1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/bitmap.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/errno.h> 41 #include <sys/proc.h> 42 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */ 43 #include <sys/signal.h> 44 #include <sys/siginfo.h> 45 #include <sys/fault.h> 46 #include <sys/ucontext.h> 47 #include <sys/procfs.h> 48 #include <sys/wait.h> 49 #include <sys/class.h> 50 #include <sys/mman.h> 51 #include <sys/procset.h> 52 #include <sys/kmem.h> 53 #include <sys/cpuvar.h> 54 #include <sys/prsystm.h> 55 #include <sys/debug.h> 56 #include <vm/as.h> 57 #include <sys/bitmap.h> 58 #include <c2/audit.h> 59 #include <sys/core.h> 60 #include <sys/schedctl.h> 61 #include <sys/contract/process_impl.h> 62 #include <sys/dtrace.h> 63 #include <sys/sdt.h> 64 65 /* MUST be contiguous */ 66 k_sigset_t nullsmask = {0, 0}; 67 68 k_sigset_t fillset = {FILLSET0, FILLSET1}; 69 70 k_sigset_t cantmask = {CANTMASK0, CANTMASK1}; 71 72 k_sigset_t cantreset = {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0}; 73 74 k_sigset_t ignoredefault = {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR) 75 |sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)), 76 (sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE) 77 |sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1) 78 |sigmask(SIGJVM2))}; 79 80 k_sigset_t stopdefault = {(sigmask(SIGSTOP)|sigmask(SIGTSTP) 81 |sigmask(SIGTTOU)|sigmask(SIGTTIN)), 0}; 82 83 k_sigset_t coredefault = {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP) 84 |sigmask(SIGIOT)|sigmask(SIGEMT)|sigmask(SIGFPE) 85 |sigmask(SIGBUS)|sigmask(SIGSEGV)|sigmask(SIGSYS) 86 |sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0}; 87 88 k_sigset_t holdvfork = {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)), 89 0}; 90 91 static int isjobstop(int); 92 static void post_sigcld(proc_t *, sigqueue_t *); 93 94 /* 95 * Internal variables for counting number of user thread stop requests posted. 96 * They may not be accurate at some special situation such as that a virtually 97 * stopped thread starts to run. 98 */ 99 static int num_utstop; 100 /* 101 * Internal variables for broadcasting an event when all thread stop requests 102 * are processed. 103 */ 104 static kcondvar_t utstop_cv; 105 106 static kmutex_t thread_stop_lock; 107 void del_one_utstop(void); 108 109 /* 110 * Send the specified signal to the specified process. 111 */ 112 void 113 psignal(proc_t *p, int sig) 114 { 115 mutex_enter(&p->p_lock); 116 sigtoproc(p, NULL, sig); 117 mutex_exit(&p->p_lock); 118 } 119 120 /* 121 * Send the specified signal to the specified thread. 122 */ 123 void 124 tsignal(kthread_t *t, int sig) 125 { 126 proc_t *p = ttoproc(t); 127 128 mutex_enter(&p->p_lock); 129 sigtoproc(p, t, sig); 130 mutex_exit(&p->p_lock); 131 } 132 133 int 134 signal_is_blocked(kthread_t *t, int sig) 135 { 136 return (sigismember(&t->t_hold, sig) || 137 (schedctl_sigblock(t) && !sigismember(&cantmask, sig))); 138 } 139 140 /* 141 * Return true if the signal can safely be discarded on generation. 142 * That is, if there is no need for the signal on the receiving end. 143 * The answer is true if the process is a zombie or 144 * if all of these conditions are true: 145 * the signal is being ignored 146 * the process is single-threaded 147 * the signal is not being traced by /proc 148 * the signal is not blocked by the process 149 */ 150 static int 151 sig_discardable(proc_t *p, int sig) 152 { 153 kthread_t *t = p->p_tlist; 154 155 return (t == NULL || /* if zombie or ... */ 156 (sigismember(&p->p_ignore, sig) && /* signal is ignored */ 157 t->t_forw == t && /* and single-threaded */ 158 !tracing(p, sig) && /* and no /proc tracing */ 159 !signal_is_blocked(t, sig))); /* and signal not blocked */ 160 } 161 162 /* 163 * Return true if this thread is going to eat this signal soon. 164 * Note that, if the signal is SIGKILL, we force stopped threads to be 165 * set running (to make SIGKILL be a sure kill), but only if the process 166 * is not currently locked by /proc (the P_PR_LOCK flag). Code in /proc 167 * relies on the fact that a process will not change shape while P_PR_LOCK 168 * is set (it drops and reacquires p->p_lock while leaving P_PR_LOCK set). 169 * We wish that we could simply call prbarrier() below, in sigtoproc(), to 170 * ensure that the process is not locked by /proc, but prbarrier() drops 171 * and reacquires p->p_lock and dropping p->p_lock here would be damaging. 172 */ 173 int 174 eat_signal(kthread_t *t, int sig) 175 { 176 int rval = 0; 177 ASSERT(THREAD_LOCK_HELD(t)); 178 179 /* 180 * Do not do anything if the target thread has the signal blocked. 181 */ 182 if (!signal_is_blocked(t, sig)) { 183 t->t_sig_check = 1; /* have thread do an issig */ 184 if (ISWAKEABLE(t) || ISWAITING(t)) { 185 setrun_locked(t); 186 rval = 1; 187 } else if (t->t_state == TS_STOPPED && sig == SIGKILL && 188 !(ttoproc(t)->p_proc_flag & P_PR_LOCK)) { 189 ttoproc(t)->p_stopsig = 0; 190 t->t_dtrace_stop = 0; 191 t->t_schedflag |= TS_XSTART | TS_PSTART; 192 setrun_locked(t); 193 } else if (t != curthread && t->t_state == TS_ONPROC) { 194 aston(t); /* make it do issig promptly */ 195 if (t->t_cpu != CPU) 196 poke_cpu(t->t_cpu->cpu_id); 197 rval = 1; 198 } else if (t->t_state == TS_RUN) { 199 rval = 1; 200 } 201 } 202 203 return (rval); 204 } 205 206 /* 207 * Post a signal. 208 * If a non-null thread pointer is passed, then post the signal 209 * to the thread/lwp, otherwise post the signal to the process. 210 */ 211 void 212 sigtoproc(proc_t *p, kthread_t *t, int sig) 213 { 214 kthread_t *tt; 215 int ext = !(curproc->p_flag & SSYS) && 216 (curproc->p_ct_process != p->p_ct_process); 217 218 ASSERT(MUTEX_HELD(&p->p_lock)); 219 220 if (sig <= 0 || sig >= NSIG) 221 return; 222 223 /* 224 * Regardless of origin or directedness, 225 * SIGKILL kills all lwps in the process immediately 226 * and jobcontrol signals affect all lwps in the process. 227 */ 228 if (sig == SIGKILL) { 229 p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0); 230 t = NULL; 231 } else if (sig == SIGCONT) { 232 /* 233 * The SSCONT flag will remain set until a stopping 234 * signal comes in (below). This is harmless. 235 */ 236 p->p_flag |= SSCONT; 237 sigdelq(p, NULL, SIGSTOP); 238 sigdelq(p, NULL, SIGTSTP); 239 sigdelq(p, NULL, SIGTTOU); 240 sigdelq(p, NULL, SIGTTIN); 241 sigdiffset(&p->p_sig, &stopdefault); 242 sigdiffset(&p->p_extsig, &stopdefault); 243 p->p_stopsig = 0; 244 if ((tt = p->p_tlist) != NULL) { 245 do { 246 sigdelq(p, tt, SIGSTOP); 247 sigdelq(p, tt, SIGTSTP); 248 sigdelq(p, tt, SIGTTOU); 249 sigdelq(p, tt, SIGTTIN); 250 sigdiffset(&tt->t_sig, &stopdefault); 251 sigdiffset(&tt->t_extsig, &stopdefault); 252 } while ((tt = tt->t_forw) != p->p_tlist); 253 } 254 if ((tt = p->p_tlist) != NULL) { 255 do { 256 thread_lock(tt); 257 if (tt->t_state == TS_STOPPED && 258 tt->t_whystop == PR_JOBCONTROL) { 259 tt->t_schedflag |= TS_XSTART; 260 setrun_locked(tt); 261 } 262 thread_unlock(tt); 263 } while ((tt = tt->t_forw) != p->p_tlist); 264 } 265 } else if (sigismember(&stopdefault, sig)) { 266 /* 267 * This test has a race condition which we can't fix: 268 * By the time the stopping signal is received by 269 * the target process/thread, the signal handler 270 * and/or the detached state might have changed. 271 */ 272 if (PTOU(p)->u_signal[sig-1] == SIG_DFL && 273 (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned)) 274 p->p_flag &= ~SSCONT; 275 sigdelq(p, NULL, SIGCONT); 276 sigdelset(&p->p_sig, SIGCONT); 277 sigdelset(&p->p_extsig, SIGCONT); 278 if ((tt = p->p_tlist) != NULL) { 279 do { 280 sigdelq(p, tt, SIGCONT); 281 sigdelset(&tt->t_sig, SIGCONT); 282 sigdelset(&tt->t_extsig, SIGCONT); 283 } while ((tt = tt->t_forw) != p->p_tlist); 284 } 285 } 286 287 if (sig_discardable(p, sig)) { 288 DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist, 289 proc_t *, p, int, sig); 290 return; 291 } 292 293 if (t != NULL) { 294 /* 295 * This is a directed signal, wake up the lwp. 296 */ 297 sigaddset(&t->t_sig, sig); 298 if (ext) 299 sigaddset(&t->t_extsig, sig); 300 thread_lock(t); 301 (void) eat_signal(t, sig); 302 thread_unlock(t); 303 DTRACE_PROC2(signal__send, kthread_t *, t, int, sig); 304 } else if ((tt = p->p_tlist) != NULL) { 305 /* 306 * Make sure that some lwp that already exists 307 * in the process fields the signal soon. 308 * Wake up an interruptibly sleeping lwp if necessary. 309 */ 310 int su = 0; 311 312 sigaddset(&p->p_sig, sig); 313 if (ext) 314 sigaddset(&p->p_extsig, sig); 315 do { 316 thread_lock(tt); 317 if (eat_signal(tt, sig)) { 318 thread_unlock(tt); 319 break; 320 } 321 if (sig == SIGKILL && SUSPENDED(tt)) 322 su++; 323 thread_unlock(tt); 324 } while ((tt = tt->t_forw) != p->p_tlist); 325 /* 326 * If the process is deadlocked, make somebody run and die. 327 */ 328 if (sig == SIGKILL && p->p_stat != SIDL && 329 p->p_lwprcnt == 0 && p->p_lwpcnt == su && 330 !(p->p_proc_flag & P_PR_LOCK)) { 331 thread_lock(tt); 332 p->p_lwprcnt++; 333 tt->t_schedflag |= TS_CSTART; 334 setrun_locked(tt); 335 thread_unlock(tt); 336 } 337 338 DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig); 339 } 340 } 341 342 static int 343 isjobstop(int sig) 344 { 345 proc_t *p = ttoproc(curthread); 346 347 ASSERT(MUTEX_HELD(&p->p_lock)); 348 349 if (PTOU(curproc)->u_signal[sig-1] == SIG_DFL && 350 sigismember(&stopdefault, sig)) { 351 /* 352 * If SIGCONT has been posted since we promoted this signal 353 * from pending to current, then don't do a jobcontrol stop. 354 */ 355 if (!(p->p_flag & SSCONT) && 356 (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) && 357 curthread != p->p_agenttp) { 358 sigqueue_t *sqp; 359 360 stop(PR_JOBCONTROL, sig); 361 mutex_exit(&p->p_lock); 362 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP); 363 mutex_enter(&pidlock); 364 /* 365 * Only the first lwp to continue notifies the parent. 366 */ 367 if (p->p_pidflag & CLDCONT) 368 siginfofree(sqp); 369 else { 370 p->p_pidflag |= CLDCONT; 371 p->p_wcode = CLD_CONTINUED; 372 p->p_wdata = SIGCONT; 373 sigcld(p, sqp); 374 } 375 mutex_exit(&pidlock); 376 mutex_enter(&p->p_lock); 377 } 378 return (1); 379 } 380 return (0); 381 } 382 383 /* 384 * Returns true if the current process has a signal to process, and 385 * the signal is not held. The signal to process is put in p_cursig. 386 * This is asked at least once each time a process enters the system 387 * (though this can usually be done without actually calling issig by 388 * checking the pending signal masks). A signal does not do anything 389 * directly to a process; it sets a flag that asks the process to do 390 * something to itself. 391 * 392 * The "why" argument indicates the allowable side-effects of the call: 393 * 394 * FORREAL: Extract the next pending signal from p_sig into p_cursig; 395 * stop the process if a stop has been requested or if a traced signal 396 * is pending. 397 * 398 * JUSTLOOKING: Don't stop the process, just indicate whether or not 399 * a signal might be pending (FORREAL is needed to tell for sure). 400 * 401 * XXX: Changes to the logic in these routines should be propagated 402 * to lm_sigispending(). See bug 1201594. 403 */ 404 405 static int issig_forreal(void); 406 static int issig_justlooking(void); 407 408 int 409 issig(int why) 410 { 411 ASSERT(why == FORREAL || why == JUSTLOOKING); 412 413 return ((why == FORREAL)? issig_forreal() : issig_justlooking()); 414 } 415 416 417 static int 418 issig_justlooking(void) 419 { 420 kthread_t *t = curthread; 421 klwp_t *lwp = ttolwp(t); 422 proc_t *p = ttoproc(t); 423 k_sigset_t set; 424 425 /* 426 * This function answers the question: 427 * "Is there any reason to call issig_forreal()?" 428 * 429 * We have to answer the question w/o grabbing any locks 430 * because we are (most likely) being called after we 431 * put ourselves on the sleep queue. 432 */ 433 434 if (t->t_dtrace_stop | t->t_dtrace_sig) 435 return (1); 436 437 /* 438 * Another piece of complexity in this process. When single-stepping a 439 * process, we don't want an intervening signal or TP_PAUSE request to 440 * suspend the current thread. Otherwise, the controlling process will 441 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag. 442 * We will trigger any remaining signals when we re-enter the kernel on 443 * the single step trap. 444 */ 445 if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) 446 return (0); 447 448 if ((lwp->lwp_asleep && MUSTRETURN(p, t)) || 449 (p->p_flag & (SEXITLWPS|SKILLED)) || 450 (lwp->lwp_nostop == 0 && 451 (p->p_stopsig | (p->p_flag & (SHOLDFORK1|SHOLDWATCH)) | 452 (t->t_proc_flag & 453 (TP_PRSTOP|TP_HOLDLWP|TP_CHKPT|TP_PAUSE)))) || 454 lwp->lwp_cursig) 455 return (1); 456 457 if (p->p_flag & SVFWAIT) 458 return (0); 459 set = p->p_sig; 460 sigorset(&set, &t->t_sig); 461 if (schedctl_sigblock(t)) /* all blockable signals blocked */ 462 sigandset(&set, &cantmask); 463 else 464 sigdiffset(&set, &t->t_hold); 465 if (p->p_flag & SVFORK) 466 sigdiffset(&set, &holdvfork); 467 468 if (!sigisempty(&set)) { 469 int sig; 470 471 for (sig = 1; sig < NSIG; sig++) { 472 if (sigismember(&set, sig) && 473 (tracing(p, sig) || 474 !sigismember(&p->p_ignore, sig))) { 475 /* 476 * Don't promote a signal that will stop 477 * the process when lwp_nostop is set. 478 */ 479 if (!lwp->lwp_nostop || 480 PTOU(curproc)->u_signal[sig-1] != SIG_DFL || 481 !sigismember(&stopdefault, sig)) 482 return (1); 483 } 484 } 485 } 486 487 return (0); 488 } 489 490 static int 491 issig_forreal(void) 492 { 493 int sig = 0, ext = 0; 494 kthread_t *t = curthread; 495 klwp_t *lwp = ttolwp(t); 496 proc_t *p = ttoproc(t); 497 int toproc = 0; 498 int sigcld_found = 0; 499 int nostop_break = 0; 500 501 ASSERT(t->t_state == TS_ONPROC); 502 503 mutex_enter(&p->p_lock); 504 schedctl_finish_sigblock(t); 505 506 if (t->t_dtrace_stop | t->t_dtrace_sig) { 507 if (t->t_dtrace_stop) { 508 /* 509 * If DTrace's "stop" action has been invoked on us, 510 * set TP_PRSTOP. 511 */ 512 t->t_proc_flag |= TP_PRSTOP; 513 } 514 515 if (t->t_dtrace_sig != 0) { 516 k_siginfo_t info; 517 518 /* 519 * Post the signal generated as the result of 520 * DTrace's "raise" action as a normal signal before 521 * the full-fledged signal checking begins. 522 */ 523 bzero(&info, sizeof (info)); 524 info.si_signo = t->t_dtrace_sig; 525 info.si_code = SI_DTRACE; 526 527 sigaddq(p, NULL, &info, KM_NOSLEEP); 528 529 t->t_dtrace_sig = 0; 530 } 531 } 532 533 for (;;) { 534 if (p->p_flag & (SEXITLWPS|SKILLED)) { 535 lwp->lwp_cursig = sig = SIGKILL; 536 lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0; 537 break; 538 } 539 540 /* 541 * Another piece of complexity in this process. When 542 * single-stepping a process, we don't want an intervening 543 * signal or TP_PAUSE request to suspend the current thread. 544 * Otherwise, the controlling process will hang beacuse we will 545 * be stopped with TS_PSTART set in t_schedflag. We will 546 * trigger any remaining signals when we re-enter the kernel on 547 * the single step trap. 548 */ 549 if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) { 550 sig = 0; 551 break; 552 } 553 554 /* 555 * Hold the lwp here for watchpoint manipulation. 556 */ 557 if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) { 558 stop(PR_SUSPENDED, SUSPEND_PAUSE); 559 continue; 560 } 561 562 if (lwp->lwp_asleep && MUSTRETURN(p, t)) { 563 if ((sig = lwp->lwp_cursig) != 0) { 564 /* 565 * Make sure we call ISSIG() in post_syscall() 566 * to re-validate this current signal. 567 */ 568 t->t_sig_check = 1; 569 } 570 break; 571 } 572 573 /* 574 * If the request is PR_CHECKPOINT, ignore the rest of signals 575 * or requests. Honor other stop requests or signals later. 576 * Go back to top of loop here to check if an exit or hold 577 * event has occurred while stopped. 578 */ 579 if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) { 580 stop(PR_CHECKPOINT, 0); 581 continue; 582 } 583 584 /* 585 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing 586 * with signals or /proc. Another lwp is executing fork1(), 587 * or is undergoing watchpoint activity (remapping a page), 588 * or is executing lwp_suspend() on this lwp. 589 * Again, go back to top of loop to check if an exit 590 * or hold event has occurred while stopped. 591 */ 592 if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 593 (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop) { 594 stop(PR_SUSPENDED, SUSPEND_NORMAL); 595 continue; 596 } 597 598 /* 599 * Honor requested stop before dealing with the 600 * current signal; a debugger may change it. 601 * Do not want to go back to loop here since this is a special 602 * stop that means: make incremental progress before the next 603 * stop. The danger is that returning to top of loop would most 604 * likely drop the thread right back here to stop soon after it 605 * was continued, violating the incremental progress request. 606 */ 607 if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop) 608 stop(PR_REQUESTED, 0); 609 610 /* 611 * If a debugger wants us to take a signal it will have 612 * left it in lwp->lwp_cursig. If lwp_cursig has been cleared 613 * or if it's being ignored, we continue on looking for another 614 * signal. Otherwise we return the specified signal, provided 615 * it's not a signal that causes a job control stop. 616 * 617 * When stopped on PR_JOBCONTROL, there is no current 618 * signal; we cancel lwp->lwp_cursig temporarily before 619 * calling isjobstop(). The current signal may be reset 620 * by a debugger while we are stopped in isjobstop(). 621 */ 622 if ((sig = lwp->lwp_cursig) != 0) { 623 ext = lwp->lwp_extsig; 624 lwp->lwp_cursig = 0; 625 lwp->lwp_extsig = 0; 626 if (!sigismember(&p->p_ignore, sig) && 627 !isjobstop(sig)) { 628 if (p->p_flag & (SEXITLWPS|SKILLED)) { 629 sig = SIGKILL; 630 ext = (p->p_flag & SEXTKILLED) != 0; 631 } 632 lwp->lwp_cursig = (uchar_t)sig; 633 lwp->lwp_extsig = (uchar_t)ext; 634 break; 635 } 636 /* 637 * The signal is being ignored or it caused a 638 * job-control stop. If another current signal 639 * has not been established, return the current 640 * siginfo, if any, to the memory manager. 641 */ 642 if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) { 643 siginfofree(lwp->lwp_curinfo); 644 lwp->lwp_curinfo = NULL; 645 } 646 /* 647 * Loop around again in case we were stopped 648 * on a job control signal and a /proc stop 649 * request was posted or another current signal 650 * was established while we were stopped. 651 */ 652 continue; 653 } 654 655 if (p->p_stopsig && !lwp->lwp_nostop && 656 curthread != p->p_agenttp) { 657 /* 658 * Some lwp in the process has already stopped 659 * showing PR_JOBCONTROL. This is a stop in 660 * sympathy with the other lwp, even if this 661 * lwp is blocking the stopping signal. 662 */ 663 stop(PR_JOBCONTROL, p->p_stopsig); 664 continue; 665 } 666 667 /* 668 * Loop on the pending signals until we find a 669 * non-held signal that is traced or not ignored. 670 * First check the signals pending for the lwp, 671 * then the signals pending for the process as a whole. 672 */ 673 for (;;) { 674 k_sigset_t tsig; 675 676 tsig = t->t_sig; 677 if ((sig = fsig(&tsig, t)) != 0) { 678 if (sig == SIGCLD) 679 sigcld_found = 1; 680 toproc = 0; 681 if (tracing(p, sig) || 682 !sigismember(&p->p_ignore, sig)) { 683 if (sigismember(&t->t_extsig, sig)) 684 ext = 1; 685 break; 686 } 687 sigdelset(&t->t_sig, sig); 688 sigdelset(&t->t_extsig, sig); 689 sigdelq(p, t, sig); 690 } else if ((sig = fsig(&p->p_sig, t)) != 0) { 691 if (sig == SIGCLD) 692 sigcld_found = 1; 693 toproc = 1; 694 if (tracing(p, sig) || 695 !sigismember(&p->p_ignore, sig)) { 696 if (sigismember(&p->p_extsig, sig)) 697 ext = 1; 698 break; 699 } 700 sigdelset(&p->p_sig, sig); 701 sigdelset(&p->p_extsig, sig); 702 sigdelq(p, NULL, sig); 703 } else { 704 /* no signal was found */ 705 break; 706 } 707 } 708 709 if (sig == 0) { /* no signal was found */ 710 if (p->p_flag & (SEXITLWPS|SKILLED)) { 711 lwp->lwp_cursig = SIGKILL; 712 sig = SIGKILL; 713 ext = (p->p_flag & SEXTKILLED) != 0; 714 } 715 break; 716 } 717 718 /* 719 * If we have been informed not to stop (i.e., we are being 720 * called from within a network operation), then don't promote 721 * the signal at this time, just return the signal number. 722 * We will call issig() again later when it is safe. 723 * 724 * fsig() does not return a jobcontrol stopping signal 725 * with a default action of stopping the process if 726 * lwp_nostop is set, so we won't be causing a bogus 727 * EINTR by this action. (Such a signal is eaten by 728 * isjobstop() when we loop around to do final checks.) 729 */ 730 if (lwp->lwp_nostop) { 731 nostop_break = 1; 732 break; 733 } 734 735 /* 736 * Promote the signal from pending to current. 737 * 738 * Note that sigdeq() will set lwp->lwp_curinfo to NULL 739 * if no siginfo_t exists for this signal. 740 */ 741 lwp->lwp_cursig = (uchar_t)sig; 742 lwp->lwp_extsig = (uchar_t)ext; 743 t->t_sig_check = 1; /* so post_syscall will see signal */ 744 ASSERT(lwp->lwp_curinfo == NULL); 745 sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo); 746 747 if (tracing(p, sig)) 748 stop(PR_SIGNALLED, sig); 749 750 /* 751 * Loop around to check for requested stop before 752 * performing the usual current-signal actions. 753 */ 754 } 755 756 mutex_exit(&p->p_lock); 757 758 /* 759 * If SIGCLD was dequeued, search for other pending SIGCLD's. 760 * Don't do it if we are returning SIGCLD and the signal 761 * handler will be reset by psig(); this enables reliable 762 * delivery of SIGCLD even when using the old, broken 763 * signal() interface for setting the signal handler. 764 */ 765 if (sigcld_found && 766 (sig != SIGCLD || !sigismember(&PTOU(curproc)->u_sigresethand, 767 SIGCLD))) 768 sigcld_repost(); 769 770 if (sig != 0) 771 (void) undo_watch_step(NULL); 772 773 /* 774 * If we have been blocked since the p_lock was dropped off 775 * above, then this promoted signal might have been handled 776 * already when we were on the way back from sleep queue, so 777 * just ignore it. 778 * If we have been informed not to stop, just return the signal 779 * number. Also see comments above. 780 */ 781 if (!nostop_break) { 782 sig = lwp->lwp_cursig; 783 } 784 785 return (sig != 0); 786 } 787 788 /* 789 * Return true if the process is currently stopped showing PR_JOBCONTROL. 790 * This is true only if all of the process's lwp's are so stopped. 791 * If this is asked by one of the lwps in the process, exclude that lwp. 792 */ 793 int 794 jobstopped(proc_t *p) 795 { 796 kthread_t *t; 797 798 ASSERT(MUTEX_HELD(&p->p_lock)); 799 800 if ((t = p->p_tlist) == NULL) 801 return (0); 802 803 do { 804 thread_lock(t); 805 /* ignore current, zombie and suspended lwps in the test */ 806 if (!(t == curthread || t->t_state == TS_ZOMB || 807 SUSPENDED(t)) && 808 (t->t_state != TS_STOPPED || 809 t->t_whystop != PR_JOBCONTROL)) { 810 thread_unlock(t); 811 return (0); 812 } 813 thread_unlock(t); 814 } while ((t = t->t_forw) != p->p_tlist); 815 816 return (1); 817 } 818 819 /* 820 * Put ourself (curthread) into the stopped state and notify tracers. 821 */ 822 void 823 stop(int why, int what) 824 { 825 kthread_t *t = curthread; 826 proc_t *p = ttoproc(t); 827 klwp_t *lwp = ttolwp(t); 828 kthread_t *tx; 829 lwpent_t *lep; 830 int procstop; 831 int flags = TS_ALLSTART; 832 hrtime_t stoptime; 833 834 /* 835 * Can't stop a system process. 836 */ 837 if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas) 838 return; 839 840 ASSERT(MUTEX_HELD(&p->p_lock)); 841 842 if (why != PR_SUSPENDED && why != PR_CHECKPOINT) { 843 /* 844 * Don't stop an lwp with SIGKILL pending. 845 * Don't stop if the process or lwp is exiting. 846 */ 847 if (lwp->lwp_cursig == SIGKILL || 848 sigismember(&t->t_sig, SIGKILL) || 849 sigismember(&p->p_sig, SIGKILL) || 850 (t->t_proc_flag & TP_LWPEXIT) || 851 (p->p_flag & (SEXITLWPS|SKILLED))) { 852 p->p_stopsig = 0; 853 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP); 854 return; 855 } 856 } 857 858 /* 859 * Make sure we don't deadlock on a recursive call to prstop(). 860 * prstop() sets the lwp_nostop flag. 861 */ 862 if (lwp->lwp_nostop) 863 return; 864 865 /* 866 * Make sure the lwp is in an orderly state for inspection 867 * by a debugger through /proc or for dumping via core(). 868 */ 869 schedctl_finish_sigblock(t); 870 t->t_proc_flag |= TP_STOPPING; /* must set before dropping p_lock */ 871 mutex_exit(&p->p_lock); 872 stoptime = gethrtime(); 873 prstop(why, what); 874 (void) undo_watch_step(NULL); 875 mutex_enter(&p->p_lock); 876 ASSERT(t->t_state == TS_ONPROC); 877 878 switch (why) { 879 case PR_CHECKPOINT: 880 /* 881 * The situation may have changed since we dropped 882 * and reacquired p->p_lock. Double-check now 883 * whether we should stop or not. 884 */ 885 if (!(t->t_proc_flag & TP_CHKPT)) { 886 t->t_proc_flag &= ~TP_STOPPING; 887 return; 888 } 889 t->t_proc_flag &= ~TP_CHKPT; 890 flags &= ~TS_RESUME; 891 break; 892 893 case PR_JOBCONTROL: 894 ASSERT(what == SIGSTOP || what == SIGTSTP || 895 what == SIGTTIN || what == SIGTTOU); 896 flags &= ~TS_XSTART; 897 break; 898 899 case PR_SUSPENDED: 900 ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE); 901 /* 902 * The situation may have changed since we dropped 903 * and reacquired p->p_lock. Double-check now 904 * whether we should stop or not. 905 */ 906 if (what == SUSPEND_PAUSE) { 907 if (!(t->t_proc_flag & TP_PAUSE)) { 908 t->t_proc_flag &= ~TP_STOPPING; 909 return; 910 } 911 flags &= ~TS_UNPAUSE; 912 } else { 913 if (!((t->t_proc_flag & TP_HOLDLWP) || 914 (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) { 915 t->t_proc_flag &= ~TP_STOPPING; 916 return; 917 } 918 /* 919 * If SHOLDFORK is in effect and we are stopping 920 * while asleep (not at the top of the stack), 921 * we return now to allow the hold to take effect 922 * when we reach the top of the kernel stack. 923 */ 924 if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) { 925 t->t_proc_flag &= ~TP_STOPPING; 926 return; 927 } 928 flags &= ~TS_CSTART; 929 } 930 break; 931 932 default: /* /proc stop */ 933 flags &= ~TS_PSTART; 934 /* 935 * Do synchronous stop unless the async-stop flag is set. 936 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set, 937 * then no debugger is present and we also do synchronous stop. 938 */ 939 if ((why != PR_REQUESTED || t->t_dtrace_stop) && 940 !(p->p_proc_flag & P_PR_ASYNC)) { 941 int notify; 942 943 for (tx = t->t_forw; tx != t; tx = tx->t_forw) { 944 notify = 0; 945 thread_lock(tx); 946 if (ISTOPPED(tx) || 947 (tx->t_proc_flag & TP_PRSTOP)) { 948 thread_unlock(tx); 949 continue; 950 } 951 tx->t_proc_flag |= TP_PRSTOP; 952 tx->t_sig_check = 1; 953 if (tx->t_state == TS_SLEEP && 954 (tx->t_flag & T_WAKEABLE)) { 955 /* 956 * Don't actually wake it up if it's 957 * in one of the lwp_*() syscalls. 958 * Mark it virtually stopped and 959 * notify /proc waiters (below). 960 */ 961 if (tx->t_wchan0 == NULL) 962 setrun_locked(tx); 963 else { 964 tx->t_proc_flag |= TP_PRVSTOP; 965 tx->t_stoptime = stoptime; 966 notify = 1; 967 } 968 } 969 970 /* Move waiting thread to run queue */ 971 if (ISWAITING(tx)) 972 setrun_locked(tx); 973 974 /* 975 * force the thread into the kernel 976 * if it is not already there. 977 */ 978 if (tx->t_state == TS_ONPROC && 979 tx->t_cpu != CPU) 980 poke_cpu(tx->t_cpu->cpu_id); 981 thread_unlock(tx); 982 lep = p->p_lwpdir[tx->t_dslot].ld_entry; 983 if (notify && lep->le_trace) 984 prnotify(lep->le_trace); 985 } 986 /* 987 * We do this just in case one of the threads we asked 988 * to stop is in holdlwps() (called from cfork()) or 989 * lwp_suspend(). 990 */ 991 cv_broadcast(&p->p_holdlwps); 992 } 993 break; 994 } 995 996 t->t_stoptime = stoptime; 997 998 if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) { 999 /* 1000 * Determine if the whole process is jobstopped. 1001 */ 1002 if (jobstopped(p)) { 1003 sigqueue_t *sqp; 1004 int sig; 1005 1006 if ((sig = p->p_stopsig) == 0) 1007 p->p_stopsig = (uchar_t)(sig = what); 1008 mutex_exit(&p->p_lock); 1009 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP); 1010 mutex_enter(&pidlock); 1011 /* 1012 * The last lwp to stop notifies the parent. 1013 * Turn off the CLDCONT flag now so the first 1014 * lwp to continue knows what to do. 1015 */ 1016 p->p_pidflag &= ~CLDCONT; 1017 p->p_wcode = CLD_STOPPED; 1018 p->p_wdata = sig; 1019 sigcld(p, sqp); 1020 /* 1021 * Grab p->p_lock before releasing pidlock so the 1022 * parent and the child don't have a race condition. 1023 */ 1024 mutex_enter(&p->p_lock); 1025 mutex_exit(&pidlock); 1026 p->p_stopsig = 0; 1027 } else if (why == PR_JOBCONTROL && p->p_stopsig == 0) { 1028 /* 1029 * Set p->p_stopsig and wake up sleeping lwps 1030 * so they will stop in sympathy with this lwp. 1031 */ 1032 p->p_stopsig = (uchar_t)what; 1033 pokelwps(p); 1034 /* 1035 * We do this just in case one of the threads we asked 1036 * to stop is in holdlwps() (called from cfork()) or 1037 * lwp_suspend(). 1038 */ 1039 cv_broadcast(&p->p_holdlwps); 1040 } 1041 } 1042 1043 if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) { 1044 /* 1045 * Do process-level notification when all lwps are 1046 * either stopped on events of interest to /proc 1047 * or are stopped showing PR_SUSPENDED or are zombies. 1048 */ 1049 procstop = 1; 1050 for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) { 1051 if (VSTOPPED(tx)) 1052 continue; 1053 thread_lock(tx); 1054 switch (tx->t_state) { 1055 case TS_ZOMB: 1056 break; 1057 case TS_STOPPED: 1058 /* neither ISTOPPED nor SUSPENDED? */ 1059 if ((tx->t_schedflag & 1060 (TS_CSTART | TS_UNPAUSE | TS_PSTART)) == 1061 (TS_CSTART | TS_UNPAUSE | TS_PSTART)) 1062 procstop = 0; 1063 break; 1064 case TS_SLEEP: 1065 /* not paused for watchpoints? */ 1066 if (!(tx->t_flag & T_WAKEABLE) || 1067 tx->t_wchan0 == NULL || 1068 !(tx->t_proc_flag & TP_PAUSE)) 1069 procstop = 0; 1070 break; 1071 default: 1072 procstop = 0; 1073 break; 1074 } 1075 thread_unlock(tx); 1076 } 1077 if (procstop) { 1078 /* there must not be any remapped watched pages now */ 1079 ASSERT(p->p_mapcnt == 0); 1080 if (p->p_proc_flag & P_PR_PTRACE) { 1081 /* ptrace() compatibility */ 1082 mutex_exit(&p->p_lock); 1083 mutex_enter(&pidlock); 1084 p->p_wcode = CLD_TRAPPED; 1085 p->p_wdata = (why == PR_SIGNALLED)? 1086 what : SIGTRAP; 1087 cv_broadcast(&p->p_parent->p_cv); 1088 /* 1089 * Grab p->p_lock before releasing pidlock so 1090 * parent and child don't have a race condition. 1091 */ 1092 mutex_enter(&p->p_lock); 1093 mutex_exit(&pidlock); 1094 } 1095 if (p->p_trace) /* /proc */ 1096 prnotify(p->p_trace); 1097 cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */ 1098 cv_broadcast(&p->p_holdlwps); /* holdwatch() */ 1099 } 1100 if (why != PR_SUSPENDED) { 1101 lep = p->p_lwpdir[t->t_dslot].ld_entry; 1102 if (lep->le_trace) /* /proc */ 1103 prnotify(lep->le_trace); 1104 /* 1105 * Special notification for creation of the agent lwp. 1106 */ 1107 if (t == p->p_agenttp && 1108 (t->t_proc_flag & TP_PRSTOP) && 1109 p->p_trace) 1110 prnotify(p->p_trace); 1111 /* 1112 * The situation may have changed since we dropped 1113 * and reacquired p->p_lock. Double-check now 1114 * whether we should stop or not. 1115 */ 1116 if (!(t->t_proc_flag & TP_STOPPING)) { 1117 if (t->t_proc_flag & TP_PRSTOP) 1118 t->t_proc_flag |= TP_STOPPING; 1119 } 1120 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP); 1121 prnostep(lwp); 1122 } 1123 } 1124 1125 if (why == PR_SUSPENDED) { 1126 1127 /* 1128 * We always broadcast in the case of SUSPEND_PAUSE. This is 1129 * because checks for TP_PAUSE take precedence over checks for 1130 * SHOLDWATCH. If a thread is trying to stop because of 1131 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be 1132 * waiting for the rest of the threads to enter a stopped state. 1133 * If we are stopping for a SUSPEND_PAUSE, we may be the last 1134 * lwp and not know it, so broadcast just in case. 1135 */ 1136 if (what == SUSPEND_PAUSE || 1137 --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP)) 1138 cv_broadcast(&p->p_holdlwps); 1139 1140 } 1141 1142 /* 1143 * Need to do this here (rather than after the thread is officially 1144 * stopped) because we can't call mutex_enter from a stopped thread. 1145 */ 1146 if (why == PR_CHECKPOINT) 1147 del_one_utstop(); 1148 1149 thread_lock(t); 1150 ASSERT((t->t_schedflag & TS_ALLSTART) == 0); 1151 t->t_schedflag |= flags; 1152 t->t_whystop = (short)why; 1153 t->t_whatstop = (short)what; 1154 CL_STOP(t, why, what); 1155 (void) new_mstate(t, LMS_STOPPED); 1156 thread_stop(t); /* set stop state and drop lock */ 1157 1158 if (why != PR_SUSPENDED && why != PR_CHECKPOINT) { 1159 /* 1160 * We may have gotten a SIGKILL or a SIGCONT when 1161 * we released p->p_lock; make one last check. 1162 * Also check for a /proc run-on-last-close. 1163 */ 1164 if (sigismember(&t->t_sig, SIGKILL) || 1165 sigismember(&p->p_sig, SIGKILL) || 1166 (t->t_proc_flag & TP_LWPEXIT) || 1167 (p->p_flag & (SEXITLWPS|SKILLED))) { 1168 p->p_stopsig = 0; 1169 thread_lock(t); 1170 t->t_schedflag |= TS_XSTART | TS_PSTART; 1171 setrun_locked(t); 1172 thread_unlock_nopreempt(t); 1173 } else if (why == PR_JOBCONTROL) { 1174 if (p->p_flag & SSCONT) { 1175 /* 1176 * This resulted from a SIGCONT posted 1177 * while we were not holding p->p_lock. 1178 */ 1179 p->p_stopsig = 0; 1180 thread_lock(t); 1181 t->t_schedflag |= TS_XSTART; 1182 setrun_locked(t); 1183 thread_unlock_nopreempt(t); 1184 } 1185 } else if (!(t->t_proc_flag & TP_STOPPING)) { 1186 /* 1187 * This resulted from a /proc run-on-last-close. 1188 */ 1189 thread_lock(t); 1190 t->t_schedflag |= TS_PSTART; 1191 setrun_locked(t); 1192 thread_unlock_nopreempt(t); 1193 } 1194 } 1195 1196 t->t_proc_flag &= ~TP_STOPPING; 1197 mutex_exit(&p->p_lock); 1198 1199 swtch(); 1200 setallwatch(); /* reestablish any watchpoints set while stopped */ 1201 mutex_enter(&p->p_lock); 1202 prbarrier(p); /* barrier against /proc locking */ 1203 } 1204 1205 /* Interface for resetting user thread stop count. */ 1206 void 1207 utstop_init(void) 1208 { 1209 mutex_enter(&thread_stop_lock); 1210 num_utstop = 0; 1211 mutex_exit(&thread_stop_lock); 1212 } 1213 1214 /* Interface for registering a user thread stop request. */ 1215 void 1216 add_one_utstop(void) 1217 { 1218 mutex_enter(&thread_stop_lock); 1219 num_utstop++; 1220 mutex_exit(&thread_stop_lock); 1221 } 1222 1223 /* Interface for cancelling a user thread stop request */ 1224 void 1225 del_one_utstop(void) 1226 { 1227 mutex_enter(&thread_stop_lock); 1228 num_utstop--; 1229 if (num_utstop == 0) 1230 cv_broadcast(&utstop_cv); 1231 mutex_exit(&thread_stop_lock); 1232 } 1233 1234 /* Interface to wait for all user threads to be stopped */ 1235 void 1236 utstop_timedwait(clock_t ticks) 1237 { 1238 mutex_enter(&thread_stop_lock); 1239 if (num_utstop > 0) 1240 (void) cv_timedwait(&utstop_cv, &thread_stop_lock, 1241 ticks + lbolt); 1242 mutex_exit(&thread_stop_lock); 1243 } 1244 1245 /* 1246 * Perform the action specified by the current signal. 1247 * The usual sequence is: 1248 * if (issig()) 1249 * psig(); 1250 * The signal bit has already been cleared by issig(), 1251 * the current signal number has been stored in lwp_cursig, 1252 * and the current siginfo is now referenced by lwp_curinfo. 1253 */ 1254 void 1255 psig(void) 1256 { 1257 kthread_t *t = curthread; 1258 proc_t *p = ttoproc(t); 1259 klwp_t *lwp = ttolwp(t); 1260 void (*func)(); 1261 int sig, rc, code, ext; 1262 pid_t pid = -1; 1263 id_t ctid = 0; 1264 zoneid_t zoneid = -1; 1265 sigqueue_t *sqp = NULL; 1266 1267 mutex_enter(&p->p_lock); 1268 schedctl_finish_sigblock(t); 1269 code = CLD_KILLED; 1270 1271 if (p->p_flag & SEXITLWPS) { 1272 lwp_exit(); 1273 return; /* not reached */ 1274 } 1275 sig = lwp->lwp_cursig; 1276 ext = lwp->lwp_extsig; 1277 1278 ASSERT(sig < NSIG); 1279 1280 /* 1281 * Re-check lwp_cursig after we acquire p_lock. Since p_lock was 1282 * dropped between issig() and psig(), a debugger may have cleared 1283 * lwp_cursig via /proc in the intervening window. 1284 */ 1285 if (sig == 0) { 1286 if (lwp->lwp_curinfo) { 1287 siginfofree(lwp->lwp_curinfo); 1288 lwp->lwp_curinfo = NULL; 1289 } 1290 if (t->t_flag & T_TOMASK) { /* sigsuspend or pollsys */ 1291 t->t_flag &= ~T_TOMASK; 1292 t->t_hold = lwp->lwp_sigoldmask; 1293 } 1294 mutex_exit(&p->p_lock); 1295 return; 1296 } 1297 func = PTOU(curproc)->u_signal[sig-1]; 1298 1299 /* 1300 * The signal disposition could have changed since we promoted 1301 * this signal from pending to current (we dropped p->p_lock). 1302 * This can happen only in a multi-threaded process. 1303 */ 1304 if (sigismember(&p->p_ignore, sig) || 1305 (func == SIG_DFL && sigismember(&stopdefault, sig))) { 1306 lwp->lwp_cursig = 0; 1307 lwp->lwp_extsig = 0; 1308 if (lwp->lwp_curinfo) { 1309 siginfofree(lwp->lwp_curinfo); 1310 lwp->lwp_curinfo = NULL; 1311 } 1312 if (t->t_flag & T_TOMASK) { /* sigsuspend or pollsys */ 1313 t->t_flag &= ~T_TOMASK; 1314 t->t_hold = lwp->lwp_sigoldmask; 1315 } 1316 mutex_exit(&p->p_lock); 1317 return; 1318 } 1319 1320 /* 1321 * We check lwp_curinfo first since pr_setsig can actually 1322 * stuff a sigqueue_t there for SIGKILL. 1323 */ 1324 if (lwp->lwp_curinfo) { 1325 sqp = lwp->lwp_curinfo; 1326 } else if (sig == SIGKILL && p->p_killsqp) { 1327 sqp = p->p_killsqp; 1328 } 1329 1330 if (sqp != NULL) { 1331 if (SI_FROMUSER(&sqp->sq_info)) { 1332 pid = sqp->sq_info.si_pid; 1333 ctid = sqp->sq_info.si_ctid; 1334 zoneid = sqp->sq_info.si_zoneid; 1335 } 1336 /* 1337 * If we have a sigqueue_t, its sq_external value 1338 * trumps the lwp_extsig value. It is theoretically 1339 * possible to make lwp_extsig reflect reality, but it 1340 * would unnecessarily complicate things elsewhere. 1341 */ 1342 ext = sqp->sq_external; 1343 } 1344 1345 if (func == SIG_DFL) { 1346 mutex_exit(&p->p_lock); 1347 DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *, 1348 NULL, void (*)(void), func); 1349 } else { 1350 k_siginfo_t *sip = NULL; 1351 1352 /* 1353 * If DTrace user-land tracing is active, give DTrace a 1354 * chance to defer the signal until after tracing is 1355 * complete. 1356 */ 1357 if (t->t_dtrace_on && dtrace_safe_defer_signal()) { 1358 mutex_exit(&p->p_lock); 1359 return; 1360 } 1361 1362 /* 1363 * save siginfo pointer here, in case the 1364 * the signal's reset bit is on 1365 * 1366 * The presence of a current signal prevents paging 1367 * from succeeding over a network. We copy the current 1368 * signal information to the side and cancel the current 1369 * signal so that sendsig() will succeed. 1370 */ 1371 if (sigismember(&p->p_siginfo, sig)) { 1372 if (sqp) { 1373 bcopy(&sqp->sq_info, &lwp->lwp_siginfo, 1374 sizeof (k_siginfo_t)); 1375 sip = &lwp->lwp_siginfo; 1376 } else if (sig == SIGPROF && 1377 t->t_rprof != NULL && 1378 t->t_rprof->rp_anystate && 1379 lwp->lwp_siginfo.si_signo == SIGPROF) { 1380 sip = &lwp->lwp_siginfo; 1381 } 1382 } 1383 1384 if (t->t_flag & T_TOMASK) 1385 t->t_flag &= ~T_TOMASK; 1386 else 1387 lwp->lwp_sigoldmask = t->t_hold; 1388 sigorset(&t->t_hold, &PTOU(curproc)->u_sigmask[sig-1]); 1389 if (!sigismember(&PTOU(curproc)->u_signodefer, sig)) 1390 sigaddset(&t->t_hold, sig); 1391 if (sigismember(&PTOU(curproc)->u_sigresethand, sig)) 1392 setsigact(sig, SIG_DFL, nullsmask, 0); 1393 1394 DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *, 1395 sip, void (*)(void), func); 1396 1397 lwp->lwp_cursig = 0; 1398 lwp->lwp_extsig = 0; 1399 if (lwp->lwp_curinfo) { 1400 /* p->p_killsqp is freed by freeproc */ 1401 siginfofree(lwp->lwp_curinfo); 1402 lwp->lwp_curinfo = NULL; 1403 } 1404 mutex_exit(&p->p_lock); 1405 lwp->lwp_ru.nsignals++; 1406 1407 if (p->p_model == DATAMODEL_NATIVE) 1408 rc = sendsig(sig, sip, func); 1409 #ifdef _SYSCALL32_IMPL 1410 else 1411 rc = sendsig32(sig, sip, func); 1412 #endif /* _SYSCALL32_IMPL */ 1413 if (rc) 1414 return; 1415 sig = lwp->lwp_cursig = SIGSEGV; 1416 ext = 0; /* lwp_extsig was set above */ 1417 pid = -1; 1418 ctid = 0; 1419 } 1420 1421 if (sigismember(&coredefault, sig)) { 1422 /* 1423 * Terminate all LWPs but don't discard them. 1424 * If another lwp beat us to the punch by calling exit(), 1425 * evaporate now. 1426 */ 1427 proc_is_exiting(p); 1428 if (exitlwps(1) != 0) { 1429 mutex_enter(&p->p_lock); 1430 lwp_exit(); 1431 } 1432 /* if we got a SIGKILL from anywhere, no core dump */ 1433 if (p->p_flag & SKILLED) { 1434 sig = SIGKILL; 1435 ext = (p->p_flag & SEXTKILLED) != 0; 1436 } else { 1437 #ifdef C2_AUDIT 1438 if (audit_active) /* audit core dump */ 1439 audit_core_start(sig); 1440 #endif 1441 if (core(sig, ext) == 0) 1442 code = CLD_DUMPED; 1443 #ifdef C2_AUDIT 1444 if (audit_active) /* audit core dump */ 1445 audit_core_finish(code); 1446 #endif 1447 } 1448 } 1449 if (ext) 1450 contract_process_sig(p->p_ct_process, p, sig, pid, ctid, 1451 zoneid); 1452 1453 exit(code, sig); 1454 } 1455 1456 /* 1457 * Find next unheld signal in ssp for thread t. 1458 */ 1459 int 1460 fsig(k_sigset_t *ssp, kthread_t *t) 1461 { 1462 proc_t *p = ttoproc(t); 1463 user_t *up = PTOU(p); 1464 int i; 1465 k_sigset_t temp; 1466 1467 ASSERT(MUTEX_HELD(&p->p_lock)); 1468 1469 /* 1470 * Don't promote any signals for the parent of a vfork()d 1471 * child that hasn't yet released the parent's memory. 1472 */ 1473 if (p->p_flag & SVFWAIT) 1474 return (0); 1475 1476 temp = *ssp; 1477 sigdiffset(&temp, &t->t_hold); 1478 1479 /* 1480 * Don't promote stopping signals (except SIGSTOP) for a child 1481 * of vfork() that hasn't yet released the parent's memory. 1482 */ 1483 if (p->p_flag & SVFORK) 1484 sigdiffset(&temp, &holdvfork); 1485 1486 /* 1487 * Don't promote a signal that will stop 1488 * the process when lwp_nostop is set. 1489 */ 1490 if (ttolwp(t)->lwp_nostop) { 1491 sigdelset(&temp, SIGSTOP); 1492 if (!p->p_pgidp->pid_pgorphaned) { 1493 if (up->u_signal[SIGTSTP-1] == SIG_DFL) 1494 sigdelset(&temp, SIGTSTP); 1495 if (up->u_signal[SIGTTIN-1] == SIG_DFL) 1496 sigdelset(&temp, SIGTTIN); 1497 if (up->u_signal[SIGTTOU-1] == SIG_DFL) 1498 sigdelset(&temp, SIGTTOU); 1499 } 1500 } 1501 1502 /* 1503 * Choose SIGKILL and SIGPROF before all other pending signals. 1504 * The rest are promoted in signal number order. 1505 */ 1506 if (sigismember(&temp, SIGKILL)) 1507 return (SIGKILL); 1508 if (sigismember(&temp, SIGPROF)) 1509 return (SIGPROF); 1510 1511 for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) { 1512 if (temp.__sigbits[i]) 1513 return ((i * NBBY * sizeof (temp.__sigbits[0])) + 1514 lowbit(temp.__sigbits[i])); 1515 } 1516 1517 return (0); 1518 } 1519 1520 void 1521 setsigact(int sig, void (*disp)(), k_sigset_t mask, int flags) 1522 { 1523 proc_t *p = ttoproc(curthread); 1524 kthread_t *t; 1525 1526 ASSERT(MUTEX_HELD(&p->p_lock)); 1527 1528 PTOU(curproc)->u_signal[sig - 1] = disp; 1529 1530 /* 1531 * Honor the SA_SIGINFO flag if the signal is being caught. 1532 * Force the SA_SIGINFO flag if the signal is not being caught. 1533 * This is necessary to make sigqueue() and sigwaitinfo() work 1534 * properly together when the signal is set to default or is 1535 * being temporarily ignored. 1536 */ 1537 if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN) 1538 sigaddset(&p->p_siginfo, sig); 1539 else 1540 sigdelset(&p->p_siginfo, sig); 1541 1542 if (disp != SIG_DFL && disp != SIG_IGN) { 1543 sigdelset(&p->p_ignore, sig); 1544 PTOU(curproc)->u_sigmask[sig - 1] = mask; 1545 if (!sigismember(&cantreset, sig)) { 1546 if (flags & SA_RESETHAND) 1547 sigaddset(&PTOU(curproc)->u_sigresethand, sig); 1548 else 1549 sigdelset(&PTOU(curproc)->u_sigresethand, sig); 1550 } 1551 if (flags & SA_NODEFER) 1552 sigaddset(&PTOU(curproc)->u_signodefer, sig); 1553 else 1554 sigdelset(&PTOU(curproc)->u_signodefer, sig); 1555 if (flags & SA_RESTART) 1556 sigaddset(&PTOU(curproc)->u_sigrestart, sig); 1557 else 1558 sigdelset(&PTOU(curproc)->u_sigrestart, sig); 1559 if (flags & SA_ONSTACK) 1560 sigaddset(&PTOU(curproc)->u_sigonstack, sig); 1561 else 1562 sigdelset(&PTOU(curproc)->u_sigonstack, sig); 1563 1564 } else if (disp == SIG_IGN || 1565 (disp == SIG_DFL && sigismember(&ignoredefault, sig))) { 1566 /* 1567 * Setting the signal action to SIG_IGN results in the 1568 * discarding of all pending signals of that signal number. 1569 * Setting the signal action to SIG_DFL does the same *only* 1570 * if the signal's default behavior is to be ignored. 1571 */ 1572 sigaddset(&p->p_ignore, sig); 1573 sigdelset(&p->p_sig, sig); 1574 sigdelset(&p->p_extsig, sig); 1575 sigdelq(p, NULL, sig); 1576 t = p->p_tlist; 1577 do { 1578 sigdelset(&t->t_sig, sig); 1579 sigdelset(&t->t_extsig, sig); 1580 sigdelq(p, t, sig); 1581 } while ((t = t->t_forw) != p->p_tlist); 1582 1583 } else { 1584 /* 1585 * The signal action is being set to SIG_DFL and the default 1586 * behavior is to do something: make sure it is not ignored. 1587 */ 1588 sigdelset(&p->p_ignore, sig); 1589 } 1590 1591 if (sig == SIGCLD) { 1592 if (flags & SA_NOCLDWAIT) 1593 p->p_flag |= SNOWAIT; 1594 else 1595 p->p_flag &= ~SNOWAIT; 1596 1597 if (flags & SA_NOCLDSTOP) 1598 p->p_flag &= ~SJCTL; 1599 else 1600 p->p_flag |= SJCTL; 1601 1602 if ((p->p_flag & SNOWAIT) || disp == SIG_IGN) { 1603 proc_t *cp, *tp; 1604 1605 mutex_exit(&p->p_lock); 1606 mutex_enter(&pidlock); 1607 for (cp = p->p_child; cp != NULL; cp = tp) { 1608 tp = cp->p_sibling; 1609 if (cp->p_stat == SZOMB && 1610 !(cp->p_pidflag & CLDWAITPID)) 1611 freeproc(cp); 1612 } 1613 mutex_exit(&pidlock); 1614 mutex_enter(&p->p_lock); 1615 } 1616 } 1617 } 1618 1619 /* 1620 * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL. 1621 * Called from exec_common() for a process undergoing execve() 1622 * and from cfork() for a newly-created child of vfork(). 1623 * In the vfork() case, 'p' is not the current process. 1624 * In both cases, there is only one thread in the process. 1625 */ 1626 void 1627 sigdefault(proc_t *p) 1628 { 1629 kthread_t *t = p->p_tlist; 1630 struct user *up = PTOU(p); 1631 int sig; 1632 1633 ASSERT(MUTEX_HELD(&p->p_lock)); 1634 1635 for (sig = 1; sig < NSIG; sig++) { 1636 if (up->u_signal[sig - 1] != SIG_DFL && 1637 up->u_signal[sig - 1] != SIG_IGN) { 1638 up->u_signal[sig - 1] = SIG_DFL; 1639 sigemptyset(&up->u_sigmask[sig - 1]); 1640 if (sigismember(&ignoredefault, sig)) { 1641 sigdelq(p, NULL, sig); 1642 sigdelq(p, t, sig); 1643 } 1644 if (sig == SIGCLD) 1645 p->p_flag &= ~(SNOWAIT|SJCTL); 1646 } 1647 } 1648 sigorset(&p->p_ignore, &ignoredefault); 1649 sigfillset(&p->p_siginfo); 1650 sigdiffset(&p->p_siginfo, &cantmask); 1651 sigdiffset(&p->p_sig, &ignoredefault); 1652 sigdiffset(&p->p_extsig, &ignoredefault); 1653 sigdiffset(&t->t_sig, &ignoredefault); 1654 sigdiffset(&t->t_extsig, &ignoredefault); 1655 } 1656 1657 void 1658 sigcld(proc_t *cp, sigqueue_t *sqp) 1659 { 1660 proc_t *pp = cp->p_parent; 1661 1662 ASSERT(MUTEX_HELD(&pidlock)); 1663 1664 switch (cp->p_wcode) { 1665 case CLD_EXITED: 1666 case CLD_DUMPED: 1667 case CLD_KILLED: 1668 ASSERT(cp->p_stat == SZOMB); 1669 /* 1670 * The broadcast on p_srwchan_cv is a kludge to 1671 * wakeup a possible thread in uadmin(A_SHUTDOWN). 1672 */ 1673 cv_broadcast(&cp->p_srwchan_cv); 1674 1675 /* 1676 * Add to newstate list of the parent 1677 */ 1678 add_ns(pp, cp); 1679 1680 cv_broadcast(&pp->p_cv); 1681 if ((pp->p_flag & SNOWAIT) || 1682 PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN) { 1683 if (!(cp->p_pidflag & CLDWAITPID)) 1684 freeproc(cp); 1685 } else if (!(cp->p_pidflag & CLDNOSIGCHLD)) { 1686 post_sigcld(cp, sqp); 1687 sqp = NULL; 1688 } 1689 break; 1690 1691 case CLD_STOPPED: 1692 case CLD_CONTINUED: 1693 cv_broadcast(&pp->p_cv); 1694 if (pp->p_flag & SJCTL) { 1695 post_sigcld(cp, sqp); 1696 sqp = NULL; 1697 } 1698 break; 1699 } 1700 1701 if (sqp) 1702 siginfofree(sqp); 1703 } 1704 1705 /* 1706 * Common code called from sigcld() and issig_forreal() 1707 * Give the parent process a SIGCLD if it does not have one pending, 1708 * else mark the child process so a SIGCLD can be posted later. 1709 */ 1710 static void 1711 post_sigcld(proc_t *cp, sigqueue_t *sqp) 1712 { 1713 proc_t *pp = cp->p_parent; 1714 void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1]; 1715 k_siginfo_t info; 1716 1717 ASSERT(MUTEX_HELD(&pidlock)); 1718 mutex_enter(&pp->p_lock); 1719 1720 /* 1721 * If a SIGCLD is pending, or if SIGCLD is not now being caught, 1722 * then just mark the child process so that its SIGCLD will 1723 * be posted later, when the first SIGCLD is taken off the 1724 * queue or when the parent is ready to receive it, if ever. 1725 */ 1726 if (handler == SIG_DFL || handler == SIG_IGN || 1727 sigismember(&pp->p_sig, SIGCLD)) 1728 cp->p_pidflag |= CLDPEND; 1729 else { 1730 cp->p_pidflag &= ~CLDPEND; 1731 if (sqp == NULL) { 1732 /* 1733 * This can only happen when the parent is init. 1734 * (See call to sigcld(q, NULL) in exit().) 1735 * Use KM_NOSLEEP to avoid deadlock. 1736 */ 1737 ASSERT(pp == proc_init); 1738 winfo(cp, &info, 0); 1739 sigaddq(pp, NULL, &info, KM_NOSLEEP); 1740 } else { 1741 winfo(cp, &sqp->sq_info, 0); 1742 sigaddqa(pp, NULL, sqp); 1743 sqp = NULL; 1744 } 1745 } 1746 1747 mutex_exit(&pp->p_lock); 1748 1749 if (sqp) 1750 siginfofree(sqp); 1751 } 1752 1753 /* 1754 * Search for a child that has a pending SIGCLD for us, the parent. 1755 * The queue of SIGCLD signals is implied by the list of children. 1756 * We post the SIGCLD signals one at a time so they don't get lost. 1757 * When one is dequeued, another is enqueued, until there are no more. 1758 */ 1759 void 1760 sigcld_repost() 1761 { 1762 proc_t *pp = curproc; 1763 proc_t *cp; 1764 void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1]; 1765 sigqueue_t *sqp; 1766 1767 /* 1768 * Don't bother if SIGCLD is not now being caught. 1769 */ 1770 if (handler == SIG_DFL || handler == SIG_IGN) 1771 return; 1772 1773 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP); 1774 mutex_enter(&pidlock); 1775 for (cp = pp->p_child; cp; cp = cp->p_sibling) { 1776 if (cp->p_pidflag & CLDPEND) { 1777 post_sigcld(cp, sqp); 1778 mutex_exit(&pidlock); 1779 return; 1780 } 1781 } 1782 mutex_exit(&pidlock); 1783 kmem_free(sqp, sizeof (sigqueue_t)); 1784 } 1785 1786 /* 1787 * count number of sigqueue send by sigaddqa() 1788 */ 1789 void 1790 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp) 1791 { 1792 sigqhdr_t *sqh; 1793 1794 sqh = (sigqhdr_t *)sigqp->sq_backptr; 1795 ASSERT(sqh); 1796 1797 mutex_enter(&sqh->sqb_lock); 1798 sqh->sqb_sent++; 1799 mutex_exit(&sqh->sqb_lock); 1800 1801 if (cmd == SN_SEND) 1802 sigaddqa(p, t, sigqp); 1803 else 1804 siginfofree(sigqp); 1805 } 1806 1807 int 1808 sigsendproc(proc_t *p, sigsend_t *pv) 1809 { 1810 struct cred *cr; 1811 proc_t *myprocp = curproc; 1812 1813 ASSERT(MUTEX_HELD(&pidlock)); 1814 1815 if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig)) 1816 return (EPERM); 1817 1818 cr = CRED(); 1819 1820 if (pv->checkperm == 0 || 1821 (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) || 1822 prochasprocperm(p, myprocp, cr)) { 1823 pv->perm++; 1824 if (pv->sig) { 1825 /* Make sure we should be setting si_pid and friends */ 1826 ASSERT(pv->sicode <= 0); 1827 if (SI_CANQUEUE(pv->sicode)) { 1828 sigqueue_t *sqp; 1829 1830 mutex_enter(&myprocp->p_lock); 1831 sqp = sigqalloc(myprocp->p_sigqhdr); 1832 mutex_exit(&myprocp->p_lock); 1833 if (sqp == NULL) 1834 return (EAGAIN); 1835 sqp->sq_info.si_signo = pv->sig; 1836 sqp->sq_info.si_code = pv->sicode; 1837 sqp->sq_info.si_pid = myprocp->p_pid; 1838 sqp->sq_info.si_ctid = PRCTID(myprocp); 1839 sqp->sq_info.si_zoneid = getzoneid(); 1840 sqp->sq_info.si_uid = crgetruid(cr); 1841 sqp->sq_info.si_value = pv->value; 1842 mutex_enter(&p->p_lock); 1843 sigqsend(SN_SEND, p, NULL, sqp); 1844 mutex_exit(&p->p_lock); 1845 } else { 1846 k_siginfo_t info; 1847 bzero(&info, sizeof (info)); 1848 info.si_signo = pv->sig; 1849 info.si_code = pv->sicode; 1850 info.si_pid = myprocp->p_pid; 1851 info.si_ctid = PRCTID(myprocp); 1852 info.si_zoneid = getzoneid(); 1853 info.si_uid = crgetruid(cr); 1854 mutex_enter(&p->p_lock); 1855 /* 1856 * XXX: Should be KM_SLEEP but 1857 * we have to avoid deadlock. 1858 */ 1859 sigaddq(p, NULL, &info, KM_NOSLEEP); 1860 mutex_exit(&p->p_lock); 1861 } 1862 } 1863 } 1864 1865 return (0); 1866 } 1867 1868 int 1869 sigsendset(procset_t *psp, sigsend_t *pv) 1870 { 1871 int error; 1872 1873 error = dotoprocs(psp, sigsendproc, (char *)pv); 1874 if (error == 0 && pv->perm == 0) 1875 return (EPERM); 1876 1877 return (error); 1878 } 1879 1880 /* 1881 * Dequeue a queued siginfo structure. 1882 * If a non-null thread pointer is passed then dequeue from 1883 * the thread queue, otherwise dequeue from the process queue. 1884 */ 1885 void 1886 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp) 1887 { 1888 sigqueue_t **psqp, *sqp; 1889 1890 ASSERT(MUTEX_HELD(&p->p_lock)); 1891 1892 *qpp = NULL; 1893 1894 if (t != NULL) { 1895 sigdelset(&t->t_sig, sig); 1896 sigdelset(&t->t_extsig, sig); 1897 psqp = &t->t_sigqueue; 1898 } else { 1899 sigdelset(&p->p_sig, sig); 1900 sigdelset(&p->p_extsig, sig); 1901 psqp = &p->p_sigqueue; 1902 } 1903 1904 for (;;) { 1905 if ((sqp = *psqp) == NULL) 1906 return; 1907 if (sqp->sq_info.si_signo == sig) 1908 break; 1909 else 1910 psqp = &sqp->sq_next; 1911 } 1912 *qpp = sqp; 1913 *psqp = sqp->sq_next; 1914 for (sqp = *psqp; sqp; sqp = sqp->sq_next) { 1915 if (sqp->sq_info.si_signo == sig) { 1916 if (t != (kthread_t *)NULL) { 1917 sigaddset(&t->t_sig, sig); 1918 t->t_sig_check = 1; 1919 } else { 1920 sigaddset(&p->p_sig, sig); 1921 set_proc_ast(p); 1922 } 1923 break; 1924 } 1925 } 1926 } 1927 1928 /* 1929 * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument. 1930 */ 1931 void 1932 sigcld_delete(k_siginfo_t *ip) 1933 { 1934 proc_t *p = curproc; 1935 int another_sigcld = 0; 1936 sigqueue_t **psqp, *sqp; 1937 1938 ASSERT(ip->si_signo == SIGCLD); 1939 1940 mutex_enter(&p->p_lock); 1941 1942 if (!sigismember(&p->p_sig, SIGCLD)) { 1943 mutex_exit(&p->p_lock); 1944 return; 1945 } 1946 1947 psqp = &p->p_sigqueue; 1948 for (;;) { 1949 if ((sqp = *psqp) == NULL) { 1950 mutex_exit(&p->p_lock); 1951 return; 1952 } 1953 if (sqp->sq_info.si_signo == SIGCLD) { 1954 if (sqp->sq_info.si_pid == ip->si_pid && 1955 sqp->sq_info.si_code == ip->si_code && 1956 sqp->sq_info.si_status == ip->si_status) 1957 break; 1958 another_sigcld = 1; 1959 } 1960 psqp = &sqp->sq_next; 1961 } 1962 *psqp = sqp->sq_next; 1963 1964 siginfofree(sqp); 1965 1966 for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) { 1967 if (sqp->sq_info.si_signo == SIGCLD) 1968 another_sigcld = 1; 1969 } 1970 1971 if (!another_sigcld) { 1972 sigdelset(&p->p_sig, SIGCLD); 1973 sigdelset(&p->p_extsig, SIGCLD); 1974 } 1975 1976 mutex_exit(&p->p_lock); 1977 } 1978 1979 /* 1980 * Delete queued siginfo structures. 1981 * If a non-null thread pointer is passed then delete from 1982 * the thread queue, otherwise delete from the process queue. 1983 */ 1984 void 1985 sigdelq(proc_t *p, kthread_t *t, int sig) 1986 { 1987 sigqueue_t **psqp, *sqp; 1988 1989 /* 1990 * We must be holding p->p_lock unless the process is 1991 * being reaped or has failed to get started on fork. 1992 */ 1993 ASSERT(MUTEX_HELD(&p->p_lock) || 1994 p->p_stat == SIDL || p->p_stat == SZOMB); 1995 1996 if (t != (kthread_t *)NULL) 1997 psqp = &t->t_sigqueue; 1998 else 1999 psqp = &p->p_sigqueue; 2000 2001 while (*psqp) { 2002 sqp = *psqp; 2003 if (sig == 0 || sqp->sq_info.si_signo == sig) { 2004 *psqp = sqp->sq_next; 2005 siginfofree(sqp); 2006 } else 2007 psqp = &sqp->sq_next; 2008 } 2009 } 2010 2011 /* 2012 * Insert a siginfo structure into a queue. 2013 * If a non-null thread pointer is passed then add to the thread queue, 2014 * otherwise add to the process queue. 2015 * 2016 * The function sigaddqins() is called with sigqueue already allocated. 2017 * It is called from sigaddqa() and sigaddq() below. 2018 * 2019 * The value of si_code implicitly indicates whether sigp is to be 2020 * explicitly queued, or to be queued to depth one. 2021 */ 2022 static void 2023 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp) 2024 { 2025 sigqueue_t **psqp; 2026 int sig = sigqp->sq_info.si_signo; 2027 2028 sigqp->sq_external = (curproc != &p0) && 2029 (curproc->p_ct_process != p->p_ct_process); 2030 2031 /* 2032 * issig_forreal() doesn't bother dequeueing signals if SKILLED 2033 * is set, and even if it did, we would want to avoid situation 2034 * (which would be unique to SIGKILL) where one thread dequeued 2035 * the sigqueue_t and another executed psig(). So we create a 2036 * separate stash for SIGKILL's sigqueue_t. Because a second 2037 * SIGKILL can set SEXTKILLED, we overwrite the existing entry 2038 * if (and only if) it was non-extracontractual. 2039 */ 2040 if (sig == SIGKILL) { 2041 if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) { 2042 if (p->p_killsqp != NULL) 2043 siginfofree(p->p_killsqp); 2044 p->p_killsqp = sigqp; 2045 sigqp->sq_next = NULL; 2046 } else { 2047 siginfofree(sigqp); 2048 } 2049 return; 2050 } 2051 2052 ASSERT(sig >= 1 && sig < NSIG); 2053 if (t != NULL) /* directed to a thread */ 2054 psqp = &t->t_sigqueue; 2055 else /* directed to a process */ 2056 psqp = &p->p_sigqueue; 2057 if (SI_CANQUEUE(sigqp->sq_info.si_code) && 2058 sigismember(&p->p_siginfo, sig)) { 2059 for (; *psqp != NULL; psqp = &(*psqp)->sq_next) 2060 ; 2061 } else { 2062 for (; *psqp != NULL; psqp = &(*psqp)->sq_next) { 2063 if ((*psqp)->sq_info.si_signo == sig) { 2064 siginfofree(sigqp); 2065 return; 2066 } 2067 } 2068 } 2069 *psqp = sigqp; 2070 sigqp->sq_next = NULL; 2071 } 2072 2073 /* 2074 * The function sigaddqa() is called with sigqueue already allocated. 2075 * If signal is ignored, discard but guarantee KILL and generation semantics. 2076 * It is called from sigqueue() and other places. 2077 */ 2078 void 2079 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp) 2080 { 2081 int sig = sigqp->sq_info.si_signo; 2082 2083 ASSERT(MUTEX_HELD(&p->p_lock)); 2084 ASSERT(sig >= 1 && sig < NSIG); 2085 2086 if (sig_discardable(p, sig)) 2087 siginfofree(sigqp); 2088 else 2089 sigaddqins(p, t, sigqp); 2090 2091 sigtoproc(p, t, sig); 2092 } 2093 2094 /* 2095 * Allocate the sigqueue_t structure and call sigaddqins(). 2096 */ 2097 void 2098 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags) 2099 { 2100 sigqueue_t *sqp; 2101 int sig = infop->si_signo; 2102 2103 ASSERT(MUTEX_HELD(&p->p_lock)); 2104 ASSERT(sig >= 1 && sig < NSIG); 2105 2106 /* 2107 * If the signal will be discarded by sigtoproc() or 2108 * if the process isn't requesting siginfo and it isn't 2109 * blocking the signal (it *could* change it's mind while 2110 * the signal is pending) then don't bother creating one. 2111 */ 2112 if (!sig_discardable(p, sig) && 2113 (sigismember(&p->p_siginfo, sig) || 2114 (curproc->p_ct_process != p->p_ct_process) || 2115 (sig == SIGCLD && SI_FROMKERNEL(infop))) && 2116 ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) { 2117 bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t)); 2118 sqp->sq_func = NULL; 2119 sqp->sq_next = NULL; 2120 sigaddqins(p, t, sqp); 2121 } 2122 sigtoproc(p, t, sig); 2123 } 2124 2125 /* 2126 * Handle stop-on-fault processing for the debugger. Returns 0 2127 * if the fault is cleared during the stop, nonzero if it isn't. 2128 */ 2129 int 2130 stop_on_fault(uint_t fault, k_siginfo_t *sip) 2131 { 2132 proc_t *p = ttoproc(curthread); 2133 klwp_t *lwp = ttolwp(curthread); 2134 2135 ASSERT(prismember(&p->p_fltmask, fault)); 2136 2137 /* 2138 * Record current fault and siginfo structure so debugger can 2139 * find it. 2140 */ 2141 mutex_enter(&p->p_lock); 2142 lwp->lwp_curflt = (uchar_t)fault; 2143 lwp->lwp_siginfo = *sip; 2144 2145 stop(PR_FAULTED, fault); 2146 2147 fault = lwp->lwp_curflt; 2148 lwp->lwp_curflt = 0; 2149 mutex_exit(&p->p_lock); 2150 return (fault); 2151 } 2152 2153 void 2154 sigorset(k_sigset_t *s1, k_sigset_t *s2) 2155 { 2156 s1->__sigbits[0] |= s2->__sigbits[0]; 2157 s1->__sigbits[1] |= s2->__sigbits[1]; 2158 } 2159 2160 void 2161 sigandset(k_sigset_t *s1, k_sigset_t *s2) 2162 { 2163 s1->__sigbits[0] &= s2->__sigbits[0]; 2164 s1->__sigbits[1] &= s2->__sigbits[1]; 2165 } 2166 2167 void 2168 sigdiffset(k_sigset_t *s1, k_sigset_t *s2) 2169 { 2170 s1->__sigbits[0] &= ~(s2->__sigbits[0]); 2171 s1->__sigbits[1] &= ~(s2->__sigbits[1]); 2172 } 2173 2174 /* 2175 * Return non-zero if curthread->t_sig_check should be set to 1, that is, 2176 * if there are any signals the thread might take on return from the kernel. 2177 * If ksigset_t's were a single word, we would do: 2178 * return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset); 2179 */ 2180 int 2181 sigcheck(proc_t *p, kthread_t *t) 2182 { 2183 sc_shared_t *tdp = t->t_schedctl; 2184 2185 /* 2186 * If signals are blocked via the schedctl interface 2187 * then we only check for the unmaskable signals. 2188 */ 2189 if (tdp != NULL && tdp->sc_sigblock) 2190 return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) & 2191 CANTMASK0); 2192 2193 return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) & 2194 ~t->t_hold.__sigbits[0]) | 2195 (((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) & 2196 ~t->t_hold.__sigbits[1]) & FILLSET1)); 2197 } 2198 2199 /* ONC_PLUS EXTRACT START */ 2200 void 2201 sigintr(k_sigset_t *smask, int intable) 2202 { 2203 proc_t *p; 2204 int owned; 2205 k_sigset_t lmask; /* local copy of cantmask */ 2206 klwp_t *lwp = ttolwp(curthread); 2207 2208 /* 2209 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT 2210 * and SIGTERM. (Preserving the existing masks). 2211 * This function supports the -intr nfs and ufs mount option. 2212 */ 2213 2214 /* 2215 * don't do kernel threads 2216 */ 2217 if (lwp == NULL) 2218 return; 2219 2220 /* 2221 * get access to signal mask 2222 */ 2223 p = ttoproc(curthread); 2224 owned = mutex_owned(&p->p_lock); /* this is filthy */ 2225 if (!owned) 2226 mutex_enter(&p->p_lock); 2227 2228 /* 2229 * remember the current mask 2230 */ 2231 schedctl_finish_sigblock(curthread); 2232 *smask = curthread->t_hold; 2233 2234 /* 2235 * mask out all signals 2236 */ 2237 sigfillset(&curthread->t_hold); 2238 2239 /* 2240 * Unmask the non-maskable signals (e.g., KILL), as long as 2241 * they aren't already masked (which could happen at exit). 2242 * The first sigdiffset sets lmask to (cantmask & ~curhold). The 2243 * second sets the current hold mask to (~0 & ~lmask), which reduces 2244 * to (~cantmask | curhold). 2245 */ 2246 lmask = cantmask; 2247 sigdiffset(&lmask, smask); 2248 sigdiffset(&curthread->t_hold, &lmask); 2249 2250 /* 2251 * Re-enable HUP, QUIT, and TERM iff they were originally enabled 2252 * Re-enable INT if it's originally enabled and the NFS mount option 2253 * nointr is not set. 2254 */ 2255 if (!sigismember(smask, SIGHUP)) 2256 sigdelset(&curthread->t_hold, SIGHUP); 2257 if (!sigismember(smask, SIGINT) && intable) 2258 sigdelset(&curthread->t_hold, SIGINT); 2259 if (!sigismember(smask, SIGQUIT)) 2260 sigdelset(&curthread->t_hold, SIGQUIT); 2261 if (!sigismember(smask, SIGTERM)) 2262 sigdelset(&curthread->t_hold, SIGTERM); 2263 2264 /* 2265 * release access to signal mask 2266 */ 2267 if (!owned) 2268 mutex_exit(&p->p_lock); 2269 2270 /* 2271 * Indicate that this lwp is not to be stopped. 2272 */ 2273 lwp->lwp_nostop++; 2274 2275 } 2276 /* ONC_PLUS EXTRACT END */ 2277 2278 void 2279 sigunintr(k_sigset_t *smask) 2280 { 2281 proc_t *p; 2282 int owned; 2283 klwp_t *lwp = ttolwp(curthread); 2284 2285 /* 2286 * Reset previous mask (See sigintr() above) 2287 */ 2288 if (lwp != NULL) { 2289 lwp->lwp_nostop--; /* restore lwp stoppability */ 2290 p = ttoproc(curthread); 2291 owned = mutex_owned(&p->p_lock); /* this is filthy */ 2292 if (!owned) 2293 mutex_enter(&p->p_lock); 2294 curthread->t_hold = *smask; 2295 /* so unmasked signals will be seen */ 2296 curthread->t_sig_check = 1; 2297 if (!owned) 2298 mutex_exit(&p->p_lock); 2299 } 2300 } 2301 2302 void 2303 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask) 2304 { 2305 proc_t *p; 2306 int owned; 2307 /* 2308 * Save current signal mask in oldmask, then 2309 * set it to newmask. 2310 */ 2311 if (ttolwp(curthread) != NULL) { 2312 p = ttoproc(curthread); 2313 owned = mutex_owned(&p->p_lock); /* this is filthy */ 2314 if (!owned) 2315 mutex_enter(&p->p_lock); 2316 schedctl_finish_sigblock(curthread); 2317 if (oldmask != NULL) 2318 *oldmask = curthread->t_hold; 2319 curthread->t_hold = *newmask; 2320 curthread->t_sig_check = 1; 2321 if (!owned) 2322 mutex_exit(&p->p_lock); 2323 } 2324 } 2325 2326 /* 2327 * Return true if the signal number is in range 2328 * and the signal code specifies signal queueing. 2329 */ 2330 int 2331 sigwillqueue(int sig, int code) 2332 { 2333 if (sig >= 0 && sig < NSIG) { 2334 switch (code) { 2335 case SI_QUEUE: 2336 case SI_TIMER: 2337 case SI_ASYNCIO: 2338 case SI_MESGQ: 2339 return (1); 2340 } 2341 } 2342 return (0); 2343 } 2344 2345 #ifndef UCHAR_MAX 2346 #define UCHAR_MAX 255 2347 #endif 2348 2349 /* 2350 * The entire pool (with maxcount entries) is pre-allocated at 2351 * the first sigqueue/signotify call. 2352 */ 2353 sigqhdr_t * 2354 sigqhdralloc(size_t size, uint_t maxcount) 2355 { 2356 size_t i; 2357 sigqueue_t *sq, *next; 2358 sigqhdr_t *sqh; 2359 2360 i = (maxcount * size) + sizeof (sigqhdr_t); 2361 ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX); 2362 sqh = kmem_alloc(i, KM_SLEEP); 2363 sqh->sqb_count = (uchar_t)maxcount; 2364 sqh->sqb_maxcount = (uchar_t)maxcount; 2365 sqh->sqb_size = (ushort_t)i; 2366 sqh->sqb_pexited = 0; 2367 sqh->sqb_sent = 0; 2368 sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1); 2369 for (i = maxcount - 1; i != 0; i--) { 2370 next = (sigqueue_t *)((uintptr_t)sq + size); 2371 sq->sq_next = next; 2372 sq = next; 2373 } 2374 sq->sq_next = NULL; 2375 cv_init(&sqh->sqb_cv, NULL, CV_DEFAULT, NULL); 2376 mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL); 2377 return (sqh); 2378 } 2379 2380 static void sigqrel(sigqueue_t *); 2381 2382 /* 2383 * allocate a sigqueue/signotify structure from the per process 2384 * pre-allocated pool. 2385 */ 2386 sigqueue_t * 2387 sigqalloc(sigqhdr_t *sqh) 2388 { 2389 sigqueue_t *sq = NULL; 2390 2391 ASSERT(MUTEX_HELD(&curproc->p_lock)); 2392 2393 if (sqh != NULL) { 2394 mutex_enter(&sqh->sqb_lock); 2395 if (sqh->sqb_count > 0) { 2396 sqh->sqb_count--; 2397 sq = sqh->sqb_free; 2398 sqh->sqb_free = sq->sq_next; 2399 mutex_exit(&sqh->sqb_lock); 2400 bzero(&sq->sq_info, sizeof (k_siginfo_t)); 2401 sq->sq_backptr = sqh; 2402 sq->sq_func = sigqrel; 2403 sq->sq_next = NULL; 2404 sq->sq_external = 0; 2405 } else { 2406 mutex_exit(&sqh->sqb_lock); 2407 } 2408 } 2409 return (sq); 2410 } 2411 2412 /* 2413 * Return a sigqueue structure back to the pre-allocated pool. 2414 */ 2415 static void 2416 sigqrel(sigqueue_t *sq) 2417 { 2418 sigqhdr_t *sqh; 2419 2420 /* make sure that p_lock of the affected process is held */ 2421 2422 sqh = (sigqhdr_t *)sq->sq_backptr; 2423 mutex_enter(&sqh->sqb_lock); 2424 if (sqh->sqb_pexited && sqh->sqb_sent == 1) { 2425 mutex_exit(&sqh->sqb_lock); 2426 cv_destroy(&sqh->sqb_cv); 2427 mutex_destroy(&sqh->sqb_lock); 2428 kmem_free(sqh, sqh->sqb_size); 2429 } else { 2430 sqh->sqb_count++; 2431 sqh->sqb_sent--; 2432 sq->sq_next = sqh->sqb_free; 2433 sq->sq_backptr = NULL; 2434 sqh->sqb_free = sq; 2435 cv_signal(&sqh->sqb_cv); 2436 mutex_exit(&sqh->sqb_lock); 2437 } 2438 } 2439 2440 /* 2441 * Free up the pre-allocated sigqueue headers of sigqueue pool 2442 * and signotify pool, if possible. 2443 * Called only by the owning process during exec() and exit(). 2444 */ 2445 void 2446 sigqfree(proc_t *p) 2447 { 2448 ASSERT(MUTEX_HELD(&p->p_lock)); 2449 2450 if (p->p_sigqhdr != NULL) { /* sigqueue pool */ 2451 sigqhdrfree(p->p_sigqhdr); 2452 p->p_sigqhdr = NULL; 2453 } 2454 if (p->p_signhdr != NULL) { /* signotify pool */ 2455 sigqhdrfree(p->p_signhdr); 2456 p->p_signhdr = NULL; 2457 } 2458 } 2459 2460 /* 2461 * Free up the pre-allocated header and sigq pool if possible. 2462 */ 2463 void 2464 sigqhdrfree(sigqhdr_t *sqh) 2465 { 2466 mutex_enter(&sqh->sqb_lock); 2467 if (sqh->sqb_sent == 0) { 2468 mutex_exit(&sqh->sqb_lock); 2469 cv_destroy(&sqh->sqb_cv); 2470 mutex_destroy(&sqh->sqb_lock); 2471 kmem_free(sqh, sqh->sqb_size); 2472 } else { 2473 sqh->sqb_pexited = 1; 2474 mutex_exit(&sqh->sqb_lock); 2475 } 2476 } 2477 2478 /* 2479 * Free up a single sigqueue structure. 2480 * No other code should free a sigqueue directly. 2481 */ 2482 void 2483 siginfofree(sigqueue_t *sqp) 2484 { 2485 if (sqp != NULL) { 2486 if (sqp->sq_func != NULL) 2487 (sqp->sq_func)(sqp); 2488 else 2489 kmem_free(sqp, sizeof (sigqueue_t)); 2490 } 2491 } 2492 2493 /* 2494 * Generate a synchronous signal caused by a hardware 2495 * condition encountered by an lwp. Called from trap(). 2496 */ 2497 void 2498 trapsig(k_siginfo_t *ip, int restartable) 2499 { 2500 proc_t *p = ttoproc(curthread); 2501 int sig = ip->si_signo; 2502 sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP); 2503 2504 ASSERT(sig > 0 && sig < NSIG); 2505 2506 if (curthread->t_dtrace_on) 2507 dtrace_safe_synchronous_signal(); 2508 2509 mutex_enter(&p->p_lock); 2510 schedctl_finish_sigblock(curthread); 2511 /* 2512 * Avoid a possible infinite loop if the lwp is holding the 2513 * signal generated by a trap of a restartable instruction or 2514 * if the signal so generated is being ignored by the process. 2515 */ 2516 if (restartable && 2517 (sigismember(&curthread->t_hold, sig) || 2518 p->p_user.u_signal[sig-1] == SIG_IGN)) { 2519 sigdelset(&curthread->t_hold, sig); 2520 p->p_user.u_signal[sig-1] = SIG_DFL; 2521 sigdelset(&p->p_ignore, sig); 2522 } 2523 bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t)); 2524 sigaddqa(p, curthread, sqp); 2525 mutex_exit(&p->p_lock); 2526 } 2527 2528 #ifdef _SYSCALL32_IMPL 2529 2530 /* 2531 * It's tricky to transmit a sigval between 32-bit and 64-bit 2532 * process, since in the 64-bit world, a pointer and an integer 2533 * are different sizes. Since we're constrained by the standards 2534 * world not to change the types, and it's unclear how useful it is 2535 * to send pointers between address spaces this way, we preserve 2536 * the 'int' interpretation for 32-bit processes interoperating 2537 * with 64-bit processes. The full semantics (pointers or integers) 2538 * are available for N-bit processes interoperating with N-bit 2539 * processes. 2540 */ 2541 void 2542 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest) 2543 { 2544 bzero(dest, sizeof (*dest)); 2545 2546 /* 2547 * The absolute minimum content is si_signo and si_code. 2548 */ 2549 dest->si_signo = src->si_signo; 2550 if ((dest->si_code = src->si_code) == SI_NOINFO) 2551 return; 2552 2553 /* 2554 * A siginfo generated by user level is structured 2555 * differently from one generated by the kernel. 2556 */ 2557 if (SI_FROMUSER(src)) { 2558 dest->si_pid = src->si_pid; 2559 dest->si_ctid = src->si_ctid; 2560 dest->si_zoneid = src->si_zoneid; 2561 dest->si_uid = src->si_uid; 2562 if (SI_CANQUEUE(src->si_code)) 2563 dest->si_value.sival_int = 2564 (int32_t)src->si_value.sival_int; 2565 return; 2566 } 2567 2568 dest->si_errno = src->si_errno; 2569 2570 switch (src->si_signo) { 2571 default: 2572 dest->si_pid = src->si_pid; 2573 dest->si_ctid = src->si_ctid; 2574 dest->si_zoneid = src->si_zoneid; 2575 dest->si_uid = src->si_uid; 2576 dest->si_value.sival_int = (int32_t)src->si_value.sival_int; 2577 break; 2578 case SIGCLD: 2579 dest->si_pid = src->si_pid; 2580 dest->si_ctid = src->si_ctid; 2581 dest->si_zoneid = src->si_zoneid; 2582 dest->si_status = src->si_status; 2583 dest->si_stime = src->si_stime; 2584 dest->si_utime = src->si_utime; 2585 break; 2586 case SIGSEGV: 2587 case SIGBUS: 2588 case SIGILL: 2589 case SIGTRAP: 2590 case SIGFPE: 2591 case SIGEMT: 2592 dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr; 2593 dest->si_trapno = src->si_trapno; 2594 dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc; 2595 break; 2596 case SIGPOLL: 2597 case SIGXFSZ: 2598 dest->si_fd = src->si_fd; 2599 dest->si_band = src->si_band; 2600 break; 2601 case SIGPROF: 2602 dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr; 2603 dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec; 2604 dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec; 2605 dest->si_syscall = src->si_syscall; 2606 dest->si_nsysarg = src->si_nsysarg; 2607 dest->si_fault = src->si_fault; 2608 break; 2609 } 2610 } 2611 2612 void 2613 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest) 2614 { 2615 bzero(dest, sizeof (*dest)); 2616 2617 /* 2618 * The absolute minimum content is si_signo and si_code. 2619 */ 2620 dest->si_signo = src->si_signo; 2621 if ((dest->si_code = src->si_code) == SI_NOINFO) 2622 return; 2623 2624 /* 2625 * A siginfo generated by user level is structured 2626 * differently from one generated by the kernel. 2627 */ 2628 if (SI_FROMUSER(src)) { 2629 dest->si_pid = src->si_pid; 2630 dest->si_ctid = src->si_ctid; 2631 dest->si_zoneid = src->si_zoneid; 2632 dest->si_uid = src->si_uid; 2633 if (SI_CANQUEUE(src->si_code)) 2634 dest->si_value.sival_int = 2635 (int)src->si_value.sival_int; 2636 return; 2637 } 2638 2639 dest->si_errno = src->si_errno; 2640 2641 switch (src->si_signo) { 2642 default: 2643 dest->si_pid = src->si_pid; 2644 dest->si_ctid = src->si_ctid; 2645 dest->si_zoneid = src->si_zoneid; 2646 dest->si_uid = src->si_uid; 2647 dest->si_value.sival_int = (int)src->si_value.sival_int; 2648 break; 2649 case SIGCLD: 2650 dest->si_pid = src->si_pid; 2651 dest->si_ctid = src->si_ctid; 2652 dest->si_zoneid = src->si_zoneid; 2653 dest->si_status = src->si_status; 2654 dest->si_stime = src->si_stime; 2655 dest->si_utime = src->si_utime; 2656 break; 2657 case SIGSEGV: 2658 case SIGBUS: 2659 case SIGILL: 2660 case SIGTRAP: 2661 case SIGFPE: 2662 case SIGEMT: 2663 dest->si_addr = (void *)(uintptr_t)src->si_addr; 2664 dest->si_trapno = src->si_trapno; 2665 dest->si_pc = (void *)(uintptr_t)src->si_pc; 2666 break; 2667 case SIGPOLL: 2668 case SIGXFSZ: 2669 dest->si_fd = src->si_fd; 2670 dest->si_band = src->si_band; 2671 break; 2672 case SIGPROF: 2673 dest->si_faddr = (void *)(uintptr_t)src->si_faddr; 2674 dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec; 2675 dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec; 2676 dest->si_syscall = src->si_syscall; 2677 dest->si_nsysarg = src->si_nsysarg; 2678 dest->si_fault = src->si_fault; 2679 break; 2680 } 2681 } 2682 2683 #endif /* _SYSCALL32_IMPL */ 2684