1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/param.h> 35 #include <sys/errno.h> 36 #include <sys/signal.h> 37 #include <sys/stat.h> 38 #include <sys/proc.h> 39 #include <sys/cred.h> 40 #include <sys/user.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/stream.h> 44 #include <sys/strsubr.h> 45 #include <sys/stropts.h> 46 #include <sys/tihdr.h> 47 #include <sys/var.h> 48 #include <sys/poll.h> 49 #include <sys/termio.h> 50 #include <sys/ttold.h> 51 #include <sys/systm.h> 52 #include <sys/uio.h> 53 #include <sys/cmn_err.h> 54 #include <sys/sad.h> 55 #include <sys/netstack.h> 56 #include <sys/priocntl.h> 57 #include <sys/jioctl.h> 58 #include <sys/procset.h> 59 #include <sys/session.h> 60 #include <sys/kmem.h> 61 #include <sys/filio.h> 62 #include <sys/vtrace.h> 63 #include <sys/debug.h> 64 #include <sys/strredir.h> 65 #include <sys/fs/fifonode.h> 66 #include <sys/fs/snode.h> 67 #include <sys/strlog.h> 68 #include <sys/strsun.h> 69 #include <sys/project.h> 70 #include <sys/kbio.h> 71 #include <sys/msio.h> 72 #include <sys/tty.h> 73 #include <sys/ptyvar.h> 74 #include <sys/vuid_event.h> 75 #include <sys/modctl.h> 76 #include <sys/sunddi.h> 77 #include <sys/sunldi_impl.h> 78 #include <sys/autoconf.h> 79 #include <sys/policy.h> 80 #include <sys/dld.h> 81 #include <sys/zone.h> 82 83 /* 84 * This define helps improve the readability of streams code while 85 * still maintaining a very old streams performance enhancement. The 86 * performance enhancement basically involved having all callers 87 * of straccess() perform the first check that straccess() will do 88 * locally before actually calling straccess(). (There by reducing 89 * the number of unnecessary calls to straccess().) 90 */ 91 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 92 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 93 straccess((x), (y))) 94 95 /* 96 * what is mblk_pull_len? 97 * 98 * If a streams message consists of many short messages, 99 * a performance degradation occurs from copyout overhead. 100 * To decrease the per mblk overhead, messages that are 101 * likely to consist of many small mblks are pulled up into 102 * one continuous chunk of memory. 103 * 104 * To avoid the processing overhead of examining every 105 * mblk, a quick heuristic is used. If the first mblk in 106 * the message is shorter than mblk_pull_len, it is likely 107 * that the rest of the mblk will be short. 108 * 109 * This heuristic was decided upon after performance tests 110 * indicated that anything more complex slowed down the main 111 * code path. 112 */ 113 #define MBLK_PULL_LEN 64 114 uint32_t mblk_pull_len = MBLK_PULL_LEN; 115 116 /* 117 * The sgttyb_handling flag controls the handling of the old BSD 118 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 119 * 120 * 0 - Emit no warnings at all and retain old, broken behavior. 121 * 1 - Emit no warnings and silently handle new semantics. 122 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 123 * (once per system invocation). Handle with new semantics. 124 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 125 * made (so that offenders drop core and are easy to debug). 126 * 127 * The "new semantics" are that TIOCGETP returns B38400 for 128 * sg_[io]speed if the corresponding value is over B38400, and that 129 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 130 * bit rate." 131 */ 132 int sgttyb_handling = 1; 133 static boolean_t sgttyb_complaint; 134 135 /* don't push drcompat module by default on Style-2 streams */ 136 static int push_drcompat = 0; 137 138 /* 139 * id value used to distinguish between different ioctl messages 140 */ 141 static uint32_t ioc_id; 142 143 static void putback(struct stdata *, queue_t *, mblk_t *, int); 144 static void strcleanall(struct vnode *); 145 static int strwsrv(queue_t *); 146 static int strdocmd(struct stdata *, struct strcmd *, cred_t *); 147 148 /* 149 * qinit and module_info structures for stream head read and write queues 150 */ 151 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 152 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 153 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 154 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 155 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 156 FIFOLOWAT }; 157 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 158 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 159 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 160 161 extern kmutex_t strresources; /* protects global resources */ 162 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 163 164 static boolean_t msghasdata(mblk_t *bp); 165 #define msgnodata(bp) (!msghasdata(bp)) 166 167 /* 168 * Stream head locking notes: 169 * There are four monitors associated with the stream head: 170 * 1. v_stream monitor: in stropen() and strclose() v_lock 171 * is held while the association of vnode and stream 172 * head is established or tested for. 173 * 2. open/close/push/pop monitor: sd_lock is held while each 174 * thread bids for exclusive access to this monitor 175 * for opening or closing a stream. In addition, this 176 * monitor is entered during pushes and pops. This 177 * guarantees that during plumbing operations there 178 * is only one thread trying to change the plumbing. 179 * Any other threads present in the stream are only 180 * using the plumbing. 181 * 3. read/write monitor: in the case of read, a thread holds 182 * sd_lock while trying to get data from the stream 183 * head queue. if there is none to fulfill a read 184 * request, it sets RSLEEP and calls cv_wait_sig() down 185 * in strwaitq() to await the arrival of new data. 186 * when new data arrives in strrput(), sd_lock is acquired 187 * before testing for RSLEEP and calling cv_broadcast(). 188 * the behavior of strwrite(), strwsrv(), and WSLEEP 189 * mirror this. 190 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 191 * thread is doing an ioctl at a time. 192 */ 193 194 static int 195 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 196 int anchor, cred_t *crp, uint_t anchor_zoneid) 197 { 198 int error; 199 fmodsw_impl_t *fp; 200 201 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 202 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 203 return (error); 204 } 205 if (stp->sd_pushcnt >= nstrpush) { 206 return (EINVAL); 207 } 208 209 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 210 stp->sd_flag |= STREOPENFAIL; 211 return (EINVAL); 212 } 213 214 /* 215 * push new module and call its open routine via qattach 216 */ 217 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 218 return (error); 219 220 /* 221 * Check to see if caller wants a STREAMS anchor 222 * put at this place in the stream, and add if so. 223 */ 224 mutex_enter(&stp->sd_lock); 225 if (anchor == stp->sd_pushcnt) { 226 stp->sd_anchor = stp->sd_pushcnt; 227 stp->sd_anchorzone = anchor_zoneid; 228 } 229 mutex_exit(&stp->sd_lock); 230 231 return (0); 232 } 233 234 /* 235 * Open a stream device. 236 */ 237 int 238 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 239 { 240 struct stdata *stp; 241 queue_t *qp; 242 int s; 243 dev_t dummydev, savedev; 244 struct autopush *ap; 245 struct dlautopush dlap; 246 int error = 0; 247 ssize_t rmin, rmax; 248 int cloneopen; 249 queue_t *brq; 250 major_t major; 251 str_stack_t *ss; 252 zoneid_t zoneid; 253 uint_t anchor; 254 255 if (audit_active) 256 audit_stropen(vp, devp, flag, crp); 257 258 /* 259 * If the stream already exists, wait for any open in progress 260 * to complete, then call the open function of each module and 261 * driver in the stream. Otherwise create the stream. 262 */ 263 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 264 retry: 265 mutex_enter(&vp->v_lock); 266 if ((stp = vp->v_stream) != NULL) { 267 268 /* 269 * Waiting for stream to be created to device 270 * due to another open. 271 */ 272 mutex_exit(&vp->v_lock); 273 274 if (STRMATED(stp)) { 275 struct stdata *strmatep = stp->sd_mate; 276 277 STRLOCKMATES(stp); 278 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 279 if (flag & (FNDELAY|FNONBLOCK)) { 280 error = EAGAIN; 281 mutex_exit(&strmatep->sd_lock); 282 goto ckreturn; 283 } 284 mutex_exit(&stp->sd_lock); 285 if (!cv_wait_sig(&strmatep->sd_monitor, 286 &strmatep->sd_lock)) { 287 error = EINTR; 288 mutex_exit(&strmatep->sd_lock); 289 mutex_enter(&stp->sd_lock); 290 goto ckreturn; 291 } 292 mutex_exit(&strmatep->sd_lock); 293 goto retry; 294 } 295 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 296 if (flag & (FNDELAY|FNONBLOCK)) { 297 error = EAGAIN; 298 mutex_exit(&strmatep->sd_lock); 299 goto ckreturn; 300 } 301 mutex_exit(&strmatep->sd_lock); 302 if (!cv_wait_sig(&stp->sd_monitor, 303 &stp->sd_lock)) { 304 error = EINTR; 305 goto ckreturn; 306 } 307 mutex_exit(&stp->sd_lock); 308 goto retry; 309 } 310 311 if (stp->sd_flag & (STRDERR|STWRERR)) { 312 error = EIO; 313 mutex_exit(&strmatep->sd_lock); 314 goto ckreturn; 315 } 316 317 stp->sd_flag |= STWOPEN; 318 STRUNLOCKMATES(stp); 319 } else { 320 mutex_enter(&stp->sd_lock); 321 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 322 if (flag & (FNDELAY|FNONBLOCK)) { 323 error = EAGAIN; 324 goto ckreturn; 325 } 326 if (!cv_wait_sig(&stp->sd_monitor, 327 &stp->sd_lock)) { 328 error = EINTR; 329 goto ckreturn; 330 } 331 mutex_exit(&stp->sd_lock); 332 goto retry; /* could be clone! */ 333 } 334 335 if (stp->sd_flag & (STRDERR|STWRERR)) { 336 error = EIO; 337 goto ckreturn; 338 } 339 340 stp->sd_flag |= STWOPEN; 341 mutex_exit(&stp->sd_lock); 342 } 343 344 /* 345 * Open all modules and devices down stream to notify 346 * that another user is streaming. For modules, set the 347 * last argument to MODOPEN and do not pass any open flags. 348 * Ignore dummydev since this is not the first open. 349 */ 350 claimstr(stp->sd_wrq); 351 qp = stp->sd_wrq; 352 while (_SAMESTR(qp)) { 353 qp = qp->q_next; 354 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 355 break; 356 } 357 releasestr(stp->sd_wrq); 358 mutex_enter(&stp->sd_lock); 359 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 360 stp->sd_rerror = 0; 361 stp->sd_werror = 0; 362 ckreturn: 363 cv_broadcast(&stp->sd_monitor); 364 mutex_exit(&stp->sd_lock); 365 return (error); 366 } 367 368 /* 369 * This vnode isn't streaming. SPECFS already 370 * checked for multiple vnodes pointing to the 371 * same stream, so create a stream to the driver. 372 */ 373 qp = allocq(); 374 stp = shalloc(qp); 375 376 /* 377 * Initialize stream head. shalloc() has given us 378 * exclusive access, and we have the vnode locked; 379 * we can do whatever we want with stp. 380 */ 381 stp->sd_flag = STWOPEN; 382 stp->sd_siglist = NULL; 383 stp->sd_pollist.ph_list = NULL; 384 stp->sd_sigflags = 0; 385 stp->sd_mark = NULL; 386 stp->sd_closetime = STRTIMOUT; 387 stp->sd_sidp = NULL; 388 stp->sd_pgidp = NULL; 389 stp->sd_vnode = vp; 390 stp->sd_rerror = 0; 391 stp->sd_werror = 0; 392 stp->sd_wroff = 0; 393 stp->sd_tail = 0; 394 stp->sd_iocblk = NULL; 395 stp->sd_cmdblk = NULL; 396 stp->sd_pushcnt = 0; 397 stp->sd_qn_minpsz = 0; 398 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 399 stp->sd_maxblk = INFPSZ; 400 qp->q_ptr = _WR(qp)->q_ptr = stp; 401 STREAM(qp) = STREAM(_WR(qp)) = stp; 402 vp->v_stream = stp; 403 mutex_exit(&vp->v_lock); 404 if (vp->v_type == VFIFO) { 405 stp->sd_flag |= OLDNDELAY; 406 /* 407 * This means, both for pipes and fifos 408 * strwrite will send SIGPIPE if the other 409 * end is closed. For putmsg it depends 410 * on whether it is a XPG4_2 application 411 * or not 412 */ 413 stp->sd_wput_opt = SW_SIGPIPE; 414 415 /* setq might sleep in kmem_alloc - avoid holding locks. */ 416 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 417 SQ_CI|SQ_CO, B_FALSE); 418 419 set_qend(qp); 420 stp->sd_strtab = fifo_getinfo(); 421 _WR(qp)->q_nfsrv = _WR(qp); 422 qp->q_nfsrv = qp; 423 /* 424 * Wake up others that are waiting for stream to be created. 425 */ 426 mutex_enter(&stp->sd_lock); 427 /* 428 * nothing is be pushed on stream yet, so 429 * optimized stream head packetsizes are just that 430 * of the read queue 431 */ 432 stp->sd_qn_minpsz = qp->q_minpsz; 433 stp->sd_qn_maxpsz = qp->q_maxpsz; 434 stp->sd_flag &= ~STWOPEN; 435 goto fifo_opendone; 436 } 437 /* setq might sleep in kmem_alloc - avoid holding locks. */ 438 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 439 440 set_qend(qp); 441 442 /* 443 * Open driver and create stream to it (via qattach). 444 */ 445 savedev = *devp; 446 cloneopen = (getmajor(*devp) == clone_major); 447 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 448 mutex_enter(&vp->v_lock); 449 vp->v_stream = NULL; 450 mutex_exit(&vp->v_lock); 451 mutex_enter(&stp->sd_lock); 452 cv_broadcast(&stp->sd_monitor); 453 mutex_exit(&stp->sd_lock); 454 freeq(_RD(qp)); 455 shfree(stp); 456 return (error); 457 } 458 /* 459 * Set sd_strtab after open in order to handle clonable drivers 460 */ 461 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 462 463 /* 464 * Historical note: dummydev used to be be prior to the initial 465 * open (via qattach above), which made the value seen 466 * inconsistent between an I_PUSH and an autopush of a module. 467 */ 468 dummydev = *devp; 469 470 /* 471 * For clone open of old style (Q not associated) network driver, 472 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 473 */ 474 brq = _RD(_WR(qp)->q_next); 475 major = getmajor(*devp); 476 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 477 ((brq->q_flag & _QASSOCIATED) == 0)) { 478 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 479 cmn_err(CE_WARN, "cannot push " DRMODNAME 480 " streams module"); 481 } 482 483 if (!NETWORK_DRV(major)) { 484 savedev = *devp; 485 } else { 486 /* 487 * For network devices, process differently based on the 488 * return value from dld_autopush(): 489 * 490 * 0: the passed-in device points to a GLDv3 datalink with 491 * per-link autopush configuration; use that configuration 492 * and ignore any per-driver autopush configuration. 493 * 494 * 1: the passed-in device points to a physical GLDv3 495 * datalink without per-link autopush configuration. The 496 * passed in device was changed to refer to the actual 497 * physical device (if it's not already); we use that new 498 * device to look up any per-driver autopush configuration. 499 * 500 * -1: neither of the above cases applied; use the initial 501 * device to look up any per-driver autopush configuration. 502 */ 503 switch (dld_autopush(&savedev, &dlap)) { 504 case 0: 505 zoneid = crgetzoneid(crp); 506 for (s = 0; s < dlap.dap_npush; s++) { 507 error = push_mod(qp, &dummydev, stp, 508 dlap.dap_aplist[s], dlap.dap_anchor, crp, 509 zoneid); 510 if (error != 0) 511 break; 512 } 513 goto opendone; 514 case 1: 515 break; 516 case -1: 517 savedev = *devp; 518 break; 519 } 520 } 521 /* 522 * Find the autopush configuration based on "savedev". Start with the 523 * global zone. If not found check in the local zone. 524 */ 525 zoneid = GLOBAL_ZONEID; 526 retryap: 527 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 528 netstack_str; 529 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 530 netstack_rele(ss->ss_netstack); 531 if (zoneid == GLOBAL_ZONEID) { 532 /* 533 * None found. Also look in the zone's autopush table. 534 */ 535 zoneid = crgetzoneid(crp); 536 if (zoneid != GLOBAL_ZONEID) 537 goto retryap; 538 } 539 goto opendone; 540 } 541 anchor = ap->ap_anchor; 542 zoneid = crgetzoneid(crp); 543 for (s = 0; s < ap->ap_npush; s++) { 544 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 545 anchor, crp, zoneid); 546 if (error != 0) 547 break; 548 } 549 sad_ap_rele(ap, ss); 550 netstack_rele(ss->ss_netstack); 551 552 opendone: 553 554 /* 555 * let specfs know that open failed part way through 556 */ 557 if (error) { 558 mutex_enter(&stp->sd_lock); 559 stp->sd_flag |= STREOPENFAIL; 560 mutex_exit(&stp->sd_lock); 561 } 562 563 /* 564 * Wake up others that are waiting for stream to be created. 565 */ 566 mutex_enter(&stp->sd_lock); 567 stp->sd_flag &= ~STWOPEN; 568 569 /* 570 * As a performance concern we are caching the values of 571 * q_minpsz and q_maxpsz of the module below the stream 572 * head in the stream head. 573 */ 574 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 575 rmin = stp->sd_wrq->q_next->q_minpsz; 576 rmax = stp->sd_wrq->q_next->q_maxpsz; 577 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 578 579 /* do this processing here as a performance concern */ 580 if (strmsgsz != 0) { 581 if (rmax == INFPSZ) 582 rmax = strmsgsz; 583 else 584 rmax = MIN(strmsgsz, rmax); 585 } 586 587 mutex_enter(QLOCK(stp->sd_wrq)); 588 stp->sd_qn_minpsz = rmin; 589 stp->sd_qn_maxpsz = rmax; 590 mutex_exit(QLOCK(stp->sd_wrq)); 591 592 fifo_opendone: 593 cv_broadcast(&stp->sd_monitor); 594 mutex_exit(&stp->sd_lock); 595 return (error); 596 } 597 598 static int strsink(queue_t *, mblk_t *); 599 static struct qinit deadrend = { 600 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 601 }; 602 static struct qinit deadwend = { 603 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 604 }; 605 606 /* 607 * Close a stream. 608 * This is called from closef() on the last close of an open stream. 609 * Strclean() will already have removed the siglist and pollist 610 * information, so all that remains is to remove all multiplexor links 611 * for the stream, pop all the modules (and the driver), and free the 612 * stream structure. 613 */ 614 615 int 616 strclose(struct vnode *vp, int flag, cred_t *crp) 617 { 618 struct stdata *stp; 619 queue_t *qp; 620 int rval; 621 int freestp = 1; 622 queue_t *rmq; 623 624 if (audit_active) 625 audit_strclose(vp, flag, crp); 626 627 TRACE_1(TR_FAC_STREAMS_FR, 628 TR_STRCLOSE, "strclose:%p", vp); 629 ASSERT(vp->v_stream); 630 631 stp = vp->v_stream; 632 ASSERT(!(stp->sd_flag & STPLEX)); 633 qp = stp->sd_wrq; 634 635 /* 636 * Needed so that strpoll will return non-zero for this fd. 637 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 638 */ 639 mutex_enter(&stp->sd_lock); 640 stp->sd_flag |= STRHUP; 641 mutex_exit(&stp->sd_lock); 642 643 /* 644 * If the registered process or process group did not have an 645 * open instance of this stream then strclean would not be 646 * called. Thus at the time of closing all remaining siglist entries 647 * are removed. 648 */ 649 if (stp->sd_siglist != NULL) 650 strcleanall(vp); 651 652 ASSERT(stp->sd_siglist == NULL); 653 ASSERT(stp->sd_sigflags == 0); 654 655 if (STRMATED(stp)) { 656 struct stdata *strmatep = stp->sd_mate; 657 int waited = 1; 658 659 STRLOCKMATES(stp); 660 while (waited) { 661 waited = 0; 662 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 663 mutex_exit(&strmatep->sd_lock); 664 cv_wait(&stp->sd_monitor, &stp->sd_lock); 665 mutex_exit(&stp->sd_lock); 666 STRLOCKMATES(stp); 667 waited = 1; 668 } 669 while (strmatep->sd_flag & 670 (STWOPEN|STRCLOSE|STRPLUMB)) { 671 mutex_exit(&stp->sd_lock); 672 cv_wait(&strmatep->sd_monitor, 673 &strmatep->sd_lock); 674 mutex_exit(&strmatep->sd_lock); 675 STRLOCKMATES(stp); 676 waited = 1; 677 } 678 } 679 stp->sd_flag |= STRCLOSE; 680 STRUNLOCKMATES(stp); 681 } else { 682 mutex_enter(&stp->sd_lock); 683 stp->sd_flag |= STRCLOSE; 684 mutex_exit(&stp->sd_lock); 685 } 686 687 ASSERT(qp->q_first == NULL); /* No more delayed write */ 688 689 /* Check if an I_LINK was ever done on this stream */ 690 if (stp->sd_flag & STRHASLINKS) { 691 netstack_t *ns; 692 str_stack_t *ss; 693 694 ns = netstack_find_by_cred(crp); 695 ASSERT(ns != NULL); 696 ss = ns->netstack_str; 697 ASSERT(ss != NULL); 698 699 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 700 netstack_rele(ss->ss_netstack); 701 } 702 703 while (_SAMESTR(qp)) { 704 /* 705 * Holding sd_lock prevents q_next from changing in 706 * this stream. 707 */ 708 mutex_enter(&stp->sd_lock); 709 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 710 711 /* 712 * sleep until awakened by strwsrv() or timeout 713 */ 714 for (;;) { 715 mutex_enter(QLOCK(qp->q_next)); 716 if (!(qp->q_next->q_mblkcnt)) { 717 mutex_exit(QLOCK(qp->q_next)); 718 break; 719 } 720 stp->sd_flag |= WSLEEP; 721 722 /* ensure strwsrv gets enabled */ 723 qp->q_next->q_flag |= QWANTW; 724 mutex_exit(QLOCK(qp->q_next)); 725 /* get out if we timed out or recv'd a signal */ 726 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 727 stp->sd_closetime, 0) <= 0) { 728 break; 729 } 730 } 731 stp->sd_flag &= ~WSLEEP; 732 } 733 mutex_exit(&stp->sd_lock); 734 735 rmq = qp->q_next; 736 if (rmq->q_flag & QISDRV) { 737 ASSERT(!_SAMESTR(rmq)); 738 wait_sq_svc(_RD(qp)->q_syncq); 739 } 740 741 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 742 } 743 744 /* 745 * Since we call pollwakeup in close() now, the poll list should 746 * be empty in most cases. The only exception is the layered devices 747 * (e.g. the console drivers with redirection modules pushed on top 748 * of it). We have to do this after calling qdetach() because 749 * the redirection module won't have torn down the console 750 * redirection until after qdetach() has been invoked. 751 */ 752 if (stp->sd_pollist.ph_list != NULL) { 753 pollwakeup(&stp->sd_pollist, POLLERR); 754 pollhead_clean(&stp->sd_pollist); 755 } 756 ASSERT(stp->sd_pollist.ph_list == NULL); 757 ASSERT(stp->sd_sidp == NULL); 758 ASSERT(stp->sd_pgidp == NULL); 759 760 /* Prevent qenable from re-enabling the stream head queue */ 761 disable_svc(_RD(qp)); 762 763 /* 764 * Wait until service procedure of each queue is 765 * run, if QINSERVICE is set. 766 */ 767 wait_svc(_RD(qp)); 768 769 /* 770 * Now, flush both queues. 771 */ 772 flushq(_RD(qp), FLUSHALL); 773 flushq(qp, FLUSHALL); 774 775 /* 776 * If the write queue of the stream head is pointing to a 777 * read queue, we have a twisted stream. If the read queue 778 * is alive, convert the stream head queues into a dead end. 779 * If the read queue is dead, free the dead pair. 780 */ 781 if (qp->q_next && !_SAMESTR(qp)) { 782 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 783 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 784 shfree(qp->q_next->q_stream); 785 freeq(qp->q_next); 786 freeq(_RD(qp)); 787 } else if (qp->q_next == _RD(qp)) { /* fifo */ 788 freeq(_RD(qp)); 789 } else { /* pipe */ 790 freestp = 0; 791 /* 792 * The q_info pointers are never accessed when 793 * SQLOCK is held. 794 */ 795 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 796 mutex_enter(SQLOCK(qp->q_syncq)); 797 qp->q_qinfo = &deadwend; 798 _RD(qp)->q_qinfo = &deadrend; 799 mutex_exit(SQLOCK(qp->q_syncq)); 800 } 801 } else { 802 freeq(_RD(qp)); /* free stream head queue pair */ 803 } 804 805 mutex_enter(&vp->v_lock); 806 if (stp->sd_iocblk) { 807 if (stp->sd_iocblk != (mblk_t *)-1) { 808 freemsg(stp->sd_iocblk); 809 } 810 stp->sd_iocblk = NULL; 811 } 812 stp->sd_vnode = NULL; 813 vp->v_stream = NULL; 814 mutex_exit(&vp->v_lock); 815 mutex_enter(&stp->sd_lock); 816 freemsg(stp->sd_cmdblk); 817 stp->sd_cmdblk = NULL; 818 stp->sd_flag &= ~STRCLOSE; 819 cv_broadcast(&stp->sd_monitor); 820 mutex_exit(&stp->sd_lock); 821 822 if (freestp) 823 shfree(stp); 824 return (0); 825 } 826 827 static int 828 strsink(queue_t *q, mblk_t *bp) 829 { 830 struct copyresp *resp; 831 832 switch (bp->b_datap->db_type) { 833 case M_FLUSH: 834 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 835 *bp->b_rptr &= ~FLUSHR; 836 bp->b_flag |= MSGNOLOOP; 837 /* 838 * Protect against the driver passing up 839 * messages after it has done a qprocsoff. 840 */ 841 if (_OTHERQ(q)->q_next == NULL) 842 freemsg(bp); 843 else 844 qreply(q, bp); 845 } else { 846 freemsg(bp); 847 } 848 break; 849 850 case M_COPYIN: 851 case M_COPYOUT: 852 if (bp->b_cont) { 853 freemsg(bp->b_cont); 854 bp->b_cont = NULL; 855 } 856 bp->b_datap->db_type = M_IOCDATA; 857 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 858 resp = (struct copyresp *)bp->b_rptr; 859 resp->cp_rval = (caddr_t)1; /* failure */ 860 /* 861 * Protect against the driver passing up 862 * messages after it has done a qprocsoff. 863 */ 864 if (_OTHERQ(q)->q_next == NULL) 865 freemsg(bp); 866 else 867 qreply(q, bp); 868 break; 869 870 case M_IOCTL: 871 if (bp->b_cont) { 872 freemsg(bp->b_cont); 873 bp->b_cont = NULL; 874 } 875 bp->b_datap->db_type = M_IOCNAK; 876 /* 877 * Protect against the driver passing up 878 * messages after it has done a qprocsoff. 879 */ 880 if (_OTHERQ(q)->q_next == NULL) 881 freemsg(bp); 882 else 883 qreply(q, bp); 884 break; 885 886 default: 887 freemsg(bp); 888 break; 889 } 890 891 return (0); 892 } 893 894 /* 895 * Clean up after a process when it closes a stream. This is called 896 * from closef for all closes, whereas strclose is called only for the 897 * last close on a stream. The siglist is scanned for entries for the 898 * current process, and these are removed. 899 */ 900 void 901 strclean(struct vnode *vp) 902 { 903 strsig_t *ssp, *pssp, *tssp; 904 stdata_t *stp; 905 int update = 0; 906 907 TRACE_1(TR_FAC_STREAMS_FR, 908 TR_STRCLEAN, "strclean:%p", vp); 909 stp = vp->v_stream; 910 pssp = NULL; 911 mutex_enter(&stp->sd_lock); 912 ssp = stp->sd_siglist; 913 while (ssp) { 914 if (ssp->ss_pidp == curproc->p_pidp) { 915 tssp = ssp->ss_next; 916 if (pssp) 917 pssp->ss_next = tssp; 918 else 919 stp->sd_siglist = tssp; 920 mutex_enter(&pidlock); 921 PID_RELE(ssp->ss_pidp); 922 mutex_exit(&pidlock); 923 kmem_free(ssp, sizeof (strsig_t)); 924 update = 1; 925 ssp = tssp; 926 } else { 927 pssp = ssp; 928 ssp = ssp->ss_next; 929 } 930 } 931 if (update) { 932 stp->sd_sigflags = 0; 933 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 934 stp->sd_sigflags |= ssp->ss_events; 935 } 936 mutex_exit(&stp->sd_lock); 937 } 938 939 /* 940 * Used on the last close to remove any remaining items on the siglist. 941 * These could be present on the siglist due to I_ESETSIG calls that 942 * use process groups or processed that do not have an open file descriptor 943 * for this stream (Such entries would not be removed by strclean). 944 */ 945 static void 946 strcleanall(struct vnode *vp) 947 { 948 strsig_t *ssp, *nssp; 949 stdata_t *stp; 950 951 stp = vp->v_stream; 952 mutex_enter(&stp->sd_lock); 953 ssp = stp->sd_siglist; 954 stp->sd_siglist = NULL; 955 while (ssp) { 956 nssp = ssp->ss_next; 957 mutex_enter(&pidlock); 958 PID_RELE(ssp->ss_pidp); 959 mutex_exit(&pidlock); 960 kmem_free(ssp, sizeof (strsig_t)); 961 ssp = nssp; 962 } 963 stp->sd_sigflags = 0; 964 mutex_exit(&stp->sd_lock); 965 } 966 967 /* 968 * Retrieve the next message from the logical stream head read queue 969 * using either rwnext (if sync stream) or getq_noenab. 970 * It is the callers responsibility to call qbackenable after 971 * it is finished with the message. The caller should not call 972 * qbackenable until after any putback calls to avoid spurious backenabling. 973 */ 974 mblk_t * 975 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 976 int *errorp) 977 { 978 mblk_t *bp; 979 int error; 980 981 ASSERT(MUTEX_HELD(&stp->sd_lock)); 982 /* Holding sd_lock prevents the read queue from changing */ 983 984 if (uiop != NULL && stp->sd_struiordq != NULL && 985 q->q_first == NULL && 986 (!first || (stp->sd_wakeq & RSLEEP))) { 987 /* 988 * Stream supports rwnext() for the read side. 989 * If this is the first time we're called by e.g. strread 990 * only do the downcall if there is a deferred wakeup 991 * (registered in sd_wakeq). 992 */ 993 struiod_t uiod; 994 995 if (first) 996 stp->sd_wakeq &= ~RSLEEP; 997 998 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 999 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 1000 uiod.d_mp = 0; 1001 /* 1002 * Mark that a thread is in rwnext on the read side 1003 * to prevent strrput from nacking ioctls immediately. 1004 * When the last concurrent rwnext returns 1005 * the ioctls are nack'ed. 1006 */ 1007 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1008 stp->sd_struiodnak++; 1009 /* 1010 * Note: rwnext will drop sd_lock. 1011 */ 1012 error = rwnext(q, &uiod); 1013 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1014 mutex_enter(&stp->sd_lock); 1015 stp->sd_struiodnak--; 1016 while (stp->sd_struiodnak == 0 && 1017 ((bp = stp->sd_struionak) != NULL)) { 1018 stp->sd_struionak = bp->b_next; 1019 bp->b_next = NULL; 1020 bp->b_datap->db_type = M_IOCNAK; 1021 /* 1022 * Protect against the driver passing up 1023 * messages after it has done a qprocsoff. 1024 */ 1025 if (_OTHERQ(q)->q_next == NULL) 1026 freemsg(bp); 1027 else { 1028 mutex_exit(&stp->sd_lock); 1029 qreply(q, bp); 1030 mutex_enter(&stp->sd_lock); 1031 } 1032 } 1033 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1034 if (error == 0 || error == EWOULDBLOCK) { 1035 if ((bp = uiod.d_mp) != NULL) { 1036 *errorp = 0; 1037 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1038 return (bp); 1039 } 1040 error = 0; 1041 } else if (error == EINVAL) { 1042 /* 1043 * The stream plumbing must have 1044 * changed while we were away, so 1045 * just turn off rwnext()s. 1046 */ 1047 error = 0; 1048 } else if (error == EBUSY) { 1049 /* 1050 * The module might have data in transit using putnext 1051 * Fall back on waiting + getq. 1052 */ 1053 error = 0; 1054 } else { 1055 *errorp = error; 1056 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1057 return (NULL); 1058 } 1059 /* 1060 * Try a getq in case a rwnext() generated mblk 1061 * has bubbled up via strrput(). 1062 */ 1063 } 1064 *errorp = 0; 1065 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1066 return (getq_noenab(q)); 1067 } 1068 1069 /* 1070 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1071 * If the message does not fit in the uio the remainder of it is returned; 1072 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1073 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1074 * the error code, the message is consumed, and NULL is returned. 1075 */ 1076 static mblk_t * 1077 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1078 { 1079 int error; 1080 ptrdiff_t n; 1081 mblk_t *nbp; 1082 1083 ASSERT(bp->b_wptr >= bp->b_rptr); 1084 1085 do { 1086 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1087 ASSERT(n > 0); 1088 1089 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1090 if (error != 0) { 1091 freemsg(bp); 1092 *errorp = error; 1093 return (NULL); 1094 } 1095 } 1096 1097 bp->b_rptr += n; 1098 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1099 nbp = bp; 1100 bp = bp->b_cont; 1101 freeb(nbp); 1102 } 1103 } while (bp != NULL && uiop->uio_resid > 0); 1104 1105 *errorp = 0; 1106 return (bp); 1107 } 1108 1109 /* 1110 * Read a stream according to the mode flags in sd_flag: 1111 * 1112 * (default mode) - Byte stream, msg boundaries are ignored 1113 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1114 * any data remaining in msg 1115 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1116 * any remaining data on head of read queue 1117 * 1118 * Consume readable messages on the front of the queue until 1119 * ttolwp(curthread)->lwp_count 1120 * is satisfied, the readable messages are exhausted, or a message 1121 * boundary is reached in a message mode. If no data was read and 1122 * the stream was not opened with the NDELAY flag, block until data arrives. 1123 * Otherwise return the data read and update the count. 1124 * 1125 * In default mode a 0 length message signifies end-of-file and terminates 1126 * a read in progress. The 0 length message is removed from the queue 1127 * only if it is the only message read (no data is read). 1128 * 1129 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1130 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1131 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1132 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1133 * are unlinked from and M_DATA blocks in the message, the protos are 1134 * thrown away, and the data is read. 1135 */ 1136 /* ARGSUSED */ 1137 int 1138 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1139 { 1140 struct stdata *stp; 1141 mblk_t *bp, *nbp; 1142 queue_t *q; 1143 int error = 0; 1144 uint_t old_sd_flag; 1145 int first; 1146 char rflg; 1147 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1148 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1149 short delim; 1150 unsigned char pri = 0; 1151 char waitflag; 1152 unsigned char type; 1153 1154 TRACE_1(TR_FAC_STREAMS_FR, 1155 TR_STRREAD_ENTER, "strread:%p", vp); 1156 ASSERT(vp->v_stream); 1157 stp = vp->v_stream; 1158 1159 mutex_enter(&stp->sd_lock); 1160 1161 if ((error = i_straccess(stp, JCREAD)) != 0) { 1162 mutex_exit(&stp->sd_lock); 1163 return (error); 1164 } 1165 1166 if (stp->sd_flag & (STRDERR|STPLEX)) { 1167 error = strgeterr(stp, STRDERR|STPLEX, 0); 1168 if (error != 0) { 1169 mutex_exit(&stp->sd_lock); 1170 return (error); 1171 } 1172 } 1173 1174 /* 1175 * Loop terminates when uiop->uio_resid == 0. 1176 */ 1177 rflg = 0; 1178 waitflag = READWAIT; 1179 q = _RD(stp->sd_wrq); 1180 for (;;) { 1181 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1182 old_sd_flag = stp->sd_flag; 1183 mark = 0; 1184 delim = 0; 1185 first = 1; 1186 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1187 int done = 0; 1188 1189 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1190 1191 if (error != 0) 1192 goto oops; 1193 1194 if (stp->sd_flag & (STRHUP|STREOF)) { 1195 goto oops; 1196 } 1197 if (rflg && !(stp->sd_flag & STRDELIM)) { 1198 goto oops; 1199 } 1200 /* 1201 * If a read(fd,buf,0) has been done, there is no 1202 * need to sleep. We always have zero bytes to 1203 * return. 1204 */ 1205 if (uiop->uio_resid == 0) { 1206 goto oops; 1207 } 1208 1209 qbackenable(q, 0); 1210 1211 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1212 "strread calls strwaitq:%p, %p, %p", 1213 vp, uiop, crp); 1214 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1215 uiop->uio_fmode, -1, &done)) != 0 || done) { 1216 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1217 "strread error or done:%p, %p, %p", 1218 vp, uiop, crp); 1219 if ((uiop->uio_fmode & FNDELAY) && 1220 (stp->sd_flag & OLDNDELAY) && 1221 (error == EAGAIN)) 1222 error = 0; 1223 goto oops; 1224 } 1225 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1226 "strread awakes:%p, %p, %p", vp, uiop, crp); 1227 if ((error = i_straccess(stp, JCREAD)) != 0) { 1228 goto oops; 1229 } 1230 first = 0; 1231 } 1232 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1233 ASSERT(bp); 1234 pri = bp->b_band; 1235 /* 1236 * Extract any mark information. If the message is not 1237 * completely consumed this information will be put in the mblk 1238 * that is putback. 1239 * If MSGMARKNEXT is set and the message is completely consumed 1240 * the STRATMARK flag will be set below. Likewise, if 1241 * MSGNOTMARKNEXT is set and the message is 1242 * completely consumed STRNOTATMARK will be set. 1243 * 1244 * For some unknown reason strread only breaks the read at the 1245 * last mark. 1246 */ 1247 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1248 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1249 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1250 if (mark != 0 && bp == stp->sd_mark) { 1251 if (rflg) { 1252 putback(stp, q, bp, pri); 1253 goto oops; 1254 } 1255 mark |= _LASTMARK; 1256 stp->sd_mark = NULL; 1257 } 1258 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1259 delim = 1; 1260 mutex_exit(&stp->sd_lock); 1261 1262 if (STREAM_NEEDSERVICE(stp)) 1263 stream_runservice(stp); 1264 1265 type = bp->b_datap->db_type; 1266 1267 switch (type) { 1268 1269 case M_DATA: 1270 ismdata: 1271 if (msgnodata(bp)) { 1272 if (mark || delim) { 1273 freemsg(bp); 1274 } else if (rflg) { 1275 1276 /* 1277 * If already read data put zero 1278 * length message back on queue else 1279 * free msg and return 0. 1280 */ 1281 bp->b_band = pri; 1282 mutex_enter(&stp->sd_lock); 1283 putback(stp, q, bp, pri); 1284 mutex_exit(&stp->sd_lock); 1285 } else { 1286 freemsg(bp); 1287 } 1288 error = 0; 1289 goto oops1; 1290 } 1291 1292 rflg = 1; 1293 waitflag |= NOINTR; 1294 bp = struiocopyout(bp, uiop, &error); 1295 if (error != 0) 1296 goto oops1; 1297 1298 mutex_enter(&stp->sd_lock); 1299 if (bp) { 1300 /* 1301 * Have remaining data in message. 1302 * Free msg if in discard mode. 1303 */ 1304 if (stp->sd_read_opt & RD_MSGDIS) { 1305 freemsg(bp); 1306 } else { 1307 bp->b_band = pri; 1308 if ((mark & _LASTMARK) && 1309 (stp->sd_mark == NULL)) 1310 stp->sd_mark = bp; 1311 bp->b_flag |= mark & ~_LASTMARK; 1312 if (delim) 1313 bp->b_flag |= MSGDELIM; 1314 if (msgnodata(bp)) 1315 freemsg(bp); 1316 else 1317 putback(stp, q, bp, pri); 1318 } 1319 } else { 1320 /* 1321 * Consumed the complete message. 1322 * Move the MSG*MARKNEXT information 1323 * to the stream head just in case 1324 * the read queue becomes empty. 1325 * 1326 * If the stream head was at the mark 1327 * (STRATMARK) before we dropped sd_lock above 1328 * and some data was consumed then we have 1329 * moved past the mark thus STRATMARK is 1330 * cleared. However, if a message arrived in 1331 * strrput during the copyout above causing 1332 * STRATMARK to be set we can not clear that 1333 * flag. 1334 */ 1335 if (mark & 1336 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1337 if (mark & MSGMARKNEXT) { 1338 stp->sd_flag &= ~STRNOTATMARK; 1339 stp->sd_flag |= STRATMARK; 1340 } else if (mark & MSGNOTMARKNEXT) { 1341 stp->sd_flag &= ~STRATMARK; 1342 stp->sd_flag |= STRNOTATMARK; 1343 } else { 1344 stp->sd_flag &= 1345 ~(STRATMARK|STRNOTATMARK); 1346 } 1347 } else if (rflg && (old_sd_flag & STRATMARK)) { 1348 stp->sd_flag &= ~STRATMARK; 1349 } 1350 } 1351 1352 /* 1353 * Check for signal messages at the front of the read 1354 * queue and generate the signal(s) if appropriate. 1355 * The only signal that can be on queue is M_SIG at 1356 * this point. 1357 */ 1358 while ((((bp = q->q_first)) != NULL) && 1359 (bp->b_datap->db_type == M_SIG)) { 1360 bp = getq_noenab(q); 1361 /* 1362 * sd_lock is held so the content of the 1363 * read queue can not change. 1364 */ 1365 ASSERT(bp != NULL && 1366 bp->b_datap->db_type == M_SIG); 1367 strsignal_nolock(stp, *bp->b_rptr, 1368 (int32_t)bp->b_band); 1369 mutex_exit(&stp->sd_lock); 1370 freemsg(bp); 1371 if (STREAM_NEEDSERVICE(stp)) 1372 stream_runservice(stp); 1373 mutex_enter(&stp->sd_lock); 1374 } 1375 1376 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1377 delim || 1378 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1379 goto oops; 1380 } 1381 continue; 1382 1383 case M_SIG: 1384 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1385 freemsg(bp); 1386 mutex_enter(&stp->sd_lock); 1387 continue; 1388 1389 case M_PROTO: 1390 case M_PCPROTO: 1391 /* 1392 * Only data messages are readable. 1393 * Any others generate an error, unless 1394 * RD_PROTDIS or RD_PROTDAT is set. 1395 */ 1396 if (stp->sd_read_opt & RD_PROTDAT) { 1397 for (nbp = bp; nbp; nbp = nbp->b_next) { 1398 if ((nbp->b_datap->db_type == 1399 M_PROTO) || 1400 (nbp->b_datap->db_type == 1401 M_PCPROTO)) { 1402 nbp->b_datap->db_type = M_DATA; 1403 } else { 1404 break; 1405 } 1406 } 1407 /* 1408 * clear stream head hi pri flag based on 1409 * first message 1410 */ 1411 if (type == M_PCPROTO) { 1412 mutex_enter(&stp->sd_lock); 1413 stp->sd_flag &= ~STRPRI; 1414 mutex_exit(&stp->sd_lock); 1415 } 1416 goto ismdata; 1417 } else if (stp->sd_read_opt & RD_PROTDIS) { 1418 /* 1419 * discard non-data messages 1420 */ 1421 while (bp && 1422 ((bp->b_datap->db_type == M_PROTO) || 1423 (bp->b_datap->db_type == M_PCPROTO))) { 1424 nbp = unlinkb(bp); 1425 freeb(bp); 1426 bp = nbp; 1427 } 1428 /* 1429 * clear stream head hi pri flag based on 1430 * first message 1431 */ 1432 if (type == M_PCPROTO) { 1433 mutex_enter(&stp->sd_lock); 1434 stp->sd_flag &= ~STRPRI; 1435 mutex_exit(&stp->sd_lock); 1436 } 1437 if (bp) { 1438 bp->b_band = pri; 1439 goto ismdata; 1440 } else { 1441 break; 1442 } 1443 } 1444 /* FALLTHRU */ 1445 case M_PASSFP: 1446 if ((bp->b_datap->db_type == M_PASSFP) && 1447 (stp->sd_read_opt & RD_PROTDIS)) { 1448 freemsg(bp); 1449 break; 1450 } 1451 mutex_enter(&stp->sd_lock); 1452 putback(stp, q, bp, pri); 1453 mutex_exit(&stp->sd_lock); 1454 if (rflg == 0) 1455 error = EBADMSG; 1456 goto oops1; 1457 1458 default: 1459 /* 1460 * Garbage on stream head read queue. 1461 */ 1462 cmn_err(CE_WARN, "bad %x found at stream head\n", 1463 bp->b_datap->db_type); 1464 freemsg(bp); 1465 goto oops1; 1466 } 1467 mutex_enter(&stp->sd_lock); 1468 } 1469 oops: 1470 mutex_exit(&stp->sd_lock); 1471 oops1: 1472 qbackenable(q, pri); 1473 return (error); 1474 #undef _LASTMARK 1475 } 1476 1477 /* 1478 * Default processing of M_PROTO/M_PCPROTO messages. 1479 * Determine which wakeups and signals are needed. 1480 * This can be replaced by a user-specified procedure for kernel users 1481 * of STREAMS. 1482 */ 1483 /* ARGSUSED */ 1484 mblk_t * 1485 strrput_proto(vnode_t *vp, mblk_t *mp, 1486 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1487 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1488 { 1489 *wakeups = RSLEEP; 1490 *allmsgsigs = 0; 1491 1492 switch (mp->b_datap->db_type) { 1493 case M_PROTO: 1494 if (mp->b_band == 0) { 1495 *firstmsgsigs = S_INPUT | S_RDNORM; 1496 *pollwakeups = POLLIN | POLLRDNORM; 1497 } else { 1498 *firstmsgsigs = S_INPUT | S_RDBAND; 1499 *pollwakeups = POLLIN | POLLRDBAND; 1500 } 1501 break; 1502 case M_PCPROTO: 1503 *firstmsgsigs = S_HIPRI; 1504 *pollwakeups = POLLPRI; 1505 break; 1506 } 1507 return (mp); 1508 } 1509 1510 /* 1511 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1512 * M_PASSFP messages. 1513 * Determine which wakeups and signals are needed. 1514 * This can be replaced by a user-specified procedure for kernel users 1515 * of STREAMS. 1516 */ 1517 /* ARGSUSED */ 1518 mblk_t * 1519 strrput_misc(vnode_t *vp, mblk_t *mp, 1520 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1521 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1522 { 1523 *wakeups = 0; 1524 *firstmsgsigs = 0; 1525 *allmsgsigs = 0; 1526 *pollwakeups = 0; 1527 return (mp); 1528 } 1529 1530 /* 1531 * Stream read put procedure. Called from downstream driver/module 1532 * with messages for the stream head. Data, protocol, and in-stream 1533 * signal messages are placed on the queue, others are handled directly. 1534 */ 1535 int 1536 strrput(queue_t *q, mblk_t *bp) 1537 { 1538 struct stdata *stp; 1539 ulong_t rput_opt; 1540 strwakeup_t wakeups; 1541 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1542 strsigset_t allmsgsigs; /* Signals for all messages */ 1543 strsigset_t signals; /* Signals events to generate */ 1544 strpollset_t pollwakeups; 1545 mblk_t *nextbp; 1546 uchar_t band = 0; 1547 int hipri_sig; 1548 1549 stp = (struct stdata *)q->q_ptr; 1550 /* 1551 * Use rput_opt for optimized access to the SR_ flags except 1552 * SR_POLLIN. That flag has to be checked under sd_lock since it 1553 * is modified by strpoll(). 1554 */ 1555 rput_opt = stp->sd_rput_opt; 1556 1557 ASSERT(qclaimed(q)); 1558 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1559 "strrput called with message type:q %p bp %p", q, bp); 1560 1561 /* 1562 * Perform initial processing and pass to the parameterized functions. 1563 */ 1564 ASSERT(bp->b_next == NULL); 1565 1566 switch (bp->b_datap->db_type) { 1567 case M_DATA: 1568 /* 1569 * sockfs is the only consumer of STREOF and when it is set, 1570 * it implies that the receiver is not interested in receiving 1571 * any more data, hence the mblk is freed to prevent unnecessary 1572 * message queueing at the stream head. 1573 */ 1574 if (stp->sd_flag == STREOF) { 1575 freemsg(bp); 1576 return (0); 1577 } 1578 if ((rput_opt & SR_IGN_ZEROLEN) && 1579 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1580 /* 1581 * Ignore zero-length M_DATA messages. These might be 1582 * generated by some transports. 1583 * The zero-length M_DATA messages, even if they 1584 * are ignored, should effect the atmark tracking and 1585 * should wake up a thread sleeping in strwaitmark. 1586 */ 1587 mutex_enter(&stp->sd_lock); 1588 if (bp->b_flag & MSGMARKNEXT) { 1589 /* 1590 * Record the position of the mark either 1591 * in q_last or in STRATMARK. 1592 */ 1593 if (q->q_last != NULL) { 1594 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1595 q->q_last->b_flag |= MSGMARKNEXT; 1596 } else { 1597 stp->sd_flag &= ~STRNOTATMARK; 1598 stp->sd_flag |= STRATMARK; 1599 } 1600 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1601 /* 1602 * Record that this is not the position of 1603 * the mark either in q_last or in 1604 * STRNOTATMARK. 1605 */ 1606 if (q->q_last != NULL) { 1607 q->q_last->b_flag &= ~MSGMARKNEXT; 1608 q->q_last->b_flag |= MSGNOTMARKNEXT; 1609 } else { 1610 stp->sd_flag &= ~STRATMARK; 1611 stp->sd_flag |= STRNOTATMARK; 1612 } 1613 } 1614 if (stp->sd_flag & RSLEEP) { 1615 stp->sd_flag &= ~RSLEEP; 1616 cv_broadcast(&q->q_wait); 1617 } 1618 mutex_exit(&stp->sd_lock); 1619 freemsg(bp); 1620 return (0); 1621 } 1622 wakeups = RSLEEP; 1623 if (bp->b_band == 0) { 1624 firstmsgsigs = S_INPUT | S_RDNORM; 1625 pollwakeups = POLLIN | POLLRDNORM; 1626 } else { 1627 firstmsgsigs = S_INPUT | S_RDBAND; 1628 pollwakeups = POLLIN | POLLRDBAND; 1629 } 1630 if (rput_opt & SR_SIGALLDATA) 1631 allmsgsigs = firstmsgsigs; 1632 else 1633 allmsgsigs = 0; 1634 1635 mutex_enter(&stp->sd_lock); 1636 if ((rput_opt & SR_CONSOL_DATA) && 1637 (q->q_last != NULL) && 1638 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1639 /* 1640 * Consolidate an M_DATA message onto an M_DATA, 1641 * M_PROTO, or M_PCPROTO by merging it with q_last. 1642 * The consolidation does not take place if 1643 * the old message is marked with either of the 1644 * marks or the delim flag or if the new 1645 * message is marked with MSGMARK. The MSGMARK 1646 * check is needed to handle the odd semantics of 1647 * MSGMARK where essentially the whole message 1648 * is to be treated as marked. 1649 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1650 * new message to the front of the b_cont chain. 1651 */ 1652 mblk_t *lbp = q->q_last; 1653 unsigned char db_type = lbp->b_datap->db_type; 1654 1655 if ((db_type == M_DATA || db_type == M_PROTO || 1656 db_type == M_PCPROTO) && 1657 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1658 rmvq_noenab(q, lbp); 1659 /* 1660 * The first message in the b_cont list 1661 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1662 * We need to handle the case where we 1663 * are appending: 1664 * 1665 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1666 * 2) a MSGMARKNEXT to a plain message. 1667 * 3) a MSGNOTMARKNEXT to a plain message 1668 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1669 * message. 1670 * 1671 * Thus we never append a MSGMARKNEXT or 1672 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1673 */ 1674 if (bp->b_flag & MSGMARKNEXT) { 1675 lbp->b_flag |= MSGMARKNEXT; 1676 lbp->b_flag &= ~MSGNOTMARKNEXT; 1677 bp->b_flag &= ~MSGMARKNEXT; 1678 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1679 lbp->b_flag |= MSGNOTMARKNEXT; 1680 bp->b_flag &= ~MSGNOTMARKNEXT; 1681 } 1682 1683 linkb(lbp, bp); 1684 bp = lbp; 1685 /* 1686 * The new message logically isn't the first 1687 * even though the q_first check below thinks 1688 * it is. Clear the firstmsgsigs to make it 1689 * not appear to be first. 1690 */ 1691 firstmsgsigs = 0; 1692 } 1693 } 1694 break; 1695 1696 case M_PASSFP: 1697 wakeups = RSLEEP; 1698 allmsgsigs = 0; 1699 if (bp->b_band == 0) { 1700 firstmsgsigs = S_INPUT | S_RDNORM; 1701 pollwakeups = POLLIN | POLLRDNORM; 1702 } else { 1703 firstmsgsigs = S_INPUT | S_RDBAND; 1704 pollwakeups = POLLIN | POLLRDBAND; 1705 } 1706 mutex_enter(&stp->sd_lock); 1707 break; 1708 1709 case M_PROTO: 1710 case M_PCPROTO: 1711 ASSERT(stp->sd_rprotofunc != NULL); 1712 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1713 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1714 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1715 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1716 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1717 POLLWRBAND) 1718 1719 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1720 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1721 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1722 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1723 1724 mutex_enter(&stp->sd_lock); 1725 break; 1726 1727 default: 1728 ASSERT(stp->sd_rmiscfunc != NULL); 1729 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1730 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1731 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1732 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1733 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1734 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1735 #undef ALLSIG 1736 #undef ALLPOLL 1737 mutex_enter(&stp->sd_lock); 1738 break; 1739 } 1740 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1741 1742 /* By default generate superset of signals */ 1743 signals = (firstmsgsigs | allmsgsigs); 1744 1745 /* 1746 * The proto and misc functions can return multiple messages 1747 * as a b_next chain. Such messages are processed separately. 1748 */ 1749 one_more: 1750 hipri_sig = 0; 1751 if (bp == NULL) { 1752 nextbp = NULL; 1753 } else { 1754 nextbp = bp->b_next; 1755 bp->b_next = NULL; 1756 1757 switch (bp->b_datap->db_type) { 1758 case M_PCPROTO: 1759 /* 1760 * Only one priority protocol message is allowed at the 1761 * stream head at a time. 1762 */ 1763 if (stp->sd_flag & STRPRI) { 1764 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1765 "M_PCPROTO already at head"); 1766 freemsg(bp); 1767 mutex_exit(&stp->sd_lock); 1768 goto done; 1769 } 1770 stp->sd_flag |= STRPRI; 1771 hipri_sig = 1; 1772 /* FALLTHRU */ 1773 case M_DATA: 1774 case M_PROTO: 1775 case M_PASSFP: 1776 band = bp->b_band; 1777 /* 1778 * Marking doesn't work well when messages 1779 * are marked in more than one band. We only 1780 * remember the last message received, even if 1781 * it is placed on the queue ahead of other 1782 * marked messages. 1783 */ 1784 if (bp->b_flag & MSGMARK) 1785 stp->sd_mark = bp; 1786 (void) putq(q, bp); 1787 1788 /* 1789 * If message is a PCPROTO message, always use 1790 * firstmsgsigs to determine if a signal should be 1791 * sent as strrput is the only place to send 1792 * signals for PCPROTO. Other messages are based on 1793 * the STRGETINPROG flag. The flag determines if 1794 * strrput or (k)strgetmsg will be responsible for 1795 * sending the signals, in the firstmsgsigs case. 1796 */ 1797 if ((hipri_sig == 1) || 1798 (((stp->sd_flag & STRGETINPROG) == 0) && 1799 (q->q_first == bp))) 1800 signals = (firstmsgsigs | allmsgsigs); 1801 else 1802 signals = allmsgsigs; 1803 break; 1804 1805 default: 1806 mutex_exit(&stp->sd_lock); 1807 (void) strrput_nondata(q, bp); 1808 mutex_enter(&stp->sd_lock); 1809 break; 1810 } 1811 } 1812 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1813 /* 1814 * Wake sleeping read/getmsg and cancel deferred wakeup 1815 */ 1816 if (wakeups & RSLEEP) 1817 stp->sd_wakeq &= ~RSLEEP; 1818 1819 wakeups &= stp->sd_flag; 1820 if (wakeups & RSLEEP) { 1821 stp->sd_flag &= ~RSLEEP; 1822 cv_broadcast(&q->q_wait); 1823 } 1824 if (wakeups & WSLEEP) { 1825 stp->sd_flag &= ~WSLEEP; 1826 cv_broadcast(&_WR(q)->q_wait); 1827 } 1828 1829 if (pollwakeups != 0) { 1830 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1831 /* 1832 * Can't use rput_opt since it was not 1833 * read when sd_lock was held and SR_POLLIN is changed 1834 * by strpoll() under sd_lock. 1835 */ 1836 if (!(stp->sd_rput_opt & SR_POLLIN)) 1837 goto no_pollwake; 1838 stp->sd_rput_opt &= ~SR_POLLIN; 1839 } 1840 mutex_exit(&stp->sd_lock); 1841 pollwakeup(&stp->sd_pollist, pollwakeups); 1842 mutex_enter(&stp->sd_lock); 1843 } 1844 no_pollwake: 1845 1846 /* 1847 * strsendsig can handle multiple signals with a 1848 * single call. 1849 */ 1850 if (stp->sd_sigflags & signals) 1851 strsendsig(stp->sd_siglist, signals, band, 0); 1852 mutex_exit(&stp->sd_lock); 1853 1854 1855 done: 1856 if (nextbp == NULL) 1857 return (0); 1858 1859 /* 1860 * Any signals were handled the first time. 1861 * Wakeups and pollwakeups are redone to avoid any race 1862 * conditions - all the messages are not queued until the 1863 * last message has been processed by strrput. 1864 */ 1865 bp = nextbp; 1866 signals = firstmsgsigs = allmsgsigs = 0; 1867 mutex_enter(&stp->sd_lock); 1868 goto one_more; 1869 } 1870 1871 static void 1872 log_dupioc(queue_t *rq, mblk_t *bp) 1873 { 1874 queue_t *wq, *qp; 1875 char *modnames, *mnp, *dname; 1876 size_t maxmodstr; 1877 boolean_t islast; 1878 1879 /* 1880 * Allocate a buffer large enough to hold the names of nstrpush modules 1881 * and one driver, with spaces between and NUL terminator. If we can't 1882 * get memory, then we'll just log the driver name. 1883 */ 1884 maxmodstr = nstrpush * (FMNAMESZ + 1); 1885 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1886 1887 /* march down write side to print log message down to the driver */ 1888 wq = WR(rq); 1889 1890 /* make sure q_next doesn't shift around while we're grabbing data */ 1891 claimstr(wq); 1892 qp = wq->q_next; 1893 do { 1894 if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL) 1895 dname = "?"; 1896 islast = !SAMESTR(qp) || qp->q_next == NULL; 1897 if (modnames == NULL) { 1898 /* 1899 * If we don't have memory, then get the driver name in 1900 * the log where we can see it. Note that memory 1901 * pressure is a possible cause of these sorts of bugs. 1902 */ 1903 if (islast) { 1904 modnames = dname; 1905 maxmodstr = 0; 1906 } 1907 } else { 1908 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1909 if (!islast) 1910 *mnp++ = ' '; 1911 } 1912 qp = qp->q_next; 1913 } while (!islast); 1914 releasestr(wq); 1915 /* Cannot happen unless stream head is corrupt. */ 1916 ASSERT(modnames != NULL); 1917 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1918 SL_CONSOLE|SL_TRACE|SL_ERROR, 1919 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1920 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1921 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1922 if (maxmodstr != 0) 1923 kmem_free(modnames, maxmodstr); 1924 } 1925 1926 int 1927 strrput_nondata(queue_t *q, mblk_t *bp) 1928 { 1929 struct stdata *stp; 1930 struct iocblk *iocbp; 1931 struct stroptions *sop; 1932 struct copyreq *reqp; 1933 struct copyresp *resp; 1934 unsigned char bpri; 1935 unsigned char flushed_already = 0; 1936 1937 stp = (struct stdata *)q->q_ptr; 1938 1939 ASSERT(!(stp->sd_flag & STPLEX)); 1940 ASSERT(qclaimed(q)); 1941 1942 switch (bp->b_datap->db_type) { 1943 case M_ERROR: 1944 /* 1945 * An error has occurred downstream, the errno is in the first 1946 * bytes of the message. 1947 */ 1948 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1949 unsigned char rw = 0; 1950 1951 mutex_enter(&stp->sd_lock); 1952 if (*bp->b_rptr != NOERROR) { /* read error */ 1953 if (*bp->b_rptr != 0) { 1954 if (stp->sd_flag & STRDERR) 1955 flushed_already |= FLUSHR; 1956 stp->sd_flag |= STRDERR; 1957 rw |= FLUSHR; 1958 } else { 1959 stp->sd_flag &= ~STRDERR; 1960 } 1961 stp->sd_rerror = *bp->b_rptr; 1962 } 1963 bp->b_rptr++; 1964 if (*bp->b_rptr != NOERROR) { /* write error */ 1965 if (*bp->b_rptr != 0) { 1966 if (stp->sd_flag & STWRERR) 1967 flushed_already |= FLUSHW; 1968 stp->sd_flag |= STWRERR; 1969 rw |= FLUSHW; 1970 } else { 1971 stp->sd_flag &= ~STWRERR; 1972 } 1973 stp->sd_werror = *bp->b_rptr; 1974 } 1975 if (rw) { 1976 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1977 "strrput cv_broadcast:q %p, bp %p", 1978 q, bp); 1979 cv_broadcast(&q->q_wait); /* readers */ 1980 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1981 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1982 1983 mutex_exit(&stp->sd_lock); 1984 pollwakeup(&stp->sd_pollist, POLLERR); 1985 mutex_enter(&stp->sd_lock); 1986 1987 if (stp->sd_sigflags & S_ERROR) 1988 strsendsig(stp->sd_siglist, S_ERROR, 0, 1989 ((rw & FLUSHR) ? stp->sd_rerror : 1990 stp->sd_werror)); 1991 mutex_exit(&stp->sd_lock); 1992 /* 1993 * Send the M_FLUSH only 1994 * for the first M_ERROR 1995 * message on the stream 1996 */ 1997 if (flushed_already == rw) { 1998 freemsg(bp); 1999 return (0); 2000 } 2001 2002 bp->b_datap->db_type = M_FLUSH; 2003 *bp->b_rptr = rw; 2004 bp->b_wptr = bp->b_rptr + 1; 2005 /* 2006 * Protect against the driver 2007 * passing up messages after 2008 * it has done a qprocsoff 2009 */ 2010 if (_OTHERQ(q)->q_next == NULL) 2011 freemsg(bp); 2012 else 2013 qreply(q, bp); 2014 return (0); 2015 } else 2016 mutex_exit(&stp->sd_lock); 2017 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2018 if (stp->sd_flag & (STRDERR|STWRERR)) 2019 flushed_already = FLUSHRW; 2020 mutex_enter(&stp->sd_lock); 2021 stp->sd_flag |= (STRDERR|STWRERR); 2022 stp->sd_rerror = *bp->b_rptr; 2023 stp->sd_werror = *bp->b_rptr; 2024 TRACE_2(TR_FAC_STREAMS_FR, 2025 TR_STRRPUT_WAKE2, 2026 "strrput wakeup #2:q %p, bp %p", q, bp); 2027 cv_broadcast(&q->q_wait); /* the readers */ 2028 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2029 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2030 2031 mutex_exit(&stp->sd_lock); 2032 pollwakeup(&stp->sd_pollist, POLLERR); 2033 mutex_enter(&stp->sd_lock); 2034 2035 if (stp->sd_sigflags & S_ERROR) 2036 strsendsig(stp->sd_siglist, S_ERROR, 0, 2037 (stp->sd_werror ? stp->sd_werror : 2038 stp->sd_rerror)); 2039 mutex_exit(&stp->sd_lock); 2040 2041 /* 2042 * Send the M_FLUSH only 2043 * for the first M_ERROR 2044 * message on the stream 2045 */ 2046 if (flushed_already != FLUSHRW) { 2047 bp->b_datap->db_type = M_FLUSH; 2048 *bp->b_rptr = FLUSHRW; 2049 /* 2050 * Protect against the driver passing up 2051 * messages after it has done a 2052 * qprocsoff. 2053 */ 2054 if (_OTHERQ(q)->q_next == NULL) 2055 freemsg(bp); 2056 else 2057 qreply(q, bp); 2058 return (0); 2059 } 2060 } 2061 freemsg(bp); 2062 return (0); 2063 2064 case M_HANGUP: 2065 2066 freemsg(bp); 2067 mutex_enter(&stp->sd_lock); 2068 stp->sd_werror = ENXIO; 2069 stp->sd_flag |= STRHUP; 2070 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2071 2072 /* 2073 * send signal if controlling tty 2074 */ 2075 2076 if (stp->sd_sidp) { 2077 prsignal(stp->sd_sidp, SIGHUP); 2078 if (stp->sd_sidp != stp->sd_pgidp) 2079 pgsignal(stp->sd_pgidp, SIGTSTP); 2080 } 2081 2082 /* 2083 * wake up read, write, and exception pollers and 2084 * reset wakeup mechanism. 2085 */ 2086 cv_broadcast(&q->q_wait); /* the readers */ 2087 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2088 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2089 strhup(stp); 2090 mutex_exit(&stp->sd_lock); 2091 return (0); 2092 2093 case M_UNHANGUP: 2094 freemsg(bp); 2095 mutex_enter(&stp->sd_lock); 2096 stp->sd_werror = 0; 2097 stp->sd_flag &= ~STRHUP; 2098 mutex_exit(&stp->sd_lock); 2099 return (0); 2100 2101 case M_SIG: 2102 /* 2103 * Someone downstream wants to post a signal. The 2104 * signal to post is contained in the first byte of the 2105 * message. If the message would go on the front of 2106 * the queue, send a signal to the process group 2107 * (if not SIGPOLL) or to the siglist processes 2108 * (SIGPOLL). If something is already on the queue, 2109 * OR if we are delivering a delayed suspend (*sigh* 2110 * another "tty" hack) and there's no one sleeping already, 2111 * just enqueue the message. 2112 */ 2113 mutex_enter(&stp->sd_lock); 2114 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2115 !(stp->sd_flag & RSLEEP))) { 2116 (void) putq(q, bp); 2117 mutex_exit(&stp->sd_lock); 2118 return (0); 2119 } 2120 mutex_exit(&stp->sd_lock); 2121 /* FALLTHRU */ 2122 2123 case M_PCSIG: 2124 /* 2125 * Don't enqueue, just post the signal. 2126 */ 2127 strsignal(stp, *bp->b_rptr, 0L); 2128 freemsg(bp); 2129 return (0); 2130 2131 case M_CMD: 2132 if (MBLKL(bp) != sizeof (cmdblk_t)) { 2133 freemsg(bp); 2134 return (0); 2135 } 2136 2137 mutex_enter(&stp->sd_lock); 2138 if (stp->sd_flag & STRCMDWAIT) { 2139 ASSERT(stp->sd_cmdblk == NULL); 2140 stp->sd_cmdblk = bp; 2141 cv_broadcast(&stp->sd_monitor); 2142 mutex_exit(&stp->sd_lock); 2143 } else { 2144 mutex_exit(&stp->sd_lock); 2145 freemsg(bp); 2146 } 2147 return (0); 2148 2149 case M_FLUSH: 2150 /* 2151 * Flush queues. The indication of which queues to flush 2152 * is in the first byte of the message. If the read queue 2153 * is specified, then flush it. If FLUSHBAND is set, just 2154 * flush the band specified by the second byte of the message. 2155 * 2156 * If a module has issued a M_SETOPT to not flush hi 2157 * priority messages off of the stream head, then pass this 2158 * flag into the flushq code to preserve such messages. 2159 */ 2160 2161 if (*bp->b_rptr & FLUSHR) { 2162 mutex_enter(&stp->sd_lock); 2163 if (*bp->b_rptr & FLUSHBAND) { 2164 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2165 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2166 } else 2167 flushq_common(q, FLUSHALL, 2168 stp->sd_read_opt & RFLUSHPCPROT); 2169 if ((q->q_first == NULL) || 2170 (q->q_first->b_datap->db_type < QPCTL)) 2171 stp->sd_flag &= ~STRPRI; 2172 else { 2173 ASSERT(stp->sd_flag & STRPRI); 2174 } 2175 mutex_exit(&stp->sd_lock); 2176 } 2177 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2178 *bp->b_rptr &= ~FLUSHR; 2179 bp->b_flag |= MSGNOLOOP; 2180 /* 2181 * Protect against the driver passing up 2182 * messages after it has done a qprocsoff. 2183 */ 2184 if (_OTHERQ(q)->q_next == NULL) 2185 freemsg(bp); 2186 else 2187 qreply(q, bp); 2188 return (0); 2189 } 2190 freemsg(bp); 2191 return (0); 2192 2193 case M_IOCACK: 2194 case M_IOCNAK: 2195 iocbp = (struct iocblk *)bp->b_rptr; 2196 /* 2197 * If not waiting for ACK or NAK then just free msg. 2198 * If incorrect id sequence number then just free msg. 2199 * If already have ACK or NAK for user then this is a 2200 * duplicate, display a warning and free the msg. 2201 */ 2202 mutex_enter(&stp->sd_lock); 2203 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2204 (stp->sd_iocid != iocbp->ioc_id)) { 2205 /* 2206 * If the ACK/NAK is a dup, display a message 2207 * Dup is when sd_iocid == ioc_id, and 2208 * sd_iocblk == <valid ptr> or -1 (the former 2209 * is when an ioctl has been put on the stream 2210 * head, but has not yet been consumed, the 2211 * later is when it has been consumed). 2212 */ 2213 if ((stp->sd_iocid == iocbp->ioc_id) && 2214 (stp->sd_iocblk != NULL)) { 2215 log_dupioc(q, bp); 2216 } 2217 freemsg(bp); 2218 mutex_exit(&stp->sd_lock); 2219 return (0); 2220 } 2221 2222 /* 2223 * Assign ACK or NAK to user and wake up. 2224 */ 2225 stp->sd_iocblk = bp; 2226 cv_broadcast(&stp->sd_monitor); 2227 mutex_exit(&stp->sd_lock); 2228 return (0); 2229 2230 case M_COPYIN: 2231 case M_COPYOUT: 2232 reqp = (struct copyreq *)bp->b_rptr; 2233 2234 /* 2235 * If not waiting for ACK or NAK then just fail request. 2236 * If already have ACK, NAK, or copy request, then just 2237 * fail request. 2238 * If incorrect id sequence number then just fail request. 2239 */ 2240 mutex_enter(&stp->sd_lock); 2241 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2242 (stp->sd_iocid != reqp->cq_id)) { 2243 if (bp->b_cont) { 2244 freemsg(bp->b_cont); 2245 bp->b_cont = NULL; 2246 } 2247 bp->b_datap->db_type = M_IOCDATA; 2248 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2249 resp = (struct copyresp *)bp->b_rptr; 2250 resp->cp_rval = (caddr_t)1; /* failure */ 2251 mutex_exit(&stp->sd_lock); 2252 putnext(stp->sd_wrq, bp); 2253 return (0); 2254 } 2255 2256 /* 2257 * Assign copy request to user and wake up. 2258 */ 2259 stp->sd_iocblk = bp; 2260 cv_broadcast(&stp->sd_monitor); 2261 mutex_exit(&stp->sd_lock); 2262 return (0); 2263 2264 case M_SETOPTS: 2265 /* 2266 * Set stream head options (read option, write offset, 2267 * min/max packet size, and/or high/low water marks for 2268 * the read side only). 2269 */ 2270 2271 bpri = 0; 2272 sop = (struct stroptions *)bp->b_rptr; 2273 mutex_enter(&stp->sd_lock); 2274 if (sop->so_flags & SO_READOPT) { 2275 switch (sop->so_readopt & RMODEMASK) { 2276 case RNORM: 2277 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2278 break; 2279 2280 case RMSGD: 2281 stp->sd_read_opt = 2282 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2283 RD_MSGDIS); 2284 break; 2285 2286 case RMSGN: 2287 stp->sd_read_opt = 2288 ((stp->sd_read_opt & ~RD_MSGDIS) | 2289 RD_MSGNODIS); 2290 break; 2291 } 2292 switch (sop->so_readopt & RPROTMASK) { 2293 case RPROTNORM: 2294 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2295 break; 2296 2297 case RPROTDAT: 2298 stp->sd_read_opt = 2299 ((stp->sd_read_opt & ~RD_PROTDIS) | 2300 RD_PROTDAT); 2301 break; 2302 2303 case RPROTDIS: 2304 stp->sd_read_opt = 2305 ((stp->sd_read_opt & ~RD_PROTDAT) | 2306 RD_PROTDIS); 2307 break; 2308 } 2309 switch (sop->so_readopt & RFLUSHMASK) { 2310 case RFLUSHPCPROT: 2311 /* 2312 * This sets the stream head to NOT flush 2313 * M_PCPROTO messages. 2314 */ 2315 stp->sd_read_opt |= RFLUSHPCPROT; 2316 break; 2317 } 2318 } 2319 if (sop->so_flags & SO_ERROPT) { 2320 switch (sop->so_erropt & RERRMASK) { 2321 case RERRNORM: 2322 stp->sd_flag &= ~STRDERRNONPERSIST; 2323 break; 2324 case RERRNONPERSIST: 2325 stp->sd_flag |= STRDERRNONPERSIST; 2326 break; 2327 } 2328 switch (sop->so_erropt & WERRMASK) { 2329 case WERRNORM: 2330 stp->sd_flag &= ~STWRERRNONPERSIST; 2331 break; 2332 case WERRNONPERSIST: 2333 stp->sd_flag |= STWRERRNONPERSIST; 2334 break; 2335 } 2336 } 2337 if (sop->so_flags & SO_COPYOPT) { 2338 if (sop->so_copyopt & ZCVMSAFE) { 2339 stp->sd_copyflag |= STZCVMSAFE; 2340 stp->sd_copyflag &= ~STZCVMUNSAFE; 2341 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2342 stp->sd_copyflag |= STZCVMUNSAFE; 2343 stp->sd_copyflag &= ~STZCVMSAFE; 2344 } 2345 2346 if (sop->so_copyopt & COPYCACHED) { 2347 stp->sd_copyflag |= STRCOPYCACHED; 2348 } 2349 } 2350 if (sop->so_flags & SO_WROFF) 2351 stp->sd_wroff = sop->so_wroff; 2352 if (sop->so_flags & SO_TAIL) 2353 stp->sd_tail = sop->so_tail; 2354 if (sop->so_flags & SO_MINPSZ) 2355 q->q_minpsz = sop->so_minpsz; 2356 if (sop->so_flags & SO_MAXPSZ) 2357 q->q_maxpsz = sop->so_maxpsz; 2358 if (sop->so_flags & SO_MAXBLK) 2359 stp->sd_maxblk = sop->so_maxblk; 2360 if (sop->so_flags & SO_HIWAT) { 2361 if (sop->so_flags & SO_BAND) { 2362 if (strqset(q, QHIWAT, 2363 sop->so_band, sop->so_hiwat)) { 2364 cmn_err(CE_WARN, "strrput: could not " 2365 "allocate qband\n"); 2366 } else { 2367 bpri = sop->so_band; 2368 } 2369 } else { 2370 q->q_hiwat = sop->so_hiwat; 2371 } 2372 } 2373 if (sop->so_flags & SO_LOWAT) { 2374 if (sop->so_flags & SO_BAND) { 2375 if (strqset(q, QLOWAT, 2376 sop->so_band, sop->so_lowat)) { 2377 cmn_err(CE_WARN, "strrput: could not " 2378 "allocate qband\n"); 2379 } else { 2380 bpri = sop->so_band; 2381 } 2382 } else { 2383 q->q_lowat = sop->so_lowat; 2384 } 2385 } 2386 if (sop->so_flags & SO_MREADON) 2387 stp->sd_flag |= SNDMREAD; 2388 if (sop->so_flags & SO_MREADOFF) 2389 stp->sd_flag &= ~SNDMREAD; 2390 if (sop->so_flags & SO_NDELON) 2391 stp->sd_flag |= OLDNDELAY; 2392 if (sop->so_flags & SO_NDELOFF) 2393 stp->sd_flag &= ~OLDNDELAY; 2394 if (sop->so_flags & SO_ISTTY) 2395 stp->sd_flag |= STRISTTY; 2396 if (sop->so_flags & SO_ISNTTY) 2397 stp->sd_flag &= ~STRISTTY; 2398 if (sop->so_flags & SO_TOSTOP) 2399 stp->sd_flag |= STRTOSTOP; 2400 if (sop->so_flags & SO_TONSTOP) 2401 stp->sd_flag &= ~STRTOSTOP; 2402 if (sop->so_flags & SO_DELIM) 2403 stp->sd_flag |= STRDELIM; 2404 if (sop->so_flags & SO_NODELIM) 2405 stp->sd_flag &= ~STRDELIM; 2406 2407 mutex_exit(&stp->sd_lock); 2408 freemsg(bp); 2409 2410 /* Check backenable in case the water marks changed */ 2411 qbackenable(q, bpri); 2412 return (0); 2413 2414 /* 2415 * The following set of cases deal with situations where two stream 2416 * heads are connected to each other (twisted streams). These messages 2417 * have no meaning at the stream head. 2418 */ 2419 case M_BREAK: 2420 case M_CTL: 2421 case M_DELAY: 2422 case M_START: 2423 case M_STOP: 2424 case M_IOCDATA: 2425 case M_STARTI: 2426 case M_STOPI: 2427 freemsg(bp); 2428 return (0); 2429 2430 case M_IOCTL: 2431 /* 2432 * Always NAK this condition 2433 * (makes no sense) 2434 * If there is one or more threads in the read side 2435 * rwnext we have to defer the nacking until that thread 2436 * returns (in strget). 2437 */ 2438 mutex_enter(&stp->sd_lock); 2439 if (stp->sd_struiodnak != 0) { 2440 /* 2441 * Defer NAK to the streamhead. Queue at the end 2442 * the list. 2443 */ 2444 mblk_t *mp = stp->sd_struionak; 2445 2446 while (mp && mp->b_next) 2447 mp = mp->b_next; 2448 if (mp) 2449 mp->b_next = bp; 2450 else 2451 stp->sd_struionak = bp; 2452 bp->b_next = NULL; 2453 mutex_exit(&stp->sd_lock); 2454 return (0); 2455 } 2456 mutex_exit(&stp->sd_lock); 2457 2458 bp->b_datap->db_type = M_IOCNAK; 2459 /* 2460 * Protect against the driver passing up 2461 * messages after it has done a qprocsoff. 2462 */ 2463 if (_OTHERQ(q)->q_next == NULL) 2464 freemsg(bp); 2465 else 2466 qreply(q, bp); 2467 return (0); 2468 2469 default: 2470 #ifdef DEBUG 2471 cmn_err(CE_WARN, 2472 "bad message type %x received at stream head\n", 2473 bp->b_datap->db_type); 2474 #endif 2475 freemsg(bp); 2476 return (0); 2477 } 2478 2479 /* NOTREACHED */ 2480 } 2481 2482 /* 2483 * Check if the stream pointed to by `stp' can be written to, and return an 2484 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2485 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2486 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2487 */ 2488 static int 2489 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2490 { 2491 int error; 2492 2493 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2494 2495 /* 2496 * For modem support, POSIX states that on writes, EIO should 2497 * be returned if the stream has been hung up. 2498 */ 2499 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2500 error = EIO; 2501 else 2502 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2503 2504 if (error != 0) { 2505 if (!(stp->sd_flag & STPLEX) && 2506 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2507 tsignal(curthread, SIGPIPE); 2508 error = EPIPE; 2509 } 2510 } 2511 2512 return (error); 2513 } 2514 2515 /* 2516 * Copyin and send data down a stream. 2517 * The caller will allocate and copyin any control part that precedes the 2518 * message and pass than in as mctl. 2519 * 2520 * Caller should *not* hold sd_lock. 2521 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2522 * under sd_lock in order to avoid missing a backenabling wakeup. 2523 * 2524 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2525 * 2526 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2527 * For sync streams we can only ignore flow control by reverting to using 2528 * putnext. 2529 * 2530 * If sd_maxblk is less than *iosize this routine might return without 2531 * transferring all of *iosize. In all cases, on return *iosize will contain 2532 * the amount of data that was transferred. 2533 */ 2534 static int 2535 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2536 int b_flag, int pri, int flags) 2537 { 2538 struiod_t uiod; 2539 mblk_t *mp; 2540 queue_t *wqp = stp->sd_wrq; 2541 int error = 0; 2542 ssize_t count = *iosize; 2543 cred_t *cr; 2544 2545 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2546 2547 if (uiop != NULL && count >= 0) 2548 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2549 2550 if (!(flags & STRUIO_POSTPONE)) { 2551 /* 2552 * Use regular canputnext, strmakedata, putnext sequence. 2553 */ 2554 if (pri == 0) { 2555 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2556 freemsg(mctl); 2557 return (EWOULDBLOCK); 2558 } 2559 } else { 2560 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2561 freemsg(mctl); 2562 return (EWOULDBLOCK); 2563 } 2564 } 2565 2566 if ((error = strmakedata(iosize, uiop, stp, flags, 2567 &mp)) != 0) { 2568 freemsg(mctl); 2569 /* 2570 * need to change return code to ENOMEM 2571 * so that this is not confused with 2572 * flow control, EAGAIN. 2573 */ 2574 2575 if (error == EAGAIN) 2576 return (ENOMEM); 2577 else 2578 return (error); 2579 } 2580 if (mctl != NULL) { 2581 if (mctl->b_cont == NULL) 2582 mctl->b_cont = mp; 2583 else if (mp != NULL) 2584 linkb(mctl, mp); 2585 mp = mctl; 2586 /* 2587 * Note that for interrupt thread, the CRED() is 2588 * NULL. Don't bother with the pid either. 2589 */ 2590 if ((cr = CRED()) != NULL) { 2591 mblk_setcred(mp, cr); 2592 DB_CPID(mp) = curproc->p_pid; 2593 } 2594 } else if (mp == NULL) 2595 return (0); 2596 2597 mp->b_flag |= b_flag; 2598 mp->b_band = (uchar_t)pri; 2599 2600 if (flags & MSG_IGNFLOW) { 2601 /* 2602 * XXX Hack: Don't get stuck running service 2603 * procedures. This is needed for sockfs when 2604 * sending the unbind message out of the rput 2605 * procedure - we don't want a put procedure 2606 * to run service procedures. 2607 */ 2608 putnext(wqp, mp); 2609 } else { 2610 stream_willservice(stp); 2611 putnext(wqp, mp); 2612 stream_runservice(stp); 2613 } 2614 return (0); 2615 } 2616 /* 2617 * Stream supports rwnext() for the write side. 2618 */ 2619 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2620 freemsg(mctl); 2621 /* 2622 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2623 */ 2624 return (error == EAGAIN ? ENOMEM : error); 2625 } 2626 if (mctl != NULL) { 2627 if (mctl->b_cont == NULL) 2628 mctl->b_cont = mp; 2629 else if (mp != NULL) 2630 linkb(mctl, mp); 2631 mp = mctl; 2632 /* 2633 * Note that for interrupt thread, the CRED() is 2634 * NULL. Don't bother with the pid either. 2635 */ 2636 if ((cr = CRED()) != NULL) { 2637 mblk_setcred(mp, cr); 2638 DB_CPID(mp) = curproc->p_pid; 2639 } 2640 } else if (mp == NULL) { 2641 return (0); 2642 } 2643 2644 mp->b_flag |= b_flag; 2645 mp->b_band = (uchar_t)pri; 2646 2647 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2648 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2649 uiod.d_uio.uio_offset = 0; 2650 uiod.d_mp = mp; 2651 error = rwnext(wqp, &uiod); 2652 if (! uiod.d_mp) { 2653 uioskip(uiop, *iosize); 2654 return (error); 2655 } 2656 ASSERT(mp == uiod.d_mp); 2657 if (error == EINVAL) { 2658 /* 2659 * The stream plumbing must have changed while 2660 * we were away, so just turn off rwnext()s. 2661 */ 2662 error = 0; 2663 } else if (error == EBUSY || error == EWOULDBLOCK) { 2664 /* 2665 * Couldn't enter a perimeter or took a page fault, 2666 * so fall-back to putnext(). 2667 */ 2668 error = 0; 2669 } else { 2670 freemsg(mp); 2671 return (error); 2672 } 2673 /* Have to check canput before consuming data from the uio */ 2674 if (pri == 0) { 2675 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2676 freemsg(mp); 2677 return (EWOULDBLOCK); 2678 } 2679 } else { 2680 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2681 freemsg(mp); 2682 return (EWOULDBLOCK); 2683 } 2684 } 2685 ASSERT(mp == uiod.d_mp); 2686 /* Copyin data from the uio */ 2687 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2688 freemsg(mp); 2689 return (error); 2690 } 2691 uioskip(uiop, *iosize); 2692 if (flags & MSG_IGNFLOW) { 2693 /* 2694 * XXX Hack: Don't get stuck running service procedures. 2695 * This is needed for sockfs when sending the unbind message 2696 * out of the rput procedure - we don't want a put procedure 2697 * to run service procedures. 2698 */ 2699 putnext(wqp, mp); 2700 } else { 2701 stream_willservice(stp); 2702 putnext(wqp, mp); 2703 stream_runservice(stp); 2704 } 2705 return (0); 2706 } 2707 2708 /* 2709 * Write attempts to break the write request into messages conforming 2710 * with the minimum and maximum packet sizes set downstream. 2711 * 2712 * Write will not block if downstream queue is full and 2713 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2714 * 2715 * A write of zero bytes gets packaged into a zero length message and sent 2716 * downstream like any other message. 2717 * 2718 * If buffers of the requested sizes are not available, the write will 2719 * sleep until the buffers become available. 2720 * 2721 * Write (if specified) will supply a write offset in a message if it 2722 * makes sense. This can be specified by downstream modules as part of 2723 * a M_SETOPTS message. Write will not supply the write offset if it 2724 * cannot supply any data in a buffer. In other words, write will never 2725 * send down an empty packet due to a write offset. 2726 */ 2727 /* ARGSUSED2 */ 2728 int 2729 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2730 { 2731 return (strwrite_common(vp, uiop, crp, 0)); 2732 } 2733 2734 /* ARGSUSED2 */ 2735 int 2736 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2737 { 2738 struct stdata *stp; 2739 struct queue *wqp; 2740 ssize_t rmin, rmax; 2741 ssize_t iosize; 2742 int waitflag; 2743 int tempmode; 2744 int error = 0; 2745 int b_flag; 2746 2747 ASSERT(vp->v_stream); 2748 stp = vp->v_stream; 2749 2750 mutex_enter(&stp->sd_lock); 2751 2752 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2753 mutex_exit(&stp->sd_lock); 2754 return (error); 2755 } 2756 2757 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2758 error = strwriteable(stp, B_TRUE, B_TRUE); 2759 if (error != 0) { 2760 mutex_exit(&stp->sd_lock); 2761 return (error); 2762 } 2763 } 2764 2765 mutex_exit(&stp->sd_lock); 2766 2767 wqp = stp->sd_wrq; 2768 2769 /* get these values from them cached in the stream head */ 2770 rmin = stp->sd_qn_minpsz; 2771 rmax = stp->sd_qn_maxpsz; 2772 2773 /* 2774 * Check the min/max packet size constraints. If min packet size 2775 * is non-zero, the write cannot be split into multiple messages 2776 * and still guarantee the size constraints. 2777 */ 2778 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2779 2780 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2781 if (rmax == 0) { 2782 return (0); 2783 } 2784 if (rmin > 0) { 2785 if (uiop->uio_resid < rmin) { 2786 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2787 "strwrite out:q %p out %d error %d", 2788 wqp, 0, ERANGE); 2789 return (ERANGE); 2790 } 2791 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2792 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2793 "strwrite out:q %p out %d error %d", 2794 wqp, 1, ERANGE); 2795 return (ERANGE); 2796 } 2797 } 2798 2799 /* 2800 * Do until count satisfied or error. 2801 */ 2802 waitflag = WRITEWAIT | wflag; 2803 if (stp->sd_flag & OLDNDELAY) 2804 tempmode = uiop->uio_fmode & ~FNDELAY; 2805 else 2806 tempmode = uiop->uio_fmode; 2807 2808 if (rmax == INFPSZ) 2809 rmax = uiop->uio_resid; 2810 2811 /* 2812 * Note that tempmode does not get used in strput/strmakedata 2813 * but only in strwaitq. The other routines use uio_fmode 2814 * unmodified. 2815 */ 2816 2817 /* LINTED: constant in conditional context */ 2818 while (1) { /* breaks when uio_resid reaches zero */ 2819 /* 2820 * Determine the size of the next message to be 2821 * packaged. May have to break write into several 2822 * messages based on max packet size. 2823 */ 2824 iosize = MIN(uiop->uio_resid, rmax); 2825 2826 /* 2827 * Put block downstream when flow control allows it. 2828 */ 2829 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2830 b_flag = MSGDELIM; 2831 else 2832 b_flag = 0; 2833 2834 for (;;) { 2835 int done = 0; 2836 2837 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2838 if (error == 0) 2839 break; 2840 if (error != EWOULDBLOCK) 2841 goto out; 2842 2843 mutex_enter(&stp->sd_lock); 2844 /* 2845 * Check for a missed wakeup. 2846 * Needed since strput did not hold sd_lock across 2847 * the canputnext. 2848 */ 2849 if (canputnext(wqp)) { 2850 /* Try again */ 2851 mutex_exit(&stp->sd_lock); 2852 continue; 2853 } 2854 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2855 "strwrite wait:q %p wait", wqp); 2856 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2857 tempmode, -1, &done)) != 0 || done) { 2858 mutex_exit(&stp->sd_lock); 2859 if ((vp->v_type == VFIFO) && 2860 (uiop->uio_fmode & FNDELAY) && 2861 (error == EAGAIN)) 2862 error = 0; 2863 goto out; 2864 } 2865 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2866 "strwrite wake:q %p awakes", wqp); 2867 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2868 mutex_exit(&stp->sd_lock); 2869 goto out; 2870 } 2871 mutex_exit(&stp->sd_lock); 2872 } 2873 waitflag |= NOINTR; 2874 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2875 "strwrite resid:q %p uiop %p", wqp, uiop); 2876 if (uiop->uio_resid) { 2877 /* Recheck for errors - needed for sockets */ 2878 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2879 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2880 mutex_enter(&stp->sd_lock); 2881 error = strwriteable(stp, B_FALSE, B_TRUE); 2882 mutex_exit(&stp->sd_lock); 2883 if (error != 0) 2884 return (error); 2885 } 2886 continue; 2887 } 2888 break; 2889 } 2890 out: 2891 /* 2892 * For historical reasons, applications expect EAGAIN when a data 2893 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2894 */ 2895 if (error == ENOMEM) 2896 error = EAGAIN; 2897 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2898 "strwrite out:q %p out %d error %d", wqp, 2, error); 2899 return (error); 2900 } 2901 2902 /* 2903 * Stream head write service routine. 2904 * Its job is to wake up any sleeping writers when a queue 2905 * downstream needs data (part of the flow control in putq and getq). 2906 * It also must wake anyone sleeping on a poll(). 2907 * For stream head right below mux module, it must also invoke put procedure 2908 * of next downstream module. 2909 */ 2910 int 2911 strwsrv(queue_t *q) 2912 { 2913 struct stdata *stp; 2914 queue_t *tq; 2915 qband_t *qbp; 2916 int i; 2917 qband_t *myqbp; 2918 int isevent; 2919 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2920 2921 TRACE_1(TR_FAC_STREAMS_FR, 2922 TR_STRWSRV, "strwsrv:q %p", q); 2923 stp = (struct stdata *)q->q_ptr; 2924 ASSERT(qclaimed(q)); 2925 mutex_enter(&stp->sd_lock); 2926 ASSERT(!(stp->sd_flag & STPLEX)); 2927 2928 if (stp->sd_flag & WSLEEP) { 2929 stp->sd_flag &= ~WSLEEP; 2930 cv_broadcast(&q->q_wait); 2931 } 2932 mutex_exit(&stp->sd_lock); 2933 2934 /* The other end of a stream pipe went away. */ 2935 if ((tq = q->q_next) == NULL) { 2936 return (0); 2937 } 2938 2939 /* Find the next module forward that has a service procedure */ 2940 claimstr(q); 2941 tq = q->q_nfsrv; 2942 ASSERT(tq != NULL); 2943 2944 if ((q->q_flag & QBACK)) { 2945 if ((tq->q_flag & QFULL)) { 2946 mutex_enter(QLOCK(tq)); 2947 if (!(tq->q_flag & QFULL)) { 2948 mutex_exit(QLOCK(tq)); 2949 goto wakeup; 2950 } 2951 /* 2952 * The queue must have become full again. Set QWANTW 2953 * again so strwsrv will be back enabled when 2954 * the queue becomes non-full next time. 2955 */ 2956 tq->q_flag |= QWANTW; 2957 mutex_exit(QLOCK(tq)); 2958 } else { 2959 wakeup: 2960 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2961 mutex_enter(&stp->sd_lock); 2962 if (stp->sd_sigflags & S_WRNORM) 2963 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2964 mutex_exit(&stp->sd_lock); 2965 } 2966 } 2967 2968 isevent = 0; 2969 i = 1; 2970 bzero((caddr_t)qbf, NBAND); 2971 mutex_enter(QLOCK(tq)); 2972 if ((myqbp = q->q_bandp) != NULL) 2973 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2974 ASSERT(myqbp); 2975 if ((myqbp->qb_flag & QB_BACK)) { 2976 if (qbp->qb_flag & QB_FULL) { 2977 /* 2978 * The band must have become full again. 2979 * Set QB_WANTW again so strwsrv will 2980 * be back enabled when the band becomes 2981 * non-full next time. 2982 */ 2983 qbp->qb_flag |= QB_WANTW; 2984 } else { 2985 isevent = 1; 2986 qbf[i] = 1; 2987 } 2988 } 2989 myqbp = myqbp->qb_next; 2990 i++; 2991 } 2992 mutex_exit(QLOCK(tq)); 2993 2994 if (isevent) { 2995 for (i = tq->q_nband; i; i--) { 2996 if (qbf[i]) { 2997 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2998 mutex_enter(&stp->sd_lock); 2999 if (stp->sd_sigflags & S_WRBAND) 3000 strsendsig(stp->sd_siglist, S_WRBAND, 3001 (uchar_t)i, 0); 3002 mutex_exit(&stp->sd_lock); 3003 } 3004 } 3005 } 3006 3007 releasestr(q); 3008 return (0); 3009 } 3010 3011 /* 3012 * Special case of strcopyin/strcopyout for copying 3013 * struct strioctl that can deal with both data 3014 * models. 3015 */ 3016 3017 #ifdef _LP64 3018 3019 static int 3020 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3021 { 3022 struct strioctl32 strioc32; 3023 struct strioctl *striocp; 3024 3025 if (copyflag & U_TO_K) { 3026 ASSERT((copyflag & K_TO_K) == 0); 3027 3028 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3029 if (copyin(from, &strioc32, sizeof (strioc32))) 3030 return (EFAULT); 3031 3032 striocp = (struct strioctl *)to; 3033 striocp->ic_cmd = strioc32.ic_cmd; 3034 striocp->ic_timout = strioc32.ic_timout; 3035 striocp->ic_len = strioc32.ic_len; 3036 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3037 3038 } else { /* NATIVE data model */ 3039 if (copyin(from, to, sizeof (struct strioctl))) { 3040 return (EFAULT); 3041 } else { 3042 return (0); 3043 } 3044 } 3045 } else { 3046 ASSERT(copyflag & K_TO_K); 3047 bcopy(from, to, sizeof (struct strioctl)); 3048 } 3049 return (0); 3050 } 3051 3052 static int 3053 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3054 { 3055 struct strioctl32 strioc32; 3056 struct strioctl *striocp; 3057 3058 if (copyflag & U_TO_K) { 3059 ASSERT((copyflag & K_TO_K) == 0); 3060 3061 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3062 striocp = (struct strioctl *)from; 3063 strioc32.ic_cmd = striocp->ic_cmd; 3064 strioc32.ic_timout = striocp->ic_timout; 3065 strioc32.ic_len = striocp->ic_len; 3066 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3067 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3068 striocp->ic_dp); 3069 3070 if (copyout(&strioc32, to, sizeof (strioc32))) 3071 return (EFAULT); 3072 3073 } else { /* NATIVE data model */ 3074 if (copyout(from, to, sizeof (struct strioctl))) { 3075 return (EFAULT); 3076 } else { 3077 return (0); 3078 } 3079 } 3080 } else { 3081 ASSERT(copyflag & K_TO_K); 3082 bcopy(from, to, sizeof (struct strioctl)); 3083 } 3084 return (0); 3085 } 3086 3087 #else /* ! _LP64 */ 3088 3089 /* ARGSUSED2 */ 3090 static int 3091 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3092 { 3093 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3094 } 3095 3096 /* ARGSUSED2 */ 3097 static int 3098 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3099 { 3100 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3101 } 3102 3103 #endif /* _LP64 */ 3104 3105 /* 3106 * Determine type of job control semantics expected by user. The 3107 * possibilities are: 3108 * JCREAD - Behaves like read() on fd; send SIGTTIN 3109 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3110 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3111 * JCGETP - Gets a value in the stream; no signals. 3112 * See straccess in strsubr.c for usage of these values. 3113 * 3114 * This routine also returns -1 for I_STR as a special case; the 3115 * caller must call again with the real ioctl number for 3116 * classification. 3117 */ 3118 static int 3119 job_control_type(int cmd) 3120 { 3121 switch (cmd) { 3122 case I_STR: 3123 return (-1); 3124 3125 case I_RECVFD: 3126 case I_E_RECVFD: 3127 return (JCREAD); 3128 3129 case I_FDINSERT: 3130 case I_SENDFD: 3131 return (JCWRITE); 3132 3133 case TCSETA: 3134 case TCSETAW: 3135 case TCSETAF: 3136 case TCSBRK: 3137 case TCXONC: 3138 case TCFLSH: 3139 case TCDSET: /* Obsolete */ 3140 case TIOCSWINSZ: 3141 case TCSETS: 3142 case TCSETSW: 3143 case TCSETSF: 3144 case TIOCSETD: 3145 case TIOCHPCL: 3146 case TIOCSETP: 3147 case TIOCSETN: 3148 case TIOCEXCL: 3149 case TIOCNXCL: 3150 case TIOCFLUSH: 3151 case TIOCSETC: 3152 case TIOCLBIS: 3153 case TIOCLBIC: 3154 case TIOCLSET: 3155 case TIOCSBRK: 3156 case TIOCCBRK: 3157 case TIOCSDTR: 3158 case TIOCCDTR: 3159 case TIOCSLTC: 3160 case TIOCSTOP: 3161 case TIOCSTART: 3162 case TIOCSTI: 3163 case TIOCSPGRP: 3164 case TIOCMSET: 3165 case TIOCMBIS: 3166 case TIOCMBIC: 3167 case TIOCREMOTE: 3168 case TIOCSIGNAL: 3169 case LDSETT: 3170 case LDSMAP: /* Obsolete */ 3171 case DIOCSETP: 3172 case I_FLUSH: 3173 case I_SRDOPT: 3174 case I_SETSIG: 3175 case I_SWROPT: 3176 case I_FLUSHBAND: 3177 case I_SETCLTIME: 3178 case I_SERROPT: 3179 case I_ESETSIG: 3180 case FIONBIO: 3181 case FIOASYNC: 3182 case FIOSETOWN: 3183 case JBOOT: /* Obsolete */ 3184 case JTERM: /* Obsolete */ 3185 case JTIMOM: /* Obsolete */ 3186 case JZOMBOOT: /* Obsolete */ 3187 case JAGENT: /* Obsolete */ 3188 case JTRUN: /* Obsolete */ 3189 case JXTPROTO: /* Obsolete */ 3190 case TIOCSETLD: 3191 return (JCSETP); 3192 } 3193 3194 return (JCGETP); 3195 } 3196 3197 /* 3198 * ioctl for streams 3199 */ 3200 int 3201 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3202 cred_t *crp, int *rvalp) 3203 { 3204 struct stdata *stp; 3205 struct strcmd *scp; 3206 struct strioctl strioc; 3207 struct uio uio; 3208 struct iovec iov; 3209 int access; 3210 mblk_t *mp; 3211 int error = 0; 3212 int done = 0; 3213 ssize_t rmin, rmax; 3214 queue_t *wrq; 3215 queue_t *rdq; 3216 boolean_t kioctl = B_FALSE; 3217 3218 if (flag & FKIOCTL) { 3219 copyflag = K_TO_K; 3220 kioctl = B_TRUE; 3221 } 3222 ASSERT(vp->v_stream); 3223 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3224 stp = vp->v_stream; 3225 3226 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3227 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3228 3229 if (audit_active) 3230 audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp); 3231 3232 /* 3233 * If the copy is kernel to kernel, make sure that the FNATIVE 3234 * flag is set. After this it would be a serious error to have 3235 * no model flag. 3236 */ 3237 if (copyflag == K_TO_K) 3238 flag = (flag & ~FMODELS) | FNATIVE; 3239 3240 ASSERT((flag & FMODELS) != 0); 3241 3242 wrq = stp->sd_wrq; 3243 rdq = _RD(wrq); 3244 3245 access = job_control_type(cmd); 3246 3247 /* We should never see these here, should be handled by iwscn */ 3248 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3249 return (EINVAL); 3250 3251 mutex_enter(&stp->sd_lock); 3252 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3253 mutex_exit(&stp->sd_lock); 3254 return (error); 3255 } 3256 mutex_exit(&stp->sd_lock); 3257 3258 /* 3259 * Check for sgttyb-related ioctls first, and complain as 3260 * necessary. 3261 */ 3262 switch (cmd) { 3263 case TIOCGETP: 3264 case TIOCSETP: 3265 case TIOCSETN: 3266 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3267 sgttyb_complaint = B_TRUE; 3268 cmn_err(CE_NOTE, 3269 "application used obsolete TIOC[GS]ET"); 3270 } 3271 if (sgttyb_handling >= 3) { 3272 tsignal(curthread, SIGSYS); 3273 return (EIO); 3274 } 3275 break; 3276 } 3277 3278 mutex_enter(&stp->sd_lock); 3279 3280 switch (cmd) { 3281 case I_RECVFD: 3282 case I_E_RECVFD: 3283 case I_PEEK: 3284 case I_NREAD: 3285 case FIONREAD: 3286 case FIORDCHK: 3287 case I_ATMARK: 3288 case FIONBIO: 3289 case FIOASYNC: 3290 if (stp->sd_flag & (STRDERR|STPLEX)) { 3291 error = strgeterr(stp, STRDERR|STPLEX, 0); 3292 if (error != 0) { 3293 mutex_exit(&stp->sd_lock); 3294 return (error); 3295 } 3296 } 3297 break; 3298 3299 default: 3300 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3301 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3302 if (error != 0) { 3303 mutex_exit(&stp->sd_lock); 3304 return (error); 3305 } 3306 } 3307 } 3308 3309 mutex_exit(&stp->sd_lock); 3310 3311 switch (cmd) { 3312 default: 3313 /* 3314 * The stream head has hardcoded knowledge of a 3315 * miscellaneous collection of terminal-, keyboard- and 3316 * mouse-related ioctls, enumerated below. This hardcoded 3317 * knowledge allows the stream head to automatically 3318 * convert transparent ioctl requests made by userland 3319 * programs into I_STR ioctls which many old STREAMS 3320 * modules and drivers require. 3321 * 3322 * No new ioctls should ever be added to this list. 3323 * Instead, the STREAMS module or driver should be written 3324 * to either handle transparent ioctls or require any 3325 * userland programs to use I_STR ioctls (by returning 3326 * EINVAL to any transparent ioctl requests). 3327 * 3328 * More importantly, removing ioctls from this list should 3329 * be done with the utmost care, since our STREAMS modules 3330 * and drivers *count* on the stream head performing this 3331 * conversion, and thus may panic while processing 3332 * transparent ioctl request for one of these ioctls (keep 3333 * in mind that third party modules and drivers may have 3334 * similar problems). 3335 */ 3336 if (((cmd & IOCTYPE) == LDIOC) || 3337 ((cmd & IOCTYPE) == tIOC) || 3338 ((cmd & IOCTYPE) == TIOC) || 3339 ((cmd & IOCTYPE) == KIOC) || 3340 ((cmd & IOCTYPE) == MSIOC) || 3341 ((cmd & IOCTYPE) == VUIOC)) { 3342 /* 3343 * The ioctl is a tty ioctl - set up strioc buffer 3344 * and call strdoioctl() to do the work. 3345 */ 3346 if (stp->sd_flag & STRHUP) 3347 return (ENXIO); 3348 strioc.ic_cmd = cmd; 3349 strioc.ic_timout = INFTIM; 3350 3351 switch (cmd) { 3352 3353 case TCXONC: 3354 case TCSBRK: 3355 case TCFLSH: 3356 case TCDSET: 3357 { 3358 int native_arg = (int)arg; 3359 strioc.ic_len = sizeof (int); 3360 strioc.ic_dp = (char *)&native_arg; 3361 return (strdoioctl(stp, &strioc, flag, 3362 K_TO_K, crp, rvalp)); 3363 } 3364 3365 case TCSETA: 3366 case TCSETAW: 3367 case TCSETAF: 3368 strioc.ic_len = sizeof (struct termio); 3369 strioc.ic_dp = (char *)arg; 3370 return (strdoioctl(stp, &strioc, flag, 3371 copyflag, crp, rvalp)); 3372 3373 case TCSETS: 3374 case TCSETSW: 3375 case TCSETSF: 3376 strioc.ic_len = sizeof (struct termios); 3377 strioc.ic_dp = (char *)arg; 3378 return (strdoioctl(stp, &strioc, flag, 3379 copyflag, crp, rvalp)); 3380 3381 case LDSETT: 3382 strioc.ic_len = sizeof (struct termcb); 3383 strioc.ic_dp = (char *)arg; 3384 return (strdoioctl(stp, &strioc, flag, 3385 copyflag, crp, rvalp)); 3386 3387 case TIOCSETP: 3388 strioc.ic_len = sizeof (struct sgttyb); 3389 strioc.ic_dp = (char *)arg; 3390 return (strdoioctl(stp, &strioc, flag, 3391 copyflag, crp, rvalp)); 3392 3393 case TIOCSTI: 3394 if ((flag & FREAD) == 0 && 3395 secpolicy_sti(crp) != 0) { 3396 return (EPERM); 3397 } 3398 mutex_enter(&stp->sd_lock); 3399 mutex_enter(&curproc->p_splock); 3400 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3401 secpolicy_sti(crp) != 0) { 3402 mutex_exit(&curproc->p_splock); 3403 mutex_exit(&stp->sd_lock); 3404 return (EACCES); 3405 } 3406 mutex_exit(&curproc->p_splock); 3407 mutex_exit(&stp->sd_lock); 3408 3409 strioc.ic_len = sizeof (char); 3410 strioc.ic_dp = (char *)arg; 3411 return (strdoioctl(stp, &strioc, flag, 3412 copyflag, crp, rvalp)); 3413 3414 case TIOCSWINSZ: 3415 strioc.ic_len = sizeof (struct winsize); 3416 strioc.ic_dp = (char *)arg; 3417 return (strdoioctl(stp, &strioc, flag, 3418 copyflag, crp, rvalp)); 3419 3420 case TIOCSSIZE: 3421 strioc.ic_len = sizeof (struct ttysize); 3422 strioc.ic_dp = (char *)arg; 3423 return (strdoioctl(stp, &strioc, flag, 3424 copyflag, crp, rvalp)); 3425 3426 case TIOCSSOFTCAR: 3427 case KIOCTRANS: 3428 case KIOCTRANSABLE: 3429 case KIOCCMD: 3430 case KIOCSDIRECT: 3431 case KIOCSCOMPAT: 3432 case KIOCSKABORTEN: 3433 case KIOCSRPTDELAY: 3434 case KIOCSRPTRATE: 3435 case VUIDSFORMAT: 3436 case TIOCSPPS: 3437 strioc.ic_len = sizeof (int); 3438 strioc.ic_dp = (char *)arg; 3439 return (strdoioctl(stp, &strioc, flag, 3440 copyflag, crp, rvalp)); 3441 3442 case KIOCSETKEY: 3443 case KIOCGETKEY: 3444 strioc.ic_len = sizeof (struct kiockey); 3445 strioc.ic_dp = (char *)arg; 3446 return (strdoioctl(stp, &strioc, flag, 3447 copyflag, crp, rvalp)); 3448 3449 case KIOCSKEY: 3450 case KIOCGKEY: 3451 strioc.ic_len = sizeof (struct kiockeymap); 3452 strioc.ic_dp = (char *)arg; 3453 return (strdoioctl(stp, &strioc, flag, 3454 copyflag, crp, rvalp)); 3455 3456 case KIOCSLED: 3457 /* arg is a pointer to char */ 3458 strioc.ic_len = sizeof (char); 3459 strioc.ic_dp = (char *)arg; 3460 return (strdoioctl(stp, &strioc, flag, 3461 copyflag, crp, rvalp)); 3462 3463 case MSIOSETPARMS: 3464 strioc.ic_len = sizeof (Ms_parms); 3465 strioc.ic_dp = (char *)arg; 3466 return (strdoioctl(stp, &strioc, flag, 3467 copyflag, crp, rvalp)); 3468 3469 case VUIDSADDR: 3470 case VUIDGADDR: 3471 strioc.ic_len = sizeof (struct vuid_addr_probe); 3472 strioc.ic_dp = (char *)arg; 3473 return (strdoioctl(stp, &strioc, flag, 3474 copyflag, crp, rvalp)); 3475 3476 /* 3477 * These M_IOCTL's don't require any data to be sent 3478 * downstream, and the driver will allocate and link 3479 * on its own mblk_t upon M_IOCACK -- thus we set 3480 * ic_len to zero and set ic_dp to arg so we know 3481 * where to copyout to later. 3482 */ 3483 case TIOCGSOFTCAR: 3484 case TIOCGWINSZ: 3485 case TIOCGSIZE: 3486 case KIOCGTRANS: 3487 case KIOCGTRANSABLE: 3488 case KIOCTYPE: 3489 case KIOCGDIRECT: 3490 case KIOCGCOMPAT: 3491 case KIOCLAYOUT: 3492 case KIOCGLED: 3493 case MSIOGETPARMS: 3494 case MSIOBUTTONS: 3495 case VUIDGFORMAT: 3496 case TIOCGPPS: 3497 case TIOCGPPSEV: 3498 case TCGETA: 3499 case TCGETS: 3500 case LDGETT: 3501 case TIOCGETP: 3502 case KIOCGRPTDELAY: 3503 case KIOCGRPTRATE: 3504 strioc.ic_len = 0; 3505 strioc.ic_dp = (char *)arg; 3506 return (strdoioctl(stp, &strioc, flag, 3507 copyflag, crp, rvalp)); 3508 } 3509 } 3510 3511 /* 3512 * Unknown cmd - send it down as a transparent ioctl. 3513 */ 3514 strioc.ic_cmd = cmd; 3515 strioc.ic_timout = INFTIM; 3516 strioc.ic_len = TRANSPARENT; 3517 strioc.ic_dp = (char *)&arg; 3518 3519 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3520 3521 case I_STR: 3522 /* 3523 * Stream ioctl. Read in an strioctl buffer from the user 3524 * along with any data specified and send it downstream. 3525 * Strdoioctl will wait allow only one ioctl message at 3526 * a time, and waits for the acknowledgement. 3527 */ 3528 3529 if (stp->sd_flag & STRHUP) 3530 return (ENXIO); 3531 3532 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3533 copyflag); 3534 if (error != 0) 3535 return (error); 3536 3537 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3538 return (EINVAL); 3539 3540 access = job_control_type(strioc.ic_cmd); 3541 mutex_enter(&stp->sd_lock); 3542 if ((access != -1) && 3543 ((error = i_straccess(stp, access)) != 0)) { 3544 mutex_exit(&stp->sd_lock); 3545 return (error); 3546 } 3547 mutex_exit(&stp->sd_lock); 3548 3549 /* 3550 * The I_STR facility provides a trap door for malicious 3551 * code to send down bogus streamio(7I) ioctl commands to 3552 * unsuspecting STREAMS modules and drivers which expect to 3553 * only get these messages from the stream head. 3554 * Explicitly prohibit any streamio ioctls which can be 3555 * passed downstream by the stream head. Note that we do 3556 * not block all streamio ioctls because the ioctl 3557 * numberspace is not well managed and thus it's possible 3558 * that a module or driver's ioctl numbers may accidentally 3559 * collide with them. 3560 */ 3561 switch (strioc.ic_cmd) { 3562 case I_LINK: 3563 case I_PLINK: 3564 case I_UNLINK: 3565 case I_PUNLINK: 3566 case _I_GETPEERCRED: 3567 case _I_PLINK_LH: 3568 return (EINVAL); 3569 } 3570 3571 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3572 if (error == 0) { 3573 error = strcopyout_strioctl(&strioc, (void *)arg, 3574 flag, copyflag); 3575 } 3576 return (error); 3577 3578 case _I_CMD: 3579 /* 3580 * Like I_STR, but without using M_IOC* messages and without 3581 * copyins/copyouts beyond the passed-in argument. 3582 */ 3583 if (stp->sd_flag & STRHUP) 3584 return (ENXIO); 3585 3586 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL) 3587 return (ENOMEM); 3588 3589 if (copyin((void *)arg, scp, sizeof (strcmd_t))) { 3590 kmem_free(scp, sizeof (strcmd_t)); 3591 return (EFAULT); 3592 } 3593 3594 access = job_control_type(scp->sc_cmd); 3595 mutex_enter(&stp->sd_lock); 3596 if (access != -1 && (error = i_straccess(stp, access)) != 0) { 3597 mutex_exit(&stp->sd_lock); 3598 kmem_free(scp, sizeof (strcmd_t)); 3599 return (error); 3600 } 3601 mutex_exit(&stp->sd_lock); 3602 3603 *rvalp = 0; 3604 if ((error = strdocmd(stp, scp, crp)) == 0) { 3605 if (copyout(scp, (void *)arg, sizeof (strcmd_t))) 3606 error = EFAULT; 3607 } 3608 kmem_free(scp, sizeof (strcmd_t)); 3609 return (error); 3610 3611 case I_NREAD: 3612 /* 3613 * Return number of bytes of data in first message 3614 * in queue in "arg" and return the number of messages 3615 * in queue in return value. 3616 */ 3617 { 3618 size_t size; 3619 int retval; 3620 int count = 0; 3621 3622 mutex_enter(QLOCK(rdq)); 3623 3624 size = msgdsize(rdq->q_first); 3625 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3626 count++; 3627 3628 mutex_exit(QLOCK(rdq)); 3629 if (stp->sd_struiordq) { 3630 infod_t infod; 3631 3632 infod.d_cmd = INFOD_COUNT; 3633 infod.d_count = 0; 3634 if (count == 0) { 3635 infod.d_cmd |= INFOD_FIRSTBYTES; 3636 infod.d_bytes = 0; 3637 } 3638 infod.d_res = 0; 3639 (void) infonext(rdq, &infod); 3640 count += infod.d_count; 3641 if (infod.d_res & INFOD_FIRSTBYTES) 3642 size = infod.d_bytes; 3643 } 3644 3645 /* 3646 * Drop down from size_t to the "int" required by the 3647 * interface. Cap at INT_MAX. 3648 */ 3649 retval = MIN(size, INT_MAX); 3650 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3651 copyflag); 3652 if (!error) 3653 *rvalp = count; 3654 return (error); 3655 } 3656 3657 case FIONREAD: 3658 /* 3659 * Return number of bytes of data in all data messages 3660 * in queue in "arg". 3661 */ 3662 { 3663 size_t size = 0; 3664 int retval; 3665 3666 mutex_enter(QLOCK(rdq)); 3667 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3668 size += msgdsize(mp); 3669 mutex_exit(QLOCK(rdq)); 3670 3671 if (stp->sd_struiordq) { 3672 infod_t infod; 3673 3674 infod.d_cmd = INFOD_BYTES; 3675 infod.d_res = 0; 3676 infod.d_bytes = 0; 3677 (void) infonext(rdq, &infod); 3678 size += infod.d_bytes; 3679 } 3680 3681 /* 3682 * Drop down from size_t to the "int" required by the 3683 * interface. Cap at INT_MAX. 3684 */ 3685 retval = MIN(size, INT_MAX); 3686 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3687 copyflag); 3688 3689 *rvalp = 0; 3690 return (error); 3691 } 3692 case FIORDCHK: 3693 /* 3694 * FIORDCHK does not use arg value (like FIONREAD), 3695 * instead a count is returned. I_NREAD value may 3696 * not be accurate but safe. The real thing to do is 3697 * to add the msgdsizes of all data messages until 3698 * a non-data message. 3699 */ 3700 { 3701 size_t size = 0; 3702 3703 mutex_enter(QLOCK(rdq)); 3704 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3705 size += msgdsize(mp); 3706 mutex_exit(QLOCK(rdq)); 3707 3708 if (stp->sd_struiordq) { 3709 infod_t infod; 3710 3711 infod.d_cmd = INFOD_BYTES; 3712 infod.d_res = 0; 3713 infod.d_bytes = 0; 3714 (void) infonext(rdq, &infod); 3715 size += infod.d_bytes; 3716 } 3717 3718 /* 3719 * Since ioctl returns an int, and memory sizes under 3720 * LP64 may not fit, we return INT_MAX if the count was 3721 * actually greater. 3722 */ 3723 *rvalp = MIN(size, INT_MAX); 3724 return (0); 3725 } 3726 3727 case I_FIND: 3728 /* 3729 * Get module name. 3730 */ 3731 { 3732 char mname[FMNAMESZ + 1]; 3733 queue_t *q; 3734 3735 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3736 mname, FMNAMESZ + 1, NULL); 3737 if (error) 3738 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3739 3740 /* 3741 * Return EINVAL if we're handed a bogus module name. 3742 */ 3743 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3744 TRACE_0(TR_FAC_STREAMS_FR, 3745 TR_I_CANT_FIND, "couldn't I_FIND"); 3746 return (EINVAL); 3747 } 3748 3749 *rvalp = 0; 3750 3751 /* Look downstream to see if module is there. */ 3752 claimstr(stp->sd_wrq); 3753 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3754 if (q->q_flag&QREADR) { 3755 q = NULL; 3756 break; 3757 } 3758 if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0) 3759 break; 3760 } 3761 releasestr(stp->sd_wrq); 3762 3763 *rvalp = (q ? 1 : 0); 3764 return (error); 3765 } 3766 3767 case I_PUSH: 3768 case __I_PUSH_NOCTTY: 3769 /* 3770 * Push a module. 3771 * For the case __I_PUSH_NOCTTY push a module but 3772 * do not allocate controlling tty. See bugid 4025044 3773 */ 3774 3775 { 3776 char mname[FMNAMESZ + 1]; 3777 fmodsw_impl_t *fp; 3778 dev_t dummydev; 3779 3780 if (stp->sd_flag & STRHUP) 3781 return (ENXIO); 3782 3783 /* 3784 * Get module name and look up in fmodsw. 3785 */ 3786 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3787 mname, FMNAMESZ + 1, NULL); 3788 if (error) 3789 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3790 3791 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3792 NULL) 3793 return (EINVAL); 3794 3795 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3796 "I_PUSH:fp %p stp %p", fp, stp); 3797 3798 if (error = strstartplumb(stp, flag, cmd)) { 3799 fmodsw_rele(fp); 3800 return (error); 3801 } 3802 3803 /* 3804 * See if any more modules can be pushed on this stream. 3805 * Note that this check must be done after strstartplumb() 3806 * since otherwise multiple threads issuing I_PUSHes on 3807 * the same stream will be able to exceed nstrpush. 3808 */ 3809 mutex_enter(&stp->sd_lock); 3810 if (stp->sd_pushcnt >= nstrpush) { 3811 fmodsw_rele(fp); 3812 strendplumb(stp); 3813 mutex_exit(&stp->sd_lock); 3814 return (EINVAL); 3815 } 3816 mutex_exit(&stp->sd_lock); 3817 3818 /* 3819 * Push new module and call its open routine 3820 * via qattach(). Modules don't change device 3821 * numbers, so just ignore dummydev here. 3822 */ 3823 dummydev = vp->v_rdev; 3824 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3825 B_FALSE)) == 0) { 3826 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3827 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3828 /* 3829 * try to allocate it as a controlling terminal 3830 */ 3831 (void) strctty(stp); 3832 } 3833 } 3834 3835 mutex_enter(&stp->sd_lock); 3836 3837 /* 3838 * As a performance concern we are caching the values of 3839 * q_minpsz and q_maxpsz of the module below the stream 3840 * head in the stream head. 3841 */ 3842 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3843 rmin = stp->sd_wrq->q_next->q_minpsz; 3844 rmax = stp->sd_wrq->q_next->q_maxpsz; 3845 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3846 3847 /* Do this processing here as a performance concern */ 3848 if (strmsgsz != 0) { 3849 if (rmax == INFPSZ) 3850 rmax = strmsgsz; 3851 else { 3852 if (vp->v_type == VFIFO) 3853 rmax = MIN(PIPE_BUF, rmax); 3854 else rmax = MIN(strmsgsz, rmax); 3855 } 3856 } 3857 3858 mutex_enter(QLOCK(wrq)); 3859 stp->sd_qn_minpsz = rmin; 3860 stp->sd_qn_maxpsz = rmax; 3861 mutex_exit(QLOCK(wrq)); 3862 3863 strendplumb(stp); 3864 mutex_exit(&stp->sd_lock); 3865 return (error); 3866 } 3867 3868 case I_POP: 3869 { 3870 queue_t *q; 3871 3872 if (stp->sd_flag & STRHUP) 3873 return (ENXIO); 3874 if (!wrq->q_next) /* for broken pipes */ 3875 return (EINVAL); 3876 3877 if (error = strstartplumb(stp, flag, cmd)) 3878 return (error); 3879 3880 /* 3881 * If there is an anchor on this stream and popping 3882 * the current module would attempt to pop through the 3883 * anchor, then disallow the pop unless we have sufficient 3884 * privileges; take the cheapest (non-locking) check 3885 * first. 3886 */ 3887 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3888 (stp->sd_anchorzone != crgetzoneid(crp))) { 3889 mutex_enter(&stp->sd_lock); 3890 /* 3891 * Anchors only apply if there's at least one 3892 * module on the stream (sd_pushcnt > 0). 3893 */ 3894 if (stp->sd_pushcnt > 0 && 3895 stp->sd_pushcnt == stp->sd_anchor && 3896 stp->sd_vnode->v_type != VFIFO) { 3897 strendplumb(stp); 3898 mutex_exit(&stp->sd_lock); 3899 if (stp->sd_anchorzone != crgetzoneid(crp)) 3900 return (EINVAL); 3901 /* Audit and report error */ 3902 return (secpolicy_ip_config(crp, B_FALSE)); 3903 } 3904 mutex_exit(&stp->sd_lock); 3905 } 3906 3907 q = wrq->q_next; 3908 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3909 "I_POP:%p from %p", q, stp); 3910 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3911 error = EINVAL; 3912 } else { 3913 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3914 error = 0; 3915 } 3916 mutex_enter(&stp->sd_lock); 3917 3918 /* 3919 * As a performance concern we are caching the values of 3920 * q_minpsz and q_maxpsz of the module below the stream 3921 * head in the stream head. 3922 */ 3923 mutex_enter(QLOCK(wrq->q_next)); 3924 rmin = wrq->q_next->q_minpsz; 3925 rmax = wrq->q_next->q_maxpsz; 3926 mutex_exit(QLOCK(wrq->q_next)); 3927 3928 /* Do this processing here as a performance concern */ 3929 if (strmsgsz != 0) { 3930 if (rmax == INFPSZ) 3931 rmax = strmsgsz; 3932 else { 3933 if (vp->v_type == VFIFO) 3934 rmax = MIN(PIPE_BUF, rmax); 3935 else rmax = MIN(strmsgsz, rmax); 3936 } 3937 } 3938 3939 mutex_enter(QLOCK(wrq)); 3940 stp->sd_qn_minpsz = rmin; 3941 stp->sd_qn_maxpsz = rmax; 3942 mutex_exit(QLOCK(wrq)); 3943 3944 /* If we popped through the anchor, then reset the anchor. */ 3945 if (stp->sd_pushcnt < stp->sd_anchor) { 3946 stp->sd_anchor = 0; 3947 stp->sd_anchorzone = 0; 3948 } 3949 strendplumb(stp); 3950 mutex_exit(&stp->sd_lock); 3951 return (error); 3952 } 3953 3954 case _I_MUXID2FD: 3955 { 3956 /* 3957 * Create a fd for a I_PLINK'ed lower stream with a given 3958 * muxid. With the fd, application can send down ioctls, 3959 * like I_LIST, to the previously I_PLINK'ed stream. Note 3960 * that after getting the fd, the application has to do an 3961 * I_PUNLINK on the muxid before it can do any operation 3962 * on the lower stream. This is required by spec1170. 3963 * 3964 * The fd used to do this ioctl should point to the same 3965 * controlling device used to do the I_PLINK. If it uses 3966 * a different stream or an invalid muxid, I_MUXID2FD will 3967 * fail. The error code is set to EINVAL. 3968 * 3969 * The intended use of this interface is the following. 3970 * An application I_PLINK'ed a stream and exits. The fd 3971 * to the lower stream is gone. Another application 3972 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3973 */ 3974 int muxid = (int)arg; 3975 int fd; 3976 linkinfo_t *linkp; 3977 struct file *fp; 3978 netstack_t *ns; 3979 str_stack_t *ss; 3980 3981 /* 3982 * Do not allow the wildcard muxid. This ioctl is not 3983 * intended to find arbitrary link. 3984 */ 3985 if (muxid == 0) { 3986 return (EINVAL); 3987 } 3988 3989 ns = netstack_find_by_cred(crp); 3990 ASSERT(ns != NULL); 3991 ss = ns->netstack_str; 3992 ASSERT(ss != NULL); 3993 3994 mutex_enter(&muxifier); 3995 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 3996 if (linkp == NULL) { 3997 mutex_exit(&muxifier); 3998 netstack_rele(ss->ss_netstack); 3999 return (EINVAL); 4000 } 4001 4002 if ((fd = ufalloc(0)) == -1) { 4003 mutex_exit(&muxifier); 4004 netstack_rele(ss->ss_netstack); 4005 return (EMFILE); 4006 } 4007 fp = linkp->li_fpdown; 4008 mutex_enter(&fp->f_tlock); 4009 fp->f_count++; 4010 mutex_exit(&fp->f_tlock); 4011 mutex_exit(&muxifier); 4012 setf(fd, fp); 4013 *rvalp = fd; 4014 netstack_rele(ss->ss_netstack); 4015 return (0); 4016 } 4017 4018 case _I_INSERT: 4019 { 4020 /* 4021 * To insert a module to a given position in a stream. 4022 * In the first release, only allow privileged user 4023 * to use this ioctl. Furthermore, the insert is only allowed 4024 * below an anchor if the zoneid is the same as the zoneid 4025 * which created the anchor. 4026 * 4027 * Note that we do not plan to support this ioctl 4028 * on pipes in the first release. We want to learn more 4029 * about the implications of these ioctls before extending 4030 * their support. And we do not think these features are 4031 * valuable for pipes. 4032 * 4033 * Neither do we support O/C hot stream. Note that only 4034 * the upper streams of TCP/IP stack are O/C hot streams. 4035 * The lower IP stream is not. 4036 * When there is a O/C cold barrier, we only allow inserts 4037 * above the barrier. 4038 */ 4039 STRUCT_DECL(strmodconf, strmodinsert); 4040 char mod_name[FMNAMESZ + 1]; 4041 fmodsw_impl_t *fp; 4042 dev_t dummydev; 4043 queue_t *tmp_wrq; 4044 int pos; 4045 boolean_t is_insert; 4046 4047 STRUCT_INIT(strmodinsert, flag); 4048 if (stp->sd_flag & STRHUP) 4049 return (ENXIO); 4050 if (STRMATED(stp)) 4051 return (EINVAL); 4052 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4053 return (error); 4054 if (stp->sd_anchor != 0 && 4055 stp->sd_anchorzone != crgetzoneid(crp)) 4056 return (EINVAL); 4057 4058 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4059 STRUCT_SIZE(strmodinsert), copyflag); 4060 if (error) 4061 return (error); 4062 4063 /* 4064 * Get module name and look up in fmodsw. 4065 */ 4066 error = (copyflag & U_TO_K ? copyinstr : 4067 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4068 mod_name, FMNAMESZ + 1, NULL); 4069 if (error) 4070 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4071 4072 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4073 NULL) 4074 return (EINVAL); 4075 4076 if (error = strstartplumb(stp, flag, cmd)) { 4077 fmodsw_rele(fp); 4078 return (error); 4079 } 4080 4081 /* 4082 * Is this _I_INSERT just like an I_PUSH? We need to know 4083 * this because we do some optimizations if this is a 4084 * module being pushed. 4085 */ 4086 pos = STRUCT_FGET(strmodinsert, pos); 4087 is_insert = (pos != 0); 4088 4089 /* 4090 * Make sure pos is valid. Even though it is not an I_PUSH, 4091 * we impose the same limit on the number of modules in a 4092 * stream. 4093 */ 4094 mutex_enter(&stp->sd_lock); 4095 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4096 pos > stp->sd_pushcnt) { 4097 fmodsw_rele(fp); 4098 strendplumb(stp); 4099 mutex_exit(&stp->sd_lock); 4100 return (EINVAL); 4101 } 4102 if (stp->sd_anchor != 0) { 4103 /* 4104 * Is this insert below the anchor? 4105 * Pushcnt hasn't been increased yet hence 4106 * we test for greater than here, and greater or 4107 * equal after qattach. 4108 */ 4109 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4110 stp->sd_anchorzone != crgetzoneid(crp)) { 4111 fmodsw_rele(fp); 4112 strendplumb(stp); 4113 mutex_exit(&stp->sd_lock); 4114 return (EPERM); 4115 } 4116 } 4117 4118 mutex_exit(&stp->sd_lock); 4119 4120 /* 4121 * First find the correct position this module to 4122 * be inserted. We don't need to call claimstr() 4123 * as the stream should not be changing at this point. 4124 * 4125 * Insert new module and call its open routine 4126 * via qattach(). Modules don't change device 4127 * numbers, so just ignore dummydev here. 4128 */ 4129 for (tmp_wrq = stp->sd_wrq; pos > 0; 4130 tmp_wrq = tmp_wrq->q_next, pos--) { 4131 ASSERT(SAMESTR(tmp_wrq)); 4132 } 4133 dummydev = vp->v_rdev; 4134 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4135 fp, is_insert)) != 0) { 4136 mutex_enter(&stp->sd_lock); 4137 strendplumb(stp); 4138 mutex_exit(&stp->sd_lock); 4139 return (error); 4140 } 4141 4142 mutex_enter(&stp->sd_lock); 4143 4144 /* 4145 * As a performance concern we are caching the values of 4146 * q_minpsz and q_maxpsz of the module below the stream 4147 * head in the stream head. 4148 */ 4149 if (!is_insert) { 4150 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4151 rmin = stp->sd_wrq->q_next->q_minpsz; 4152 rmax = stp->sd_wrq->q_next->q_maxpsz; 4153 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4154 4155 /* Do this processing here as a performance concern */ 4156 if (strmsgsz != 0) { 4157 if (rmax == INFPSZ) { 4158 rmax = strmsgsz; 4159 } else { 4160 rmax = MIN(strmsgsz, rmax); 4161 } 4162 } 4163 4164 mutex_enter(QLOCK(wrq)); 4165 stp->sd_qn_minpsz = rmin; 4166 stp->sd_qn_maxpsz = rmax; 4167 mutex_exit(QLOCK(wrq)); 4168 } 4169 4170 /* 4171 * Need to update the anchor value if this module is 4172 * inserted below the anchor point. 4173 */ 4174 if (stp->sd_anchor != 0) { 4175 pos = STRUCT_FGET(strmodinsert, pos); 4176 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4177 stp->sd_anchor++; 4178 } 4179 4180 strendplumb(stp); 4181 mutex_exit(&stp->sd_lock); 4182 return (0); 4183 } 4184 4185 case _I_REMOVE: 4186 { 4187 /* 4188 * To remove a module with a given name in a stream. The 4189 * caller of this ioctl needs to provide both the name and 4190 * the position of the module to be removed. This eliminates 4191 * the ambiguity of removal if a module is inserted/pushed 4192 * multiple times in a stream. In the first release, only 4193 * allow privileged user to use this ioctl. 4194 * Furthermore, the remove is only allowed 4195 * below an anchor if the zoneid is the same as the zoneid 4196 * which created the anchor. 4197 * 4198 * Note that we do not plan to support this ioctl 4199 * on pipes in the first release. We want to learn more 4200 * about the implications of these ioctls before extending 4201 * their support. And we do not think these features are 4202 * valuable for pipes. 4203 * 4204 * Neither do we support O/C hot stream. Note that only 4205 * the upper streams of TCP/IP stack are O/C hot streams. 4206 * The lower IP stream is not. 4207 * When there is a O/C cold barrier we do not allow removal 4208 * below the barrier. 4209 * 4210 * Also note that _I_REMOVE cannot be used to remove a 4211 * driver or the stream head. 4212 */ 4213 STRUCT_DECL(strmodconf, strmodremove); 4214 queue_t *q; 4215 int pos; 4216 char mod_name[FMNAMESZ + 1]; 4217 boolean_t is_remove; 4218 4219 STRUCT_INIT(strmodremove, flag); 4220 if (stp->sd_flag & STRHUP) 4221 return (ENXIO); 4222 if (STRMATED(stp)) 4223 return (EINVAL); 4224 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4225 return (error); 4226 if (stp->sd_anchor != 0 && 4227 stp->sd_anchorzone != crgetzoneid(crp)) 4228 return (EINVAL); 4229 4230 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4231 STRUCT_SIZE(strmodremove), copyflag); 4232 if (error) 4233 return (error); 4234 4235 error = (copyflag & U_TO_K ? copyinstr : 4236 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4237 mod_name, FMNAMESZ + 1, NULL); 4238 if (error) 4239 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4240 4241 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4242 return (error); 4243 4244 /* 4245 * Match the name of given module to the name of module at 4246 * the given position. 4247 */ 4248 pos = STRUCT_FGET(strmodremove, pos); 4249 4250 is_remove = (pos != 0); 4251 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4252 q = q->q_next, pos--) 4253 ; 4254 if (pos > 0 || ! SAMESTR(q) || 4255 strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name, 4256 strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) { 4257 mutex_enter(&stp->sd_lock); 4258 strendplumb(stp); 4259 mutex_exit(&stp->sd_lock); 4260 return (EINVAL); 4261 } 4262 4263 /* 4264 * If the position is at or below an anchor, then the zoneid 4265 * must match the zoneid that created the anchor. 4266 */ 4267 if (stp->sd_anchor != 0) { 4268 pos = STRUCT_FGET(strmodremove, pos); 4269 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4270 stp->sd_anchorzone != crgetzoneid(crp)) { 4271 mutex_enter(&stp->sd_lock); 4272 strendplumb(stp); 4273 mutex_exit(&stp->sd_lock); 4274 return (EPERM); 4275 } 4276 } 4277 4278 4279 ASSERT(!(q->q_flag & QREADR)); 4280 qdetach(_RD(q), 1, flag, crp, is_remove); 4281 4282 mutex_enter(&stp->sd_lock); 4283 4284 /* 4285 * As a performance concern we are caching the values of 4286 * q_minpsz and q_maxpsz of the module below the stream 4287 * head in the stream head. 4288 */ 4289 if (!is_remove) { 4290 mutex_enter(QLOCK(wrq->q_next)); 4291 rmin = wrq->q_next->q_minpsz; 4292 rmax = wrq->q_next->q_maxpsz; 4293 mutex_exit(QLOCK(wrq->q_next)); 4294 4295 /* Do this processing here as a performance concern */ 4296 if (strmsgsz != 0) { 4297 if (rmax == INFPSZ) 4298 rmax = strmsgsz; 4299 else { 4300 if (vp->v_type == VFIFO) 4301 rmax = MIN(PIPE_BUF, rmax); 4302 else rmax = MIN(strmsgsz, rmax); 4303 } 4304 } 4305 4306 mutex_enter(QLOCK(wrq)); 4307 stp->sd_qn_minpsz = rmin; 4308 stp->sd_qn_maxpsz = rmax; 4309 mutex_exit(QLOCK(wrq)); 4310 } 4311 4312 /* 4313 * Need to update the anchor value if this module is removed 4314 * at or below the anchor point. If the removed module is at 4315 * the anchor point, remove the anchor for this stream if 4316 * there is no module above the anchor point. Otherwise, if 4317 * the removed module is below the anchor point, decrement the 4318 * anchor point by 1. 4319 */ 4320 if (stp->sd_anchor != 0) { 4321 pos = STRUCT_FGET(strmodremove, pos); 4322 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4323 stp->sd_anchor = 0; 4324 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4325 stp->sd_anchor--; 4326 } 4327 4328 strendplumb(stp); 4329 mutex_exit(&stp->sd_lock); 4330 return (0); 4331 } 4332 4333 case I_ANCHOR: 4334 /* 4335 * Set the anchor position on the stream to reside at 4336 * the top module (in other words, the top module 4337 * cannot be popped). Anchors with a FIFO make no 4338 * obvious sense, so they're not allowed. 4339 */ 4340 mutex_enter(&stp->sd_lock); 4341 4342 if (stp->sd_vnode->v_type == VFIFO) { 4343 mutex_exit(&stp->sd_lock); 4344 return (EINVAL); 4345 } 4346 /* Only allow the same zoneid to update the anchor */ 4347 if (stp->sd_anchor != 0 && 4348 stp->sd_anchorzone != crgetzoneid(crp)) { 4349 mutex_exit(&stp->sd_lock); 4350 return (EINVAL); 4351 } 4352 stp->sd_anchor = stp->sd_pushcnt; 4353 stp->sd_anchorzone = crgetzoneid(crp); 4354 mutex_exit(&stp->sd_lock); 4355 return (0); 4356 4357 case I_LOOK: 4358 /* 4359 * Get name of first module downstream. 4360 * If no module, return an error. 4361 */ 4362 { 4363 claimstr(wrq); 4364 if (_SAMESTR(wrq) && wrq->q_next->q_next) { 4365 char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname; 4366 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4367 copyflag); 4368 releasestr(wrq); 4369 return (error); 4370 } 4371 releasestr(wrq); 4372 return (EINVAL); 4373 } 4374 4375 case I_LINK: 4376 case I_PLINK: 4377 /* 4378 * Link a multiplexor. 4379 */ 4380 error = mlink(vp, cmd, (int)arg, crp, rvalp, 0); 4381 return (error); 4382 4383 case _I_PLINK_LH: 4384 /* 4385 * Link a multiplexor: Call must originate from kernel. 4386 */ 4387 if (kioctl) 4388 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4389 4390 return (EINVAL); 4391 case I_UNLINK: 4392 case I_PUNLINK: 4393 /* 4394 * Unlink a multiplexor. 4395 * If arg is -1, unlink all links for which this is the 4396 * controlling stream. Otherwise, arg is an index number 4397 * for a link to be removed. 4398 */ 4399 { 4400 struct linkinfo *linkp; 4401 int native_arg = (int)arg; 4402 int type; 4403 netstack_t *ns; 4404 str_stack_t *ss; 4405 4406 TRACE_1(TR_FAC_STREAMS_FR, 4407 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4408 if (vp->v_type == VFIFO) { 4409 return (EINVAL); 4410 } 4411 if (cmd == I_UNLINK) 4412 type = LINKNORMAL; 4413 else /* I_PUNLINK */ 4414 type = LINKPERSIST; 4415 if (native_arg == 0) { 4416 return (EINVAL); 4417 } 4418 ns = netstack_find_by_cred(crp); 4419 ASSERT(ns != NULL); 4420 ss = ns->netstack_str; 4421 ASSERT(ss != NULL); 4422 4423 if (native_arg == MUXID_ALL) 4424 error = munlinkall(stp, type, crp, rvalp, ss); 4425 else { 4426 mutex_enter(&muxifier); 4427 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4428 /* invalid user supplied index number */ 4429 mutex_exit(&muxifier); 4430 netstack_rele(ss->ss_netstack); 4431 return (EINVAL); 4432 } 4433 /* munlink drops the muxifier lock */ 4434 error = munlink(stp, linkp, type, crp, rvalp, ss); 4435 } 4436 netstack_rele(ss->ss_netstack); 4437 return (error); 4438 } 4439 4440 case I_FLUSH: 4441 /* 4442 * send a flush message downstream 4443 * flush message can indicate 4444 * FLUSHR - flush read queue 4445 * FLUSHW - flush write queue 4446 * FLUSHRW - flush read/write queue 4447 */ 4448 if (stp->sd_flag & STRHUP) 4449 return (ENXIO); 4450 if (arg & ~FLUSHRW) 4451 return (EINVAL); 4452 4453 for (;;) { 4454 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4455 break; 4456 } 4457 if (error = strwaitbuf(1, BPRI_HI)) { 4458 return (error); 4459 } 4460 } 4461 4462 /* 4463 * Send down an unsupported ioctl and wait for the nack 4464 * in order to allow the M_FLUSH to propagate back 4465 * up to the stream head. 4466 * Replaces if (qready()) runqueues(); 4467 */ 4468 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4469 strioc.ic_timout = 0; 4470 strioc.ic_len = 0; 4471 strioc.ic_dp = NULL; 4472 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4473 *rvalp = 0; 4474 return (0); 4475 4476 case I_FLUSHBAND: 4477 { 4478 struct bandinfo binfo; 4479 4480 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4481 copyflag); 4482 if (error) 4483 return (error); 4484 if (stp->sd_flag & STRHUP) 4485 return (ENXIO); 4486 if (binfo.bi_flag & ~FLUSHRW) 4487 return (EINVAL); 4488 while (!(mp = allocb(2, BPRI_HI))) { 4489 if (error = strwaitbuf(2, BPRI_HI)) 4490 return (error); 4491 } 4492 mp->b_datap->db_type = M_FLUSH; 4493 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4494 *mp->b_wptr++ = binfo.bi_pri; 4495 putnext(stp->sd_wrq, mp); 4496 /* 4497 * Send down an unsupported ioctl and wait for the nack 4498 * in order to allow the M_FLUSH to propagate back 4499 * up to the stream head. 4500 * Replaces if (qready()) runqueues(); 4501 */ 4502 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4503 strioc.ic_timout = 0; 4504 strioc.ic_len = 0; 4505 strioc.ic_dp = NULL; 4506 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4507 *rvalp = 0; 4508 return (0); 4509 } 4510 4511 case I_SRDOPT: 4512 /* 4513 * Set read options 4514 * 4515 * RNORM - default stream mode 4516 * RMSGN - message no discard 4517 * RMSGD - message discard 4518 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4519 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4520 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4521 */ 4522 if (arg & ~(RMODEMASK | RPROTMASK)) 4523 return (EINVAL); 4524 4525 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4526 return (EINVAL); 4527 4528 mutex_enter(&stp->sd_lock); 4529 switch (arg & RMODEMASK) { 4530 case RNORM: 4531 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4532 break; 4533 case RMSGD: 4534 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4535 RD_MSGDIS; 4536 break; 4537 case RMSGN: 4538 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4539 RD_MSGNODIS; 4540 break; 4541 } 4542 4543 switch (arg & RPROTMASK) { 4544 case RPROTNORM: 4545 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4546 break; 4547 4548 case RPROTDAT: 4549 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4550 RD_PROTDAT); 4551 break; 4552 4553 case RPROTDIS: 4554 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4555 RD_PROTDIS); 4556 break; 4557 } 4558 mutex_exit(&stp->sd_lock); 4559 return (0); 4560 4561 case I_GRDOPT: 4562 /* 4563 * Get read option and return the value 4564 * to spot pointed to by arg 4565 */ 4566 { 4567 int rdopt; 4568 4569 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4570 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4571 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4572 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4573 4574 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4575 copyflag)); 4576 } 4577 4578 case I_SERROPT: 4579 /* 4580 * Set error options 4581 * 4582 * RERRNORM - persistent read errors 4583 * RERRNONPERSIST - non-persistent read errors 4584 * WERRNORM - persistent write errors 4585 * WERRNONPERSIST - non-persistent write errors 4586 */ 4587 if (arg & ~(RERRMASK | WERRMASK)) 4588 return (EINVAL); 4589 4590 mutex_enter(&stp->sd_lock); 4591 switch (arg & RERRMASK) { 4592 case RERRNORM: 4593 stp->sd_flag &= ~STRDERRNONPERSIST; 4594 break; 4595 case RERRNONPERSIST: 4596 stp->sd_flag |= STRDERRNONPERSIST; 4597 break; 4598 } 4599 switch (arg & WERRMASK) { 4600 case WERRNORM: 4601 stp->sd_flag &= ~STWRERRNONPERSIST; 4602 break; 4603 case WERRNONPERSIST: 4604 stp->sd_flag |= STWRERRNONPERSIST; 4605 break; 4606 } 4607 mutex_exit(&stp->sd_lock); 4608 return (0); 4609 4610 case I_GERROPT: 4611 /* 4612 * Get error option and return the value 4613 * to spot pointed to by arg 4614 */ 4615 { 4616 int erropt = 0; 4617 4618 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4619 RERRNORM; 4620 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4621 WERRNORM; 4622 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4623 copyflag)); 4624 } 4625 4626 case I_SETSIG: 4627 /* 4628 * Register the calling proc to receive the SIGPOLL 4629 * signal based on the events given in arg. If 4630 * arg is zero, remove the proc from register list. 4631 */ 4632 { 4633 strsig_t *ssp, *pssp; 4634 struct pid *pidp; 4635 4636 pssp = NULL; 4637 pidp = curproc->p_pidp; 4638 /* 4639 * Hold sd_lock to prevent traversal of sd_siglist while 4640 * it is modified. 4641 */ 4642 mutex_enter(&stp->sd_lock); 4643 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4644 pssp = ssp, ssp = ssp->ss_next) 4645 ; 4646 4647 if (arg) { 4648 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4649 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4650 mutex_exit(&stp->sd_lock); 4651 return (EINVAL); 4652 } 4653 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4654 mutex_exit(&stp->sd_lock); 4655 return (EINVAL); 4656 } 4657 4658 /* 4659 * If proc not already registered, add it 4660 * to list. 4661 */ 4662 if (!ssp) { 4663 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4664 ssp->ss_pidp = pidp; 4665 ssp->ss_pid = pidp->pid_id; 4666 ssp->ss_next = NULL; 4667 if (pssp) 4668 pssp->ss_next = ssp; 4669 else 4670 stp->sd_siglist = ssp; 4671 mutex_enter(&pidlock); 4672 PID_HOLD(pidp); 4673 mutex_exit(&pidlock); 4674 } 4675 4676 /* 4677 * Set events. 4678 */ 4679 ssp->ss_events = (int)arg; 4680 } else { 4681 /* 4682 * Remove proc from register list. 4683 */ 4684 if (ssp) { 4685 mutex_enter(&pidlock); 4686 PID_RELE(pidp); 4687 mutex_exit(&pidlock); 4688 if (pssp) 4689 pssp->ss_next = ssp->ss_next; 4690 else 4691 stp->sd_siglist = ssp->ss_next; 4692 kmem_free(ssp, sizeof (strsig_t)); 4693 } else { 4694 mutex_exit(&stp->sd_lock); 4695 return (EINVAL); 4696 } 4697 } 4698 4699 /* 4700 * Recalculate OR of sig events. 4701 */ 4702 stp->sd_sigflags = 0; 4703 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4704 stp->sd_sigflags |= ssp->ss_events; 4705 mutex_exit(&stp->sd_lock); 4706 return (0); 4707 } 4708 4709 case I_GETSIG: 4710 /* 4711 * Return (in arg) the current registration of events 4712 * for which the calling proc is to be signaled. 4713 */ 4714 { 4715 struct strsig *ssp; 4716 struct pid *pidp; 4717 4718 pidp = curproc->p_pidp; 4719 mutex_enter(&stp->sd_lock); 4720 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4721 if (ssp->ss_pidp == pidp) { 4722 error = strcopyout(&ssp->ss_events, (void *)arg, 4723 sizeof (int), copyflag); 4724 mutex_exit(&stp->sd_lock); 4725 return (error); 4726 } 4727 mutex_exit(&stp->sd_lock); 4728 return (EINVAL); 4729 } 4730 4731 case I_ESETSIG: 4732 /* 4733 * Register the ss_pid to receive the SIGPOLL 4734 * signal based on the events is ss_events arg. If 4735 * ss_events is zero, remove the proc from register list. 4736 */ 4737 { 4738 struct strsig *ssp, *pssp; 4739 struct proc *proc; 4740 struct pid *pidp; 4741 pid_t pid; 4742 struct strsigset ss; 4743 4744 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4745 if (error) 4746 return (error); 4747 4748 pid = ss.ss_pid; 4749 4750 if (ss.ss_events != 0) { 4751 /* 4752 * Permissions check by sending signal 0. 4753 * Note that when kill fails it does a set_errno 4754 * causing the system call to fail. 4755 */ 4756 error = kill(pid, 0); 4757 if (error) { 4758 return (error); 4759 } 4760 } 4761 mutex_enter(&pidlock); 4762 if (pid == 0) 4763 proc = curproc; 4764 else if (pid < 0) 4765 proc = pgfind(-pid); 4766 else 4767 proc = prfind(pid); 4768 if (proc == NULL) { 4769 mutex_exit(&pidlock); 4770 return (ESRCH); 4771 } 4772 if (pid < 0) 4773 pidp = proc->p_pgidp; 4774 else 4775 pidp = proc->p_pidp; 4776 ASSERT(pidp); 4777 /* 4778 * Get a hold on the pid structure while referencing it. 4779 * There is a separate PID_HOLD should it be inserted 4780 * in the list below. 4781 */ 4782 PID_HOLD(pidp); 4783 mutex_exit(&pidlock); 4784 4785 pssp = NULL; 4786 /* 4787 * Hold sd_lock to prevent traversal of sd_siglist while 4788 * it is modified. 4789 */ 4790 mutex_enter(&stp->sd_lock); 4791 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4792 pssp = ssp, ssp = ssp->ss_next) 4793 ; 4794 4795 if (ss.ss_events) { 4796 if (ss.ss_events & 4797 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4798 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4799 mutex_exit(&stp->sd_lock); 4800 mutex_enter(&pidlock); 4801 PID_RELE(pidp); 4802 mutex_exit(&pidlock); 4803 return (EINVAL); 4804 } 4805 if ((ss.ss_events & S_BANDURG) && 4806 !(ss.ss_events & S_RDBAND)) { 4807 mutex_exit(&stp->sd_lock); 4808 mutex_enter(&pidlock); 4809 PID_RELE(pidp); 4810 mutex_exit(&pidlock); 4811 return (EINVAL); 4812 } 4813 4814 /* 4815 * If proc not already registered, add it 4816 * to list. 4817 */ 4818 if (!ssp) { 4819 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4820 ssp->ss_pidp = pidp; 4821 ssp->ss_pid = pid; 4822 ssp->ss_next = NULL; 4823 if (pssp) 4824 pssp->ss_next = ssp; 4825 else 4826 stp->sd_siglist = ssp; 4827 mutex_enter(&pidlock); 4828 PID_HOLD(pidp); 4829 mutex_exit(&pidlock); 4830 } 4831 4832 /* 4833 * Set events. 4834 */ 4835 ssp->ss_events = ss.ss_events; 4836 } else { 4837 /* 4838 * Remove proc from register list. 4839 */ 4840 if (ssp) { 4841 mutex_enter(&pidlock); 4842 PID_RELE(pidp); 4843 mutex_exit(&pidlock); 4844 if (pssp) 4845 pssp->ss_next = ssp->ss_next; 4846 else 4847 stp->sd_siglist = ssp->ss_next; 4848 kmem_free(ssp, sizeof (strsig_t)); 4849 } else { 4850 mutex_exit(&stp->sd_lock); 4851 mutex_enter(&pidlock); 4852 PID_RELE(pidp); 4853 mutex_exit(&pidlock); 4854 return (EINVAL); 4855 } 4856 } 4857 4858 /* 4859 * Recalculate OR of sig events. 4860 */ 4861 stp->sd_sigflags = 0; 4862 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4863 stp->sd_sigflags |= ssp->ss_events; 4864 mutex_exit(&stp->sd_lock); 4865 mutex_enter(&pidlock); 4866 PID_RELE(pidp); 4867 mutex_exit(&pidlock); 4868 return (0); 4869 } 4870 4871 case I_EGETSIG: 4872 /* 4873 * Return (in arg) the current registration of events 4874 * for which the calling proc is to be signaled. 4875 */ 4876 { 4877 struct strsig *ssp; 4878 struct proc *proc; 4879 pid_t pid; 4880 struct pid *pidp; 4881 struct strsigset ss; 4882 4883 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4884 if (error) 4885 return (error); 4886 4887 pid = ss.ss_pid; 4888 mutex_enter(&pidlock); 4889 if (pid == 0) 4890 proc = curproc; 4891 else if (pid < 0) 4892 proc = pgfind(-pid); 4893 else 4894 proc = prfind(pid); 4895 if (proc == NULL) { 4896 mutex_exit(&pidlock); 4897 return (ESRCH); 4898 } 4899 if (pid < 0) 4900 pidp = proc->p_pgidp; 4901 else 4902 pidp = proc->p_pidp; 4903 4904 /* Prevent the pidp from being reassigned */ 4905 PID_HOLD(pidp); 4906 mutex_exit(&pidlock); 4907 4908 mutex_enter(&stp->sd_lock); 4909 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4910 if (ssp->ss_pid == pid) { 4911 ss.ss_pid = ssp->ss_pid; 4912 ss.ss_events = ssp->ss_events; 4913 error = strcopyout(&ss, (void *)arg, 4914 sizeof (struct strsigset), copyflag); 4915 mutex_exit(&stp->sd_lock); 4916 mutex_enter(&pidlock); 4917 PID_RELE(pidp); 4918 mutex_exit(&pidlock); 4919 return (error); 4920 } 4921 mutex_exit(&stp->sd_lock); 4922 mutex_enter(&pidlock); 4923 PID_RELE(pidp); 4924 mutex_exit(&pidlock); 4925 return (EINVAL); 4926 } 4927 4928 case I_PEEK: 4929 { 4930 STRUCT_DECL(strpeek, strpeek); 4931 size_t n; 4932 mblk_t *fmp, *tmp_mp = NULL; 4933 4934 STRUCT_INIT(strpeek, flag); 4935 4936 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4937 STRUCT_SIZE(strpeek), copyflag); 4938 if (error) 4939 return (error); 4940 4941 mutex_enter(QLOCK(rdq)); 4942 /* 4943 * Skip the invalid messages 4944 */ 4945 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4946 if (mp->b_datap->db_type != M_SIG) 4947 break; 4948 4949 /* 4950 * If user has requested to peek at a high priority message 4951 * and first message is not, return 0 4952 */ 4953 if (mp != NULL) { 4954 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4955 queclass(mp) == QNORM) { 4956 *rvalp = 0; 4957 mutex_exit(QLOCK(rdq)); 4958 return (0); 4959 } 4960 } else if (stp->sd_struiordq == NULL || 4961 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4962 /* 4963 * No mblks to look at at the streamhead and 4964 * 1). This isn't a synch stream or 4965 * 2). This is a synch stream but caller wants high 4966 * priority messages which is not supported by 4967 * the synch stream. (it only supports QNORM) 4968 */ 4969 *rvalp = 0; 4970 mutex_exit(QLOCK(rdq)); 4971 return (0); 4972 } 4973 4974 fmp = mp; 4975 4976 if (mp && mp->b_datap->db_type == M_PASSFP) { 4977 mutex_exit(QLOCK(rdq)); 4978 return (EBADMSG); 4979 } 4980 4981 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4982 mp->b_datap->db_type == M_PROTO || 4983 mp->b_datap->db_type == M_DATA); 4984 4985 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4986 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4987 } else { 4988 STRUCT_FSET(strpeek, flags, 0); 4989 } 4990 4991 4992 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 4993 mutex_exit(QLOCK(rdq)); 4994 return (ENOSR); 4995 } 4996 mutex_exit(QLOCK(rdq)); 4997 4998 /* 4999 * set mp = tmp_mp, so that I_PEEK processing can continue. 5000 * tmp_mp is used to free the dup'd message. 5001 */ 5002 mp = tmp_mp; 5003 5004 uio.uio_fmode = 0; 5005 uio.uio_extflg = UIO_COPY_CACHED; 5006 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5007 UIO_SYSSPACE; 5008 uio.uio_limit = 0; 5009 /* 5010 * First process PROTO blocks, if any. 5011 * If user doesn't want to get ctl info by setting maxlen <= 0, 5012 * then set len to -1/0 and skip control blocks part. 5013 */ 5014 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 5015 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5016 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 5017 STRUCT_FSET(strpeek, ctlbuf.len, 0); 5018 else { 5019 int ctl_part = 0; 5020 5021 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 5022 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 5023 uio.uio_iov = &iov; 5024 uio.uio_resid = iov.iov_len; 5025 uio.uio_loffset = 0; 5026 uio.uio_iovcnt = 1; 5027 while (mp && mp->b_datap->db_type != M_DATA && 5028 uio.uio_resid >= 0) { 5029 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 5030 mp->b_datap->db_type == M_PROTO : 5031 mp->b_datap->db_type == M_PCPROTO); 5032 5033 if ((n = MIN(uio.uio_resid, 5034 mp->b_wptr - mp->b_rptr)) != 0 && 5035 (error = uiomove((char *)mp->b_rptr, n, 5036 UIO_READ, &uio)) != 0) { 5037 freemsg(tmp_mp); 5038 return (error); 5039 } 5040 ctl_part = 1; 5041 mp = mp->b_cont; 5042 } 5043 /* No ctl message */ 5044 if (ctl_part == 0) 5045 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5046 else 5047 STRUCT_FSET(strpeek, ctlbuf.len, 5048 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 5049 uio.uio_resid); 5050 } 5051 5052 /* 5053 * Now process DATA blocks, if any. 5054 * If user doesn't want to get data info by setting maxlen <= 0, 5055 * then set len to -1/0 and skip data blocks part. 5056 */ 5057 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5058 STRUCT_FSET(strpeek, databuf.len, -1); 5059 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5060 STRUCT_FSET(strpeek, databuf.len, 0); 5061 else { 5062 int data_part = 0; 5063 5064 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5065 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5066 uio.uio_iov = &iov; 5067 uio.uio_resid = iov.iov_len; 5068 uio.uio_loffset = 0; 5069 uio.uio_iovcnt = 1; 5070 while (mp && uio.uio_resid) { 5071 if (mp->b_datap->db_type == M_DATA) { 5072 if ((n = MIN(uio.uio_resid, 5073 mp->b_wptr - mp->b_rptr)) != 0 && 5074 (error = uiomove((char *)mp->b_rptr, 5075 n, UIO_READ, &uio)) != 0) { 5076 freemsg(tmp_mp); 5077 return (error); 5078 } 5079 data_part = 1; 5080 } 5081 ASSERT(data_part == 0 || 5082 mp->b_datap->db_type == M_DATA); 5083 mp = mp->b_cont; 5084 } 5085 /* No data message */ 5086 if (data_part == 0) 5087 STRUCT_FSET(strpeek, databuf.len, -1); 5088 else 5089 STRUCT_FSET(strpeek, databuf.len, 5090 STRUCT_FGET(strpeek, databuf.maxlen) - 5091 uio.uio_resid); 5092 } 5093 freemsg(tmp_mp); 5094 5095 /* 5096 * It is a synch stream and user wants to get 5097 * data (maxlen > 0). 5098 * uio setup is done by the codes that process DATA 5099 * blocks above. 5100 */ 5101 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5102 infod_t infod; 5103 5104 infod.d_cmd = INFOD_COPYOUT; 5105 infod.d_res = 0; 5106 infod.d_uiop = &uio; 5107 error = infonext(rdq, &infod); 5108 if (error == EINVAL || error == EBUSY) 5109 error = 0; 5110 if (error) 5111 return (error); 5112 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5113 databuf.maxlen) - uio.uio_resid); 5114 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5115 /* 5116 * No data found by the infonext(). 5117 */ 5118 STRUCT_FSET(strpeek, databuf.len, -1); 5119 } 5120 } 5121 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5122 STRUCT_SIZE(strpeek), copyflag); 5123 if (error) { 5124 return (error); 5125 } 5126 /* 5127 * If there is no message retrieved, set return code to 0 5128 * otherwise, set it to 1. 5129 */ 5130 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5131 STRUCT_FGET(strpeek, databuf.len) == -1) 5132 *rvalp = 0; 5133 else 5134 *rvalp = 1; 5135 return (0); 5136 } 5137 5138 case I_FDINSERT: 5139 { 5140 STRUCT_DECL(strfdinsert, strfdinsert); 5141 struct file *resftp; 5142 struct stdata *resstp; 5143 t_uscalar_t ival; 5144 ssize_t msgsize; 5145 struct strbuf mctl; 5146 5147 STRUCT_INIT(strfdinsert, flag); 5148 if (stp->sd_flag & STRHUP) 5149 return (ENXIO); 5150 /* 5151 * STRDERR, STWRERR and STPLEX tested above. 5152 */ 5153 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5154 STRUCT_SIZE(strfdinsert), copyflag); 5155 if (error) 5156 return (error); 5157 5158 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5159 (STRUCT_FGET(strfdinsert, offset) % 5160 sizeof (t_uscalar_t)) != 0) 5161 return (EINVAL); 5162 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5163 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5164 releasef(STRUCT_FGET(strfdinsert, fildes)); 5165 return (EINVAL); 5166 } 5167 } else 5168 return (EINVAL); 5169 5170 mutex_enter(&resstp->sd_lock); 5171 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5172 error = strgeterr(resstp, 5173 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5174 if (error != 0) { 5175 mutex_exit(&resstp->sd_lock); 5176 releasef(STRUCT_FGET(strfdinsert, fildes)); 5177 return (error); 5178 } 5179 } 5180 mutex_exit(&resstp->sd_lock); 5181 5182 #ifdef _ILP32 5183 { 5184 queue_t *q; 5185 queue_t *mate = NULL; 5186 5187 /* get read queue of stream terminus */ 5188 claimstr(resstp->sd_wrq); 5189 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5190 q = q->q_next) 5191 if (!STRMATED(resstp) && STREAM(q) != resstp && 5192 mate == NULL) { 5193 ASSERT(q->q_qinfo->qi_srvp); 5194 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5195 claimstr(q); 5196 mate = q; 5197 } 5198 q = _RD(q); 5199 if (mate) 5200 releasestr(mate); 5201 releasestr(resstp->sd_wrq); 5202 ival = (t_uscalar_t)q; 5203 } 5204 #else 5205 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5206 #endif /* _ILP32 */ 5207 5208 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5209 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5210 releasef(STRUCT_FGET(strfdinsert, fildes)); 5211 return (EINVAL); 5212 } 5213 5214 /* 5215 * Check for legal flag value. 5216 */ 5217 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5218 releasef(STRUCT_FGET(strfdinsert, fildes)); 5219 return (EINVAL); 5220 } 5221 5222 /* get these values from those cached in the stream head */ 5223 mutex_enter(QLOCK(stp->sd_wrq)); 5224 rmin = stp->sd_qn_minpsz; 5225 rmax = stp->sd_qn_maxpsz; 5226 mutex_exit(QLOCK(stp->sd_wrq)); 5227 5228 /* 5229 * Make sure ctl and data sizes together fall within 5230 * the limits of the max and min receive packet sizes 5231 * and do not exceed system limit. A negative data 5232 * length means that no data part is to be sent. 5233 */ 5234 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5235 if (rmax == 0) { 5236 releasef(STRUCT_FGET(strfdinsert, fildes)); 5237 return (ERANGE); 5238 } 5239 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5240 msgsize = 0; 5241 if ((msgsize < rmin) || 5242 ((msgsize > rmax) && (rmax != INFPSZ)) || 5243 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5244 releasef(STRUCT_FGET(strfdinsert, fildes)); 5245 return (ERANGE); 5246 } 5247 5248 mutex_enter(&stp->sd_lock); 5249 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5250 !canputnext(stp->sd_wrq)) { 5251 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5252 flag, -1, &done)) != 0 || done) { 5253 mutex_exit(&stp->sd_lock); 5254 releasef(STRUCT_FGET(strfdinsert, fildes)); 5255 return (error); 5256 } 5257 if ((error = i_straccess(stp, access)) != 0) { 5258 mutex_exit(&stp->sd_lock); 5259 releasef( 5260 STRUCT_FGET(strfdinsert, fildes)); 5261 return (error); 5262 } 5263 } 5264 mutex_exit(&stp->sd_lock); 5265 5266 /* 5267 * Copy strfdinsert.ctlbuf into native form of 5268 * ctlbuf to pass down into strmakemsg(). 5269 */ 5270 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5271 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5272 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5273 5274 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5275 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5276 uio.uio_iov = &iov; 5277 uio.uio_iovcnt = 1; 5278 uio.uio_loffset = 0; 5279 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5280 UIO_SYSSPACE; 5281 uio.uio_fmode = 0; 5282 uio.uio_extflg = UIO_COPY_CACHED; 5283 uio.uio_resid = iov.iov_len; 5284 if ((error = strmakemsg(&mctl, 5285 &msgsize, &uio, stp, 5286 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5287 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5288 releasef(STRUCT_FGET(strfdinsert, fildes)); 5289 return (error); 5290 } 5291 5292 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5293 5294 /* 5295 * Place the possibly reencoded queue pointer 'offset' bytes 5296 * from the start of the control portion of the message. 5297 */ 5298 *((t_uscalar_t *)(mp->b_rptr + 5299 STRUCT_FGET(strfdinsert, offset))) = ival; 5300 5301 /* 5302 * Put message downstream. 5303 */ 5304 stream_willservice(stp); 5305 putnext(stp->sd_wrq, mp); 5306 stream_runservice(stp); 5307 releasef(STRUCT_FGET(strfdinsert, fildes)); 5308 return (error); 5309 } 5310 5311 case I_SENDFD: 5312 { 5313 struct file *fp; 5314 5315 if ((fp = getf((int)arg)) == NULL) 5316 return (EBADF); 5317 error = do_sendfp(stp, fp, crp); 5318 if (audit_active) { 5319 audit_fdsend((int)arg, fp, error); 5320 } 5321 releasef((int)arg); 5322 return (error); 5323 } 5324 5325 case I_RECVFD: 5326 case I_E_RECVFD: 5327 { 5328 struct k_strrecvfd *srf; 5329 int i, fd; 5330 5331 mutex_enter(&stp->sd_lock); 5332 while (!(mp = getq(rdq))) { 5333 if (stp->sd_flag & (STRHUP|STREOF)) { 5334 mutex_exit(&stp->sd_lock); 5335 return (ENXIO); 5336 } 5337 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5338 flag, -1, &done)) != 0 || done) { 5339 mutex_exit(&stp->sd_lock); 5340 return (error); 5341 } 5342 if ((error = i_straccess(stp, access)) != 0) { 5343 mutex_exit(&stp->sd_lock); 5344 return (error); 5345 } 5346 } 5347 if (mp->b_datap->db_type != M_PASSFP) { 5348 putback(stp, rdq, mp, mp->b_band); 5349 mutex_exit(&stp->sd_lock); 5350 return (EBADMSG); 5351 } 5352 mutex_exit(&stp->sd_lock); 5353 5354 srf = (struct k_strrecvfd *)mp->b_rptr; 5355 if ((fd = ufalloc(0)) == -1) { 5356 mutex_enter(&stp->sd_lock); 5357 putback(stp, rdq, mp, mp->b_band); 5358 mutex_exit(&stp->sd_lock); 5359 return (EMFILE); 5360 } 5361 if (cmd == I_RECVFD) { 5362 struct o_strrecvfd ostrfd; 5363 5364 /* check to see if uid/gid values are too large. */ 5365 5366 if (srf->uid > (o_uid_t)USHRT_MAX || 5367 srf->gid > (o_gid_t)USHRT_MAX) { 5368 mutex_enter(&stp->sd_lock); 5369 putback(stp, rdq, mp, mp->b_band); 5370 mutex_exit(&stp->sd_lock); 5371 setf(fd, NULL); /* release fd entry */ 5372 return (EOVERFLOW); 5373 } 5374 5375 ostrfd.fd = fd; 5376 ostrfd.uid = (o_uid_t)srf->uid; 5377 ostrfd.gid = (o_gid_t)srf->gid; 5378 5379 /* Null the filler bits */ 5380 for (i = 0; i < 8; i++) 5381 ostrfd.fill[i] = 0; 5382 5383 error = strcopyout(&ostrfd, (void *)arg, 5384 sizeof (struct o_strrecvfd), copyflag); 5385 } else { /* I_E_RECVFD */ 5386 struct strrecvfd strfd; 5387 5388 strfd.fd = fd; 5389 strfd.uid = srf->uid; 5390 strfd.gid = srf->gid; 5391 5392 /* null the filler bits */ 5393 for (i = 0; i < 8; i++) 5394 strfd.fill[i] = 0; 5395 5396 error = strcopyout(&strfd, (void *)arg, 5397 sizeof (struct strrecvfd), copyflag); 5398 } 5399 5400 if (error) { 5401 setf(fd, NULL); /* release fd entry */ 5402 mutex_enter(&stp->sd_lock); 5403 putback(stp, rdq, mp, mp->b_band); 5404 mutex_exit(&stp->sd_lock); 5405 return (error); 5406 } 5407 if (audit_active) { 5408 audit_fdrecv(fd, srf->fp); 5409 } 5410 5411 /* 5412 * Always increment f_count since the freemsg() below will 5413 * always call free_passfp() which performs a closef(). 5414 */ 5415 mutex_enter(&srf->fp->f_tlock); 5416 srf->fp->f_count++; 5417 mutex_exit(&srf->fp->f_tlock); 5418 setf(fd, srf->fp); 5419 freemsg(mp); 5420 return (0); 5421 } 5422 5423 case I_SWROPT: 5424 /* 5425 * Set/clear the write options. arg is a bit 5426 * mask with any of the following bits set... 5427 * SNDZERO - send zero length message 5428 * SNDPIPE - send sigpipe to process if 5429 * sd_werror is set and process is 5430 * doing a write or putmsg. 5431 * The new stream head write options should reflect 5432 * what is in arg. 5433 */ 5434 if (arg & ~(SNDZERO|SNDPIPE)) 5435 return (EINVAL); 5436 5437 mutex_enter(&stp->sd_lock); 5438 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5439 if (arg & SNDZERO) 5440 stp->sd_wput_opt |= SW_SNDZERO; 5441 if (arg & SNDPIPE) 5442 stp->sd_wput_opt |= SW_SIGPIPE; 5443 mutex_exit(&stp->sd_lock); 5444 return (0); 5445 5446 case I_GWROPT: 5447 { 5448 int wropt = 0; 5449 5450 if (stp->sd_wput_opt & SW_SNDZERO) 5451 wropt |= SNDZERO; 5452 if (stp->sd_wput_opt & SW_SIGPIPE) 5453 wropt |= SNDPIPE; 5454 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5455 copyflag)); 5456 } 5457 5458 case I_LIST: 5459 /* 5460 * Returns all the modules found on this stream, 5461 * upto the driver. If argument is NULL, return the 5462 * number of modules (including driver). If argument 5463 * is not NULL, copy the names into the structure 5464 * provided. 5465 */ 5466 5467 { 5468 queue_t *q; 5469 int num_modules, space_allocated; 5470 STRUCT_DECL(str_list, strlist); 5471 struct str_mlist *mlist_ptr; 5472 5473 if (arg == NULL) { /* Return number of modules plus driver */ 5474 q = stp->sd_wrq; 5475 if (stp->sd_vnode->v_type == VFIFO) { 5476 *rvalp = stp->sd_pushcnt; 5477 } else { 5478 *rvalp = stp->sd_pushcnt + 1; 5479 } 5480 } else { 5481 STRUCT_INIT(strlist, flag); 5482 5483 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5484 STRUCT_SIZE(strlist), copyflag); 5485 if (error) 5486 return (error); 5487 5488 space_allocated = STRUCT_FGET(strlist, sl_nmods); 5489 if ((space_allocated) <= 0) 5490 return (EINVAL); 5491 claimstr(stp->sd_wrq); 5492 q = stp->sd_wrq; 5493 num_modules = 0; 5494 while (_SAMESTR(q) && (space_allocated != 0)) { 5495 char *name = 5496 q->q_next->q_qinfo->qi_minfo->mi_idname; 5497 5498 mlist_ptr = STRUCT_FGETP(strlist, sl_modlist); 5499 5500 error = strcopyout(name, mlist_ptr, 5501 strlen(name) + 1, copyflag); 5502 5503 if (error) { 5504 releasestr(stp->sd_wrq); 5505 return (error); 5506 } 5507 q = q->q_next; 5508 space_allocated--; 5509 num_modules++; 5510 mlist_ptr = 5511 (struct str_mlist *)((uintptr_t)mlist_ptr + 5512 sizeof (struct str_mlist)); 5513 STRUCT_FSETP(strlist, sl_modlist, mlist_ptr); 5514 } 5515 releasestr(stp->sd_wrq); 5516 error = strcopyout(&num_modules, (void *)arg, 5517 sizeof (int), copyflag); 5518 } 5519 return (error); 5520 } 5521 5522 case I_CKBAND: 5523 { 5524 queue_t *q; 5525 qband_t *qbp; 5526 5527 if ((arg < 0) || (arg >= NBAND)) 5528 return (EINVAL); 5529 q = _RD(stp->sd_wrq); 5530 mutex_enter(QLOCK(q)); 5531 if (arg > (int)q->q_nband) { 5532 *rvalp = 0; 5533 } else { 5534 if (arg == 0) { 5535 if (q->q_first) 5536 *rvalp = 1; 5537 else 5538 *rvalp = 0; 5539 } else { 5540 qbp = q->q_bandp; 5541 while (--arg > 0) 5542 qbp = qbp->qb_next; 5543 if (qbp->qb_first) 5544 *rvalp = 1; 5545 else 5546 *rvalp = 0; 5547 } 5548 } 5549 mutex_exit(QLOCK(q)); 5550 return (0); 5551 } 5552 5553 case I_GETBAND: 5554 { 5555 int intpri; 5556 queue_t *q; 5557 5558 q = _RD(stp->sd_wrq); 5559 mutex_enter(QLOCK(q)); 5560 mp = q->q_first; 5561 if (!mp) { 5562 mutex_exit(QLOCK(q)); 5563 return (ENODATA); 5564 } 5565 intpri = (int)mp->b_band; 5566 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5567 copyflag); 5568 mutex_exit(QLOCK(q)); 5569 return (error); 5570 } 5571 5572 case I_ATMARK: 5573 { 5574 queue_t *q; 5575 5576 if (arg & ~(ANYMARK|LASTMARK)) 5577 return (EINVAL); 5578 q = _RD(stp->sd_wrq); 5579 mutex_enter(&stp->sd_lock); 5580 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5581 *rvalp = 1; 5582 } else { 5583 mutex_enter(QLOCK(q)); 5584 mp = q->q_first; 5585 5586 if (mp == NULL) 5587 *rvalp = 0; 5588 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5589 *rvalp = 1; 5590 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5591 *rvalp = 1; 5592 else 5593 *rvalp = 0; 5594 mutex_exit(QLOCK(q)); 5595 } 5596 mutex_exit(&stp->sd_lock); 5597 return (0); 5598 } 5599 5600 case I_CANPUT: 5601 { 5602 char band; 5603 5604 if ((arg < 0) || (arg >= NBAND)) 5605 return (EINVAL); 5606 band = (char)arg; 5607 *rvalp = bcanputnext(stp->sd_wrq, band); 5608 return (0); 5609 } 5610 5611 case I_SETCLTIME: 5612 { 5613 int closetime; 5614 5615 error = strcopyin((void *)arg, &closetime, sizeof (int), 5616 copyflag); 5617 if (error) 5618 return (error); 5619 if (closetime < 0) 5620 return (EINVAL); 5621 5622 stp->sd_closetime = closetime; 5623 return (0); 5624 } 5625 5626 case I_GETCLTIME: 5627 { 5628 int closetime; 5629 5630 closetime = stp->sd_closetime; 5631 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5632 copyflag)); 5633 } 5634 5635 case TIOCGSID: 5636 { 5637 pid_t sid; 5638 5639 mutex_enter(&stp->sd_lock); 5640 if (stp->sd_sidp == NULL) { 5641 mutex_exit(&stp->sd_lock); 5642 return (ENOTTY); 5643 } 5644 sid = stp->sd_sidp->pid_id; 5645 mutex_exit(&stp->sd_lock); 5646 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5647 copyflag)); 5648 } 5649 5650 case TIOCSPGRP: 5651 { 5652 pid_t pgrp; 5653 proc_t *q; 5654 pid_t sid, fg_pgid, bg_pgid; 5655 5656 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5657 copyflag)) 5658 return (error); 5659 mutex_enter(&stp->sd_lock); 5660 mutex_enter(&pidlock); 5661 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5662 mutex_exit(&pidlock); 5663 mutex_exit(&stp->sd_lock); 5664 return (ENOTTY); 5665 } 5666 if (pgrp == stp->sd_pgidp->pid_id) { 5667 mutex_exit(&pidlock); 5668 mutex_exit(&stp->sd_lock); 5669 return (0); 5670 } 5671 if (pgrp <= 0 || pgrp >= maxpid) { 5672 mutex_exit(&pidlock); 5673 mutex_exit(&stp->sd_lock); 5674 return (EINVAL); 5675 } 5676 if ((q = pgfind(pgrp)) == NULL || 5677 q->p_sessp != ttoproc(curthread)->p_sessp) { 5678 mutex_exit(&pidlock); 5679 mutex_exit(&stp->sd_lock); 5680 return (EPERM); 5681 } 5682 sid = stp->sd_sidp->pid_id; 5683 fg_pgid = q->p_pgrp; 5684 bg_pgid = stp->sd_pgidp->pid_id; 5685 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5686 PID_RELE(stp->sd_pgidp); 5687 ctty_clear_sighuped(); 5688 stp->sd_pgidp = q->p_pgidp; 5689 PID_HOLD(stp->sd_pgidp); 5690 mutex_exit(&pidlock); 5691 mutex_exit(&stp->sd_lock); 5692 return (0); 5693 } 5694 5695 case TIOCGPGRP: 5696 { 5697 pid_t pgrp; 5698 5699 mutex_enter(&stp->sd_lock); 5700 if (stp->sd_sidp == NULL) { 5701 mutex_exit(&stp->sd_lock); 5702 return (ENOTTY); 5703 } 5704 pgrp = stp->sd_pgidp->pid_id; 5705 mutex_exit(&stp->sd_lock); 5706 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5707 copyflag)); 5708 } 5709 5710 case TIOCSCTTY: 5711 { 5712 return (strctty(stp)); 5713 } 5714 5715 case TIOCNOTTY: 5716 { 5717 /* freectty() always assumes curproc. */ 5718 if (freectty(B_FALSE) != 0) 5719 return (0); 5720 return (ENOTTY); 5721 } 5722 5723 case FIONBIO: 5724 case FIOASYNC: 5725 return (0); /* handled by the upper layer */ 5726 } 5727 } 5728 5729 /* 5730 * Custom free routine used for M_PASSFP messages. 5731 */ 5732 static void 5733 free_passfp(struct k_strrecvfd *srf) 5734 { 5735 (void) closef(srf->fp); 5736 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5737 } 5738 5739 /* ARGSUSED */ 5740 int 5741 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5742 { 5743 queue_t *qp, *nextqp; 5744 struct k_strrecvfd *srf; 5745 mblk_t *mp; 5746 frtn_t *frtnp; 5747 size_t bufsize; 5748 queue_t *mate = NULL; 5749 syncq_t *sq = NULL; 5750 int retval = 0; 5751 5752 if (stp->sd_flag & STRHUP) 5753 return (ENXIO); 5754 5755 claimstr(stp->sd_wrq); 5756 5757 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5758 if (STRMATED(stp)) { 5759 qp = _RD(stp->sd_mate->sd_wrq); 5760 claimstr(qp); 5761 mate = qp; 5762 } else { /* Not already mated. */ 5763 5764 /* 5765 * Walk the stream to the end of this one. 5766 * assumes that the claimstr() will prevent 5767 * plumbing between the stream head and the 5768 * driver from changing 5769 */ 5770 qp = stp->sd_wrq; 5771 5772 /* 5773 * Loop until we reach the end of this stream. 5774 * On completion, qp points to the write queue 5775 * at the end of the stream, or the read queue 5776 * at the stream head if this is a fifo. 5777 */ 5778 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5779 ; 5780 5781 /* 5782 * Just in case we get a q_next which is NULL, but 5783 * not at the end of the stream. This is actually 5784 * broken, so we set an assert to catch it in 5785 * debug, and set an error and return if not debug. 5786 */ 5787 ASSERT(qp); 5788 if (qp == NULL) { 5789 releasestr(stp->sd_wrq); 5790 return (EINVAL); 5791 } 5792 5793 /* 5794 * Enter the syncq for the driver, so (hopefully) 5795 * the queue values will not change on us. 5796 * XXXX - This will only prevent the race IFF only 5797 * the write side modifies the q_next member, and 5798 * the put procedure is protected by at least 5799 * MT_PERQ. 5800 */ 5801 if ((sq = qp->q_syncq) != NULL) 5802 entersq(sq, SQ_PUT); 5803 5804 /* Now get the q_next value from this qp. */ 5805 nextqp = qp->q_next; 5806 5807 /* 5808 * If nextqp exists and the other stream is different 5809 * from this one claim the stream, set the mate, and 5810 * get the read queue at the stream head of the other 5811 * stream. Assumes that nextqp was at least valid when 5812 * we got it. Hopefully the entersq of the driver 5813 * will prevent it from changing on us. 5814 */ 5815 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5816 ASSERT(qp->q_qinfo->qi_srvp); 5817 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5818 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5819 claimstr(nextqp); 5820 5821 /* Make sure we still have a q_next */ 5822 if (nextqp != qp->q_next) { 5823 releasestr(stp->sd_wrq); 5824 releasestr(nextqp); 5825 return (EINVAL); 5826 } 5827 5828 qp = _RD(STREAM(nextqp)->sd_wrq); 5829 mate = qp; 5830 } 5831 /* If we entered the synq above, leave it. */ 5832 if (sq != NULL) 5833 leavesq(sq, SQ_PUT); 5834 } /* STRMATED(STP) */ 5835 5836 /* XXX prevents substitution of the ops vector */ 5837 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5838 retval = EINVAL; 5839 goto out; 5840 } 5841 5842 if (qp->q_flag & QFULL) { 5843 retval = EAGAIN; 5844 goto out; 5845 } 5846 5847 /* 5848 * Since M_PASSFP messages include a file descriptor, we use 5849 * esballoc() and specify a custom free routine (free_passfp()) that 5850 * will close the descriptor as part of freeing the message. For 5851 * convenience, we stash the frtn_t right after the data block. 5852 */ 5853 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5854 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5855 if (srf == NULL) { 5856 retval = EAGAIN; 5857 goto out; 5858 } 5859 5860 frtnp = (frtn_t *)(srf + 1); 5861 frtnp->free_arg = (caddr_t)srf; 5862 frtnp->free_func = free_passfp; 5863 5864 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5865 if (mp == NULL) { 5866 kmem_free(srf, bufsize); 5867 retval = EAGAIN; 5868 goto out; 5869 } 5870 mp->b_wptr += sizeof (struct k_strrecvfd); 5871 mp->b_datap->db_type = M_PASSFP; 5872 5873 srf->fp = fp; 5874 srf->uid = crgetuid(curthread->t_cred); 5875 srf->gid = crgetgid(curthread->t_cred); 5876 mutex_enter(&fp->f_tlock); 5877 fp->f_count++; 5878 mutex_exit(&fp->f_tlock); 5879 5880 put(qp, mp); 5881 out: 5882 releasestr(stp->sd_wrq); 5883 if (mate) 5884 releasestr(mate); 5885 return (retval); 5886 } 5887 5888 /* 5889 * Send an ioctl message downstream and wait for acknowledgement. 5890 * flags may be set to either U_TO_K or K_TO_K and a combination 5891 * of STR_NOERROR or STR_NOSIG 5892 * STR_NOSIG: Signals are essentially ignored or held and have 5893 * no effect for the duration of the call. 5894 * STR_NOERROR: Ignores stream head read, write and hup errors. 5895 * Additionally, if an existing ioctl times out, it is assumed 5896 * lost and and this ioctl will continue as if the previous ioctl had 5897 * finished. ETIME may be returned if this ioctl times out (i.e. 5898 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5899 * the ioc_error indicates that the driver/module had problems, 5900 * an EFAULT was found when accessing user data, a lack of 5901 * resources, etc. 5902 */ 5903 int 5904 strdoioctl( 5905 struct stdata *stp, 5906 struct strioctl *strioc, 5907 int fflags, /* file flags with model info */ 5908 int flag, 5909 cred_t *crp, 5910 int *rvalp) 5911 { 5912 mblk_t *bp; 5913 struct iocblk *iocbp; 5914 struct copyreq *reqp; 5915 struct copyresp *resp; 5916 int id; 5917 int transparent = 0; 5918 int error = 0; 5919 int len = 0; 5920 caddr_t taddr; 5921 int copyflag = (flag & (U_TO_K | K_TO_K)); 5922 int sigflag = (flag & STR_NOSIG); 5923 int errs; 5924 uint_t waitflags; 5925 5926 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5927 ASSERT((fflags & FMODELS) != 0); 5928 5929 TRACE_2(TR_FAC_STREAMS_FR, 5930 TR_STRDOIOCTL, 5931 "strdoioctl:stp %p strioc %p", stp, strioc); 5932 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5933 transparent = 1; 5934 strioc->ic_len = sizeof (intptr_t); 5935 } 5936 5937 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5938 return (EINVAL); 5939 5940 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5941 crp)) == NULL) 5942 return (error); 5943 5944 bzero(bp->b_wptr, sizeof (union ioctypes)); 5945 5946 iocbp = (struct iocblk *)bp->b_wptr; 5947 iocbp->ioc_count = strioc->ic_len; 5948 iocbp->ioc_cmd = strioc->ic_cmd; 5949 iocbp->ioc_flag = (fflags & FMODELS); 5950 5951 crhold(crp); 5952 iocbp->ioc_cr = crp; 5953 DB_TYPE(bp) = M_IOCTL; 5954 DB_CPID(bp) = curproc->p_pid; 5955 bp->b_wptr += sizeof (struct iocblk); 5956 5957 if (flag & STR_NOERROR) 5958 errs = STPLEX; 5959 else 5960 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5961 5962 /* 5963 * If there is data to copy into ioctl block, do so. 5964 */ 5965 if (iocbp->ioc_count > 0) { 5966 if (transparent) 5967 /* 5968 * Note: STR_NOERROR does not have an effect 5969 * in putiocd() 5970 */ 5971 id = K_TO_K | sigflag; 5972 else 5973 id = flag; 5974 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5975 freemsg(bp); 5976 crfree(crp); 5977 return (error); 5978 } 5979 5980 /* 5981 * We could have slept copying in user pages. 5982 * Recheck the stream head state (the other end 5983 * of a pipe could have gone away). 5984 */ 5985 if (stp->sd_flag & errs) { 5986 mutex_enter(&stp->sd_lock); 5987 error = strgeterr(stp, errs, 0); 5988 mutex_exit(&stp->sd_lock); 5989 if (error != 0) { 5990 freemsg(bp); 5991 crfree(crp); 5992 return (error); 5993 } 5994 } 5995 } 5996 if (transparent) 5997 iocbp->ioc_count = TRANSPARENT; 5998 5999 /* 6000 * Block for up to STRTIMOUT milliseconds if there is an outstanding 6001 * ioctl for this stream already running. All processes 6002 * sleeping here will be awakened as a result of an ACK 6003 * or NAK being received for the outstanding ioctl, or 6004 * as a result of the timer expiring on the outstanding 6005 * ioctl (a failure), or as a result of any waiting 6006 * process's timer expiring (also a failure). 6007 */ 6008 6009 error = 0; 6010 mutex_enter(&stp->sd_lock); 6011 while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) { 6012 clock_t cv_rval; 6013 6014 TRACE_0(TR_FAC_STREAMS_FR, 6015 TR_STRDOIOCTL_WAIT, 6016 "strdoioctl sleeps - IOCWAIT"); 6017 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 6018 STRTIMOUT, sigflag); 6019 if (cv_rval <= 0) { 6020 if (cv_rval == 0) { 6021 error = EINTR; 6022 } else { 6023 if (flag & STR_NOERROR) { 6024 /* 6025 * Terminating current ioctl in 6026 * progress -- assume it got lost and 6027 * wake up the other thread so that the 6028 * operation completes. 6029 */ 6030 if (!(stp->sd_flag & IOCWAITNE)) { 6031 stp->sd_flag |= IOCWAITNE; 6032 cv_broadcast(&stp->sd_monitor); 6033 } 6034 /* 6035 * Otherwise, there's a running 6036 * STR_NOERROR -- we have no choice 6037 * here but to wait forever (or until 6038 * interrupted). 6039 */ 6040 } else { 6041 /* 6042 * pending ioctl has caused 6043 * us to time out 6044 */ 6045 error = ETIME; 6046 } 6047 } 6048 } else if ((stp->sd_flag & errs)) { 6049 error = strgeterr(stp, errs, 0); 6050 } 6051 if (error) { 6052 mutex_exit(&stp->sd_lock); 6053 freemsg(bp); 6054 crfree(crp); 6055 return (error); 6056 } 6057 } 6058 6059 /* 6060 * Have control of ioctl mechanism. 6061 * Send down ioctl packet and wait for response. 6062 */ 6063 if (stp->sd_iocblk != (mblk_t *)-1) { 6064 freemsg(stp->sd_iocblk); 6065 } 6066 stp->sd_iocblk = NULL; 6067 6068 /* 6069 * If this is marked with 'noerror' (internal; mostly 6070 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6071 * in here by setting IOCWAITNE. 6072 */ 6073 waitflags = IOCWAIT; 6074 if (flag & STR_NOERROR) 6075 waitflags |= IOCWAITNE; 6076 6077 stp->sd_flag |= waitflags; 6078 6079 /* 6080 * Assign sequence number. 6081 */ 6082 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6083 6084 mutex_exit(&stp->sd_lock); 6085 6086 TRACE_1(TR_FAC_STREAMS_FR, 6087 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6088 stream_willservice(stp); 6089 putnext(stp->sd_wrq, bp); 6090 stream_runservice(stp); 6091 6092 /* 6093 * Timed wait for acknowledgment. The wait time is limited by the 6094 * timeout value, which must be a positive integer (number of 6095 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6096 * milliseconds), or -1 (wait forever). This will be awakened 6097 * either by an ACK/NAK message arriving, the timer expiring, or 6098 * the timer expiring on another ioctl waiting for control of the 6099 * mechanism. 6100 */ 6101 waitioc: 6102 mutex_enter(&stp->sd_lock); 6103 6104 6105 /* 6106 * If the reply has already arrived, don't sleep. If awakened from 6107 * the sleep, fail only if the reply has not arrived by then. 6108 * Otherwise, process the reply. 6109 */ 6110 while (!stp->sd_iocblk) { 6111 clock_t cv_rval; 6112 6113 if (stp->sd_flag & errs) { 6114 error = strgeterr(stp, errs, 0); 6115 if (error != 0) { 6116 stp->sd_flag &= ~waitflags; 6117 cv_broadcast(&stp->sd_iocmonitor); 6118 mutex_exit(&stp->sd_lock); 6119 crfree(crp); 6120 return (error); 6121 } 6122 } 6123 6124 TRACE_0(TR_FAC_STREAMS_FR, 6125 TR_STRDOIOCTL_WAIT2, 6126 "strdoioctl sleeps awaiting reply"); 6127 ASSERT(error == 0); 6128 6129 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6130 (strioc->ic_timout ? 6131 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6132 6133 /* 6134 * There are four possible cases here: interrupt, timeout, 6135 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6136 * valid M_IOCTL reply). 6137 * 6138 * If we've been awakened by a STR_NOERROR ioctl on some other 6139 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6140 * will be set. Pretend as if we just timed out. Note that 6141 * this other thread waited at least STRTIMOUT before trying to 6142 * awaken our thread, so this is indistinguishable (even for 6143 * INFTIM) from the case where we failed with ETIME waiting on 6144 * IOCWAIT in the prior loop. 6145 */ 6146 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6147 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6148 cv_rval = -1; 6149 } 6150 6151 /* 6152 * note: STR_NOERROR does not protect 6153 * us here.. use ic_timout < 0 6154 */ 6155 if (cv_rval <= 0) { 6156 if (cv_rval == 0) { 6157 error = EINTR; 6158 } else { 6159 error = ETIME; 6160 } 6161 /* 6162 * A message could have come in after we were scheduled 6163 * but before we were actually run. 6164 */ 6165 bp = stp->sd_iocblk; 6166 stp->sd_iocblk = NULL; 6167 if (bp != NULL) { 6168 if ((bp->b_datap->db_type == M_COPYIN) || 6169 (bp->b_datap->db_type == M_COPYOUT)) { 6170 mutex_exit(&stp->sd_lock); 6171 if (bp->b_cont) { 6172 freemsg(bp->b_cont); 6173 bp->b_cont = NULL; 6174 } 6175 bp->b_datap->db_type = M_IOCDATA; 6176 bp->b_wptr = bp->b_rptr + 6177 sizeof (struct copyresp); 6178 resp = (struct copyresp *)bp->b_rptr; 6179 resp->cp_rval = 6180 (caddr_t)1; /* failure */ 6181 stream_willservice(stp); 6182 putnext(stp->sd_wrq, bp); 6183 stream_runservice(stp); 6184 mutex_enter(&stp->sd_lock); 6185 } else { 6186 freemsg(bp); 6187 } 6188 } 6189 stp->sd_flag &= ~waitflags; 6190 cv_broadcast(&stp->sd_iocmonitor); 6191 mutex_exit(&stp->sd_lock); 6192 crfree(crp); 6193 return (error); 6194 } 6195 } 6196 bp = stp->sd_iocblk; 6197 /* 6198 * Note: it is strictly impossible to get here with sd_iocblk set to 6199 * -1. This is because the initial loop above doesn't allow any new 6200 * ioctls into the fray until all others have passed this point. 6201 */ 6202 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6203 TRACE_1(TR_FAC_STREAMS_FR, 6204 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6205 if ((bp->b_datap->db_type == M_IOCACK) || 6206 (bp->b_datap->db_type == M_IOCNAK)) { 6207 /* for detection of duplicate ioctl replies */ 6208 stp->sd_iocblk = (mblk_t *)-1; 6209 stp->sd_flag &= ~waitflags; 6210 cv_broadcast(&stp->sd_iocmonitor); 6211 mutex_exit(&stp->sd_lock); 6212 } else { 6213 /* 6214 * flags not cleared here because we're still doing 6215 * copy in/out for ioctl. 6216 */ 6217 stp->sd_iocblk = NULL; 6218 mutex_exit(&stp->sd_lock); 6219 } 6220 6221 6222 /* 6223 * Have received acknowledgment. 6224 */ 6225 6226 switch (bp->b_datap->db_type) { 6227 case M_IOCACK: 6228 /* 6229 * Positive ack. 6230 */ 6231 iocbp = (struct iocblk *)bp->b_rptr; 6232 6233 /* 6234 * Set error if indicated. 6235 */ 6236 if (iocbp->ioc_error) { 6237 error = iocbp->ioc_error; 6238 break; 6239 } 6240 6241 /* 6242 * Set return value. 6243 */ 6244 *rvalp = iocbp->ioc_rval; 6245 6246 /* 6247 * Data may have been returned in ACK message (ioc_count > 0). 6248 * If so, copy it out to the user's buffer. 6249 */ 6250 if (iocbp->ioc_count && !transparent) { 6251 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6252 break; 6253 } 6254 if (!transparent) { 6255 if (len) /* an M_COPYOUT was used with I_STR */ 6256 strioc->ic_len = len; 6257 else 6258 strioc->ic_len = (int)iocbp->ioc_count; 6259 } 6260 break; 6261 6262 case M_IOCNAK: 6263 /* 6264 * Negative ack. 6265 * 6266 * The only thing to do is set error as specified 6267 * in neg ack packet. 6268 */ 6269 iocbp = (struct iocblk *)bp->b_rptr; 6270 6271 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6272 break; 6273 6274 case M_COPYIN: 6275 /* 6276 * Driver or module has requested user ioctl data. 6277 */ 6278 reqp = (struct copyreq *)bp->b_rptr; 6279 6280 /* 6281 * M_COPYIN should *never* have a message attached, though 6282 * it's harmless if it does -- thus, panic on a DEBUG 6283 * kernel and just free it on a non-DEBUG build. 6284 */ 6285 ASSERT(bp->b_cont == NULL); 6286 if (bp->b_cont != NULL) { 6287 freemsg(bp->b_cont); 6288 bp->b_cont = NULL; 6289 } 6290 6291 error = putiocd(bp, reqp->cq_addr, flag, crp); 6292 if (error && bp->b_cont) { 6293 freemsg(bp->b_cont); 6294 bp->b_cont = NULL; 6295 } 6296 6297 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6298 bp->b_datap->db_type = M_IOCDATA; 6299 6300 mblk_setcred(bp, crp); 6301 DB_CPID(bp) = curproc->p_pid; 6302 resp = (struct copyresp *)bp->b_rptr; 6303 resp->cp_rval = (caddr_t)(uintptr_t)error; 6304 resp->cp_flag = (fflags & FMODELS); 6305 6306 stream_willservice(stp); 6307 putnext(stp->sd_wrq, bp); 6308 stream_runservice(stp); 6309 6310 if (error) { 6311 mutex_enter(&stp->sd_lock); 6312 stp->sd_flag &= ~waitflags; 6313 cv_broadcast(&stp->sd_iocmonitor); 6314 mutex_exit(&stp->sd_lock); 6315 crfree(crp); 6316 return (error); 6317 } 6318 6319 goto waitioc; 6320 6321 case M_COPYOUT: 6322 /* 6323 * Driver or module has ioctl data for a user. 6324 */ 6325 reqp = (struct copyreq *)bp->b_rptr; 6326 ASSERT(bp->b_cont != NULL); 6327 6328 /* 6329 * Always (transparent or non-transparent ) 6330 * use the address specified in the request 6331 */ 6332 taddr = reqp->cq_addr; 6333 if (!transparent) 6334 len = (int)reqp->cq_size; 6335 6336 /* copyout data to the provided address */ 6337 error = getiocd(bp, taddr, copyflag); 6338 6339 freemsg(bp->b_cont); 6340 bp->b_cont = NULL; 6341 6342 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6343 bp->b_datap->db_type = M_IOCDATA; 6344 6345 mblk_setcred(bp, crp); 6346 DB_CPID(bp) = curproc->p_pid; 6347 resp = (struct copyresp *)bp->b_rptr; 6348 resp->cp_rval = (caddr_t)(uintptr_t)error; 6349 resp->cp_flag = (fflags & FMODELS); 6350 6351 stream_willservice(stp); 6352 putnext(stp->sd_wrq, bp); 6353 stream_runservice(stp); 6354 6355 if (error) { 6356 mutex_enter(&stp->sd_lock); 6357 stp->sd_flag &= ~waitflags; 6358 cv_broadcast(&stp->sd_iocmonitor); 6359 mutex_exit(&stp->sd_lock); 6360 crfree(crp); 6361 return (error); 6362 } 6363 goto waitioc; 6364 6365 default: 6366 ASSERT(0); 6367 mutex_enter(&stp->sd_lock); 6368 stp->sd_flag &= ~waitflags; 6369 cv_broadcast(&stp->sd_iocmonitor); 6370 mutex_exit(&stp->sd_lock); 6371 break; 6372 } 6373 6374 freemsg(bp); 6375 crfree(crp); 6376 return (error); 6377 } 6378 6379 /* 6380 * Send an M_CMD message downstream and wait for a reply. This is a ptools 6381 * special used to retrieve information from modules/drivers a stream without 6382 * being subjected to flow control or interfering with pending messages on the 6383 * stream (e.g. an ioctl in flight). 6384 */ 6385 int 6386 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp) 6387 { 6388 mblk_t *mp; 6389 struct cmdblk *cmdp; 6390 int error = 0; 6391 int errs = STRHUP|STRDERR|STWRERR|STPLEX; 6392 clock_t rval, timeout = STRTIMOUT; 6393 6394 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) || 6395 scp->sc_timeout < -1) 6396 return (EINVAL); 6397 6398 if (scp->sc_timeout > 0) 6399 timeout = scp->sc_timeout * MILLISEC; 6400 6401 if ((mp = allocb_cred(sizeof (struct cmdblk), crp)) == NULL) 6402 return (ENOMEM); 6403 6404 crhold(crp); 6405 6406 cmdp = (struct cmdblk *)mp->b_wptr; 6407 cmdp->cb_cr = crp; 6408 cmdp->cb_cmd = scp->sc_cmd; 6409 cmdp->cb_len = scp->sc_len; 6410 cmdp->cb_error = 0; 6411 mp->b_wptr += sizeof (struct cmdblk); 6412 6413 DB_TYPE(mp) = M_CMD; 6414 DB_CPID(mp) = curproc->p_pid; 6415 6416 /* 6417 * Copy in the payload. 6418 */ 6419 if (cmdp->cb_len > 0) { 6420 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp); 6421 if (mp->b_cont == NULL) { 6422 error = ENOMEM; 6423 goto out; 6424 } 6425 6426 /* cb_len comes from sc_len, which has already been checked */ 6427 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf)); 6428 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len); 6429 mp->b_cont->b_wptr += cmdp->cb_len; 6430 DB_CPID(mp->b_cont) = curproc->p_pid; 6431 } 6432 6433 /* 6434 * Since this mechanism is strictly for ptools, and since only one 6435 * process can be grabbed at a time, we simply fail if there's 6436 * currently an operation pending. 6437 */ 6438 mutex_enter(&stp->sd_lock); 6439 if (stp->sd_flag & STRCMDWAIT) { 6440 mutex_exit(&stp->sd_lock); 6441 error = EBUSY; 6442 goto out; 6443 } 6444 stp->sd_flag |= STRCMDWAIT; 6445 ASSERT(stp->sd_cmdblk == NULL); 6446 mutex_exit(&stp->sd_lock); 6447 6448 putnext(stp->sd_wrq, mp); 6449 mp = NULL; 6450 6451 /* 6452 * Timed wait for acknowledgment. If the reply has already arrived, 6453 * don't sleep. If awakened from the sleep, fail only if the reply 6454 * has not arrived by then. Otherwise, process the reply. 6455 */ 6456 mutex_enter(&stp->sd_lock); 6457 while (stp->sd_cmdblk == NULL) { 6458 if (stp->sd_flag & errs) { 6459 if ((error = strgeterr(stp, errs, 0)) != 0) 6460 goto waitout; 6461 } 6462 6463 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0); 6464 if (stp->sd_cmdblk != NULL) 6465 break; 6466 6467 if (rval <= 0) { 6468 error = (rval == 0) ? EINTR : ETIME; 6469 goto waitout; 6470 } 6471 } 6472 6473 /* 6474 * We received a reply. 6475 */ 6476 mp = stp->sd_cmdblk; 6477 stp->sd_cmdblk = NULL; 6478 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD); 6479 ASSERT(stp->sd_flag & STRCMDWAIT); 6480 stp->sd_flag &= ~STRCMDWAIT; 6481 mutex_exit(&stp->sd_lock); 6482 6483 cmdp = (struct cmdblk *)mp->b_rptr; 6484 if ((error = cmdp->cb_error) != 0) 6485 goto out; 6486 6487 /* 6488 * Data may have been returned in the reply (cb_len > 0). 6489 * If so, copy it out to the user's buffer. 6490 */ 6491 if (cmdp->cb_len > 0) { 6492 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) { 6493 error = EPROTO; 6494 goto out; 6495 } 6496 6497 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf)); 6498 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len); 6499 } 6500 scp->sc_len = cmdp->cb_len; 6501 out: 6502 freemsg(mp); 6503 crfree(crp); 6504 return (error); 6505 waitout: 6506 ASSERT(stp->sd_cmdblk == NULL); 6507 stp->sd_flag &= ~STRCMDWAIT; 6508 mutex_exit(&stp->sd_lock); 6509 crfree(crp); 6510 return (error); 6511 } 6512 6513 /* 6514 * For the SunOS keyboard driver. 6515 * Return the next available "ioctl" sequence number. 6516 * Exported, so that streams modules can send "ioctl" messages 6517 * downstream from their open routine. 6518 */ 6519 int 6520 getiocseqno(void) 6521 { 6522 int i; 6523 6524 mutex_enter(&strresources); 6525 i = ++ioc_id; 6526 mutex_exit(&strresources); 6527 return (i); 6528 } 6529 6530 /* 6531 * Get the next message from the read queue. If the message is 6532 * priority, STRPRI will have been set by strrput(). This flag 6533 * should be reset only when the entire message at the front of the 6534 * queue as been consumed. 6535 * 6536 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6537 */ 6538 int 6539 strgetmsg( 6540 struct vnode *vp, 6541 struct strbuf *mctl, 6542 struct strbuf *mdata, 6543 unsigned char *prip, 6544 int *flagsp, 6545 int fmode, 6546 rval_t *rvp) 6547 { 6548 struct stdata *stp; 6549 mblk_t *bp, *nbp; 6550 mblk_t *savemp = NULL; 6551 mblk_t *savemptail = NULL; 6552 uint_t old_sd_flag; 6553 int flg; 6554 int more = 0; 6555 int error = 0; 6556 char first = 1; 6557 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6558 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6559 unsigned char pri = 0; 6560 queue_t *q; 6561 int pr = 0; /* Partial read successful */ 6562 struct uio uios; 6563 struct uio *uiop = &uios; 6564 struct iovec iovs; 6565 unsigned char type; 6566 6567 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6568 "strgetmsg:%p", vp); 6569 6570 ASSERT(vp->v_stream); 6571 stp = vp->v_stream; 6572 rvp->r_val1 = 0; 6573 6574 mutex_enter(&stp->sd_lock); 6575 6576 if ((error = i_straccess(stp, JCREAD)) != 0) { 6577 mutex_exit(&stp->sd_lock); 6578 return (error); 6579 } 6580 6581 if (stp->sd_flag & (STRDERR|STPLEX)) { 6582 error = strgeterr(stp, STRDERR|STPLEX, 0); 6583 if (error != 0) { 6584 mutex_exit(&stp->sd_lock); 6585 return (error); 6586 } 6587 } 6588 mutex_exit(&stp->sd_lock); 6589 6590 switch (*flagsp) { 6591 case MSG_HIPRI: 6592 if (*prip != 0) 6593 return (EINVAL); 6594 break; 6595 6596 case MSG_ANY: 6597 case MSG_BAND: 6598 break; 6599 6600 default: 6601 return (EINVAL); 6602 } 6603 /* 6604 * Setup uio and iov for data part 6605 */ 6606 iovs.iov_base = mdata->buf; 6607 iovs.iov_len = mdata->maxlen; 6608 uios.uio_iov = &iovs; 6609 uios.uio_iovcnt = 1; 6610 uios.uio_loffset = 0; 6611 uios.uio_segflg = UIO_USERSPACE; 6612 uios.uio_fmode = 0; 6613 uios.uio_extflg = UIO_COPY_CACHED; 6614 uios.uio_resid = mdata->maxlen; 6615 uios.uio_offset = 0; 6616 6617 q = _RD(stp->sd_wrq); 6618 mutex_enter(&stp->sd_lock); 6619 old_sd_flag = stp->sd_flag; 6620 mark = 0; 6621 for (;;) { 6622 int done = 0; 6623 mblk_t *q_first = q->q_first; 6624 6625 /* 6626 * Get the next message of appropriate priority 6627 * from the stream head. If the caller is interested 6628 * in band or hipri messages, then they should already 6629 * be enqueued at the stream head. On the other hand 6630 * if the caller wants normal (band 0) messages, they 6631 * might be deferred in a synchronous stream and they 6632 * will need to be pulled up. 6633 * 6634 * After we have dequeued a message, we might find that 6635 * it was a deferred M_SIG that was enqueued at the 6636 * stream head. It must now be posted as part of the 6637 * read by calling strsignal_nolock(). 6638 * 6639 * Also note that strrput does not enqueue an M_PCSIG, 6640 * and there cannot be more than one hipri message, 6641 * so there was no need to have the M_PCSIG case. 6642 * 6643 * At some time it might be nice to try and wrap the 6644 * functionality of kstrgetmsg() and strgetmsg() into 6645 * a common routine so to reduce the amount of replicated 6646 * code (since they are extremely similar). 6647 */ 6648 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6649 /* Asking for normal, band0 data */ 6650 bp = strget(stp, q, uiop, first, &error); 6651 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6652 if (bp != NULL) { 6653 if (bp->b_datap->db_type == M_SIG) { 6654 strsignal_nolock(stp, *bp->b_rptr, 6655 (int32_t)bp->b_band); 6656 continue; 6657 } else { 6658 break; 6659 } 6660 } 6661 if (error != 0) { 6662 goto getmout; 6663 } 6664 6665 /* 6666 * We can't depend on the value of STRPRI here because 6667 * the stream head may be in transit. Therefore, we 6668 * must look at the type of the first message to 6669 * determine if a high priority messages is waiting 6670 */ 6671 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6672 q_first->b_datap->db_type >= QPCTL && 6673 (bp = getq_noenab(q)) != NULL) { 6674 /* Asked for HIPRI and got one */ 6675 ASSERT(bp->b_datap->db_type >= QPCTL); 6676 break; 6677 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6678 ((q_first->b_band >= *prip) || 6679 q_first->b_datap->db_type >= QPCTL) && 6680 (bp = getq_noenab(q)) != NULL) { 6681 /* 6682 * Asked for at least band "prip" and got either at 6683 * least that band or a hipri message. 6684 */ 6685 ASSERT(bp->b_band >= *prip || 6686 bp->b_datap->db_type >= QPCTL); 6687 if (bp->b_datap->db_type == M_SIG) { 6688 strsignal_nolock(stp, *bp->b_rptr, 6689 (int32_t)bp->b_band); 6690 continue; 6691 } else { 6692 break; 6693 } 6694 } 6695 6696 /* No data. Time to sleep? */ 6697 qbackenable(q, 0); 6698 6699 /* 6700 * If STRHUP or STREOF, return 0 length control and data. 6701 * If resid is 0, then a read(fd,buf,0) was done. Do not 6702 * sleep to satisfy this request because by default we have 6703 * zero bytes to return. 6704 */ 6705 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6706 mdata->maxlen == 0)) { 6707 mctl->len = mdata->len = 0; 6708 *flagsp = 0; 6709 mutex_exit(&stp->sd_lock); 6710 return (0); 6711 } 6712 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6713 "strgetmsg calls strwaitq:%p, %p", 6714 vp, uiop); 6715 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6716 &done)) != 0) || done) { 6717 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6718 "strgetmsg error or done:%p, %p", 6719 vp, uiop); 6720 mutex_exit(&stp->sd_lock); 6721 return (error); 6722 } 6723 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6724 "strgetmsg awakes:%p, %p", vp, uiop); 6725 if ((error = i_straccess(stp, JCREAD)) != 0) { 6726 mutex_exit(&stp->sd_lock); 6727 return (error); 6728 } 6729 first = 0; 6730 } 6731 ASSERT(bp != NULL); 6732 /* 6733 * Extract any mark information. If the message is not completely 6734 * consumed this information will be put in the mblk 6735 * that is putback. 6736 * If MSGMARKNEXT is set and the message is completely consumed 6737 * the STRATMARK flag will be set below. Likewise, if 6738 * MSGNOTMARKNEXT is set and the message is 6739 * completely consumed STRNOTATMARK will be set. 6740 */ 6741 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6742 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6743 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6744 if (mark != 0 && bp == stp->sd_mark) { 6745 mark |= _LASTMARK; 6746 stp->sd_mark = NULL; 6747 } 6748 /* 6749 * keep track of the original message type and priority 6750 */ 6751 pri = bp->b_band; 6752 type = bp->b_datap->db_type; 6753 if (type == M_PASSFP) { 6754 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6755 stp->sd_mark = bp; 6756 bp->b_flag |= mark & ~_LASTMARK; 6757 putback(stp, q, bp, pri); 6758 qbackenable(q, pri); 6759 mutex_exit(&stp->sd_lock); 6760 return (EBADMSG); 6761 } 6762 ASSERT(type != M_SIG); 6763 6764 /* 6765 * Set this flag so strrput will not generate signals. Need to 6766 * make sure this flag is cleared before leaving this routine 6767 * else signals will stop being sent. 6768 */ 6769 stp->sd_flag |= STRGETINPROG; 6770 mutex_exit(&stp->sd_lock); 6771 6772 if (STREAM_NEEDSERVICE(stp)) 6773 stream_runservice(stp); 6774 6775 /* 6776 * Set HIPRI flag if message is priority. 6777 */ 6778 if (type >= QPCTL) 6779 flg = MSG_HIPRI; 6780 else 6781 flg = MSG_BAND; 6782 6783 /* 6784 * First process PROTO or PCPROTO blocks, if any. 6785 */ 6786 if (mctl->maxlen >= 0 && type != M_DATA) { 6787 size_t n, bcnt; 6788 char *ubuf; 6789 6790 bcnt = mctl->maxlen; 6791 ubuf = mctl->buf; 6792 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6793 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6794 copyout(bp->b_rptr, ubuf, n)) { 6795 error = EFAULT; 6796 mutex_enter(&stp->sd_lock); 6797 /* 6798 * clear stream head pri flag based on 6799 * first message type 6800 */ 6801 if (type >= QPCTL) { 6802 ASSERT(type == M_PCPROTO); 6803 stp->sd_flag &= ~STRPRI; 6804 } 6805 more = 0; 6806 freemsg(bp); 6807 goto getmout; 6808 } 6809 ubuf += n; 6810 bp->b_rptr += n; 6811 if (bp->b_rptr >= bp->b_wptr) { 6812 nbp = bp; 6813 bp = bp->b_cont; 6814 freeb(nbp); 6815 } 6816 ASSERT(n <= bcnt); 6817 bcnt -= n; 6818 if (bcnt == 0) 6819 break; 6820 } 6821 mctl->len = mctl->maxlen - bcnt; 6822 } else 6823 mctl->len = -1; 6824 6825 if (bp && bp->b_datap->db_type != M_DATA) { 6826 /* 6827 * More PROTO blocks in msg. 6828 */ 6829 more |= MORECTL; 6830 savemp = bp; 6831 while (bp && bp->b_datap->db_type != M_DATA) { 6832 savemptail = bp; 6833 bp = bp->b_cont; 6834 } 6835 savemptail->b_cont = NULL; 6836 } 6837 6838 /* 6839 * Now process DATA blocks, if any. 6840 */ 6841 if (mdata->maxlen >= 0 && bp) { 6842 /* 6843 * struiocopyout will consume a potential zero-length 6844 * M_DATA even if uio_resid is zero. 6845 */ 6846 size_t oldresid = uiop->uio_resid; 6847 6848 bp = struiocopyout(bp, uiop, &error); 6849 if (error != 0) { 6850 mutex_enter(&stp->sd_lock); 6851 /* 6852 * clear stream head hi pri flag based on 6853 * first message 6854 */ 6855 if (type >= QPCTL) { 6856 ASSERT(type == M_PCPROTO); 6857 stp->sd_flag &= ~STRPRI; 6858 } 6859 more = 0; 6860 freemsg(savemp); 6861 goto getmout; 6862 } 6863 /* 6864 * (pr == 1) indicates a partial read. 6865 */ 6866 if (oldresid > uiop->uio_resid) 6867 pr = 1; 6868 mdata->len = mdata->maxlen - uiop->uio_resid; 6869 } else 6870 mdata->len = -1; 6871 6872 if (bp) { /* more data blocks in msg */ 6873 more |= MOREDATA; 6874 if (savemp) 6875 savemptail->b_cont = bp; 6876 else 6877 savemp = bp; 6878 } 6879 6880 mutex_enter(&stp->sd_lock); 6881 if (savemp) { 6882 if (pr && (savemp->b_datap->db_type == M_DATA) && 6883 msgnodata(savemp)) { 6884 /* 6885 * Avoid queuing a zero-length tail part of 6886 * a message. pr=1 indicates that we read some of 6887 * the message. 6888 */ 6889 freemsg(savemp); 6890 more &= ~MOREDATA; 6891 /* 6892 * clear stream head hi pri flag based on 6893 * first message 6894 */ 6895 if (type >= QPCTL) { 6896 ASSERT(type == M_PCPROTO); 6897 stp->sd_flag &= ~STRPRI; 6898 } 6899 } else { 6900 savemp->b_band = pri; 6901 /* 6902 * If the first message was HIPRI and the one we're 6903 * putting back isn't, then clear STRPRI, otherwise 6904 * set STRPRI again. Note that we must set STRPRI 6905 * again since the flush logic in strrput_nondata() 6906 * may have cleared it while we had sd_lock dropped. 6907 */ 6908 if (type >= QPCTL) { 6909 ASSERT(type == M_PCPROTO); 6910 if (queclass(savemp) < QPCTL) 6911 stp->sd_flag &= ~STRPRI; 6912 else 6913 stp->sd_flag |= STRPRI; 6914 } else if (queclass(savemp) >= QPCTL) { 6915 /* 6916 * The first message was not a HIPRI message, 6917 * but the one we are about to putback is. 6918 * For simplicitly, we do not allow for HIPRI 6919 * messages to be embedded in the message 6920 * body, so just force it to same type as 6921 * first message. 6922 */ 6923 ASSERT(type == M_DATA || type == M_PROTO); 6924 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6925 savemp->b_datap->db_type = type; 6926 } 6927 if (mark != 0) { 6928 savemp->b_flag |= mark & ~_LASTMARK; 6929 if ((mark & _LASTMARK) && 6930 (stp->sd_mark == NULL)) { 6931 /* 6932 * If another marked message arrived 6933 * while sd_lock was not held sd_mark 6934 * would be non-NULL. 6935 */ 6936 stp->sd_mark = savemp; 6937 } 6938 } 6939 putback(stp, q, savemp, pri); 6940 } 6941 } else { 6942 /* 6943 * The complete message was consumed. 6944 * 6945 * If another M_PCPROTO arrived while sd_lock was not held 6946 * it would have been discarded since STRPRI was still set. 6947 * 6948 * Move the MSG*MARKNEXT information 6949 * to the stream head just in case 6950 * the read queue becomes empty. 6951 * clear stream head hi pri flag based on 6952 * first message 6953 * 6954 * If the stream head was at the mark 6955 * (STRATMARK) before we dropped sd_lock above 6956 * and some data was consumed then we have 6957 * moved past the mark thus STRATMARK is 6958 * cleared. However, if a message arrived in 6959 * strrput during the copyout above causing 6960 * STRATMARK to be set we can not clear that 6961 * flag. 6962 */ 6963 if (type >= QPCTL) { 6964 ASSERT(type == M_PCPROTO); 6965 stp->sd_flag &= ~STRPRI; 6966 } 6967 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6968 if (mark & MSGMARKNEXT) { 6969 stp->sd_flag &= ~STRNOTATMARK; 6970 stp->sd_flag |= STRATMARK; 6971 } else if (mark & MSGNOTMARKNEXT) { 6972 stp->sd_flag &= ~STRATMARK; 6973 stp->sd_flag |= STRNOTATMARK; 6974 } else { 6975 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6976 } 6977 } else if (pr && (old_sd_flag & STRATMARK)) { 6978 stp->sd_flag &= ~STRATMARK; 6979 } 6980 } 6981 6982 *flagsp = flg; 6983 *prip = pri; 6984 6985 /* 6986 * Getmsg cleanup processing - if the state of the queue has changed 6987 * some signals may need to be sent and/or poll awakened. 6988 */ 6989 getmout: 6990 qbackenable(q, pri); 6991 6992 /* 6993 * We dropped the stream head lock above. Send all M_SIG messages 6994 * before processing stream head for SIGPOLL messages. 6995 */ 6996 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6997 while ((bp = q->q_first) != NULL && 6998 (bp->b_datap->db_type == M_SIG)) { 6999 /* 7000 * sd_lock is held so the content of the read queue can not 7001 * change. 7002 */ 7003 bp = getq(q); 7004 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7005 7006 strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); 7007 mutex_exit(&stp->sd_lock); 7008 freemsg(bp); 7009 if (STREAM_NEEDSERVICE(stp)) 7010 stream_runservice(stp); 7011 mutex_enter(&stp->sd_lock); 7012 } 7013 7014 /* 7015 * stream head cannot change while we make the determination 7016 * whether or not to send a signal. Drop the flag to allow strrput 7017 * to send firstmsgsigs again. 7018 */ 7019 stp->sd_flag &= ~STRGETINPROG; 7020 7021 /* 7022 * If the type of message at the front of the queue changed 7023 * due to the receive the appropriate signals and pollwakeup events 7024 * are generated. The type of changes are: 7025 * Processed a hipri message, q_first is not hipri. 7026 * Processed a band X message, and q_first is band Y. 7027 * The generated signals and pollwakeups are identical to what 7028 * strrput() generates should the message that is now on q_first 7029 * arrive to an empty read queue. 7030 * 7031 * Note: only strrput will send a signal for a hipri message. 7032 */ 7033 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7034 strsigset_t signals = 0; 7035 strpollset_t pollwakeups = 0; 7036 7037 if (flg & MSG_HIPRI) { 7038 /* 7039 * Removed a hipri message. Regular data at 7040 * the front of the queue. 7041 */ 7042 if (bp->b_band == 0) { 7043 signals = S_INPUT | S_RDNORM; 7044 pollwakeups = POLLIN | POLLRDNORM; 7045 } else { 7046 signals = S_INPUT | S_RDBAND; 7047 pollwakeups = POLLIN | POLLRDBAND; 7048 } 7049 } else if (pri != bp->b_band) { 7050 /* 7051 * The band is different for the new q_first. 7052 */ 7053 if (bp->b_band == 0) { 7054 signals = S_RDNORM; 7055 pollwakeups = POLLIN | POLLRDNORM; 7056 } else { 7057 signals = S_RDBAND; 7058 pollwakeups = POLLIN | POLLRDBAND; 7059 } 7060 } 7061 7062 if (pollwakeups != 0) { 7063 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7064 if (!(stp->sd_rput_opt & SR_POLLIN)) 7065 goto no_pollwake; 7066 stp->sd_rput_opt &= ~SR_POLLIN; 7067 } 7068 mutex_exit(&stp->sd_lock); 7069 pollwakeup(&stp->sd_pollist, pollwakeups); 7070 mutex_enter(&stp->sd_lock); 7071 } 7072 no_pollwake: 7073 7074 if (stp->sd_sigflags & signals) 7075 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7076 } 7077 mutex_exit(&stp->sd_lock); 7078 7079 rvp->r_val1 = more; 7080 return (error); 7081 #undef _LASTMARK 7082 } 7083 7084 /* 7085 * Get the next message from the read queue. If the message is 7086 * priority, STRPRI will have been set by strrput(). This flag 7087 * should be reset only when the entire message at the front of the 7088 * queue as been consumed. 7089 * 7090 * If uiop is NULL all data is returned in mctlp. 7091 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 7092 * not enabled. 7093 * The timeout parameter is in milliseconds; -1 for infinity. 7094 * This routine handles the consolidation private flags: 7095 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7096 * MSG_DELAYERROR Defer the error check until the queue is empty. 7097 * MSG_HOLDSIG Hold signals while waiting for data. 7098 * MSG_IPEEK Only peek at messages. 7099 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 7100 * that doesn't fit. 7101 * MSG_NOMARK If the message is marked leave it on the queue. 7102 * 7103 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 7104 */ 7105 int 7106 kstrgetmsg( 7107 struct vnode *vp, 7108 mblk_t **mctlp, 7109 struct uio *uiop, 7110 unsigned char *prip, 7111 int *flagsp, 7112 clock_t timout, 7113 rval_t *rvp) 7114 { 7115 struct stdata *stp; 7116 mblk_t *bp, *nbp; 7117 mblk_t *savemp = NULL; 7118 mblk_t *savemptail = NULL; 7119 int flags; 7120 uint_t old_sd_flag; 7121 int flg; 7122 int more = 0; 7123 int error = 0; 7124 char first = 1; 7125 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 7126 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 7127 unsigned char pri = 0; 7128 queue_t *q; 7129 int pr = 0; /* Partial read successful */ 7130 unsigned char type; 7131 7132 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 7133 "kstrgetmsg:%p", vp); 7134 7135 ASSERT(vp->v_stream); 7136 stp = vp->v_stream; 7137 rvp->r_val1 = 0; 7138 7139 mutex_enter(&stp->sd_lock); 7140 7141 if ((error = i_straccess(stp, JCREAD)) != 0) { 7142 mutex_exit(&stp->sd_lock); 7143 return (error); 7144 } 7145 7146 flags = *flagsp; 7147 if (stp->sd_flag & (STRDERR|STPLEX)) { 7148 if ((stp->sd_flag & STPLEX) || 7149 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 7150 error = strgeterr(stp, STRDERR|STPLEX, 7151 (flags & MSG_IPEEK)); 7152 if (error != 0) { 7153 mutex_exit(&stp->sd_lock); 7154 return (error); 7155 } 7156 } 7157 } 7158 mutex_exit(&stp->sd_lock); 7159 7160 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 7161 case MSG_HIPRI: 7162 if (*prip != 0) 7163 return (EINVAL); 7164 break; 7165 7166 case MSG_ANY: 7167 case MSG_BAND: 7168 break; 7169 7170 default: 7171 return (EINVAL); 7172 } 7173 7174 retry: 7175 q = _RD(stp->sd_wrq); 7176 mutex_enter(&stp->sd_lock); 7177 old_sd_flag = stp->sd_flag; 7178 mark = 0; 7179 for (;;) { 7180 int done = 0; 7181 int waitflag; 7182 int fmode; 7183 mblk_t *q_first = q->q_first; 7184 7185 /* 7186 * This section of the code operates just like the code 7187 * in strgetmsg(). There is a comment there about what 7188 * is going on here. 7189 */ 7190 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7191 /* Asking for normal, band0 data */ 7192 bp = strget(stp, q, uiop, first, &error); 7193 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7194 if (bp != NULL) { 7195 if (bp->b_datap->db_type == M_SIG) { 7196 strsignal_nolock(stp, *bp->b_rptr, 7197 (int32_t)bp->b_band); 7198 continue; 7199 } else { 7200 break; 7201 } 7202 } 7203 if (error != 0) { 7204 goto getmout; 7205 } 7206 /* 7207 * We can't depend on the value of STRPRI here because 7208 * the stream head may be in transit. Therefore, we 7209 * must look at the type of the first message to 7210 * determine if a high priority messages is waiting 7211 */ 7212 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7213 q_first->b_datap->db_type >= QPCTL && 7214 (bp = getq_noenab(q)) != NULL) { 7215 ASSERT(bp->b_datap->db_type >= QPCTL); 7216 break; 7217 } else if ((flags & MSG_BAND) && q_first != NULL && 7218 ((q_first->b_band >= *prip) || 7219 q_first->b_datap->db_type >= QPCTL) && 7220 (bp = getq_noenab(q)) != NULL) { 7221 /* 7222 * Asked for at least band "prip" and got either at 7223 * least that band or a hipri message. 7224 */ 7225 ASSERT(bp->b_band >= *prip || 7226 bp->b_datap->db_type >= QPCTL); 7227 if (bp->b_datap->db_type == M_SIG) { 7228 strsignal_nolock(stp, *bp->b_rptr, 7229 (int32_t)bp->b_band); 7230 continue; 7231 } else { 7232 break; 7233 } 7234 } 7235 7236 /* No data. Time to sleep? */ 7237 qbackenable(q, 0); 7238 7239 /* 7240 * Delayed error notification? 7241 */ 7242 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7243 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7244 error = strgeterr(stp, STRDERR|STPLEX, 7245 (flags & MSG_IPEEK)); 7246 if (error != 0) { 7247 mutex_exit(&stp->sd_lock); 7248 return (error); 7249 } 7250 } 7251 7252 /* 7253 * If STRHUP or STREOF, return 0 length control and data. 7254 * If a read(fd,buf,0) has been done, do not sleep, just 7255 * return. 7256 * 7257 * If mctlp == NULL and uiop == NULL, then the code will 7258 * do the strwaitq. This is an understood way of saying 7259 * sleep "polling" until a message is received. 7260 */ 7261 if ((stp->sd_flag & (STRHUP|STREOF)) || 7262 (uiop != NULL && uiop->uio_resid == 0)) { 7263 if (mctlp != NULL) 7264 *mctlp = NULL; 7265 *flagsp = 0; 7266 mutex_exit(&stp->sd_lock); 7267 return (0); 7268 } 7269 7270 waitflag = GETWAIT; 7271 if (flags & 7272 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7273 if (flags & MSG_HOLDSIG) 7274 waitflag |= STR_NOSIG; 7275 if (flags & MSG_IGNERROR) 7276 waitflag |= STR_NOERROR; 7277 if (flags & MSG_IPEEK) 7278 waitflag |= STR_PEEK; 7279 if (flags & MSG_DELAYERROR) 7280 waitflag |= STR_DELAYERR; 7281 } 7282 if (uiop != NULL) 7283 fmode = uiop->uio_fmode; 7284 else 7285 fmode = 0; 7286 7287 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7288 "kstrgetmsg calls strwaitq:%p, %p", 7289 vp, uiop); 7290 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7291 fmode, timout, &done)) != 0) || done) { 7292 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7293 "kstrgetmsg error or done:%p, %p", 7294 vp, uiop); 7295 mutex_exit(&stp->sd_lock); 7296 return (error); 7297 } 7298 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7299 "kstrgetmsg awakes:%p, %p", vp, uiop); 7300 if ((error = i_straccess(stp, JCREAD)) != 0) { 7301 mutex_exit(&stp->sd_lock); 7302 return (error); 7303 } 7304 first = 0; 7305 } 7306 ASSERT(bp != NULL); 7307 /* 7308 * Extract any mark information. If the message is not completely 7309 * consumed this information will be put in the mblk 7310 * that is putback. 7311 * If MSGMARKNEXT is set and the message is completely consumed 7312 * the STRATMARK flag will be set below. Likewise, if 7313 * MSGNOTMARKNEXT is set and the message is 7314 * completely consumed STRNOTATMARK will be set. 7315 */ 7316 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7317 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7318 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7319 pri = bp->b_band; 7320 if (mark != 0) { 7321 /* 7322 * If the caller doesn't want the mark return. 7323 * Used to implement MSG_WAITALL in sockets. 7324 */ 7325 if (flags & MSG_NOMARK) { 7326 putback(stp, q, bp, pri); 7327 qbackenable(q, pri); 7328 mutex_exit(&stp->sd_lock); 7329 return (EWOULDBLOCK); 7330 } 7331 if (bp == stp->sd_mark) { 7332 mark |= _LASTMARK; 7333 stp->sd_mark = NULL; 7334 } 7335 } 7336 7337 /* 7338 * keep track of the first message type 7339 */ 7340 type = bp->b_datap->db_type; 7341 7342 if (bp->b_datap->db_type == M_PASSFP) { 7343 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7344 stp->sd_mark = bp; 7345 bp->b_flag |= mark & ~_LASTMARK; 7346 putback(stp, q, bp, pri); 7347 qbackenable(q, pri); 7348 mutex_exit(&stp->sd_lock); 7349 return (EBADMSG); 7350 } 7351 ASSERT(type != M_SIG); 7352 7353 if (flags & MSG_IPEEK) { 7354 /* 7355 * Clear any struioflag - we do the uiomove over again 7356 * when peeking since it simplifies the code. 7357 * 7358 * Dup the message and put the original back on the queue. 7359 * If dupmsg() fails, try again with copymsg() to see if 7360 * there is indeed a shortage of memory. dupmsg() may fail 7361 * if db_ref in any of the messages reaches its limit. 7362 */ 7363 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7364 /* 7365 * Restore the state of the stream head since we 7366 * need to drop sd_lock (strwaitbuf is sleeping). 7367 */ 7368 size_t size = msgdsize(bp); 7369 7370 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7371 stp->sd_mark = bp; 7372 bp->b_flag |= mark & ~_LASTMARK; 7373 putback(stp, q, bp, pri); 7374 mutex_exit(&stp->sd_lock); 7375 error = strwaitbuf(size, BPRI_HI); 7376 if (error) { 7377 /* 7378 * There is no net change to the queue thus 7379 * no need to qbackenable. 7380 */ 7381 return (error); 7382 } 7383 goto retry; 7384 } 7385 7386 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7387 stp->sd_mark = bp; 7388 bp->b_flag |= mark & ~_LASTMARK; 7389 putback(stp, q, bp, pri); 7390 bp = nbp; 7391 } 7392 7393 /* 7394 * Set this flag so strrput will not generate signals. Need to 7395 * make sure this flag is cleared before leaving this routine 7396 * else signals will stop being sent. 7397 */ 7398 stp->sd_flag |= STRGETINPROG; 7399 mutex_exit(&stp->sd_lock); 7400 7401 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7402 mblk_t *tmp, *prevmp; 7403 7404 /* 7405 * Put first non-data mblk back to stream head and 7406 * cut the mblk chain so sd_rputdatafunc only sees 7407 * M_DATA mblks. We can skip the first mblk since it 7408 * is M_DATA according to the condition above. 7409 */ 7410 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7411 prevmp = tmp, tmp = tmp->b_cont) { 7412 if (DB_TYPE(tmp) != M_DATA) { 7413 prevmp->b_cont = NULL; 7414 mutex_enter(&stp->sd_lock); 7415 putback(stp, q, tmp, tmp->b_band); 7416 mutex_exit(&stp->sd_lock); 7417 break; 7418 } 7419 } 7420 7421 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7422 NULL, NULL, NULL, NULL); 7423 7424 if (bp == NULL) 7425 goto retry; 7426 } 7427 7428 if (STREAM_NEEDSERVICE(stp)) 7429 stream_runservice(stp); 7430 7431 /* 7432 * Set HIPRI flag if message is priority. 7433 */ 7434 if (type >= QPCTL) 7435 flg = MSG_HIPRI; 7436 else 7437 flg = MSG_BAND; 7438 7439 /* 7440 * First process PROTO or PCPROTO blocks, if any. 7441 */ 7442 if (mctlp != NULL && type != M_DATA) { 7443 mblk_t *nbp; 7444 7445 *mctlp = bp; 7446 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7447 bp = bp->b_cont; 7448 nbp = bp->b_cont; 7449 bp->b_cont = NULL; 7450 bp = nbp; 7451 } 7452 7453 if (bp && bp->b_datap->db_type != M_DATA) { 7454 /* 7455 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7456 */ 7457 more |= MORECTL; 7458 savemp = bp; 7459 while (bp && bp->b_datap->db_type != M_DATA) { 7460 savemptail = bp; 7461 bp = bp->b_cont; 7462 } 7463 savemptail->b_cont = NULL; 7464 } 7465 7466 /* 7467 * Now process DATA blocks, if any. 7468 */ 7469 if (uiop == NULL) { 7470 /* Append data to tail of mctlp */ 7471 if (mctlp != NULL) { 7472 mblk_t **mpp = mctlp; 7473 7474 while (*mpp != NULL) 7475 mpp = &((*mpp)->b_cont); 7476 *mpp = bp; 7477 bp = NULL; 7478 } 7479 } else if (uiop->uio_resid >= 0 && bp) { 7480 size_t oldresid = uiop->uio_resid; 7481 7482 /* 7483 * If a streams message is likely to consist 7484 * of many small mblks, it is pulled up into 7485 * one continuous chunk of memory. 7486 * see longer comment at top of page 7487 * by mblk_pull_len declaration. 7488 */ 7489 7490 if (MBLKL(bp) < mblk_pull_len) { 7491 (void) pullupmsg(bp, -1); 7492 } 7493 7494 bp = struiocopyout(bp, uiop, &error); 7495 if (error != 0) { 7496 if (mctlp != NULL) { 7497 freemsg(*mctlp); 7498 *mctlp = NULL; 7499 } else 7500 freemsg(savemp); 7501 mutex_enter(&stp->sd_lock); 7502 /* 7503 * clear stream head hi pri flag based on 7504 * first message 7505 */ 7506 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7507 ASSERT(type == M_PCPROTO); 7508 stp->sd_flag &= ~STRPRI; 7509 } 7510 more = 0; 7511 goto getmout; 7512 } 7513 /* 7514 * (pr == 1) indicates a partial read. 7515 */ 7516 if (oldresid > uiop->uio_resid) 7517 pr = 1; 7518 } 7519 7520 if (bp) { /* more data blocks in msg */ 7521 more |= MOREDATA; 7522 if (savemp) 7523 savemptail->b_cont = bp; 7524 else 7525 savemp = bp; 7526 } 7527 7528 mutex_enter(&stp->sd_lock); 7529 if (savemp) { 7530 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7531 /* 7532 * When MSG_DISCARDTAIL is set or 7533 * when peeking discard any tail. When peeking this 7534 * is the tail of the dup that was copied out - the 7535 * message has already been putback on the queue. 7536 * Return MOREDATA to the caller even though the data 7537 * is discarded. This is used by sockets (to 7538 * set MSG_TRUNC). 7539 */ 7540 freemsg(savemp); 7541 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7542 ASSERT(type == M_PCPROTO); 7543 stp->sd_flag &= ~STRPRI; 7544 } 7545 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7546 msgnodata(savemp)) { 7547 /* 7548 * Avoid queuing a zero-length tail part of 7549 * a message. pr=1 indicates that we read some of 7550 * the message. 7551 */ 7552 freemsg(savemp); 7553 more &= ~MOREDATA; 7554 if (type >= QPCTL) { 7555 ASSERT(type == M_PCPROTO); 7556 stp->sd_flag &= ~STRPRI; 7557 } 7558 } else { 7559 savemp->b_band = pri; 7560 /* 7561 * If the first message was HIPRI and the one we're 7562 * putting back isn't, then clear STRPRI, otherwise 7563 * set STRPRI again. Note that we must set STRPRI 7564 * again since the flush logic in strrput_nondata() 7565 * may have cleared it while we had sd_lock dropped. 7566 */ 7567 if (type >= QPCTL) { 7568 ASSERT(type == M_PCPROTO); 7569 if (queclass(savemp) < QPCTL) 7570 stp->sd_flag &= ~STRPRI; 7571 else 7572 stp->sd_flag |= STRPRI; 7573 } else if (queclass(savemp) >= QPCTL) { 7574 /* 7575 * The first message was not a HIPRI message, 7576 * but the one we are about to putback is. 7577 * For simplicitly, we do not allow for HIPRI 7578 * messages to be embedded in the message 7579 * body, so just force it to same type as 7580 * first message. 7581 */ 7582 ASSERT(type == M_DATA || type == M_PROTO); 7583 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7584 savemp->b_datap->db_type = type; 7585 } 7586 if (mark != 0) { 7587 if ((mark & _LASTMARK) && 7588 (stp->sd_mark == NULL)) { 7589 /* 7590 * If another marked message arrived 7591 * while sd_lock was not held sd_mark 7592 * would be non-NULL. 7593 */ 7594 stp->sd_mark = savemp; 7595 } 7596 savemp->b_flag |= mark & ~_LASTMARK; 7597 } 7598 putback(stp, q, savemp, pri); 7599 } 7600 } else if (!(flags & MSG_IPEEK)) { 7601 /* 7602 * The complete message was consumed. 7603 * 7604 * If another M_PCPROTO arrived while sd_lock was not held 7605 * it would have been discarded since STRPRI was still set. 7606 * 7607 * Move the MSG*MARKNEXT information 7608 * to the stream head just in case 7609 * the read queue becomes empty. 7610 * clear stream head hi pri flag based on 7611 * first message 7612 * 7613 * If the stream head was at the mark 7614 * (STRATMARK) before we dropped sd_lock above 7615 * and some data was consumed then we have 7616 * moved past the mark thus STRATMARK is 7617 * cleared. However, if a message arrived in 7618 * strrput during the copyout above causing 7619 * STRATMARK to be set we can not clear that 7620 * flag. 7621 * XXX A "perimeter" would help by single-threading strrput, 7622 * strread, strgetmsg and kstrgetmsg. 7623 */ 7624 if (type >= QPCTL) { 7625 ASSERT(type == M_PCPROTO); 7626 stp->sd_flag &= ~STRPRI; 7627 } 7628 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7629 if (mark & MSGMARKNEXT) { 7630 stp->sd_flag &= ~STRNOTATMARK; 7631 stp->sd_flag |= STRATMARK; 7632 } else if (mark & MSGNOTMARKNEXT) { 7633 stp->sd_flag &= ~STRATMARK; 7634 stp->sd_flag |= STRNOTATMARK; 7635 } else { 7636 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7637 } 7638 } else if (pr && (old_sd_flag & STRATMARK)) { 7639 stp->sd_flag &= ~STRATMARK; 7640 } 7641 } 7642 7643 *flagsp = flg; 7644 *prip = pri; 7645 7646 /* 7647 * Getmsg cleanup processing - if the state of the queue has changed 7648 * some signals may need to be sent and/or poll awakened. 7649 */ 7650 getmout: 7651 qbackenable(q, pri); 7652 7653 /* 7654 * We dropped the stream head lock above. Send all M_SIG messages 7655 * before processing stream head for SIGPOLL messages. 7656 */ 7657 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7658 while ((bp = q->q_first) != NULL && 7659 (bp->b_datap->db_type == M_SIG)) { 7660 /* 7661 * sd_lock is held so the content of the read queue can not 7662 * change. 7663 */ 7664 bp = getq(q); 7665 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7666 7667 strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); 7668 mutex_exit(&stp->sd_lock); 7669 freemsg(bp); 7670 if (STREAM_NEEDSERVICE(stp)) 7671 stream_runservice(stp); 7672 mutex_enter(&stp->sd_lock); 7673 } 7674 7675 /* 7676 * stream head cannot change while we make the determination 7677 * whether or not to send a signal. Drop the flag to allow strrput 7678 * to send firstmsgsigs again. 7679 */ 7680 stp->sd_flag &= ~STRGETINPROG; 7681 7682 /* 7683 * If the type of message at the front of the queue changed 7684 * due to the receive the appropriate signals and pollwakeup events 7685 * are generated. The type of changes are: 7686 * Processed a hipri message, q_first is not hipri. 7687 * Processed a band X message, and q_first is band Y. 7688 * The generated signals and pollwakeups are identical to what 7689 * strrput() generates should the message that is now on q_first 7690 * arrive to an empty read queue. 7691 * 7692 * Note: only strrput will send a signal for a hipri message. 7693 */ 7694 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7695 strsigset_t signals = 0; 7696 strpollset_t pollwakeups = 0; 7697 7698 if (flg & MSG_HIPRI) { 7699 /* 7700 * Removed a hipri message. Regular data at 7701 * the front of the queue. 7702 */ 7703 if (bp->b_band == 0) { 7704 signals = S_INPUT | S_RDNORM; 7705 pollwakeups = POLLIN | POLLRDNORM; 7706 } else { 7707 signals = S_INPUT | S_RDBAND; 7708 pollwakeups = POLLIN | POLLRDBAND; 7709 } 7710 } else if (pri != bp->b_band) { 7711 /* 7712 * The band is different for the new q_first. 7713 */ 7714 if (bp->b_band == 0) { 7715 signals = S_RDNORM; 7716 pollwakeups = POLLIN | POLLRDNORM; 7717 } else { 7718 signals = S_RDBAND; 7719 pollwakeups = POLLIN | POLLRDBAND; 7720 } 7721 } 7722 7723 if (pollwakeups != 0) { 7724 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7725 if (!(stp->sd_rput_opt & SR_POLLIN)) 7726 goto no_pollwake; 7727 stp->sd_rput_opt &= ~SR_POLLIN; 7728 } 7729 mutex_exit(&stp->sd_lock); 7730 pollwakeup(&stp->sd_pollist, pollwakeups); 7731 mutex_enter(&stp->sd_lock); 7732 } 7733 no_pollwake: 7734 7735 if (stp->sd_sigflags & signals) 7736 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7737 } 7738 mutex_exit(&stp->sd_lock); 7739 7740 rvp->r_val1 = more; 7741 return (error); 7742 #undef _LASTMARK 7743 } 7744 7745 /* 7746 * Put a message downstream. 7747 * 7748 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7749 */ 7750 int 7751 strputmsg( 7752 struct vnode *vp, 7753 struct strbuf *mctl, 7754 struct strbuf *mdata, 7755 unsigned char pri, 7756 int flag, 7757 int fmode) 7758 { 7759 struct stdata *stp; 7760 queue_t *wqp; 7761 mblk_t *mp; 7762 ssize_t msgsize; 7763 ssize_t rmin, rmax; 7764 int error; 7765 struct uio uios; 7766 struct uio *uiop = &uios; 7767 struct iovec iovs; 7768 int xpg4 = 0; 7769 7770 ASSERT(vp->v_stream); 7771 stp = vp->v_stream; 7772 wqp = stp->sd_wrq; 7773 7774 /* 7775 * If it is an XPG4 application, we need to send 7776 * SIGPIPE below 7777 */ 7778 7779 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7780 flag &= ~MSG_XPG4; 7781 7782 if (audit_active) 7783 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7784 7785 mutex_enter(&stp->sd_lock); 7786 7787 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7788 mutex_exit(&stp->sd_lock); 7789 return (error); 7790 } 7791 7792 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7793 error = strwriteable(stp, B_FALSE, xpg4); 7794 if (error != 0) { 7795 mutex_exit(&stp->sd_lock); 7796 return (error); 7797 } 7798 } 7799 7800 mutex_exit(&stp->sd_lock); 7801 7802 /* 7803 * Check for legal flag value. 7804 */ 7805 switch (flag) { 7806 case MSG_HIPRI: 7807 if ((mctl->len < 0) || (pri != 0)) 7808 return (EINVAL); 7809 break; 7810 case MSG_BAND: 7811 break; 7812 7813 default: 7814 return (EINVAL); 7815 } 7816 7817 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7818 "strputmsg in:stp %p", stp); 7819 7820 /* get these values from those cached in the stream head */ 7821 rmin = stp->sd_qn_minpsz; 7822 rmax = stp->sd_qn_maxpsz; 7823 7824 /* 7825 * Make sure ctl and data sizes together fall within the 7826 * limits of the max and min receive packet sizes and do 7827 * not exceed system limit. 7828 */ 7829 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7830 if (rmax == 0) { 7831 return (ERANGE); 7832 } 7833 /* 7834 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7835 * Needed to prevent partial failures in the strmakedata loop. 7836 */ 7837 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7838 rmax = stp->sd_maxblk; 7839 7840 if ((msgsize = mdata->len) < 0) { 7841 msgsize = 0; 7842 rmin = 0; /* no range check for NULL data part */ 7843 } 7844 if ((msgsize < rmin) || 7845 ((msgsize > rmax) && (rmax != INFPSZ)) || 7846 (mctl->len > strctlsz)) { 7847 return (ERANGE); 7848 } 7849 7850 /* 7851 * Setup uio and iov for data part 7852 */ 7853 iovs.iov_base = mdata->buf; 7854 iovs.iov_len = msgsize; 7855 uios.uio_iov = &iovs; 7856 uios.uio_iovcnt = 1; 7857 uios.uio_loffset = 0; 7858 uios.uio_segflg = UIO_USERSPACE; 7859 uios.uio_fmode = fmode; 7860 uios.uio_extflg = UIO_COPY_DEFAULT; 7861 uios.uio_resid = msgsize; 7862 uios.uio_offset = 0; 7863 7864 /* Ignore flow control in strput for HIPRI */ 7865 if (flag & MSG_HIPRI) 7866 flag |= MSG_IGNFLOW; 7867 7868 for (;;) { 7869 int done = 0; 7870 7871 /* 7872 * strput will always free the ctl mblk - even when strput 7873 * fails. 7874 */ 7875 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7876 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7877 "strputmsg out:stp %p out %d error %d", 7878 stp, 1, error); 7879 return (error); 7880 } 7881 /* 7882 * Verify that the whole message can be transferred by 7883 * strput. 7884 */ 7885 ASSERT(stp->sd_maxblk == INFPSZ || 7886 stp->sd_maxblk >= mdata->len); 7887 7888 msgsize = mdata->len; 7889 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7890 mdata->len = msgsize; 7891 7892 if (error == 0) 7893 break; 7894 7895 if (error != EWOULDBLOCK) 7896 goto out; 7897 7898 mutex_enter(&stp->sd_lock); 7899 /* 7900 * Check for a missed wakeup. 7901 * Needed since strput did not hold sd_lock across 7902 * the canputnext. 7903 */ 7904 if (bcanputnext(wqp, pri)) { 7905 /* Try again */ 7906 mutex_exit(&stp->sd_lock); 7907 continue; 7908 } 7909 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7910 "strputmsg wait:stp %p waits pri %d", stp, pri); 7911 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7912 &done)) != 0) || done) { 7913 mutex_exit(&stp->sd_lock); 7914 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7915 "strputmsg out:q %p out %d error %d", 7916 stp, 0, error); 7917 return (error); 7918 } 7919 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7920 "strputmsg wake:stp %p wakes", stp); 7921 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7922 mutex_exit(&stp->sd_lock); 7923 return (error); 7924 } 7925 mutex_exit(&stp->sd_lock); 7926 } 7927 out: 7928 /* 7929 * For historic reasons, applications expect EAGAIN 7930 * when data mblk could not be allocated. so change 7931 * ENOMEM back to EAGAIN 7932 */ 7933 if (error == ENOMEM) 7934 error = EAGAIN; 7935 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7936 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7937 return (error); 7938 } 7939 7940 /* 7941 * Put a message downstream. 7942 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7943 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7944 * and the fmode parameter. 7945 * 7946 * This routine handles the consolidation private flags: 7947 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7948 * MSG_HOLDSIG Hold signals while waiting for data. 7949 * MSG_IGNFLOW Don't check streams flow control. 7950 * 7951 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7952 */ 7953 int 7954 kstrputmsg( 7955 struct vnode *vp, 7956 mblk_t *mctl, 7957 struct uio *uiop, 7958 ssize_t msgsize, 7959 unsigned char pri, 7960 int flag, 7961 int fmode) 7962 { 7963 struct stdata *stp; 7964 queue_t *wqp; 7965 ssize_t rmin, rmax; 7966 int error; 7967 7968 ASSERT(vp->v_stream); 7969 stp = vp->v_stream; 7970 wqp = stp->sd_wrq; 7971 if (audit_active) 7972 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7973 if (mctl == NULL) 7974 return (EINVAL); 7975 7976 mutex_enter(&stp->sd_lock); 7977 7978 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7979 mutex_exit(&stp->sd_lock); 7980 freemsg(mctl); 7981 return (error); 7982 } 7983 7984 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7985 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7986 error = strwriteable(stp, B_FALSE, B_TRUE); 7987 if (error != 0) { 7988 mutex_exit(&stp->sd_lock); 7989 freemsg(mctl); 7990 return (error); 7991 } 7992 } 7993 } 7994 7995 mutex_exit(&stp->sd_lock); 7996 7997 /* 7998 * Check for legal flag value. 7999 */ 8000 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 8001 case MSG_HIPRI: 8002 if (pri != 0) { 8003 freemsg(mctl); 8004 return (EINVAL); 8005 } 8006 break; 8007 case MSG_BAND: 8008 break; 8009 default: 8010 freemsg(mctl); 8011 return (EINVAL); 8012 } 8013 8014 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 8015 "kstrputmsg in:stp %p", stp); 8016 8017 /* get these values from those cached in the stream head */ 8018 rmin = stp->sd_qn_minpsz; 8019 rmax = stp->sd_qn_maxpsz; 8020 8021 /* 8022 * Make sure ctl and data sizes together fall within the 8023 * limits of the max and min receive packet sizes and do 8024 * not exceed system limit. 8025 */ 8026 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 8027 if (rmax == 0) { 8028 freemsg(mctl); 8029 return (ERANGE); 8030 } 8031 /* 8032 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 8033 * Needed to prevent partial failures in the strmakedata loop. 8034 */ 8035 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 8036 rmax = stp->sd_maxblk; 8037 8038 if (uiop == NULL) { 8039 msgsize = -1; 8040 rmin = -1; /* no range check for NULL data part */ 8041 } else { 8042 /* Use uio flags as well as the fmode parameter flags */ 8043 fmode |= uiop->uio_fmode; 8044 8045 if ((msgsize < rmin) || 8046 ((msgsize > rmax) && (rmax != INFPSZ))) { 8047 freemsg(mctl); 8048 return (ERANGE); 8049 } 8050 } 8051 8052 /* Ignore flow control in strput for HIPRI */ 8053 if (flag & MSG_HIPRI) 8054 flag |= MSG_IGNFLOW; 8055 8056 for (;;) { 8057 int done = 0; 8058 int waitflag; 8059 mblk_t *mp; 8060 8061 /* 8062 * strput will always free the ctl mblk - even when strput 8063 * fails. If MSG_IGNFLOW is set then any error returned 8064 * will cause us to break the loop, so we don't need a copy 8065 * of the message. If MSG_IGNFLOW is not set, then we can 8066 * get hit by flow control and be forced to try again. In 8067 * this case we need to have a copy of the message. We 8068 * do this using copymsg since the message may get modified 8069 * by something below us. 8070 * 8071 * We've observed that many TPI providers do not check db_ref 8072 * on the control messages but blindly reuse them for the 8073 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 8074 * friendly to such providers than using dupmsg. Also, note 8075 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 8076 * Only data messages are subject to flow control, hence 8077 * subject to this copymsg. 8078 */ 8079 if (flag & MSG_IGNFLOW) { 8080 mp = mctl; 8081 mctl = NULL; 8082 } else { 8083 do { 8084 /* 8085 * If a message has a free pointer, the message 8086 * must be dupmsg to maintain this pointer. 8087 * Code using this facility must be sure 8088 * that modules below will not change the 8089 * contents of the dblk without checking db_ref 8090 * first. If db_ref is > 1, then the module 8091 * needs to do a copymsg first. Otherwise, 8092 * the contents of the dblk may become 8093 * inconsistent because the freesmg/freeb below 8094 * may end up calling atomic_add_32_nv. 8095 * The atomic_add_32_nv in freeb (accessing 8096 * all of db_ref, db_type, db_flags, and 8097 * db_struioflag) does not prevent other threads 8098 * from concurrently trying to modify e.g. 8099 * db_type. 8100 */ 8101 if (mctl->b_datap->db_frtnp != NULL) 8102 mp = dupmsg(mctl); 8103 else 8104 mp = copymsg(mctl); 8105 8106 if (mp != NULL) 8107 break; 8108 8109 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 8110 if (error) { 8111 freemsg(mctl); 8112 return (error); 8113 } 8114 } while (mp == NULL); 8115 } 8116 /* 8117 * Verify that all of msgsize can be transferred by 8118 * strput. 8119 */ 8120 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 8121 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 8122 if (error == 0) 8123 break; 8124 8125 if (error != EWOULDBLOCK) 8126 goto out; 8127 8128 /* 8129 * IF MSG_IGNFLOW is set we should have broken out of loop 8130 * above. 8131 */ 8132 ASSERT(!(flag & MSG_IGNFLOW)); 8133 mutex_enter(&stp->sd_lock); 8134 /* 8135 * Check for a missed wakeup. 8136 * Needed since strput did not hold sd_lock across 8137 * the canputnext. 8138 */ 8139 if (bcanputnext(wqp, pri)) { 8140 /* Try again */ 8141 mutex_exit(&stp->sd_lock); 8142 continue; 8143 } 8144 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 8145 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 8146 8147 waitflag = WRITEWAIT; 8148 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 8149 if (flag & MSG_HOLDSIG) 8150 waitflag |= STR_NOSIG; 8151 if (flag & MSG_IGNERROR) 8152 waitflag |= STR_NOERROR; 8153 } 8154 if (((error = strwaitq(stp, waitflag, 8155 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 8156 mutex_exit(&stp->sd_lock); 8157 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8158 "kstrputmsg out:stp %p out %d error %d", 8159 stp, 0, error); 8160 freemsg(mctl); 8161 return (error); 8162 } 8163 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 8164 "kstrputmsg wake:stp %p wakes", stp); 8165 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8166 mutex_exit(&stp->sd_lock); 8167 freemsg(mctl); 8168 return (error); 8169 } 8170 mutex_exit(&stp->sd_lock); 8171 } 8172 out: 8173 freemsg(mctl); 8174 /* 8175 * For historic reasons, applications expect EAGAIN 8176 * when data mblk could not be allocated. so change 8177 * ENOMEM back to EAGAIN 8178 */ 8179 if (error == ENOMEM) 8180 error = EAGAIN; 8181 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8182 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 8183 return (error); 8184 } 8185 8186 /* 8187 * Determines whether the necessary conditions are set on a stream 8188 * for it to be readable, writeable, or have exceptions. 8189 * 8190 * strpoll handles the consolidation private events: 8191 * POLLNOERR Do not return POLLERR even if there are stream 8192 * head errors. 8193 * Used by sockfs. 8194 * POLLRDDATA Do not return POLLIN unless at least one message on 8195 * the queue contains one or more M_DATA mblks. Thus 8196 * when this flag is set a queue with only 8197 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8198 * Used by sockfs to ignore T_EXDATA_IND messages. 8199 * 8200 * Note: POLLRDDATA assumes that synch streams only return messages with 8201 * an M_DATA attached (i.e. not messages consisting of only 8202 * an M_PROTO/M_PCPROTO part). 8203 */ 8204 int 8205 strpoll( 8206 struct stdata *stp, 8207 short events_arg, 8208 int anyyet, 8209 short *reventsp, 8210 struct pollhead **phpp) 8211 { 8212 int events = (ushort_t)events_arg; 8213 int retevents = 0; 8214 mblk_t *mp; 8215 qband_t *qbp; 8216 long sd_flags = stp->sd_flag; 8217 int headlocked = 0; 8218 8219 /* 8220 * For performance, a single 'if' tests for most possible edge 8221 * conditions in one shot 8222 */ 8223 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8224 if (sd_flags & STPLEX) { 8225 *reventsp = POLLNVAL; 8226 return (EINVAL); 8227 } 8228 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8229 (sd_flags & STRDERR)) || 8230 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8231 (sd_flags & STWRERR))) { 8232 if (!(events & POLLNOERR)) { 8233 *reventsp = POLLERR; 8234 return (0); 8235 } 8236 } 8237 } 8238 if (sd_flags & STRHUP) { 8239 retevents |= POLLHUP; 8240 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8241 queue_t *tq; 8242 queue_t *qp = stp->sd_wrq; 8243 8244 claimstr(qp); 8245 /* Find next module forward that has a service procedure */ 8246 tq = qp->q_next->q_nfsrv; 8247 ASSERT(tq != NULL); 8248 8249 polllock(&stp->sd_pollist, QLOCK(tq)); 8250 if (events & POLLWRNORM) { 8251 queue_t *sqp; 8252 8253 if (tq->q_flag & QFULL) 8254 /* ensure backq svc procedure runs */ 8255 tq->q_flag |= QWANTW; 8256 else if ((sqp = stp->sd_struiowrq) != NULL) { 8257 /* Check sync stream barrier write q */ 8258 mutex_exit(QLOCK(tq)); 8259 polllock(&stp->sd_pollist, QLOCK(sqp)); 8260 if (sqp->q_flag & QFULL) 8261 /* ensure pollwakeup() is done */ 8262 sqp->q_flag |= QWANTWSYNC; 8263 else 8264 retevents |= POLLOUT; 8265 /* More write events to process ??? */ 8266 if (! (events & POLLWRBAND)) { 8267 mutex_exit(QLOCK(sqp)); 8268 releasestr(qp); 8269 goto chkrd; 8270 } 8271 mutex_exit(QLOCK(sqp)); 8272 polllock(&stp->sd_pollist, QLOCK(tq)); 8273 } else 8274 retevents |= POLLOUT; 8275 } 8276 if (events & POLLWRBAND) { 8277 qbp = tq->q_bandp; 8278 if (qbp) { 8279 while (qbp) { 8280 if (qbp->qb_flag & QB_FULL) 8281 qbp->qb_flag |= QB_WANTW; 8282 else 8283 retevents |= POLLWRBAND; 8284 qbp = qbp->qb_next; 8285 } 8286 } else { 8287 retevents |= POLLWRBAND; 8288 } 8289 } 8290 mutex_exit(QLOCK(tq)); 8291 releasestr(qp); 8292 } 8293 chkrd: 8294 if (sd_flags & STRPRI) { 8295 retevents |= (events & POLLPRI); 8296 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8297 queue_t *qp = _RD(stp->sd_wrq); 8298 int normevents = (events & (POLLIN | POLLRDNORM)); 8299 8300 /* 8301 * Note: Need to do polllock() here since ps_lock may be 8302 * held. See bug 4191544. 8303 */ 8304 polllock(&stp->sd_pollist, &stp->sd_lock); 8305 headlocked = 1; 8306 mp = qp->q_first; 8307 while (mp) { 8308 /* 8309 * For POLLRDDATA we scan b_cont and b_next until we 8310 * find an M_DATA. 8311 */ 8312 if ((events & POLLRDDATA) && 8313 mp->b_datap->db_type != M_DATA) { 8314 mblk_t *nmp = mp->b_cont; 8315 8316 while (nmp != NULL && 8317 nmp->b_datap->db_type != M_DATA) 8318 nmp = nmp->b_cont; 8319 if (nmp == NULL) { 8320 mp = mp->b_next; 8321 continue; 8322 } 8323 } 8324 if (mp->b_band == 0) 8325 retevents |= normevents; 8326 else 8327 retevents |= (events & (POLLIN | POLLRDBAND)); 8328 break; 8329 } 8330 if (! (retevents & normevents) && 8331 (stp->sd_wakeq & RSLEEP)) { 8332 /* 8333 * Sync stream barrier read queue has data. 8334 */ 8335 retevents |= normevents; 8336 } 8337 /* Treat eof as normal data */ 8338 if (sd_flags & STREOF) 8339 retevents |= normevents; 8340 } 8341 8342 *reventsp = (short)retevents; 8343 if (retevents) { 8344 if (headlocked) 8345 mutex_exit(&stp->sd_lock); 8346 return (0); 8347 } 8348 8349 /* 8350 * If poll() has not found any events yet, set up event cell 8351 * to wake up the poll if a requested event occurs on this 8352 * stream. Check for collisions with outstanding poll requests. 8353 */ 8354 if (!anyyet) { 8355 *phpp = &stp->sd_pollist; 8356 if (headlocked == 0) { 8357 polllock(&stp->sd_pollist, &stp->sd_lock); 8358 headlocked = 1; 8359 } 8360 stp->sd_rput_opt |= SR_POLLIN; 8361 } 8362 if (headlocked) 8363 mutex_exit(&stp->sd_lock); 8364 return (0); 8365 } 8366 8367 /* 8368 * The purpose of putback() is to assure sleeping polls/reads 8369 * are awakened when there are no new messages arriving at the, 8370 * stream head, and a message is placed back on the read queue. 8371 * 8372 * sd_lock must be held when messages are placed back on stream 8373 * head. (getq() holds sd_lock when it removes messages from 8374 * the queue) 8375 */ 8376 8377 static void 8378 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8379 { 8380 mblk_t *qfirst = q->q_first; 8381 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8382 8383 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8384 (qfirst != NULL) && 8385 (qfirst->b_datap->db_type == M_DATA) && 8386 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0)) { 8387 /* 8388 * We use the same logic as defined in strrput() 8389 * but in reverse as we are putting back onto the 8390 * queue and want to retain byte ordering. 8391 * Consolidate an M_DATA message onto an M_DATA, 8392 * M_PROTO, or M_PCPROTO by merging it with q_first. 8393 * The consolidation does not take place if the message 8394 * we are returning to the queue is marked with either 8395 * of the marks or the delim flag or if q_first 8396 * is marked with MSGMARK. The MSGMARK check is needed to 8397 * handle the odd semantics of MSGMARK where essentially 8398 * the whole message is to be treated as marked. 8399 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8400 * to the front of the b_cont chain. 8401 */ 8402 unsigned char db_type = bp->b_datap->db_type; 8403 8404 if ((db_type == M_DATA || db_type == M_PROTO || 8405 db_type == M_PCPROTO) && 8406 !(bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT))) { 8407 rmvq_noenab(q, qfirst); 8408 /* 8409 * The first message in the b_cont list 8410 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8411 * We need to handle the case where we 8412 * are appending: 8413 * 8414 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8415 * 2) a MSGMARKNEXT to a plain message. 8416 * 3) a MSGNOTMARKNEXT to a plain message 8417 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8418 * message. 8419 * 8420 * Thus we never append a MSGMARKNEXT or 8421 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8422 */ 8423 if (qfirst->b_flag & MSGMARKNEXT) { 8424 bp->b_flag |= MSGMARKNEXT; 8425 bp->b_flag &= ~MSGNOTMARKNEXT; 8426 qfirst->b_flag &= ~MSGMARKNEXT; 8427 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8428 bp->b_flag |= MSGNOTMARKNEXT; 8429 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8430 } 8431 8432 linkb(bp, qfirst); 8433 } 8434 } 8435 (void) putbq(q, bp); 8436 8437 /* 8438 * A message may have come in when the sd_lock was dropped in the 8439 * calling routine. If this is the case and STR*ATMARK info was 8440 * received, need to move that from the stream head to the q_last 8441 * so that SIOCATMARK can return the proper value. 8442 */ 8443 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8444 unsigned short *flagp = &q->q_last->b_flag; 8445 uint_t b_flag = (uint_t)*flagp; 8446 8447 if (stp->sd_flag & STRATMARK) { 8448 b_flag &= ~MSGNOTMARKNEXT; 8449 b_flag |= MSGMARKNEXT; 8450 stp->sd_flag &= ~STRATMARK; 8451 } else { 8452 b_flag &= ~MSGMARKNEXT; 8453 b_flag |= MSGNOTMARKNEXT; 8454 stp->sd_flag &= ~STRNOTATMARK; 8455 } 8456 *flagp = (unsigned short) b_flag; 8457 } 8458 8459 #ifdef DEBUG 8460 /* 8461 * Make sure that the flags are not messed up. 8462 */ 8463 { 8464 mblk_t *mp; 8465 mp = q->q_last; 8466 while (mp != NULL) { 8467 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8468 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8469 mp = mp->b_cont; 8470 } 8471 } 8472 #endif 8473 if (q->q_first == bp) { 8474 short pollevents; 8475 8476 if (stp->sd_flag & RSLEEP) { 8477 stp->sd_flag &= ~RSLEEP; 8478 cv_broadcast(&q->q_wait); 8479 } 8480 if (stp->sd_flag & STRPRI) { 8481 pollevents = POLLPRI; 8482 } else { 8483 if (band == 0) { 8484 if (!(stp->sd_rput_opt & SR_POLLIN)) 8485 return; 8486 stp->sd_rput_opt &= ~SR_POLLIN; 8487 pollevents = POLLIN | POLLRDNORM; 8488 } else { 8489 pollevents = POLLIN | POLLRDBAND; 8490 } 8491 } 8492 mutex_exit(&stp->sd_lock); 8493 pollwakeup(&stp->sd_pollist, pollevents); 8494 mutex_enter(&stp->sd_lock); 8495 } 8496 } 8497 8498 /* 8499 * Return the held vnode attached to the stream head of a 8500 * given queue 8501 * It is the responsibility of the calling routine to ensure 8502 * that the queue does not go away (e.g. pop). 8503 */ 8504 vnode_t * 8505 strq2vp(queue_t *qp) 8506 { 8507 vnode_t *vp; 8508 vp = STREAM(qp)->sd_vnode; 8509 ASSERT(vp != NULL); 8510 VN_HOLD(vp); 8511 return (vp); 8512 } 8513 8514 /* 8515 * return the stream head write queue for the given vp 8516 * It is the responsibility of the calling routine to ensure 8517 * that the stream or vnode do not close. 8518 */ 8519 queue_t * 8520 strvp2wq(vnode_t *vp) 8521 { 8522 ASSERT(vp->v_stream != NULL); 8523 return (vp->v_stream->sd_wrq); 8524 } 8525 8526 /* 8527 * pollwakeup stream head 8528 * It is the responsibility of the calling routine to ensure 8529 * that the stream or vnode do not close. 8530 */ 8531 void 8532 strpollwakeup(vnode_t *vp, short event) 8533 { 8534 ASSERT(vp->v_stream); 8535 pollwakeup(&vp->v_stream->sd_pollist, event); 8536 } 8537 8538 /* 8539 * Mate the stream heads of two vnodes together. If the two vnodes are the 8540 * same, we just make the write-side point at the read-side -- otherwise, 8541 * we do a full mate. Only works on vnodes associated with streams that are 8542 * still being built and thus have only a stream head. 8543 */ 8544 void 8545 strmate(vnode_t *vp1, vnode_t *vp2) 8546 { 8547 queue_t *wrq1 = strvp2wq(vp1); 8548 queue_t *wrq2 = strvp2wq(vp2); 8549 8550 /* 8551 * Verify that there are no modules on the stream yet. We also 8552 * rely on the stream head always having a service procedure to 8553 * avoid tweaking q_nfsrv. 8554 */ 8555 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8556 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8557 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8558 8559 /* 8560 * If the queues are the same, just twist; otherwise do a full mate. 8561 */ 8562 if (wrq1 == wrq2) { 8563 wrq1->q_next = _RD(wrq1); 8564 } else { 8565 wrq1->q_next = _RD(wrq2); 8566 wrq2->q_next = _RD(wrq1); 8567 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8568 STREAM(wrq1)->sd_flag |= STRMATE; 8569 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8570 STREAM(wrq2)->sd_flag |= STRMATE; 8571 } 8572 } 8573 8574 /* 8575 * XXX will go away when console is correctly fixed. 8576 * Clean up the console PIDS, from previous I_SETSIG, 8577 * called only for cnopen which never calls strclean(). 8578 */ 8579 void 8580 str_cn_clean(struct vnode *vp) 8581 { 8582 strsig_t *ssp, *pssp, *tssp; 8583 struct stdata *stp; 8584 struct pid *pidp; 8585 int update = 0; 8586 8587 ASSERT(vp->v_stream); 8588 stp = vp->v_stream; 8589 pssp = NULL; 8590 mutex_enter(&stp->sd_lock); 8591 ssp = stp->sd_siglist; 8592 while (ssp) { 8593 mutex_enter(&pidlock); 8594 pidp = ssp->ss_pidp; 8595 /* 8596 * Get rid of PID if the proc is gone. 8597 */ 8598 if (pidp->pid_prinactive) { 8599 tssp = ssp->ss_next; 8600 if (pssp) 8601 pssp->ss_next = tssp; 8602 else 8603 stp->sd_siglist = tssp; 8604 ASSERT(pidp->pid_ref <= 1); 8605 PID_RELE(ssp->ss_pidp); 8606 mutex_exit(&pidlock); 8607 kmem_free(ssp, sizeof (strsig_t)); 8608 update = 1; 8609 ssp = tssp; 8610 continue; 8611 } else 8612 mutex_exit(&pidlock); 8613 pssp = ssp; 8614 ssp = ssp->ss_next; 8615 } 8616 if (update) { 8617 stp->sd_sigflags = 0; 8618 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8619 stp->sd_sigflags |= ssp->ss_events; 8620 } 8621 mutex_exit(&stp->sd_lock); 8622 } 8623 8624 /* 8625 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8626 */ 8627 static boolean_t 8628 msghasdata(mblk_t *bp) 8629 { 8630 for (; bp; bp = bp->b_cont) 8631 if (bp->b_datap->db_type == M_DATA) { 8632 ASSERT(bp->b_wptr >= bp->b_rptr); 8633 if (bp->b_wptr > bp->b_rptr) 8634 return (B_TRUE); 8635 } 8636 return (B_FALSE); 8637 } 8638