540 * unsuspecting STREAMS modules and drivers which expect to 3541 * only get these messages from the stream head. 3542 * Explicitly prohibit any streamio ioctls which can be 3543 * passed downstream by the stream head. Note that we do 3544 * not block all streamio ioctls because the ioctl 3545 * numberspace is not well managed and thus it's possible 3546 * that a module or driver's ioctl numbers may accidentally 3547 * collide with them. 3548 */ 3549 switch (strioc.ic_cmd) { 3550 case I_LINK: 3551 case I_PLINK: 3552 case I_UNLINK: 3553 case I_PUNLINK: 3554 case _I_GETPEERCRED: 3555 case _I_PLINK_LH: 3556 return (EINVAL); 3557 } 3558 3559 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3560 if (error == 0) { 3561 error = strcopyout_strioctl(&strioc, (void *)arg, 3562 flag, copyflag); 3563 } 3564 return (error); 3565 3566 case _I_CMD: 3567 /* 3568 * Like I_STR, but without using M_IOC* messages and without 3569 * copyins/copyouts beyond the passed-in argument. 3570 */ 3571 if (stp->sd_flag & STRHUP) 3572 return (ENXIO); 3573 3574 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL) 3575 return (ENOMEM); 3576 3577 if (copyin((void *)arg, scp, sizeof (strcmd_t))) { 3578 kmem_free(scp, sizeof (strcmd_t)); 3579 return (EFAULT); 3580 } 3581 3582 access = job_control_type(scp->sc_cmd); 3583 mutex_enter(&stp->sd_lock); 3584 if (access != -1 && (error = i_straccess(stp, access)) != 0) { 3585 mutex_exit(&stp->sd_lock); 3586 kmem_free(scp, sizeof (strcmd_t)); 3587 return (error); 3588 } 3589 mutex_exit(&stp->sd_lock); 3590 3591 *rvalp = 0; 3592 if ((error = strdocmd(stp, scp, crp)) == 0) { 3593 if (copyout(scp, (void *)arg, sizeof (strcmd_t))) 3594 error = EFAULT; 3595 } 3596 kmem_free(scp, sizeof (strcmd_t)); 3597 return (error); 3598 3599 case I_NREAD: 3600 /* 3601 * Return number of bytes of data in first message 3602 * in queue in "arg" and return the number of messages 3603 * in queue in return value. 3604 */ 3605 { 3606 size_t size; 3607 int retval; 3608 int count = 0; 3609 3610 mutex_enter(QLOCK(rdq)); 3611 3612 size = msgdsize(rdq->q_first); 3613 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3614 count++; 3615 3616 mutex_exit(QLOCK(rdq)); 3617 if (stp->sd_struiordq) { 3618 infod_t infod; 3619 3620 infod.d_cmd = INFOD_COUNT; 3621 infod.d_count = 0; 3622 if (count == 0) { 3623 infod.d_cmd |= INFOD_FIRSTBYTES; 3624 infod.d_bytes = 0; 3625 } 3626 infod.d_res = 0; 3627 (void) infonext(rdq, &infod); 3628 count += infod.d_count; 3629 if (infod.d_res & INFOD_FIRSTBYTES) 3630 size = infod.d_bytes; 3631 } 3632 3633 /* 3634 * Drop down from size_t to the "int" required by the 3635 * interface. Cap at INT_MAX. 3636 */ 3637 retval = MIN(size, INT_MAX); 3638 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3639 copyflag); 3640 if (!error) 3641 *rvalp = count; 3642 return (error); 3643 } 3644 3645 case FIONREAD: 3646 /* 3647 * Return number of bytes of data in all data messages 3648 * in queue in "arg". 3649 */ 3650 { 3651 size_t size = 0; 3652 int retval; 3653 3654 mutex_enter(QLOCK(rdq)); 3655 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3656 size += msgdsize(mp); 3657 mutex_exit(QLOCK(rdq)); 3658 3659 if (stp->sd_struiordq) { 3660 infod_t infod; 3661 3662 infod.d_cmd = INFOD_BYTES; 3663 infod.d_res = 0; 3664 infod.d_bytes = 0; 3665 (void) infonext(rdq, &infod); 3666 size += infod.d_bytes; 3667 } 3668 3669 /* 3670 * Drop down from size_t to the "int" required by the 3671 * interface. Cap at INT_MAX. 3672 */ 3673 retval = MIN(size, INT_MAX); 3674 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3675 copyflag); 3676 3677 *rvalp = 0; 3678 return (error); 3679 } 3680 case FIORDCHK: 3681 /* 3682 * FIORDCHK does not use arg value (like FIONREAD), 3683 * instead a count is returned. I_NREAD value may 3684 * not be accurate but safe. The real thing to do is 3685 * to add the msgdsizes of all data messages until 3686 * a non-data message. 3687 */ 3688 { 3689 size_t size = 0; 3690 3691 mutex_enter(QLOCK(rdq)); 3692 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3693 size += msgdsize(mp); 3694 mutex_exit(QLOCK(rdq)); 3695 3696 if (stp->sd_struiordq) { 3697 infod_t infod; 3698 3699 infod.d_cmd = INFOD_BYTES; 3700 infod.d_res = 0; 3701 infod.d_bytes = 0; 3702 (void) infonext(rdq, &infod); 3703 size += infod.d_bytes; 3704 } 3705 3706 /* 3707 * Since ioctl returns an int, and memory sizes under 3708 * LP64 may not fit, we return INT_MAX if the count was 3709 * actually greater. 3710 */ 3711 *rvalp = MIN(size, INT_MAX); 3712 return (0); 3713 } 3714 3715 case I_FIND: 3716 /* 3717 * Get module name. 3718 */ 3719 { 3720 char mname[FMNAMESZ + 1]; 3721 queue_t *q; 3722 3723 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3724 mname, FMNAMESZ + 1, NULL); 3725 if (error) 3726 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3727 3728 /* 3729 * Return EINVAL if we're handed a bogus module name. 3730 */ 3731 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3732 TRACE_0(TR_FAC_STREAMS_FR, 3733 TR_I_CANT_FIND, "couldn't I_FIND"); 3734 return (EINVAL); 3735 } 3736 3737 *rvalp = 0; 3738 3739 /* Look downstream to see if module is there. */ 3740 claimstr(stp->sd_wrq); 3741 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3742 if (q->q_flag & QREADR) { 3743 q = NULL; 3744 break; 3745 } 3746 if (strcmp(mname, Q2NAME(q)) == 0) 3747 break; 3748 } 3749 releasestr(stp->sd_wrq); 3750 3751 *rvalp = (q ? 1 : 0); 3752 return (error); 3753 } 3754 3755 case I_PUSH: 3756 case __I_PUSH_NOCTTY: 3757 /* 3758 * Push a module. 3759 * For the case __I_PUSH_NOCTTY push a module but 3760 * do not allocate controlling tty. See bugid 4025044 3761 */ 3762 3763 { 3764 char mname[FMNAMESZ + 1]; 3765 fmodsw_impl_t *fp; 3766 dev_t dummydev; 3767 3768 if (stp->sd_flag & STRHUP) 3769 return (ENXIO); 3770 3771 /* 3772 * Get module name and look up in fmodsw. 3773 */ 3774 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3775 mname, FMNAMESZ + 1, NULL); 3776 if (error) 3777 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3778 3779 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3780 NULL) 3781 return (EINVAL); 3782 3783 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3784 "I_PUSH:fp %p stp %p", fp, stp); 3785 3786 if (error = strstartplumb(stp, flag, cmd)) { 3787 fmodsw_rele(fp); 3788 return (error); 3789 } 3790 3791 /* 3792 * See if any more modules can be pushed on this stream. 3793 * Note that this check must be done after strstartplumb() 3794 * since otherwise multiple threads issuing I_PUSHes on 3795 * the same stream will be able to exceed nstrpush. 3796 */ 3797 mutex_enter(&stp->sd_lock); 3798 if (stp->sd_pushcnt >= nstrpush) { 3799 fmodsw_rele(fp); 3800 strendplumb(stp); 3801 mutex_exit(&stp->sd_lock); 3802 return (EINVAL); 3803 } 3804 mutex_exit(&stp->sd_lock); 3805 3806 /* 3807 * Push new module and call its open routine 3808 * via qattach(). Modules don't change device 3809 * numbers, so just ignore dummydev here. 3810 */ 3811 dummydev = vp->v_rdev; 3812 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3813 B_FALSE)) == 0) { 3814 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3815 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3816 /* 3817 * try to allocate it as a controlling terminal 3818 */ 3819 (void) strctty(stp); 3820 } 3821 } 3822 3823 mutex_enter(&stp->sd_lock); 3824 3825 /* 3826 * As a performance concern we are caching the values of 3827 * q_minpsz and q_maxpsz of the module below the stream 3828 * head in the stream head. 3829 */ 3830 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3831 rmin = stp->sd_wrq->q_next->q_minpsz; 3832 rmax = stp->sd_wrq->q_next->q_maxpsz; 3833 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3834 3835 /* Do this processing here as a performance concern */ 3836 if (strmsgsz != 0) { 3837 if (rmax == INFPSZ) 3838 rmax = strmsgsz; 3839 else { 3840 if (vp->v_type == VFIFO) 3841 rmax = MIN(PIPE_BUF, rmax); 3842 else rmax = MIN(strmsgsz, rmax); 3843 } 3844 } 3845 3846 mutex_enter(QLOCK(wrq)); 3847 stp->sd_qn_minpsz = rmin; 3848 stp->sd_qn_maxpsz = rmax; 3849 mutex_exit(QLOCK(wrq)); 3850 3851 strendplumb(stp); 3852 mutex_exit(&stp->sd_lock); 3853 return (error); 3854 } 3855 3856 case I_POP: 3857 { 3858 queue_t *q; 3859 3860 if (stp->sd_flag & STRHUP) 3861 return (ENXIO); 3862 if (!wrq->q_next) /* for broken pipes */ 3863 return (EINVAL); 3864 3865 if (error = strstartplumb(stp, flag, cmd)) 3866 return (error); 3867 3868 /* 3869 * If there is an anchor on this stream and popping 3870 * the current module would attempt to pop through the 3871 * anchor, then disallow the pop unless we have sufficient 3872 * privileges; take the cheapest (non-locking) check 3873 * first. 3874 */ 3875 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3876 (stp->sd_anchorzone != crgetzoneid(crp))) { 3877 mutex_enter(&stp->sd_lock); 3878 /* 3879 * Anchors only apply if there's at least one 3880 * module on the stream (sd_pushcnt > 0). 3881 */ 3882 if (stp->sd_pushcnt > 0 && 3883 stp->sd_pushcnt == stp->sd_anchor && 3884 stp->sd_vnode->v_type != VFIFO) { 3885 strendplumb(stp); 3886 mutex_exit(&stp->sd_lock); 3887 if (stp->sd_anchorzone != crgetzoneid(crp)) 3888 return (EINVAL); 3889 /* Audit and report error */ 3890 return (secpolicy_ip_config(crp, B_FALSE)); 3891 } 3892 mutex_exit(&stp->sd_lock); 3893 } 3894 3895 q = wrq->q_next; 3896 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3897 "I_POP:%p from %p", q, stp); 3898 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3899 error = EINVAL; 3900 } else { 3901 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3902 error = 0; 3903 } 3904 mutex_enter(&stp->sd_lock); 3905 3906 /* 3907 * As a performance concern we are caching the values of 3908 * q_minpsz and q_maxpsz of the module below the stream 3909 * head in the stream head. 3910 */ 3911 mutex_enter(QLOCK(wrq->q_next)); 3912 rmin = wrq->q_next->q_minpsz; 3913 rmax = wrq->q_next->q_maxpsz; 3914 mutex_exit(QLOCK(wrq->q_next)); 3915 3916 /* Do this processing here as a performance concern */ 3917 if (strmsgsz != 0) { 3918 if (rmax == INFPSZ) 3919 rmax = strmsgsz; 3920 else { 3921 if (vp->v_type == VFIFO) 3922 rmax = MIN(PIPE_BUF, rmax); 3923 else rmax = MIN(strmsgsz, rmax); 3924 } 3925 } 3926 3927 mutex_enter(QLOCK(wrq)); 3928 stp->sd_qn_minpsz = rmin; 3929 stp->sd_qn_maxpsz = rmax; 3930 mutex_exit(QLOCK(wrq)); 3931 3932 /* If we popped through the anchor, then reset the anchor. */ 3933 if (stp->sd_pushcnt < stp->sd_anchor) { 3934 stp->sd_anchor = 0; 3935 stp->sd_anchorzone = 0; 3936 } 3937 strendplumb(stp); 3938 mutex_exit(&stp->sd_lock); 3939 return (error); 3940 } 3941 3942 case _I_MUXID2FD: 3943 { 3944 /* 3945 * Create a fd for a I_PLINK'ed lower stream with a given 3946 * muxid. With the fd, application can send down ioctls, 3947 * like I_LIST, to the previously I_PLINK'ed stream. Note 3948 * that after getting the fd, the application has to do an 3949 * I_PUNLINK on the muxid before it can do any operation 3950 * on the lower stream. This is required by spec1170. 3951 * 3952 * The fd used to do this ioctl should point to the same 3953 * controlling device used to do the I_PLINK. If it uses 3954 * a different stream or an invalid muxid, I_MUXID2FD will 3955 * fail. The error code is set to EINVAL. 3956 * 3957 * The intended use of this interface is the following. 3958 * An application I_PLINK'ed a stream and exits. The fd 3959 * to the lower stream is gone. Another application 3960 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3961 */ 3962 int muxid = (int)arg; 3963 int fd; 3964 linkinfo_t *linkp; 3965 struct file *fp; 3966 netstack_t *ns; 3967 str_stack_t *ss; 3968 3969 /* 3970 * Do not allow the wildcard muxid. This ioctl is not 3971 * intended to find arbitrary link. 3972 */ 3973 if (muxid == 0) { 3974 return (EINVAL); 3975 } 3976 3977 ns = netstack_find_by_cred(crp); 3978 ASSERT(ns != NULL); 3979 ss = ns->netstack_str; 3980 ASSERT(ss != NULL); 3981 3982 mutex_enter(&muxifier); 3983 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 3984 if (linkp == NULL) { 3985 mutex_exit(&muxifier); 3986 netstack_rele(ss->ss_netstack); 3987 return (EINVAL); 3988 } 3989 3990 if ((fd = ufalloc(0)) == -1) { 3991 mutex_exit(&muxifier); 3992 netstack_rele(ss->ss_netstack); 3993 return (EMFILE); 3994 } 3995 fp = linkp->li_fpdown; 3996 mutex_enter(&fp->f_tlock); 3997 fp->f_count++; 3998 mutex_exit(&fp->f_tlock); 3999 mutex_exit(&muxifier); 4000 setf(fd, fp); 4001 *rvalp = fd; 4002 netstack_rele(ss->ss_netstack); 4003 return (0); 4004 } 4005 4006 case _I_INSERT: 4007 { 4008 /* 4009 * To insert a module to a given position in a stream. 4010 * In the first release, only allow privileged user 4011 * to use this ioctl. Furthermore, the insert is only allowed 4012 * below an anchor if the zoneid is the same as the zoneid 4013 * which created the anchor. 4014 * 4015 * Note that we do not plan to support this ioctl 4016 * on pipes in the first release. We want to learn more 4017 * about the implications of these ioctls before extending 4018 * their support. And we do not think these features are 4019 * valuable for pipes. 4020 */ 4021 STRUCT_DECL(strmodconf, strmodinsert); 4022 char mod_name[FMNAMESZ + 1]; 4023 fmodsw_impl_t *fp; 4024 dev_t dummydev; 4025 queue_t *tmp_wrq; 4026 int pos; 4027 boolean_t is_insert; 4028 4029 STRUCT_INIT(strmodinsert, flag); 4030 if (stp->sd_flag & STRHUP) 4031 return (ENXIO); 4032 if (STRMATED(stp)) 4033 return (EINVAL); 4034 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4035 return (error); 4036 if (stp->sd_anchor != 0 && 4037 stp->sd_anchorzone != crgetzoneid(crp)) 4038 return (EINVAL); 4039 4040 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4041 STRUCT_SIZE(strmodinsert), copyflag); 4042 if (error) 4043 return (error); 4044 4045 /* 4046 * Get module name and look up in fmodsw. 4047 */ 4048 error = (copyflag & U_TO_K ? copyinstr : 4049 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4050 mod_name, FMNAMESZ + 1, NULL); 4051 if (error) 4052 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4053 4054 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4055 NULL) 4056 return (EINVAL); 4057 4058 if (error = strstartplumb(stp, flag, cmd)) { 4059 fmodsw_rele(fp); 4060 return (error); 4061 } 4062 4063 /* 4064 * Is this _I_INSERT just like an I_PUSH? We need to know 4065 * this because we do some optimizations if this is a 4066 * module being pushed. 4067 */ 4068 pos = STRUCT_FGET(strmodinsert, pos); 4069 is_insert = (pos != 0); 4070 4071 /* 4072 * Make sure pos is valid. Even though it is not an I_PUSH, 4073 * we impose the same limit on the number of modules in a 4074 * stream. 4075 */ 4076 mutex_enter(&stp->sd_lock); 4077 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4078 pos > stp->sd_pushcnt) { 4079 fmodsw_rele(fp); 4080 strendplumb(stp); 4081 mutex_exit(&stp->sd_lock); 4082 return (EINVAL); 4083 } 4084 if (stp->sd_anchor != 0) { 4085 /* 4086 * Is this insert below the anchor? 4087 * Pushcnt hasn't been increased yet hence 4088 * we test for greater than here, and greater or 4089 * equal after qattach. 4090 */ 4091 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4092 stp->sd_anchorzone != crgetzoneid(crp)) { 4093 fmodsw_rele(fp); 4094 strendplumb(stp); 4095 mutex_exit(&stp->sd_lock); 4096 return (EPERM); 4097 } 4098 } 4099 4100 mutex_exit(&stp->sd_lock); 4101 4102 /* 4103 * First find the correct position this module to 4104 * be inserted. We don't need to call claimstr() 4105 * as the stream should not be changing at this point. 4106 * 4107 * Insert new module and call its open routine 4108 * via qattach(). Modules don't change device 4109 * numbers, so just ignore dummydev here. 4110 */ 4111 for (tmp_wrq = stp->sd_wrq; pos > 0; 4112 tmp_wrq = tmp_wrq->q_next, pos--) { 4113 ASSERT(SAMESTR(tmp_wrq)); 4114 } 4115 dummydev = vp->v_rdev; 4116 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4117 fp, is_insert)) != 0) { 4118 mutex_enter(&stp->sd_lock); 4119 strendplumb(stp); 4120 mutex_exit(&stp->sd_lock); 4121 return (error); 4122 } 4123 4124 mutex_enter(&stp->sd_lock); 4125 4126 /* 4127 * As a performance concern we are caching the values of 4128 * q_minpsz and q_maxpsz of the module below the stream 4129 * head in the stream head. 4130 */ 4131 if (!is_insert) { 4132 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4133 rmin = stp->sd_wrq->q_next->q_minpsz; 4134 rmax = stp->sd_wrq->q_next->q_maxpsz; 4135 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4136 4137 /* Do this processing here as a performance concern */ 4138 if (strmsgsz != 0) { 4139 if (rmax == INFPSZ) { 4140 rmax = strmsgsz; 4141 } else { 4142 rmax = MIN(strmsgsz, rmax); 4143 } 4144 } 4145 4146 mutex_enter(QLOCK(wrq)); 4147 stp->sd_qn_minpsz = rmin; 4148 stp->sd_qn_maxpsz = rmax; 4149 mutex_exit(QLOCK(wrq)); 4150 } 4151 4152 /* 4153 * Need to update the anchor value if this module is 4154 * inserted below the anchor point. 4155 */ 4156 if (stp->sd_anchor != 0) { 4157 pos = STRUCT_FGET(strmodinsert, pos); 4158 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4159 stp->sd_anchor++; 4160 } 4161 4162 strendplumb(stp); 4163 mutex_exit(&stp->sd_lock); 4164 return (0); 4165 } 4166 4167 case _I_REMOVE: 4168 { 4169 /* 4170 * To remove a module with a given name in a stream. The 4171 * caller of this ioctl needs to provide both the name and 4172 * the position of the module to be removed. This eliminates 4173 * the ambiguity of removal if a module is inserted/pushed 4174 * multiple times in a stream. In the first release, only 4175 * allow privileged user to use this ioctl. 4176 * Furthermore, the remove is only allowed 4177 * below an anchor if the zoneid is the same as the zoneid 4178 * which created the anchor. 4179 * 4180 * Note that we do not plan to support this ioctl 4181 * on pipes in the first release. We want to learn more 4182 * about the implications of these ioctls before extending 4183 * their support. And we do not think these features are 4184 * valuable for pipes. 4185 * 4186 * Also note that _I_REMOVE cannot be used to remove a 4187 * driver or the stream head. 4188 */ 4189 STRUCT_DECL(strmodconf, strmodremove); 4190 queue_t *q; 4191 int pos; 4192 char mod_name[FMNAMESZ + 1]; 4193 boolean_t is_remove; 4194 4195 STRUCT_INIT(strmodremove, flag); 4196 if (stp->sd_flag & STRHUP) 4197 return (ENXIO); 4198 if (STRMATED(stp)) 4199 return (EINVAL); 4200 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4201 return (error); 4202 if (stp->sd_anchor != 0 && 4203 stp->sd_anchorzone != crgetzoneid(crp)) 4204 return (EINVAL); 4205 4206 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4207 STRUCT_SIZE(strmodremove), copyflag); 4208 if (error) 4209 return (error); 4210 4211 error = (copyflag & U_TO_K ? copyinstr : 4212 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4213 mod_name, FMNAMESZ + 1, NULL); 4214 if (error) 4215 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4216 4217 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4218 return (error); 4219 4220 /* 4221 * Match the name of given module to the name of module at 4222 * the given position. 4223 */ 4224 pos = STRUCT_FGET(strmodremove, pos); 4225 4226 is_remove = (pos != 0); 4227 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4228 q = q->q_next, pos--) 4229 ; 4230 if (pos > 0 || !SAMESTR(q) || 4231 strcmp(Q2NAME(q), mod_name) != 0) { 4232 mutex_enter(&stp->sd_lock); 4233 strendplumb(stp); 4234 mutex_exit(&stp->sd_lock); 4235 return (EINVAL); 4236 } 4237 4238 /* 4239 * If the position is at or below an anchor, then the zoneid 4240 * must match the zoneid that created the anchor. 4241 */ 4242 if (stp->sd_anchor != 0) { 4243 pos = STRUCT_FGET(strmodremove, pos); 4244 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4245 stp->sd_anchorzone != crgetzoneid(crp)) { 4246 mutex_enter(&stp->sd_lock); 4247 strendplumb(stp); 4248 mutex_exit(&stp->sd_lock); 4249 return (EPERM); 4250 } 4251 } 4252 4253 4254 ASSERT(!(q->q_flag & QREADR)); 4255 qdetach(_RD(q), 1, flag, crp, is_remove); 4256 4257 mutex_enter(&stp->sd_lock); 4258 4259 /* 4260 * As a performance concern we are caching the values of 4261 * q_minpsz and q_maxpsz of the module below the stream 4262 * head in the stream head. 4263 */ 4264 if (!is_remove) { 4265 mutex_enter(QLOCK(wrq->q_next)); 4266 rmin = wrq->q_next->q_minpsz; 4267 rmax = wrq->q_next->q_maxpsz; 4268 mutex_exit(QLOCK(wrq->q_next)); 4269 4270 /* Do this processing here as a performance concern */ 4271 if (strmsgsz != 0) { 4272 if (rmax == INFPSZ) 4273 rmax = strmsgsz; 4274 else { 4275 if (vp->v_type == VFIFO) 4276 rmax = MIN(PIPE_BUF, rmax); 4277 else rmax = MIN(strmsgsz, rmax); 4278 } 4279 } 4280 4281 mutex_enter(QLOCK(wrq)); 4282 stp->sd_qn_minpsz = rmin; 4283 stp->sd_qn_maxpsz = rmax; 4284 mutex_exit(QLOCK(wrq)); 4285 } 4286 4287 /* 4288 * Need to update the anchor value if this module is removed 4289 * at or below the anchor point. If the removed module is at 4290 * the anchor point, remove the anchor for this stream if 4291 * there is no module above the anchor point. Otherwise, if 4292 * the removed module is below the anchor point, decrement the 4293 * anchor point by 1. 4294 */ 4295 if (stp->sd_anchor != 0) { 4296 pos = STRUCT_FGET(strmodremove, pos); 4297 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4298 stp->sd_anchor = 0; 4299 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4300 stp->sd_anchor--; 4301 } 4302 4303 strendplumb(stp); 4304 mutex_exit(&stp->sd_lock); 4305 return (0); 4306 } 4307 4308 case I_ANCHOR: 4309 /* 4310 * Set the anchor position on the stream to reside at 4311 * the top module (in other words, the top module 4312 * cannot be popped). Anchors with a FIFO make no 4313 * obvious sense, so they're not allowed. 4314 */ 4315 mutex_enter(&stp->sd_lock); 4316 4317 if (stp->sd_vnode->v_type == VFIFO) { 4318 mutex_exit(&stp->sd_lock); 4319 return (EINVAL); 4320 } 4321 /* Only allow the same zoneid to update the anchor */ 4322 if (stp->sd_anchor != 0 && 4323 stp->sd_anchorzone != crgetzoneid(crp)) { 4324 mutex_exit(&stp->sd_lock); 4325 return (EINVAL); 4326 } 4327 stp->sd_anchor = stp->sd_pushcnt; 4328 stp->sd_anchorzone = crgetzoneid(crp); 4329 mutex_exit(&stp->sd_lock); 4330 return (0); 4331 4332 case I_LOOK: 4333 /* 4334 * Get name of first module downstream. 4335 * If no module, return an error. 4336 */ 4337 claimstr(wrq); 4338 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) { 4339 char *name = Q2NAME(wrq->q_next); 4340 4341 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4342 copyflag); 4343 releasestr(wrq); 4344 return (error); 4345 } 4346 releasestr(wrq); 4347 return (EINVAL); 4348 4349 case I_LINK: 4350 case I_PLINK: 4351 /* 4352 * Link a multiplexor. 4353 */ 4354 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); 4355 4356 case _I_PLINK_LH: 4357 /* 4358 * Link a multiplexor: Call must originate from kernel. 4359 */ 4360 if (kioctl) 4361 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4362 4363 return (EINVAL); 4364 case I_UNLINK: 4365 case I_PUNLINK: 4366 /* 4367 * Unlink a multiplexor. 4368 * If arg is -1, unlink all links for which this is the 4369 * controlling stream. Otherwise, arg is an index number 4370 * for a link to be removed. 4371 */ 4372 { 4373 struct linkinfo *linkp; 4374 int native_arg = (int)arg; 4375 int type; 4376 netstack_t *ns; 4377 str_stack_t *ss; 4378 4379 TRACE_1(TR_FAC_STREAMS_FR, 4380 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4381 if (vp->v_type == VFIFO) { 4382 return (EINVAL); 4383 } 4384 if (cmd == I_UNLINK) 4385 type = LINKNORMAL; 4386 else /* I_PUNLINK */ 4387 type = LINKPERSIST; 4388 if (native_arg == 0) { 4389 return (EINVAL); 4390 } 4391 ns = netstack_find_by_cred(crp); 4392 ASSERT(ns != NULL); 4393 ss = ns->netstack_str; 4394 ASSERT(ss != NULL); 4395 4396 if (native_arg == MUXID_ALL) 4397 error = munlinkall(stp, type, crp, rvalp, ss); 4398 else { 4399 mutex_enter(&muxifier); 4400 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4401 /* invalid user supplied index number */ 4402 mutex_exit(&muxifier); 4403 netstack_rele(ss->ss_netstack); 4404 return (EINVAL); 4405 } 4406 /* munlink drops the muxifier lock */ 4407 error = munlink(stp, linkp, type, crp, rvalp, ss); 4408 } 4409 netstack_rele(ss->ss_netstack); 4410 return (error); 4411 } 4412 4413 case I_FLUSH: 4414 /* 4415 * send a flush message downstream 4416 * flush message can indicate 4417 * FLUSHR - flush read queue 4418 * FLUSHW - flush write queue 4419 * FLUSHRW - flush read/write queue 4420 */ 4421 if (stp->sd_flag & STRHUP) 4422 return (ENXIO); 4423 if (arg & ~FLUSHRW) 4424 return (EINVAL); 4425 4426 for (;;) { 4427 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4428 break; 4429 } 4430 if (error = strwaitbuf(1, BPRI_HI)) { 4431 return (error); 4432 } 4433 } 4434 4435 /* 4436 * Send down an unsupported ioctl and wait for the nack 4437 * in order to allow the M_FLUSH to propagate back 4438 * up to the stream head. 4439 * Replaces if (qready()) runqueues(); 4440 */ 4441 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4442 strioc.ic_timout = 0; 4443 strioc.ic_len = 0; 4444 strioc.ic_dp = NULL; 4445 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4446 *rvalp = 0; 4447 return (0); 4448 4449 case I_FLUSHBAND: 4450 { 4451 struct bandinfo binfo; 4452 4453 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4454 copyflag); 4455 if (error) 4456 return (error); 4457 if (stp->sd_flag & STRHUP) 4458 return (ENXIO); 4459 if (binfo.bi_flag & ~FLUSHRW) 4460 return (EINVAL); 4461 while (!(mp = allocb(2, BPRI_HI))) { 4462 if (error = strwaitbuf(2, BPRI_HI)) 4463 return (error); 4464 } 4465 mp->b_datap->db_type = M_FLUSH; 4466 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4467 *mp->b_wptr++ = binfo.bi_pri; 4468 putnext(stp->sd_wrq, mp); 4469 /* 4470 * Send down an unsupported ioctl and wait for the nack 4471 * in order to allow the M_FLUSH to propagate back 4472 * up to the stream head. 4473 * Replaces if (qready()) runqueues(); 4474 */ 4475 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4476 strioc.ic_timout = 0; 4477 strioc.ic_len = 0; 4478 strioc.ic_dp = NULL; 4479 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4480 *rvalp = 0; 4481 return (0); 4482 } 4483 4484 case I_SRDOPT: 4485 /* 4486 * Set read options 4487 * 4488 * RNORM - default stream mode 4489 * RMSGN - message no discard 4490 * RMSGD - message discard 4491 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4492 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4493 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4494 */ 4495 if (arg & ~(RMODEMASK | RPROTMASK)) 4496 return (EINVAL); 4497 4498 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4499 return (EINVAL); 4500 4501 mutex_enter(&stp->sd_lock); 4502 switch (arg & RMODEMASK) { 4503 case RNORM: 4504 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4505 break; 4506 case RMSGD: 4507 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4508 RD_MSGDIS; 4509 break; 4510 case RMSGN: 4511 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4512 RD_MSGNODIS; 4513 break; 4514 } 4515 4516 switch (arg & RPROTMASK) { 4517 case RPROTNORM: 4518 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4519 break; 4520 4521 case RPROTDAT: 4522 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4523 RD_PROTDAT); 4524 break; 4525 4526 case RPROTDIS: 4527 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4528 RD_PROTDIS); 4529 break; 4530 } 4531 mutex_exit(&stp->sd_lock); 4532 return (0); 4533 4534 case I_GRDOPT: 4535 /* 4536 * Get read option and return the value 4537 * to spot pointed to by arg 4538 */ 4539 { 4540 int rdopt; 4541 4542 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4543 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4544 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4545 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4546 4547 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4548 copyflag)); 4549 } 4550 4551 case I_SERROPT: 4552 /* 4553 * Set error options 4554 * 4555 * RERRNORM - persistent read errors 4556 * RERRNONPERSIST - non-persistent read errors 4557 * WERRNORM - persistent write errors 4558 * WERRNONPERSIST - non-persistent write errors 4559 */ 4560 if (arg & ~(RERRMASK | WERRMASK)) 4561 return (EINVAL); 4562 4563 mutex_enter(&stp->sd_lock); 4564 switch (arg & RERRMASK) { 4565 case RERRNORM: 4566 stp->sd_flag &= ~STRDERRNONPERSIST; 4567 break; 4568 case RERRNONPERSIST: 4569 stp->sd_flag |= STRDERRNONPERSIST; 4570 break; 4571 } 4572 switch (arg & WERRMASK) { 4573 case WERRNORM: 4574 stp->sd_flag &= ~STWRERRNONPERSIST; 4575 break; 4576 case WERRNONPERSIST: 4577 stp->sd_flag |= STWRERRNONPERSIST; 4578 break; 4579 } 4580 mutex_exit(&stp->sd_lock); 4581 return (0); 4582 4583 case I_GERROPT: 4584 /* 4585 * Get error option and return the value 4586 * to spot pointed to by arg 4587 */ 4588 { 4589 int erropt = 0; 4590 4591 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4592 RERRNORM; 4593 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4594 WERRNORM; 4595 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4596 copyflag)); 4597 } 4598 4599 case I_SETSIG: 4600 /* 4601 * Register the calling proc to receive the SIGPOLL 4602 * signal based on the events given in arg. If 4603 * arg is zero, remove the proc from register list. 4604 */ 4605 { 4606 strsig_t *ssp, *pssp; 4607 struct pid *pidp; 4608 4609 pssp = NULL; 4610 pidp = curproc->p_pidp; 4611 /* 4612 * Hold sd_lock to prevent traversal of sd_siglist while 4613 * it is modified. 4614 */ 4615 mutex_enter(&stp->sd_lock); 4616 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4617 pssp = ssp, ssp = ssp->ss_next) 4618 ; 4619 4620 if (arg) { 4621 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4622 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4623 mutex_exit(&stp->sd_lock); 4624 return (EINVAL); 4625 } 4626 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4627 mutex_exit(&stp->sd_lock); 4628 return (EINVAL); 4629 } 4630 4631 /* 4632 * If proc not already registered, add it 4633 * to list. 4634 */ 4635 if (!ssp) { 4636 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4637 ssp->ss_pidp = pidp; 4638 ssp->ss_pid = pidp->pid_id; 4639 ssp->ss_next = NULL; 4640 if (pssp) 4641 pssp->ss_next = ssp; 4642 else 4643 stp->sd_siglist = ssp; 4644 mutex_enter(&pidlock); 4645 PID_HOLD(pidp); 4646 mutex_exit(&pidlock); 4647 } 4648 4649 /* 4650 * Set events. 4651 */ 4652 ssp->ss_events = (int)arg; 4653 } else { 4654 /* 4655 * Remove proc from register list. 4656 */ 4657 if (ssp) { 4658 mutex_enter(&pidlock); 4659 PID_RELE(pidp); 4660 mutex_exit(&pidlock); 4661 if (pssp) 4662 pssp->ss_next = ssp->ss_next; 4663 else 4664 stp->sd_siglist = ssp->ss_next; 4665 kmem_free(ssp, sizeof (strsig_t)); 4666 } else { 4667 mutex_exit(&stp->sd_lock); 4668 return (EINVAL); 4669 } 4670 } 4671 4672 /* 4673 * Recalculate OR of sig events. 4674 */ 4675 stp->sd_sigflags = 0; 4676 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4677 stp->sd_sigflags |= ssp->ss_events; 4678 mutex_exit(&stp->sd_lock); 4679 return (0); 4680 } 4681 4682 case I_GETSIG: 4683 /* 4684 * Return (in arg) the current registration of events 4685 * for which the calling proc is to be signaled. 4686 */ 4687 { 4688 struct strsig *ssp; 4689 struct pid *pidp; 4690 4691 pidp = curproc->p_pidp; 4692 mutex_enter(&stp->sd_lock); 4693 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4694 if (ssp->ss_pidp == pidp) { 4695 error = strcopyout(&ssp->ss_events, (void *)arg, 4696 sizeof (int), copyflag); 4697 mutex_exit(&stp->sd_lock); 4698 return (error); 4699 } 4700 mutex_exit(&stp->sd_lock); 4701 return (EINVAL); 4702 } 4703 4704 case I_ESETSIG: 4705 /* 4706 * Register the ss_pid to receive the SIGPOLL 4707 * signal based on the events is ss_events arg. If 4708 * ss_events is zero, remove the proc from register list. 4709 */ 4710 { 4711 struct strsig *ssp, *pssp; 4712 struct proc *proc; 4713 struct pid *pidp; 4714 pid_t pid; 4715 struct strsigset ss; 4716 4717 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4718 if (error) 4719 return (error); 4720 4721 pid = ss.ss_pid; 4722 4723 if (ss.ss_events != 0) { 4724 /* 4725 * Permissions check by sending signal 0. 4726 * Note that when kill fails it does a set_errno 4727 * causing the system call to fail. 4728 */ 4729 error = kill(pid, 0); 4730 if (error) { 4731 return (error); 4732 } 4733 } 4734 mutex_enter(&pidlock); 4735 if (pid == 0) 4736 proc = curproc; 4737 else if (pid < 0) 4738 proc = pgfind(-pid); 4739 else 4740 proc = prfind(pid); 4741 if (proc == NULL) { 4742 mutex_exit(&pidlock); 4743 return (ESRCH); 4744 } 4745 if (pid < 0) 4746 pidp = proc->p_pgidp; 4747 else 4748 pidp = proc->p_pidp; 4749 ASSERT(pidp); 4750 /* 4751 * Get a hold on the pid structure while referencing it. 4752 * There is a separate PID_HOLD should it be inserted 4753 * in the list below. 4754 */ 4755 PID_HOLD(pidp); 4756 mutex_exit(&pidlock); 4757 4758 pssp = NULL; 4759 /* 4760 * Hold sd_lock to prevent traversal of sd_siglist while 4761 * it is modified. 4762 */ 4763 mutex_enter(&stp->sd_lock); 4764 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4765 pssp = ssp, ssp = ssp->ss_next) 4766 ; 4767 4768 if (ss.ss_events) { 4769 if (ss.ss_events & 4770 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4771 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4772 mutex_exit(&stp->sd_lock); 4773 mutex_enter(&pidlock); 4774 PID_RELE(pidp); 4775 mutex_exit(&pidlock); 4776 return (EINVAL); 4777 } 4778 if ((ss.ss_events & S_BANDURG) && 4779 !(ss.ss_events & S_RDBAND)) { 4780 mutex_exit(&stp->sd_lock); 4781 mutex_enter(&pidlock); 4782 PID_RELE(pidp); 4783 mutex_exit(&pidlock); 4784 return (EINVAL); 4785 } 4786 4787 /* 4788 * If proc not already registered, add it 4789 * to list. 4790 */ 4791 if (!ssp) { 4792 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4793 ssp->ss_pidp = pidp; 4794 ssp->ss_pid = pid; 4795 ssp->ss_next = NULL; 4796 if (pssp) 4797 pssp->ss_next = ssp; 4798 else 4799 stp->sd_siglist = ssp; 4800 mutex_enter(&pidlock); 4801 PID_HOLD(pidp); 4802 mutex_exit(&pidlock); 4803 } 4804 4805 /* 4806 * Set events. 4807 */ 4808 ssp->ss_events = ss.ss_events; 4809 } else { 4810 /* 4811 * Remove proc from register list. 4812 */ 4813 if (ssp) { 4814 mutex_enter(&pidlock); 4815 PID_RELE(pidp); 4816 mutex_exit(&pidlock); 4817 if (pssp) 4818 pssp->ss_next = ssp->ss_next; 4819 else 4820 stp->sd_siglist = ssp->ss_next; 4821 kmem_free(ssp, sizeof (strsig_t)); 4822 } else { 4823 mutex_exit(&stp->sd_lock); 4824 mutex_enter(&pidlock); 4825 PID_RELE(pidp); 4826 mutex_exit(&pidlock); 4827 return (EINVAL); 4828 } 4829 } 4830 4831 /* 4832 * Recalculate OR of sig events. 4833 */ 4834 stp->sd_sigflags = 0; 4835 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4836 stp->sd_sigflags |= ssp->ss_events; 4837 mutex_exit(&stp->sd_lock); 4838 mutex_enter(&pidlock); 4839 PID_RELE(pidp); 4840 mutex_exit(&pidlock); 4841 return (0); 4842 } 4843 4844 case I_EGETSIG: 4845 /* 4846 * Return (in arg) the current registration of events 4847 * for which the calling proc is to be signaled. 4848 */ 4849 { 4850 struct strsig *ssp; 4851 struct proc *proc; 4852 pid_t pid; 4853 struct pid *pidp; 4854 struct strsigset ss; 4855 4856 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4857 if (error) 4858 return (error); 4859 4860 pid = ss.ss_pid; 4861 mutex_enter(&pidlock); 4862 if (pid == 0) 4863 proc = curproc; 4864 else if (pid < 0) 4865 proc = pgfind(-pid); 4866 else 4867 proc = prfind(pid); 4868 if (proc == NULL) { 4869 mutex_exit(&pidlock); 4870 return (ESRCH); 4871 } 4872 if (pid < 0) 4873 pidp = proc->p_pgidp; 4874 else 4875 pidp = proc->p_pidp; 4876 4877 /* Prevent the pidp from being reassigned */ 4878 PID_HOLD(pidp); 4879 mutex_exit(&pidlock); 4880 4881 mutex_enter(&stp->sd_lock); 4882 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4883 if (ssp->ss_pid == pid) { 4884 ss.ss_pid = ssp->ss_pid; 4885 ss.ss_events = ssp->ss_events; 4886 error = strcopyout(&ss, (void *)arg, 4887 sizeof (struct strsigset), copyflag); 4888 mutex_exit(&stp->sd_lock); 4889 mutex_enter(&pidlock); 4890 PID_RELE(pidp); 4891 mutex_exit(&pidlock); 4892 return (error); 4893 } 4894 mutex_exit(&stp->sd_lock); 4895 mutex_enter(&pidlock); 4896 PID_RELE(pidp); 4897 mutex_exit(&pidlock); 4898 return (EINVAL); 4899 } 4900 4901 case I_PEEK: 4902 { 4903 STRUCT_DECL(strpeek, strpeek); 4904 size_t n; 4905 mblk_t *fmp, *tmp_mp = NULL; 4906 4907 STRUCT_INIT(strpeek, flag); 4908 4909 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4910 STRUCT_SIZE(strpeek), copyflag); 4911 if (error) 4912 return (error); 4913 4914 mutex_enter(QLOCK(rdq)); 4915 /* 4916 * Skip the invalid messages 4917 */ 4918 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4919 if (mp->b_datap->db_type != M_SIG) 4920 break; 4921 4922 /* 4923 * If user has requested to peek at a high priority message 4924 * and first message is not, return 0 4925 */ 4926 if (mp != NULL) { 4927 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4928 queclass(mp) == QNORM) { 4929 *rvalp = 0; 4930 mutex_exit(QLOCK(rdq)); 4931 return (0); 4932 } 4933 } else if (stp->sd_struiordq == NULL || 4934 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4935 /* 4936 * No mblks to look at at the streamhead and 4937 * 1). This isn't a synch stream or 4938 * 2). This is a synch stream but caller wants high 4939 * priority messages which is not supported by 4940 * the synch stream. (it only supports QNORM) 4941 */ 4942 *rvalp = 0; 4943 mutex_exit(QLOCK(rdq)); 4944 return (0); 4945 } 4946 4947 fmp = mp; 4948 4949 if (mp && mp->b_datap->db_type == M_PASSFP) { 4950 mutex_exit(QLOCK(rdq)); 4951 return (EBADMSG); 4952 } 4953 4954 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4955 mp->b_datap->db_type == M_PROTO || 4956 mp->b_datap->db_type == M_DATA); 4957 4958 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4959 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4960 } else { 4961 STRUCT_FSET(strpeek, flags, 0); 4962 } 4963 4964 4965 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 4966 mutex_exit(QLOCK(rdq)); 4967 return (ENOSR); 4968 } 4969 mutex_exit(QLOCK(rdq)); 4970 4971 /* 4972 * set mp = tmp_mp, so that I_PEEK processing can continue. 4973 * tmp_mp is used to free the dup'd message. 4974 */ 4975 mp = tmp_mp; 4976 4977 uio.uio_fmode = 0; 4978 uio.uio_extflg = UIO_COPY_CACHED; 4979 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 4980 UIO_SYSSPACE; 4981 uio.uio_limit = 0; 4982 /* 4983 * First process PROTO blocks, if any. 4984 * If user doesn't want to get ctl info by setting maxlen <= 0, 4985 * then set len to -1/0 and skip control blocks part. 4986 */ 4987 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 4988 STRUCT_FSET(strpeek, ctlbuf.len, -1); 4989 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 4990 STRUCT_FSET(strpeek, ctlbuf.len, 0); 4991 else { 4992 int ctl_part = 0; 4993 4994 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 4995 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 4996 uio.uio_iov = &iov; 4997 uio.uio_resid = iov.iov_len; 4998 uio.uio_loffset = 0; 4999 uio.uio_iovcnt = 1; 5000 while (mp && mp->b_datap->db_type != M_DATA && 5001 uio.uio_resid >= 0) { 5002 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 5003 mp->b_datap->db_type == M_PROTO : 5004 mp->b_datap->db_type == M_PCPROTO); 5005 5006 if ((n = MIN(uio.uio_resid, 5007 mp->b_wptr - mp->b_rptr)) != 0 && 5008 (error = uiomove((char *)mp->b_rptr, n, 5009 UIO_READ, &uio)) != 0) { 5010 freemsg(tmp_mp); 5011 return (error); 5012 } 5013 ctl_part = 1; 5014 mp = mp->b_cont; 5015 } 5016 /* No ctl message */ 5017 if (ctl_part == 0) 5018 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5019 else 5020 STRUCT_FSET(strpeek, ctlbuf.len, 5021 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 5022 uio.uio_resid); 5023 } 5024 5025 /* 5026 * Now process DATA blocks, if any. 5027 * If user doesn't want to get data info by setting maxlen <= 0, 5028 * then set len to -1/0 and skip data blocks part. 5029 */ 5030 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5031 STRUCT_FSET(strpeek, databuf.len, -1); 5032 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5033 STRUCT_FSET(strpeek, databuf.len, 0); 5034 else { 5035 int data_part = 0; 5036 5037 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5038 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5039 uio.uio_iov = &iov; 5040 uio.uio_resid = iov.iov_len; 5041 uio.uio_loffset = 0; 5042 uio.uio_iovcnt = 1; 5043 while (mp && uio.uio_resid) { 5044 if (mp->b_datap->db_type == M_DATA) { 5045 if ((n = MIN(uio.uio_resid, 5046 mp->b_wptr - mp->b_rptr)) != 0 && 5047 (error = uiomove((char *)mp->b_rptr, 5048 n, UIO_READ, &uio)) != 0) { 5049 freemsg(tmp_mp); 5050 return (error); 5051 } 5052 data_part = 1; 5053 } 5054 ASSERT(data_part == 0 || 5055 mp->b_datap->db_type == M_DATA); 5056 mp = mp->b_cont; 5057 } 5058 /* No data message */ 5059 if (data_part == 0) 5060 STRUCT_FSET(strpeek, databuf.len, -1); 5061 else 5062 STRUCT_FSET(strpeek, databuf.len, 5063 STRUCT_FGET(strpeek, databuf.maxlen) - 5064 uio.uio_resid); 5065 } 5066 freemsg(tmp_mp); 5067 5068 /* 5069 * It is a synch stream and user wants to get 5070 * data (maxlen > 0). 5071 * uio setup is done by the codes that process DATA 5072 * blocks above. 5073 */ 5074 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5075 infod_t infod; 5076 5077 infod.d_cmd = INFOD_COPYOUT; 5078 infod.d_res = 0; 5079 infod.d_uiop = &uio; 5080 error = infonext(rdq, &infod); 5081 if (error == EINVAL || error == EBUSY) 5082 error = 0; 5083 if (error) 5084 return (error); 5085 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5086 databuf.maxlen) - uio.uio_resid); 5087 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5088 /* 5089 * No data found by the infonext(). 5090 */ 5091 STRUCT_FSET(strpeek, databuf.len, -1); 5092 } 5093 } 5094 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5095 STRUCT_SIZE(strpeek), copyflag); 5096 if (error) { 5097 return (error); 5098 } 5099 /* 5100 * If there is no message retrieved, set return code to 0 5101 * otherwise, set it to 1. 5102 */ 5103 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5104 STRUCT_FGET(strpeek, databuf.len) == -1) 5105 *rvalp = 0; 5106 else 5107 *rvalp = 1; 5108 return (0); 5109 } 5110 5111 case I_FDINSERT: 5112 { 5113 STRUCT_DECL(strfdinsert, strfdinsert); 5114 struct file *resftp; 5115 struct stdata *resstp; 5116 t_uscalar_t ival; 5117 ssize_t msgsize; 5118 struct strbuf mctl; 5119 5120 STRUCT_INIT(strfdinsert, flag); 5121 if (stp->sd_flag & STRHUP) 5122 return (ENXIO); 5123 /* 5124 * STRDERR, STWRERR and STPLEX tested above. 5125 */ 5126 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5127 STRUCT_SIZE(strfdinsert), copyflag); 5128 if (error) 5129 return (error); 5130 5131 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5132 (STRUCT_FGET(strfdinsert, offset) % 5133 sizeof (t_uscalar_t)) != 0) 5134 return (EINVAL); 5135 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5136 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5137 releasef(STRUCT_FGET(strfdinsert, fildes)); 5138 return (EINVAL); 5139 } 5140 } else 5141 return (EINVAL); 5142 5143 mutex_enter(&resstp->sd_lock); 5144 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5145 error = strgeterr(resstp, 5146 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5147 if (error != 0) { 5148 mutex_exit(&resstp->sd_lock); 5149 releasef(STRUCT_FGET(strfdinsert, fildes)); 5150 return (error); 5151 } 5152 } 5153 mutex_exit(&resstp->sd_lock); 5154 5155 #ifdef _ILP32 5156 { 5157 queue_t *q; 5158 queue_t *mate = NULL; 5159 5160 /* get read queue of stream terminus */ 5161 claimstr(resstp->sd_wrq); 5162 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5163 q = q->q_next) 5164 if (!STRMATED(resstp) && STREAM(q) != resstp && 5165 mate == NULL) { 5166 ASSERT(q->q_qinfo->qi_srvp); 5167 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5168 claimstr(q); 5169 mate = q; 5170 } 5171 q = _RD(q); 5172 if (mate) 5173 releasestr(mate); 5174 releasestr(resstp->sd_wrq); 5175 ival = (t_uscalar_t)q; 5176 } 5177 #else 5178 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5179 #endif /* _ILP32 */ 5180 5181 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5182 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5183 releasef(STRUCT_FGET(strfdinsert, fildes)); 5184 return (EINVAL); 5185 } 5186 5187 /* 5188 * Check for legal flag value. 5189 */ 5190 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5191 releasef(STRUCT_FGET(strfdinsert, fildes)); 5192 return (EINVAL); 5193 } 5194 5195 /* get these values from those cached in the stream head */ 5196 mutex_enter(QLOCK(stp->sd_wrq)); 5197 rmin = stp->sd_qn_minpsz; 5198 rmax = stp->sd_qn_maxpsz; 5199 mutex_exit(QLOCK(stp->sd_wrq)); 5200 5201 /* 5202 * Make sure ctl and data sizes together fall within 5203 * the limits of the max and min receive packet sizes 5204 * and do not exceed system limit. A negative data 5205 * length means that no data part is to be sent. 5206 */ 5207 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5208 if (rmax == 0) { 5209 releasef(STRUCT_FGET(strfdinsert, fildes)); 5210 return (ERANGE); 5211 } 5212 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5213 msgsize = 0; 5214 if ((msgsize < rmin) || 5215 ((msgsize > rmax) && (rmax != INFPSZ)) || 5216 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5217 releasef(STRUCT_FGET(strfdinsert, fildes)); 5218 return (ERANGE); 5219 } 5220 5221 mutex_enter(&stp->sd_lock); 5222 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5223 !canputnext(stp->sd_wrq)) { 5224 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5225 flag, -1, &done)) != 0 || done) { 5226 mutex_exit(&stp->sd_lock); 5227 releasef(STRUCT_FGET(strfdinsert, fildes)); 5228 return (error); 5229 } 5230 if ((error = i_straccess(stp, access)) != 0) { 5231 mutex_exit(&stp->sd_lock); 5232 releasef( 5233 STRUCT_FGET(strfdinsert, fildes)); 5234 return (error); 5235 } 5236 } 5237 mutex_exit(&stp->sd_lock); 5238 5239 /* 5240 * Copy strfdinsert.ctlbuf into native form of 5241 * ctlbuf to pass down into strmakemsg(). 5242 */ 5243 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5244 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5245 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5246 5247 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5248 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5249 uio.uio_iov = &iov; 5250 uio.uio_iovcnt = 1; 5251 uio.uio_loffset = 0; 5252 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5253 UIO_SYSSPACE; 5254 uio.uio_fmode = 0; 5255 uio.uio_extflg = UIO_COPY_CACHED; 5256 uio.uio_resid = iov.iov_len; 5257 if ((error = strmakemsg(&mctl, 5258 &msgsize, &uio, stp, 5259 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5260 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5261 releasef(STRUCT_FGET(strfdinsert, fildes)); 5262 return (error); 5263 } 5264 5265 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5266 5267 /* 5268 * Place the possibly reencoded queue pointer 'offset' bytes 5269 * from the start of the control portion of the message. 5270 */ 5271 *((t_uscalar_t *)(mp->b_rptr + 5272 STRUCT_FGET(strfdinsert, offset))) = ival; 5273 5274 /* 5275 * Put message downstream. 5276 */ 5277 stream_willservice(stp); 5278 putnext(stp->sd_wrq, mp); 5279 stream_runservice(stp); 5280 releasef(STRUCT_FGET(strfdinsert, fildes)); 5281 return (error); 5282 } 5283 5284 case I_SENDFD: 5285 { 5286 struct file *fp; 5287 5288 if ((fp = getf((int)arg)) == NULL) 5289 return (EBADF); 5290 error = do_sendfp(stp, fp, crp); 5291 if (auditing) { 5292 audit_fdsend((int)arg, fp, error); 5293 } 5294 releasef((int)arg); 5295 return (error); 5296 } 5297 5298 case I_RECVFD: 5299 case I_E_RECVFD: 5300 { 5301 struct k_strrecvfd *srf; 5302 int i, fd; 5303 5304 mutex_enter(&stp->sd_lock); 5305 while (!(mp = getq(rdq))) { 5306 if (stp->sd_flag & (STRHUP|STREOF)) { 5307 mutex_exit(&stp->sd_lock); 5308 return (ENXIO); 5309 } 5310 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5311 flag, -1, &done)) != 0 || done) { 5312 mutex_exit(&stp->sd_lock); 5313 return (error); 5314 } 5315 if ((error = i_straccess(stp, access)) != 0) { 5316 mutex_exit(&stp->sd_lock); 5317 return (error); 5318 } 5319 } 5320 if (mp->b_datap->db_type != M_PASSFP) { 5321 putback(stp, rdq, mp, mp->b_band); 5322 mutex_exit(&stp->sd_lock); 5323 return (EBADMSG); 5324 } 5325 mutex_exit(&stp->sd_lock); 5326 5327 srf = (struct k_strrecvfd *)mp->b_rptr; 5328 if ((fd = ufalloc(0)) == -1) { 5329 mutex_enter(&stp->sd_lock); 5330 putback(stp, rdq, mp, mp->b_band); 5331 mutex_exit(&stp->sd_lock); 5332 return (EMFILE); 5333 } 5334 if (cmd == I_RECVFD) { 5335 struct o_strrecvfd ostrfd; 5336 5337 /* check to see if uid/gid values are too large. */ 5338 5339 if (srf->uid > (o_uid_t)USHRT_MAX || 5340 srf->gid > (o_gid_t)USHRT_MAX) { 5341 mutex_enter(&stp->sd_lock); 5342 putback(stp, rdq, mp, mp->b_band); 5343 mutex_exit(&stp->sd_lock); 5344 setf(fd, NULL); /* release fd entry */ 5345 return (EOVERFLOW); 5346 } 5347 5348 ostrfd.fd = fd; 5349 ostrfd.uid = (o_uid_t)srf->uid; 5350 ostrfd.gid = (o_gid_t)srf->gid; 5351 5352 /* Null the filler bits */ 5353 for (i = 0; i < 8; i++) 5354 ostrfd.fill[i] = 0; 5355 5356 error = strcopyout(&ostrfd, (void *)arg, 5357 sizeof (struct o_strrecvfd), copyflag); 5358 } else { /* I_E_RECVFD */ 5359 struct strrecvfd strfd; 5360 5361 strfd.fd = fd; 5362 strfd.uid = srf->uid; 5363 strfd.gid = srf->gid; 5364 5365 /* null the filler bits */ 5366 for (i = 0; i < 8; i++) 5367 strfd.fill[i] = 0; 5368 5369 error = strcopyout(&strfd, (void *)arg, 5370 sizeof (struct strrecvfd), copyflag); 5371 } 5372 5373 if (error) { 5374 setf(fd, NULL); /* release fd entry */ 5375 mutex_enter(&stp->sd_lock); 5376 putback(stp, rdq, mp, mp->b_band); 5377 mutex_exit(&stp->sd_lock); 5378 return (error); 5379 } 5380 if (auditing) { 5381 audit_fdrecv(fd, srf->fp); 5382 } 5383 5384 /* 5385 * Always increment f_count since the freemsg() below will 5386 * always call free_passfp() which performs a closef(). 5387 */ 5388 mutex_enter(&srf->fp->f_tlock); 5389 srf->fp->f_count++; 5390 mutex_exit(&srf->fp->f_tlock); 5391 setf(fd, srf->fp); 5392 freemsg(mp); 5393 return (0); 5394 } 5395 5396 case I_SWROPT: 5397 /* 5398 * Set/clear the write options. arg is a bit 5399 * mask with any of the following bits set... 5400 * SNDZERO - send zero length message 5401 * SNDPIPE - send sigpipe to process if 5402 * sd_werror is set and process is 5403 * doing a write or putmsg. 5404 * The new stream head write options should reflect 5405 * what is in arg. 5406 */ 5407 if (arg & ~(SNDZERO|SNDPIPE)) 5408 return (EINVAL); 5409 5410 mutex_enter(&stp->sd_lock); 5411 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5412 if (arg & SNDZERO) 5413 stp->sd_wput_opt |= SW_SNDZERO; 5414 if (arg & SNDPIPE) 5415 stp->sd_wput_opt |= SW_SIGPIPE; 5416 mutex_exit(&stp->sd_lock); 5417 return (0); 5418 5419 case I_GWROPT: 5420 { 5421 int wropt = 0; 5422 5423 if (stp->sd_wput_opt & SW_SNDZERO) 5424 wropt |= SNDZERO; 5425 if (stp->sd_wput_opt & SW_SIGPIPE) 5426 wropt |= SNDPIPE; 5427 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5428 copyflag)); 5429 } 5430 5431 case I_LIST: 5432 /* 5433 * Returns all the modules found on this stream, 5434 * upto the driver. If argument is NULL, return the 5435 * number of modules (including driver). If argument 5436 * is not NULL, copy the names into the structure 5437 * provided. 5438 */ 5439 5440 { 5441 queue_t *q; 5442 char *qname; 5443 int i, nmods; 5444 struct str_mlist *mlist; 5445 STRUCT_DECL(str_list, strlist); 5446 5447 if (arg == NULL) { /* Return number of modules plus driver */ 5448 if (stp->sd_vnode->v_type == VFIFO) 5449 *rvalp = stp->sd_pushcnt; 5450 else 5451 *rvalp = stp->sd_pushcnt + 1; 5452 return (0); 5453 } 5454 5455 STRUCT_INIT(strlist, flag); 5456 5457 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5458 STRUCT_SIZE(strlist), copyflag); 5459 if (error != 0) 5460 return (error); 5461 5462 mlist = STRUCT_FGETP(strlist, sl_modlist); 5463 nmods = STRUCT_FGET(strlist, sl_nmods); 5464 if (nmods <= 0) 5465 return (EINVAL); 5466 5467 claimstr(stp->sd_wrq); 5468 q = stp->sd_wrq; 5469 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) { 5470 qname = Q2NAME(q->q_next); 5471 error = strcopyout(qname, &mlist[i], strlen(qname) + 1, 5472 copyflag); 5473 if (error != 0) { 5474 releasestr(stp->sd_wrq); 5475 return (error); 5476 } 5477 } 5478 releasestr(stp->sd_wrq); 5479 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag)); 5480 } 5481 5482 case I_CKBAND: 5483 { 5484 queue_t *q; 5485 qband_t *qbp; 5486 5487 if ((arg < 0) || (arg >= NBAND)) 5488 return (EINVAL); 5489 q = _RD(stp->sd_wrq); 5490 mutex_enter(QLOCK(q)); 5491 if (arg > (int)q->q_nband) { 5492 *rvalp = 0; 5493 } else { 5494 if (arg == 0) { 5495 if (q->q_first) 5496 *rvalp = 1; 5497 else 5498 *rvalp = 0; 5499 } else { 5500 qbp = q->q_bandp; 5501 while (--arg > 0) 5502 qbp = qbp->qb_next; 5503 if (qbp->qb_first) 5504 *rvalp = 1; 5505 else 5506 *rvalp = 0; 5507 } 5508 } 5509 mutex_exit(QLOCK(q)); 5510 return (0); 5511 } 5512 5513 case I_GETBAND: 5514 { 5515 int intpri; 5516 queue_t *q; 5517 5518 q = _RD(stp->sd_wrq); 5519 mutex_enter(QLOCK(q)); 5520 mp = q->q_first; 5521 if (!mp) { 5522 mutex_exit(QLOCK(q)); 5523 return (ENODATA); 5524 } 5525 intpri = (int)mp->b_band; 5526 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5527 copyflag); 5528 mutex_exit(QLOCK(q)); 5529 return (error); 5530 } 5531 5532 case I_ATMARK: 5533 { 5534 queue_t *q; 5535 5536 if (arg & ~(ANYMARK|LASTMARK)) 5537 return (EINVAL); 5538 q = _RD(stp->sd_wrq); 5539 mutex_enter(&stp->sd_lock); 5540 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5541 *rvalp = 1; 5542 } else { 5543 mutex_enter(QLOCK(q)); 5544 mp = q->q_first; 5545 5546 if (mp == NULL) 5547 *rvalp = 0; 5548 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5549 *rvalp = 1; 5550 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5551 *rvalp = 1; 5552 else 5553 *rvalp = 0; 5554 mutex_exit(QLOCK(q)); 5555 } 5556 mutex_exit(&stp->sd_lock); 5557 return (0); 5558 } 5559 5560 case I_CANPUT: 5561 { 5562 char band; 5563 5564 if ((arg < 0) || (arg >= NBAND)) 5565 return (EINVAL); 5566 band = (char)arg; 5567 *rvalp = bcanputnext(stp->sd_wrq, band); 5568 return (0); 5569 } 5570 5571 case I_SETCLTIME: 5572 { 5573 int closetime; 5574 5575 error = strcopyin((void *)arg, &closetime, sizeof (int), 5576 copyflag); 5577 if (error) 5578 return (error); 5579 if (closetime < 0) 5580 return (EINVAL); 5581 5582 stp->sd_closetime = closetime; 5583 return (0); 5584 } 5585 5586 case I_GETCLTIME: 5587 { 5588 int closetime; 5589 5590 closetime = stp->sd_closetime; 5591 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5592 copyflag)); 5593 } 5594 5595 case TIOCGSID: 5596 { 5597 pid_t sid; 5598 5599 mutex_enter(&stp->sd_lock); 5600 if (stp->sd_sidp == NULL) { 5601 mutex_exit(&stp->sd_lock); 5602 return (ENOTTY); 5603 } 5604 sid = stp->sd_sidp->pid_id; 5605 mutex_exit(&stp->sd_lock); 5606 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5607 copyflag)); 5608 } 5609 5610 case TIOCSPGRP: 5611 { 5612 pid_t pgrp; 5613 proc_t *q; 5614 pid_t sid, fg_pgid, bg_pgid; 5615 5616 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5617 copyflag)) 5618 return (error); 5619 mutex_enter(&stp->sd_lock); 5620 mutex_enter(&pidlock); 5621 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5622 mutex_exit(&pidlock); 5623 mutex_exit(&stp->sd_lock); 5624 return (ENOTTY); 5625 } 5626 if (pgrp == stp->sd_pgidp->pid_id) { 5627 mutex_exit(&pidlock); 5628 mutex_exit(&stp->sd_lock); 5629 return (0); 5630 } 5631 if (pgrp <= 0 || pgrp >= maxpid) { 5632 mutex_exit(&pidlock); 5633 mutex_exit(&stp->sd_lock); 5634 return (EINVAL); 5635 } 5636 if ((q = pgfind(pgrp)) == NULL || 5637 q->p_sessp != ttoproc(curthread)->p_sessp) { 5638 mutex_exit(&pidlock); 5639 mutex_exit(&stp->sd_lock); 5640 return (EPERM); 5641 } 5642 sid = stp->sd_sidp->pid_id; 5643 fg_pgid = q->p_pgrp; 5644 bg_pgid = stp->sd_pgidp->pid_id; 5645 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5646 PID_RELE(stp->sd_pgidp); 5647 ctty_clear_sighuped(); 5648 stp->sd_pgidp = q->p_pgidp; 5649 PID_HOLD(stp->sd_pgidp); 5650 mutex_exit(&pidlock); 5651 mutex_exit(&stp->sd_lock); 5652 return (0); 5653 } 5654 5655 case TIOCGPGRP: 5656 { 5657 pid_t pgrp; 5658 5659 mutex_enter(&stp->sd_lock); 5660 if (stp->sd_sidp == NULL) { 5661 mutex_exit(&stp->sd_lock); 5662 return (ENOTTY); 5663 } 5664 pgrp = stp->sd_pgidp->pid_id; 5665 mutex_exit(&stp->sd_lock); 5666 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5667 copyflag)); 5668 } 5669 5670 case TIOCSCTTY: 5671 { 5672 return (strctty(stp)); 5673 } 5674 5675 case TIOCNOTTY: 5676 { 5677 /* freectty() always assumes curproc. */ 5678 if (freectty(B_FALSE) != 0) 5679 return (0); 5680 return (ENOTTY); 5681 } 5682 5683 case FIONBIO: 5684 case FIOASYNC: 5685 return (0); /* handled by the upper layer */ 5686 } 5687 } 5688 5689 /* 5690 * Custom free routine used for M_PASSFP messages. 5691 */ 5692 static void 5693 free_passfp(struct k_strrecvfd *srf) 5694 { 5695 (void) closef(srf->fp); 5696 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5697 } 5698 5699 /* ARGSUSED */ 5700 int 5701 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5702 { 5703 queue_t *qp, *nextqp; 5704 struct k_strrecvfd *srf; 5705 mblk_t *mp; 5706 frtn_t *frtnp; 5707 size_t bufsize; 5708 queue_t *mate = NULL; 5709 syncq_t *sq = NULL; 5710 int retval = 0; 5711 5712 if (stp->sd_flag & STRHUP) 5713 return (ENXIO); 5714 5715 claimstr(stp->sd_wrq); 5716 5717 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5718 if (STRMATED(stp)) { 5719 qp = _RD(stp->sd_mate->sd_wrq); 5720 claimstr(qp); 5721 mate = qp; 5722 } else { /* Not already mated. */ 5723 5724 /* 5725 * Walk the stream to the end of this one. 5726 * assumes that the claimstr() will prevent 5727 * plumbing between the stream head and the 5728 * driver from changing 5729 */ 5730 qp = stp->sd_wrq; 5731 5732 /* 5733 * Loop until we reach the end of this stream. 5734 * On completion, qp points to the write queue 5735 * at the end of the stream, or the read queue 5736 * at the stream head if this is a fifo. 5737 */ 5738 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5739 ; 5740 5741 /* 5742 * Just in case we get a q_next which is NULL, but 5743 * not at the end of the stream. This is actually 5744 * broken, so we set an assert to catch it in 5745 * debug, and set an error and return if not debug. 5746 */ 5747 ASSERT(qp); 5748 if (qp == NULL) { 5749 releasestr(stp->sd_wrq); 5750 return (EINVAL); 5751 } 5752 5753 /* 5754 * Enter the syncq for the driver, so (hopefully) 5755 * the queue values will not change on us. 5756 * XXXX - This will only prevent the race IFF only 5757 * the write side modifies the q_next member, and 5758 * the put procedure is protected by at least 5759 * MT_PERQ. 5760 */ 5761 if ((sq = qp->q_syncq) != NULL) 5762 entersq(sq, SQ_PUT); 5763 5764 /* Now get the q_next value from this qp. */ 5765 nextqp = qp->q_next; 5766 5767 /* 5768 * If nextqp exists and the other stream is different 5769 * from this one claim the stream, set the mate, and 5770 * get the read queue at the stream head of the other 5771 * stream. Assumes that nextqp was at least valid when 5772 * we got it. Hopefully the entersq of the driver 5773 * will prevent it from changing on us. 5774 */ 5775 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5776 ASSERT(qp->q_qinfo->qi_srvp); 5777 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5778 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5779 claimstr(nextqp); 5780 5781 /* Make sure we still have a q_next */ 5782 if (nextqp != qp->q_next) { 5783 releasestr(stp->sd_wrq); 5784 releasestr(nextqp); 5785 return (EINVAL); 5786 } 5787 5788 qp = _RD(STREAM(nextqp)->sd_wrq); 5789 mate = qp; 5790 } 5791 /* If we entered the synq above, leave it. */ 5792 if (sq != NULL) 5793 leavesq(sq, SQ_PUT); 5794 } /* STRMATED(STP) */ 5795 5796 /* XXX prevents substitution of the ops vector */ 5797 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5798 retval = EINVAL; 5799 goto out; 5800 } 5801 5802 if (qp->q_flag & QFULL) { 5803 retval = EAGAIN; 5804 goto out; 5805 } 5806 5807 /* 5808 * Since M_PASSFP messages include a file descriptor, we use 5809 * esballoc() and specify a custom free routine (free_passfp()) that 5810 * will close the descriptor as part of freeing the message. For 5811 * convenience, we stash the frtn_t right after the data block. 5812 */ 5813 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5814 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5815 if (srf == NULL) { 5816 retval = EAGAIN; 5817 goto out; 5818 } 5819 5820 frtnp = (frtn_t *)(srf + 1); 5821 frtnp->free_arg = (caddr_t)srf; 5822 frtnp->free_func = free_passfp; 5823 5824 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5825 if (mp == NULL) { 5826 kmem_free(srf, bufsize); 5827 retval = EAGAIN; 5828 goto out; 5829 } 5830 mp->b_wptr += sizeof (struct k_strrecvfd); 5831 mp->b_datap->db_type = M_PASSFP; 5832 5833 srf->fp = fp; 5834 srf->uid = crgetuid(curthread->t_cred); 5835 srf->gid = crgetgid(curthread->t_cred); 5836 mutex_enter(&fp->f_tlock); 5837 fp->f_count++; 5838 mutex_exit(&fp->f_tlock); 5839 5840 put(qp, mp); 5841 out: 5842 releasestr(stp->sd_wrq); 5843 if (mate) 5844 releasestr(mate); 5845 return (retval); 5846 } 5847 5848 /* 5849 * Send an ioctl message downstream and wait for acknowledgement. 5850 * flags may be set to either U_TO_K or K_TO_K and a combination 5851 * of STR_NOERROR or STR_NOSIG 5852 * STR_NOSIG: Signals are essentially ignored or held and have 5853 * no effect for the duration of the call. 5854 * STR_NOERROR: Ignores stream head read, write and hup errors. 5855 * Additionally, if an existing ioctl times out, it is assumed 5856 * lost and and this ioctl will continue as if the previous ioctl had 5857 * finished. ETIME may be returned if this ioctl times out (i.e. 5858 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5859 * the ioc_error indicates that the driver/module had problems, 5860 * an EFAULT was found when accessing user data, a lack of 5861 * resources, etc. 5862 */ 5863 int 5864 strdoioctl( 5865 struct stdata *stp, 5866 struct strioctl *strioc, 5867 int fflags, /* file flags with model info */ 5868 int flag, 5869 cred_t *crp, 5870 int *rvalp) 5871 { 5872 mblk_t *bp; 5873 struct iocblk *iocbp; 5874 struct copyreq *reqp; 5875 struct copyresp *resp; 5876 int id; 5877 int transparent = 0; 5878 int error = 0; 5879 int len = 0; 5880 caddr_t taddr; 5881 int copyflag = (flag & (U_TO_K | K_TO_K)); 5882 int sigflag = (flag & STR_NOSIG); 5883 int errs; 5884 uint_t waitflags; 5885 boolean_t set_iocwaitne = B_FALSE; 5886 5887 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5888 ASSERT((fflags & FMODELS) != 0); 5889 5890 TRACE_2(TR_FAC_STREAMS_FR, 5891 TR_STRDOIOCTL, 5892 "strdoioctl:stp %p strioc %p", stp, strioc); 5893 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5894 transparent = 1; 5895 strioc->ic_len = sizeof (intptr_t); 5896 } 5897 5898 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5899 return (EINVAL); 5900 5901 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5902 crp, curproc->p_pid)) == NULL) 5903 return (error); 5904 5905 bzero(bp->b_wptr, sizeof (union ioctypes)); 5906 5907 iocbp = (struct iocblk *)bp->b_wptr; 5908 iocbp->ioc_count = strioc->ic_len; 5909 iocbp->ioc_cmd = strioc->ic_cmd; 5910 iocbp->ioc_flag = (fflags & FMODELS); 5911 5912 crhold(crp); 5913 iocbp->ioc_cr = crp; 5914 DB_TYPE(bp) = M_IOCTL; 5915 bp->b_wptr += sizeof (struct iocblk); 5916 5917 if (flag & STR_NOERROR) 5918 errs = STPLEX; 5919 else 5920 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5921 5922 /* 5923 * If there is data to copy into ioctl block, do so. 5924 */ 5925 if (iocbp->ioc_count > 0) { 5926 if (transparent) 5927 /* 5928 * Note: STR_NOERROR does not have an effect 5929 * in putiocd() 5930 */ 5931 id = K_TO_K | sigflag; 5932 else 5933 id = flag; 5934 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5935 freemsg(bp); 5936 crfree(crp); 5937 return (error); 5938 } 5939 5940 /* 5941 * We could have slept copying in user pages. 5942 * Recheck the stream head state (the other end 5943 * of a pipe could have gone away). 5944 */ 5945 if (stp->sd_flag & errs) { 5946 mutex_enter(&stp->sd_lock); 5947 error = strgeterr(stp, errs, 0); 5948 mutex_exit(&stp->sd_lock); 5949 if (error != 0) { 5950 freemsg(bp); 5951 crfree(crp); 5952 return (error); 5953 } 5954 } 5955 } 5956 if (transparent) 5957 iocbp->ioc_count = TRANSPARENT; 5958 5959 /* 5960 * Block for up to STRTIMOUT milliseconds if there is an outstanding 5961 * ioctl for this stream already running. All processes 5962 * sleeping here will be awakened as a result of an ACK 5963 * or NAK being received for the outstanding ioctl, or 5964 * as a result of the timer expiring on the outstanding 5965 * ioctl (a failure), or as a result of any waiting 5966 * process's timer expiring (also a failure). 5967 */ 5968 5969 error = 0; 5970 mutex_enter(&stp->sd_lock); 5971 while ((stp->sd_flag & IOCWAIT) || 5972 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) { 5973 clock_t cv_rval; 5974 5975 TRACE_0(TR_FAC_STREAMS_FR, 5976 TR_STRDOIOCTL_WAIT, 5977 "strdoioctl sleeps - IOCWAIT"); 5978 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 5979 STRTIMOUT, sigflag); 5980 if (cv_rval <= 0) { 5981 if (cv_rval == 0) { 5982 error = EINTR; 5983 } else { 5984 if (flag & STR_NOERROR) { 5985 /* 5986 * Terminating current ioctl in 5987 * progress -- assume it got lost and 5988 * wake up the other thread so that the 5989 * operation completes. 5990 */ 5991 if (!(stp->sd_flag & IOCWAITNE)) { 5992 set_iocwaitne = B_TRUE; 5993 stp->sd_flag |= IOCWAITNE; 5994 cv_broadcast(&stp->sd_monitor); 5995 } 5996 /* 5997 * Otherwise, there's a running 5998 * STR_NOERROR -- we have no choice 5999 * here but to wait forever (or until 6000 * interrupted). 6001 */ 6002 } else { 6003 /* 6004 * pending ioctl has caused 6005 * us to time out 6006 */ 6007 error = ETIME; 6008 } 6009 } 6010 } else if ((stp->sd_flag & errs)) { 6011 error = strgeterr(stp, errs, 0); 6012 } 6013 if (error) { 6014 mutex_exit(&stp->sd_lock); 6015 freemsg(bp); 6016 crfree(crp); 6017 return (error); 6018 } 6019 } 6020 6021 /* 6022 * Have control of ioctl mechanism. 6023 * Send down ioctl packet and wait for response. 6024 */ 6025 if (stp->sd_iocblk != (mblk_t *)-1) { 6026 freemsg(stp->sd_iocblk); 6027 } 6028 stp->sd_iocblk = NULL; 6029 6030 /* 6031 * If this is marked with 'noerror' (internal; mostly 6032 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6033 * in here by setting IOCWAITNE. 6034 */ 6035 waitflags = IOCWAIT; 6036 if (flag & STR_NOERROR) 6037 waitflags |= IOCWAITNE; 6038 6039 stp->sd_flag |= waitflags; 6040 6041 /* 6042 * Assign sequence number. 6043 */ 6044 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6045 6046 mutex_exit(&stp->sd_lock); 6047 6048 TRACE_1(TR_FAC_STREAMS_FR, 6049 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6050 stream_willservice(stp); 6051 putnext(stp->sd_wrq, bp); 6052 stream_runservice(stp); 6053 6054 /* 6055 * Timed wait for acknowledgment. The wait time is limited by the 6056 * timeout value, which must be a positive integer (number of 6057 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6058 * milliseconds), or -1 (wait forever). This will be awakened 6059 * either by an ACK/NAK message arriving, the timer expiring, or 6060 * the timer expiring on another ioctl waiting for control of the 6061 * mechanism. 6062 */ 6063 waitioc: 6064 mutex_enter(&stp->sd_lock); 6065 6066 6067 /* 6068 * If the reply has already arrived, don't sleep. If awakened from 6069 * the sleep, fail only if the reply has not arrived by then. 6070 * Otherwise, process the reply. 6071 */ 6072 while (!stp->sd_iocblk) { 6073 clock_t cv_rval; 6074 6075 if (stp->sd_flag & errs) { 6076 error = strgeterr(stp, errs, 0); 6077 if (error != 0) { 6078 stp->sd_flag &= ~waitflags; 6079 cv_broadcast(&stp->sd_iocmonitor); 6080 mutex_exit(&stp->sd_lock); 6081 crfree(crp); 6082 return (error); 6083 } 6084 } 6085 6086 TRACE_0(TR_FAC_STREAMS_FR, 6087 TR_STRDOIOCTL_WAIT2, 6088 "strdoioctl sleeps awaiting reply"); 6089 ASSERT(error == 0); 6090 6091 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6092 (strioc->ic_timout ? 6093 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6094 6095 /* 6096 * There are four possible cases here: interrupt, timeout, 6097 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6098 * valid M_IOCTL reply). 6099 * 6100 * If we've been awakened by a STR_NOERROR ioctl on some other 6101 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6102 * will be set. Pretend as if we just timed out. Note that 6103 * this other thread waited at least STRTIMOUT before trying to 6104 * awaken our thread, so this is indistinguishable (even for 6105 * INFTIM) from the case where we failed with ETIME waiting on 6106 * IOCWAIT in the prior loop. 6107 */ 6108 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6109 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6110 cv_rval = -1; 6111 } 6112 6113 /* 6114 * note: STR_NOERROR does not protect 6115 * us here.. use ic_timout < 0 6116 */ 6117 if (cv_rval <= 0) { 6118 if (cv_rval == 0) { 6119 error = EINTR; 6120 } else { 6121 error = ETIME; 6122 } 6123 /* 6124 * A message could have come in after we were scheduled 6125 * but before we were actually run. 6126 */ 6127 bp = stp->sd_iocblk; 6128 stp->sd_iocblk = NULL; 6129 if (bp != NULL) { 6130 if ((bp->b_datap->db_type == M_COPYIN) || 6131 (bp->b_datap->db_type == M_COPYOUT)) { 6132 mutex_exit(&stp->sd_lock); 6133 if (bp->b_cont) { 6134 freemsg(bp->b_cont); 6135 bp->b_cont = NULL; 6136 } 6137 bp->b_datap->db_type = M_IOCDATA; 6138 bp->b_wptr = bp->b_rptr + 6139 sizeof (struct copyresp); 6140 resp = (struct copyresp *)bp->b_rptr; 6141 resp->cp_rval = 6142 (caddr_t)1; /* failure */ 6143 stream_willservice(stp); 6144 putnext(stp->sd_wrq, bp); 6145 stream_runservice(stp); 6146 mutex_enter(&stp->sd_lock); 6147 } else { 6148 freemsg(bp); 6149 } 6150 } 6151 stp->sd_flag &= ~waitflags; 6152 cv_broadcast(&stp->sd_iocmonitor); 6153 mutex_exit(&stp->sd_lock); 6154 crfree(crp); 6155 return (error); 6156 } 6157 } 6158 bp = stp->sd_iocblk; 6159 /* 6160 * Note: it is strictly impossible to get here with sd_iocblk set to 6161 * -1. This is because the initial loop above doesn't allow any new 6162 * ioctls into the fray until all others have passed this point. 6163 */ 6164 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6165 TRACE_1(TR_FAC_STREAMS_FR, 6166 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6167 if ((bp->b_datap->db_type == M_IOCACK) || 6168 (bp->b_datap->db_type == M_IOCNAK)) { 6169 /* for detection of duplicate ioctl replies */ 6170 stp->sd_iocblk = (mblk_t *)-1; 6171 stp->sd_flag &= ~waitflags; 6172 cv_broadcast(&stp->sd_iocmonitor); 6173 mutex_exit(&stp->sd_lock); 6174 } else { 6175 /* 6176 * flags not cleared here because we're still doing 6177 * copy in/out for ioctl. 6178 */ 6179 stp->sd_iocblk = NULL; 6180 mutex_exit(&stp->sd_lock); 6181 } 6182 6183 6184 /* 6185 * Have received acknowledgment. 6186 */ 6187 6188 switch (bp->b_datap->db_type) { 6189 case M_IOCACK: 6190 /* 6191 * Positive ack. 6192 */ 6193 iocbp = (struct iocblk *)bp->b_rptr; 6194 6195 /* 6196 * Set error if indicated. 6197 */ 6198 if (iocbp->ioc_error) { 6199 error = iocbp->ioc_error; 6200 break; 6201 } 6202 6203 /* 6204 * Set return value. 6205 */ 6206 *rvalp = iocbp->ioc_rval; 6207 6208 /* 6209 * Data may have been returned in ACK message (ioc_count > 0). 6210 * If so, copy it out to the user's buffer. 6211 */ 6212 if (iocbp->ioc_count && !transparent) { 6213 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6214 break; 6215 } 6216 if (!transparent) { 6217 if (len) /* an M_COPYOUT was used with I_STR */ 6218 strioc->ic_len = len; 6219 else 6220 strioc->ic_len = (int)iocbp->ioc_count; 6221 } 6222 break; 6223 6224 case M_IOCNAK: 6225 /* 6226 * Negative ack. 6227 * 6228 * The only thing to do is set error as specified 6229 * in neg ack packet. 6230 */ 6231 iocbp = (struct iocblk *)bp->b_rptr; 6232 6233 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6234 break; 6235 6236 case M_COPYIN: 6237 /* 6238 * Driver or module has requested user ioctl data. 6239 */ 6240 reqp = (struct copyreq *)bp->b_rptr; 6241 6242 /* 6243 * M_COPYIN should *never* have a message attached, though 6244 * it's harmless if it does -- thus, panic on a DEBUG 6245 * kernel and just free it on a non-DEBUG build. 6246 */ 6247 ASSERT(bp->b_cont == NULL); 6248 if (bp->b_cont != NULL) { 6249 freemsg(bp->b_cont); 6250 bp->b_cont = NULL; 6251 } 6252 6253 error = putiocd(bp, reqp->cq_addr, flag, crp); 6254 if (error && bp->b_cont) { 6255 freemsg(bp->b_cont); 6256 bp->b_cont = NULL; 6257 } 6258 6259 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6260 bp->b_datap->db_type = M_IOCDATA; 6261 6262 mblk_setcred(bp, crp, curproc->p_pid); 6263 resp = (struct copyresp *)bp->b_rptr; 6264 resp->cp_rval = (caddr_t)(uintptr_t)error; 6265 resp->cp_flag = (fflags & FMODELS); 6266 6267 stream_willservice(stp); 6268 putnext(stp->sd_wrq, bp); 6269 stream_runservice(stp); 6270 6271 if (error) { 6272 mutex_enter(&stp->sd_lock); 6273 stp->sd_flag &= ~waitflags; 6274 cv_broadcast(&stp->sd_iocmonitor); 6275 mutex_exit(&stp->sd_lock); 6276 crfree(crp); 6277 return (error); 6278 } 6279 6280 goto waitioc; 6281 6282 case M_COPYOUT: 6283 /* 6284 * Driver or module has ioctl data for a user. 6285 */ 6286 reqp = (struct copyreq *)bp->b_rptr; 6287 ASSERT(bp->b_cont != NULL); 6288 6289 /* 6290 * Always (transparent or non-transparent ) 6291 * use the address specified in the request 6292 */ 6293 taddr = reqp->cq_addr; 6294 if (!transparent) 6295 len = (int)reqp->cq_size; 6296 6297 /* copyout data to the provided address */ 6298 error = getiocd(bp, taddr, copyflag); 6299 6300 freemsg(bp->b_cont); 6301 bp->b_cont = NULL; 6302 6303 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6304 bp->b_datap->db_type = M_IOCDATA; 6305 6306 mblk_setcred(bp, crp, curproc->p_pid); 6307 resp = (struct copyresp *)bp->b_rptr; 6308 resp->cp_rval = (caddr_t)(uintptr_t)error; 6309 resp->cp_flag = (fflags & FMODELS); 6310 6311 stream_willservice(stp); 6312 putnext(stp->sd_wrq, bp); 6313 stream_runservice(stp); 6314 6315 if (error) { 6316 mutex_enter(&stp->sd_lock); 6317 stp->sd_flag &= ~waitflags; 6318 cv_broadcast(&stp->sd_iocmonitor); 6319 mutex_exit(&stp->sd_lock); 6320 crfree(crp); 6321 return (error); 6322 } 6323 goto waitioc; 6324 6325 default: 6326 ASSERT(0); 6327 mutex_enter(&stp->sd_lock); 6328 stp->sd_flag &= ~waitflags; 6329 cv_broadcast(&stp->sd_iocmonitor); 6330 mutex_exit(&stp->sd_lock); 6331 break; 6332 } 6333 6334 freemsg(bp); 6335 crfree(crp); 6336 return (error); 6337 } 6338 6339 /* 6340 * Send an M_CMD message downstream and wait for a reply. This is a ptools 6341 * special used to retrieve information from modules/drivers a stream without 6342 * being subjected to flow control or interfering with pending messages on the 6343 * stream (e.g. an ioctl in flight). 6344 */ 6345 int 6346 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp) 6347 { 6348 mblk_t *mp; 6349 struct cmdblk *cmdp; 6350 int error = 0; 6351 int errs = STRHUP|STRDERR|STWRERR|STPLEX; 6352 clock_t rval, timeout = STRTIMOUT; 6353 6354 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) || 6355 scp->sc_timeout < -1) 6356 return (EINVAL); 6357 6358 if (scp->sc_timeout > 0) 6359 timeout = scp->sc_timeout * MILLISEC; 6360 6361 if ((mp = allocb_cred(sizeof (struct cmdblk), crp, 6362 curproc->p_pid)) == NULL) 6363 return (ENOMEM); 6364 6365 crhold(crp); 6366 6367 cmdp = (struct cmdblk *)mp->b_wptr; 6368 cmdp->cb_cr = crp; 6369 cmdp->cb_cmd = scp->sc_cmd; 6370 cmdp->cb_len = scp->sc_len; 6371 cmdp->cb_error = 0; 6372 mp->b_wptr += sizeof (struct cmdblk); 6373 6374 DB_TYPE(mp) = M_CMD; 6375 DB_CPID(mp) = curproc->p_pid; 6376 6377 /* 6378 * Copy in the payload. 6379 */ 6380 if (cmdp->cb_len > 0) { 6381 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp, 6382 curproc->p_pid); 6383 if (mp->b_cont == NULL) { 6384 error = ENOMEM; 6385 goto out; 6386 } 6387 6388 /* cb_len comes from sc_len, which has already been checked */ 6389 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf)); 6390 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len); 6391 mp->b_cont->b_wptr += cmdp->cb_len; 6392 DB_CPID(mp->b_cont) = curproc->p_pid; 6393 } 6394 6395 /* 6396 * Since this mechanism is strictly for ptools, and since only one 6397 * process can be grabbed at a time, we simply fail if there's 6398 * currently an operation pending. 6399 */ 6400 mutex_enter(&stp->sd_lock); 6401 if (stp->sd_flag & STRCMDWAIT) { 6402 mutex_exit(&stp->sd_lock); 6403 error = EBUSY; 6404 goto out; 6405 } 6406 stp->sd_flag |= STRCMDWAIT; 6407 ASSERT(stp->sd_cmdblk == NULL); 6408 mutex_exit(&stp->sd_lock); 6409 6410 putnext(stp->sd_wrq, mp); 6411 mp = NULL; 6412 6413 /* 6414 * Timed wait for acknowledgment. If the reply has already arrived, 6415 * don't sleep. If awakened from the sleep, fail only if the reply 6416 * has not arrived by then. Otherwise, process the reply. 6417 */ 6418 mutex_enter(&stp->sd_lock); 6419 while (stp->sd_cmdblk == NULL) { 6420 if (stp->sd_flag & errs) { 6421 if ((error = strgeterr(stp, errs, 0)) != 0) 6422 goto waitout; 6423 } 6424 6425 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0); 6426 if (stp->sd_cmdblk != NULL) 6427 break; 6428 6429 if (rval <= 0) { 6430 error = (rval == 0) ? EINTR : ETIME; 6431 goto waitout; 6432 } 6433 } 6434 6435 /* 6436 * We received a reply. 6437 */ 6438 mp = stp->sd_cmdblk; 6439 stp->sd_cmdblk = NULL; 6440 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD); 6441 ASSERT(stp->sd_flag & STRCMDWAIT); 6442 stp->sd_flag &= ~STRCMDWAIT; 6443 mutex_exit(&stp->sd_lock); 6444 6445 cmdp = (struct cmdblk *)mp->b_rptr; 6446 if ((error = cmdp->cb_error) != 0) 6447 goto out; 6448 6449 /* 6450 * Data may have been returned in the reply (cb_len > 0). 6451 * If so, copy it out to the user's buffer. 6452 */ 6453 if (cmdp->cb_len > 0) { 6454 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) { 6455 error = EPROTO; 6456 goto out; 6457 } 6458 6459 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf)); 6460 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len); 6461 } 6462 scp->sc_len = cmdp->cb_len; 6463 out: 6464 freemsg(mp); 6465 crfree(crp); 6466 return (error); 6467 waitout: 6468 ASSERT(stp->sd_cmdblk == NULL); 6469 stp->sd_flag &= ~STRCMDWAIT; 6470 mutex_exit(&stp->sd_lock); 6471 crfree(crp); 6472 return (error); 6473 } 6474 6475 /* 6476 * For the SunOS keyboard driver. 6477 * Return the next available "ioctl" sequence number. 6478 * Exported, so that streams modules can send "ioctl" messages 6479 * downstream from their open routine. 6480 */ 6481 int 6482 getiocseqno(void) 6483 { 6484 int i; 6485 6486 mutex_enter(&strresources); 6487 i = ++ioc_id; 6488 mutex_exit(&strresources); 6489 return (i); 6490 } 6491 6492 /* 6493 * Get the next message from the read queue. If the message is 6494 * priority, STRPRI will have been set by strrput(). This flag 6495 * should be reset only when the entire message at the front of the 6496 * queue as been consumed. 6497 * 6498 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6499 */ 6500 int 6501 strgetmsg( 6502 struct vnode *vp, 6503 struct strbuf *mctl, 6504 struct strbuf *mdata, 6505 unsigned char *prip, 6506 int *flagsp, 6507 int fmode, 6508 rval_t *rvp) 6509 { 6510 struct stdata *stp; 6511 mblk_t *bp, *nbp; 6512 mblk_t *savemp = NULL; 6513 mblk_t *savemptail = NULL; 6514 uint_t old_sd_flag; 6515 int flg; 6516 int more = 0; 6517 int error = 0; 6518 char first = 1; 6519 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6520 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6521 unsigned char pri = 0; 6522 queue_t *q; 6523 int pr = 0; /* Partial read successful */ 6524 struct uio uios; 6525 struct uio *uiop = &uios; 6526 struct iovec iovs; 6527 unsigned char type; 6528 6529 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6530 "strgetmsg:%p", vp); 6531 6532 ASSERT(vp->v_stream); 6533 stp = vp->v_stream; 6534 rvp->r_val1 = 0; 6535 6536 mutex_enter(&stp->sd_lock); 6537 6538 if ((error = i_straccess(stp, JCREAD)) != 0) { 6539 mutex_exit(&stp->sd_lock); 6540 return (error); 6541 } 6542 6543 if (stp->sd_flag & (STRDERR|STPLEX)) { 6544 error = strgeterr(stp, STRDERR|STPLEX, 0); 6545 if (error != 0) { 6546 mutex_exit(&stp->sd_lock); 6547 return (error); 6548 } 6549 } 6550 mutex_exit(&stp->sd_lock); 6551 6552 switch (*flagsp) { 6553 case MSG_HIPRI: 6554 if (*prip != 0) 6555 return (EINVAL); 6556 break; 6557 6558 case MSG_ANY: 6559 case MSG_BAND: 6560 break; 6561 6562 default: 6563 return (EINVAL); 6564 } 6565 /* 6566 * Setup uio and iov for data part 6567 */ 6568 iovs.iov_base = mdata->buf; 6569 iovs.iov_len = mdata->maxlen; 6570 uios.uio_iov = &iovs; 6571 uios.uio_iovcnt = 1; 6572 uios.uio_loffset = 0; 6573 uios.uio_segflg = UIO_USERSPACE; 6574 uios.uio_fmode = 0; 6575 uios.uio_extflg = UIO_COPY_CACHED; 6576 uios.uio_resid = mdata->maxlen; 6577 uios.uio_offset = 0; 6578 6579 q = _RD(stp->sd_wrq); 6580 mutex_enter(&stp->sd_lock); 6581 old_sd_flag = stp->sd_flag; 6582 mark = 0; 6583 for (;;) { 6584 int done = 0; 6585 mblk_t *q_first = q->q_first; 6586 6587 /* 6588 * Get the next message of appropriate priority 6589 * from the stream head. If the caller is interested 6590 * in band or hipri messages, then they should already 6591 * be enqueued at the stream head. On the other hand 6592 * if the caller wants normal (band 0) messages, they 6593 * might be deferred in a synchronous stream and they 6594 * will need to be pulled up. 6595 * 6596 * After we have dequeued a message, we might find that 6597 * it was a deferred M_SIG that was enqueued at the 6598 * stream head. It must now be posted as part of the 6599 * read by calling strsignal_nolock(). 6600 * 6601 * Also note that strrput does not enqueue an M_PCSIG, 6602 * and there cannot be more than one hipri message, 6603 * so there was no need to have the M_PCSIG case. 6604 * 6605 * At some time it might be nice to try and wrap the 6606 * functionality of kstrgetmsg() and strgetmsg() into 6607 * a common routine so to reduce the amount of replicated 6608 * code (since they are extremely similar). 6609 */ 6610 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6611 /* Asking for normal, band0 data */ 6612 bp = strget(stp, q, uiop, first, &error); 6613 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6614 if (bp != NULL) { 6615 if (DB_TYPE(bp) == M_SIG) { 6616 strsignal_nolock(stp, *bp->b_rptr, 6617 bp->b_band); 6618 freemsg(bp); 6619 continue; 6620 } else { 6621 break; 6622 } 6623 } 6624 if (error != 0) 6625 goto getmout; 6626 6627 /* 6628 * We can't depend on the value of STRPRI here because 6629 * the stream head may be in transit. Therefore, we 6630 * must look at the type of the first message to 6631 * determine if a high priority messages is waiting 6632 */ 6633 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6634 DB_TYPE(q_first) >= QPCTL && 6635 (bp = getq_noenab(q, 0)) != NULL) { 6636 /* Asked for HIPRI and got one */ 6637 ASSERT(DB_TYPE(bp) >= QPCTL); 6638 break; 6639 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6640 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 6641 (bp = getq_noenab(q, 0)) != NULL) { 6642 /* 6643 * Asked for at least band "prip" and got either at 6644 * least that band or a hipri message. 6645 */ 6646 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 6647 if (DB_TYPE(bp) == M_SIG) { 6648 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6649 freemsg(bp); 6650 continue; 6651 } else { 6652 break; 6653 } 6654 } 6655 6656 /* No data. Time to sleep? */ 6657 qbackenable(q, 0); 6658 6659 /* 6660 * If STRHUP or STREOF, return 0 length control and data. 6661 * If resid is 0, then a read(fd,buf,0) was done. Do not 6662 * sleep to satisfy this request because by default we have 6663 * zero bytes to return. 6664 */ 6665 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6666 mdata->maxlen == 0)) { 6667 mctl->len = mdata->len = 0; 6668 *flagsp = 0; 6669 mutex_exit(&stp->sd_lock); 6670 return (0); 6671 } 6672 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6673 "strgetmsg calls strwaitq:%p, %p", 6674 vp, uiop); 6675 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6676 &done)) != 0) || done) { 6677 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6678 "strgetmsg error or done:%p, %p", 6679 vp, uiop); 6680 mutex_exit(&stp->sd_lock); 6681 return (error); 6682 } 6683 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6684 "strgetmsg awakes:%p, %p", vp, uiop); 6685 if ((error = i_straccess(stp, JCREAD)) != 0) { 6686 mutex_exit(&stp->sd_lock); 6687 return (error); 6688 } 6689 first = 0; 6690 } 6691 ASSERT(bp != NULL); 6692 /* 6693 * Extract any mark information. If the message is not completely 6694 * consumed this information will be put in the mblk 6695 * that is putback. 6696 * If MSGMARKNEXT is set and the message is completely consumed 6697 * the STRATMARK flag will be set below. Likewise, if 6698 * MSGNOTMARKNEXT is set and the message is 6699 * completely consumed STRNOTATMARK will be set. 6700 */ 6701 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6702 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6703 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6704 if (mark != 0 && bp == stp->sd_mark) { 6705 mark |= _LASTMARK; 6706 stp->sd_mark = NULL; 6707 } 6708 /* 6709 * keep track of the original message type and priority 6710 */ 6711 pri = bp->b_band; 6712 type = bp->b_datap->db_type; 6713 if (type == M_PASSFP) { 6714 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6715 stp->sd_mark = bp; 6716 bp->b_flag |= mark & ~_LASTMARK; 6717 putback(stp, q, bp, pri); 6718 qbackenable(q, pri); 6719 mutex_exit(&stp->sd_lock); 6720 return (EBADMSG); 6721 } 6722 ASSERT(type != M_SIG); 6723 6724 /* 6725 * Set this flag so strrput will not generate signals. Need to 6726 * make sure this flag is cleared before leaving this routine 6727 * else signals will stop being sent. 6728 */ 6729 stp->sd_flag |= STRGETINPROG; 6730 mutex_exit(&stp->sd_lock); 6731 6732 if (STREAM_NEEDSERVICE(stp)) 6733 stream_runservice(stp); 6734 6735 /* 6736 * Set HIPRI flag if message is priority. 6737 */ 6738 if (type >= QPCTL) 6739 flg = MSG_HIPRI; 6740 else 6741 flg = MSG_BAND; 6742 6743 /* 6744 * First process PROTO or PCPROTO blocks, if any. 6745 */ 6746 if (mctl->maxlen >= 0 && type != M_DATA) { 6747 size_t n, bcnt; 6748 char *ubuf; 6749 6750 bcnt = mctl->maxlen; 6751 ubuf = mctl->buf; 6752 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6753 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6754 copyout(bp->b_rptr, ubuf, n)) { 6755 error = EFAULT; 6756 mutex_enter(&stp->sd_lock); 6757 /* 6758 * clear stream head pri flag based on 6759 * first message type 6760 */ 6761 if (type >= QPCTL) { 6762 ASSERT(type == M_PCPROTO); 6763 stp->sd_flag &= ~STRPRI; 6764 } 6765 more = 0; 6766 freemsg(bp); 6767 goto getmout; 6768 } 6769 ubuf += n; 6770 bp->b_rptr += n; 6771 if (bp->b_rptr >= bp->b_wptr) { 6772 nbp = bp; 6773 bp = bp->b_cont; 6774 freeb(nbp); 6775 } 6776 ASSERT(n <= bcnt); 6777 bcnt -= n; 6778 if (bcnt == 0) 6779 break; 6780 } 6781 mctl->len = mctl->maxlen - bcnt; 6782 } else 6783 mctl->len = -1; 6784 6785 if (bp && bp->b_datap->db_type != M_DATA) { 6786 /* 6787 * More PROTO blocks in msg. 6788 */ 6789 more |= MORECTL; 6790 savemp = bp; 6791 while (bp && bp->b_datap->db_type != M_DATA) { 6792 savemptail = bp; 6793 bp = bp->b_cont; 6794 } 6795 savemptail->b_cont = NULL; 6796 } 6797 6798 /* 6799 * Now process DATA blocks, if any. 6800 */ 6801 if (mdata->maxlen >= 0 && bp) { 6802 /* 6803 * struiocopyout will consume a potential zero-length 6804 * M_DATA even if uio_resid is zero. 6805 */ 6806 size_t oldresid = uiop->uio_resid; 6807 6808 bp = struiocopyout(bp, uiop, &error); 6809 if (error != 0) { 6810 mutex_enter(&stp->sd_lock); 6811 /* 6812 * clear stream head hi pri flag based on 6813 * first message 6814 */ 6815 if (type >= QPCTL) { 6816 ASSERT(type == M_PCPROTO); 6817 stp->sd_flag &= ~STRPRI; 6818 } 6819 more = 0; 6820 freemsg(savemp); 6821 goto getmout; 6822 } 6823 /* 6824 * (pr == 1) indicates a partial read. 6825 */ 6826 if (oldresid > uiop->uio_resid) 6827 pr = 1; 6828 mdata->len = mdata->maxlen - uiop->uio_resid; 6829 } else 6830 mdata->len = -1; 6831 6832 if (bp) { /* more data blocks in msg */ 6833 more |= MOREDATA; 6834 if (savemp) 6835 savemptail->b_cont = bp; 6836 else 6837 savemp = bp; 6838 } 6839 6840 mutex_enter(&stp->sd_lock); 6841 if (savemp) { 6842 if (pr && (savemp->b_datap->db_type == M_DATA) && 6843 msgnodata(savemp)) { 6844 /* 6845 * Avoid queuing a zero-length tail part of 6846 * a message. pr=1 indicates that we read some of 6847 * the message. 6848 */ 6849 freemsg(savemp); 6850 more &= ~MOREDATA; 6851 /* 6852 * clear stream head hi pri flag based on 6853 * first message 6854 */ 6855 if (type >= QPCTL) { 6856 ASSERT(type == M_PCPROTO); 6857 stp->sd_flag &= ~STRPRI; 6858 } 6859 } else { 6860 savemp->b_band = pri; 6861 /* 6862 * If the first message was HIPRI and the one we're 6863 * putting back isn't, then clear STRPRI, otherwise 6864 * set STRPRI again. Note that we must set STRPRI 6865 * again since the flush logic in strrput_nondata() 6866 * may have cleared it while we had sd_lock dropped. 6867 */ 6868 if (type >= QPCTL) { 6869 ASSERT(type == M_PCPROTO); 6870 if (queclass(savemp) < QPCTL) 6871 stp->sd_flag &= ~STRPRI; 6872 else 6873 stp->sd_flag |= STRPRI; 6874 } else if (queclass(savemp) >= QPCTL) { 6875 /* 6876 * The first message was not a HIPRI message, 6877 * but the one we are about to putback is. 6878 * For simplicitly, we do not allow for HIPRI 6879 * messages to be embedded in the message 6880 * body, so just force it to same type as 6881 * first message. 6882 */ 6883 ASSERT(type == M_DATA || type == M_PROTO); 6884 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6885 savemp->b_datap->db_type = type; 6886 } 6887 if (mark != 0) { 6888 savemp->b_flag |= mark & ~_LASTMARK; 6889 if ((mark & _LASTMARK) && 6890 (stp->sd_mark == NULL)) { 6891 /* 6892 * If another marked message arrived 6893 * while sd_lock was not held sd_mark 6894 * would be non-NULL. 6895 */ 6896 stp->sd_mark = savemp; 6897 } 6898 } 6899 putback(stp, q, savemp, pri); 6900 } 6901 } else { 6902 /* 6903 * The complete message was consumed. 6904 * 6905 * If another M_PCPROTO arrived while sd_lock was not held 6906 * it would have been discarded since STRPRI was still set. 6907 * 6908 * Move the MSG*MARKNEXT information 6909 * to the stream head just in case 6910 * the read queue becomes empty. 6911 * clear stream head hi pri flag based on 6912 * first message 6913 * 6914 * If the stream head was at the mark 6915 * (STRATMARK) before we dropped sd_lock above 6916 * and some data was consumed then we have 6917 * moved past the mark thus STRATMARK is 6918 * cleared. However, if a message arrived in 6919 * strrput during the copyout above causing 6920 * STRATMARK to be set we can not clear that 6921 * flag. 6922 */ 6923 if (type >= QPCTL) { 6924 ASSERT(type == M_PCPROTO); 6925 stp->sd_flag &= ~STRPRI; 6926 } 6927 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6928 if (mark & MSGMARKNEXT) { 6929 stp->sd_flag &= ~STRNOTATMARK; 6930 stp->sd_flag |= STRATMARK; 6931 } else if (mark & MSGNOTMARKNEXT) { 6932 stp->sd_flag &= ~STRATMARK; 6933 stp->sd_flag |= STRNOTATMARK; 6934 } else { 6935 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6936 } 6937 } else if (pr && (old_sd_flag & STRATMARK)) { 6938 stp->sd_flag &= ~STRATMARK; 6939 } 6940 } 6941 6942 *flagsp = flg; 6943 *prip = pri; 6944 6945 /* 6946 * Getmsg cleanup processing - if the state of the queue has changed 6947 * some signals may need to be sent and/or poll awakened. 6948 */ 6949 getmout: 6950 qbackenable(q, pri); 6951 6952 /* 6953 * We dropped the stream head lock above. Send all M_SIG messages 6954 * before processing stream head for SIGPOLL messages. 6955 */ 6956 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6957 while ((bp = q->q_first) != NULL && 6958 (bp->b_datap->db_type == M_SIG)) { 6959 /* 6960 * sd_lock is held so the content of the read queue can not 6961 * change. 6962 */ 6963 bp = getq(q); 6964 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 6965 6966 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6967 mutex_exit(&stp->sd_lock); 6968 freemsg(bp); 6969 if (STREAM_NEEDSERVICE(stp)) 6970 stream_runservice(stp); 6971 mutex_enter(&stp->sd_lock); 6972 } 6973 6974 /* 6975 * stream head cannot change while we make the determination 6976 * whether or not to send a signal. Drop the flag to allow strrput 6977 * to send firstmsgsigs again. 6978 */ 6979 stp->sd_flag &= ~STRGETINPROG; 6980 6981 /* 6982 * If the type of message at the front of the queue changed 6983 * due to the receive the appropriate signals and pollwakeup events 6984 * are generated. The type of changes are: 6985 * Processed a hipri message, q_first is not hipri. 6986 * Processed a band X message, and q_first is band Y. 6987 * The generated signals and pollwakeups are identical to what 6988 * strrput() generates should the message that is now on q_first 6989 * arrive to an empty read queue. 6990 * 6991 * Note: only strrput will send a signal for a hipri message. 6992 */ 6993 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 6994 strsigset_t signals = 0; 6995 strpollset_t pollwakeups = 0; 6996 6997 if (flg & MSG_HIPRI) { 6998 /* 6999 * Removed a hipri message. Regular data at 7000 * the front of the queue. 7001 */ 7002 if (bp->b_band == 0) { 7003 signals = S_INPUT | S_RDNORM; 7004 pollwakeups = POLLIN | POLLRDNORM; 7005 } else { 7006 signals = S_INPUT | S_RDBAND; 7007 pollwakeups = POLLIN | POLLRDBAND; 7008 } 7009 } else if (pri != bp->b_band) { 7010 /* 7011 * The band is different for the new q_first. 7012 */ 7013 if (bp->b_band == 0) { 7014 signals = S_RDNORM; 7015 pollwakeups = POLLIN | POLLRDNORM; 7016 } else { 7017 signals = S_RDBAND; 7018 pollwakeups = POLLIN | POLLRDBAND; 7019 } 7020 } 7021 7022 if (pollwakeups != 0) { 7023 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7024 if (!(stp->sd_rput_opt & SR_POLLIN)) 7025 goto no_pollwake; 7026 stp->sd_rput_opt &= ~SR_POLLIN; 7027 } 7028 mutex_exit(&stp->sd_lock); 7029 pollwakeup(&stp->sd_pollist, pollwakeups); 7030 mutex_enter(&stp->sd_lock); 7031 } 7032 no_pollwake: 7033 7034 if (stp->sd_sigflags & signals) 7035 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7036 } 7037 mutex_exit(&stp->sd_lock); 7038 7039 rvp->r_val1 = more; 7040 return (error); 7041 #undef _LASTMARK 7042 } 7043 7044 /* 7045 * Get the next message from the read queue. If the message is 7046 * priority, STRPRI will have been set by strrput(). This flag 7047 * should be reset only when the entire message at the front of the 7048 * queue as been consumed. 7049 * 7050 * If uiop is NULL all data is returned in mctlp. 7051 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 7052 * not enabled. 7053 * The timeout parameter is in milliseconds; -1 for infinity. 7054 * This routine handles the consolidation private flags: 7055 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7056 * MSG_DELAYERROR Defer the error check until the queue is empty. 7057 * MSG_HOLDSIG Hold signals while waiting for data. 7058 * MSG_IPEEK Only peek at messages. 7059 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 7060 * that doesn't fit. 7061 * MSG_NOMARK If the message is marked leave it on the queue. 7062 * 7063 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 7064 */ 7065 int 7066 kstrgetmsg( 7067 struct vnode *vp, 7068 mblk_t **mctlp, 7069 struct uio *uiop, 7070 unsigned char *prip, 7071 int *flagsp, 7072 clock_t timout, 7073 rval_t *rvp) 7074 { 7075 struct stdata *stp; 7076 mblk_t *bp, *nbp; 7077 mblk_t *savemp = NULL; 7078 mblk_t *savemptail = NULL; 7079 int flags; 7080 uint_t old_sd_flag; 7081 int flg; 7082 int more = 0; 7083 int error = 0; 7084 char first = 1; 7085 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 7086 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 7087 unsigned char pri = 0; 7088 queue_t *q; 7089 int pr = 0; /* Partial read successful */ 7090 unsigned char type; 7091 7092 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 7093 "kstrgetmsg:%p", vp); 7094 7095 ASSERT(vp->v_stream); 7096 stp = vp->v_stream; 7097 rvp->r_val1 = 0; 7098 7099 mutex_enter(&stp->sd_lock); 7100 7101 if ((error = i_straccess(stp, JCREAD)) != 0) { 7102 mutex_exit(&stp->sd_lock); 7103 return (error); 7104 } 7105 7106 flags = *flagsp; 7107 if (stp->sd_flag & (STRDERR|STPLEX)) { 7108 if ((stp->sd_flag & STPLEX) || 7109 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 7110 error = strgeterr(stp, STRDERR|STPLEX, 7111 (flags & MSG_IPEEK)); 7112 if (error != 0) { 7113 mutex_exit(&stp->sd_lock); 7114 return (error); 7115 } 7116 } 7117 } 7118 mutex_exit(&stp->sd_lock); 7119 7120 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 7121 case MSG_HIPRI: 7122 if (*prip != 0) 7123 return (EINVAL); 7124 break; 7125 7126 case MSG_ANY: 7127 case MSG_BAND: 7128 break; 7129 7130 default: 7131 return (EINVAL); 7132 } 7133 7134 retry: 7135 q = _RD(stp->sd_wrq); 7136 mutex_enter(&stp->sd_lock); 7137 old_sd_flag = stp->sd_flag; 7138 mark = 0; 7139 for (;;) { 7140 int done = 0; 7141 int waitflag; 7142 int fmode; 7143 mblk_t *q_first = q->q_first; 7144 7145 /* 7146 * This section of the code operates just like the code 7147 * in strgetmsg(). There is a comment there about what 7148 * is going on here. 7149 */ 7150 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7151 /* Asking for normal, band0 data */ 7152 bp = strget(stp, q, uiop, first, &error); 7153 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7154 if (bp != NULL) { 7155 if (DB_TYPE(bp) == M_SIG) { 7156 strsignal_nolock(stp, *bp->b_rptr, 7157 bp->b_band); 7158 freemsg(bp); 7159 continue; 7160 } else { 7161 break; 7162 } 7163 } 7164 if (error != 0) { 7165 goto getmout; 7166 } 7167 /* 7168 * We can't depend on the value of STRPRI here because 7169 * the stream head may be in transit. Therefore, we 7170 * must look at the type of the first message to 7171 * determine if a high priority messages is waiting 7172 */ 7173 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7174 DB_TYPE(q_first) >= QPCTL && 7175 (bp = getq_noenab(q, 0)) != NULL) { 7176 ASSERT(DB_TYPE(bp) >= QPCTL); 7177 break; 7178 } else if ((flags & MSG_BAND) && q_first != NULL && 7179 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 7180 (bp = getq_noenab(q, 0)) != NULL) { 7181 /* 7182 * Asked for at least band "prip" and got either at 7183 * least that band or a hipri message. 7184 */ 7185 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 7186 if (DB_TYPE(bp) == M_SIG) { 7187 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7188 freemsg(bp); 7189 continue; 7190 } else { 7191 break; 7192 } 7193 } 7194 7195 /* No data. Time to sleep? */ 7196 qbackenable(q, 0); 7197 7198 /* 7199 * Delayed error notification? 7200 */ 7201 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7202 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7203 error = strgeterr(stp, STRDERR|STPLEX, 7204 (flags & MSG_IPEEK)); 7205 if (error != 0) { 7206 mutex_exit(&stp->sd_lock); 7207 return (error); 7208 } 7209 } 7210 7211 /* 7212 * If STRHUP or STREOF, return 0 length control and data. 7213 * If a read(fd,buf,0) has been done, do not sleep, just 7214 * return. 7215 * 7216 * If mctlp == NULL and uiop == NULL, then the code will 7217 * do the strwaitq. This is an understood way of saying 7218 * sleep "polling" until a message is received. 7219 */ 7220 if ((stp->sd_flag & (STRHUP|STREOF)) || 7221 (uiop != NULL && uiop->uio_resid == 0)) { 7222 if (mctlp != NULL) 7223 *mctlp = NULL; 7224 *flagsp = 0; 7225 mutex_exit(&stp->sd_lock); 7226 return (0); 7227 } 7228 7229 waitflag = GETWAIT; 7230 if (flags & 7231 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7232 if (flags & MSG_HOLDSIG) 7233 waitflag |= STR_NOSIG; 7234 if (flags & MSG_IGNERROR) 7235 waitflag |= STR_NOERROR; 7236 if (flags & MSG_IPEEK) 7237 waitflag |= STR_PEEK; 7238 if (flags & MSG_DELAYERROR) 7239 waitflag |= STR_DELAYERR; 7240 } 7241 if (uiop != NULL) 7242 fmode = uiop->uio_fmode; 7243 else 7244 fmode = 0; 7245 7246 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7247 "kstrgetmsg calls strwaitq:%p, %p", 7248 vp, uiop); 7249 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7250 fmode, timout, &done))) != 0 || done) { 7251 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7252 "kstrgetmsg error or done:%p, %p", 7253 vp, uiop); 7254 mutex_exit(&stp->sd_lock); 7255 return (error); 7256 } 7257 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7258 "kstrgetmsg awakes:%p, %p", vp, uiop); 7259 if ((error = i_straccess(stp, JCREAD)) != 0) { 7260 mutex_exit(&stp->sd_lock); 7261 return (error); 7262 } 7263 first = 0; 7264 } 7265 ASSERT(bp != NULL); 7266 /* 7267 * Extract any mark information. If the message is not completely 7268 * consumed this information will be put in the mblk 7269 * that is putback. 7270 * If MSGMARKNEXT is set and the message is completely consumed 7271 * the STRATMARK flag will be set below. Likewise, if 7272 * MSGNOTMARKNEXT is set and the message is 7273 * completely consumed STRNOTATMARK will be set. 7274 */ 7275 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7276 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7277 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7278 pri = bp->b_band; 7279 if (mark != 0) { 7280 /* 7281 * If the caller doesn't want the mark return. 7282 * Used to implement MSG_WAITALL in sockets. 7283 */ 7284 if (flags & MSG_NOMARK) { 7285 putback(stp, q, bp, pri); 7286 qbackenable(q, pri); 7287 mutex_exit(&stp->sd_lock); 7288 return (EWOULDBLOCK); 7289 } 7290 if (bp == stp->sd_mark) { 7291 mark |= _LASTMARK; 7292 stp->sd_mark = NULL; 7293 } 7294 } 7295 7296 /* 7297 * keep track of the first message type 7298 */ 7299 type = bp->b_datap->db_type; 7300 7301 if (bp->b_datap->db_type == M_PASSFP) { 7302 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7303 stp->sd_mark = bp; 7304 bp->b_flag |= mark & ~_LASTMARK; 7305 putback(stp, q, bp, pri); 7306 qbackenable(q, pri); 7307 mutex_exit(&stp->sd_lock); 7308 return (EBADMSG); 7309 } 7310 ASSERT(type != M_SIG); 7311 7312 if (flags & MSG_IPEEK) { 7313 /* 7314 * Clear any struioflag - we do the uiomove over again 7315 * when peeking since it simplifies the code. 7316 * 7317 * Dup the message and put the original back on the queue. 7318 * If dupmsg() fails, try again with copymsg() to see if 7319 * there is indeed a shortage of memory. dupmsg() may fail 7320 * if db_ref in any of the messages reaches its limit. 7321 */ 7322 7323 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7324 /* 7325 * Restore the state of the stream head since we 7326 * need to drop sd_lock (strwaitbuf is sleeping). 7327 */ 7328 size_t size = msgdsize(bp); 7329 7330 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7331 stp->sd_mark = bp; 7332 bp->b_flag |= mark & ~_LASTMARK; 7333 putback(stp, q, bp, pri); 7334 mutex_exit(&stp->sd_lock); 7335 error = strwaitbuf(size, BPRI_HI); 7336 if (error) { 7337 /* 7338 * There is no net change to the queue thus 7339 * no need to qbackenable. 7340 */ 7341 return (error); 7342 } 7343 goto retry; 7344 } 7345 7346 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7347 stp->sd_mark = bp; 7348 bp->b_flag |= mark & ~_LASTMARK; 7349 putback(stp, q, bp, pri); 7350 bp = nbp; 7351 } 7352 7353 /* 7354 * Set this flag so strrput will not generate signals. Need to 7355 * make sure this flag is cleared before leaving this routine 7356 * else signals will stop being sent. 7357 */ 7358 stp->sd_flag |= STRGETINPROG; 7359 mutex_exit(&stp->sd_lock); 7360 7361 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7362 mblk_t *tmp, *prevmp; 7363 7364 /* 7365 * Put first non-data mblk back to stream head and 7366 * cut the mblk chain so sd_rputdatafunc only sees 7367 * M_DATA mblks. We can skip the first mblk since it 7368 * is M_DATA according to the condition above. 7369 */ 7370 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7371 prevmp = tmp, tmp = tmp->b_cont) { 7372 if (DB_TYPE(tmp) != M_DATA) { 7373 prevmp->b_cont = NULL; 7374 mutex_enter(&stp->sd_lock); 7375 putback(stp, q, tmp, tmp->b_band); 7376 mutex_exit(&stp->sd_lock); 7377 break; 7378 } 7379 } 7380 7381 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7382 NULL, NULL, NULL, NULL); 7383 7384 if (bp == NULL) 7385 goto retry; 7386 } 7387 7388 if (STREAM_NEEDSERVICE(stp)) 7389 stream_runservice(stp); 7390 7391 /* 7392 * Set HIPRI flag if message is priority. 7393 */ 7394 if (type >= QPCTL) 7395 flg = MSG_HIPRI; 7396 else 7397 flg = MSG_BAND; 7398 7399 /* 7400 * First process PROTO or PCPROTO blocks, if any. 7401 */ 7402 if (mctlp != NULL && type != M_DATA) { 7403 mblk_t *nbp; 7404 7405 *mctlp = bp; 7406 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7407 bp = bp->b_cont; 7408 nbp = bp->b_cont; 7409 bp->b_cont = NULL; 7410 bp = nbp; 7411 } 7412 7413 if (bp && bp->b_datap->db_type != M_DATA) { 7414 /* 7415 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7416 */ 7417 more |= MORECTL; 7418 savemp = bp; 7419 while (bp && bp->b_datap->db_type != M_DATA) { 7420 savemptail = bp; 7421 bp = bp->b_cont; 7422 } 7423 savemptail->b_cont = NULL; 7424 } 7425 7426 /* 7427 * Now process DATA blocks, if any. 7428 */ 7429 if (uiop == NULL) { 7430 /* Append data to tail of mctlp */ 7431 7432 if (mctlp != NULL) { 7433 mblk_t **mpp = mctlp; 7434 7435 while (*mpp != NULL) 7436 mpp = &((*mpp)->b_cont); 7437 *mpp = bp; 7438 bp = NULL; 7439 } 7440 } else if (uiop->uio_resid >= 0 && bp) { 7441 size_t oldresid = uiop->uio_resid; 7442 7443 /* 7444 * If a streams message is likely to consist 7445 * of many small mblks, it is pulled up into 7446 * one continuous chunk of memory. 7447 * The size of the first mblk may be bogus because 7448 * successive read() calls on the socket reduce 7449 * the size of this mblk until it is exhausted 7450 * and then the code walks on to the next. Thus 7451 * the size of the mblk may not be the original size 7452 * that was passed up, it's simply a remainder 7453 * and hence can be very small without any 7454 * implication that the packet is badly fragmented. 7455 * So the size of the possible second mblk is 7456 * used to spot a badly fragmented packet. 7457 * see longer comment at top of page 7458 * by mblk_pull_len declaration. 7459 */ 7460 7461 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) { 7462 (void) pullupmsg(bp, -1); 7463 } 7464 7465 bp = struiocopyout(bp, uiop, &error); 7466 if (error != 0) { 7467 if (mctlp != NULL) { 7468 freemsg(*mctlp); 7469 *mctlp = NULL; 7470 } else 7471 freemsg(savemp); 7472 mutex_enter(&stp->sd_lock); 7473 /* 7474 * clear stream head hi pri flag based on 7475 * first message 7476 */ 7477 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7478 ASSERT(type == M_PCPROTO); 7479 stp->sd_flag &= ~STRPRI; 7480 } 7481 more = 0; 7482 goto getmout; 7483 } 7484 /* 7485 * (pr == 1) indicates a partial read. 7486 */ 7487 if (oldresid > uiop->uio_resid) 7488 pr = 1; 7489 } 7490 7491 if (bp) { /* more data blocks in msg */ 7492 more |= MOREDATA; 7493 if (savemp) 7494 savemptail->b_cont = bp; 7495 else 7496 savemp = bp; 7497 } 7498 7499 mutex_enter(&stp->sd_lock); 7500 if (savemp) { 7501 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7502 /* 7503 * When MSG_DISCARDTAIL is set or 7504 * when peeking discard any tail. When peeking this 7505 * is the tail of the dup that was copied out - the 7506 * message has already been putback on the queue. 7507 * Return MOREDATA to the caller even though the data 7508 * is discarded. This is used by sockets (to 7509 * set MSG_TRUNC). 7510 */ 7511 freemsg(savemp); 7512 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7513 ASSERT(type == M_PCPROTO); 7514 stp->sd_flag &= ~STRPRI; 7515 } 7516 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7517 msgnodata(savemp)) { 7518 /* 7519 * Avoid queuing a zero-length tail part of 7520 * a message. pr=1 indicates that we read some of 7521 * the message. 7522 */ 7523 freemsg(savemp); 7524 more &= ~MOREDATA; 7525 if (type >= QPCTL) { 7526 ASSERT(type == M_PCPROTO); 7527 stp->sd_flag &= ~STRPRI; 7528 } 7529 } else { 7530 savemp->b_band = pri; 7531 /* 7532 * If the first message was HIPRI and the one we're 7533 * putting back isn't, then clear STRPRI, otherwise 7534 * set STRPRI again. Note that we must set STRPRI 7535 * again since the flush logic in strrput_nondata() 7536 * may have cleared it while we had sd_lock dropped. 7537 */ 7538 7539 if (type >= QPCTL) { 7540 ASSERT(type == M_PCPROTO); 7541 if (queclass(savemp) < QPCTL) 7542 stp->sd_flag &= ~STRPRI; 7543 else 7544 stp->sd_flag |= STRPRI; 7545 } else if (queclass(savemp) >= QPCTL) { 7546 /* 7547 * The first message was not a HIPRI message, 7548 * but the one we are about to putback is. 7549 * For simplicitly, we do not allow for HIPRI 7550 * messages to be embedded in the message 7551 * body, so just force it to same type as 7552 * first message. 7553 */ 7554 ASSERT(type == M_DATA || type == M_PROTO); 7555 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7556 savemp->b_datap->db_type = type; 7557 } 7558 if (mark != 0) { 7559 if ((mark & _LASTMARK) && 7560 (stp->sd_mark == NULL)) { 7561 /* 7562 * If another marked message arrived 7563 * while sd_lock was not held sd_mark 7564 * would be non-NULL. 7565 */ 7566 stp->sd_mark = savemp; 7567 } 7568 savemp->b_flag |= mark & ~_LASTMARK; 7569 } 7570 putback(stp, q, savemp, pri); 7571 } 7572 } else if (!(flags & MSG_IPEEK)) { 7573 /* 7574 * The complete message was consumed. 7575 * 7576 * If another M_PCPROTO arrived while sd_lock was not held 7577 * it would have been discarded since STRPRI was still set. 7578 * 7579 * Move the MSG*MARKNEXT information 7580 * to the stream head just in case 7581 * the read queue becomes empty. 7582 * clear stream head hi pri flag based on 7583 * first message 7584 * 7585 * If the stream head was at the mark 7586 * (STRATMARK) before we dropped sd_lock above 7587 * and some data was consumed then we have 7588 * moved past the mark thus STRATMARK is 7589 * cleared. However, if a message arrived in 7590 * strrput during the copyout above causing 7591 * STRATMARK to be set we can not clear that 7592 * flag. 7593 * XXX A "perimeter" would help by single-threading strrput, 7594 * strread, strgetmsg and kstrgetmsg. 7595 */ 7596 if (type >= QPCTL) { 7597 ASSERT(type == M_PCPROTO); 7598 stp->sd_flag &= ~STRPRI; 7599 } 7600 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7601 if (mark & MSGMARKNEXT) { 7602 stp->sd_flag &= ~STRNOTATMARK; 7603 stp->sd_flag |= STRATMARK; 7604 } else if (mark & MSGNOTMARKNEXT) { 7605 stp->sd_flag &= ~STRATMARK; 7606 stp->sd_flag |= STRNOTATMARK; 7607 } else { 7608 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7609 } 7610 } else if (pr && (old_sd_flag & STRATMARK)) { 7611 stp->sd_flag &= ~STRATMARK; 7612 } 7613 } 7614 7615 *flagsp = flg; 7616 *prip = pri; 7617 7618 /* 7619 * Getmsg cleanup processing - if the state of the queue has changed 7620 * some signals may need to be sent and/or poll awakened. 7621 */ 7622 getmout: 7623 qbackenable(q, pri); 7624 7625 /* 7626 * We dropped the stream head lock above. Send all M_SIG messages 7627 * before processing stream head for SIGPOLL messages. 7628 */ 7629 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7630 while ((bp = q->q_first) != NULL && 7631 (bp->b_datap->db_type == M_SIG)) { 7632 /* 7633 * sd_lock is held so the content of the read queue can not 7634 * change. 7635 */ 7636 bp = getq(q); 7637 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7638 7639 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7640 mutex_exit(&stp->sd_lock); 7641 freemsg(bp); 7642 if (STREAM_NEEDSERVICE(stp)) 7643 stream_runservice(stp); 7644 mutex_enter(&stp->sd_lock); 7645 } 7646 7647 /* 7648 * stream head cannot change while we make the determination 7649 * whether or not to send a signal. Drop the flag to allow strrput 7650 * to send firstmsgsigs again. 7651 */ 7652 stp->sd_flag &= ~STRGETINPROG; 7653 7654 /* 7655 * If the type of message at the front of the queue changed 7656 * due to the receive the appropriate signals and pollwakeup events 7657 * are generated. The type of changes are: 7658 * Processed a hipri message, q_first is not hipri. 7659 * Processed a band X message, and q_first is band Y. 7660 * The generated signals and pollwakeups are identical to what 7661 * strrput() generates should the message that is now on q_first 7662 * arrive to an empty read queue. 7663 * 7664 * Note: only strrput will send a signal for a hipri message. 7665 */ 7666 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7667 strsigset_t signals = 0; 7668 strpollset_t pollwakeups = 0; 7669 7670 if (flg & MSG_HIPRI) { 7671 /* 7672 * Removed a hipri message. Regular data at 7673 * the front of the queue. 7674 */ 7675 if (bp->b_band == 0) { 7676 signals = S_INPUT | S_RDNORM; 7677 pollwakeups = POLLIN | POLLRDNORM; 7678 } else { 7679 signals = S_INPUT | S_RDBAND; 7680 pollwakeups = POLLIN | POLLRDBAND; 7681 } 7682 } else if (pri != bp->b_band) { 7683 /* 7684 * The band is different for the new q_first. 7685 */ 7686 if (bp->b_band == 0) { 7687 signals = S_RDNORM; 7688 pollwakeups = POLLIN | POLLRDNORM; 7689 } else { 7690 signals = S_RDBAND; 7691 pollwakeups = POLLIN | POLLRDBAND; 7692 } 7693 } 7694 7695 if (pollwakeups != 0) { 7696 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7697 if (!(stp->sd_rput_opt & SR_POLLIN)) 7698 goto no_pollwake; 7699 stp->sd_rput_opt &= ~SR_POLLIN; 7700 } 7701 mutex_exit(&stp->sd_lock); 7702 pollwakeup(&stp->sd_pollist, pollwakeups); 7703 mutex_enter(&stp->sd_lock); 7704 } 7705 no_pollwake: 7706 7707 if (stp->sd_sigflags & signals) 7708 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7709 } 7710 mutex_exit(&stp->sd_lock); 7711 7712 rvp->r_val1 = more; 7713 return (error); 7714 #undef _LASTMARK 7715 } 7716 7717 /* 7718 * Put a message downstream. 7719 * 7720 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7721 */ 7722 int 7723 strputmsg( 7724 struct vnode *vp, 7725 struct strbuf *mctl, 7726 struct strbuf *mdata, 7727 unsigned char pri, 7728 int flag, 7729 int fmode) 7730 { 7731 struct stdata *stp; 7732 queue_t *wqp; 7733 mblk_t *mp; 7734 ssize_t msgsize; 7735 ssize_t rmin, rmax; 7736 int error; 7737 struct uio uios; 7738 struct uio *uiop = &uios; 7739 struct iovec iovs; 7740 int xpg4 = 0; 7741 7742 ASSERT(vp->v_stream); 7743 stp = vp->v_stream; 7744 wqp = stp->sd_wrq; 7745 7746 /* 7747 * If it is an XPG4 application, we need to send 7748 * SIGPIPE below 7749 */ 7750 7751 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7752 flag &= ~MSG_XPG4; 7753 7754 if (AU_AUDITING()) 7755 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7756 7757 mutex_enter(&stp->sd_lock); 7758 7759 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7760 mutex_exit(&stp->sd_lock); 7761 return (error); 7762 } 7763 7764 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7765 error = strwriteable(stp, B_FALSE, xpg4); 7766 if (error != 0) { 7767 mutex_exit(&stp->sd_lock); 7768 return (error); 7769 } 7770 } 7771 7772 mutex_exit(&stp->sd_lock); 7773 7774 /* 7775 * Check for legal flag value. 7776 */ 7777 switch (flag) { 7778 case MSG_HIPRI: 7779 if ((mctl->len < 0) || (pri != 0)) 7780 return (EINVAL); 7781 break; 7782 case MSG_BAND: 7783 break; 7784 7785 default: 7786 return (EINVAL); 7787 } 7788 7789 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7790 "strputmsg in:stp %p", stp); 7791 7792 /* get these values from those cached in the stream head */ 7793 rmin = stp->sd_qn_minpsz; 7794 rmax = stp->sd_qn_maxpsz; 7795 7796 /* 7797 * Make sure ctl and data sizes together fall within the 7798 * limits of the max and min receive packet sizes and do 7799 * not exceed system limit. 7800 */ 7801 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7802 if (rmax == 0) { 7803 return (ERANGE); 7804 } 7805 /* 7806 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7807 * Needed to prevent partial failures in the strmakedata loop. 7808 */ 7809 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7810 rmax = stp->sd_maxblk; 7811 7812 if ((msgsize = mdata->len) < 0) { 7813 msgsize = 0; 7814 rmin = 0; /* no range check for NULL data part */ 7815 } 7816 if ((msgsize < rmin) || 7817 ((msgsize > rmax) && (rmax != INFPSZ)) || 7818 (mctl->len > strctlsz)) { 7819 return (ERANGE); 7820 } 7821 7822 /* 7823 * Setup uio and iov for data part 7824 */ 7825 iovs.iov_base = mdata->buf; 7826 iovs.iov_len = msgsize; 7827 uios.uio_iov = &iovs; 7828 uios.uio_iovcnt = 1; 7829 uios.uio_loffset = 0; 7830 uios.uio_segflg = UIO_USERSPACE; 7831 uios.uio_fmode = fmode; 7832 uios.uio_extflg = UIO_COPY_DEFAULT; 7833 uios.uio_resid = msgsize; 7834 uios.uio_offset = 0; 7835 7836 /* Ignore flow control in strput for HIPRI */ 7837 if (flag & MSG_HIPRI) 7838 flag |= MSG_IGNFLOW; 7839 7840 for (;;) { 7841 int done = 0; 7842 7843 /* 7844 * strput will always free the ctl mblk - even when strput 7845 * fails. 7846 */ 7847 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7848 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7849 "strputmsg out:stp %p out %d error %d", 7850 stp, 1, error); 7851 return (error); 7852 } 7853 /* 7854 * Verify that the whole message can be transferred by 7855 * strput. 7856 */ 7857 ASSERT(stp->sd_maxblk == INFPSZ || 7858 stp->sd_maxblk >= mdata->len); 7859 7860 msgsize = mdata->len; 7861 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7862 mdata->len = msgsize; 7863 7864 if (error == 0) 7865 break; 7866 7867 if (error != EWOULDBLOCK) 7868 goto out; 7869 7870 mutex_enter(&stp->sd_lock); 7871 /* 7872 * Check for a missed wakeup. 7873 * Needed since strput did not hold sd_lock across 7874 * the canputnext. 7875 */ 7876 if (bcanputnext(wqp, pri)) { 7877 /* Try again */ 7878 mutex_exit(&stp->sd_lock); 7879 continue; 7880 } 7881 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7882 "strputmsg wait:stp %p waits pri %d", stp, pri); 7883 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7884 &done)) != 0) || done) { 7885 mutex_exit(&stp->sd_lock); 7886 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7887 "strputmsg out:q %p out %d error %d", 7888 stp, 0, error); 7889 return (error); 7890 } 7891 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7892 "strputmsg wake:stp %p wakes", stp); 7893 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7894 mutex_exit(&stp->sd_lock); 7895 return (error); 7896 } 7897 mutex_exit(&stp->sd_lock); 7898 } 7899 out: 7900 /* 7901 * For historic reasons, applications expect EAGAIN 7902 * when data mblk could not be allocated. so change 7903 * ENOMEM back to EAGAIN 7904 */ 7905 if (error == ENOMEM) 7906 error = EAGAIN; 7907 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7908 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7909 return (error); 7910 } 7911 7912 /* 7913 * Put a message downstream. 7914 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7915 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7916 * and the fmode parameter. 7917 * 7918 * This routine handles the consolidation private flags: 7919 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7920 * MSG_HOLDSIG Hold signals while waiting for data. 7921 * MSG_IGNFLOW Don't check streams flow control. 7922 * 7923 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7924 */ 7925 int 7926 kstrputmsg( 7927 struct vnode *vp, 7928 mblk_t *mctl, 7929 struct uio *uiop, 7930 ssize_t msgsize, 7931 unsigned char pri, 7932 int flag, 7933 int fmode) 7934 { 7935 struct stdata *stp; 7936 queue_t *wqp; 7937 ssize_t rmin, rmax; 7938 int error; 7939 7940 ASSERT(vp->v_stream); 7941 stp = vp->v_stream; 7942 wqp = stp->sd_wrq; 7943 if (AU_AUDITING()) 7944 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7945 if (mctl == NULL) 7946 return (EINVAL); 7947 7948 mutex_enter(&stp->sd_lock); 7949 7950 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7951 mutex_exit(&stp->sd_lock); 7952 freemsg(mctl); 7953 return (error); 7954 } 7955 7956 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7957 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7958 error = strwriteable(stp, B_FALSE, B_TRUE); 7959 if (error != 0) { 7960 mutex_exit(&stp->sd_lock); 7961 freemsg(mctl); 7962 return (error); 7963 } 7964 } 7965 } 7966 7967 mutex_exit(&stp->sd_lock); 7968 7969 /* 7970 * Check for legal flag value. 7971 */ 7972 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 7973 case MSG_HIPRI: 7974 if (pri != 0) { 7975 freemsg(mctl); 7976 return (EINVAL); 7977 } 7978 break; 7979 case MSG_BAND: 7980 break; 7981 default: 7982 freemsg(mctl); 7983 return (EINVAL); 7984 } 7985 7986 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 7987 "kstrputmsg in:stp %p", stp); 7988 7989 /* get these values from those cached in the stream head */ 7990 rmin = stp->sd_qn_minpsz; 7991 rmax = stp->sd_qn_maxpsz; 7992 7993 /* 7994 * Make sure ctl and data sizes together fall within the 7995 * limits of the max and min receive packet sizes and do 7996 * not exceed system limit. 7997 */ 7998 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7999 if (rmax == 0) { 8000 freemsg(mctl); 8001 return (ERANGE); 8002 } 8003 /* 8004 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 8005 * Needed to prevent partial failures in the strmakedata loop. 8006 */ 8007 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 8008 rmax = stp->sd_maxblk; 8009 8010 if (uiop == NULL) { 8011 msgsize = -1; 8012 rmin = -1; /* no range check for NULL data part */ 8013 } else { 8014 /* Use uio flags as well as the fmode parameter flags */ 8015 fmode |= uiop->uio_fmode; 8016 8017 if ((msgsize < rmin) || 8018 ((msgsize > rmax) && (rmax != INFPSZ))) { 8019 freemsg(mctl); 8020 return (ERANGE); 8021 } 8022 } 8023 8024 /* Ignore flow control in strput for HIPRI */ 8025 if (flag & MSG_HIPRI) 8026 flag |= MSG_IGNFLOW; 8027 8028 for (;;) { 8029 int done = 0; 8030 int waitflag; 8031 mblk_t *mp; 8032 8033 /* 8034 * strput will always free the ctl mblk - even when strput 8035 * fails. If MSG_IGNFLOW is set then any error returned 8036 * will cause us to break the loop, so we don't need a copy 8037 * of the message. If MSG_IGNFLOW is not set, then we can 8038 * get hit by flow control and be forced to try again. In 8039 * this case we need to have a copy of the message. We 8040 * do this using copymsg since the message may get modified 8041 * by something below us. 8042 * 8043 * We've observed that many TPI providers do not check db_ref 8044 * on the control messages but blindly reuse them for the 8045 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 8046 * friendly to such providers than using dupmsg. Also, note 8047 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 8048 * Only data messages are subject to flow control, hence 8049 * subject to this copymsg. 8050 */ 8051 if (flag & MSG_IGNFLOW) { 8052 mp = mctl; 8053 mctl = NULL; 8054 } else { 8055 do { 8056 /* 8057 * If a message has a free pointer, the message 8058 * must be dupmsg to maintain this pointer. 8059 * Code using this facility must be sure 8060 * that modules below will not change the 8061 * contents of the dblk without checking db_ref 8062 * first. If db_ref is > 1, then the module 8063 * needs to do a copymsg first. Otherwise, 8064 * the contents of the dblk may become 8065 * inconsistent because the freesmg/freeb below 8066 * may end up calling atomic_add_32_nv. 8067 * The atomic_add_32_nv in freeb (accessing 8068 * all of db_ref, db_type, db_flags, and 8069 * db_struioflag) does not prevent other threads 8070 * from concurrently trying to modify e.g. 8071 * db_type. 8072 */ 8073 if (mctl->b_datap->db_frtnp != NULL) 8074 mp = dupmsg(mctl); 8075 else 8076 mp = copymsg(mctl); 8077 8078 if (mp != NULL) 8079 break; 8080 8081 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 8082 if (error) { 8083 freemsg(mctl); 8084 return (error); 8085 } 8086 } while (mp == NULL); 8087 } 8088 /* 8089 * Verify that all of msgsize can be transferred by 8090 * strput. 8091 */ 8092 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 8093 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 8094 if (error == 0) 8095 break; 8096 8097 if (error != EWOULDBLOCK) 8098 goto out; 8099 8100 /* 8101 * IF MSG_IGNFLOW is set we should have broken out of loop 8102 * above. 8103 */ 8104 ASSERT(!(flag & MSG_IGNFLOW)); 8105 mutex_enter(&stp->sd_lock); 8106 /* 8107 * Check for a missed wakeup. 8108 * Needed since strput did not hold sd_lock across 8109 * the canputnext. 8110 */ 8111 if (bcanputnext(wqp, pri)) { 8112 /* Try again */ 8113 mutex_exit(&stp->sd_lock); 8114 continue; 8115 } 8116 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 8117 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 8118 8119 waitflag = WRITEWAIT; 8120 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 8121 if (flag & MSG_HOLDSIG) 8122 waitflag |= STR_NOSIG; 8123 if (flag & MSG_IGNERROR) 8124 waitflag |= STR_NOERROR; 8125 } 8126 if (((error = strwaitq(stp, waitflag, 8127 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 8128 mutex_exit(&stp->sd_lock); 8129 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8130 "kstrputmsg out:stp %p out %d error %d", 8131 stp, 0, error); 8132 freemsg(mctl); 8133 return (error); 8134 } 8135 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 8136 "kstrputmsg wake:stp %p wakes", stp); 8137 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8138 mutex_exit(&stp->sd_lock); 8139 freemsg(mctl); 8140 return (error); 8141 } 8142 mutex_exit(&stp->sd_lock); 8143 } 8144 out: 8145 freemsg(mctl); 8146 /* 8147 * For historic reasons, applications expect EAGAIN 8148 * when data mblk could not be allocated. so change 8149 * ENOMEM back to EAGAIN 8150 */ 8151 if (error == ENOMEM) 8152 error = EAGAIN; 8153 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8154 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 8155 return (error); 8156 } 8157 8158 /* 8159 * Determines whether the necessary conditions are set on a stream 8160 * for it to be readable, writeable, or have exceptions. 8161 * 8162 * strpoll handles the consolidation private events: 8163 * POLLNOERR Do not return POLLERR even if there are stream 8164 * head errors. 8165 * Used by sockfs. 8166 * POLLRDDATA Do not return POLLIN unless at least one message on 8167 * the queue contains one or more M_DATA mblks. Thus 8168 * when this flag is set a queue with only 8169 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8170 * Used by sockfs to ignore T_EXDATA_IND messages. 8171 * 8172 * Note: POLLRDDATA assumes that synch streams only return messages with 8173 * an M_DATA attached (i.e. not messages consisting of only 8174 * an M_PROTO/M_PCPROTO part). 8175 */ 8176 int 8177 strpoll(struct stdata *stp, short events_arg, int anyyet, short *reventsp, 8178 struct pollhead **phpp) 8179 { 8180 int events = (ushort_t)events_arg; 8181 int retevents = 0; 8182 mblk_t *mp; 8183 qband_t *qbp; 8184 long sd_flags = stp->sd_flag; 8185 int headlocked = 0; 8186 8187 /* 8188 * For performance, a single 'if' tests for most possible edge 8189 * conditions in one shot 8190 */ 8191 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8192 if (sd_flags & STPLEX) { 8193 *reventsp = POLLNVAL; 8194 return (EINVAL); 8195 } 8196 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8197 (sd_flags & STRDERR)) || 8198 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8199 (sd_flags & STWRERR))) { 8200 if (!(events & POLLNOERR)) { 8201 *reventsp = POLLERR; 8202 return (0); 8203 } 8204 } 8205 } 8206 if (sd_flags & STRHUP) { 8207 retevents |= POLLHUP; 8208 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8209 queue_t *tq; 8210 queue_t *qp = stp->sd_wrq; 8211 8212 claimstr(qp); 8213 /* Find next module forward that has a service procedure */ 8214 tq = qp->q_next->q_nfsrv; 8215 ASSERT(tq != NULL); 8216 8217 if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) { 8218 releasestr(qp); 8219 *reventsp = POLLNVAL; 8220 return (0); 8221 } 8222 if (events & POLLWRNORM) { 8223 queue_t *sqp; 8224 8225 if (tq->q_flag & QFULL) 8226 /* ensure backq svc procedure runs */ 8227 tq->q_flag |= QWANTW; 8228 else if ((sqp = stp->sd_struiowrq) != NULL) { 8229 /* Check sync stream barrier write q */ 8230 mutex_exit(QLOCK(tq)); 8231 if (polllock(&stp->sd_pollist, 8232 QLOCK(sqp)) != 0) { 8233 releasestr(qp); 8234 *reventsp = POLLNVAL; 8235 return (0); 8236 } 8237 if (sqp->q_flag & QFULL) 8238 /* ensure pollwakeup() is done */ 8239 sqp->q_flag |= QWANTWSYNC; 8240 else 8241 retevents |= POLLOUT; 8242 /* More write events to process ??? */ 8243 if (! (events & POLLWRBAND)) { 8244 mutex_exit(QLOCK(sqp)); 8245 releasestr(qp); 8246 goto chkrd; 8247 } 8248 mutex_exit(QLOCK(sqp)); 8249 if (polllock(&stp->sd_pollist, 8250 QLOCK(tq)) != 0) { 8251 releasestr(qp); 8252 *reventsp = POLLNVAL; 8253 return (0); 8254 } 8255 } else 8256 retevents |= POLLOUT; 8257 } 8258 if (events & POLLWRBAND) { 8259 qbp = tq->q_bandp; 8260 if (qbp) { 8261 while (qbp) { 8262 if (qbp->qb_flag & QB_FULL) 8263 qbp->qb_flag |= QB_WANTW; 8264 else 8265 retevents |= POLLWRBAND; 8266 qbp = qbp->qb_next; 8267 } 8268 } else { 8269 retevents |= POLLWRBAND; 8270 } 8271 } 8272 mutex_exit(QLOCK(tq)); 8273 releasestr(qp); 8274 } 8275 chkrd: 8276 if (sd_flags & STRPRI) { 8277 retevents |= (events & POLLPRI); 8278 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8279 queue_t *qp = _RD(stp->sd_wrq); 8280 int normevents = (events & (POLLIN | POLLRDNORM)); 8281 8282 /* 8283 * Note: Need to do polllock() here since ps_lock may be 8284 * held. See bug 4191544. 8285 */ 8286 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8287 *reventsp = POLLNVAL; 8288 return (0); 8289 } 8290 headlocked = 1; 8291 mp = qp->q_first; 8292 while (mp) { 8293 /* 8294 * For POLLRDDATA we scan b_cont and b_next until we 8295 * find an M_DATA. 8296 */ 8297 if ((events & POLLRDDATA) && 8298 mp->b_datap->db_type != M_DATA) { 8299 mblk_t *nmp = mp->b_cont; 8300 8301 while (nmp != NULL && 8302 nmp->b_datap->db_type != M_DATA) 8303 nmp = nmp->b_cont; 8304 if (nmp == NULL) { 8305 mp = mp->b_next; 8306 continue; 8307 } 8308 } 8309 if (mp->b_band == 0) 8310 retevents |= normevents; 8311 else 8312 retevents |= (events & (POLLIN | POLLRDBAND)); 8313 break; 8314 } 8315 if (!(retevents & normevents) && (stp->sd_wakeq & RSLEEP)) { 8316 /* 8317 * Sync stream barrier read queue has data. 8318 */ 8319 retevents |= normevents; 8320 } 8321 /* Treat eof as normal data */ 8322 if (sd_flags & STREOF) 8323 retevents |= normevents; 8324 } 8325 8326 /* 8327 * Pass back a pollhead if no events are pending or if edge-triggering 8328 * has been configured on this resource. 8329 */ 8330 if ((retevents == 0 && !anyyet) || (events & POLLET)) { 8331 *phpp = &stp->sd_pollist; 8332 if (headlocked == 0) { 8333 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8334 *reventsp = POLLNVAL; 8335 return (0); 8336 } 8337 headlocked = 1; 8338 } 8339 stp->sd_rput_opt |= SR_POLLIN; 8340 } 8341 8342 *reventsp = (short)retevents; 8343 if (headlocked) 8344 mutex_exit(&stp->sd_lock); 8345 return (0); 8346 } 8347 8348 /* 8349 * The purpose of putback() is to assure sleeping polls/reads 8350 * are awakened when there are no new messages arriving at the, 8351 * stream head, and a message is placed back on the read queue. 8352 * 8353 * sd_lock must be held when messages are placed back on stream 8354 * head. (getq() holds sd_lock when it removes messages from 8355 * the queue) 8356 */ 8357 8358 static void 8359 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8360 { 8361 mblk_t *qfirst; 8362 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8363 8364 /* 8365 * As a result of lock-step ordering around q_lock and sd_lock, 8366 * it's possible for function calls like putnext() and 8367 * canputnext() to get an inaccurate picture of how much 8368 * data is really being processed at the stream head. 8369 * We only consolidate with existing messages on the queue 8370 * if the length of the message we want to put back is smaller 8371 * than the queue hiwater mark. 8372 */ 8373 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8374 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) && 8375 (DB_TYPE(qfirst) == M_DATA) && 8376 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) && 8377 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) && 8378 (mp_cont_len(bp, NULL) < q->q_hiwat)) { 8379 /* 8380 * We use the same logic as defined in strrput() 8381 * but in reverse as we are putting back onto the 8382 * queue and want to retain byte ordering. 8383 * Consolidate M_DATA messages with M_DATA ONLY. 8384 * strrput() allows the consolidation of M_DATA onto 8385 * M_PROTO | M_PCPROTO but not the other way round. 8386 * 8387 * The consolidation does not take place if the message 8388 * we are returning to the queue is marked with either 8389 * of the marks or the delim flag or if q_first 8390 * is marked with MSGMARK. The MSGMARK check is needed to 8391 * handle the odd semantics of MSGMARK where essentially 8392 * the whole message is to be treated as marked. 8393 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8394 * to the front of the b_cont chain. 8395 */ 8396 rmvq_noenab(q, qfirst); 8397 8398 /* 8399 * The first message in the b_cont list 8400 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8401 * We need to handle the case where we 8402 * are appending: 8403 * 8404 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8405 * 2) a MSGMARKNEXT to a plain message. 8406 * 3) a MSGNOTMARKNEXT to a plain message 8407 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8408 * message. 8409 * 8410 * Thus we never append a MSGMARKNEXT or 8411 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8412 */ 8413 if (qfirst->b_flag & MSGMARKNEXT) { 8414 bp->b_flag |= MSGMARKNEXT; 8415 bp->b_flag &= ~MSGNOTMARKNEXT; 8416 qfirst->b_flag &= ~MSGMARKNEXT; 8417 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8418 bp->b_flag |= MSGNOTMARKNEXT; 8419 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8420 } 8421 8422 linkb(bp, qfirst); 8423 } 8424 (void) putbq(q, bp); 8425 8426 /* 8427 * A message may have come in when the sd_lock was dropped in the 8428 * calling routine. If this is the case and STR*ATMARK info was 8429 * received, need to move that from the stream head to the q_last 8430 * so that SIOCATMARK can return the proper value. 8431 */ 8432 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8433 unsigned short *flagp = &q->q_last->b_flag; 8434 uint_t b_flag = (uint_t)*flagp; 8435 8436 if (stp->sd_flag & STRATMARK) { 8437 b_flag &= ~MSGNOTMARKNEXT; 8438 b_flag |= MSGMARKNEXT; 8439 stp->sd_flag &= ~STRATMARK; 8440 } else { 8441 b_flag &= ~MSGMARKNEXT; 8442 b_flag |= MSGNOTMARKNEXT; 8443 stp->sd_flag &= ~STRNOTATMARK; 8444 } 8445 *flagp = (unsigned short) b_flag; 8446 } 8447 8448 #ifdef DEBUG 8449 /* 8450 * Make sure that the flags are not messed up. 8451 */ 8452 { 8453 mblk_t *mp; 8454 mp = q->q_last; 8455 while (mp != NULL) { 8456 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8457 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8458 mp = mp->b_cont; 8459 } 8460 } 8461 #endif 8462 if (q->q_first == bp) { 8463 short pollevents; 8464 8465 if (stp->sd_flag & RSLEEP) { 8466 stp->sd_flag &= ~RSLEEP; 8467 cv_broadcast(&q->q_wait); 8468 } 8469 if (stp->sd_flag & STRPRI) { 8470 pollevents = POLLPRI; 8471 } else { 8472 if (band == 0) { 8473 if (!(stp->sd_rput_opt & SR_POLLIN)) 8474 return; 8475 stp->sd_rput_opt &= ~SR_POLLIN; 8476 pollevents = POLLIN | POLLRDNORM; 8477 } else { 8478 pollevents = POLLIN | POLLRDBAND; 8479 } 8480 } 8481 mutex_exit(&stp->sd_lock); 8482 pollwakeup(&stp->sd_pollist, pollevents); 8483 mutex_enter(&stp->sd_lock); 8484 } 8485 } 8486 8487 /* 8488 * Return the held vnode attached to the stream head of a 8489 * given queue 8490 * It is the responsibility of the calling routine to ensure 8491 * that the queue does not go away (e.g. pop). 8492 */ 8493 vnode_t * 8494 strq2vp(queue_t *qp) 8495 { 8496 vnode_t *vp; 8497 vp = STREAM(qp)->sd_vnode; 8498 ASSERT(vp != NULL); 8499 VN_HOLD(vp); 8500 return (vp); 8501 } 8502 8503 /* 8504 * return the stream head write queue for the given vp 8505 * It is the responsibility of the calling routine to ensure 8506 * that the stream or vnode do not close. 8507 */ 8508 queue_t * 8509 strvp2wq(vnode_t *vp) 8510 { 8511 ASSERT(vp->v_stream != NULL); 8512 return (vp->v_stream->sd_wrq); 8513 } 8514 8515 /* 8516 * pollwakeup stream head 8517 * It is the responsibility of the calling routine to ensure 8518 * that the stream or vnode do not close. 8519 */ 8520 void 8521 strpollwakeup(vnode_t *vp, short event) 8522 { 8523 ASSERT(vp->v_stream); 8524 pollwakeup(&vp->v_stream->sd_pollist, event); 8525 } 8526 8527 /* 8528 * Mate the stream heads of two vnodes together. If the two vnodes are the 8529 * same, we just make the write-side point at the read-side -- otherwise, 8530 * we do a full mate. Only works on vnodes associated with streams that are 8531 * still being built and thus have only a stream head. 8532 */ 8533 void 8534 strmate(vnode_t *vp1, vnode_t *vp2) 8535 { 8536 queue_t *wrq1 = strvp2wq(vp1); 8537 queue_t *wrq2 = strvp2wq(vp2); 8538 8539 /* 8540 * Verify that there are no modules on the stream yet. We also 8541 * rely on the stream head always having a service procedure to 8542 * avoid tweaking q_nfsrv. 8543 */ 8544 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8545 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8546 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8547 8548 /* 8549 * If the queues are the same, just twist; otherwise do a full mate. 8550 */ 8551 if (wrq1 == wrq2) { 8552 wrq1->q_next = _RD(wrq1); 8553 } else { 8554 wrq1->q_next = _RD(wrq2); 8555 wrq2->q_next = _RD(wrq1); 8556 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8557 STREAM(wrq1)->sd_flag |= STRMATE; 8558 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8559 STREAM(wrq2)->sd_flag |= STRMATE; 8560 } 8561 } 8562 8563 /* 8564 * XXX will go away when console is correctly fixed. 8565 * Clean up the console PIDS, from previous I_SETSIG, 8566 * called only for cnopen which never calls strclean(). 8567 */ 8568 void 8569 str_cn_clean(struct vnode *vp) 8570 { 8571 strsig_t *ssp, *pssp, *tssp; 8572 struct stdata *stp; 8573 struct pid *pidp; 8574 int update = 0; 8575 8576 ASSERT(vp->v_stream); 8577 stp = vp->v_stream; 8578 pssp = NULL; 8579 mutex_enter(&stp->sd_lock); 8580 ssp = stp->sd_siglist; 8581 while (ssp) { 8582 mutex_enter(&pidlock); 8583 pidp = ssp->ss_pidp; 8584 /* 8585 * Get rid of PID if the proc is gone. 8586 */ 8587 if (pidp->pid_prinactive) { 8588 tssp = ssp->ss_next; 8589 if (pssp) 8590 pssp->ss_next = tssp; 8591 else 8592 stp->sd_siglist = tssp; 8593 ASSERT(pidp->pid_ref <= 1); 8594 PID_RELE(ssp->ss_pidp); 8595 mutex_exit(&pidlock); 8596 kmem_free(ssp, sizeof (strsig_t)); 8597 update = 1; 8598 ssp = tssp; 8599 continue; 8600 } else 8601 mutex_exit(&pidlock); 8602 pssp = ssp; 8603 ssp = ssp->ss_next; 8604 } 8605 if (update) { 8606 stp->sd_sigflags = 0; 8607 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8608 stp->sd_sigflags |= ssp->ss_events; 8609 } 8610 mutex_exit(&stp->sd_lock); 8611 } 8612 8613 /* 8614 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8615 */ 8616 static boolean_t 8617 msghasdata(mblk_t *bp) 8618 { 8619 for (; bp; bp = bp->b_cont) 8620 if (bp->b_datap->db_type == M_DATA) { 8621 ASSERT(bp->b_wptr >= bp->b_rptr); 8622 if (bp->b_wptr > bp->b_rptr) 8623 return (B_TRUE); 8624 } 8625 return (B_FALSE); 8626 } 8627