1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/sysmacros.h> 33 #include <sys/param.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/stat.h> 37 #include <sys/proc.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/stream.h> 43 #include <sys/strsubr.h> 44 #include <sys/stropts.h> 45 #include <sys/tihdr.h> 46 #include <sys/var.h> 47 #include <sys/poll.h> 48 #include <sys/termio.h> 49 #include <sys/ttold.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/cmn_err.h> 53 #include <sys/sad.h> 54 #include <sys/netstack.h> 55 #include <sys/priocntl.h> 56 #include <sys/jioctl.h> 57 #include <sys/procset.h> 58 #include <sys/session.h> 59 #include <sys/kmem.h> 60 #include <sys/filio.h> 61 #include <sys/vtrace.h> 62 #include <sys/debug.h> 63 #include <sys/strredir.h> 64 #include <sys/fs/fifonode.h> 65 #include <sys/fs/snode.h> 66 #include <sys/strlog.h> 67 #include <sys/strsun.h> 68 #include <sys/project.h> 69 #include <sys/kbio.h> 70 #include <sys/msio.h> 71 #include <sys/tty.h> 72 #include <sys/ptyvar.h> 73 #include <sys/vuid_event.h> 74 #include <sys/modctl.h> 75 #include <sys/sunddi.h> 76 #include <sys/sunldi_impl.h> 77 #include <sys/autoconf.h> 78 #include <sys/policy.h> 79 #include <sys/dld.h> 80 #include <sys/zone.h> 81 #include <c2/audit.h> 82 83 /* 84 * This define helps improve the readability of streams code while 85 * still maintaining a very old streams performance enhancement. The 86 * performance enhancement basically involved having all callers 87 * of straccess() perform the first check that straccess() will do 88 * locally before actually calling straccess(). (There by reducing 89 * the number of unnecessary calls to straccess().) 90 */ 91 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 92 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 93 straccess((x), (y))) 94 95 /* 96 * what is mblk_pull_len? 97 * 98 * If a streams message consists of many short messages, 99 * a performance degradation occurs from copyout overhead. 100 * To decrease the per mblk overhead, messages that are 101 * likely to consist of many small mblks are pulled up into 102 * one continuous chunk of memory. 103 * 104 * To avoid the processing overhead of examining every 105 * mblk, a quick heuristic is used. If the first mblk in 106 * the message is shorter than mblk_pull_len, it is likely 107 * that the rest of the mblk will be short. 108 * 109 * This heuristic was decided upon after performance tests 110 * indicated that anything more complex slowed down the main 111 * code path. 112 */ 113 #define MBLK_PULL_LEN 64 114 uint32_t mblk_pull_len = MBLK_PULL_LEN; 115 116 /* 117 * The sgttyb_handling flag controls the handling of the old BSD 118 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 119 * 120 * 0 - Emit no warnings at all and retain old, broken behavior. 121 * 1 - Emit no warnings and silently handle new semantics. 122 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 123 * (once per system invocation). Handle with new semantics. 124 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 125 * made (so that offenders drop core and are easy to debug). 126 * 127 * The "new semantics" are that TIOCGETP returns B38400 for 128 * sg_[io]speed if the corresponding value is over B38400, and that 129 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 130 * bit rate." 131 */ 132 int sgttyb_handling = 1; 133 static boolean_t sgttyb_complaint; 134 135 /* don't push drcompat module by default on Style-2 streams */ 136 static int push_drcompat = 0; 137 138 /* 139 * id value used to distinguish between different ioctl messages 140 */ 141 static uint32_t ioc_id; 142 143 static void putback(struct stdata *, queue_t *, mblk_t *, int); 144 static void strcleanall(struct vnode *); 145 static int strwsrv(queue_t *); 146 static int strdocmd(struct stdata *, struct strcmd *, cred_t *); 147 148 /* 149 * qinit and module_info structures for stream head read and write queues 150 */ 151 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 152 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 153 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 154 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 155 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 156 FIFOLOWAT }; 157 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 158 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 159 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 160 161 extern kmutex_t strresources; /* protects global resources */ 162 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 163 164 static boolean_t msghasdata(mblk_t *bp); 165 #define msgnodata(bp) (!msghasdata(bp)) 166 167 /* 168 * Stream head locking notes: 169 * There are four monitors associated with the stream head: 170 * 1. v_stream monitor: in stropen() and strclose() v_lock 171 * is held while the association of vnode and stream 172 * head is established or tested for. 173 * 2. open/close/push/pop monitor: sd_lock is held while each 174 * thread bids for exclusive access to this monitor 175 * for opening or closing a stream. In addition, this 176 * monitor is entered during pushes and pops. This 177 * guarantees that during plumbing operations there 178 * is only one thread trying to change the plumbing. 179 * Any other threads present in the stream are only 180 * using the plumbing. 181 * 3. read/write monitor: in the case of read, a thread holds 182 * sd_lock while trying to get data from the stream 183 * head queue. if there is none to fulfill a read 184 * request, it sets RSLEEP and calls cv_wait_sig() down 185 * in strwaitq() to await the arrival of new data. 186 * when new data arrives in strrput(), sd_lock is acquired 187 * before testing for RSLEEP and calling cv_broadcast(). 188 * the behavior of strwrite(), strwsrv(), and WSLEEP 189 * mirror this. 190 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 191 * thread is doing an ioctl at a time. 192 */ 193 194 static int 195 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 196 int anchor, cred_t *crp, uint_t anchor_zoneid) 197 { 198 int error; 199 fmodsw_impl_t *fp; 200 201 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 202 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 203 return (error); 204 } 205 if (stp->sd_pushcnt >= nstrpush) { 206 return (EINVAL); 207 } 208 209 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 210 stp->sd_flag |= STREOPENFAIL; 211 return (EINVAL); 212 } 213 214 /* 215 * push new module and call its open routine via qattach 216 */ 217 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 218 return (error); 219 220 /* 221 * Check to see if caller wants a STREAMS anchor 222 * put at this place in the stream, and add if so. 223 */ 224 mutex_enter(&stp->sd_lock); 225 if (anchor == stp->sd_pushcnt) { 226 stp->sd_anchor = stp->sd_pushcnt; 227 stp->sd_anchorzone = anchor_zoneid; 228 } 229 mutex_exit(&stp->sd_lock); 230 231 return (0); 232 } 233 234 /* 235 * Open a stream device. 236 */ 237 int 238 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 239 { 240 struct stdata *stp; 241 queue_t *qp; 242 int s; 243 dev_t dummydev, savedev; 244 struct autopush *ap; 245 struct dlautopush dlap; 246 int error = 0; 247 ssize_t rmin, rmax; 248 int cloneopen; 249 queue_t *brq; 250 major_t major; 251 str_stack_t *ss; 252 zoneid_t zoneid; 253 uint_t anchor; 254 255 /* 256 * If the stream already exists, wait for any open in progress 257 * to complete, then call the open function of each module and 258 * driver in the stream. Otherwise create the stream. 259 */ 260 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 261 retry: 262 mutex_enter(&vp->v_lock); 263 if ((stp = vp->v_stream) != NULL) { 264 265 /* 266 * Waiting for stream to be created to device 267 * due to another open. 268 */ 269 mutex_exit(&vp->v_lock); 270 271 if (STRMATED(stp)) { 272 struct stdata *strmatep = stp->sd_mate; 273 274 STRLOCKMATES(stp); 275 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 276 if (flag & (FNDELAY|FNONBLOCK)) { 277 error = EAGAIN; 278 mutex_exit(&strmatep->sd_lock); 279 goto ckreturn; 280 } 281 mutex_exit(&stp->sd_lock); 282 if (!cv_wait_sig(&strmatep->sd_monitor, 283 &strmatep->sd_lock)) { 284 error = EINTR; 285 mutex_exit(&strmatep->sd_lock); 286 mutex_enter(&stp->sd_lock); 287 goto ckreturn; 288 } 289 mutex_exit(&strmatep->sd_lock); 290 goto retry; 291 } 292 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 293 if (flag & (FNDELAY|FNONBLOCK)) { 294 error = EAGAIN; 295 mutex_exit(&strmatep->sd_lock); 296 goto ckreturn; 297 } 298 mutex_exit(&strmatep->sd_lock); 299 if (!cv_wait_sig(&stp->sd_monitor, 300 &stp->sd_lock)) { 301 error = EINTR; 302 goto ckreturn; 303 } 304 mutex_exit(&stp->sd_lock); 305 goto retry; 306 } 307 308 if (stp->sd_flag & (STRDERR|STWRERR)) { 309 error = EIO; 310 mutex_exit(&strmatep->sd_lock); 311 goto ckreturn; 312 } 313 314 stp->sd_flag |= STWOPEN; 315 STRUNLOCKMATES(stp); 316 } else { 317 mutex_enter(&stp->sd_lock); 318 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 319 if (flag & (FNDELAY|FNONBLOCK)) { 320 error = EAGAIN; 321 goto ckreturn; 322 } 323 if (!cv_wait_sig(&stp->sd_monitor, 324 &stp->sd_lock)) { 325 error = EINTR; 326 goto ckreturn; 327 } 328 mutex_exit(&stp->sd_lock); 329 goto retry; /* could be clone! */ 330 } 331 332 if (stp->sd_flag & (STRDERR|STWRERR)) { 333 error = EIO; 334 goto ckreturn; 335 } 336 337 stp->sd_flag |= STWOPEN; 338 mutex_exit(&stp->sd_lock); 339 } 340 341 /* 342 * Open all modules and devices down stream to notify 343 * that another user is streaming. For modules, set the 344 * last argument to MODOPEN and do not pass any open flags. 345 * Ignore dummydev since this is not the first open. 346 */ 347 claimstr(stp->sd_wrq); 348 qp = stp->sd_wrq; 349 while (_SAMESTR(qp)) { 350 qp = qp->q_next; 351 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 352 break; 353 } 354 releasestr(stp->sd_wrq); 355 mutex_enter(&stp->sd_lock); 356 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 357 stp->sd_rerror = 0; 358 stp->sd_werror = 0; 359 ckreturn: 360 cv_broadcast(&stp->sd_monitor); 361 mutex_exit(&stp->sd_lock); 362 return (error); 363 } 364 365 /* 366 * This vnode isn't streaming. SPECFS already 367 * checked for multiple vnodes pointing to the 368 * same stream, so create a stream to the driver. 369 */ 370 qp = allocq(); 371 stp = shalloc(qp); 372 373 /* 374 * Initialize stream head. shalloc() has given us 375 * exclusive access, and we have the vnode locked; 376 * we can do whatever we want with stp. 377 */ 378 stp->sd_flag = STWOPEN; 379 stp->sd_siglist = NULL; 380 stp->sd_pollist.ph_list = NULL; 381 stp->sd_sigflags = 0; 382 stp->sd_mark = NULL; 383 stp->sd_closetime = STRTIMOUT; 384 stp->sd_sidp = NULL; 385 stp->sd_pgidp = NULL; 386 stp->sd_vnode = vp; 387 stp->sd_rerror = 0; 388 stp->sd_werror = 0; 389 stp->sd_wroff = 0; 390 stp->sd_tail = 0; 391 stp->sd_iocblk = NULL; 392 stp->sd_cmdblk = NULL; 393 stp->sd_pushcnt = 0; 394 stp->sd_qn_minpsz = 0; 395 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 396 stp->sd_maxblk = INFPSZ; 397 qp->q_ptr = _WR(qp)->q_ptr = stp; 398 STREAM(qp) = STREAM(_WR(qp)) = stp; 399 vp->v_stream = stp; 400 mutex_exit(&vp->v_lock); 401 if (vp->v_type == VFIFO) { 402 stp->sd_flag |= OLDNDELAY; 403 /* 404 * This means, both for pipes and fifos 405 * strwrite will send SIGPIPE if the other 406 * end is closed. For putmsg it depends 407 * on whether it is a XPG4_2 application 408 * or not 409 */ 410 stp->sd_wput_opt = SW_SIGPIPE; 411 412 /* setq might sleep in kmem_alloc - avoid holding locks. */ 413 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 414 SQ_CI|SQ_CO, B_FALSE); 415 416 set_qend(qp); 417 stp->sd_strtab = fifo_getinfo(); 418 _WR(qp)->q_nfsrv = _WR(qp); 419 qp->q_nfsrv = qp; 420 /* 421 * Wake up others that are waiting for stream to be created. 422 */ 423 mutex_enter(&stp->sd_lock); 424 /* 425 * nothing is be pushed on stream yet, so 426 * optimized stream head packetsizes are just that 427 * of the read queue 428 */ 429 stp->sd_qn_minpsz = qp->q_minpsz; 430 stp->sd_qn_maxpsz = qp->q_maxpsz; 431 stp->sd_flag &= ~STWOPEN; 432 goto fifo_opendone; 433 } 434 /* setq might sleep in kmem_alloc - avoid holding locks. */ 435 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 436 437 set_qend(qp); 438 439 /* 440 * Open driver and create stream to it (via qattach). 441 */ 442 savedev = *devp; 443 cloneopen = (getmajor(*devp) == clone_major); 444 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 445 mutex_enter(&vp->v_lock); 446 vp->v_stream = NULL; 447 mutex_exit(&vp->v_lock); 448 mutex_enter(&stp->sd_lock); 449 cv_broadcast(&stp->sd_monitor); 450 mutex_exit(&stp->sd_lock); 451 freeq(_RD(qp)); 452 shfree(stp); 453 return (error); 454 } 455 /* 456 * Set sd_strtab after open in order to handle clonable drivers 457 */ 458 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 459 460 /* 461 * Historical note: dummydev used to be be prior to the initial 462 * open (via qattach above), which made the value seen 463 * inconsistent between an I_PUSH and an autopush of a module. 464 */ 465 dummydev = *devp; 466 467 /* 468 * For clone open of old style (Q not associated) network driver, 469 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 470 */ 471 brq = _RD(_WR(qp)->q_next); 472 major = getmajor(*devp); 473 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 474 ((brq->q_flag & _QASSOCIATED) == 0)) { 475 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 476 cmn_err(CE_WARN, "cannot push " DRMODNAME 477 " streams module"); 478 } 479 480 if (!NETWORK_DRV(major)) { 481 savedev = *devp; 482 } else { 483 /* 484 * For network devices, process differently based on the 485 * return value from dld_autopush(): 486 * 487 * 0: the passed-in device points to a GLDv3 datalink with 488 * per-link autopush configuration; use that configuration 489 * and ignore any per-driver autopush configuration. 490 * 491 * 1: the passed-in device points to a physical GLDv3 492 * datalink without per-link autopush configuration. The 493 * passed in device was changed to refer to the actual 494 * physical device (if it's not already); we use that new 495 * device to look up any per-driver autopush configuration. 496 * 497 * -1: neither of the above cases applied; use the initial 498 * device to look up any per-driver autopush configuration. 499 */ 500 switch (dld_autopush(&savedev, &dlap)) { 501 case 0: 502 zoneid = crgetzoneid(crp); 503 for (s = 0; s < dlap.dap_npush; s++) { 504 error = push_mod(qp, &dummydev, stp, 505 dlap.dap_aplist[s], dlap.dap_anchor, crp, 506 zoneid); 507 if (error != 0) 508 break; 509 } 510 goto opendone; 511 case 1: 512 break; 513 case -1: 514 savedev = *devp; 515 break; 516 } 517 } 518 /* 519 * Find the autopush configuration based on "savedev". Start with the 520 * global zone. If not found check in the local zone. 521 */ 522 zoneid = GLOBAL_ZONEID; 523 retryap: 524 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 525 netstack_str; 526 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 527 netstack_rele(ss->ss_netstack); 528 if (zoneid == GLOBAL_ZONEID) { 529 /* 530 * None found. Also look in the zone's autopush table. 531 */ 532 zoneid = crgetzoneid(crp); 533 if (zoneid != GLOBAL_ZONEID) 534 goto retryap; 535 } 536 goto opendone; 537 } 538 anchor = ap->ap_anchor; 539 zoneid = crgetzoneid(crp); 540 for (s = 0; s < ap->ap_npush; s++) { 541 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 542 anchor, crp, zoneid); 543 if (error != 0) 544 break; 545 } 546 sad_ap_rele(ap, ss); 547 netstack_rele(ss->ss_netstack); 548 549 opendone: 550 551 /* 552 * let specfs know that open failed part way through 553 */ 554 if (error) { 555 mutex_enter(&stp->sd_lock); 556 stp->sd_flag |= STREOPENFAIL; 557 mutex_exit(&stp->sd_lock); 558 } 559 560 /* 561 * Wake up others that are waiting for stream to be created. 562 */ 563 mutex_enter(&stp->sd_lock); 564 stp->sd_flag &= ~STWOPEN; 565 566 /* 567 * As a performance concern we are caching the values of 568 * q_minpsz and q_maxpsz of the module below the stream 569 * head in the stream head. 570 */ 571 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 572 rmin = stp->sd_wrq->q_next->q_minpsz; 573 rmax = stp->sd_wrq->q_next->q_maxpsz; 574 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 575 576 /* do this processing here as a performance concern */ 577 if (strmsgsz != 0) { 578 if (rmax == INFPSZ) 579 rmax = strmsgsz; 580 else 581 rmax = MIN(strmsgsz, rmax); 582 } 583 584 mutex_enter(QLOCK(stp->sd_wrq)); 585 stp->sd_qn_minpsz = rmin; 586 stp->sd_qn_maxpsz = rmax; 587 mutex_exit(QLOCK(stp->sd_wrq)); 588 589 fifo_opendone: 590 cv_broadcast(&stp->sd_monitor); 591 mutex_exit(&stp->sd_lock); 592 return (error); 593 } 594 595 static int strsink(queue_t *, mblk_t *); 596 static struct qinit deadrend = { 597 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 598 }; 599 static struct qinit deadwend = { 600 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 601 }; 602 603 /* 604 * Close a stream. 605 * This is called from closef() on the last close of an open stream. 606 * Strclean() will already have removed the siglist and pollist 607 * information, so all that remains is to remove all multiplexor links 608 * for the stream, pop all the modules (and the driver), and free the 609 * stream structure. 610 */ 611 612 int 613 strclose(struct vnode *vp, int flag, cred_t *crp) 614 { 615 struct stdata *stp; 616 queue_t *qp; 617 int rval; 618 int freestp = 1; 619 queue_t *rmq; 620 621 TRACE_1(TR_FAC_STREAMS_FR, 622 TR_STRCLOSE, "strclose:%p", vp); 623 ASSERT(vp->v_stream); 624 625 stp = vp->v_stream; 626 ASSERT(!(stp->sd_flag & STPLEX)); 627 qp = stp->sd_wrq; 628 629 /* 630 * Needed so that strpoll will return non-zero for this fd. 631 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 632 */ 633 mutex_enter(&stp->sd_lock); 634 stp->sd_flag |= STRHUP; 635 mutex_exit(&stp->sd_lock); 636 637 /* 638 * If the registered process or process group did not have an 639 * open instance of this stream then strclean would not be 640 * called. Thus at the time of closing all remaining siglist entries 641 * are removed. 642 */ 643 if (stp->sd_siglist != NULL) 644 strcleanall(vp); 645 646 ASSERT(stp->sd_siglist == NULL); 647 ASSERT(stp->sd_sigflags == 0); 648 649 if (STRMATED(stp)) { 650 struct stdata *strmatep = stp->sd_mate; 651 int waited = 1; 652 653 STRLOCKMATES(stp); 654 while (waited) { 655 waited = 0; 656 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 657 mutex_exit(&strmatep->sd_lock); 658 cv_wait(&stp->sd_monitor, &stp->sd_lock); 659 mutex_exit(&stp->sd_lock); 660 STRLOCKMATES(stp); 661 waited = 1; 662 } 663 while (strmatep->sd_flag & 664 (STWOPEN|STRCLOSE|STRPLUMB)) { 665 mutex_exit(&stp->sd_lock); 666 cv_wait(&strmatep->sd_monitor, 667 &strmatep->sd_lock); 668 mutex_exit(&strmatep->sd_lock); 669 STRLOCKMATES(stp); 670 waited = 1; 671 } 672 } 673 stp->sd_flag |= STRCLOSE; 674 STRUNLOCKMATES(stp); 675 } else { 676 mutex_enter(&stp->sd_lock); 677 stp->sd_flag |= STRCLOSE; 678 mutex_exit(&stp->sd_lock); 679 } 680 681 ASSERT(qp->q_first == NULL); /* No more delayed write */ 682 683 /* Check if an I_LINK was ever done on this stream */ 684 if (stp->sd_flag & STRHASLINKS) { 685 netstack_t *ns; 686 str_stack_t *ss; 687 688 ns = netstack_find_by_cred(crp); 689 ASSERT(ns != NULL); 690 ss = ns->netstack_str; 691 ASSERT(ss != NULL); 692 693 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 694 netstack_rele(ss->ss_netstack); 695 } 696 697 while (_SAMESTR(qp)) { 698 /* 699 * Holding sd_lock prevents q_next from changing in 700 * this stream. 701 */ 702 mutex_enter(&stp->sd_lock); 703 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 704 705 /* 706 * sleep until awakened by strwsrv() or timeout 707 */ 708 for (;;) { 709 mutex_enter(QLOCK(qp->q_next)); 710 if (!(qp->q_next->q_mblkcnt)) { 711 mutex_exit(QLOCK(qp->q_next)); 712 break; 713 } 714 stp->sd_flag |= WSLEEP; 715 716 /* ensure strwsrv gets enabled */ 717 qp->q_next->q_flag |= QWANTW; 718 mutex_exit(QLOCK(qp->q_next)); 719 /* get out if we timed out or recv'd a signal */ 720 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 721 stp->sd_closetime, 0) <= 0) { 722 break; 723 } 724 } 725 stp->sd_flag &= ~WSLEEP; 726 } 727 mutex_exit(&stp->sd_lock); 728 729 rmq = qp->q_next; 730 if (rmq->q_flag & QISDRV) { 731 ASSERT(!_SAMESTR(rmq)); 732 wait_sq_svc(_RD(qp)->q_syncq); 733 } 734 735 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 736 } 737 738 /* 739 * Since we call pollwakeup in close() now, the poll list should 740 * be empty in most cases. The only exception is the layered devices 741 * (e.g. the console drivers with redirection modules pushed on top 742 * of it). We have to do this after calling qdetach() because 743 * the redirection module won't have torn down the console 744 * redirection until after qdetach() has been invoked. 745 */ 746 if (stp->sd_pollist.ph_list != NULL) { 747 pollwakeup(&stp->sd_pollist, POLLERR); 748 pollhead_clean(&stp->sd_pollist); 749 } 750 ASSERT(stp->sd_pollist.ph_list == NULL); 751 ASSERT(stp->sd_sidp == NULL); 752 ASSERT(stp->sd_pgidp == NULL); 753 754 /* Prevent qenable from re-enabling the stream head queue */ 755 disable_svc(_RD(qp)); 756 757 /* 758 * Wait until service procedure of each queue is 759 * run, if QINSERVICE is set. 760 */ 761 wait_svc(_RD(qp)); 762 763 /* 764 * Now, flush both queues. 765 */ 766 flushq(_RD(qp), FLUSHALL); 767 flushq(qp, FLUSHALL); 768 769 /* 770 * If the write queue of the stream head is pointing to a 771 * read queue, we have a twisted stream. If the read queue 772 * is alive, convert the stream head queues into a dead end. 773 * If the read queue is dead, free the dead pair. 774 */ 775 if (qp->q_next && !_SAMESTR(qp)) { 776 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 777 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 778 shfree(qp->q_next->q_stream); 779 freeq(qp->q_next); 780 freeq(_RD(qp)); 781 } else if (qp->q_next == _RD(qp)) { /* fifo */ 782 freeq(_RD(qp)); 783 } else { /* pipe */ 784 freestp = 0; 785 /* 786 * The q_info pointers are never accessed when 787 * SQLOCK is held. 788 */ 789 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 790 mutex_enter(SQLOCK(qp->q_syncq)); 791 qp->q_qinfo = &deadwend; 792 _RD(qp)->q_qinfo = &deadrend; 793 mutex_exit(SQLOCK(qp->q_syncq)); 794 } 795 } else { 796 freeq(_RD(qp)); /* free stream head queue pair */ 797 } 798 799 mutex_enter(&vp->v_lock); 800 if (stp->sd_iocblk) { 801 if (stp->sd_iocblk != (mblk_t *)-1) { 802 freemsg(stp->sd_iocblk); 803 } 804 stp->sd_iocblk = NULL; 805 } 806 stp->sd_vnode = NULL; 807 vp->v_stream = NULL; 808 mutex_exit(&vp->v_lock); 809 mutex_enter(&stp->sd_lock); 810 freemsg(stp->sd_cmdblk); 811 stp->sd_cmdblk = NULL; 812 stp->sd_flag &= ~STRCLOSE; 813 cv_broadcast(&stp->sd_monitor); 814 mutex_exit(&stp->sd_lock); 815 816 if (freestp) 817 shfree(stp); 818 return (0); 819 } 820 821 static int 822 strsink(queue_t *q, mblk_t *bp) 823 { 824 struct copyresp *resp; 825 826 switch (bp->b_datap->db_type) { 827 case M_FLUSH: 828 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 829 *bp->b_rptr &= ~FLUSHR; 830 bp->b_flag |= MSGNOLOOP; 831 /* 832 * Protect against the driver passing up 833 * messages after it has done a qprocsoff. 834 */ 835 if (_OTHERQ(q)->q_next == NULL) 836 freemsg(bp); 837 else 838 qreply(q, bp); 839 } else { 840 freemsg(bp); 841 } 842 break; 843 844 case M_COPYIN: 845 case M_COPYOUT: 846 if (bp->b_cont) { 847 freemsg(bp->b_cont); 848 bp->b_cont = NULL; 849 } 850 bp->b_datap->db_type = M_IOCDATA; 851 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 852 resp = (struct copyresp *)bp->b_rptr; 853 resp->cp_rval = (caddr_t)1; /* failure */ 854 /* 855 * Protect against the driver passing up 856 * messages after it has done a qprocsoff. 857 */ 858 if (_OTHERQ(q)->q_next == NULL) 859 freemsg(bp); 860 else 861 qreply(q, bp); 862 break; 863 864 case M_IOCTL: 865 if (bp->b_cont) { 866 freemsg(bp->b_cont); 867 bp->b_cont = NULL; 868 } 869 bp->b_datap->db_type = M_IOCNAK; 870 /* 871 * Protect against the driver passing up 872 * messages after it has done a qprocsoff. 873 */ 874 if (_OTHERQ(q)->q_next == NULL) 875 freemsg(bp); 876 else 877 qreply(q, bp); 878 break; 879 880 default: 881 freemsg(bp); 882 break; 883 } 884 885 return (0); 886 } 887 888 /* 889 * Clean up after a process when it closes a stream. This is called 890 * from closef for all closes, whereas strclose is called only for the 891 * last close on a stream. The siglist is scanned for entries for the 892 * current process, and these are removed. 893 */ 894 void 895 strclean(struct vnode *vp) 896 { 897 strsig_t *ssp, *pssp, *tssp; 898 stdata_t *stp; 899 int update = 0; 900 901 TRACE_1(TR_FAC_STREAMS_FR, 902 TR_STRCLEAN, "strclean:%p", vp); 903 stp = vp->v_stream; 904 pssp = NULL; 905 mutex_enter(&stp->sd_lock); 906 ssp = stp->sd_siglist; 907 while (ssp) { 908 if (ssp->ss_pidp == curproc->p_pidp) { 909 tssp = ssp->ss_next; 910 if (pssp) 911 pssp->ss_next = tssp; 912 else 913 stp->sd_siglist = tssp; 914 mutex_enter(&pidlock); 915 PID_RELE(ssp->ss_pidp); 916 mutex_exit(&pidlock); 917 kmem_free(ssp, sizeof (strsig_t)); 918 update = 1; 919 ssp = tssp; 920 } else { 921 pssp = ssp; 922 ssp = ssp->ss_next; 923 } 924 } 925 if (update) { 926 stp->sd_sigflags = 0; 927 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 928 stp->sd_sigflags |= ssp->ss_events; 929 } 930 mutex_exit(&stp->sd_lock); 931 } 932 933 /* 934 * Used on the last close to remove any remaining items on the siglist. 935 * These could be present on the siglist due to I_ESETSIG calls that 936 * use process groups or processed that do not have an open file descriptor 937 * for this stream (Such entries would not be removed by strclean). 938 */ 939 static void 940 strcleanall(struct vnode *vp) 941 { 942 strsig_t *ssp, *nssp; 943 stdata_t *stp; 944 945 stp = vp->v_stream; 946 mutex_enter(&stp->sd_lock); 947 ssp = stp->sd_siglist; 948 stp->sd_siglist = NULL; 949 while (ssp) { 950 nssp = ssp->ss_next; 951 mutex_enter(&pidlock); 952 PID_RELE(ssp->ss_pidp); 953 mutex_exit(&pidlock); 954 kmem_free(ssp, sizeof (strsig_t)); 955 ssp = nssp; 956 } 957 stp->sd_sigflags = 0; 958 mutex_exit(&stp->sd_lock); 959 } 960 961 /* 962 * Retrieve the next message from the logical stream head read queue 963 * using either rwnext (if sync stream) or getq_noenab. 964 * It is the callers responsibility to call qbackenable after 965 * it is finished with the message. The caller should not call 966 * qbackenable until after any putback calls to avoid spurious backenabling. 967 */ 968 mblk_t * 969 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 970 int *errorp) 971 { 972 mblk_t *bp; 973 int error; 974 ssize_t rbytes = 0; 975 976 /* Holding sd_lock prevents the read queue from changing */ 977 ASSERT(MUTEX_HELD(&stp->sd_lock)); 978 979 if (uiop != NULL && stp->sd_struiordq != NULL && 980 q->q_first == NULL && 981 (!first || (stp->sd_wakeq & RSLEEP))) { 982 /* 983 * Stream supports rwnext() for the read side. 984 * If this is the first time we're called by e.g. strread 985 * only do the downcall if there is a deferred wakeup 986 * (registered in sd_wakeq). 987 */ 988 struiod_t uiod; 989 990 if (first) 991 stp->sd_wakeq &= ~RSLEEP; 992 993 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 994 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 995 uiod.d_mp = 0; 996 /* 997 * Mark that a thread is in rwnext on the read side 998 * to prevent strrput from nacking ioctls immediately. 999 * When the last concurrent rwnext returns 1000 * the ioctls are nack'ed. 1001 */ 1002 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1003 stp->sd_struiodnak++; 1004 /* 1005 * Note: rwnext will drop sd_lock. 1006 */ 1007 error = rwnext(q, &uiod); 1008 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1009 mutex_enter(&stp->sd_lock); 1010 stp->sd_struiodnak--; 1011 while (stp->sd_struiodnak == 0 && 1012 ((bp = stp->sd_struionak) != NULL)) { 1013 stp->sd_struionak = bp->b_next; 1014 bp->b_next = NULL; 1015 bp->b_datap->db_type = M_IOCNAK; 1016 /* 1017 * Protect against the driver passing up 1018 * messages after it has done a qprocsoff. 1019 */ 1020 if (_OTHERQ(q)->q_next == NULL) 1021 freemsg(bp); 1022 else { 1023 mutex_exit(&stp->sd_lock); 1024 qreply(q, bp); 1025 mutex_enter(&stp->sd_lock); 1026 } 1027 } 1028 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1029 if (error == 0 || error == EWOULDBLOCK) { 1030 if ((bp = uiod.d_mp) != NULL) { 1031 *errorp = 0; 1032 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1033 return (bp); 1034 } 1035 error = 0; 1036 } else if (error == EINVAL) { 1037 /* 1038 * The stream plumbing must have 1039 * changed while we were away, so 1040 * just turn off rwnext()s. 1041 */ 1042 error = 0; 1043 } else if (error == EBUSY) { 1044 /* 1045 * The module might have data in transit using putnext 1046 * Fall back on waiting + getq. 1047 */ 1048 error = 0; 1049 } else { 1050 *errorp = error; 1051 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1052 return (NULL); 1053 } 1054 /* 1055 * Try a getq in case a rwnext() generated mblk 1056 * has bubbled up via strrput(). 1057 */ 1058 } 1059 *errorp = 0; 1060 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1061 1062 /* 1063 * If we have a valid uio, try and use this as a guide for how 1064 * many bytes to retrieve from the queue via getq_noenab(). 1065 * Doing this can avoid unneccesary counting of overlong 1066 * messages in putback(). We currently only do this for sockets 1067 * and only if there is no sd_rputdatafunc hook. 1068 * 1069 * The sd_rputdatafunc hook transforms the entire message 1070 * before any bytes in it can be given to a client. So, rbytes 1071 * must be 0 if there is a hook. 1072 */ 1073 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) && 1074 (stp->sd_rputdatafunc == NULL)) 1075 rbytes = uiop->uio_resid; 1076 1077 return (getq_noenab(q, rbytes)); 1078 } 1079 1080 /* 1081 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1082 * If the message does not fit in the uio the remainder of it is returned; 1083 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1084 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1085 * the error code, the message is consumed, and NULL is returned. 1086 */ 1087 static mblk_t * 1088 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1089 { 1090 int error; 1091 ptrdiff_t n; 1092 mblk_t *nbp; 1093 1094 ASSERT(bp->b_wptr >= bp->b_rptr); 1095 1096 do { 1097 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1098 ASSERT(n > 0); 1099 1100 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1101 if (error != 0) { 1102 freemsg(bp); 1103 *errorp = error; 1104 return (NULL); 1105 } 1106 } 1107 1108 bp->b_rptr += n; 1109 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1110 nbp = bp; 1111 bp = bp->b_cont; 1112 freeb(nbp); 1113 } 1114 } while (bp != NULL && uiop->uio_resid > 0); 1115 1116 *errorp = 0; 1117 return (bp); 1118 } 1119 1120 /* 1121 * Read a stream according to the mode flags in sd_flag: 1122 * 1123 * (default mode) - Byte stream, msg boundaries are ignored 1124 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1125 * any data remaining in msg 1126 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1127 * any remaining data on head of read queue 1128 * 1129 * Consume readable messages on the front of the queue until 1130 * ttolwp(curthread)->lwp_count 1131 * is satisfied, the readable messages are exhausted, or a message 1132 * boundary is reached in a message mode. If no data was read and 1133 * the stream was not opened with the NDELAY flag, block until data arrives. 1134 * Otherwise return the data read and update the count. 1135 * 1136 * In default mode a 0 length message signifies end-of-file and terminates 1137 * a read in progress. The 0 length message is removed from the queue 1138 * only if it is the only message read (no data is read). 1139 * 1140 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1141 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1142 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1143 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1144 * are unlinked from and M_DATA blocks in the message, the protos are 1145 * thrown away, and the data is read. 1146 */ 1147 /* ARGSUSED */ 1148 int 1149 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1150 { 1151 struct stdata *stp; 1152 mblk_t *bp, *nbp; 1153 queue_t *q; 1154 int error = 0; 1155 uint_t old_sd_flag; 1156 int first; 1157 char rflg; 1158 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1159 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1160 short delim; 1161 unsigned char pri = 0; 1162 char waitflag; 1163 unsigned char type; 1164 1165 TRACE_1(TR_FAC_STREAMS_FR, 1166 TR_STRREAD_ENTER, "strread:%p", vp); 1167 ASSERT(vp->v_stream); 1168 stp = vp->v_stream; 1169 1170 mutex_enter(&stp->sd_lock); 1171 1172 if ((error = i_straccess(stp, JCREAD)) != 0) { 1173 mutex_exit(&stp->sd_lock); 1174 return (error); 1175 } 1176 1177 if (stp->sd_flag & (STRDERR|STPLEX)) { 1178 error = strgeterr(stp, STRDERR|STPLEX, 0); 1179 if (error != 0) { 1180 mutex_exit(&stp->sd_lock); 1181 return (error); 1182 } 1183 } 1184 1185 /* 1186 * Loop terminates when uiop->uio_resid == 0. 1187 */ 1188 rflg = 0; 1189 waitflag = READWAIT; 1190 q = _RD(stp->sd_wrq); 1191 for (;;) { 1192 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1193 old_sd_flag = stp->sd_flag; 1194 mark = 0; 1195 delim = 0; 1196 first = 1; 1197 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1198 int done = 0; 1199 1200 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1201 1202 if (error != 0) 1203 goto oops; 1204 1205 if (stp->sd_flag & (STRHUP|STREOF)) { 1206 goto oops; 1207 } 1208 if (rflg && !(stp->sd_flag & STRDELIM)) { 1209 goto oops; 1210 } 1211 /* 1212 * If a read(fd,buf,0) has been done, there is no 1213 * need to sleep. We always have zero bytes to 1214 * return. 1215 */ 1216 if (uiop->uio_resid == 0) { 1217 goto oops; 1218 } 1219 1220 qbackenable(q, 0); 1221 1222 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1223 "strread calls strwaitq:%p, %p, %p", 1224 vp, uiop, crp); 1225 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1226 uiop->uio_fmode, -1, &done)) != 0 || done) { 1227 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1228 "strread error or done:%p, %p, %p", 1229 vp, uiop, crp); 1230 if ((uiop->uio_fmode & FNDELAY) && 1231 (stp->sd_flag & OLDNDELAY) && 1232 (error == EAGAIN)) 1233 error = 0; 1234 goto oops; 1235 } 1236 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1237 "strread awakes:%p, %p, %p", vp, uiop, crp); 1238 if ((error = i_straccess(stp, JCREAD)) != 0) { 1239 goto oops; 1240 } 1241 first = 0; 1242 } 1243 1244 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1245 ASSERT(bp); 1246 pri = bp->b_band; 1247 /* 1248 * Extract any mark information. If the message is not 1249 * completely consumed this information will be put in the mblk 1250 * that is putback. 1251 * If MSGMARKNEXT is set and the message is completely consumed 1252 * the STRATMARK flag will be set below. Likewise, if 1253 * MSGNOTMARKNEXT is set and the message is 1254 * completely consumed STRNOTATMARK will be set. 1255 * 1256 * For some unknown reason strread only breaks the read at the 1257 * last mark. 1258 */ 1259 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1260 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1261 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1262 if (mark != 0 && bp == stp->sd_mark) { 1263 if (rflg) { 1264 putback(stp, q, bp, pri); 1265 goto oops; 1266 } 1267 mark |= _LASTMARK; 1268 stp->sd_mark = NULL; 1269 } 1270 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1271 delim = 1; 1272 mutex_exit(&stp->sd_lock); 1273 1274 if (STREAM_NEEDSERVICE(stp)) 1275 stream_runservice(stp); 1276 1277 type = bp->b_datap->db_type; 1278 1279 switch (type) { 1280 1281 case M_DATA: 1282 ismdata: 1283 if (msgnodata(bp)) { 1284 if (mark || delim) { 1285 freemsg(bp); 1286 } else if (rflg) { 1287 1288 /* 1289 * If already read data put zero 1290 * length message back on queue else 1291 * free msg and return 0. 1292 */ 1293 bp->b_band = pri; 1294 mutex_enter(&stp->sd_lock); 1295 putback(stp, q, bp, pri); 1296 mutex_exit(&stp->sd_lock); 1297 } else { 1298 freemsg(bp); 1299 } 1300 error = 0; 1301 goto oops1; 1302 } 1303 1304 rflg = 1; 1305 waitflag |= NOINTR; 1306 bp = struiocopyout(bp, uiop, &error); 1307 if (error != 0) 1308 goto oops1; 1309 1310 mutex_enter(&stp->sd_lock); 1311 if (bp) { 1312 /* 1313 * Have remaining data in message. 1314 * Free msg if in discard mode. 1315 */ 1316 if (stp->sd_read_opt & RD_MSGDIS) { 1317 freemsg(bp); 1318 } else { 1319 bp->b_band = pri; 1320 if ((mark & _LASTMARK) && 1321 (stp->sd_mark == NULL)) 1322 stp->sd_mark = bp; 1323 bp->b_flag |= mark & ~_LASTMARK; 1324 if (delim) 1325 bp->b_flag |= MSGDELIM; 1326 if (msgnodata(bp)) 1327 freemsg(bp); 1328 else 1329 putback(stp, q, bp, pri); 1330 } 1331 } else { 1332 /* 1333 * Consumed the complete message. 1334 * Move the MSG*MARKNEXT information 1335 * to the stream head just in case 1336 * the read queue becomes empty. 1337 * 1338 * If the stream head was at the mark 1339 * (STRATMARK) before we dropped sd_lock above 1340 * and some data was consumed then we have 1341 * moved past the mark thus STRATMARK is 1342 * cleared. However, if a message arrived in 1343 * strrput during the copyout above causing 1344 * STRATMARK to be set we can not clear that 1345 * flag. 1346 */ 1347 if (mark & 1348 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1349 if (mark & MSGMARKNEXT) { 1350 stp->sd_flag &= ~STRNOTATMARK; 1351 stp->sd_flag |= STRATMARK; 1352 } else if (mark & MSGNOTMARKNEXT) { 1353 stp->sd_flag &= ~STRATMARK; 1354 stp->sd_flag |= STRNOTATMARK; 1355 } else { 1356 stp->sd_flag &= 1357 ~(STRATMARK|STRNOTATMARK); 1358 } 1359 } else if (rflg && (old_sd_flag & STRATMARK)) { 1360 stp->sd_flag &= ~STRATMARK; 1361 } 1362 } 1363 1364 /* 1365 * Check for signal messages at the front of the read 1366 * queue and generate the signal(s) if appropriate. 1367 * The only signal that can be on queue is M_SIG at 1368 * this point. 1369 */ 1370 while ((((bp = q->q_first)) != NULL) && 1371 (bp->b_datap->db_type == M_SIG)) { 1372 bp = getq_noenab(q, 0); 1373 /* 1374 * sd_lock is held so the content of the 1375 * read queue can not change. 1376 */ 1377 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG); 1378 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 1379 mutex_exit(&stp->sd_lock); 1380 freemsg(bp); 1381 if (STREAM_NEEDSERVICE(stp)) 1382 stream_runservice(stp); 1383 mutex_enter(&stp->sd_lock); 1384 } 1385 1386 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1387 delim || 1388 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1389 goto oops; 1390 } 1391 continue; 1392 1393 case M_SIG: 1394 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1395 freemsg(bp); 1396 mutex_enter(&stp->sd_lock); 1397 continue; 1398 1399 case M_PROTO: 1400 case M_PCPROTO: 1401 /* 1402 * Only data messages are readable. 1403 * Any others generate an error, unless 1404 * RD_PROTDIS or RD_PROTDAT is set. 1405 */ 1406 if (stp->sd_read_opt & RD_PROTDAT) { 1407 for (nbp = bp; nbp; nbp = nbp->b_next) { 1408 if ((nbp->b_datap->db_type == 1409 M_PROTO) || 1410 (nbp->b_datap->db_type == 1411 M_PCPROTO)) { 1412 nbp->b_datap->db_type = M_DATA; 1413 } else { 1414 break; 1415 } 1416 } 1417 /* 1418 * clear stream head hi pri flag based on 1419 * first message 1420 */ 1421 if (type == M_PCPROTO) { 1422 mutex_enter(&stp->sd_lock); 1423 stp->sd_flag &= ~STRPRI; 1424 mutex_exit(&stp->sd_lock); 1425 } 1426 goto ismdata; 1427 } else if (stp->sd_read_opt & RD_PROTDIS) { 1428 /* 1429 * discard non-data messages 1430 */ 1431 while (bp && 1432 ((bp->b_datap->db_type == M_PROTO) || 1433 (bp->b_datap->db_type == M_PCPROTO))) { 1434 nbp = unlinkb(bp); 1435 freeb(bp); 1436 bp = nbp; 1437 } 1438 /* 1439 * clear stream head hi pri flag based on 1440 * first message 1441 */ 1442 if (type == M_PCPROTO) { 1443 mutex_enter(&stp->sd_lock); 1444 stp->sd_flag &= ~STRPRI; 1445 mutex_exit(&stp->sd_lock); 1446 } 1447 if (bp) { 1448 bp->b_band = pri; 1449 goto ismdata; 1450 } else { 1451 break; 1452 } 1453 } 1454 /* FALLTHRU */ 1455 case M_PASSFP: 1456 if ((bp->b_datap->db_type == M_PASSFP) && 1457 (stp->sd_read_opt & RD_PROTDIS)) { 1458 freemsg(bp); 1459 break; 1460 } 1461 mutex_enter(&stp->sd_lock); 1462 putback(stp, q, bp, pri); 1463 mutex_exit(&stp->sd_lock); 1464 if (rflg == 0) 1465 error = EBADMSG; 1466 goto oops1; 1467 1468 default: 1469 /* 1470 * Garbage on stream head read queue. 1471 */ 1472 cmn_err(CE_WARN, "bad %x found at stream head\n", 1473 bp->b_datap->db_type); 1474 freemsg(bp); 1475 goto oops1; 1476 } 1477 mutex_enter(&stp->sd_lock); 1478 } 1479 oops: 1480 mutex_exit(&stp->sd_lock); 1481 oops1: 1482 qbackenable(q, pri); 1483 return (error); 1484 #undef _LASTMARK 1485 } 1486 1487 /* 1488 * Default processing of M_PROTO/M_PCPROTO messages. 1489 * Determine which wakeups and signals are needed. 1490 * This can be replaced by a user-specified procedure for kernel users 1491 * of STREAMS. 1492 */ 1493 /* ARGSUSED */ 1494 mblk_t * 1495 strrput_proto(vnode_t *vp, mblk_t *mp, 1496 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1497 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1498 { 1499 *wakeups = RSLEEP; 1500 *allmsgsigs = 0; 1501 1502 switch (mp->b_datap->db_type) { 1503 case M_PROTO: 1504 if (mp->b_band == 0) { 1505 *firstmsgsigs = S_INPUT | S_RDNORM; 1506 *pollwakeups = POLLIN | POLLRDNORM; 1507 } else { 1508 *firstmsgsigs = S_INPUT | S_RDBAND; 1509 *pollwakeups = POLLIN | POLLRDBAND; 1510 } 1511 break; 1512 case M_PCPROTO: 1513 *firstmsgsigs = S_HIPRI; 1514 *pollwakeups = POLLPRI; 1515 break; 1516 } 1517 return (mp); 1518 } 1519 1520 /* 1521 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1522 * M_PASSFP messages. 1523 * Determine which wakeups and signals are needed. 1524 * This can be replaced by a user-specified procedure for kernel users 1525 * of STREAMS. 1526 */ 1527 /* ARGSUSED */ 1528 mblk_t * 1529 strrput_misc(vnode_t *vp, mblk_t *mp, 1530 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1531 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1532 { 1533 *wakeups = 0; 1534 *firstmsgsigs = 0; 1535 *allmsgsigs = 0; 1536 *pollwakeups = 0; 1537 return (mp); 1538 } 1539 1540 /* 1541 * Stream read put procedure. Called from downstream driver/module 1542 * with messages for the stream head. Data, protocol, and in-stream 1543 * signal messages are placed on the queue, others are handled directly. 1544 */ 1545 int 1546 strrput(queue_t *q, mblk_t *bp) 1547 { 1548 struct stdata *stp; 1549 ulong_t rput_opt; 1550 strwakeup_t wakeups; 1551 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1552 strsigset_t allmsgsigs; /* Signals for all messages */ 1553 strsigset_t signals; /* Signals events to generate */ 1554 strpollset_t pollwakeups; 1555 mblk_t *nextbp; 1556 uchar_t band = 0; 1557 int hipri_sig; 1558 1559 stp = (struct stdata *)q->q_ptr; 1560 /* 1561 * Use rput_opt for optimized access to the SR_ flags except 1562 * SR_POLLIN. That flag has to be checked under sd_lock since it 1563 * is modified by strpoll(). 1564 */ 1565 rput_opt = stp->sd_rput_opt; 1566 1567 ASSERT(qclaimed(q)); 1568 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1569 "strrput called with message type:q %p bp %p", q, bp); 1570 1571 /* 1572 * Perform initial processing and pass to the parameterized functions. 1573 */ 1574 ASSERT(bp->b_next == NULL); 1575 1576 switch (bp->b_datap->db_type) { 1577 case M_DATA: 1578 /* 1579 * sockfs is the only consumer of STREOF and when it is set, 1580 * it implies that the receiver is not interested in receiving 1581 * any more data, hence the mblk is freed to prevent unnecessary 1582 * message queueing at the stream head. 1583 */ 1584 if (stp->sd_flag == STREOF) { 1585 freemsg(bp); 1586 return (0); 1587 } 1588 if ((rput_opt & SR_IGN_ZEROLEN) && 1589 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1590 /* 1591 * Ignore zero-length M_DATA messages. These might be 1592 * generated by some transports. 1593 * The zero-length M_DATA messages, even if they 1594 * are ignored, should effect the atmark tracking and 1595 * should wake up a thread sleeping in strwaitmark. 1596 */ 1597 mutex_enter(&stp->sd_lock); 1598 if (bp->b_flag & MSGMARKNEXT) { 1599 /* 1600 * Record the position of the mark either 1601 * in q_last or in STRATMARK. 1602 */ 1603 if (q->q_last != NULL) { 1604 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1605 q->q_last->b_flag |= MSGMARKNEXT; 1606 } else { 1607 stp->sd_flag &= ~STRNOTATMARK; 1608 stp->sd_flag |= STRATMARK; 1609 } 1610 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1611 /* 1612 * Record that this is not the position of 1613 * the mark either in q_last or in 1614 * STRNOTATMARK. 1615 */ 1616 if (q->q_last != NULL) { 1617 q->q_last->b_flag &= ~MSGMARKNEXT; 1618 q->q_last->b_flag |= MSGNOTMARKNEXT; 1619 } else { 1620 stp->sd_flag &= ~STRATMARK; 1621 stp->sd_flag |= STRNOTATMARK; 1622 } 1623 } 1624 if (stp->sd_flag & RSLEEP) { 1625 stp->sd_flag &= ~RSLEEP; 1626 cv_broadcast(&q->q_wait); 1627 } 1628 mutex_exit(&stp->sd_lock); 1629 freemsg(bp); 1630 return (0); 1631 } 1632 wakeups = RSLEEP; 1633 if (bp->b_band == 0) { 1634 firstmsgsigs = S_INPUT | S_RDNORM; 1635 pollwakeups = POLLIN | POLLRDNORM; 1636 } else { 1637 firstmsgsigs = S_INPUT | S_RDBAND; 1638 pollwakeups = POLLIN | POLLRDBAND; 1639 } 1640 if (rput_opt & SR_SIGALLDATA) 1641 allmsgsigs = firstmsgsigs; 1642 else 1643 allmsgsigs = 0; 1644 1645 mutex_enter(&stp->sd_lock); 1646 if ((rput_opt & SR_CONSOL_DATA) && 1647 (q->q_last != NULL) && 1648 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1649 /* 1650 * Consolidate an M_DATA message onto an M_DATA, 1651 * M_PROTO, or M_PCPROTO by merging it with q_last. 1652 * The consolidation does not take place if 1653 * the old message is marked with either of the 1654 * marks or the delim flag or if the new 1655 * message is marked with MSGMARK. The MSGMARK 1656 * check is needed to handle the odd semantics of 1657 * MSGMARK where essentially the whole message 1658 * is to be treated as marked. 1659 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1660 * new message to the front of the b_cont chain. 1661 */ 1662 mblk_t *lbp = q->q_last; 1663 unsigned char db_type = lbp->b_datap->db_type; 1664 1665 if ((db_type == M_DATA || db_type == M_PROTO || 1666 db_type == M_PCPROTO) && 1667 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1668 rmvq_noenab(q, lbp); 1669 /* 1670 * The first message in the b_cont list 1671 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1672 * We need to handle the case where we 1673 * are appending: 1674 * 1675 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1676 * 2) a MSGMARKNEXT to a plain message. 1677 * 3) a MSGNOTMARKNEXT to a plain message 1678 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1679 * message. 1680 * 1681 * Thus we never append a MSGMARKNEXT or 1682 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1683 */ 1684 if (bp->b_flag & MSGMARKNEXT) { 1685 lbp->b_flag |= MSGMARKNEXT; 1686 lbp->b_flag &= ~MSGNOTMARKNEXT; 1687 bp->b_flag &= ~MSGMARKNEXT; 1688 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1689 lbp->b_flag |= MSGNOTMARKNEXT; 1690 bp->b_flag &= ~MSGNOTMARKNEXT; 1691 } 1692 1693 linkb(lbp, bp); 1694 bp = lbp; 1695 /* 1696 * The new message logically isn't the first 1697 * even though the q_first check below thinks 1698 * it is. Clear the firstmsgsigs to make it 1699 * not appear to be first. 1700 */ 1701 firstmsgsigs = 0; 1702 } 1703 } 1704 break; 1705 1706 case M_PASSFP: 1707 wakeups = RSLEEP; 1708 allmsgsigs = 0; 1709 if (bp->b_band == 0) { 1710 firstmsgsigs = S_INPUT | S_RDNORM; 1711 pollwakeups = POLLIN | POLLRDNORM; 1712 } else { 1713 firstmsgsigs = S_INPUT | S_RDBAND; 1714 pollwakeups = POLLIN | POLLRDBAND; 1715 } 1716 mutex_enter(&stp->sd_lock); 1717 break; 1718 1719 case M_PROTO: 1720 case M_PCPROTO: 1721 ASSERT(stp->sd_rprotofunc != NULL); 1722 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1723 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1724 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1725 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1726 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1727 POLLWRBAND) 1728 1729 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1730 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1731 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1732 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1733 1734 mutex_enter(&stp->sd_lock); 1735 break; 1736 1737 default: 1738 ASSERT(stp->sd_rmiscfunc != NULL); 1739 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1740 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1741 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1742 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1743 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1744 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1745 #undef ALLSIG 1746 #undef ALLPOLL 1747 mutex_enter(&stp->sd_lock); 1748 break; 1749 } 1750 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1751 1752 /* By default generate superset of signals */ 1753 signals = (firstmsgsigs | allmsgsigs); 1754 1755 /* 1756 * The proto and misc functions can return multiple messages 1757 * as a b_next chain. Such messages are processed separately. 1758 */ 1759 one_more: 1760 hipri_sig = 0; 1761 if (bp == NULL) { 1762 nextbp = NULL; 1763 } else { 1764 nextbp = bp->b_next; 1765 bp->b_next = NULL; 1766 1767 switch (bp->b_datap->db_type) { 1768 case M_PCPROTO: 1769 /* 1770 * Only one priority protocol message is allowed at the 1771 * stream head at a time. 1772 */ 1773 if (stp->sd_flag & STRPRI) { 1774 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1775 "M_PCPROTO already at head"); 1776 freemsg(bp); 1777 mutex_exit(&stp->sd_lock); 1778 goto done; 1779 } 1780 stp->sd_flag |= STRPRI; 1781 hipri_sig = 1; 1782 /* FALLTHRU */ 1783 case M_DATA: 1784 case M_PROTO: 1785 case M_PASSFP: 1786 band = bp->b_band; 1787 /* 1788 * Marking doesn't work well when messages 1789 * are marked in more than one band. We only 1790 * remember the last message received, even if 1791 * it is placed on the queue ahead of other 1792 * marked messages. 1793 */ 1794 if (bp->b_flag & MSGMARK) 1795 stp->sd_mark = bp; 1796 (void) putq(q, bp); 1797 1798 /* 1799 * If message is a PCPROTO message, always use 1800 * firstmsgsigs to determine if a signal should be 1801 * sent as strrput is the only place to send 1802 * signals for PCPROTO. Other messages are based on 1803 * the STRGETINPROG flag. The flag determines if 1804 * strrput or (k)strgetmsg will be responsible for 1805 * sending the signals, in the firstmsgsigs case. 1806 */ 1807 if ((hipri_sig == 1) || 1808 (((stp->sd_flag & STRGETINPROG) == 0) && 1809 (q->q_first == bp))) 1810 signals = (firstmsgsigs | allmsgsigs); 1811 else 1812 signals = allmsgsigs; 1813 break; 1814 1815 default: 1816 mutex_exit(&stp->sd_lock); 1817 (void) strrput_nondata(q, bp); 1818 mutex_enter(&stp->sd_lock); 1819 break; 1820 } 1821 } 1822 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1823 /* 1824 * Wake sleeping read/getmsg and cancel deferred wakeup 1825 */ 1826 if (wakeups & RSLEEP) 1827 stp->sd_wakeq &= ~RSLEEP; 1828 1829 wakeups &= stp->sd_flag; 1830 if (wakeups & RSLEEP) { 1831 stp->sd_flag &= ~RSLEEP; 1832 cv_broadcast(&q->q_wait); 1833 } 1834 if (wakeups & WSLEEP) { 1835 stp->sd_flag &= ~WSLEEP; 1836 cv_broadcast(&_WR(q)->q_wait); 1837 } 1838 1839 if (pollwakeups != 0) { 1840 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1841 /* 1842 * Can't use rput_opt since it was not 1843 * read when sd_lock was held and SR_POLLIN is changed 1844 * by strpoll() under sd_lock. 1845 */ 1846 if (!(stp->sd_rput_opt & SR_POLLIN)) 1847 goto no_pollwake; 1848 stp->sd_rput_opt &= ~SR_POLLIN; 1849 } 1850 mutex_exit(&stp->sd_lock); 1851 pollwakeup(&stp->sd_pollist, pollwakeups); 1852 mutex_enter(&stp->sd_lock); 1853 } 1854 no_pollwake: 1855 1856 /* 1857 * strsendsig can handle multiple signals with a 1858 * single call. 1859 */ 1860 if (stp->sd_sigflags & signals) 1861 strsendsig(stp->sd_siglist, signals, band, 0); 1862 mutex_exit(&stp->sd_lock); 1863 1864 1865 done: 1866 if (nextbp == NULL) 1867 return (0); 1868 1869 /* 1870 * Any signals were handled the first time. 1871 * Wakeups and pollwakeups are redone to avoid any race 1872 * conditions - all the messages are not queued until the 1873 * last message has been processed by strrput. 1874 */ 1875 bp = nextbp; 1876 signals = firstmsgsigs = allmsgsigs = 0; 1877 mutex_enter(&stp->sd_lock); 1878 goto one_more; 1879 } 1880 1881 static void 1882 log_dupioc(queue_t *rq, mblk_t *bp) 1883 { 1884 queue_t *wq, *qp; 1885 char *modnames, *mnp, *dname; 1886 size_t maxmodstr; 1887 boolean_t islast; 1888 1889 /* 1890 * Allocate a buffer large enough to hold the names of nstrpush modules 1891 * and one driver, with spaces between and NUL terminator. If we can't 1892 * get memory, then we'll just log the driver name. 1893 */ 1894 maxmodstr = nstrpush * (FMNAMESZ + 1); 1895 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1896 1897 /* march down write side to print log message down to the driver */ 1898 wq = WR(rq); 1899 1900 /* make sure q_next doesn't shift around while we're grabbing data */ 1901 claimstr(wq); 1902 qp = wq->q_next; 1903 do { 1904 dname = Q2NAME(qp); 1905 islast = !SAMESTR(qp) || qp->q_next == NULL; 1906 if (modnames == NULL) { 1907 /* 1908 * If we don't have memory, then get the driver name in 1909 * the log where we can see it. Note that memory 1910 * pressure is a possible cause of these sorts of bugs. 1911 */ 1912 if (islast) { 1913 modnames = dname; 1914 maxmodstr = 0; 1915 } 1916 } else { 1917 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1918 if (!islast) 1919 *mnp++ = ' '; 1920 } 1921 qp = qp->q_next; 1922 } while (!islast); 1923 releasestr(wq); 1924 /* Cannot happen unless stream head is corrupt. */ 1925 ASSERT(modnames != NULL); 1926 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1927 SL_CONSOLE|SL_TRACE|SL_ERROR, 1928 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1929 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1930 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1931 if (maxmodstr != 0) 1932 kmem_free(modnames, maxmodstr); 1933 } 1934 1935 int 1936 strrput_nondata(queue_t *q, mblk_t *bp) 1937 { 1938 struct stdata *stp; 1939 struct iocblk *iocbp; 1940 struct stroptions *sop; 1941 struct copyreq *reqp; 1942 struct copyresp *resp; 1943 unsigned char bpri; 1944 unsigned char flushed_already = 0; 1945 1946 stp = (struct stdata *)q->q_ptr; 1947 1948 ASSERT(!(stp->sd_flag & STPLEX)); 1949 ASSERT(qclaimed(q)); 1950 1951 switch (bp->b_datap->db_type) { 1952 case M_ERROR: 1953 /* 1954 * An error has occurred downstream, the errno is in the first 1955 * bytes of the message. 1956 */ 1957 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1958 unsigned char rw = 0; 1959 1960 mutex_enter(&stp->sd_lock); 1961 if (*bp->b_rptr != NOERROR) { /* read error */ 1962 if (*bp->b_rptr != 0) { 1963 if (stp->sd_flag & STRDERR) 1964 flushed_already |= FLUSHR; 1965 stp->sd_flag |= STRDERR; 1966 rw |= FLUSHR; 1967 } else { 1968 stp->sd_flag &= ~STRDERR; 1969 } 1970 stp->sd_rerror = *bp->b_rptr; 1971 } 1972 bp->b_rptr++; 1973 if (*bp->b_rptr != NOERROR) { /* write error */ 1974 if (*bp->b_rptr != 0) { 1975 if (stp->sd_flag & STWRERR) 1976 flushed_already |= FLUSHW; 1977 stp->sd_flag |= STWRERR; 1978 rw |= FLUSHW; 1979 } else { 1980 stp->sd_flag &= ~STWRERR; 1981 } 1982 stp->sd_werror = *bp->b_rptr; 1983 } 1984 if (rw) { 1985 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1986 "strrput cv_broadcast:q %p, bp %p", 1987 q, bp); 1988 cv_broadcast(&q->q_wait); /* readers */ 1989 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1990 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1991 1992 mutex_exit(&stp->sd_lock); 1993 pollwakeup(&stp->sd_pollist, POLLERR); 1994 mutex_enter(&stp->sd_lock); 1995 1996 if (stp->sd_sigflags & S_ERROR) 1997 strsendsig(stp->sd_siglist, S_ERROR, 0, 1998 ((rw & FLUSHR) ? stp->sd_rerror : 1999 stp->sd_werror)); 2000 mutex_exit(&stp->sd_lock); 2001 /* 2002 * Send the M_FLUSH only 2003 * for the first M_ERROR 2004 * message on the stream 2005 */ 2006 if (flushed_already == rw) { 2007 freemsg(bp); 2008 return (0); 2009 } 2010 2011 bp->b_datap->db_type = M_FLUSH; 2012 *bp->b_rptr = rw; 2013 bp->b_wptr = bp->b_rptr + 1; 2014 /* 2015 * Protect against the driver 2016 * passing up messages after 2017 * it has done a qprocsoff 2018 */ 2019 if (_OTHERQ(q)->q_next == NULL) 2020 freemsg(bp); 2021 else 2022 qreply(q, bp); 2023 return (0); 2024 } else 2025 mutex_exit(&stp->sd_lock); 2026 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2027 if (stp->sd_flag & (STRDERR|STWRERR)) 2028 flushed_already = FLUSHRW; 2029 mutex_enter(&stp->sd_lock); 2030 stp->sd_flag |= (STRDERR|STWRERR); 2031 stp->sd_rerror = *bp->b_rptr; 2032 stp->sd_werror = *bp->b_rptr; 2033 TRACE_2(TR_FAC_STREAMS_FR, 2034 TR_STRRPUT_WAKE2, 2035 "strrput wakeup #2:q %p, bp %p", q, bp); 2036 cv_broadcast(&q->q_wait); /* the readers */ 2037 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2038 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2039 2040 mutex_exit(&stp->sd_lock); 2041 pollwakeup(&stp->sd_pollist, POLLERR); 2042 mutex_enter(&stp->sd_lock); 2043 2044 if (stp->sd_sigflags & S_ERROR) 2045 strsendsig(stp->sd_siglist, S_ERROR, 0, 2046 (stp->sd_werror ? stp->sd_werror : 2047 stp->sd_rerror)); 2048 mutex_exit(&stp->sd_lock); 2049 2050 /* 2051 * Send the M_FLUSH only 2052 * for the first M_ERROR 2053 * message on the stream 2054 */ 2055 if (flushed_already != FLUSHRW) { 2056 bp->b_datap->db_type = M_FLUSH; 2057 *bp->b_rptr = FLUSHRW; 2058 /* 2059 * Protect against the driver passing up 2060 * messages after it has done a 2061 * qprocsoff. 2062 */ 2063 if (_OTHERQ(q)->q_next == NULL) 2064 freemsg(bp); 2065 else 2066 qreply(q, bp); 2067 return (0); 2068 } 2069 } 2070 freemsg(bp); 2071 return (0); 2072 2073 case M_HANGUP: 2074 2075 freemsg(bp); 2076 mutex_enter(&stp->sd_lock); 2077 stp->sd_werror = ENXIO; 2078 stp->sd_flag |= STRHUP; 2079 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2080 2081 /* 2082 * send signal if controlling tty 2083 */ 2084 2085 if (stp->sd_sidp) { 2086 prsignal(stp->sd_sidp, SIGHUP); 2087 if (stp->sd_sidp != stp->sd_pgidp) 2088 pgsignal(stp->sd_pgidp, SIGTSTP); 2089 } 2090 2091 /* 2092 * wake up read, write, and exception pollers and 2093 * reset wakeup mechanism. 2094 */ 2095 cv_broadcast(&q->q_wait); /* the readers */ 2096 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2097 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2098 strhup(stp); 2099 mutex_exit(&stp->sd_lock); 2100 return (0); 2101 2102 case M_UNHANGUP: 2103 freemsg(bp); 2104 mutex_enter(&stp->sd_lock); 2105 stp->sd_werror = 0; 2106 stp->sd_flag &= ~STRHUP; 2107 mutex_exit(&stp->sd_lock); 2108 return (0); 2109 2110 case M_SIG: 2111 /* 2112 * Someone downstream wants to post a signal. The 2113 * signal to post is contained in the first byte of the 2114 * message. If the message would go on the front of 2115 * the queue, send a signal to the process group 2116 * (if not SIGPOLL) or to the siglist processes 2117 * (SIGPOLL). If something is already on the queue, 2118 * OR if we are delivering a delayed suspend (*sigh* 2119 * another "tty" hack) and there's no one sleeping already, 2120 * just enqueue the message. 2121 */ 2122 mutex_enter(&stp->sd_lock); 2123 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2124 !(stp->sd_flag & RSLEEP))) { 2125 (void) putq(q, bp); 2126 mutex_exit(&stp->sd_lock); 2127 return (0); 2128 } 2129 mutex_exit(&stp->sd_lock); 2130 /* FALLTHRU */ 2131 2132 case M_PCSIG: 2133 /* 2134 * Don't enqueue, just post the signal. 2135 */ 2136 strsignal(stp, *bp->b_rptr, 0L); 2137 freemsg(bp); 2138 return (0); 2139 2140 case M_CMD: 2141 if (MBLKL(bp) != sizeof (cmdblk_t)) { 2142 freemsg(bp); 2143 return (0); 2144 } 2145 2146 mutex_enter(&stp->sd_lock); 2147 if (stp->sd_flag & STRCMDWAIT) { 2148 ASSERT(stp->sd_cmdblk == NULL); 2149 stp->sd_cmdblk = bp; 2150 cv_broadcast(&stp->sd_monitor); 2151 mutex_exit(&stp->sd_lock); 2152 } else { 2153 mutex_exit(&stp->sd_lock); 2154 freemsg(bp); 2155 } 2156 return (0); 2157 2158 case M_FLUSH: 2159 /* 2160 * Flush queues. The indication of which queues to flush 2161 * is in the first byte of the message. If the read queue 2162 * is specified, then flush it. If FLUSHBAND is set, just 2163 * flush the band specified by the second byte of the message. 2164 * 2165 * If a module has issued a M_SETOPT to not flush hi 2166 * priority messages off of the stream head, then pass this 2167 * flag into the flushq code to preserve such messages. 2168 */ 2169 2170 if (*bp->b_rptr & FLUSHR) { 2171 mutex_enter(&stp->sd_lock); 2172 if (*bp->b_rptr & FLUSHBAND) { 2173 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2174 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2175 } else 2176 flushq_common(q, FLUSHALL, 2177 stp->sd_read_opt & RFLUSHPCPROT); 2178 if ((q->q_first == NULL) || 2179 (q->q_first->b_datap->db_type < QPCTL)) 2180 stp->sd_flag &= ~STRPRI; 2181 else { 2182 ASSERT(stp->sd_flag & STRPRI); 2183 } 2184 mutex_exit(&stp->sd_lock); 2185 } 2186 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2187 *bp->b_rptr &= ~FLUSHR; 2188 bp->b_flag |= MSGNOLOOP; 2189 /* 2190 * Protect against the driver passing up 2191 * messages after it has done a qprocsoff. 2192 */ 2193 if (_OTHERQ(q)->q_next == NULL) 2194 freemsg(bp); 2195 else 2196 qreply(q, bp); 2197 return (0); 2198 } 2199 freemsg(bp); 2200 return (0); 2201 2202 case M_IOCACK: 2203 case M_IOCNAK: 2204 iocbp = (struct iocblk *)bp->b_rptr; 2205 /* 2206 * If not waiting for ACK or NAK then just free msg. 2207 * If incorrect id sequence number then just free msg. 2208 * If already have ACK or NAK for user then this is a 2209 * duplicate, display a warning and free the msg. 2210 */ 2211 mutex_enter(&stp->sd_lock); 2212 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2213 (stp->sd_iocid != iocbp->ioc_id)) { 2214 /* 2215 * If the ACK/NAK is a dup, display a message 2216 * Dup is when sd_iocid == ioc_id, and 2217 * sd_iocblk == <valid ptr> or -1 (the former 2218 * is when an ioctl has been put on the stream 2219 * head, but has not yet been consumed, the 2220 * later is when it has been consumed). 2221 */ 2222 if ((stp->sd_iocid == iocbp->ioc_id) && 2223 (stp->sd_iocblk != NULL)) { 2224 log_dupioc(q, bp); 2225 } 2226 freemsg(bp); 2227 mutex_exit(&stp->sd_lock); 2228 return (0); 2229 } 2230 2231 /* 2232 * Assign ACK or NAK to user and wake up. 2233 */ 2234 stp->sd_iocblk = bp; 2235 cv_broadcast(&stp->sd_monitor); 2236 mutex_exit(&stp->sd_lock); 2237 return (0); 2238 2239 case M_COPYIN: 2240 case M_COPYOUT: 2241 reqp = (struct copyreq *)bp->b_rptr; 2242 2243 /* 2244 * If not waiting for ACK or NAK then just fail request. 2245 * If already have ACK, NAK, or copy request, then just 2246 * fail request. 2247 * If incorrect id sequence number then just fail request. 2248 */ 2249 mutex_enter(&stp->sd_lock); 2250 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2251 (stp->sd_iocid != reqp->cq_id)) { 2252 if (bp->b_cont) { 2253 freemsg(bp->b_cont); 2254 bp->b_cont = NULL; 2255 } 2256 bp->b_datap->db_type = M_IOCDATA; 2257 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2258 resp = (struct copyresp *)bp->b_rptr; 2259 resp->cp_rval = (caddr_t)1; /* failure */ 2260 mutex_exit(&stp->sd_lock); 2261 putnext(stp->sd_wrq, bp); 2262 return (0); 2263 } 2264 2265 /* 2266 * Assign copy request to user and wake up. 2267 */ 2268 stp->sd_iocblk = bp; 2269 cv_broadcast(&stp->sd_monitor); 2270 mutex_exit(&stp->sd_lock); 2271 return (0); 2272 2273 case M_SETOPTS: 2274 /* 2275 * Set stream head options (read option, write offset, 2276 * min/max packet size, and/or high/low water marks for 2277 * the read side only). 2278 */ 2279 2280 bpri = 0; 2281 sop = (struct stroptions *)bp->b_rptr; 2282 mutex_enter(&stp->sd_lock); 2283 if (sop->so_flags & SO_READOPT) { 2284 switch (sop->so_readopt & RMODEMASK) { 2285 case RNORM: 2286 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2287 break; 2288 2289 case RMSGD: 2290 stp->sd_read_opt = 2291 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2292 RD_MSGDIS); 2293 break; 2294 2295 case RMSGN: 2296 stp->sd_read_opt = 2297 ((stp->sd_read_opt & ~RD_MSGDIS) | 2298 RD_MSGNODIS); 2299 break; 2300 } 2301 switch (sop->so_readopt & RPROTMASK) { 2302 case RPROTNORM: 2303 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2304 break; 2305 2306 case RPROTDAT: 2307 stp->sd_read_opt = 2308 ((stp->sd_read_opt & ~RD_PROTDIS) | 2309 RD_PROTDAT); 2310 break; 2311 2312 case RPROTDIS: 2313 stp->sd_read_opt = 2314 ((stp->sd_read_opt & ~RD_PROTDAT) | 2315 RD_PROTDIS); 2316 break; 2317 } 2318 switch (sop->so_readopt & RFLUSHMASK) { 2319 case RFLUSHPCPROT: 2320 /* 2321 * This sets the stream head to NOT flush 2322 * M_PCPROTO messages. 2323 */ 2324 stp->sd_read_opt |= RFLUSHPCPROT; 2325 break; 2326 } 2327 } 2328 if (sop->so_flags & SO_ERROPT) { 2329 switch (sop->so_erropt & RERRMASK) { 2330 case RERRNORM: 2331 stp->sd_flag &= ~STRDERRNONPERSIST; 2332 break; 2333 case RERRNONPERSIST: 2334 stp->sd_flag |= STRDERRNONPERSIST; 2335 break; 2336 } 2337 switch (sop->so_erropt & WERRMASK) { 2338 case WERRNORM: 2339 stp->sd_flag &= ~STWRERRNONPERSIST; 2340 break; 2341 case WERRNONPERSIST: 2342 stp->sd_flag |= STWRERRNONPERSIST; 2343 break; 2344 } 2345 } 2346 if (sop->so_flags & SO_COPYOPT) { 2347 if (sop->so_copyopt & ZCVMSAFE) { 2348 stp->sd_copyflag |= STZCVMSAFE; 2349 stp->sd_copyflag &= ~STZCVMUNSAFE; 2350 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2351 stp->sd_copyflag |= STZCVMUNSAFE; 2352 stp->sd_copyflag &= ~STZCVMSAFE; 2353 } 2354 2355 if (sop->so_copyopt & COPYCACHED) { 2356 stp->sd_copyflag |= STRCOPYCACHED; 2357 } 2358 } 2359 if (sop->so_flags & SO_WROFF) 2360 stp->sd_wroff = sop->so_wroff; 2361 if (sop->so_flags & SO_TAIL) 2362 stp->sd_tail = sop->so_tail; 2363 if (sop->so_flags & SO_MINPSZ) 2364 q->q_minpsz = sop->so_minpsz; 2365 if (sop->so_flags & SO_MAXPSZ) 2366 q->q_maxpsz = sop->so_maxpsz; 2367 if (sop->so_flags & SO_MAXBLK) 2368 stp->sd_maxblk = sop->so_maxblk; 2369 if (sop->so_flags & SO_HIWAT) { 2370 if (sop->so_flags & SO_BAND) { 2371 if (strqset(q, QHIWAT, 2372 sop->so_band, sop->so_hiwat)) { 2373 cmn_err(CE_WARN, "strrput: could not " 2374 "allocate qband\n"); 2375 } else { 2376 bpri = sop->so_band; 2377 } 2378 } else { 2379 q->q_hiwat = sop->so_hiwat; 2380 } 2381 } 2382 if (sop->so_flags & SO_LOWAT) { 2383 if (sop->so_flags & SO_BAND) { 2384 if (strqset(q, QLOWAT, 2385 sop->so_band, sop->so_lowat)) { 2386 cmn_err(CE_WARN, "strrput: could not " 2387 "allocate qband\n"); 2388 } else { 2389 bpri = sop->so_band; 2390 } 2391 } else { 2392 q->q_lowat = sop->so_lowat; 2393 } 2394 } 2395 if (sop->so_flags & SO_MREADON) 2396 stp->sd_flag |= SNDMREAD; 2397 if (sop->so_flags & SO_MREADOFF) 2398 stp->sd_flag &= ~SNDMREAD; 2399 if (sop->so_flags & SO_NDELON) 2400 stp->sd_flag |= OLDNDELAY; 2401 if (sop->so_flags & SO_NDELOFF) 2402 stp->sd_flag &= ~OLDNDELAY; 2403 if (sop->so_flags & SO_ISTTY) 2404 stp->sd_flag |= STRISTTY; 2405 if (sop->so_flags & SO_ISNTTY) 2406 stp->sd_flag &= ~STRISTTY; 2407 if (sop->so_flags & SO_TOSTOP) 2408 stp->sd_flag |= STRTOSTOP; 2409 if (sop->so_flags & SO_TONSTOP) 2410 stp->sd_flag &= ~STRTOSTOP; 2411 if (sop->so_flags & SO_DELIM) 2412 stp->sd_flag |= STRDELIM; 2413 if (sop->so_flags & SO_NODELIM) 2414 stp->sd_flag &= ~STRDELIM; 2415 2416 mutex_exit(&stp->sd_lock); 2417 freemsg(bp); 2418 2419 /* Check backenable in case the water marks changed */ 2420 qbackenable(q, bpri); 2421 return (0); 2422 2423 /* 2424 * The following set of cases deal with situations where two stream 2425 * heads are connected to each other (twisted streams). These messages 2426 * have no meaning at the stream head. 2427 */ 2428 case M_BREAK: 2429 case M_CTL: 2430 case M_DELAY: 2431 case M_START: 2432 case M_STOP: 2433 case M_IOCDATA: 2434 case M_STARTI: 2435 case M_STOPI: 2436 freemsg(bp); 2437 return (0); 2438 2439 case M_IOCTL: 2440 /* 2441 * Always NAK this condition 2442 * (makes no sense) 2443 * If there is one or more threads in the read side 2444 * rwnext we have to defer the nacking until that thread 2445 * returns (in strget). 2446 */ 2447 mutex_enter(&stp->sd_lock); 2448 if (stp->sd_struiodnak != 0) { 2449 /* 2450 * Defer NAK to the streamhead. Queue at the end 2451 * the list. 2452 */ 2453 mblk_t *mp = stp->sd_struionak; 2454 2455 while (mp && mp->b_next) 2456 mp = mp->b_next; 2457 if (mp) 2458 mp->b_next = bp; 2459 else 2460 stp->sd_struionak = bp; 2461 bp->b_next = NULL; 2462 mutex_exit(&stp->sd_lock); 2463 return (0); 2464 } 2465 mutex_exit(&stp->sd_lock); 2466 2467 bp->b_datap->db_type = M_IOCNAK; 2468 /* 2469 * Protect against the driver passing up 2470 * messages after it has done a qprocsoff. 2471 */ 2472 if (_OTHERQ(q)->q_next == NULL) 2473 freemsg(bp); 2474 else 2475 qreply(q, bp); 2476 return (0); 2477 2478 default: 2479 #ifdef DEBUG 2480 cmn_err(CE_WARN, 2481 "bad message type %x received at stream head\n", 2482 bp->b_datap->db_type); 2483 #endif 2484 freemsg(bp); 2485 return (0); 2486 } 2487 2488 /* NOTREACHED */ 2489 } 2490 2491 /* 2492 * Check if the stream pointed to by `stp' can be written to, and return an 2493 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2494 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2495 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2496 */ 2497 static int 2498 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2499 { 2500 int error; 2501 2502 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2503 2504 /* 2505 * For modem support, POSIX states that on writes, EIO should 2506 * be returned if the stream has been hung up. 2507 */ 2508 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2509 error = EIO; 2510 else 2511 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2512 2513 if (error != 0) { 2514 if (!(stp->sd_flag & STPLEX) && 2515 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2516 tsignal(curthread, SIGPIPE); 2517 error = EPIPE; 2518 } 2519 } 2520 2521 return (error); 2522 } 2523 2524 /* 2525 * Copyin and send data down a stream. 2526 * The caller will allocate and copyin any control part that precedes the 2527 * message and pass that in as mctl. 2528 * 2529 * Caller should *not* hold sd_lock. 2530 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2531 * under sd_lock in order to avoid missing a backenabling wakeup. 2532 * 2533 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2534 * 2535 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2536 * For sync streams we can only ignore flow control by reverting to using 2537 * putnext. 2538 * 2539 * If sd_maxblk is less than *iosize this routine might return without 2540 * transferring all of *iosize. In all cases, on return *iosize will contain 2541 * the amount of data that was transferred. 2542 */ 2543 static int 2544 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2545 int b_flag, int pri, int flags) 2546 { 2547 struiod_t uiod; 2548 mblk_t *mp; 2549 queue_t *wqp = stp->sd_wrq; 2550 int error = 0; 2551 ssize_t count = *iosize; 2552 2553 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2554 2555 if (uiop != NULL && count >= 0) 2556 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2557 2558 if (!(flags & STRUIO_POSTPONE)) { 2559 /* 2560 * Use regular canputnext, strmakedata, putnext sequence. 2561 */ 2562 if (pri == 0) { 2563 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2564 freemsg(mctl); 2565 return (EWOULDBLOCK); 2566 } 2567 } else { 2568 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2569 freemsg(mctl); 2570 return (EWOULDBLOCK); 2571 } 2572 } 2573 2574 if ((error = strmakedata(iosize, uiop, stp, flags, 2575 &mp)) != 0) { 2576 freemsg(mctl); 2577 /* 2578 * need to change return code to ENOMEM 2579 * so that this is not confused with 2580 * flow control, EAGAIN. 2581 */ 2582 2583 if (error == EAGAIN) 2584 return (ENOMEM); 2585 else 2586 return (error); 2587 } 2588 if (mctl != NULL) { 2589 if (mctl->b_cont == NULL) 2590 mctl->b_cont = mp; 2591 else if (mp != NULL) 2592 linkb(mctl, mp); 2593 mp = mctl; 2594 } else if (mp == NULL) 2595 return (0); 2596 2597 mp->b_flag |= b_flag; 2598 mp->b_band = (uchar_t)pri; 2599 2600 if (flags & MSG_IGNFLOW) { 2601 /* 2602 * XXX Hack: Don't get stuck running service 2603 * procedures. This is needed for sockfs when 2604 * sending the unbind message out of the rput 2605 * procedure - we don't want a put procedure 2606 * to run service procedures. 2607 */ 2608 putnext(wqp, mp); 2609 } else { 2610 stream_willservice(stp); 2611 putnext(wqp, mp); 2612 stream_runservice(stp); 2613 } 2614 return (0); 2615 } 2616 /* 2617 * Stream supports rwnext() for the write side. 2618 */ 2619 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2620 freemsg(mctl); 2621 /* 2622 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2623 */ 2624 return (error == EAGAIN ? ENOMEM : error); 2625 } 2626 if (mctl != NULL) { 2627 if (mctl->b_cont == NULL) 2628 mctl->b_cont = mp; 2629 else if (mp != NULL) 2630 linkb(mctl, mp); 2631 mp = mctl; 2632 } else if (mp == NULL) { 2633 return (0); 2634 } 2635 2636 mp->b_flag |= b_flag; 2637 mp->b_band = (uchar_t)pri; 2638 2639 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2640 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2641 uiod.d_uio.uio_offset = 0; 2642 uiod.d_mp = mp; 2643 error = rwnext(wqp, &uiod); 2644 if (! uiod.d_mp) { 2645 uioskip(uiop, *iosize); 2646 return (error); 2647 } 2648 ASSERT(mp == uiod.d_mp); 2649 if (error == EINVAL) { 2650 /* 2651 * The stream plumbing must have changed while 2652 * we were away, so just turn off rwnext()s. 2653 */ 2654 error = 0; 2655 } else if (error == EBUSY || error == EWOULDBLOCK) { 2656 /* 2657 * Couldn't enter a perimeter or took a page fault, 2658 * so fall-back to putnext(). 2659 */ 2660 error = 0; 2661 } else { 2662 freemsg(mp); 2663 return (error); 2664 } 2665 /* Have to check canput before consuming data from the uio */ 2666 if (pri == 0) { 2667 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2668 freemsg(mp); 2669 return (EWOULDBLOCK); 2670 } 2671 } else { 2672 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2673 freemsg(mp); 2674 return (EWOULDBLOCK); 2675 } 2676 } 2677 ASSERT(mp == uiod.d_mp); 2678 /* Copyin data from the uio */ 2679 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2680 freemsg(mp); 2681 return (error); 2682 } 2683 uioskip(uiop, *iosize); 2684 if (flags & MSG_IGNFLOW) { 2685 /* 2686 * XXX Hack: Don't get stuck running service procedures. 2687 * This is needed for sockfs when sending the unbind message 2688 * out of the rput procedure - we don't want a put procedure 2689 * to run service procedures. 2690 */ 2691 putnext(wqp, mp); 2692 } else { 2693 stream_willservice(stp); 2694 putnext(wqp, mp); 2695 stream_runservice(stp); 2696 } 2697 return (0); 2698 } 2699 2700 /* 2701 * Write attempts to break the write request into messages conforming 2702 * with the minimum and maximum packet sizes set downstream. 2703 * 2704 * Write will not block if downstream queue is full and 2705 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2706 * 2707 * A write of zero bytes gets packaged into a zero length message and sent 2708 * downstream like any other message. 2709 * 2710 * If buffers of the requested sizes are not available, the write will 2711 * sleep until the buffers become available. 2712 * 2713 * Write (if specified) will supply a write offset in a message if it 2714 * makes sense. This can be specified by downstream modules as part of 2715 * a M_SETOPTS message. Write will not supply the write offset if it 2716 * cannot supply any data in a buffer. In other words, write will never 2717 * send down an empty packet due to a write offset. 2718 */ 2719 /* ARGSUSED2 */ 2720 int 2721 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2722 { 2723 return (strwrite_common(vp, uiop, crp, 0)); 2724 } 2725 2726 /* ARGSUSED2 */ 2727 int 2728 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2729 { 2730 struct stdata *stp; 2731 struct queue *wqp; 2732 ssize_t rmin, rmax; 2733 ssize_t iosize; 2734 int waitflag; 2735 int tempmode; 2736 int error = 0; 2737 int b_flag; 2738 2739 ASSERT(vp->v_stream); 2740 stp = vp->v_stream; 2741 2742 mutex_enter(&stp->sd_lock); 2743 2744 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2745 mutex_exit(&stp->sd_lock); 2746 return (error); 2747 } 2748 2749 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2750 error = strwriteable(stp, B_TRUE, B_TRUE); 2751 if (error != 0) { 2752 mutex_exit(&stp->sd_lock); 2753 return (error); 2754 } 2755 } 2756 2757 mutex_exit(&stp->sd_lock); 2758 2759 wqp = stp->sd_wrq; 2760 2761 /* get these values from them cached in the stream head */ 2762 rmin = stp->sd_qn_minpsz; 2763 rmax = stp->sd_qn_maxpsz; 2764 2765 /* 2766 * Check the min/max packet size constraints. If min packet size 2767 * is non-zero, the write cannot be split into multiple messages 2768 * and still guarantee the size constraints. 2769 */ 2770 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2771 2772 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2773 if (rmax == 0) { 2774 return (0); 2775 } 2776 if (rmin > 0) { 2777 if (uiop->uio_resid < rmin) { 2778 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2779 "strwrite out:q %p out %d error %d", 2780 wqp, 0, ERANGE); 2781 return (ERANGE); 2782 } 2783 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2784 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2785 "strwrite out:q %p out %d error %d", 2786 wqp, 1, ERANGE); 2787 return (ERANGE); 2788 } 2789 } 2790 2791 /* 2792 * Do until count satisfied or error. 2793 */ 2794 waitflag = WRITEWAIT | wflag; 2795 if (stp->sd_flag & OLDNDELAY) 2796 tempmode = uiop->uio_fmode & ~FNDELAY; 2797 else 2798 tempmode = uiop->uio_fmode; 2799 2800 if (rmax == INFPSZ) 2801 rmax = uiop->uio_resid; 2802 2803 /* 2804 * Note that tempmode does not get used in strput/strmakedata 2805 * but only in strwaitq. The other routines use uio_fmode 2806 * unmodified. 2807 */ 2808 2809 /* LINTED: constant in conditional context */ 2810 while (1) { /* breaks when uio_resid reaches zero */ 2811 /* 2812 * Determine the size of the next message to be 2813 * packaged. May have to break write into several 2814 * messages based on max packet size. 2815 */ 2816 iosize = MIN(uiop->uio_resid, rmax); 2817 2818 /* 2819 * Put block downstream when flow control allows it. 2820 */ 2821 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2822 b_flag = MSGDELIM; 2823 else 2824 b_flag = 0; 2825 2826 for (;;) { 2827 int done = 0; 2828 2829 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2830 if (error == 0) 2831 break; 2832 if (error != EWOULDBLOCK) 2833 goto out; 2834 2835 mutex_enter(&stp->sd_lock); 2836 /* 2837 * Check for a missed wakeup. 2838 * Needed since strput did not hold sd_lock across 2839 * the canputnext. 2840 */ 2841 if (canputnext(wqp)) { 2842 /* Try again */ 2843 mutex_exit(&stp->sd_lock); 2844 continue; 2845 } 2846 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2847 "strwrite wait:q %p wait", wqp); 2848 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2849 tempmode, -1, &done)) != 0 || done) { 2850 mutex_exit(&stp->sd_lock); 2851 if ((vp->v_type == VFIFO) && 2852 (uiop->uio_fmode & FNDELAY) && 2853 (error == EAGAIN)) 2854 error = 0; 2855 goto out; 2856 } 2857 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2858 "strwrite wake:q %p awakes", wqp); 2859 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2860 mutex_exit(&stp->sd_lock); 2861 goto out; 2862 } 2863 mutex_exit(&stp->sd_lock); 2864 } 2865 waitflag |= NOINTR; 2866 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2867 "strwrite resid:q %p uiop %p", wqp, uiop); 2868 if (uiop->uio_resid) { 2869 /* Recheck for errors - needed for sockets */ 2870 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2871 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2872 mutex_enter(&stp->sd_lock); 2873 error = strwriteable(stp, B_FALSE, B_TRUE); 2874 mutex_exit(&stp->sd_lock); 2875 if (error != 0) 2876 return (error); 2877 } 2878 continue; 2879 } 2880 break; 2881 } 2882 out: 2883 /* 2884 * For historical reasons, applications expect EAGAIN when a data 2885 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2886 */ 2887 if (error == ENOMEM) 2888 error = EAGAIN; 2889 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2890 "strwrite out:q %p out %d error %d", wqp, 2, error); 2891 return (error); 2892 } 2893 2894 /* 2895 * Stream head write service routine. 2896 * Its job is to wake up any sleeping writers when a queue 2897 * downstream needs data (part of the flow control in putq and getq). 2898 * It also must wake anyone sleeping on a poll(). 2899 * For stream head right below mux module, it must also invoke put procedure 2900 * of next downstream module. 2901 */ 2902 int 2903 strwsrv(queue_t *q) 2904 { 2905 struct stdata *stp; 2906 queue_t *tq; 2907 qband_t *qbp; 2908 int i; 2909 qband_t *myqbp; 2910 int isevent; 2911 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2912 2913 TRACE_1(TR_FAC_STREAMS_FR, 2914 TR_STRWSRV, "strwsrv:q %p", q); 2915 stp = (struct stdata *)q->q_ptr; 2916 ASSERT(qclaimed(q)); 2917 mutex_enter(&stp->sd_lock); 2918 ASSERT(!(stp->sd_flag & STPLEX)); 2919 2920 if (stp->sd_flag & WSLEEP) { 2921 stp->sd_flag &= ~WSLEEP; 2922 cv_broadcast(&q->q_wait); 2923 } 2924 mutex_exit(&stp->sd_lock); 2925 2926 /* The other end of a stream pipe went away. */ 2927 if ((tq = q->q_next) == NULL) { 2928 return (0); 2929 } 2930 2931 /* Find the next module forward that has a service procedure */ 2932 claimstr(q); 2933 tq = q->q_nfsrv; 2934 ASSERT(tq != NULL); 2935 2936 if ((q->q_flag & QBACK)) { 2937 if ((tq->q_flag & QFULL)) { 2938 mutex_enter(QLOCK(tq)); 2939 if (!(tq->q_flag & QFULL)) { 2940 mutex_exit(QLOCK(tq)); 2941 goto wakeup; 2942 } 2943 /* 2944 * The queue must have become full again. Set QWANTW 2945 * again so strwsrv will be back enabled when 2946 * the queue becomes non-full next time. 2947 */ 2948 tq->q_flag |= QWANTW; 2949 mutex_exit(QLOCK(tq)); 2950 } else { 2951 wakeup: 2952 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2953 mutex_enter(&stp->sd_lock); 2954 if (stp->sd_sigflags & S_WRNORM) 2955 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2956 mutex_exit(&stp->sd_lock); 2957 } 2958 } 2959 2960 isevent = 0; 2961 i = 1; 2962 bzero((caddr_t)qbf, NBAND); 2963 mutex_enter(QLOCK(tq)); 2964 if ((myqbp = q->q_bandp) != NULL) 2965 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2966 ASSERT(myqbp); 2967 if ((myqbp->qb_flag & QB_BACK)) { 2968 if (qbp->qb_flag & QB_FULL) { 2969 /* 2970 * The band must have become full again. 2971 * Set QB_WANTW again so strwsrv will 2972 * be back enabled when the band becomes 2973 * non-full next time. 2974 */ 2975 qbp->qb_flag |= QB_WANTW; 2976 } else { 2977 isevent = 1; 2978 qbf[i] = 1; 2979 } 2980 } 2981 myqbp = myqbp->qb_next; 2982 i++; 2983 } 2984 mutex_exit(QLOCK(tq)); 2985 2986 if (isevent) { 2987 for (i = tq->q_nband; i; i--) { 2988 if (qbf[i]) { 2989 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2990 mutex_enter(&stp->sd_lock); 2991 if (stp->sd_sigflags & S_WRBAND) 2992 strsendsig(stp->sd_siglist, S_WRBAND, 2993 (uchar_t)i, 0); 2994 mutex_exit(&stp->sd_lock); 2995 } 2996 } 2997 } 2998 2999 releasestr(q); 3000 return (0); 3001 } 3002 3003 /* 3004 * Special case of strcopyin/strcopyout for copying 3005 * struct strioctl that can deal with both data 3006 * models. 3007 */ 3008 3009 #ifdef _LP64 3010 3011 static int 3012 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3013 { 3014 struct strioctl32 strioc32; 3015 struct strioctl *striocp; 3016 3017 if (copyflag & U_TO_K) { 3018 ASSERT((copyflag & K_TO_K) == 0); 3019 3020 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3021 if (copyin(from, &strioc32, sizeof (strioc32))) 3022 return (EFAULT); 3023 3024 striocp = (struct strioctl *)to; 3025 striocp->ic_cmd = strioc32.ic_cmd; 3026 striocp->ic_timout = strioc32.ic_timout; 3027 striocp->ic_len = strioc32.ic_len; 3028 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3029 3030 } else { /* NATIVE data model */ 3031 if (copyin(from, to, sizeof (struct strioctl))) { 3032 return (EFAULT); 3033 } else { 3034 return (0); 3035 } 3036 } 3037 } else { 3038 ASSERT(copyflag & K_TO_K); 3039 bcopy(from, to, sizeof (struct strioctl)); 3040 } 3041 return (0); 3042 } 3043 3044 static int 3045 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3046 { 3047 struct strioctl32 strioc32; 3048 struct strioctl *striocp; 3049 3050 if (copyflag & U_TO_K) { 3051 ASSERT((copyflag & K_TO_K) == 0); 3052 3053 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3054 striocp = (struct strioctl *)from; 3055 strioc32.ic_cmd = striocp->ic_cmd; 3056 strioc32.ic_timout = striocp->ic_timout; 3057 strioc32.ic_len = striocp->ic_len; 3058 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3059 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3060 striocp->ic_dp); 3061 3062 if (copyout(&strioc32, to, sizeof (strioc32))) 3063 return (EFAULT); 3064 3065 } else { /* NATIVE data model */ 3066 if (copyout(from, to, sizeof (struct strioctl))) { 3067 return (EFAULT); 3068 } else { 3069 return (0); 3070 } 3071 } 3072 } else { 3073 ASSERT(copyflag & K_TO_K); 3074 bcopy(from, to, sizeof (struct strioctl)); 3075 } 3076 return (0); 3077 } 3078 3079 #else /* ! _LP64 */ 3080 3081 /* ARGSUSED2 */ 3082 static int 3083 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3084 { 3085 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3086 } 3087 3088 /* ARGSUSED2 */ 3089 static int 3090 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3091 { 3092 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3093 } 3094 3095 #endif /* _LP64 */ 3096 3097 /* 3098 * Determine type of job control semantics expected by user. The 3099 * possibilities are: 3100 * JCREAD - Behaves like read() on fd; send SIGTTIN 3101 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3102 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3103 * JCGETP - Gets a value in the stream; no signals. 3104 * See straccess in strsubr.c for usage of these values. 3105 * 3106 * This routine also returns -1 for I_STR as a special case; the 3107 * caller must call again with the real ioctl number for 3108 * classification. 3109 */ 3110 static int 3111 job_control_type(int cmd) 3112 { 3113 switch (cmd) { 3114 case I_STR: 3115 return (-1); 3116 3117 case I_RECVFD: 3118 case I_E_RECVFD: 3119 return (JCREAD); 3120 3121 case I_FDINSERT: 3122 case I_SENDFD: 3123 return (JCWRITE); 3124 3125 case TCSETA: 3126 case TCSETAW: 3127 case TCSETAF: 3128 case TCSBRK: 3129 case TCXONC: 3130 case TCFLSH: 3131 case TCDSET: /* Obsolete */ 3132 case TIOCSWINSZ: 3133 case TCSETS: 3134 case TCSETSW: 3135 case TCSETSF: 3136 case TIOCSETD: 3137 case TIOCHPCL: 3138 case TIOCSETP: 3139 case TIOCSETN: 3140 case TIOCEXCL: 3141 case TIOCNXCL: 3142 case TIOCFLUSH: 3143 case TIOCSETC: 3144 case TIOCLBIS: 3145 case TIOCLBIC: 3146 case TIOCLSET: 3147 case TIOCSBRK: 3148 case TIOCCBRK: 3149 case TIOCSDTR: 3150 case TIOCCDTR: 3151 case TIOCSLTC: 3152 case TIOCSTOP: 3153 case TIOCSTART: 3154 case TIOCSTI: 3155 case TIOCSPGRP: 3156 case TIOCMSET: 3157 case TIOCMBIS: 3158 case TIOCMBIC: 3159 case TIOCREMOTE: 3160 case TIOCSIGNAL: 3161 case LDSETT: 3162 case LDSMAP: /* Obsolete */ 3163 case DIOCSETP: 3164 case I_FLUSH: 3165 case I_SRDOPT: 3166 case I_SETSIG: 3167 case I_SWROPT: 3168 case I_FLUSHBAND: 3169 case I_SETCLTIME: 3170 case I_SERROPT: 3171 case I_ESETSIG: 3172 case FIONBIO: 3173 case FIOASYNC: 3174 case FIOSETOWN: 3175 case JBOOT: /* Obsolete */ 3176 case JTERM: /* Obsolete */ 3177 case JTIMOM: /* Obsolete */ 3178 case JZOMBOOT: /* Obsolete */ 3179 case JAGENT: /* Obsolete */ 3180 case JTRUN: /* Obsolete */ 3181 case JXTPROTO: /* Obsolete */ 3182 return (JCSETP); 3183 } 3184 3185 return (JCGETP); 3186 } 3187 3188 /* 3189 * ioctl for streams 3190 */ 3191 int 3192 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3193 cred_t *crp, int *rvalp) 3194 { 3195 struct stdata *stp; 3196 struct strcmd *scp; 3197 struct strioctl strioc; 3198 struct uio uio; 3199 struct iovec iov; 3200 int access; 3201 mblk_t *mp; 3202 int error = 0; 3203 int done = 0; 3204 ssize_t rmin, rmax; 3205 queue_t *wrq; 3206 queue_t *rdq; 3207 boolean_t kioctl = B_FALSE; 3208 uint32_t auditing = AU_AUDITING(); 3209 3210 if (flag & FKIOCTL) { 3211 copyflag = K_TO_K; 3212 kioctl = B_TRUE; 3213 } 3214 ASSERT(vp->v_stream); 3215 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3216 stp = vp->v_stream; 3217 3218 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3219 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3220 3221 /* 3222 * If the copy is kernel to kernel, make sure that the FNATIVE 3223 * flag is set. After this it would be a serious error to have 3224 * no model flag. 3225 */ 3226 if (copyflag == K_TO_K) 3227 flag = (flag & ~FMODELS) | FNATIVE; 3228 3229 ASSERT((flag & FMODELS) != 0); 3230 3231 wrq = stp->sd_wrq; 3232 rdq = _RD(wrq); 3233 3234 access = job_control_type(cmd); 3235 3236 /* We should never see these here, should be handled by iwscn */ 3237 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3238 return (EINVAL); 3239 3240 mutex_enter(&stp->sd_lock); 3241 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3242 mutex_exit(&stp->sd_lock); 3243 return (error); 3244 } 3245 mutex_exit(&stp->sd_lock); 3246 3247 /* 3248 * Check for sgttyb-related ioctls first, and complain as 3249 * necessary. 3250 */ 3251 switch (cmd) { 3252 case TIOCGETP: 3253 case TIOCSETP: 3254 case TIOCSETN: 3255 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3256 sgttyb_complaint = B_TRUE; 3257 cmn_err(CE_NOTE, 3258 "application used obsolete TIOC[GS]ET"); 3259 } 3260 if (sgttyb_handling >= 3) { 3261 tsignal(curthread, SIGSYS); 3262 return (EIO); 3263 } 3264 break; 3265 } 3266 3267 mutex_enter(&stp->sd_lock); 3268 3269 switch (cmd) { 3270 case I_RECVFD: 3271 case I_E_RECVFD: 3272 case I_PEEK: 3273 case I_NREAD: 3274 case FIONREAD: 3275 case FIORDCHK: 3276 case I_ATMARK: 3277 case FIONBIO: 3278 case FIOASYNC: 3279 if (stp->sd_flag & (STRDERR|STPLEX)) { 3280 error = strgeterr(stp, STRDERR|STPLEX, 0); 3281 if (error != 0) { 3282 mutex_exit(&stp->sd_lock); 3283 return (error); 3284 } 3285 } 3286 break; 3287 3288 default: 3289 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3290 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3291 if (error != 0) { 3292 mutex_exit(&stp->sd_lock); 3293 return (error); 3294 } 3295 } 3296 } 3297 3298 mutex_exit(&stp->sd_lock); 3299 3300 switch (cmd) { 3301 default: 3302 /* 3303 * The stream head has hardcoded knowledge of a 3304 * miscellaneous collection of terminal-, keyboard- and 3305 * mouse-related ioctls, enumerated below. This hardcoded 3306 * knowledge allows the stream head to automatically 3307 * convert transparent ioctl requests made by userland 3308 * programs into I_STR ioctls which many old STREAMS 3309 * modules and drivers require. 3310 * 3311 * No new ioctls should ever be added to this list. 3312 * Instead, the STREAMS module or driver should be written 3313 * to either handle transparent ioctls or require any 3314 * userland programs to use I_STR ioctls (by returning 3315 * EINVAL to any transparent ioctl requests). 3316 * 3317 * More importantly, removing ioctls from this list should 3318 * be done with the utmost care, since our STREAMS modules 3319 * and drivers *count* on the stream head performing this 3320 * conversion, and thus may panic while processing 3321 * transparent ioctl request for one of these ioctls (keep 3322 * in mind that third party modules and drivers may have 3323 * similar problems). 3324 */ 3325 if (((cmd & IOCTYPE) == LDIOC) || 3326 ((cmd & IOCTYPE) == tIOC) || 3327 ((cmd & IOCTYPE) == TIOC) || 3328 ((cmd & IOCTYPE) == KIOC) || 3329 ((cmd & IOCTYPE) == MSIOC) || 3330 ((cmd & IOCTYPE) == VUIOC)) { 3331 /* 3332 * The ioctl is a tty ioctl - set up strioc buffer 3333 * and call strdoioctl() to do the work. 3334 */ 3335 if (stp->sd_flag & STRHUP) 3336 return (ENXIO); 3337 strioc.ic_cmd = cmd; 3338 strioc.ic_timout = INFTIM; 3339 3340 switch (cmd) { 3341 3342 case TCXONC: 3343 case TCSBRK: 3344 case TCFLSH: 3345 case TCDSET: 3346 { 3347 int native_arg = (int)arg; 3348 strioc.ic_len = sizeof (int); 3349 strioc.ic_dp = (char *)&native_arg; 3350 return (strdoioctl(stp, &strioc, flag, 3351 K_TO_K, crp, rvalp)); 3352 } 3353 3354 case TCSETA: 3355 case TCSETAW: 3356 case TCSETAF: 3357 strioc.ic_len = sizeof (struct termio); 3358 strioc.ic_dp = (char *)arg; 3359 return (strdoioctl(stp, &strioc, flag, 3360 copyflag, crp, rvalp)); 3361 3362 case TCSETS: 3363 case TCSETSW: 3364 case TCSETSF: 3365 strioc.ic_len = sizeof (struct termios); 3366 strioc.ic_dp = (char *)arg; 3367 return (strdoioctl(stp, &strioc, flag, 3368 copyflag, crp, rvalp)); 3369 3370 case LDSETT: 3371 strioc.ic_len = sizeof (struct termcb); 3372 strioc.ic_dp = (char *)arg; 3373 return (strdoioctl(stp, &strioc, flag, 3374 copyflag, crp, rvalp)); 3375 3376 case TIOCSETP: 3377 strioc.ic_len = sizeof (struct sgttyb); 3378 strioc.ic_dp = (char *)arg; 3379 return (strdoioctl(stp, &strioc, flag, 3380 copyflag, crp, rvalp)); 3381 3382 case TIOCSTI: 3383 if ((flag & FREAD) == 0 && 3384 secpolicy_sti(crp) != 0) { 3385 return (EPERM); 3386 } 3387 mutex_enter(&stp->sd_lock); 3388 mutex_enter(&curproc->p_splock); 3389 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3390 secpolicy_sti(crp) != 0) { 3391 mutex_exit(&curproc->p_splock); 3392 mutex_exit(&stp->sd_lock); 3393 return (EACCES); 3394 } 3395 mutex_exit(&curproc->p_splock); 3396 mutex_exit(&stp->sd_lock); 3397 3398 strioc.ic_len = sizeof (char); 3399 strioc.ic_dp = (char *)arg; 3400 return (strdoioctl(stp, &strioc, flag, 3401 copyflag, crp, rvalp)); 3402 3403 case TIOCSWINSZ: 3404 strioc.ic_len = sizeof (struct winsize); 3405 strioc.ic_dp = (char *)arg; 3406 return (strdoioctl(stp, &strioc, flag, 3407 copyflag, crp, rvalp)); 3408 3409 case TIOCSSIZE: 3410 strioc.ic_len = sizeof (struct ttysize); 3411 strioc.ic_dp = (char *)arg; 3412 return (strdoioctl(stp, &strioc, flag, 3413 copyflag, crp, rvalp)); 3414 3415 case TIOCSSOFTCAR: 3416 case KIOCTRANS: 3417 case KIOCTRANSABLE: 3418 case KIOCCMD: 3419 case KIOCSDIRECT: 3420 case KIOCSCOMPAT: 3421 case KIOCSKABORTEN: 3422 case KIOCSRPTDELAY: 3423 case KIOCSRPTRATE: 3424 case VUIDSFORMAT: 3425 case TIOCSPPS: 3426 strioc.ic_len = sizeof (int); 3427 strioc.ic_dp = (char *)arg; 3428 return (strdoioctl(stp, &strioc, flag, 3429 copyflag, crp, rvalp)); 3430 3431 case KIOCSETKEY: 3432 case KIOCGETKEY: 3433 strioc.ic_len = sizeof (struct kiockey); 3434 strioc.ic_dp = (char *)arg; 3435 return (strdoioctl(stp, &strioc, flag, 3436 copyflag, crp, rvalp)); 3437 3438 case KIOCSKEY: 3439 case KIOCGKEY: 3440 strioc.ic_len = sizeof (struct kiockeymap); 3441 strioc.ic_dp = (char *)arg; 3442 return (strdoioctl(stp, &strioc, flag, 3443 copyflag, crp, rvalp)); 3444 3445 case KIOCSLED: 3446 /* arg is a pointer to char */ 3447 strioc.ic_len = sizeof (char); 3448 strioc.ic_dp = (char *)arg; 3449 return (strdoioctl(stp, &strioc, flag, 3450 copyflag, crp, rvalp)); 3451 3452 case MSIOSETPARMS: 3453 strioc.ic_len = sizeof (Ms_parms); 3454 strioc.ic_dp = (char *)arg; 3455 return (strdoioctl(stp, &strioc, flag, 3456 copyflag, crp, rvalp)); 3457 3458 case VUIDSADDR: 3459 case VUIDGADDR: 3460 strioc.ic_len = sizeof (struct vuid_addr_probe); 3461 strioc.ic_dp = (char *)arg; 3462 return (strdoioctl(stp, &strioc, flag, 3463 copyflag, crp, rvalp)); 3464 3465 /* 3466 * These M_IOCTL's don't require any data to be sent 3467 * downstream, and the driver will allocate and link 3468 * on its own mblk_t upon M_IOCACK -- thus we set 3469 * ic_len to zero and set ic_dp to arg so we know 3470 * where to copyout to later. 3471 */ 3472 case TIOCGSOFTCAR: 3473 case TIOCGWINSZ: 3474 case TIOCGSIZE: 3475 case KIOCGTRANS: 3476 case KIOCGTRANSABLE: 3477 case KIOCTYPE: 3478 case KIOCGDIRECT: 3479 case KIOCGCOMPAT: 3480 case KIOCLAYOUT: 3481 case KIOCGLED: 3482 case MSIOGETPARMS: 3483 case MSIOBUTTONS: 3484 case VUIDGFORMAT: 3485 case TIOCGPPS: 3486 case TIOCGPPSEV: 3487 case TCGETA: 3488 case TCGETS: 3489 case LDGETT: 3490 case TIOCGETP: 3491 case KIOCGRPTDELAY: 3492 case KIOCGRPTRATE: 3493 strioc.ic_len = 0; 3494 strioc.ic_dp = (char *)arg; 3495 return (strdoioctl(stp, &strioc, flag, 3496 copyflag, crp, rvalp)); 3497 } 3498 } 3499 3500 /* 3501 * Unknown cmd - send it down as a transparent ioctl. 3502 */ 3503 strioc.ic_cmd = cmd; 3504 strioc.ic_timout = INFTIM; 3505 strioc.ic_len = TRANSPARENT; 3506 strioc.ic_dp = (char *)&arg; 3507 3508 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3509 3510 case I_STR: 3511 /* 3512 * Stream ioctl. Read in an strioctl buffer from the user 3513 * along with any data specified and send it downstream. 3514 * Strdoioctl will wait allow only one ioctl message at 3515 * a time, and waits for the acknowledgement. 3516 */ 3517 3518 if (stp->sd_flag & STRHUP) 3519 return (ENXIO); 3520 3521 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3522 copyflag); 3523 if (error != 0) 3524 return (error); 3525 3526 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3527 return (EINVAL); 3528 3529 access = job_control_type(strioc.ic_cmd); 3530 mutex_enter(&stp->sd_lock); 3531 if ((access != -1) && 3532 ((error = i_straccess(stp, access)) != 0)) { 3533 mutex_exit(&stp->sd_lock); 3534 return (error); 3535 } 3536 mutex_exit(&stp->sd_lock); 3537 3538 /* 3539 * The I_STR facility provides a trap door for malicious 3540 * code to send down bogus streamio(7I) ioctl commands to 3541 * unsuspecting STREAMS modules and drivers which expect to 3542 * only get these messages from the stream head. 3543 * Explicitly prohibit any streamio ioctls which can be 3544 * passed downstream by the stream head. Note that we do 3545 * not block all streamio ioctls because the ioctl 3546 * numberspace is not well managed and thus it's possible 3547 * that a module or driver's ioctl numbers may accidentally 3548 * collide with them. 3549 */ 3550 switch (strioc.ic_cmd) { 3551 case I_LINK: 3552 case I_PLINK: 3553 case I_UNLINK: 3554 case I_PUNLINK: 3555 case _I_GETPEERCRED: 3556 case _I_PLINK_LH: 3557 return (EINVAL); 3558 } 3559 3560 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3561 if (error == 0) { 3562 error = strcopyout_strioctl(&strioc, (void *)arg, 3563 flag, copyflag); 3564 } 3565 return (error); 3566 3567 case _I_CMD: 3568 /* 3569 * Like I_STR, but without using M_IOC* messages and without 3570 * copyins/copyouts beyond the passed-in argument. 3571 */ 3572 if (stp->sd_flag & STRHUP) 3573 return (ENXIO); 3574 3575 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL) 3576 return (ENOMEM); 3577 3578 if (copyin((void *)arg, scp, sizeof (strcmd_t))) { 3579 kmem_free(scp, sizeof (strcmd_t)); 3580 return (EFAULT); 3581 } 3582 3583 access = job_control_type(scp->sc_cmd); 3584 mutex_enter(&stp->sd_lock); 3585 if (access != -1 && (error = i_straccess(stp, access)) != 0) { 3586 mutex_exit(&stp->sd_lock); 3587 kmem_free(scp, sizeof (strcmd_t)); 3588 return (error); 3589 } 3590 mutex_exit(&stp->sd_lock); 3591 3592 *rvalp = 0; 3593 if ((error = strdocmd(stp, scp, crp)) == 0) { 3594 if (copyout(scp, (void *)arg, sizeof (strcmd_t))) 3595 error = EFAULT; 3596 } 3597 kmem_free(scp, sizeof (strcmd_t)); 3598 return (error); 3599 3600 case I_NREAD: 3601 /* 3602 * Return number of bytes of data in first message 3603 * in queue in "arg" and return the number of messages 3604 * in queue in return value. 3605 */ 3606 { 3607 size_t size; 3608 int retval; 3609 int count = 0; 3610 3611 mutex_enter(QLOCK(rdq)); 3612 3613 size = msgdsize(rdq->q_first); 3614 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3615 count++; 3616 3617 mutex_exit(QLOCK(rdq)); 3618 if (stp->sd_struiordq) { 3619 infod_t infod; 3620 3621 infod.d_cmd = INFOD_COUNT; 3622 infod.d_count = 0; 3623 if (count == 0) { 3624 infod.d_cmd |= INFOD_FIRSTBYTES; 3625 infod.d_bytes = 0; 3626 } 3627 infod.d_res = 0; 3628 (void) infonext(rdq, &infod); 3629 count += infod.d_count; 3630 if (infod.d_res & INFOD_FIRSTBYTES) 3631 size = infod.d_bytes; 3632 } 3633 3634 /* 3635 * Drop down from size_t to the "int" required by the 3636 * interface. Cap at INT_MAX. 3637 */ 3638 retval = MIN(size, INT_MAX); 3639 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3640 copyflag); 3641 if (!error) 3642 *rvalp = count; 3643 return (error); 3644 } 3645 3646 case FIONREAD: 3647 /* 3648 * Return number of bytes of data in all data messages 3649 * in queue in "arg". 3650 */ 3651 { 3652 size_t size = 0; 3653 int retval; 3654 3655 mutex_enter(QLOCK(rdq)); 3656 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3657 size += msgdsize(mp); 3658 mutex_exit(QLOCK(rdq)); 3659 3660 if (stp->sd_struiordq) { 3661 infod_t infod; 3662 3663 infod.d_cmd = INFOD_BYTES; 3664 infod.d_res = 0; 3665 infod.d_bytes = 0; 3666 (void) infonext(rdq, &infod); 3667 size += infod.d_bytes; 3668 } 3669 3670 /* 3671 * Drop down from size_t to the "int" required by the 3672 * interface. Cap at INT_MAX. 3673 */ 3674 retval = MIN(size, INT_MAX); 3675 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3676 copyflag); 3677 3678 *rvalp = 0; 3679 return (error); 3680 } 3681 case FIORDCHK: 3682 /* 3683 * FIORDCHK does not use arg value (like FIONREAD), 3684 * instead a count is returned. I_NREAD value may 3685 * not be accurate but safe. The real thing to do is 3686 * to add the msgdsizes of all data messages until 3687 * a non-data message. 3688 */ 3689 { 3690 size_t size = 0; 3691 3692 mutex_enter(QLOCK(rdq)); 3693 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3694 size += msgdsize(mp); 3695 mutex_exit(QLOCK(rdq)); 3696 3697 if (stp->sd_struiordq) { 3698 infod_t infod; 3699 3700 infod.d_cmd = INFOD_BYTES; 3701 infod.d_res = 0; 3702 infod.d_bytes = 0; 3703 (void) infonext(rdq, &infod); 3704 size += infod.d_bytes; 3705 } 3706 3707 /* 3708 * Since ioctl returns an int, and memory sizes under 3709 * LP64 may not fit, we return INT_MAX if the count was 3710 * actually greater. 3711 */ 3712 *rvalp = MIN(size, INT_MAX); 3713 return (0); 3714 } 3715 3716 case I_FIND: 3717 /* 3718 * Get module name. 3719 */ 3720 { 3721 char mname[FMNAMESZ + 1]; 3722 queue_t *q; 3723 3724 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3725 mname, FMNAMESZ + 1, NULL); 3726 if (error) 3727 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3728 3729 /* 3730 * Return EINVAL if we're handed a bogus module name. 3731 */ 3732 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3733 TRACE_0(TR_FAC_STREAMS_FR, 3734 TR_I_CANT_FIND, "couldn't I_FIND"); 3735 return (EINVAL); 3736 } 3737 3738 *rvalp = 0; 3739 3740 /* Look downstream to see if module is there. */ 3741 claimstr(stp->sd_wrq); 3742 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3743 if (q->q_flag & QREADR) { 3744 q = NULL; 3745 break; 3746 } 3747 if (strcmp(mname, Q2NAME(q)) == 0) 3748 break; 3749 } 3750 releasestr(stp->sd_wrq); 3751 3752 *rvalp = (q ? 1 : 0); 3753 return (error); 3754 } 3755 3756 case I_PUSH: 3757 case __I_PUSH_NOCTTY: 3758 /* 3759 * Push a module. 3760 * For the case __I_PUSH_NOCTTY push a module but 3761 * do not allocate controlling tty. See bugid 4025044 3762 */ 3763 3764 { 3765 char mname[FMNAMESZ + 1]; 3766 fmodsw_impl_t *fp; 3767 dev_t dummydev; 3768 3769 if (stp->sd_flag & STRHUP) 3770 return (ENXIO); 3771 3772 /* 3773 * Get module name and look up in fmodsw. 3774 */ 3775 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3776 mname, FMNAMESZ + 1, NULL); 3777 if (error) 3778 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3779 3780 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3781 NULL) 3782 return (EINVAL); 3783 3784 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3785 "I_PUSH:fp %p stp %p", fp, stp); 3786 3787 /* 3788 * If the module is flagged as single-instance, then check 3789 * to see if the module is already pushed. If it is, return 3790 * as if the push was successful. 3791 */ 3792 if (fp->f_qflag & _QSINGLE_INSTANCE) { 3793 queue_t *q; 3794 3795 claimstr(stp->sd_wrq); 3796 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3797 if (q->q_flag & QREADR) { 3798 q = NULL; 3799 break; 3800 } 3801 if (strcmp(mname, Q2NAME(q)) == 0) 3802 break; 3803 } 3804 releasestr(stp->sd_wrq); 3805 if (q != NULL) { 3806 fmodsw_rele(fp); 3807 return (0); 3808 } 3809 } 3810 3811 if (error = strstartplumb(stp, flag, cmd)) { 3812 fmodsw_rele(fp); 3813 return (error); 3814 } 3815 3816 /* 3817 * See if any more modules can be pushed on this stream. 3818 * Note that this check must be done after strstartplumb() 3819 * since otherwise multiple threads issuing I_PUSHes on 3820 * the same stream will be able to exceed nstrpush. 3821 */ 3822 mutex_enter(&stp->sd_lock); 3823 if (stp->sd_pushcnt >= nstrpush) { 3824 fmodsw_rele(fp); 3825 strendplumb(stp); 3826 mutex_exit(&stp->sd_lock); 3827 return (EINVAL); 3828 } 3829 mutex_exit(&stp->sd_lock); 3830 3831 /* 3832 * Push new module and call its open routine 3833 * via qattach(). Modules don't change device 3834 * numbers, so just ignore dummydev here. 3835 */ 3836 dummydev = vp->v_rdev; 3837 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3838 B_FALSE)) == 0) { 3839 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3840 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3841 /* 3842 * try to allocate it as a controlling terminal 3843 */ 3844 (void) strctty(stp); 3845 } 3846 } 3847 3848 mutex_enter(&stp->sd_lock); 3849 3850 /* 3851 * As a performance concern we are caching the values of 3852 * q_minpsz and q_maxpsz of the module below the stream 3853 * head in the stream head. 3854 */ 3855 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3856 rmin = stp->sd_wrq->q_next->q_minpsz; 3857 rmax = stp->sd_wrq->q_next->q_maxpsz; 3858 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3859 3860 /* Do this processing here as a performance concern */ 3861 if (strmsgsz != 0) { 3862 if (rmax == INFPSZ) 3863 rmax = strmsgsz; 3864 else { 3865 if (vp->v_type == VFIFO) 3866 rmax = MIN(PIPE_BUF, rmax); 3867 else rmax = MIN(strmsgsz, rmax); 3868 } 3869 } 3870 3871 mutex_enter(QLOCK(wrq)); 3872 stp->sd_qn_minpsz = rmin; 3873 stp->sd_qn_maxpsz = rmax; 3874 mutex_exit(QLOCK(wrq)); 3875 3876 strendplumb(stp); 3877 mutex_exit(&stp->sd_lock); 3878 return (error); 3879 } 3880 3881 case I_POP: 3882 { 3883 queue_t *q; 3884 3885 if (stp->sd_flag & STRHUP) 3886 return (ENXIO); 3887 if (!wrq->q_next) /* for broken pipes */ 3888 return (EINVAL); 3889 3890 if (error = strstartplumb(stp, flag, cmd)) 3891 return (error); 3892 3893 /* 3894 * If there is an anchor on this stream and popping 3895 * the current module would attempt to pop through the 3896 * anchor, then disallow the pop unless we have sufficient 3897 * privileges; take the cheapest (non-locking) check 3898 * first. 3899 */ 3900 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3901 (stp->sd_anchorzone != crgetzoneid(crp))) { 3902 mutex_enter(&stp->sd_lock); 3903 /* 3904 * Anchors only apply if there's at least one 3905 * module on the stream (sd_pushcnt > 0). 3906 */ 3907 if (stp->sd_pushcnt > 0 && 3908 stp->sd_pushcnt == stp->sd_anchor && 3909 stp->sd_vnode->v_type != VFIFO) { 3910 strendplumb(stp); 3911 mutex_exit(&stp->sd_lock); 3912 if (stp->sd_anchorzone != crgetzoneid(crp)) 3913 return (EINVAL); 3914 /* Audit and report error */ 3915 return (secpolicy_ip_config(crp, B_FALSE)); 3916 } 3917 mutex_exit(&stp->sd_lock); 3918 } 3919 3920 q = wrq->q_next; 3921 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3922 "I_POP:%p from %p", q, stp); 3923 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3924 error = EINVAL; 3925 } else { 3926 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3927 error = 0; 3928 } 3929 mutex_enter(&stp->sd_lock); 3930 3931 /* 3932 * As a performance concern we are caching the values of 3933 * q_minpsz and q_maxpsz of the module below the stream 3934 * head in the stream head. 3935 */ 3936 mutex_enter(QLOCK(wrq->q_next)); 3937 rmin = wrq->q_next->q_minpsz; 3938 rmax = wrq->q_next->q_maxpsz; 3939 mutex_exit(QLOCK(wrq->q_next)); 3940 3941 /* Do this processing here as a performance concern */ 3942 if (strmsgsz != 0) { 3943 if (rmax == INFPSZ) 3944 rmax = strmsgsz; 3945 else { 3946 if (vp->v_type == VFIFO) 3947 rmax = MIN(PIPE_BUF, rmax); 3948 else rmax = MIN(strmsgsz, rmax); 3949 } 3950 } 3951 3952 mutex_enter(QLOCK(wrq)); 3953 stp->sd_qn_minpsz = rmin; 3954 stp->sd_qn_maxpsz = rmax; 3955 mutex_exit(QLOCK(wrq)); 3956 3957 /* If we popped through the anchor, then reset the anchor. */ 3958 if (stp->sd_pushcnt < stp->sd_anchor) { 3959 stp->sd_anchor = 0; 3960 stp->sd_anchorzone = 0; 3961 } 3962 strendplumb(stp); 3963 mutex_exit(&stp->sd_lock); 3964 return (error); 3965 } 3966 3967 case _I_MUXID2FD: 3968 { 3969 /* 3970 * Create a fd for a I_PLINK'ed lower stream with a given 3971 * muxid. With the fd, application can send down ioctls, 3972 * like I_LIST, to the previously I_PLINK'ed stream. Note 3973 * that after getting the fd, the application has to do an 3974 * I_PUNLINK on the muxid before it can do any operation 3975 * on the lower stream. This is required by spec1170. 3976 * 3977 * The fd used to do this ioctl should point to the same 3978 * controlling device used to do the I_PLINK. If it uses 3979 * a different stream or an invalid muxid, I_MUXID2FD will 3980 * fail. The error code is set to EINVAL. 3981 * 3982 * The intended use of this interface is the following. 3983 * An application I_PLINK'ed a stream and exits. The fd 3984 * to the lower stream is gone. Another application 3985 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3986 */ 3987 int muxid = (int)arg; 3988 int fd; 3989 linkinfo_t *linkp; 3990 struct file *fp; 3991 netstack_t *ns; 3992 str_stack_t *ss; 3993 3994 /* 3995 * Do not allow the wildcard muxid. This ioctl is not 3996 * intended to find arbitrary link. 3997 */ 3998 if (muxid == 0) { 3999 return (EINVAL); 4000 } 4001 4002 ns = netstack_find_by_cred(crp); 4003 ASSERT(ns != NULL); 4004 ss = ns->netstack_str; 4005 ASSERT(ss != NULL); 4006 4007 mutex_enter(&muxifier); 4008 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 4009 if (linkp == NULL) { 4010 mutex_exit(&muxifier); 4011 netstack_rele(ss->ss_netstack); 4012 return (EINVAL); 4013 } 4014 4015 if ((fd = ufalloc(0)) == -1) { 4016 mutex_exit(&muxifier); 4017 netstack_rele(ss->ss_netstack); 4018 return (EMFILE); 4019 } 4020 fp = linkp->li_fpdown; 4021 mutex_enter(&fp->f_tlock); 4022 fp->f_count++; 4023 mutex_exit(&fp->f_tlock); 4024 mutex_exit(&muxifier); 4025 setf(fd, fp); 4026 *rvalp = fd; 4027 netstack_rele(ss->ss_netstack); 4028 return (0); 4029 } 4030 4031 case _I_INSERT: 4032 { 4033 /* 4034 * To insert a module to a given position in a stream. 4035 * In the first release, only allow privileged user 4036 * to use this ioctl. Furthermore, the insert is only allowed 4037 * below an anchor if the zoneid is the same as the zoneid 4038 * which created the anchor. 4039 * 4040 * Note that we do not plan to support this ioctl 4041 * on pipes in the first release. We want to learn more 4042 * about the implications of these ioctls before extending 4043 * their support. And we do not think these features are 4044 * valuable for pipes. 4045 */ 4046 STRUCT_DECL(strmodconf, strmodinsert); 4047 char mod_name[FMNAMESZ + 1]; 4048 fmodsw_impl_t *fp; 4049 dev_t dummydev; 4050 queue_t *tmp_wrq; 4051 int pos; 4052 boolean_t is_insert; 4053 4054 STRUCT_INIT(strmodinsert, flag); 4055 if (stp->sd_flag & STRHUP) 4056 return (ENXIO); 4057 if (STRMATED(stp)) 4058 return (EINVAL); 4059 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4060 return (error); 4061 if (stp->sd_anchor != 0 && 4062 stp->sd_anchorzone != crgetzoneid(crp)) 4063 return (EINVAL); 4064 4065 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4066 STRUCT_SIZE(strmodinsert), copyflag); 4067 if (error) 4068 return (error); 4069 4070 /* 4071 * Get module name and look up in fmodsw. 4072 */ 4073 error = (copyflag & U_TO_K ? copyinstr : 4074 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4075 mod_name, FMNAMESZ + 1, NULL); 4076 if (error) 4077 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4078 4079 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4080 NULL) 4081 return (EINVAL); 4082 4083 if (error = strstartplumb(stp, flag, cmd)) { 4084 fmodsw_rele(fp); 4085 return (error); 4086 } 4087 4088 /* 4089 * Is this _I_INSERT just like an I_PUSH? We need to know 4090 * this because we do some optimizations if this is a 4091 * module being pushed. 4092 */ 4093 pos = STRUCT_FGET(strmodinsert, pos); 4094 is_insert = (pos != 0); 4095 4096 /* 4097 * Make sure pos is valid. Even though it is not an I_PUSH, 4098 * we impose the same limit on the number of modules in a 4099 * stream. 4100 */ 4101 mutex_enter(&stp->sd_lock); 4102 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4103 pos > stp->sd_pushcnt) { 4104 fmodsw_rele(fp); 4105 strendplumb(stp); 4106 mutex_exit(&stp->sd_lock); 4107 return (EINVAL); 4108 } 4109 if (stp->sd_anchor != 0) { 4110 /* 4111 * Is this insert below the anchor? 4112 * Pushcnt hasn't been increased yet hence 4113 * we test for greater than here, and greater or 4114 * equal after qattach. 4115 */ 4116 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4117 stp->sd_anchorzone != crgetzoneid(crp)) { 4118 fmodsw_rele(fp); 4119 strendplumb(stp); 4120 mutex_exit(&stp->sd_lock); 4121 return (EPERM); 4122 } 4123 } 4124 4125 mutex_exit(&stp->sd_lock); 4126 4127 /* 4128 * First find the correct position this module to 4129 * be inserted. We don't need to call claimstr() 4130 * as the stream should not be changing at this point. 4131 * 4132 * Insert new module and call its open routine 4133 * via qattach(). Modules don't change device 4134 * numbers, so just ignore dummydev here. 4135 */ 4136 for (tmp_wrq = stp->sd_wrq; pos > 0; 4137 tmp_wrq = tmp_wrq->q_next, pos--) { 4138 ASSERT(SAMESTR(tmp_wrq)); 4139 } 4140 dummydev = vp->v_rdev; 4141 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4142 fp, is_insert)) != 0) { 4143 mutex_enter(&stp->sd_lock); 4144 strendplumb(stp); 4145 mutex_exit(&stp->sd_lock); 4146 return (error); 4147 } 4148 4149 mutex_enter(&stp->sd_lock); 4150 4151 /* 4152 * As a performance concern we are caching the values of 4153 * q_minpsz and q_maxpsz of the module below the stream 4154 * head in the stream head. 4155 */ 4156 if (!is_insert) { 4157 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4158 rmin = stp->sd_wrq->q_next->q_minpsz; 4159 rmax = stp->sd_wrq->q_next->q_maxpsz; 4160 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4161 4162 /* Do this processing here as a performance concern */ 4163 if (strmsgsz != 0) { 4164 if (rmax == INFPSZ) { 4165 rmax = strmsgsz; 4166 } else { 4167 rmax = MIN(strmsgsz, rmax); 4168 } 4169 } 4170 4171 mutex_enter(QLOCK(wrq)); 4172 stp->sd_qn_minpsz = rmin; 4173 stp->sd_qn_maxpsz = rmax; 4174 mutex_exit(QLOCK(wrq)); 4175 } 4176 4177 /* 4178 * Need to update the anchor value if this module is 4179 * inserted below the anchor point. 4180 */ 4181 if (stp->sd_anchor != 0) { 4182 pos = STRUCT_FGET(strmodinsert, pos); 4183 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4184 stp->sd_anchor++; 4185 } 4186 4187 strendplumb(stp); 4188 mutex_exit(&stp->sd_lock); 4189 return (0); 4190 } 4191 4192 case _I_REMOVE: 4193 { 4194 /* 4195 * To remove a module with a given name in a stream. The 4196 * caller of this ioctl needs to provide both the name and 4197 * the position of the module to be removed. This eliminates 4198 * the ambiguity of removal if a module is inserted/pushed 4199 * multiple times in a stream. In the first release, only 4200 * allow privileged user to use this ioctl. 4201 * Furthermore, the remove is only allowed 4202 * below an anchor if the zoneid is the same as the zoneid 4203 * which created the anchor. 4204 * 4205 * Note that we do not plan to support this ioctl 4206 * on pipes in the first release. We want to learn more 4207 * about the implications of these ioctls before extending 4208 * their support. And we do not think these features are 4209 * valuable for pipes. 4210 * 4211 * Also note that _I_REMOVE cannot be used to remove a 4212 * driver or the stream head. 4213 */ 4214 STRUCT_DECL(strmodconf, strmodremove); 4215 queue_t *q; 4216 int pos; 4217 char mod_name[FMNAMESZ + 1]; 4218 boolean_t is_remove; 4219 4220 STRUCT_INIT(strmodremove, flag); 4221 if (stp->sd_flag & STRHUP) 4222 return (ENXIO); 4223 if (STRMATED(stp)) 4224 return (EINVAL); 4225 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4226 return (error); 4227 if (stp->sd_anchor != 0 && 4228 stp->sd_anchorzone != crgetzoneid(crp)) 4229 return (EINVAL); 4230 4231 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4232 STRUCT_SIZE(strmodremove), copyflag); 4233 if (error) 4234 return (error); 4235 4236 error = (copyflag & U_TO_K ? copyinstr : 4237 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4238 mod_name, FMNAMESZ + 1, NULL); 4239 if (error) 4240 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4241 4242 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4243 return (error); 4244 4245 /* 4246 * Match the name of given module to the name of module at 4247 * the given position. 4248 */ 4249 pos = STRUCT_FGET(strmodremove, pos); 4250 4251 is_remove = (pos != 0); 4252 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4253 q = q->q_next, pos--) 4254 ; 4255 if (pos > 0 || !SAMESTR(q) || 4256 strcmp(Q2NAME(q), mod_name) != 0) { 4257 mutex_enter(&stp->sd_lock); 4258 strendplumb(stp); 4259 mutex_exit(&stp->sd_lock); 4260 return (EINVAL); 4261 } 4262 4263 /* 4264 * If the position is at or below an anchor, then the zoneid 4265 * must match the zoneid that created the anchor. 4266 */ 4267 if (stp->sd_anchor != 0) { 4268 pos = STRUCT_FGET(strmodremove, pos); 4269 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4270 stp->sd_anchorzone != crgetzoneid(crp)) { 4271 mutex_enter(&stp->sd_lock); 4272 strendplumb(stp); 4273 mutex_exit(&stp->sd_lock); 4274 return (EPERM); 4275 } 4276 } 4277 4278 4279 ASSERT(!(q->q_flag & QREADR)); 4280 qdetach(_RD(q), 1, flag, crp, is_remove); 4281 4282 mutex_enter(&stp->sd_lock); 4283 4284 /* 4285 * As a performance concern we are caching the values of 4286 * q_minpsz and q_maxpsz of the module below the stream 4287 * head in the stream head. 4288 */ 4289 if (!is_remove) { 4290 mutex_enter(QLOCK(wrq->q_next)); 4291 rmin = wrq->q_next->q_minpsz; 4292 rmax = wrq->q_next->q_maxpsz; 4293 mutex_exit(QLOCK(wrq->q_next)); 4294 4295 /* Do this processing here as a performance concern */ 4296 if (strmsgsz != 0) { 4297 if (rmax == INFPSZ) 4298 rmax = strmsgsz; 4299 else { 4300 if (vp->v_type == VFIFO) 4301 rmax = MIN(PIPE_BUF, rmax); 4302 else rmax = MIN(strmsgsz, rmax); 4303 } 4304 } 4305 4306 mutex_enter(QLOCK(wrq)); 4307 stp->sd_qn_minpsz = rmin; 4308 stp->sd_qn_maxpsz = rmax; 4309 mutex_exit(QLOCK(wrq)); 4310 } 4311 4312 /* 4313 * Need to update the anchor value if this module is removed 4314 * at or below the anchor point. If the removed module is at 4315 * the anchor point, remove the anchor for this stream if 4316 * there is no module above the anchor point. Otherwise, if 4317 * the removed module is below the anchor point, decrement the 4318 * anchor point by 1. 4319 */ 4320 if (stp->sd_anchor != 0) { 4321 pos = STRUCT_FGET(strmodremove, pos); 4322 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4323 stp->sd_anchor = 0; 4324 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4325 stp->sd_anchor--; 4326 } 4327 4328 strendplumb(stp); 4329 mutex_exit(&stp->sd_lock); 4330 return (0); 4331 } 4332 4333 case I_ANCHOR: 4334 /* 4335 * Set the anchor position on the stream to reside at 4336 * the top module (in other words, the top module 4337 * cannot be popped). Anchors with a FIFO make no 4338 * obvious sense, so they're not allowed. 4339 */ 4340 mutex_enter(&stp->sd_lock); 4341 4342 if (stp->sd_vnode->v_type == VFIFO) { 4343 mutex_exit(&stp->sd_lock); 4344 return (EINVAL); 4345 } 4346 /* Only allow the same zoneid to update the anchor */ 4347 if (stp->sd_anchor != 0 && 4348 stp->sd_anchorzone != crgetzoneid(crp)) { 4349 mutex_exit(&stp->sd_lock); 4350 return (EINVAL); 4351 } 4352 stp->sd_anchor = stp->sd_pushcnt; 4353 stp->sd_anchorzone = crgetzoneid(crp); 4354 mutex_exit(&stp->sd_lock); 4355 return (0); 4356 4357 case I_LOOK: 4358 /* 4359 * Get name of first module downstream. 4360 * If no module, return an error. 4361 */ 4362 claimstr(wrq); 4363 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) { 4364 char *name = Q2NAME(wrq->q_next); 4365 4366 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4367 copyflag); 4368 releasestr(wrq); 4369 return (error); 4370 } 4371 releasestr(wrq); 4372 return (EINVAL); 4373 4374 case I_LINK: 4375 case I_PLINK: 4376 /* 4377 * Link a multiplexor. 4378 */ 4379 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); 4380 4381 case _I_PLINK_LH: 4382 /* 4383 * Link a multiplexor: Call must originate from kernel. 4384 */ 4385 if (kioctl) 4386 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4387 4388 return (EINVAL); 4389 case I_UNLINK: 4390 case I_PUNLINK: 4391 /* 4392 * Unlink a multiplexor. 4393 * If arg is -1, unlink all links for which this is the 4394 * controlling stream. Otherwise, arg is an index number 4395 * for a link to be removed. 4396 */ 4397 { 4398 struct linkinfo *linkp; 4399 int native_arg = (int)arg; 4400 int type; 4401 netstack_t *ns; 4402 str_stack_t *ss; 4403 4404 TRACE_1(TR_FAC_STREAMS_FR, 4405 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4406 if (vp->v_type == VFIFO) { 4407 return (EINVAL); 4408 } 4409 if (cmd == I_UNLINK) 4410 type = LINKNORMAL; 4411 else /* I_PUNLINK */ 4412 type = LINKPERSIST; 4413 if (native_arg == 0) { 4414 return (EINVAL); 4415 } 4416 ns = netstack_find_by_cred(crp); 4417 ASSERT(ns != NULL); 4418 ss = ns->netstack_str; 4419 ASSERT(ss != NULL); 4420 4421 if (native_arg == MUXID_ALL) 4422 error = munlinkall(stp, type, crp, rvalp, ss); 4423 else { 4424 mutex_enter(&muxifier); 4425 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4426 /* invalid user supplied index number */ 4427 mutex_exit(&muxifier); 4428 netstack_rele(ss->ss_netstack); 4429 return (EINVAL); 4430 } 4431 /* munlink drops the muxifier lock */ 4432 error = munlink(stp, linkp, type, crp, rvalp, ss); 4433 } 4434 netstack_rele(ss->ss_netstack); 4435 return (error); 4436 } 4437 4438 case I_FLUSH: 4439 /* 4440 * send a flush message downstream 4441 * flush message can indicate 4442 * FLUSHR - flush read queue 4443 * FLUSHW - flush write queue 4444 * FLUSHRW - flush read/write queue 4445 */ 4446 if (stp->sd_flag & STRHUP) 4447 return (ENXIO); 4448 if (arg & ~FLUSHRW) 4449 return (EINVAL); 4450 4451 for (;;) { 4452 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4453 break; 4454 } 4455 if (error = strwaitbuf(1, BPRI_HI)) { 4456 return (error); 4457 } 4458 } 4459 4460 /* 4461 * Send down an unsupported ioctl and wait for the nack 4462 * in order to allow the M_FLUSH to propagate back 4463 * up to the stream head. 4464 * Replaces if (qready()) runqueues(); 4465 */ 4466 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4467 strioc.ic_timout = 0; 4468 strioc.ic_len = 0; 4469 strioc.ic_dp = NULL; 4470 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4471 *rvalp = 0; 4472 return (0); 4473 4474 case I_FLUSHBAND: 4475 { 4476 struct bandinfo binfo; 4477 4478 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4479 copyflag); 4480 if (error) 4481 return (error); 4482 if (stp->sd_flag & STRHUP) 4483 return (ENXIO); 4484 if (binfo.bi_flag & ~FLUSHRW) 4485 return (EINVAL); 4486 while (!(mp = allocb(2, BPRI_HI))) { 4487 if (error = strwaitbuf(2, BPRI_HI)) 4488 return (error); 4489 } 4490 mp->b_datap->db_type = M_FLUSH; 4491 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4492 *mp->b_wptr++ = binfo.bi_pri; 4493 putnext(stp->sd_wrq, mp); 4494 /* 4495 * Send down an unsupported ioctl and wait for the nack 4496 * in order to allow the M_FLUSH to propagate back 4497 * up to the stream head. 4498 * Replaces if (qready()) runqueues(); 4499 */ 4500 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4501 strioc.ic_timout = 0; 4502 strioc.ic_len = 0; 4503 strioc.ic_dp = NULL; 4504 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4505 *rvalp = 0; 4506 return (0); 4507 } 4508 4509 case I_SRDOPT: 4510 /* 4511 * Set read options 4512 * 4513 * RNORM - default stream mode 4514 * RMSGN - message no discard 4515 * RMSGD - message discard 4516 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4517 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4518 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4519 */ 4520 if (arg & ~(RMODEMASK | RPROTMASK)) 4521 return (EINVAL); 4522 4523 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4524 return (EINVAL); 4525 4526 mutex_enter(&stp->sd_lock); 4527 switch (arg & RMODEMASK) { 4528 case RNORM: 4529 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4530 break; 4531 case RMSGD: 4532 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4533 RD_MSGDIS; 4534 break; 4535 case RMSGN: 4536 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4537 RD_MSGNODIS; 4538 break; 4539 } 4540 4541 switch (arg & RPROTMASK) { 4542 case RPROTNORM: 4543 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4544 break; 4545 4546 case RPROTDAT: 4547 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4548 RD_PROTDAT); 4549 break; 4550 4551 case RPROTDIS: 4552 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4553 RD_PROTDIS); 4554 break; 4555 } 4556 mutex_exit(&stp->sd_lock); 4557 return (0); 4558 4559 case I_GRDOPT: 4560 /* 4561 * Get read option and return the value 4562 * to spot pointed to by arg 4563 */ 4564 { 4565 int rdopt; 4566 4567 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4568 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4569 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4570 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4571 4572 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4573 copyflag)); 4574 } 4575 4576 case I_SERROPT: 4577 /* 4578 * Set error options 4579 * 4580 * RERRNORM - persistent read errors 4581 * RERRNONPERSIST - non-persistent read errors 4582 * WERRNORM - persistent write errors 4583 * WERRNONPERSIST - non-persistent write errors 4584 */ 4585 if (arg & ~(RERRMASK | WERRMASK)) 4586 return (EINVAL); 4587 4588 mutex_enter(&stp->sd_lock); 4589 switch (arg & RERRMASK) { 4590 case RERRNORM: 4591 stp->sd_flag &= ~STRDERRNONPERSIST; 4592 break; 4593 case RERRNONPERSIST: 4594 stp->sd_flag |= STRDERRNONPERSIST; 4595 break; 4596 } 4597 switch (arg & WERRMASK) { 4598 case WERRNORM: 4599 stp->sd_flag &= ~STWRERRNONPERSIST; 4600 break; 4601 case WERRNONPERSIST: 4602 stp->sd_flag |= STWRERRNONPERSIST; 4603 break; 4604 } 4605 mutex_exit(&stp->sd_lock); 4606 return (0); 4607 4608 case I_GERROPT: 4609 /* 4610 * Get error option and return the value 4611 * to spot pointed to by arg 4612 */ 4613 { 4614 int erropt = 0; 4615 4616 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4617 RERRNORM; 4618 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4619 WERRNORM; 4620 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4621 copyflag)); 4622 } 4623 4624 case I_SETSIG: 4625 /* 4626 * Register the calling proc to receive the SIGPOLL 4627 * signal based on the events given in arg. If 4628 * arg is zero, remove the proc from register list. 4629 */ 4630 { 4631 strsig_t *ssp, *pssp; 4632 struct pid *pidp; 4633 4634 pssp = NULL; 4635 pidp = curproc->p_pidp; 4636 /* 4637 * Hold sd_lock to prevent traversal of sd_siglist while 4638 * it is modified. 4639 */ 4640 mutex_enter(&stp->sd_lock); 4641 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4642 pssp = ssp, ssp = ssp->ss_next) 4643 ; 4644 4645 if (arg) { 4646 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4647 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4648 mutex_exit(&stp->sd_lock); 4649 return (EINVAL); 4650 } 4651 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4652 mutex_exit(&stp->sd_lock); 4653 return (EINVAL); 4654 } 4655 4656 /* 4657 * If proc not already registered, add it 4658 * to list. 4659 */ 4660 if (!ssp) { 4661 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4662 ssp->ss_pidp = pidp; 4663 ssp->ss_pid = pidp->pid_id; 4664 ssp->ss_next = NULL; 4665 if (pssp) 4666 pssp->ss_next = ssp; 4667 else 4668 stp->sd_siglist = ssp; 4669 mutex_enter(&pidlock); 4670 PID_HOLD(pidp); 4671 mutex_exit(&pidlock); 4672 } 4673 4674 /* 4675 * Set events. 4676 */ 4677 ssp->ss_events = (int)arg; 4678 } else { 4679 /* 4680 * Remove proc from register list. 4681 */ 4682 if (ssp) { 4683 mutex_enter(&pidlock); 4684 PID_RELE(pidp); 4685 mutex_exit(&pidlock); 4686 if (pssp) 4687 pssp->ss_next = ssp->ss_next; 4688 else 4689 stp->sd_siglist = ssp->ss_next; 4690 kmem_free(ssp, sizeof (strsig_t)); 4691 } else { 4692 mutex_exit(&stp->sd_lock); 4693 return (EINVAL); 4694 } 4695 } 4696 4697 /* 4698 * Recalculate OR of sig events. 4699 */ 4700 stp->sd_sigflags = 0; 4701 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4702 stp->sd_sigflags |= ssp->ss_events; 4703 mutex_exit(&stp->sd_lock); 4704 return (0); 4705 } 4706 4707 case I_GETSIG: 4708 /* 4709 * Return (in arg) the current registration of events 4710 * for which the calling proc is to be signaled. 4711 */ 4712 { 4713 struct strsig *ssp; 4714 struct pid *pidp; 4715 4716 pidp = curproc->p_pidp; 4717 mutex_enter(&stp->sd_lock); 4718 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4719 if (ssp->ss_pidp == pidp) { 4720 error = strcopyout(&ssp->ss_events, (void *)arg, 4721 sizeof (int), copyflag); 4722 mutex_exit(&stp->sd_lock); 4723 return (error); 4724 } 4725 mutex_exit(&stp->sd_lock); 4726 return (EINVAL); 4727 } 4728 4729 case I_ESETSIG: 4730 /* 4731 * Register the ss_pid to receive the SIGPOLL 4732 * signal based on the events is ss_events arg. If 4733 * ss_events is zero, remove the proc from register list. 4734 */ 4735 { 4736 struct strsig *ssp, *pssp; 4737 struct proc *proc; 4738 struct pid *pidp; 4739 pid_t pid; 4740 struct strsigset ss; 4741 4742 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4743 if (error) 4744 return (error); 4745 4746 pid = ss.ss_pid; 4747 4748 if (ss.ss_events != 0) { 4749 /* 4750 * Permissions check by sending signal 0. 4751 * Note that when kill fails it does a set_errno 4752 * causing the system call to fail. 4753 */ 4754 error = kill(pid, 0); 4755 if (error) { 4756 return (error); 4757 } 4758 } 4759 mutex_enter(&pidlock); 4760 if (pid == 0) 4761 proc = curproc; 4762 else if (pid < 0) 4763 proc = pgfind(-pid); 4764 else 4765 proc = prfind(pid); 4766 if (proc == NULL) { 4767 mutex_exit(&pidlock); 4768 return (ESRCH); 4769 } 4770 if (pid < 0) 4771 pidp = proc->p_pgidp; 4772 else 4773 pidp = proc->p_pidp; 4774 ASSERT(pidp); 4775 /* 4776 * Get a hold on the pid structure while referencing it. 4777 * There is a separate PID_HOLD should it be inserted 4778 * in the list below. 4779 */ 4780 PID_HOLD(pidp); 4781 mutex_exit(&pidlock); 4782 4783 pssp = NULL; 4784 /* 4785 * Hold sd_lock to prevent traversal of sd_siglist while 4786 * it is modified. 4787 */ 4788 mutex_enter(&stp->sd_lock); 4789 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4790 pssp = ssp, ssp = ssp->ss_next) 4791 ; 4792 4793 if (ss.ss_events) { 4794 if (ss.ss_events & 4795 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4796 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4797 mutex_exit(&stp->sd_lock); 4798 mutex_enter(&pidlock); 4799 PID_RELE(pidp); 4800 mutex_exit(&pidlock); 4801 return (EINVAL); 4802 } 4803 if ((ss.ss_events & S_BANDURG) && 4804 !(ss.ss_events & S_RDBAND)) { 4805 mutex_exit(&stp->sd_lock); 4806 mutex_enter(&pidlock); 4807 PID_RELE(pidp); 4808 mutex_exit(&pidlock); 4809 return (EINVAL); 4810 } 4811 4812 /* 4813 * If proc not already registered, add it 4814 * to list. 4815 */ 4816 if (!ssp) { 4817 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4818 ssp->ss_pidp = pidp; 4819 ssp->ss_pid = pid; 4820 ssp->ss_next = NULL; 4821 if (pssp) 4822 pssp->ss_next = ssp; 4823 else 4824 stp->sd_siglist = ssp; 4825 mutex_enter(&pidlock); 4826 PID_HOLD(pidp); 4827 mutex_exit(&pidlock); 4828 } 4829 4830 /* 4831 * Set events. 4832 */ 4833 ssp->ss_events = ss.ss_events; 4834 } else { 4835 /* 4836 * Remove proc from register list. 4837 */ 4838 if (ssp) { 4839 mutex_enter(&pidlock); 4840 PID_RELE(pidp); 4841 mutex_exit(&pidlock); 4842 if (pssp) 4843 pssp->ss_next = ssp->ss_next; 4844 else 4845 stp->sd_siglist = ssp->ss_next; 4846 kmem_free(ssp, sizeof (strsig_t)); 4847 } else { 4848 mutex_exit(&stp->sd_lock); 4849 mutex_enter(&pidlock); 4850 PID_RELE(pidp); 4851 mutex_exit(&pidlock); 4852 return (EINVAL); 4853 } 4854 } 4855 4856 /* 4857 * Recalculate OR of sig events. 4858 */ 4859 stp->sd_sigflags = 0; 4860 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4861 stp->sd_sigflags |= ssp->ss_events; 4862 mutex_exit(&stp->sd_lock); 4863 mutex_enter(&pidlock); 4864 PID_RELE(pidp); 4865 mutex_exit(&pidlock); 4866 return (0); 4867 } 4868 4869 case I_EGETSIG: 4870 /* 4871 * Return (in arg) the current registration of events 4872 * for which the calling proc is to be signaled. 4873 */ 4874 { 4875 struct strsig *ssp; 4876 struct proc *proc; 4877 pid_t pid; 4878 struct pid *pidp; 4879 struct strsigset ss; 4880 4881 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4882 if (error) 4883 return (error); 4884 4885 pid = ss.ss_pid; 4886 mutex_enter(&pidlock); 4887 if (pid == 0) 4888 proc = curproc; 4889 else if (pid < 0) 4890 proc = pgfind(-pid); 4891 else 4892 proc = prfind(pid); 4893 if (proc == NULL) { 4894 mutex_exit(&pidlock); 4895 return (ESRCH); 4896 } 4897 if (pid < 0) 4898 pidp = proc->p_pgidp; 4899 else 4900 pidp = proc->p_pidp; 4901 4902 /* Prevent the pidp from being reassigned */ 4903 PID_HOLD(pidp); 4904 mutex_exit(&pidlock); 4905 4906 mutex_enter(&stp->sd_lock); 4907 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4908 if (ssp->ss_pid == pid) { 4909 ss.ss_pid = ssp->ss_pid; 4910 ss.ss_events = ssp->ss_events; 4911 error = strcopyout(&ss, (void *)arg, 4912 sizeof (struct strsigset), copyflag); 4913 mutex_exit(&stp->sd_lock); 4914 mutex_enter(&pidlock); 4915 PID_RELE(pidp); 4916 mutex_exit(&pidlock); 4917 return (error); 4918 } 4919 mutex_exit(&stp->sd_lock); 4920 mutex_enter(&pidlock); 4921 PID_RELE(pidp); 4922 mutex_exit(&pidlock); 4923 return (EINVAL); 4924 } 4925 4926 case I_PEEK: 4927 { 4928 STRUCT_DECL(strpeek, strpeek); 4929 size_t n; 4930 mblk_t *fmp, *tmp_mp = NULL; 4931 4932 STRUCT_INIT(strpeek, flag); 4933 4934 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4935 STRUCT_SIZE(strpeek), copyflag); 4936 if (error) 4937 return (error); 4938 4939 mutex_enter(QLOCK(rdq)); 4940 /* 4941 * Skip the invalid messages 4942 */ 4943 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4944 if (mp->b_datap->db_type != M_SIG) 4945 break; 4946 4947 /* 4948 * If user has requested to peek at a high priority message 4949 * and first message is not, return 0 4950 */ 4951 if (mp != NULL) { 4952 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4953 queclass(mp) == QNORM) { 4954 *rvalp = 0; 4955 mutex_exit(QLOCK(rdq)); 4956 return (0); 4957 } 4958 } else if (stp->sd_struiordq == NULL || 4959 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4960 /* 4961 * No mblks to look at at the streamhead and 4962 * 1). This isn't a synch stream or 4963 * 2). This is a synch stream but caller wants high 4964 * priority messages which is not supported by 4965 * the synch stream. (it only supports QNORM) 4966 */ 4967 *rvalp = 0; 4968 mutex_exit(QLOCK(rdq)); 4969 return (0); 4970 } 4971 4972 fmp = mp; 4973 4974 if (mp && mp->b_datap->db_type == M_PASSFP) { 4975 mutex_exit(QLOCK(rdq)); 4976 return (EBADMSG); 4977 } 4978 4979 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4980 mp->b_datap->db_type == M_PROTO || 4981 mp->b_datap->db_type == M_DATA); 4982 4983 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4984 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4985 } else { 4986 STRUCT_FSET(strpeek, flags, 0); 4987 } 4988 4989 4990 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 4991 mutex_exit(QLOCK(rdq)); 4992 return (ENOSR); 4993 } 4994 mutex_exit(QLOCK(rdq)); 4995 4996 /* 4997 * set mp = tmp_mp, so that I_PEEK processing can continue. 4998 * tmp_mp is used to free the dup'd message. 4999 */ 5000 mp = tmp_mp; 5001 5002 uio.uio_fmode = 0; 5003 uio.uio_extflg = UIO_COPY_CACHED; 5004 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5005 UIO_SYSSPACE; 5006 uio.uio_limit = 0; 5007 /* 5008 * First process PROTO blocks, if any. 5009 * If user doesn't want to get ctl info by setting maxlen <= 0, 5010 * then set len to -1/0 and skip control blocks part. 5011 */ 5012 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 5013 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5014 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 5015 STRUCT_FSET(strpeek, ctlbuf.len, 0); 5016 else { 5017 int ctl_part = 0; 5018 5019 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 5020 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 5021 uio.uio_iov = &iov; 5022 uio.uio_resid = iov.iov_len; 5023 uio.uio_loffset = 0; 5024 uio.uio_iovcnt = 1; 5025 while (mp && mp->b_datap->db_type != M_DATA && 5026 uio.uio_resid >= 0) { 5027 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 5028 mp->b_datap->db_type == M_PROTO : 5029 mp->b_datap->db_type == M_PCPROTO); 5030 5031 if ((n = MIN(uio.uio_resid, 5032 mp->b_wptr - mp->b_rptr)) != 0 && 5033 (error = uiomove((char *)mp->b_rptr, n, 5034 UIO_READ, &uio)) != 0) { 5035 freemsg(tmp_mp); 5036 return (error); 5037 } 5038 ctl_part = 1; 5039 mp = mp->b_cont; 5040 } 5041 /* No ctl message */ 5042 if (ctl_part == 0) 5043 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5044 else 5045 STRUCT_FSET(strpeek, ctlbuf.len, 5046 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 5047 uio.uio_resid); 5048 } 5049 5050 /* 5051 * Now process DATA blocks, if any. 5052 * If user doesn't want to get data info by setting maxlen <= 0, 5053 * then set len to -1/0 and skip data blocks part. 5054 */ 5055 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5056 STRUCT_FSET(strpeek, databuf.len, -1); 5057 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5058 STRUCT_FSET(strpeek, databuf.len, 0); 5059 else { 5060 int data_part = 0; 5061 5062 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5063 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5064 uio.uio_iov = &iov; 5065 uio.uio_resid = iov.iov_len; 5066 uio.uio_loffset = 0; 5067 uio.uio_iovcnt = 1; 5068 while (mp && uio.uio_resid) { 5069 if (mp->b_datap->db_type == M_DATA) { 5070 if ((n = MIN(uio.uio_resid, 5071 mp->b_wptr - mp->b_rptr)) != 0 && 5072 (error = uiomove((char *)mp->b_rptr, 5073 n, UIO_READ, &uio)) != 0) { 5074 freemsg(tmp_mp); 5075 return (error); 5076 } 5077 data_part = 1; 5078 } 5079 ASSERT(data_part == 0 || 5080 mp->b_datap->db_type == M_DATA); 5081 mp = mp->b_cont; 5082 } 5083 /* No data message */ 5084 if (data_part == 0) 5085 STRUCT_FSET(strpeek, databuf.len, -1); 5086 else 5087 STRUCT_FSET(strpeek, databuf.len, 5088 STRUCT_FGET(strpeek, databuf.maxlen) - 5089 uio.uio_resid); 5090 } 5091 freemsg(tmp_mp); 5092 5093 /* 5094 * It is a synch stream and user wants to get 5095 * data (maxlen > 0). 5096 * uio setup is done by the codes that process DATA 5097 * blocks above. 5098 */ 5099 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5100 infod_t infod; 5101 5102 infod.d_cmd = INFOD_COPYOUT; 5103 infod.d_res = 0; 5104 infod.d_uiop = &uio; 5105 error = infonext(rdq, &infod); 5106 if (error == EINVAL || error == EBUSY) 5107 error = 0; 5108 if (error) 5109 return (error); 5110 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5111 databuf.maxlen) - uio.uio_resid); 5112 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5113 /* 5114 * No data found by the infonext(). 5115 */ 5116 STRUCT_FSET(strpeek, databuf.len, -1); 5117 } 5118 } 5119 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5120 STRUCT_SIZE(strpeek), copyflag); 5121 if (error) { 5122 return (error); 5123 } 5124 /* 5125 * If there is no message retrieved, set return code to 0 5126 * otherwise, set it to 1. 5127 */ 5128 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5129 STRUCT_FGET(strpeek, databuf.len) == -1) 5130 *rvalp = 0; 5131 else 5132 *rvalp = 1; 5133 return (0); 5134 } 5135 5136 case I_FDINSERT: 5137 { 5138 STRUCT_DECL(strfdinsert, strfdinsert); 5139 struct file *resftp; 5140 struct stdata *resstp; 5141 t_uscalar_t ival; 5142 ssize_t msgsize; 5143 struct strbuf mctl; 5144 5145 STRUCT_INIT(strfdinsert, flag); 5146 if (stp->sd_flag & STRHUP) 5147 return (ENXIO); 5148 /* 5149 * STRDERR, STWRERR and STPLEX tested above. 5150 */ 5151 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5152 STRUCT_SIZE(strfdinsert), copyflag); 5153 if (error) 5154 return (error); 5155 5156 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5157 (STRUCT_FGET(strfdinsert, offset) % 5158 sizeof (t_uscalar_t)) != 0) 5159 return (EINVAL); 5160 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5161 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5162 releasef(STRUCT_FGET(strfdinsert, fildes)); 5163 return (EINVAL); 5164 } 5165 } else 5166 return (EINVAL); 5167 5168 mutex_enter(&resstp->sd_lock); 5169 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5170 error = strgeterr(resstp, 5171 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5172 if (error != 0) { 5173 mutex_exit(&resstp->sd_lock); 5174 releasef(STRUCT_FGET(strfdinsert, fildes)); 5175 return (error); 5176 } 5177 } 5178 mutex_exit(&resstp->sd_lock); 5179 5180 #ifdef _ILP32 5181 { 5182 queue_t *q; 5183 queue_t *mate = NULL; 5184 5185 /* get read queue of stream terminus */ 5186 claimstr(resstp->sd_wrq); 5187 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5188 q = q->q_next) 5189 if (!STRMATED(resstp) && STREAM(q) != resstp && 5190 mate == NULL) { 5191 ASSERT(q->q_qinfo->qi_srvp); 5192 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5193 claimstr(q); 5194 mate = q; 5195 } 5196 q = _RD(q); 5197 if (mate) 5198 releasestr(mate); 5199 releasestr(resstp->sd_wrq); 5200 ival = (t_uscalar_t)q; 5201 } 5202 #else 5203 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5204 #endif /* _ILP32 */ 5205 5206 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5207 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5208 releasef(STRUCT_FGET(strfdinsert, fildes)); 5209 return (EINVAL); 5210 } 5211 5212 /* 5213 * Check for legal flag value. 5214 */ 5215 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5216 releasef(STRUCT_FGET(strfdinsert, fildes)); 5217 return (EINVAL); 5218 } 5219 5220 /* get these values from those cached in the stream head */ 5221 mutex_enter(QLOCK(stp->sd_wrq)); 5222 rmin = stp->sd_qn_minpsz; 5223 rmax = stp->sd_qn_maxpsz; 5224 mutex_exit(QLOCK(stp->sd_wrq)); 5225 5226 /* 5227 * Make sure ctl and data sizes together fall within 5228 * the limits of the max and min receive packet sizes 5229 * and do not exceed system limit. A negative data 5230 * length means that no data part is to be sent. 5231 */ 5232 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5233 if (rmax == 0) { 5234 releasef(STRUCT_FGET(strfdinsert, fildes)); 5235 return (ERANGE); 5236 } 5237 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5238 msgsize = 0; 5239 if ((msgsize < rmin) || 5240 ((msgsize > rmax) && (rmax != INFPSZ)) || 5241 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5242 releasef(STRUCT_FGET(strfdinsert, fildes)); 5243 return (ERANGE); 5244 } 5245 5246 mutex_enter(&stp->sd_lock); 5247 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5248 !canputnext(stp->sd_wrq)) { 5249 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5250 flag, -1, &done)) != 0 || done) { 5251 mutex_exit(&stp->sd_lock); 5252 releasef(STRUCT_FGET(strfdinsert, fildes)); 5253 return (error); 5254 } 5255 if ((error = i_straccess(stp, access)) != 0) { 5256 mutex_exit(&stp->sd_lock); 5257 releasef( 5258 STRUCT_FGET(strfdinsert, fildes)); 5259 return (error); 5260 } 5261 } 5262 mutex_exit(&stp->sd_lock); 5263 5264 /* 5265 * Copy strfdinsert.ctlbuf into native form of 5266 * ctlbuf to pass down into strmakemsg(). 5267 */ 5268 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5269 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5270 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5271 5272 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5273 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5274 uio.uio_iov = &iov; 5275 uio.uio_iovcnt = 1; 5276 uio.uio_loffset = 0; 5277 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5278 UIO_SYSSPACE; 5279 uio.uio_fmode = 0; 5280 uio.uio_extflg = UIO_COPY_CACHED; 5281 uio.uio_resid = iov.iov_len; 5282 if ((error = strmakemsg(&mctl, 5283 &msgsize, &uio, stp, 5284 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5285 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5286 releasef(STRUCT_FGET(strfdinsert, fildes)); 5287 return (error); 5288 } 5289 5290 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5291 5292 /* 5293 * Place the possibly reencoded queue pointer 'offset' bytes 5294 * from the start of the control portion of the message. 5295 */ 5296 *((t_uscalar_t *)(mp->b_rptr + 5297 STRUCT_FGET(strfdinsert, offset))) = ival; 5298 5299 /* 5300 * Put message downstream. 5301 */ 5302 stream_willservice(stp); 5303 putnext(stp->sd_wrq, mp); 5304 stream_runservice(stp); 5305 releasef(STRUCT_FGET(strfdinsert, fildes)); 5306 return (error); 5307 } 5308 5309 case I_SENDFD: 5310 { 5311 struct file *fp; 5312 5313 if ((fp = getf((int)arg)) == NULL) 5314 return (EBADF); 5315 error = do_sendfp(stp, fp, crp); 5316 if (auditing) { 5317 audit_fdsend((int)arg, fp, error); 5318 } 5319 releasef((int)arg); 5320 return (error); 5321 } 5322 5323 case I_RECVFD: 5324 case I_E_RECVFD: 5325 { 5326 struct k_strrecvfd *srf; 5327 int i, fd; 5328 5329 mutex_enter(&stp->sd_lock); 5330 while (!(mp = getq(rdq))) { 5331 if (stp->sd_flag & (STRHUP|STREOF)) { 5332 mutex_exit(&stp->sd_lock); 5333 return (ENXIO); 5334 } 5335 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5336 flag, -1, &done)) != 0 || done) { 5337 mutex_exit(&stp->sd_lock); 5338 return (error); 5339 } 5340 if ((error = i_straccess(stp, access)) != 0) { 5341 mutex_exit(&stp->sd_lock); 5342 return (error); 5343 } 5344 } 5345 if (mp->b_datap->db_type != M_PASSFP) { 5346 putback(stp, rdq, mp, mp->b_band); 5347 mutex_exit(&stp->sd_lock); 5348 return (EBADMSG); 5349 } 5350 mutex_exit(&stp->sd_lock); 5351 5352 srf = (struct k_strrecvfd *)mp->b_rptr; 5353 if ((fd = ufalloc(0)) == -1) { 5354 mutex_enter(&stp->sd_lock); 5355 putback(stp, rdq, mp, mp->b_band); 5356 mutex_exit(&stp->sd_lock); 5357 return (EMFILE); 5358 } 5359 if (cmd == I_RECVFD) { 5360 struct o_strrecvfd ostrfd; 5361 5362 /* check to see if uid/gid values are too large. */ 5363 5364 if (srf->uid > (o_uid_t)USHRT_MAX || 5365 srf->gid > (o_gid_t)USHRT_MAX) { 5366 mutex_enter(&stp->sd_lock); 5367 putback(stp, rdq, mp, mp->b_band); 5368 mutex_exit(&stp->sd_lock); 5369 setf(fd, NULL); /* release fd entry */ 5370 return (EOVERFLOW); 5371 } 5372 5373 ostrfd.fd = fd; 5374 ostrfd.uid = (o_uid_t)srf->uid; 5375 ostrfd.gid = (o_gid_t)srf->gid; 5376 5377 /* Null the filler bits */ 5378 for (i = 0; i < 8; i++) 5379 ostrfd.fill[i] = 0; 5380 5381 error = strcopyout(&ostrfd, (void *)arg, 5382 sizeof (struct o_strrecvfd), copyflag); 5383 } else { /* I_E_RECVFD */ 5384 struct strrecvfd strfd; 5385 5386 strfd.fd = fd; 5387 strfd.uid = srf->uid; 5388 strfd.gid = srf->gid; 5389 5390 /* null the filler bits */ 5391 for (i = 0; i < 8; i++) 5392 strfd.fill[i] = 0; 5393 5394 error = strcopyout(&strfd, (void *)arg, 5395 sizeof (struct strrecvfd), copyflag); 5396 } 5397 5398 if (error) { 5399 setf(fd, NULL); /* release fd entry */ 5400 mutex_enter(&stp->sd_lock); 5401 putback(stp, rdq, mp, mp->b_band); 5402 mutex_exit(&stp->sd_lock); 5403 return (error); 5404 } 5405 if (auditing) { 5406 audit_fdrecv(fd, srf->fp); 5407 } 5408 5409 /* 5410 * Always increment f_count since the freemsg() below will 5411 * always call free_passfp() which performs a closef(). 5412 */ 5413 mutex_enter(&srf->fp->f_tlock); 5414 srf->fp->f_count++; 5415 mutex_exit(&srf->fp->f_tlock); 5416 setf(fd, srf->fp); 5417 freemsg(mp); 5418 return (0); 5419 } 5420 5421 case I_SWROPT: 5422 /* 5423 * Set/clear the write options. arg is a bit 5424 * mask with any of the following bits set... 5425 * SNDZERO - send zero length message 5426 * SNDPIPE - send sigpipe to process if 5427 * sd_werror is set and process is 5428 * doing a write or putmsg. 5429 * The new stream head write options should reflect 5430 * what is in arg. 5431 */ 5432 if (arg & ~(SNDZERO|SNDPIPE)) 5433 return (EINVAL); 5434 5435 mutex_enter(&stp->sd_lock); 5436 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5437 if (arg & SNDZERO) 5438 stp->sd_wput_opt |= SW_SNDZERO; 5439 if (arg & SNDPIPE) 5440 stp->sd_wput_opt |= SW_SIGPIPE; 5441 mutex_exit(&stp->sd_lock); 5442 return (0); 5443 5444 case I_GWROPT: 5445 { 5446 int wropt = 0; 5447 5448 if (stp->sd_wput_opt & SW_SNDZERO) 5449 wropt |= SNDZERO; 5450 if (stp->sd_wput_opt & SW_SIGPIPE) 5451 wropt |= SNDPIPE; 5452 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5453 copyflag)); 5454 } 5455 5456 case I_LIST: 5457 /* 5458 * Returns all the modules found on this stream, 5459 * upto the driver. If argument is NULL, return the 5460 * number of modules (including driver). If argument 5461 * is not NULL, copy the names into the structure 5462 * provided. 5463 */ 5464 5465 { 5466 queue_t *q; 5467 char *qname; 5468 int i, nmods; 5469 struct str_mlist *mlist; 5470 STRUCT_DECL(str_list, strlist); 5471 5472 if (arg == NULL) { /* Return number of modules plus driver */ 5473 if (stp->sd_vnode->v_type == VFIFO) 5474 *rvalp = stp->sd_pushcnt; 5475 else 5476 *rvalp = stp->sd_pushcnt + 1; 5477 return (0); 5478 } 5479 5480 STRUCT_INIT(strlist, flag); 5481 5482 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5483 STRUCT_SIZE(strlist), copyflag); 5484 if (error != 0) 5485 return (error); 5486 5487 mlist = STRUCT_FGETP(strlist, sl_modlist); 5488 nmods = STRUCT_FGET(strlist, sl_nmods); 5489 if (nmods <= 0) 5490 return (EINVAL); 5491 5492 claimstr(stp->sd_wrq); 5493 q = stp->sd_wrq; 5494 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) { 5495 qname = Q2NAME(q->q_next); 5496 error = strcopyout(qname, &mlist[i], strlen(qname) + 1, 5497 copyflag); 5498 if (error != 0) { 5499 releasestr(stp->sd_wrq); 5500 return (error); 5501 } 5502 } 5503 releasestr(stp->sd_wrq); 5504 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag)); 5505 } 5506 5507 case I_CKBAND: 5508 { 5509 queue_t *q; 5510 qband_t *qbp; 5511 5512 if ((arg < 0) || (arg >= NBAND)) 5513 return (EINVAL); 5514 q = _RD(stp->sd_wrq); 5515 mutex_enter(QLOCK(q)); 5516 if (arg > (int)q->q_nband) { 5517 *rvalp = 0; 5518 } else { 5519 if (arg == 0) { 5520 if (q->q_first) 5521 *rvalp = 1; 5522 else 5523 *rvalp = 0; 5524 } else { 5525 qbp = q->q_bandp; 5526 while (--arg > 0) 5527 qbp = qbp->qb_next; 5528 if (qbp->qb_first) 5529 *rvalp = 1; 5530 else 5531 *rvalp = 0; 5532 } 5533 } 5534 mutex_exit(QLOCK(q)); 5535 return (0); 5536 } 5537 5538 case I_GETBAND: 5539 { 5540 int intpri; 5541 queue_t *q; 5542 5543 q = _RD(stp->sd_wrq); 5544 mutex_enter(QLOCK(q)); 5545 mp = q->q_first; 5546 if (!mp) { 5547 mutex_exit(QLOCK(q)); 5548 return (ENODATA); 5549 } 5550 intpri = (int)mp->b_band; 5551 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5552 copyflag); 5553 mutex_exit(QLOCK(q)); 5554 return (error); 5555 } 5556 5557 case I_ATMARK: 5558 { 5559 queue_t *q; 5560 5561 if (arg & ~(ANYMARK|LASTMARK)) 5562 return (EINVAL); 5563 q = _RD(stp->sd_wrq); 5564 mutex_enter(&stp->sd_lock); 5565 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5566 *rvalp = 1; 5567 } else { 5568 mutex_enter(QLOCK(q)); 5569 mp = q->q_first; 5570 5571 if (mp == NULL) 5572 *rvalp = 0; 5573 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5574 *rvalp = 1; 5575 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5576 *rvalp = 1; 5577 else 5578 *rvalp = 0; 5579 mutex_exit(QLOCK(q)); 5580 } 5581 mutex_exit(&stp->sd_lock); 5582 return (0); 5583 } 5584 5585 case I_CANPUT: 5586 { 5587 char band; 5588 5589 if ((arg < 0) || (arg >= NBAND)) 5590 return (EINVAL); 5591 band = (char)arg; 5592 *rvalp = bcanputnext(stp->sd_wrq, band); 5593 return (0); 5594 } 5595 5596 case I_SETCLTIME: 5597 { 5598 int closetime; 5599 5600 error = strcopyin((void *)arg, &closetime, sizeof (int), 5601 copyflag); 5602 if (error) 5603 return (error); 5604 if (closetime < 0) 5605 return (EINVAL); 5606 5607 stp->sd_closetime = closetime; 5608 return (0); 5609 } 5610 5611 case I_GETCLTIME: 5612 { 5613 int closetime; 5614 5615 closetime = stp->sd_closetime; 5616 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5617 copyflag)); 5618 } 5619 5620 case TIOCGSID: 5621 { 5622 pid_t sid; 5623 5624 mutex_enter(&stp->sd_lock); 5625 if (stp->sd_sidp == NULL) { 5626 mutex_exit(&stp->sd_lock); 5627 return (ENOTTY); 5628 } 5629 sid = stp->sd_sidp->pid_id; 5630 mutex_exit(&stp->sd_lock); 5631 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5632 copyflag)); 5633 } 5634 5635 case TIOCSPGRP: 5636 { 5637 pid_t pgrp; 5638 proc_t *q; 5639 pid_t sid, fg_pgid, bg_pgid; 5640 5641 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5642 copyflag)) 5643 return (error); 5644 mutex_enter(&stp->sd_lock); 5645 mutex_enter(&pidlock); 5646 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5647 mutex_exit(&pidlock); 5648 mutex_exit(&stp->sd_lock); 5649 return (ENOTTY); 5650 } 5651 if (pgrp == stp->sd_pgidp->pid_id) { 5652 mutex_exit(&pidlock); 5653 mutex_exit(&stp->sd_lock); 5654 return (0); 5655 } 5656 if (pgrp <= 0 || pgrp >= maxpid) { 5657 mutex_exit(&pidlock); 5658 mutex_exit(&stp->sd_lock); 5659 return (EINVAL); 5660 } 5661 if ((q = pgfind(pgrp)) == NULL || 5662 q->p_sessp != ttoproc(curthread)->p_sessp) { 5663 mutex_exit(&pidlock); 5664 mutex_exit(&stp->sd_lock); 5665 return (EPERM); 5666 } 5667 sid = stp->sd_sidp->pid_id; 5668 fg_pgid = q->p_pgrp; 5669 bg_pgid = stp->sd_pgidp->pid_id; 5670 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5671 PID_RELE(stp->sd_pgidp); 5672 ctty_clear_sighuped(); 5673 stp->sd_pgidp = q->p_pgidp; 5674 PID_HOLD(stp->sd_pgidp); 5675 mutex_exit(&pidlock); 5676 mutex_exit(&stp->sd_lock); 5677 return (0); 5678 } 5679 5680 case TIOCGPGRP: 5681 { 5682 pid_t pgrp; 5683 5684 mutex_enter(&stp->sd_lock); 5685 if (stp->sd_sidp == NULL) { 5686 mutex_exit(&stp->sd_lock); 5687 return (ENOTTY); 5688 } 5689 pgrp = stp->sd_pgidp->pid_id; 5690 mutex_exit(&stp->sd_lock); 5691 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5692 copyflag)); 5693 } 5694 5695 case TIOCSCTTY: 5696 { 5697 return (strctty(stp)); 5698 } 5699 5700 case TIOCNOTTY: 5701 { 5702 /* freectty() always assumes curproc. */ 5703 if (freectty(B_FALSE) != 0) 5704 return (0); 5705 return (ENOTTY); 5706 } 5707 5708 case FIONBIO: 5709 case FIOASYNC: 5710 return (0); /* handled by the upper layer */ 5711 } 5712 } 5713 5714 /* 5715 * Custom free routine used for M_PASSFP messages. 5716 */ 5717 static void 5718 free_passfp(struct k_strrecvfd *srf) 5719 { 5720 (void) closef(srf->fp); 5721 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5722 } 5723 5724 /* ARGSUSED */ 5725 int 5726 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5727 { 5728 queue_t *qp, *nextqp; 5729 struct k_strrecvfd *srf; 5730 mblk_t *mp; 5731 frtn_t *frtnp; 5732 size_t bufsize; 5733 queue_t *mate = NULL; 5734 syncq_t *sq = NULL; 5735 int retval = 0; 5736 5737 if (stp->sd_flag & STRHUP) 5738 return (ENXIO); 5739 5740 claimstr(stp->sd_wrq); 5741 5742 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5743 if (STRMATED(stp)) { 5744 qp = _RD(stp->sd_mate->sd_wrq); 5745 claimstr(qp); 5746 mate = qp; 5747 } else { /* Not already mated. */ 5748 5749 /* 5750 * Walk the stream to the end of this one. 5751 * assumes that the claimstr() will prevent 5752 * plumbing between the stream head and the 5753 * driver from changing 5754 */ 5755 qp = stp->sd_wrq; 5756 5757 /* 5758 * Loop until we reach the end of this stream. 5759 * On completion, qp points to the write queue 5760 * at the end of the stream, or the read queue 5761 * at the stream head if this is a fifo. 5762 */ 5763 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5764 ; 5765 5766 /* 5767 * Just in case we get a q_next which is NULL, but 5768 * not at the end of the stream. This is actually 5769 * broken, so we set an assert to catch it in 5770 * debug, and set an error and return if not debug. 5771 */ 5772 ASSERT(qp); 5773 if (qp == NULL) { 5774 releasestr(stp->sd_wrq); 5775 return (EINVAL); 5776 } 5777 5778 /* 5779 * Enter the syncq for the driver, so (hopefully) 5780 * the queue values will not change on us. 5781 * XXXX - This will only prevent the race IFF only 5782 * the write side modifies the q_next member, and 5783 * the put procedure is protected by at least 5784 * MT_PERQ. 5785 */ 5786 if ((sq = qp->q_syncq) != NULL) 5787 entersq(sq, SQ_PUT); 5788 5789 /* Now get the q_next value from this qp. */ 5790 nextqp = qp->q_next; 5791 5792 /* 5793 * If nextqp exists and the other stream is different 5794 * from this one claim the stream, set the mate, and 5795 * get the read queue at the stream head of the other 5796 * stream. Assumes that nextqp was at least valid when 5797 * we got it. Hopefully the entersq of the driver 5798 * will prevent it from changing on us. 5799 */ 5800 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5801 ASSERT(qp->q_qinfo->qi_srvp); 5802 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5803 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5804 claimstr(nextqp); 5805 5806 /* Make sure we still have a q_next */ 5807 if (nextqp != qp->q_next) { 5808 releasestr(stp->sd_wrq); 5809 releasestr(nextqp); 5810 return (EINVAL); 5811 } 5812 5813 qp = _RD(STREAM(nextqp)->sd_wrq); 5814 mate = qp; 5815 } 5816 /* If we entered the synq above, leave it. */ 5817 if (sq != NULL) 5818 leavesq(sq, SQ_PUT); 5819 } /* STRMATED(STP) */ 5820 5821 /* XXX prevents substitution of the ops vector */ 5822 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5823 retval = EINVAL; 5824 goto out; 5825 } 5826 5827 if (qp->q_flag & QFULL) { 5828 retval = EAGAIN; 5829 goto out; 5830 } 5831 5832 /* 5833 * Since M_PASSFP messages include a file descriptor, we use 5834 * esballoc() and specify a custom free routine (free_passfp()) that 5835 * will close the descriptor as part of freeing the message. For 5836 * convenience, we stash the frtn_t right after the data block. 5837 */ 5838 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5839 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5840 if (srf == NULL) { 5841 retval = EAGAIN; 5842 goto out; 5843 } 5844 5845 frtnp = (frtn_t *)(srf + 1); 5846 frtnp->free_arg = (caddr_t)srf; 5847 frtnp->free_func = free_passfp; 5848 5849 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5850 if (mp == NULL) { 5851 kmem_free(srf, bufsize); 5852 retval = EAGAIN; 5853 goto out; 5854 } 5855 mp->b_wptr += sizeof (struct k_strrecvfd); 5856 mp->b_datap->db_type = M_PASSFP; 5857 5858 srf->fp = fp; 5859 srf->uid = crgetuid(curthread->t_cred); 5860 srf->gid = crgetgid(curthread->t_cred); 5861 mutex_enter(&fp->f_tlock); 5862 fp->f_count++; 5863 mutex_exit(&fp->f_tlock); 5864 5865 put(qp, mp); 5866 out: 5867 releasestr(stp->sd_wrq); 5868 if (mate) 5869 releasestr(mate); 5870 return (retval); 5871 } 5872 5873 /* 5874 * Send an ioctl message downstream and wait for acknowledgement. 5875 * flags may be set to either U_TO_K or K_TO_K and a combination 5876 * of STR_NOERROR or STR_NOSIG 5877 * STR_NOSIG: Signals are essentially ignored or held and have 5878 * no effect for the duration of the call. 5879 * STR_NOERROR: Ignores stream head read, write and hup errors. 5880 * Additionally, if an existing ioctl times out, it is assumed 5881 * lost and and this ioctl will continue as if the previous ioctl had 5882 * finished. ETIME may be returned if this ioctl times out (i.e. 5883 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5884 * the ioc_error indicates that the driver/module had problems, 5885 * an EFAULT was found when accessing user data, a lack of 5886 * resources, etc. 5887 */ 5888 int 5889 strdoioctl( 5890 struct stdata *stp, 5891 struct strioctl *strioc, 5892 int fflags, /* file flags with model info */ 5893 int flag, 5894 cred_t *crp, 5895 int *rvalp) 5896 { 5897 mblk_t *bp; 5898 struct iocblk *iocbp; 5899 struct copyreq *reqp; 5900 struct copyresp *resp; 5901 int id; 5902 int transparent = 0; 5903 int error = 0; 5904 int len = 0; 5905 caddr_t taddr; 5906 int copyflag = (flag & (U_TO_K | K_TO_K)); 5907 int sigflag = (flag & STR_NOSIG); 5908 int errs; 5909 uint_t waitflags; 5910 boolean_t set_iocwaitne = B_FALSE; 5911 5912 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5913 ASSERT((fflags & FMODELS) != 0); 5914 5915 TRACE_2(TR_FAC_STREAMS_FR, 5916 TR_STRDOIOCTL, 5917 "strdoioctl:stp %p strioc %p", stp, strioc); 5918 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5919 transparent = 1; 5920 strioc->ic_len = sizeof (intptr_t); 5921 } 5922 5923 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5924 return (EINVAL); 5925 5926 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5927 crp, curproc->p_pid)) == NULL) 5928 return (error); 5929 5930 bzero(bp->b_wptr, sizeof (union ioctypes)); 5931 5932 iocbp = (struct iocblk *)bp->b_wptr; 5933 iocbp->ioc_count = strioc->ic_len; 5934 iocbp->ioc_cmd = strioc->ic_cmd; 5935 iocbp->ioc_flag = (fflags & FMODELS); 5936 5937 crhold(crp); 5938 iocbp->ioc_cr = crp; 5939 DB_TYPE(bp) = M_IOCTL; 5940 bp->b_wptr += sizeof (struct iocblk); 5941 5942 if (flag & STR_NOERROR) 5943 errs = STPLEX; 5944 else 5945 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5946 5947 /* 5948 * If there is data to copy into ioctl block, do so. 5949 */ 5950 if (iocbp->ioc_count > 0) { 5951 if (transparent) 5952 /* 5953 * Note: STR_NOERROR does not have an effect 5954 * in putiocd() 5955 */ 5956 id = K_TO_K | sigflag; 5957 else 5958 id = flag; 5959 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5960 freemsg(bp); 5961 crfree(crp); 5962 return (error); 5963 } 5964 5965 /* 5966 * We could have slept copying in user pages. 5967 * Recheck the stream head state (the other end 5968 * of a pipe could have gone away). 5969 */ 5970 if (stp->sd_flag & errs) { 5971 mutex_enter(&stp->sd_lock); 5972 error = strgeterr(stp, errs, 0); 5973 mutex_exit(&stp->sd_lock); 5974 if (error != 0) { 5975 freemsg(bp); 5976 crfree(crp); 5977 return (error); 5978 } 5979 } 5980 } 5981 if (transparent) 5982 iocbp->ioc_count = TRANSPARENT; 5983 5984 /* 5985 * Block for up to STRTIMOUT milliseconds if there is an outstanding 5986 * ioctl for this stream already running. All processes 5987 * sleeping here will be awakened as a result of an ACK 5988 * or NAK being received for the outstanding ioctl, or 5989 * as a result of the timer expiring on the outstanding 5990 * ioctl (a failure), or as a result of any waiting 5991 * process's timer expiring (also a failure). 5992 */ 5993 5994 error = 0; 5995 mutex_enter(&stp->sd_lock); 5996 while ((stp->sd_flag & IOCWAIT) || 5997 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) { 5998 clock_t cv_rval; 5999 6000 TRACE_0(TR_FAC_STREAMS_FR, 6001 TR_STRDOIOCTL_WAIT, 6002 "strdoioctl sleeps - IOCWAIT"); 6003 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 6004 STRTIMOUT, sigflag); 6005 if (cv_rval <= 0) { 6006 if (cv_rval == 0) { 6007 error = EINTR; 6008 } else { 6009 if (flag & STR_NOERROR) { 6010 /* 6011 * Terminating current ioctl in 6012 * progress -- assume it got lost and 6013 * wake up the other thread so that the 6014 * operation completes. 6015 */ 6016 if (!(stp->sd_flag & IOCWAITNE)) { 6017 set_iocwaitne = B_TRUE; 6018 stp->sd_flag |= IOCWAITNE; 6019 cv_broadcast(&stp->sd_monitor); 6020 } 6021 /* 6022 * Otherwise, there's a running 6023 * STR_NOERROR -- we have no choice 6024 * here but to wait forever (or until 6025 * interrupted). 6026 */ 6027 } else { 6028 /* 6029 * pending ioctl has caused 6030 * us to time out 6031 */ 6032 error = ETIME; 6033 } 6034 } 6035 } else if ((stp->sd_flag & errs)) { 6036 error = strgeterr(stp, errs, 0); 6037 } 6038 if (error) { 6039 mutex_exit(&stp->sd_lock); 6040 freemsg(bp); 6041 crfree(crp); 6042 return (error); 6043 } 6044 } 6045 6046 /* 6047 * Have control of ioctl mechanism. 6048 * Send down ioctl packet and wait for response. 6049 */ 6050 if (stp->sd_iocblk != (mblk_t *)-1) { 6051 freemsg(stp->sd_iocblk); 6052 } 6053 stp->sd_iocblk = NULL; 6054 6055 /* 6056 * If this is marked with 'noerror' (internal; mostly 6057 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6058 * in here by setting IOCWAITNE. 6059 */ 6060 waitflags = IOCWAIT; 6061 if (flag & STR_NOERROR) 6062 waitflags |= IOCWAITNE; 6063 6064 stp->sd_flag |= waitflags; 6065 6066 /* 6067 * Assign sequence number. 6068 */ 6069 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6070 6071 mutex_exit(&stp->sd_lock); 6072 6073 TRACE_1(TR_FAC_STREAMS_FR, 6074 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6075 stream_willservice(stp); 6076 putnext(stp->sd_wrq, bp); 6077 stream_runservice(stp); 6078 6079 /* 6080 * Timed wait for acknowledgment. The wait time is limited by the 6081 * timeout value, which must be a positive integer (number of 6082 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6083 * milliseconds), or -1 (wait forever). This will be awakened 6084 * either by an ACK/NAK message arriving, the timer expiring, or 6085 * the timer expiring on another ioctl waiting for control of the 6086 * mechanism. 6087 */ 6088 waitioc: 6089 mutex_enter(&stp->sd_lock); 6090 6091 6092 /* 6093 * If the reply has already arrived, don't sleep. If awakened from 6094 * the sleep, fail only if the reply has not arrived by then. 6095 * Otherwise, process the reply. 6096 */ 6097 while (!stp->sd_iocblk) { 6098 clock_t cv_rval; 6099 6100 if (stp->sd_flag & errs) { 6101 error = strgeterr(stp, errs, 0); 6102 if (error != 0) { 6103 stp->sd_flag &= ~waitflags; 6104 cv_broadcast(&stp->sd_iocmonitor); 6105 mutex_exit(&stp->sd_lock); 6106 crfree(crp); 6107 return (error); 6108 } 6109 } 6110 6111 TRACE_0(TR_FAC_STREAMS_FR, 6112 TR_STRDOIOCTL_WAIT2, 6113 "strdoioctl sleeps awaiting reply"); 6114 ASSERT(error == 0); 6115 6116 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6117 (strioc->ic_timout ? 6118 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6119 6120 /* 6121 * There are four possible cases here: interrupt, timeout, 6122 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6123 * valid M_IOCTL reply). 6124 * 6125 * If we've been awakened by a STR_NOERROR ioctl on some other 6126 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6127 * will be set. Pretend as if we just timed out. Note that 6128 * this other thread waited at least STRTIMOUT before trying to 6129 * awaken our thread, so this is indistinguishable (even for 6130 * INFTIM) from the case where we failed with ETIME waiting on 6131 * IOCWAIT in the prior loop. 6132 */ 6133 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6134 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6135 cv_rval = -1; 6136 } 6137 6138 /* 6139 * note: STR_NOERROR does not protect 6140 * us here.. use ic_timout < 0 6141 */ 6142 if (cv_rval <= 0) { 6143 if (cv_rval == 0) { 6144 error = EINTR; 6145 } else { 6146 error = ETIME; 6147 } 6148 /* 6149 * A message could have come in after we were scheduled 6150 * but before we were actually run. 6151 */ 6152 bp = stp->sd_iocblk; 6153 stp->sd_iocblk = NULL; 6154 if (bp != NULL) { 6155 if ((bp->b_datap->db_type == M_COPYIN) || 6156 (bp->b_datap->db_type == M_COPYOUT)) { 6157 mutex_exit(&stp->sd_lock); 6158 if (bp->b_cont) { 6159 freemsg(bp->b_cont); 6160 bp->b_cont = NULL; 6161 } 6162 bp->b_datap->db_type = M_IOCDATA; 6163 bp->b_wptr = bp->b_rptr + 6164 sizeof (struct copyresp); 6165 resp = (struct copyresp *)bp->b_rptr; 6166 resp->cp_rval = 6167 (caddr_t)1; /* failure */ 6168 stream_willservice(stp); 6169 putnext(stp->sd_wrq, bp); 6170 stream_runservice(stp); 6171 mutex_enter(&stp->sd_lock); 6172 } else { 6173 freemsg(bp); 6174 } 6175 } 6176 stp->sd_flag &= ~waitflags; 6177 cv_broadcast(&stp->sd_iocmonitor); 6178 mutex_exit(&stp->sd_lock); 6179 crfree(crp); 6180 return (error); 6181 } 6182 } 6183 bp = stp->sd_iocblk; 6184 /* 6185 * Note: it is strictly impossible to get here with sd_iocblk set to 6186 * -1. This is because the initial loop above doesn't allow any new 6187 * ioctls into the fray until all others have passed this point. 6188 */ 6189 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6190 TRACE_1(TR_FAC_STREAMS_FR, 6191 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6192 if ((bp->b_datap->db_type == M_IOCACK) || 6193 (bp->b_datap->db_type == M_IOCNAK)) { 6194 /* for detection of duplicate ioctl replies */ 6195 stp->sd_iocblk = (mblk_t *)-1; 6196 stp->sd_flag &= ~waitflags; 6197 cv_broadcast(&stp->sd_iocmonitor); 6198 mutex_exit(&stp->sd_lock); 6199 } else { 6200 /* 6201 * flags not cleared here because we're still doing 6202 * copy in/out for ioctl. 6203 */ 6204 stp->sd_iocblk = NULL; 6205 mutex_exit(&stp->sd_lock); 6206 } 6207 6208 6209 /* 6210 * Have received acknowledgment. 6211 */ 6212 6213 switch (bp->b_datap->db_type) { 6214 case M_IOCACK: 6215 /* 6216 * Positive ack. 6217 */ 6218 iocbp = (struct iocblk *)bp->b_rptr; 6219 6220 /* 6221 * Set error if indicated. 6222 */ 6223 if (iocbp->ioc_error) { 6224 error = iocbp->ioc_error; 6225 break; 6226 } 6227 6228 /* 6229 * Set return value. 6230 */ 6231 *rvalp = iocbp->ioc_rval; 6232 6233 /* 6234 * Data may have been returned in ACK message (ioc_count > 0). 6235 * If so, copy it out to the user's buffer. 6236 */ 6237 if (iocbp->ioc_count && !transparent) { 6238 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6239 break; 6240 } 6241 if (!transparent) { 6242 if (len) /* an M_COPYOUT was used with I_STR */ 6243 strioc->ic_len = len; 6244 else 6245 strioc->ic_len = (int)iocbp->ioc_count; 6246 } 6247 break; 6248 6249 case M_IOCNAK: 6250 /* 6251 * Negative ack. 6252 * 6253 * The only thing to do is set error as specified 6254 * in neg ack packet. 6255 */ 6256 iocbp = (struct iocblk *)bp->b_rptr; 6257 6258 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6259 break; 6260 6261 case M_COPYIN: 6262 /* 6263 * Driver or module has requested user ioctl data. 6264 */ 6265 reqp = (struct copyreq *)bp->b_rptr; 6266 6267 /* 6268 * M_COPYIN should *never* have a message attached, though 6269 * it's harmless if it does -- thus, panic on a DEBUG 6270 * kernel and just free it on a non-DEBUG build. 6271 */ 6272 ASSERT(bp->b_cont == NULL); 6273 if (bp->b_cont != NULL) { 6274 freemsg(bp->b_cont); 6275 bp->b_cont = NULL; 6276 } 6277 6278 error = putiocd(bp, reqp->cq_addr, flag, crp); 6279 if (error && bp->b_cont) { 6280 freemsg(bp->b_cont); 6281 bp->b_cont = NULL; 6282 } 6283 6284 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6285 bp->b_datap->db_type = M_IOCDATA; 6286 6287 mblk_setcred(bp, crp, curproc->p_pid); 6288 resp = (struct copyresp *)bp->b_rptr; 6289 resp->cp_rval = (caddr_t)(uintptr_t)error; 6290 resp->cp_flag = (fflags & FMODELS); 6291 6292 stream_willservice(stp); 6293 putnext(stp->sd_wrq, bp); 6294 stream_runservice(stp); 6295 6296 if (error) { 6297 mutex_enter(&stp->sd_lock); 6298 stp->sd_flag &= ~waitflags; 6299 cv_broadcast(&stp->sd_iocmonitor); 6300 mutex_exit(&stp->sd_lock); 6301 crfree(crp); 6302 return (error); 6303 } 6304 6305 goto waitioc; 6306 6307 case M_COPYOUT: 6308 /* 6309 * Driver or module has ioctl data for a user. 6310 */ 6311 reqp = (struct copyreq *)bp->b_rptr; 6312 ASSERT(bp->b_cont != NULL); 6313 6314 /* 6315 * Always (transparent or non-transparent ) 6316 * use the address specified in the request 6317 */ 6318 taddr = reqp->cq_addr; 6319 if (!transparent) 6320 len = (int)reqp->cq_size; 6321 6322 /* copyout data to the provided address */ 6323 error = getiocd(bp, taddr, copyflag); 6324 6325 freemsg(bp->b_cont); 6326 bp->b_cont = NULL; 6327 6328 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6329 bp->b_datap->db_type = M_IOCDATA; 6330 6331 mblk_setcred(bp, crp, curproc->p_pid); 6332 resp = (struct copyresp *)bp->b_rptr; 6333 resp->cp_rval = (caddr_t)(uintptr_t)error; 6334 resp->cp_flag = (fflags & FMODELS); 6335 6336 stream_willservice(stp); 6337 putnext(stp->sd_wrq, bp); 6338 stream_runservice(stp); 6339 6340 if (error) { 6341 mutex_enter(&stp->sd_lock); 6342 stp->sd_flag &= ~waitflags; 6343 cv_broadcast(&stp->sd_iocmonitor); 6344 mutex_exit(&stp->sd_lock); 6345 crfree(crp); 6346 return (error); 6347 } 6348 goto waitioc; 6349 6350 default: 6351 ASSERT(0); 6352 mutex_enter(&stp->sd_lock); 6353 stp->sd_flag &= ~waitflags; 6354 cv_broadcast(&stp->sd_iocmonitor); 6355 mutex_exit(&stp->sd_lock); 6356 break; 6357 } 6358 6359 freemsg(bp); 6360 crfree(crp); 6361 return (error); 6362 } 6363 6364 /* 6365 * Send an M_CMD message downstream and wait for a reply. This is a ptools 6366 * special used to retrieve information from modules/drivers a stream without 6367 * being subjected to flow control or interfering with pending messages on the 6368 * stream (e.g. an ioctl in flight). 6369 */ 6370 int 6371 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp) 6372 { 6373 mblk_t *mp; 6374 struct cmdblk *cmdp; 6375 int error = 0; 6376 int errs = STRHUP|STRDERR|STWRERR|STPLEX; 6377 clock_t rval, timeout = STRTIMOUT; 6378 6379 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) || 6380 scp->sc_timeout < -1) 6381 return (EINVAL); 6382 6383 if (scp->sc_timeout > 0) 6384 timeout = scp->sc_timeout * MILLISEC; 6385 6386 if ((mp = allocb_cred(sizeof (struct cmdblk), crp, 6387 curproc->p_pid)) == NULL) 6388 return (ENOMEM); 6389 6390 crhold(crp); 6391 6392 cmdp = (struct cmdblk *)mp->b_wptr; 6393 cmdp->cb_cr = crp; 6394 cmdp->cb_cmd = scp->sc_cmd; 6395 cmdp->cb_len = scp->sc_len; 6396 cmdp->cb_error = 0; 6397 mp->b_wptr += sizeof (struct cmdblk); 6398 6399 DB_TYPE(mp) = M_CMD; 6400 DB_CPID(mp) = curproc->p_pid; 6401 6402 /* 6403 * Copy in the payload. 6404 */ 6405 if (cmdp->cb_len > 0) { 6406 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp, 6407 curproc->p_pid); 6408 if (mp->b_cont == NULL) { 6409 error = ENOMEM; 6410 goto out; 6411 } 6412 6413 /* cb_len comes from sc_len, which has already been checked */ 6414 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf)); 6415 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len); 6416 mp->b_cont->b_wptr += cmdp->cb_len; 6417 DB_CPID(mp->b_cont) = curproc->p_pid; 6418 } 6419 6420 /* 6421 * Since this mechanism is strictly for ptools, and since only one 6422 * process can be grabbed at a time, we simply fail if there's 6423 * currently an operation pending. 6424 */ 6425 mutex_enter(&stp->sd_lock); 6426 if (stp->sd_flag & STRCMDWAIT) { 6427 mutex_exit(&stp->sd_lock); 6428 error = EBUSY; 6429 goto out; 6430 } 6431 stp->sd_flag |= STRCMDWAIT; 6432 ASSERT(stp->sd_cmdblk == NULL); 6433 mutex_exit(&stp->sd_lock); 6434 6435 putnext(stp->sd_wrq, mp); 6436 mp = NULL; 6437 6438 /* 6439 * Timed wait for acknowledgment. If the reply has already arrived, 6440 * don't sleep. If awakened from the sleep, fail only if the reply 6441 * has not arrived by then. Otherwise, process the reply. 6442 */ 6443 mutex_enter(&stp->sd_lock); 6444 while (stp->sd_cmdblk == NULL) { 6445 if (stp->sd_flag & errs) { 6446 if ((error = strgeterr(stp, errs, 0)) != 0) 6447 goto waitout; 6448 } 6449 6450 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0); 6451 if (stp->sd_cmdblk != NULL) 6452 break; 6453 6454 if (rval <= 0) { 6455 error = (rval == 0) ? EINTR : ETIME; 6456 goto waitout; 6457 } 6458 } 6459 6460 /* 6461 * We received a reply. 6462 */ 6463 mp = stp->sd_cmdblk; 6464 stp->sd_cmdblk = NULL; 6465 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD); 6466 ASSERT(stp->sd_flag & STRCMDWAIT); 6467 stp->sd_flag &= ~STRCMDWAIT; 6468 mutex_exit(&stp->sd_lock); 6469 6470 cmdp = (struct cmdblk *)mp->b_rptr; 6471 if ((error = cmdp->cb_error) != 0) 6472 goto out; 6473 6474 /* 6475 * Data may have been returned in the reply (cb_len > 0). 6476 * If so, copy it out to the user's buffer. 6477 */ 6478 if (cmdp->cb_len > 0) { 6479 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) { 6480 error = EPROTO; 6481 goto out; 6482 } 6483 6484 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf)); 6485 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len); 6486 } 6487 scp->sc_len = cmdp->cb_len; 6488 out: 6489 freemsg(mp); 6490 crfree(crp); 6491 return (error); 6492 waitout: 6493 ASSERT(stp->sd_cmdblk == NULL); 6494 stp->sd_flag &= ~STRCMDWAIT; 6495 mutex_exit(&stp->sd_lock); 6496 crfree(crp); 6497 return (error); 6498 } 6499 6500 /* 6501 * For the SunOS keyboard driver. 6502 * Return the next available "ioctl" sequence number. 6503 * Exported, so that streams modules can send "ioctl" messages 6504 * downstream from their open routine. 6505 */ 6506 int 6507 getiocseqno(void) 6508 { 6509 int i; 6510 6511 mutex_enter(&strresources); 6512 i = ++ioc_id; 6513 mutex_exit(&strresources); 6514 return (i); 6515 } 6516 6517 /* 6518 * Get the next message from the read queue. If the message is 6519 * priority, STRPRI will have been set by strrput(). This flag 6520 * should be reset only when the entire message at the front of the 6521 * queue as been consumed. 6522 * 6523 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6524 */ 6525 int 6526 strgetmsg( 6527 struct vnode *vp, 6528 struct strbuf *mctl, 6529 struct strbuf *mdata, 6530 unsigned char *prip, 6531 int *flagsp, 6532 int fmode, 6533 rval_t *rvp) 6534 { 6535 struct stdata *stp; 6536 mblk_t *bp, *nbp; 6537 mblk_t *savemp = NULL; 6538 mblk_t *savemptail = NULL; 6539 uint_t old_sd_flag; 6540 int flg; 6541 int more = 0; 6542 int error = 0; 6543 char first = 1; 6544 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6545 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6546 unsigned char pri = 0; 6547 queue_t *q; 6548 int pr = 0; /* Partial read successful */ 6549 struct uio uios; 6550 struct uio *uiop = &uios; 6551 struct iovec iovs; 6552 unsigned char type; 6553 6554 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6555 "strgetmsg:%p", vp); 6556 6557 ASSERT(vp->v_stream); 6558 stp = vp->v_stream; 6559 rvp->r_val1 = 0; 6560 6561 mutex_enter(&stp->sd_lock); 6562 6563 if ((error = i_straccess(stp, JCREAD)) != 0) { 6564 mutex_exit(&stp->sd_lock); 6565 return (error); 6566 } 6567 6568 if (stp->sd_flag & (STRDERR|STPLEX)) { 6569 error = strgeterr(stp, STRDERR|STPLEX, 0); 6570 if (error != 0) { 6571 mutex_exit(&stp->sd_lock); 6572 return (error); 6573 } 6574 } 6575 mutex_exit(&stp->sd_lock); 6576 6577 switch (*flagsp) { 6578 case MSG_HIPRI: 6579 if (*prip != 0) 6580 return (EINVAL); 6581 break; 6582 6583 case MSG_ANY: 6584 case MSG_BAND: 6585 break; 6586 6587 default: 6588 return (EINVAL); 6589 } 6590 /* 6591 * Setup uio and iov for data part 6592 */ 6593 iovs.iov_base = mdata->buf; 6594 iovs.iov_len = mdata->maxlen; 6595 uios.uio_iov = &iovs; 6596 uios.uio_iovcnt = 1; 6597 uios.uio_loffset = 0; 6598 uios.uio_segflg = UIO_USERSPACE; 6599 uios.uio_fmode = 0; 6600 uios.uio_extflg = UIO_COPY_CACHED; 6601 uios.uio_resid = mdata->maxlen; 6602 uios.uio_offset = 0; 6603 6604 q = _RD(stp->sd_wrq); 6605 mutex_enter(&stp->sd_lock); 6606 old_sd_flag = stp->sd_flag; 6607 mark = 0; 6608 for (;;) { 6609 int done = 0; 6610 mblk_t *q_first = q->q_first; 6611 6612 /* 6613 * Get the next message of appropriate priority 6614 * from the stream head. If the caller is interested 6615 * in band or hipri messages, then they should already 6616 * be enqueued at the stream head. On the other hand 6617 * if the caller wants normal (band 0) messages, they 6618 * might be deferred in a synchronous stream and they 6619 * will need to be pulled up. 6620 * 6621 * After we have dequeued a message, we might find that 6622 * it was a deferred M_SIG that was enqueued at the 6623 * stream head. It must now be posted as part of the 6624 * read by calling strsignal_nolock(). 6625 * 6626 * Also note that strrput does not enqueue an M_PCSIG, 6627 * and there cannot be more than one hipri message, 6628 * so there was no need to have the M_PCSIG case. 6629 * 6630 * At some time it might be nice to try and wrap the 6631 * functionality of kstrgetmsg() and strgetmsg() into 6632 * a common routine so to reduce the amount of replicated 6633 * code (since they are extremely similar). 6634 */ 6635 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6636 /* Asking for normal, band0 data */ 6637 bp = strget(stp, q, uiop, first, &error); 6638 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6639 if (bp != NULL) { 6640 if (DB_TYPE(bp) == M_SIG) { 6641 strsignal_nolock(stp, *bp->b_rptr, 6642 bp->b_band); 6643 freemsg(bp); 6644 continue; 6645 } else { 6646 break; 6647 } 6648 } 6649 if (error != 0) 6650 goto getmout; 6651 6652 /* 6653 * We can't depend on the value of STRPRI here because 6654 * the stream head may be in transit. Therefore, we 6655 * must look at the type of the first message to 6656 * determine if a high priority messages is waiting 6657 */ 6658 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6659 DB_TYPE(q_first) >= QPCTL && 6660 (bp = getq_noenab(q, 0)) != NULL) { 6661 /* Asked for HIPRI and got one */ 6662 ASSERT(DB_TYPE(bp) >= QPCTL); 6663 break; 6664 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6665 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 6666 (bp = getq_noenab(q, 0)) != NULL) { 6667 /* 6668 * Asked for at least band "prip" and got either at 6669 * least that band or a hipri message. 6670 */ 6671 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 6672 if (DB_TYPE(bp) == M_SIG) { 6673 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6674 freemsg(bp); 6675 continue; 6676 } else { 6677 break; 6678 } 6679 } 6680 6681 /* No data. Time to sleep? */ 6682 qbackenable(q, 0); 6683 6684 /* 6685 * If STRHUP or STREOF, return 0 length control and data. 6686 * If resid is 0, then a read(fd,buf,0) was done. Do not 6687 * sleep to satisfy this request because by default we have 6688 * zero bytes to return. 6689 */ 6690 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6691 mdata->maxlen == 0)) { 6692 mctl->len = mdata->len = 0; 6693 *flagsp = 0; 6694 mutex_exit(&stp->sd_lock); 6695 return (0); 6696 } 6697 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6698 "strgetmsg calls strwaitq:%p, %p", 6699 vp, uiop); 6700 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6701 &done)) != 0) || done) { 6702 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6703 "strgetmsg error or done:%p, %p", 6704 vp, uiop); 6705 mutex_exit(&stp->sd_lock); 6706 return (error); 6707 } 6708 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6709 "strgetmsg awakes:%p, %p", vp, uiop); 6710 if ((error = i_straccess(stp, JCREAD)) != 0) { 6711 mutex_exit(&stp->sd_lock); 6712 return (error); 6713 } 6714 first = 0; 6715 } 6716 ASSERT(bp != NULL); 6717 /* 6718 * Extract any mark information. If the message is not completely 6719 * consumed this information will be put in the mblk 6720 * that is putback. 6721 * If MSGMARKNEXT is set and the message is completely consumed 6722 * the STRATMARK flag will be set below. Likewise, if 6723 * MSGNOTMARKNEXT is set and the message is 6724 * completely consumed STRNOTATMARK will be set. 6725 */ 6726 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6727 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6728 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6729 if (mark != 0 && bp == stp->sd_mark) { 6730 mark |= _LASTMARK; 6731 stp->sd_mark = NULL; 6732 } 6733 /* 6734 * keep track of the original message type and priority 6735 */ 6736 pri = bp->b_band; 6737 type = bp->b_datap->db_type; 6738 if (type == M_PASSFP) { 6739 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6740 stp->sd_mark = bp; 6741 bp->b_flag |= mark & ~_LASTMARK; 6742 putback(stp, q, bp, pri); 6743 qbackenable(q, pri); 6744 mutex_exit(&stp->sd_lock); 6745 return (EBADMSG); 6746 } 6747 ASSERT(type != M_SIG); 6748 6749 /* 6750 * Set this flag so strrput will not generate signals. Need to 6751 * make sure this flag is cleared before leaving this routine 6752 * else signals will stop being sent. 6753 */ 6754 stp->sd_flag |= STRGETINPROG; 6755 mutex_exit(&stp->sd_lock); 6756 6757 if (STREAM_NEEDSERVICE(stp)) 6758 stream_runservice(stp); 6759 6760 /* 6761 * Set HIPRI flag if message is priority. 6762 */ 6763 if (type >= QPCTL) 6764 flg = MSG_HIPRI; 6765 else 6766 flg = MSG_BAND; 6767 6768 /* 6769 * First process PROTO or PCPROTO blocks, if any. 6770 */ 6771 if (mctl->maxlen >= 0 && type != M_DATA) { 6772 size_t n, bcnt; 6773 char *ubuf; 6774 6775 bcnt = mctl->maxlen; 6776 ubuf = mctl->buf; 6777 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6778 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6779 copyout(bp->b_rptr, ubuf, n)) { 6780 error = EFAULT; 6781 mutex_enter(&stp->sd_lock); 6782 /* 6783 * clear stream head pri flag based on 6784 * first message type 6785 */ 6786 if (type >= QPCTL) { 6787 ASSERT(type == M_PCPROTO); 6788 stp->sd_flag &= ~STRPRI; 6789 } 6790 more = 0; 6791 freemsg(bp); 6792 goto getmout; 6793 } 6794 ubuf += n; 6795 bp->b_rptr += n; 6796 if (bp->b_rptr >= bp->b_wptr) { 6797 nbp = bp; 6798 bp = bp->b_cont; 6799 freeb(nbp); 6800 } 6801 ASSERT(n <= bcnt); 6802 bcnt -= n; 6803 if (bcnt == 0) 6804 break; 6805 } 6806 mctl->len = mctl->maxlen - bcnt; 6807 } else 6808 mctl->len = -1; 6809 6810 if (bp && bp->b_datap->db_type != M_DATA) { 6811 /* 6812 * More PROTO blocks in msg. 6813 */ 6814 more |= MORECTL; 6815 savemp = bp; 6816 while (bp && bp->b_datap->db_type != M_DATA) { 6817 savemptail = bp; 6818 bp = bp->b_cont; 6819 } 6820 savemptail->b_cont = NULL; 6821 } 6822 6823 /* 6824 * Now process DATA blocks, if any. 6825 */ 6826 if (mdata->maxlen >= 0 && bp) { 6827 /* 6828 * struiocopyout will consume a potential zero-length 6829 * M_DATA even if uio_resid is zero. 6830 */ 6831 size_t oldresid = uiop->uio_resid; 6832 6833 bp = struiocopyout(bp, uiop, &error); 6834 if (error != 0) { 6835 mutex_enter(&stp->sd_lock); 6836 /* 6837 * clear stream head hi pri flag based on 6838 * first message 6839 */ 6840 if (type >= QPCTL) { 6841 ASSERT(type == M_PCPROTO); 6842 stp->sd_flag &= ~STRPRI; 6843 } 6844 more = 0; 6845 freemsg(savemp); 6846 goto getmout; 6847 } 6848 /* 6849 * (pr == 1) indicates a partial read. 6850 */ 6851 if (oldresid > uiop->uio_resid) 6852 pr = 1; 6853 mdata->len = mdata->maxlen - uiop->uio_resid; 6854 } else 6855 mdata->len = -1; 6856 6857 if (bp) { /* more data blocks in msg */ 6858 more |= MOREDATA; 6859 if (savemp) 6860 savemptail->b_cont = bp; 6861 else 6862 savemp = bp; 6863 } 6864 6865 mutex_enter(&stp->sd_lock); 6866 if (savemp) { 6867 if (pr && (savemp->b_datap->db_type == M_DATA) && 6868 msgnodata(savemp)) { 6869 /* 6870 * Avoid queuing a zero-length tail part of 6871 * a message. pr=1 indicates that we read some of 6872 * the message. 6873 */ 6874 freemsg(savemp); 6875 more &= ~MOREDATA; 6876 /* 6877 * clear stream head hi pri flag based on 6878 * first message 6879 */ 6880 if (type >= QPCTL) { 6881 ASSERT(type == M_PCPROTO); 6882 stp->sd_flag &= ~STRPRI; 6883 } 6884 } else { 6885 savemp->b_band = pri; 6886 /* 6887 * If the first message was HIPRI and the one we're 6888 * putting back isn't, then clear STRPRI, otherwise 6889 * set STRPRI again. Note that we must set STRPRI 6890 * again since the flush logic in strrput_nondata() 6891 * may have cleared it while we had sd_lock dropped. 6892 */ 6893 if (type >= QPCTL) { 6894 ASSERT(type == M_PCPROTO); 6895 if (queclass(savemp) < QPCTL) 6896 stp->sd_flag &= ~STRPRI; 6897 else 6898 stp->sd_flag |= STRPRI; 6899 } else if (queclass(savemp) >= QPCTL) { 6900 /* 6901 * The first message was not a HIPRI message, 6902 * but the one we are about to putback is. 6903 * For simplicitly, we do not allow for HIPRI 6904 * messages to be embedded in the message 6905 * body, so just force it to same type as 6906 * first message. 6907 */ 6908 ASSERT(type == M_DATA || type == M_PROTO); 6909 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6910 savemp->b_datap->db_type = type; 6911 } 6912 if (mark != 0) { 6913 savemp->b_flag |= mark & ~_LASTMARK; 6914 if ((mark & _LASTMARK) && 6915 (stp->sd_mark == NULL)) { 6916 /* 6917 * If another marked message arrived 6918 * while sd_lock was not held sd_mark 6919 * would be non-NULL. 6920 */ 6921 stp->sd_mark = savemp; 6922 } 6923 } 6924 putback(stp, q, savemp, pri); 6925 } 6926 } else { 6927 /* 6928 * The complete message was consumed. 6929 * 6930 * If another M_PCPROTO arrived while sd_lock was not held 6931 * it would have been discarded since STRPRI was still set. 6932 * 6933 * Move the MSG*MARKNEXT information 6934 * to the stream head just in case 6935 * the read queue becomes empty. 6936 * clear stream head hi pri flag based on 6937 * first message 6938 * 6939 * If the stream head was at the mark 6940 * (STRATMARK) before we dropped sd_lock above 6941 * and some data was consumed then we have 6942 * moved past the mark thus STRATMARK is 6943 * cleared. However, if a message arrived in 6944 * strrput during the copyout above causing 6945 * STRATMARK to be set we can not clear that 6946 * flag. 6947 */ 6948 if (type >= QPCTL) { 6949 ASSERT(type == M_PCPROTO); 6950 stp->sd_flag &= ~STRPRI; 6951 } 6952 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6953 if (mark & MSGMARKNEXT) { 6954 stp->sd_flag &= ~STRNOTATMARK; 6955 stp->sd_flag |= STRATMARK; 6956 } else if (mark & MSGNOTMARKNEXT) { 6957 stp->sd_flag &= ~STRATMARK; 6958 stp->sd_flag |= STRNOTATMARK; 6959 } else { 6960 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6961 } 6962 } else if (pr && (old_sd_flag & STRATMARK)) { 6963 stp->sd_flag &= ~STRATMARK; 6964 } 6965 } 6966 6967 *flagsp = flg; 6968 *prip = pri; 6969 6970 /* 6971 * Getmsg cleanup processing - if the state of the queue has changed 6972 * some signals may need to be sent and/or poll awakened. 6973 */ 6974 getmout: 6975 qbackenable(q, pri); 6976 6977 /* 6978 * We dropped the stream head lock above. Send all M_SIG messages 6979 * before processing stream head for SIGPOLL messages. 6980 */ 6981 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6982 while ((bp = q->q_first) != NULL && 6983 (bp->b_datap->db_type == M_SIG)) { 6984 /* 6985 * sd_lock is held so the content of the read queue can not 6986 * change. 6987 */ 6988 bp = getq(q); 6989 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 6990 6991 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6992 mutex_exit(&stp->sd_lock); 6993 freemsg(bp); 6994 if (STREAM_NEEDSERVICE(stp)) 6995 stream_runservice(stp); 6996 mutex_enter(&stp->sd_lock); 6997 } 6998 6999 /* 7000 * stream head cannot change while we make the determination 7001 * whether or not to send a signal. Drop the flag to allow strrput 7002 * to send firstmsgsigs again. 7003 */ 7004 stp->sd_flag &= ~STRGETINPROG; 7005 7006 /* 7007 * If the type of message at the front of the queue changed 7008 * due to the receive the appropriate signals and pollwakeup events 7009 * are generated. The type of changes are: 7010 * Processed a hipri message, q_first is not hipri. 7011 * Processed a band X message, and q_first is band Y. 7012 * The generated signals and pollwakeups are identical to what 7013 * strrput() generates should the message that is now on q_first 7014 * arrive to an empty read queue. 7015 * 7016 * Note: only strrput will send a signal for a hipri message. 7017 */ 7018 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7019 strsigset_t signals = 0; 7020 strpollset_t pollwakeups = 0; 7021 7022 if (flg & MSG_HIPRI) { 7023 /* 7024 * Removed a hipri message. Regular data at 7025 * the front of the queue. 7026 */ 7027 if (bp->b_band == 0) { 7028 signals = S_INPUT | S_RDNORM; 7029 pollwakeups = POLLIN | POLLRDNORM; 7030 } else { 7031 signals = S_INPUT | S_RDBAND; 7032 pollwakeups = POLLIN | POLLRDBAND; 7033 } 7034 } else if (pri != bp->b_band) { 7035 /* 7036 * The band is different for the new q_first. 7037 */ 7038 if (bp->b_band == 0) { 7039 signals = S_RDNORM; 7040 pollwakeups = POLLIN | POLLRDNORM; 7041 } else { 7042 signals = S_RDBAND; 7043 pollwakeups = POLLIN | POLLRDBAND; 7044 } 7045 } 7046 7047 if (pollwakeups != 0) { 7048 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7049 if (!(stp->sd_rput_opt & SR_POLLIN)) 7050 goto no_pollwake; 7051 stp->sd_rput_opt &= ~SR_POLLIN; 7052 } 7053 mutex_exit(&stp->sd_lock); 7054 pollwakeup(&stp->sd_pollist, pollwakeups); 7055 mutex_enter(&stp->sd_lock); 7056 } 7057 no_pollwake: 7058 7059 if (stp->sd_sigflags & signals) 7060 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7061 } 7062 mutex_exit(&stp->sd_lock); 7063 7064 rvp->r_val1 = more; 7065 return (error); 7066 #undef _LASTMARK 7067 } 7068 7069 /* 7070 * Get the next message from the read queue. If the message is 7071 * priority, STRPRI will have been set by strrput(). This flag 7072 * should be reset only when the entire message at the front of the 7073 * queue as been consumed. 7074 * 7075 * If uiop is NULL all data is returned in mctlp. 7076 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 7077 * not enabled. 7078 * The timeout parameter is in milliseconds; -1 for infinity. 7079 * This routine handles the consolidation private flags: 7080 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7081 * MSG_DELAYERROR Defer the error check until the queue is empty. 7082 * MSG_HOLDSIG Hold signals while waiting for data. 7083 * MSG_IPEEK Only peek at messages. 7084 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 7085 * that doesn't fit. 7086 * MSG_NOMARK If the message is marked leave it on the queue. 7087 * 7088 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 7089 */ 7090 int 7091 kstrgetmsg( 7092 struct vnode *vp, 7093 mblk_t **mctlp, 7094 struct uio *uiop, 7095 unsigned char *prip, 7096 int *flagsp, 7097 clock_t timout, 7098 rval_t *rvp) 7099 { 7100 struct stdata *stp; 7101 mblk_t *bp, *nbp; 7102 mblk_t *savemp = NULL; 7103 mblk_t *savemptail = NULL; 7104 int flags; 7105 uint_t old_sd_flag; 7106 int flg; 7107 int more = 0; 7108 int error = 0; 7109 char first = 1; 7110 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 7111 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 7112 unsigned char pri = 0; 7113 queue_t *q; 7114 int pr = 0; /* Partial read successful */ 7115 unsigned char type; 7116 7117 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 7118 "kstrgetmsg:%p", vp); 7119 7120 ASSERT(vp->v_stream); 7121 stp = vp->v_stream; 7122 rvp->r_val1 = 0; 7123 7124 mutex_enter(&stp->sd_lock); 7125 7126 if ((error = i_straccess(stp, JCREAD)) != 0) { 7127 mutex_exit(&stp->sd_lock); 7128 return (error); 7129 } 7130 7131 flags = *flagsp; 7132 if (stp->sd_flag & (STRDERR|STPLEX)) { 7133 if ((stp->sd_flag & STPLEX) || 7134 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 7135 error = strgeterr(stp, STRDERR|STPLEX, 7136 (flags & MSG_IPEEK)); 7137 if (error != 0) { 7138 mutex_exit(&stp->sd_lock); 7139 return (error); 7140 } 7141 } 7142 } 7143 mutex_exit(&stp->sd_lock); 7144 7145 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 7146 case MSG_HIPRI: 7147 if (*prip != 0) 7148 return (EINVAL); 7149 break; 7150 7151 case MSG_ANY: 7152 case MSG_BAND: 7153 break; 7154 7155 default: 7156 return (EINVAL); 7157 } 7158 7159 retry: 7160 q = _RD(stp->sd_wrq); 7161 mutex_enter(&stp->sd_lock); 7162 old_sd_flag = stp->sd_flag; 7163 mark = 0; 7164 for (;;) { 7165 int done = 0; 7166 int waitflag; 7167 int fmode; 7168 mblk_t *q_first = q->q_first; 7169 7170 /* 7171 * This section of the code operates just like the code 7172 * in strgetmsg(). There is a comment there about what 7173 * is going on here. 7174 */ 7175 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7176 /* Asking for normal, band0 data */ 7177 bp = strget(stp, q, uiop, first, &error); 7178 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7179 if (bp != NULL) { 7180 if (DB_TYPE(bp) == M_SIG) { 7181 strsignal_nolock(stp, *bp->b_rptr, 7182 bp->b_band); 7183 freemsg(bp); 7184 continue; 7185 } else { 7186 break; 7187 } 7188 } 7189 if (error != 0) { 7190 goto getmout; 7191 } 7192 /* 7193 * We can't depend on the value of STRPRI here because 7194 * the stream head may be in transit. Therefore, we 7195 * must look at the type of the first message to 7196 * determine if a high priority messages is waiting 7197 */ 7198 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7199 DB_TYPE(q_first) >= QPCTL && 7200 (bp = getq_noenab(q, 0)) != NULL) { 7201 ASSERT(DB_TYPE(bp) >= QPCTL); 7202 break; 7203 } else if ((flags & MSG_BAND) && q_first != NULL && 7204 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 7205 (bp = getq_noenab(q, 0)) != NULL) { 7206 /* 7207 * Asked for at least band "prip" and got either at 7208 * least that band or a hipri message. 7209 */ 7210 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 7211 if (DB_TYPE(bp) == M_SIG) { 7212 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7213 freemsg(bp); 7214 continue; 7215 } else { 7216 break; 7217 } 7218 } 7219 7220 /* No data. Time to sleep? */ 7221 qbackenable(q, 0); 7222 7223 /* 7224 * Delayed error notification? 7225 */ 7226 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7227 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7228 error = strgeterr(stp, STRDERR|STPLEX, 7229 (flags & MSG_IPEEK)); 7230 if (error != 0) { 7231 mutex_exit(&stp->sd_lock); 7232 return (error); 7233 } 7234 } 7235 7236 /* 7237 * If STRHUP or STREOF, return 0 length control and data. 7238 * If a read(fd,buf,0) has been done, do not sleep, just 7239 * return. 7240 * 7241 * If mctlp == NULL and uiop == NULL, then the code will 7242 * do the strwaitq. This is an understood way of saying 7243 * sleep "polling" until a message is received. 7244 */ 7245 if ((stp->sd_flag & (STRHUP|STREOF)) || 7246 (uiop != NULL && uiop->uio_resid == 0)) { 7247 if (mctlp != NULL) 7248 *mctlp = NULL; 7249 *flagsp = 0; 7250 mutex_exit(&stp->sd_lock); 7251 return (0); 7252 } 7253 7254 waitflag = GETWAIT; 7255 if (flags & 7256 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7257 if (flags & MSG_HOLDSIG) 7258 waitflag |= STR_NOSIG; 7259 if (flags & MSG_IGNERROR) 7260 waitflag |= STR_NOERROR; 7261 if (flags & MSG_IPEEK) 7262 waitflag |= STR_PEEK; 7263 if (flags & MSG_DELAYERROR) 7264 waitflag |= STR_DELAYERR; 7265 } 7266 if (uiop != NULL) 7267 fmode = uiop->uio_fmode; 7268 else 7269 fmode = 0; 7270 7271 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7272 "kstrgetmsg calls strwaitq:%p, %p", 7273 vp, uiop); 7274 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7275 fmode, timout, &done))) != 0 || done) { 7276 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7277 "kstrgetmsg error or done:%p, %p", 7278 vp, uiop); 7279 mutex_exit(&stp->sd_lock); 7280 return (error); 7281 } 7282 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7283 "kstrgetmsg awakes:%p, %p", vp, uiop); 7284 if ((error = i_straccess(stp, JCREAD)) != 0) { 7285 mutex_exit(&stp->sd_lock); 7286 return (error); 7287 } 7288 first = 0; 7289 } 7290 ASSERT(bp != NULL); 7291 /* 7292 * Extract any mark information. If the message is not completely 7293 * consumed this information will be put in the mblk 7294 * that is putback. 7295 * If MSGMARKNEXT is set and the message is completely consumed 7296 * the STRATMARK flag will be set below. Likewise, if 7297 * MSGNOTMARKNEXT is set and the message is 7298 * completely consumed STRNOTATMARK will be set. 7299 */ 7300 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7301 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7302 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7303 pri = bp->b_band; 7304 if (mark != 0) { 7305 /* 7306 * If the caller doesn't want the mark return. 7307 * Used to implement MSG_WAITALL in sockets. 7308 */ 7309 if (flags & MSG_NOMARK) { 7310 putback(stp, q, bp, pri); 7311 qbackenable(q, pri); 7312 mutex_exit(&stp->sd_lock); 7313 return (EWOULDBLOCK); 7314 } 7315 if (bp == stp->sd_mark) { 7316 mark |= _LASTMARK; 7317 stp->sd_mark = NULL; 7318 } 7319 } 7320 7321 /* 7322 * keep track of the first message type 7323 */ 7324 type = bp->b_datap->db_type; 7325 7326 if (bp->b_datap->db_type == M_PASSFP) { 7327 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7328 stp->sd_mark = bp; 7329 bp->b_flag |= mark & ~_LASTMARK; 7330 putback(stp, q, bp, pri); 7331 qbackenable(q, pri); 7332 mutex_exit(&stp->sd_lock); 7333 return (EBADMSG); 7334 } 7335 ASSERT(type != M_SIG); 7336 7337 if (flags & MSG_IPEEK) { 7338 /* 7339 * Clear any struioflag - we do the uiomove over again 7340 * when peeking since it simplifies the code. 7341 * 7342 * Dup the message and put the original back on the queue. 7343 * If dupmsg() fails, try again with copymsg() to see if 7344 * there is indeed a shortage of memory. dupmsg() may fail 7345 * if db_ref in any of the messages reaches its limit. 7346 */ 7347 7348 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7349 /* 7350 * Restore the state of the stream head since we 7351 * need to drop sd_lock (strwaitbuf is sleeping). 7352 */ 7353 size_t size = msgdsize(bp); 7354 7355 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7356 stp->sd_mark = bp; 7357 bp->b_flag |= mark & ~_LASTMARK; 7358 putback(stp, q, bp, pri); 7359 mutex_exit(&stp->sd_lock); 7360 error = strwaitbuf(size, BPRI_HI); 7361 if (error) { 7362 /* 7363 * There is no net change to the queue thus 7364 * no need to qbackenable. 7365 */ 7366 return (error); 7367 } 7368 goto retry; 7369 } 7370 7371 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7372 stp->sd_mark = bp; 7373 bp->b_flag |= mark & ~_LASTMARK; 7374 putback(stp, q, bp, pri); 7375 bp = nbp; 7376 } 7377 7378 /* 7379 * Set this flag so strrput will not generate signals. Need to 7380 * make sure this flag is cleared before leaving this routine 7381 * else signals will stop being sent. 7382 */ 7383 stp->sd_flag |= STRGETINPROG; 7384 mutex_exit(&stp->sd_lock); 7385 7386 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7387 mblk_t *tmp, *prevmp; 7388 7389 /* 7390 * Put first non-data mblk back to stream head and 7391 * cut the mblk chain so sd_rputdatafunc only sees 7392 * M_DATA mblks. We can skip the first mblk since it 7393 * is M_DATA according to the condition above. 7394 */ 7395 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7396 prevmp = tmp, tmp = tmp->b_cont) { 7397 if (DB_TYPE(tmp) != M_DATA) { 7398 prevmp->b_cont = NULL; 7399 mutex_enter(&stp->sd_lock); 7400 putback(stp, q, tmp, tmp->b_band); 7401 mutex_exit(&stp->sd_lock); 7402 break; 7403 } 7404 } 7405 7406 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7407 NULL, NULL, NULL, NULL); 7408 7409 if (bp == NULL) 7410 goto retry; 7411 } 7412 7413 if (STREAM_NEEDSERVICE(stp)) 7414 stream_runservice(stp); 7415 7416 /* 7417 * Set HIPRI flag if message is priority. 7418 */ 7419 if (type >= QPCTL) 7420 flg = MSG_HIPRI; 7421 else 7422 flg = MSG_BAND; 7423 7424 /* 7425 * First process PROTO or PCPROTO blocks, if any. 7426 */ 7427 if (mctlp != NULL && type != M_DATA) { 7428 mblk_t *nbp; 7429 7430 *mctlp = bp; 7431 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7432 bp = bp->b_cont; 7433 nbp = bp->b_cont; 7434 bp->b_cont = NULL; 7435 bp = nbp; 7436 } 7437 7438 if (bp && bp->b_datap->db_type != M_DATA) { 7439 /* 7440 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7441 */ 7442 more |= MORECTL; 7443 savemp = bp; 7444 while (bp && bp->b_datap->db_type != M_DATA) { 7445 savemptail = bp; 7446 bp = bp->b_cont; 7447 } 7448 savemptail->b_cont = NULL; 7449 } 7450 7451 /* 7452 * Now process DATA blocks, if any. 7453 */ 7454 if (uiop == NULL) { 7455 /* Append data to tail of mctlp */ 7456 7457 if (mctlp != NULL) { 7458 mblk_t **mpp = mctlp; 7459 7460 while (*mpp != NULL) 7461 mpp = &((*mpp)->b_cont); 7462 *mpp = bp; 7463 bp = NULL; 7464 } 7465 } else if (uiop->uio_resid >= 0 && bp) { 7466 size_t oldresid = uiop->uio_resid; 7467 7468 /* 7469 * If a streams message is likely to consist 7470 * of many small mblks, it is pulled up into 7471 * one continuous chunk of memory. 7472 * The size of the first mblk may be bogus because 7473 * successive read() calls on the socket reduce 7474 * the size of this mblk until it is exhausted 7475 * and then the code walks on to the next. Thus 7476 * the size of the mblk may not be the original size 7477 * that was passed up, it's simply a remainder 7478 * and hence can be very small without any 7479 * implication that the packet is badly fragmented. 7480 * So the size of the possible second mblk is 7481 * used to spot a badly fragmented packet. 7482 * see longer comment at top of page 7483 * by mblk_pull_len declaration. 7484 */ 7485 7486 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) { 7487 (void) pullupmsg(bp, -1); 7488 } 7489 7490 bp = struiocopyout(bp, uiop, &error); 7491 if (error != 0) { 7492 if (mctlp != NULL) { 7493 freemsg(*mctlp); 7494 *mctlp = NULL; 7495 } else 7496 freemsg(savemp); 7497 mutex_enter(&stp->sd_lock); 7498 /* 7499 * clear stream head hi pri flag based on 7500 * first message 7501 */ 7502 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7503 ASSERT(type == M_PCPROTO); 7504 stp->sd_flag &= ~STRPRI; 7505 } 7506 more = 0; 7507 goto getmout; 7508 } 7509 /* 7510 * (pr == 1) indicates a partial read. 7511 */ 7512 if (oldresid > uiop->uio_resid) 7513 pr = 1; 7514 } 7515 7516 if (bp) { /* more data blocks in msg */ 7517 more |= MOREDATA; 7518 if (savemp) 7519 savemptail->b_cont = bp; 7520 else 7521 savemp = bp; 7522 } 7523 7524 mutex_enter(&stp->sd_lock); 7525 if (savemp) { 7526 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7527 /* 7528 * When MSG_DISCARDTAIL is set or 7529 * when peeking discard any tail. When peeking this 7530 * is the tail of the dup that was copied out - the 7531 * message has already been putback on the queue. 7532 * Return MOREDATA to the caller even though the data 7533 * is discarded. This is used by sockets (to 7534 * set MSG_TRUNC). 7535 */ 7536 freemsg(savemp); 7537 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7538 ASSERT(type == M_PCPROTO); 7539 stp->sd_flag &= ~STRPRI; 7540 } 7541 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7542 msgnodata(savemp)) { 7543 /* 7544 * Avoid queuing a zero-length tail part of 7545 * a message. pr=1 indicates that we read some of 7546 * the message. 7547 */ 7548 freemsg(savemp); 7549 more &= ~MOREDATA; 7550 if (type >= QPCTL) { 7551 ASSERT(type == M_PCPROTO); 7552 stp->sd_flag &= ~STRPRI; 7553 } 7554 } else { 7555 savemp->b_band = pri; 7556 /* 7557 * If the first message was HIPRI and the one we're 7558 * putting back isn't, then clear STRPRI, otherwise 7559 * set STRPRI again. Note that we must set STRPRI 7560 * again since the flush logic in strrput_nondata() 7561 * may have cleared it while we had sd_lock dropped. 7562 */ 7563 7564 if (type >= QPCTL) { 7565 ASSERT(type == M_PCPROTO); 7566 if (queclass(savemp) < QPCTL) 7567 stp->sd_flag &= ~STRPRI; 7568 else 7569 stp->sd_flag |= STRPRI; 7570 } else if (queclass(savemp) >= QPCTL) { 7571 /* 7572 * The first message was not a HIPRI message, 7573 * but the one we are about to putback is. 7574 * For simplicitly, we do not allow for HIPRI 7575 * messages to be embedded in the message 7576 * body, so just force it to same type as 7577 * first message. 7578 */ 7579 ASSERT(type == M_DATA || type == M_PROTO); 7580 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7581 savemp->b_datap->db_type = type; 7582 } 7583 if (mark != 0) { 7584 if ((mark & _LASTMARK) && 7585 (stp->sd_mark == NULL)) { 7586 /* 7587 * If another marked message arrived 7588 * while sd_lock was not held sd_mark 7589 * would be non-NULL. 7590 */ 7591 stp->sd_mark = savemp; 7592 } 7593 savemp->b_flag |= mark & ~_LASTMARK; 7594 } 7595 putback(stp, q, savemp, pri); 7596 } 7597 } else if (!(flags & MSG_IPEEK)) { 7598 /* 7599 * The complete message was consumed. 7600 * 7601 * If another M_PCPROTO arrived while sd_lock was not held 7602 * it would have been discarded since STRPRI was still set. 7603 * 7604 * Move the MSG*MARKNEXT information 7605 * to the stream head just in case 7606 * the read queue becomes empty. 7607 * clear stream head hi pri flag based on 7608 * first message 7609 * 7610 * If the stream head was at the mark 7611 * (STRATMARK) before we dropped sd_lock above 7612 * and some data was consumed then we have 7613 * moved past the mark thus STRATMARK is 7614 * cleared. However, if a message arrived in 7615 * strrput during the copyout above causing 7616 * STRATMARK to be set we can not clear that 7617 * flag. 7618 * XXX A "perimeter" would help by single-threading strrput, 7619 * strread, strgetmsg and kstrgetmsg. 7620 */ 7621 if (type >= QPCTL) { 7622 ASSERT(type == M_PCPROTO); 7623 stp->sd_flag &= ~STRPRI; 7624 } 7625 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7626 if (mark & MSGMARKNEXT) { 7627 stp->sd_flag &= ~STRNOTATMARK; 7628 stp->sd_flag |= STRATMARK; 7629 } else if (mark & MSGNOTMARKNEXT) { 7630 stp->sd_flag &= ~STRATMARK; 7631 stp->sd_flag |= STRNOTATMARK; 7632 } else { 7633 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7634 } 7635 } else if (pr && (old_sd_flag & STRATMARK)) { 7636 stp->sd_flag &= ~STRATMARK; 7637 } 7638 } 7639 7640 *flagsp = flg; 7641 *prip = pri; 7642 7643 /* 7644 * Getmsg cleanup processing - if the state of the queue has changed 7645 * some signals may need to be sent and/or poll awakened. 7646 */ 7647 getmout: 7648 qbackenable(q, pri); 7649 7650 /* 7651 * We dropped the stream head lock above. Send all M_SIG messages 7652 * before processing stream head for SIGPOLL messages. 7653 */ 7654 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7655 while ((bp = q->q_first) != NULL && 7656 (bp->b_datap->db_type == M_SIG)) { 7657 /* 7658 * sd_lock is held so the content of the read queue can not 7659 * change. 7660 */ 7661 bp = getq(q); 7662 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7663 7664 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7665 mutex_exit(&stp->sd_lock); 7666 freemsg(bp); 7667 if (STREAM_NEEDSERVICE(stp)) 7668 stream_runservice(stp); 7669 mutex_enter(&stp->sd_lock); 7670 } 7671 7672 /* 7673 * stream head cannot change while we make the determination 7674 * whether or not to send a signal. Drop the flag to allow strrput 7675 * to send firstmsgsigs again. 7676 */ 7677 stp->sd_flag &= ~STRGETINPROG; 7678 7679 /* 7680 * If the type of message at the front of the queue changed 7681 * due to the receive the appropriate signals and pollwakeup events 7682 * are generated. The type of changes are: 7683 * Processed a hipri message, q_first is not hipri. 7684 * Processed a band X message, and q_first is band Y. 7685 * The generated signals and pollwakeups are identical to what 7686 * strrput() generates should the message that is now on q_first 7687 * arrive to an empty read queue. 7688 * 7689 * Note: only strrput will send a signal for a hipri message. 7690 */ 7691 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7692 strsigset_t signals = 0; 7693 strpollset_t pollwakeups = 0; 7694 7695 if (flg & MSG_HIPRI) { 7696 /* 7697 * Removed a hipri message. Regular data at 7698 * the front of the queue. 7699 */ 7700 if (bp->b_band == 0) { 7701 signals = S_INPUT | S_RDNORM; 7702 pollwakeups = POLLIN | POLLRDNORM; 7703 } else { 7704 signals = S_INPUT | S_RDBAND; 7705 pollwakeups = POLLIN | POLLRDBAND; 7706 } 7707 } else if (pri != bp->b_band) { 7708 /* 7709 * The band is different for the new q_first. 7710 */ 7711 if (bp->b_band == 0) { 7712 signals = S_RDNORM; 7713 pollwakeups = POLLIN | POLLRDNORM; 7714 } else { 7715 signals = S_RDBAND; 7716 pollwakeups = POLLIN | POLLRDBAND; 7717 } 7718 } 7719 7720 if (pollwakeups != 0) { 7721 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7722 if (!(stp->sd_rput_opt & SR_POLLIN)) 7723 goto no_pollwake; 7724 stp->sd_rput_opt &= ~SR_POLLIN; 7725 } 7726 mutex_exit(&stp->sd_lock); 7727 pollwakeup(&stp->sd_pollist, pollwakeups); 7728 mutex_enter(&stp->sd_lock); 7729 } 7730 no_pollwake: 7731 7732 if (stp->sd_sigflags & signals) 7733 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7734 } 7735 mutex_exit(&stp->sd_lock); 7736 7737 rvp->r_val1 = more; 7738 return (error); 7739 #undef _LASTMARK 7740 } 7741 7742 /* 7743 * Put a message downstream. 7744 * 7745 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7746 */ 7747 int 7748 strputmsg( 7749 struct vnode *vp, 7750 struct strbuf *mctl, 7751 struct strbuf *mdata, 7752 unsigned char pri, 7753 int flag, 7754 int fmode) 7755 { 7756 struct stdata *stp; 7757 queue_t *wqp; 7758 mblk_t *mp; 7759 ssize_t msgsize; 7760 ssize_t rmin, rmax; 7761 int error; 7762 struct uio uios; 7763 struct uio *uiop = &uios; 7764 struct iovec iovs; 7765 int xpg4 = 0; 7766 7767 ASSERT(vp->v_stream); 7768 stp = vp->v_stream; 7769 wqp = stp->sd_wrq; 7770 7771 /* 7772 * If it is an XPG4 application, we need to send 7773 * SIGPIPE below 7774 */ 7775 7776 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7777 flag &= ~MSG_XPG4; 7778 7779 if (AU_AUDITING()) 7780 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7781 7782 mutex_enter(&stp->sd_lock); 7783 7784 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7785 mutex_exit(&stp->sd_lock); 7786 return (error); 7787 } 7788 7789 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7790 error = strwriteable(stp, B_FALSE, xpg4); 7791 if (error != 0) { 7792 mutex_exit(&stp->sd_lock); 7793 return (error); 7794 } 7795 } 7796 7797 mutex_exit(&stp->sd_lock); 7798 7799 /* 7800 * Check for legal flag value. 7801 */ 7802 switch (flag) { 7803 case MSG_HIPRI: 7804 if ((mctl->len < 0) || (pri != 0)) 7805 return (EINVAL); 7806 break; 7807 case MSG_BAND: 7808 break; 7809 7810 default: 7811 return (EINVAL); 7812 } 7813 7814 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7815 "strputmsg in:stp %p", stp); 7816 7817 /* get these values from those cached in the stream head */ 7818 rmin = stp->sd_qn_minpsz; 7819 rmax = stp->sd_qn_maxpsz; 7820 7821 /* 7822 * Make sure ctl and data sizes together fall within the 7823 * limits of the max and min receive packet sizes and do 7824 * not exceed system limit. 7825 */ 7826 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7827 if (rmax == 0) { 7828 return (ERANGE); 7829 } 7830 /* 7831 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7832 * Needed to prevent partial failures in the strmakedata loop. 7833 */ 7834 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7835 rmax = stp->sd_maxblk; 7836 7837 if ((msgsize = mdata->len) < 0) { 7838 msgsize = 0; 7839 rmin = 0; /* no range check for NULL data part */ 7840 } 7841 if ((msgsize < rmin) || 7842 ((msgsize > rmax) && (rmax != INFPSZ)) || 7843 (mctl->len > strctlsz)) { 7844 return (ERANGE); 7845 } 7846 7847 /* 7848 * Setup uio and iov for data part 7849 */ 7850 iovs.iov_base = mdata->buf; 7851 iovs.iov_len = msgsize; 7852 uios.uio_iov = &iovs; 7853 uios.uio_iovcnt = 1; 7854 uios.uio_loffset = 0; 7855 uios.uio_segflg = UIO_USERSPACE; 7856 uios.uio_fmode = fmode; 7857 uios.uio_extflg = UIO_COPY_DEFAULT; 7858 uios.uio_resid = msgsize; 7859 uios.uio_offset = 0; 7860 7861 /* Ignore flow control in strput for HIPRI */ 7862 if (flag & MSG_HIPRI) 7863 flag |= MSG_IGNFLOW; 7864 7865 for (;;) { 7866 int done = 0; 7867 7868 /* 7869 * strput will always free the ctl mblk - even when strput 7870 * fails. 7871 */ 7872 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7873 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7874 "strputmsg out:stp %p out %d error %d", 7875 stp, 1, error); 7876 return (error); 7877 } 7878 /* 7879 * Verify that the whole message can be transferred by 7880 * strput. 7881 */ 7882 ASSERT(stp->sd_maxblk == INFPSZ || 7883 stp->sd_maxblk >= mdata->len); 7884 7885 msgsize = mdata->len; 7886 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7887 mdata->len = msgsize; 7888 7889 if (error == 0) 7890 break; 7891 7892 if (error != EWOULDBLOCK) 7893 goto out; 7894 7895 mutex_enter(&stp->sd_lock); 7896 /* 7897 * Check for a missed wakeup. 7898 * Needed since strput did not hold sd_lock across 7899 * the canputnext. 7900 */ 7901 if (bcanputnext(wqp, pri)) { 7902 /* Try again */ 7903 mutex_exit(&stp->sd_lock); 7904 continue; 7905 } 7906 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7907 "strputmsg wait:stp %p waits pri %d", stp, pri); 7908 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7909 &done)) != 0) || done) { 7910 mutex_exit(&stp->sd_lock); 7911 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7912 "strputmsg out:q %p out %d error %d", 7913 stp, 0, error); 7914 return (error); 7915 } 7916 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7917 "strputmsg wake:stp %p wakes", stp); 7918 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7919 mutex_exit(&stp->sd_lock); 7920 return (error); 7921 } 7922 mutex_exit(&stp->sd_lock); 7923 } 7924 out: 7925 /* 7926 * For historic reasons, applications expect EAGAIN 7927 * when data mblk could not be allocated. so change 7928 * ENOMEM back to EAGAIN 7929 */ 7930 if (error == ENOMEM) 7931 error = EAGAIN; 7932 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7933 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7934 return (error); 7935 } 7936 7937 /* 7938 * Put a message downstream. 7939 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7940 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7941 * and the fmode parameter. 7942 * 7943 * This routine handles the consolidation private flags: 7944 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7945 * MSG_HOLDSIG Hold signals while waiting for data. 7946 * MSG_IGNFLOW Don't check streams flow control. 7947 * 7948 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7949 */ 7950 int 7951 kstrputmsg( 7952 struct vnode *vp, 7953 mblk_t *mctl, 7954 struct uio *uiop, 7955 ssize_t msgsize, 7956 unsigned char pri, 7957 int flag, 7958 int fmode) 7959 { 7960 struct stdata *stp; 7961 queue_t *wqp; 7962 ssize_t rmin, rmax; 7963 int error; 7964 7965 ASSERT(vp->v_stream); 7966 stp = vp->v_stream; 7967 wqp = stp->sd_wrq; 7968 if (AU_AUDITING()) 7969 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7970 if (mctl == NULL) 7971 return (EINVAL); 7972 7973 mutex_enter(&stp->sd_lock); 7974 7975 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7976 mutex_exit(&stp->sd_lock); 7977 freemsg(mctl); 7978 return (error); 7979 } 7980 7981 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7982 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7983 error = strwriteable(stp, B_FALSE, B_TRUE); 7984 if (error != 0) { 7985 mutex_exit(&stp->sd_lock); 7986 freemsg(mctl); 7987 return (error); 7988 } 7989 } 7990 } 7991 7992 mutex_exit(&stp->sd_lock); 7993 7994 /* 7995 * Check for legal flag value. 7996 */ 7997 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 7998 case MSG_HIPRI: 7999 if (pri != 0) { 8000 freemsg(mctl); 8001 return (EINVAL); 8002 } 8003 break; 8004 case MSG_BAND: 8005 break; 8006 default: 8007 freemsg(mctl); 8008 return (EINVAL); 8009 } 8010 8011 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 8012 "kstrputmsg in:stp %p", stp); 8013 8014 /* get these values from those cached in the stream head */ 8015 rmin = stp->sd_qn_minpsz; 8016 rmax = stp->sd_qn_maxpsz; 8017 8018 /* 8019 * Make sure ctl and data sizes together fall within the 8020 * limits of the max and min receive packet sizes and do 8021 * not exceed system limit. 8022 */ 8023 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 8024 if (rmax == 0) { 8025 freemsg(mctl); 8026 return (ERANGE); 8027 } 8028 /* 8029 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 8030 * Needed to prevent partial failures in the strmakedata loop. 8031 */ 8032 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 8033 rmax = stp->sd_maxblk; 8034 8035 if (uiop == NULL) { 8036 msgsize = -1; 8037 rmin = -1; /* no range check for NULL data part */ 8038 } else { 8039 /* Use uio flags as well as the fmode parameter flags */ 8040 fmode |= uiop->uio_fmode; 8041 8042 if ((msgsize < rmin) || 8043 ((msgsize > rmax) && (rmax != INFPSZ))) { 8044 freemsg(mctl); 8045 return (ERANGE); 8046 } 8047 } 8048 8049 /* Ignore flow control in strput for HIPRI */ 8050 if (flag & MSG_HIPRI) 8051 flag |= MSG_IGNFLOW; 8052 8053 for (;;) { 8054 int done = 0; 8055 int waitflag; 8056 mblk_t *mp; 8057 8058 /* 8059 * strput will always free the ctl mblk - even when strput 8060 * fails. If MSG_IGNFLOW is set then any error returned 8061 * will cause us to break the loop, so we don't need a copy 8062 * of the message. If MSG_IGNFLOW is not set, then we can 8063 * get hit by flow control and be forced to try again. In 8064 * this case we need to have a copy of the message. We 8065 * do this using copymsg since the message may get modified 8066 * by something below us. 8067 * 8068 * We've observed that many TPI providers do not check db_ref 8069 * on the control messages but blindly reuse them for the 8070 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 8071 * friendly to such providers than using dupmsg. Also, note 8072 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 8073 * Only data messages are subject to flow control, hence 8074 * subject to this copymsg. 8075 */ 8076 if (flag & MSG_IGNFLOW) { 8077 mp = mctl; 8078 mctl = NULL; 8079 } else { 8080 do { 8081 /* 8082 * If a message has a free pointer, the message 8083 * must be dupmsg to maintain this pointer. 8084 * Code using this facility must be sure 8085 * that modules below will not change the 8086 * contents of the dblk without checking db_ref 8087 * first. If db_ref is > 1, then the module 8088 * needs to do a copymsg first. Otherwise, 8089 * the contents of the dblk may become 8090 * inconsistent because the freesmg/freeb below 8091 * may end up calling atomic_add_32_nv. 8092 * The atomic_add_32_nv in freeb (accessing 8093 * all of db_ref, db_type, db_flags, and 8094 * db_struioflag) does not prevent other threads 8095 * from concurrently trying to modify e.g. 8096 * db_type. 8097 */ 8098 if (mctl->b_datap->db_frtnp != NULL) 8099 mp = dupmsg(mctl); 8100 else 8101 mp = copymsg(mctl); 8102 8103 if (mp != NULL) 8104 break; 8105 8106 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 8107 if (error) { 8108 freemsg(mctl); 8109 return (error); 8110 } 8111 } while (mp == NULL); 8112 } 8113 /* 8114 * Verify that all of msgsize can be transferred by 8115 * strput. 8116 */ 8117 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 8118 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 8119 if (error == 0) 8120 break; 8121 8122 if (error != EWOULDBLOCK) 8123 goto out; 8124 8125 /* 8126 * IF MSG_IGNFLOW is set we should have broken out of loop 8127 * above. 8128 */ 8129 ASSERT(!(flag & MSG_IGNFLOW)); 8130 mutex_enter(&stp->sd_lock); 8131 /* 8132 * Check for a missed wakeup. 8133 * Needed since strput did not hold sd_lock across 8134 * the canputnext. 8135 */ 8136 if (bcanputnext(wqp, pri)) { 8137 /* Try again */ 8138 mutex_exit(&stp->sd_lock); 8139 continue; 8140 } 8141 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 8142 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 8143 8144 waitflag = WRITEWAIT; 8145 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 8146 if (flag & MSG_HOLDSIG) 8147 waitflag |= STR_NOSIG; 8148 if (flag & MSG_IGNERROR) 8149 waitflag |= STR_NOERROR; 8150 } 8151 if (((error = strwaitq(stp, waitflag, 8152 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 8153 mutex_exit(&stp->sd_lock); 8154 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8155 "kstrputmsg out:stp %p out %d error %d", 8156 stp, 0, error); 8157 freemsg(mctl); 8158 return (error); 8159 } 8160 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 8161 "kstrputmsg wake:stp %p wakes", stp); 8162 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8163 mutex_exit(&stp->sd_lock); 8164 freemsg(mctl); 8165 return (error); 8166 } 8167 mutex_exit(&stp->sd_lock); 8168 } 8169 out: 8170 freemsg(mctl); 8171 /* 8172 * For historic reasons, applications expect EAGAIN 8173 * when data mblk could not be allocated. so change 8174 * ENOMEM back to EAGAIN 8175 */ 8176 if (error == ENOMEM) 8177 error = EAGAIN; 8178 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8179 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 8180 return (error); 8181 } 8182 8183 /* 8184 * Determines whether the necessary conditions are set on a stream 8185 * for it to be readable, writeable, or have exceptions. 8186 * 8187 * strpoll handles the consolidation private events: 8188 * POLLNOERR Do not return POLLERR even if there are stream 8189 * head errors. 8190 * Used by sockfs. 8191 * POLLRDDATA Do not return POLLIN unless at least one message on 8192 * the queue contains one or more M_DATA mblks. Thus 8193 * when this flag is set a queue with only 8194 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8195 * Used by sockfs to ignore T_EXDATA_IND messages. 8196 * 8197 * Note: POLLRDDATA assumes that synch streams only return messages with 8198 * an M_DATA attached (i.e. not messages consisting of only 8199 * an M_PROTO/M_PCPROTO part). 8200 */ 8201 int 8202 strpoll(struct stdata *stp, short events_arg, int anyyet, short *reventsp, 8203 struct pollhead **phpp) 8204 { 8205 int events = (ushort_t)events_arg; 8206 int retevents = 0; 8207 mblk_t *mp; 8208 qband_t *qbp; 8209 long sd_flags = stp->sd_flag; 8210 int headlocked = 0; 8211 8212 /* 8213 * For performance, a single 'if' tests for most possible edge 8214 * conditions in one shot 8215 */ 8216 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8217 if (sd_flags & STPLEX) { 8218 *reventsp = POLLNVAL; 8219 return (EINVAL); 8220 } 8221 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8222 (sd_flags & STRDERR)) || 8223 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8224 (sd_flags & STWRERR))) { 8225 if (!(events & POLLNOERR)) { 8226 *reventsp = POLLERR; 8227 return (0); 8228 } 8229 } 8230 } 8231 if (sd_flags & STRHUP) { 8232 retevents |= POLLHUP; 8233 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8234 queue_t *tq; 8235 queue_t *qp = stp->sd_wrq; 8236 8237 claimstr(qp); 8238 /* Find next module forward that has a service procedure */ 8239 tq = qp->q_next->q_nfsrv; 8240 ASSERT(tq != NULL); 8241 8242 if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) { 8243 releasestr(qp); 8244 *reventsp = POLLNVAL; 8245 return (0); 8246 } 8247 if (events & POLLWRNORM) { 8248 queue_t *sqp; 8249 8250 if (tq->q_flag & QFULL) 8251 /* ensure backq svc procedure runs */ 8252 tq->q_flag |= QWANTW; 8253 else if ((sqp = stp->sd_struiowrq) != NULL) { 8254 /* Check sync stream barrier write q */ 8255 mutex_exit(QLOCK(tq)); 8256 if (polllock(&stp->sd_pollist, 8257 QLOCK(sqp)) != 0) { 8258 releasestr(qp); 8259 *reventsp = POLLNVAL; 8260 return (0); 8261 } 8262 if (sqp->q_flag & QFULL) 8263 /* ensure pollwakeup() is done */ 8264 sqp->q_flag |= QWANTWSYNC; 8265 else 8266 retevents |= POLLOUT; 8267 /* More write events to process ??? */ 8268 if (! (events & POLLWRBAND)) { 8269 mutex_exit(QLOCK(sqp)); 8270 releasestr(qp); 8271 goto chkrd; 8272 } 8273 mutex_exit(QLOCK(sqp)); 8274 if (polllock(&stp->sd_pollist, 8275 QLOCK(tq)) != 0) { 8276 releasestr(qp); 8277 *reventsp = POLLNVAL; 8278 return (0); 8279 } 8280 } else 8281 retevents |= POLLOUT; 8282 } 8283 if (events & POLLWRBAND) { 8284 qbp = tq->q_bandp; 8285 if (qbp) { 8286 while (qbp) { 8287 if (qbp->qb_flag & QB_FULL) 8288 qbp->qb_flag |= QB_WANTW; 8289 else 8290 retevents |= POLLWRBAND; 8291 qbp = qbp->qb_next; 8292 } 8293 } else { 8294 retevents |= POLLWRBAND; 8295 } 8296 } 8297 mutex_exit(QLOCK(tq)); 8298 releasestr(qp); 8299 } 8300 chkrd: 8301 if (sd_flags & STRPRI) { 8302 retevents |= (events & POLLPRI); 8303 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8304 queue_t *qp = _RD(stp->sd_wrq); 8305 int normevents = (events & (POLLIN | POLLRDNORM)); 8306 8307 /* 8308 * Note: Need to do polllock() here since ps_lock may be 8309 * held. See bug 4191544. 8310 */ 8311 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8312 *reventsp = POLLNVAL; 8313 return (0); 8314 } 8315 headlocked = 1; 8316 mp = qp->q_first; 8317 while (mp) { 8318 /* 8319 * For POLLRDDATA we scan b_cont and b_next until we 8320 * find an M_DATA. 8321 */ 8322 if ((events & POLLRDDATA) && 8323 mp->b_datap->db_type != M_DATA) { 8324 mblk_t *nmp = mp->b_cont; 8325 8326 while (nmp != NULL && 8327 nmp->b_datap->db_type != M_DATA) 8328 nmp = nmp->b_cont; 8329 if (nmp == NULL) { 8330 mp = mp->b_next; 8331 continue; 8332 } 8333 } 8334 if (mp->b_band == 0) 8335 retevents |= normevents; 8336 else 8337 retevents |= (events & (POLLIN | POLLRDBAND)); 8338 break; 8339 } 8340 if (!(retevents & normevents) && (stp->sd_wakeq & RSLEEP)) { 8341 /* 8342 * Sync stream barrier read queue has data. 8343 */ 8344 retevents |= normevents; 8345 } 8346 /* Treat eof as normal data */ 8347 if (sd_flags & STREOF) 8348 retevents |= normevents; 8349 } 8350 8351 /* 8352 * Pass back a pollhead if no events are pending or if edge-triggering 8353 * has been configured on this resource. 8354 */ 8355 if ((retevents == 0 && !anyyet) || (events & POLLET)) { 8356 *phpp = &stp->sd_pollist; 8357 if (headlocked == 0) { 8358 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8359 *reventsp = POLLNVAL; 8360 return (0); 8361 } 8362 headlocked = 1; 8363 } 8364 stp->sd_rput_opt |= SR_POLLIN; 8365 } 8366 8367 *reventsp = (short)retevents; 8368 if (headlocked) 8369 mutex_exit(&stp->sd_lock); 8370 return (0); 8371 } 8372 8373 /* 8374 * The purpose of putback() is to assure sleeping polls/reads 8375 * are awakened when there are no new messages arriving at the, 8376 * stream head, and a message is placed back on the read queue. 8377 * 8378 * sd_lock must be held when messages are placed back on stream 8379 * head. (getq() holds sd_lock when it removes messages from 8380 * the queue) 8381 */ 8382 8383 static void 8384 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8385 { 8386 mblk_t *qfirst; 8387 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8388 8389 /* 8390 * As a result of lock-step ordering around q_lock and sd_lock, 8391 * it's possible for function calls like putnext() and 8392 * canputnext() to get an inaccurate picture of how much 8393 * data is really being processed at the stream head. 8394 * We only consolidate with existing messages on the queue 8395 * if the length of the message we want to put back is smaller 8396 * than the queue hiwater mark. 8397 */ 8398 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8399 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) && 8400 (DB_TYPE(qfirst) == M_DATA) && 8401 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) && 8402 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) && 8403 (mp_cont_len(bp, NULL) < q->q_hiwat)) { 8404 /* 8405 * We use the same logic as defined in strrput() 8406 * but in reverse as we are putting back onto the 8407 * queue and want to retain byte ordering. 8408 * Consolidate M_DATA messages with M_DATA ONLY. 8409 * strrput() allows the consolidation of M_DATA onto 8410 * M_PROTO | M_PCPROTO but not the other way round. 8411 * 8412 * The consolidation does not take place if the message 8413 * we are returning to the queue is marked with either 8414 * of the marks or the delim flag or if q_first 8415 * is marked with MSGMARK. The MSGMARK check is needed to 8416 * handle the odd semantics of MSGMARK where essentially 8417 * the whole message is to be treated as marked. 8418 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8419 * to the front of the b_cont chain. 8420 */ 8421 rmvq_noenab(q, qfirst); 8422 8423 /* 8424 * The first message in the b_cont list 8425 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8426 * We need to handle the case where we 8427 * are appending: 8428 * 8429 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8430 * 2) a MSGMARKNEXT to a plain message. 8431 * 3) a MSGNOTMARKNEXT to a plain message 8432 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8433 * message. 8434 * 8435 * Thus we never append a MSGMARKNEXT or 8436 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8437 */ 8438 if (qfirst->b_flag & MSGMARKNEXT) { 8439 bp->b_flag |= MSGMARKNEXT; 8440 bp->b_flag &= ~MSGNOTMARKNEXT; 8441 qfirst->b_flag &= ~MSGMARKNEXT; 8442 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8443 bp->b_flag |= MSGNOTMARKNEXT; 8444 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8445 } 8446 8447 linkb(bp, qfirst); 8448 } 8449 (void) putbq(q, bp); 8450 8451 /* 8452 * A message may have come in when the sd_lock was dropped in the 8453 * calling routine. If this is the case and STR*ATMARK info was 8454 * received, need to move that from the stream head to the q_last 8455 * so that SIOCATMARK can return the proper value. 8456 */ 8457 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8458 unsigned short *flagp = &q->q_last->b_flag; 8459 uint_t b_flag = (uint_t)*flagp; 8460 8461 if (stp->sd_flag & STRATMARK) { 8462 b_flag &= ~MSGNOTMARKNEXT; 8463 b_flag |= MSGMARKNEXT; 8464 stp->sd_flag &= ~STRATMARK; 8465 } else { 8466 b_flag &= ~MSGMARKNEXT; 8467 b_flag |= MSGNOTMARKNEXT; 8468 stp->sd_flag &= ~STRNOTATMARK; 8469 } 8470 *flagp = (unsigned short) b_flag; 8471 } 8472 8473 #ifdef DEBUG 8474 /* 8475 * Make sure that the flags are not messed up. 8476 */ 8477 { 8478 mblk_t *mp; 8479 mp = q->q_last; 8480 while (mp != NULL) { 8481 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8482 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8483 mp = mp->b_cont; 8484 } 8485 } 8486 #endif 8487 if (q->q_first == bp) { 8488 short pollevents; 8489 8490 if (stp->sd_flag & RSLEEP) { 8491 stp->sd_flag &= ~RSLEEP; 8492 cv_broadcast(&q->q_wait); 8493 } 8494 if (stp->sd_flag & STRPRI) { 8495 pollevents = POLLPRI; 8496 } else { 8497 if (band == 0) { 8498 if (!(stp->sd_rput_opt & SR_POLLIN)) 8499 return; 8500 stp->sd_rput_opt &= ~SR_POLLIN; 8501 pollevents = POLLIN | POLLRDNORM; 8502 } else { 8503 pollevents = POLLIN | POLLRDBAND; 8504 } 8505 } 8506 mutex_exit(&stp->sd_lock); 8507 pollwakeup(&stp->sd_pollist, pollevents); 8508 mutex_enter(&stp->sd_lock); 8509 } 8510 } 8511 8512 /* 8513 * Return the held vnode attached to the stream head of a 8514 * given queue 8515 * It is the responsibility of the calling routine to ensure 8516 * that the queue does not go away (e.g. pop). 8517 */ 8518 vnode_t * 8519 strq2vp(queue_t *qp) 8520 { 8521 vnode_t *vp; 8522 vp = STREAM(qp)->sd_vnode; 8523 ASSERT(vp != NULL); 8524 VN_HOLD(vp); 8525 return (vp); 8526 } 8527 8528 /* 8529 * return the stream head write queue for the given vp 8530 * It is the responsibility of the calling routine to ensure 8531 * that the stream or vnode do not close. 8532 */ 8533 queue_t * 8534 strvp2wq(vnode_t *vp) 8535 { 8536 ASSERT(vp->v_stream != NULL); 8537 return (vp->v_stream->sd_wrq); 8538 } 8539 8540 /* 8541 * pollwakeup stream head 8542 * It is the responsibility of the calling routine to ensure 8543 * that the stream or vnode do not close. 8544 */ 8545 void 8546 strpollwakeup(vnode_t *vp, short event) 8547 { 8548 ASSERT(vp->v_stream); 8549 pollwakeup(&vp->v_stream->sd_pollist, event); 8550 } 8551 8552 /* 8553 * Mate the stream heads of two vnodes together. If the two vnodes are the 8554 * same, we just make the write-side point at the read-side -- otherwise, 8555 * we do a full mate. Only works on vnodes associated with streams that are 8556 * still being built and thus have only a stream head. 8557 */ 8558 void 8559 strmate(vnode_t *vp1, vnode_t *vp2) 8560 { 8561 queue_t *wrq1 = strvp2wq(vp1); 8562 queue_t *wrq2 = strvp2wq(vp2); 8563 8564 /* 8565 * Verify that there are no modules on the stream yet. We also 8566 * rely on the stream head always having a service procedure to 8567 * avoid tweaking q_nfsrv. 8568 */ 8569 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8570 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8571 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8572 8573 /* 8574 * If the queues are the same, just twist; otherwise do a full mate. 8575 */ 8576 if (wrq1 == wrq2) { 8577 wrq1->q_next = _RD(wrq1); 8578 } else { 8579 wrq1->q_next = _RD(wrq2); 8580 wrq2->q_next = _RD(wrq1); 8581 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8582 STREAM(wrq1)->sd_flag |= STRMATE; 8583 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8584 STREAM(wrq2)->sd_flag |= STRMATE; 8585 } 8586 } 8587 8588 /* 8589 * XXX will go away when console is correctly fixed. 8590 * Clean up the console PIDS, from previous I_SETSIG, 8591 * called only for cnopen which never calls strclean(). 8592 */ 8593 void 8594 str_cn_clean(struct vnode *vp) 8595 { 8596 strsig_t *ssp, *pssp, *tssp; 8597 struct stdata *stp; 8598 struct pid *pidp; 8599 int update = 0; 8600 8601 ASSERT(vp->v_stream); 8602 stp = vp->v_stream; 8603 pssp = NULL; 8604 mutex_enter(&stp->sd_lock); 8605 ssp = stp->sd_siglist; 8606 while (ssp) { 8607 mutex_enter(&pidlock); 8608 pidp = ssp->ss_pidp; 8609 /* 8610 * Get rid of PID if the proc is gone. 8611 */ 8612 if (pidp->pid_prinactive) { 8613 tssp = ssp->ss_next; 8614 if (pssp) 8615 pssp->ss_next = tssp; 8616 else 8617 stp->sd_siglist = tssp; 8618 ASSERT(pidp->pid_ref <= 1); 8619 PID_RELE(ssp->ss_pidp); 8620 mutex_exit(&pidlock); 8621 kmem_free(ssp, sizeof (strsig_t)); 8622 update = 1; 8623 ssp = tssp; 8624 continue; 8625 } else 8626 mutex_exit(&pidlock); 8627 pssp = ssp; 8628 ssp = ssp->ss_next; 8629 } 8630 if (update) { 8631 stp->sd_sigflags = 0; 8632 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8633 stp->sd_sigflags |= ssp->ss_events; 8634 } 8635 mutex_exit(&stp->sd_lock); 8636 } 8637 8638 /* 8639 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8640 */ 8641 static boolean_t 8642 msghasdata(mblk_t *bp) 8643 { 8644 for (; bp; bp = bp->b_cont) 8645 if (bp->b_datap->db_type == M_DATA) { 8646 ASSERT(bp->b_wptr >= bp->b_rptr); 8647 if (bp->b_wptr > bp->b_rptr) 8648 return (B_TRUE); 8649 } 8650 return (B_FALSE); 8651 } 8652