xref: /illumos-gate/usr/src/uts/common/os/sig.c (revision 30f5cf21f0e4186919b67ac48223d09ca110f8fe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/bitmap.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/errno.h>
41 #include <sys/proc.h>
42 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
43 #include <sys/signal.h>
44 #include <sys/siginfo.h>
45 #include <sys/fault.h>
46 #include <sys/ucontext.h>
47 #include <sys/procfs.h>
48 #include <sys/wait.h>
49 #include <sys/class.h>
50 #include <sys/mman.h>
51 #include <sys/procset.h>
52 #include <sys/kmem.h>
53 #include <sys/cpuvar.h>
54 #include <sys/prsystm.h>
55 #include <sys/debug.h>
56 #include <vm/as.h>
57 #include <sys/bitmap.h>
58 #include <c2/audit.h>
59 #include <sys/core.h>
60 #include <sys/schedctl.h>
61 #include <sys/contract/process_impl.h>
62 #include <sys/dtrace.h>
63 #include <sys/sdt.h>
64 
65 				/* MUST be contiguous */
66 k_sigset_t nullsmask = {0, 0};
67 
68 k_sigset_t fillset = {FILLSET0, FILLSET1};
69 
70 k_sigset_t cantmask = {CANTMASK0, CANTMASK1};
71 
72 k_sigset_t cantreset = {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0};
73 
74 k_sigset_t ignoredefault = {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
75 			|sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
76 			(sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
77 			|sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
78 			|sigmask(SIGJVM2))};
79 
80 k_sigset_t stopdefault = {(sigmask(SIGSTOP)|sigmask(SIGTSTP)
81 			|sigmask(SIGTTOU)|sigmask(SIGTTIN)), 0};
82 
83 k_sigset_t coredefault = {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)
84 			|sigmask(SIGIOT)|sigmask(SIGEMT)|sigmask(SIGFPE)
85 			|sigmask(SIGBUS)|sigmask(SIGSEGV)|sigmask(SIGSYS)
86 			|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0};
87 
88 k_sigset_t holdvfork = {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)),
89 			0};
90 
91 static	int	isjobstop(int);
92 static	void	post_sigcld(proc_t *, sigqueue_t *);
93 
94 /*
95  * Internal variables for counting number of user thread stop requests posted.
96  * They may not be accurate at some special situation such as that a virtually
97  * stopped thread starts to run.
98  */
99 static int num_utstop;
100 /*
101  * Internal variables for broadcasting an event when all thread stop requests
102  * are processed.
103  */
104 static kcondvar_t utstop_cv;
105 
106 static kmutex_t thread_stop_lock;
107 void del_one_utstop(void);
108 
109 /*
110  * Send the specified signal to the specified process.
111  */
112 void
113 psignal(proc_t *p, int sig)
114 {
115 	mutex_enter(&p->p_lock);
116 	sigtoproc(p, NULL, sig);
117 	mutex_exit(&p->p_lock);
118 }
119 
120 /*
121  * Send the specified signal to the specified thread.
122  */
123 void
124 tsignal(kthread_t *t, int sig)
125 {
126 	proc_t *p = ttoproc(t);
127 
128 	mutex_enter(&p->p_lock);
129 	sigtoproc(p, t, sig);
130 	mutex_exit(&p->p_lock);
131 }
132 
133 int
134 signal_is_blocked(kthread_t *t, int sig)
135 {
136 	return (sigismember(&t->t_hold, sig) ||
137 	    (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
138 }
139 
140 /*
141  * Return true if the signal can safely be discarded on generation.
142  * That is, if there is no need for the signal on the receiving end.
143  * The answer is true if the process is a zombie or
144  * if all of these conditions are true:
145  *	the signal is being ignored
146  *	the process is single-threaded
147  *	the signal is not being traced by /proc
148  * 	the signal is not blocked by the process
149  */
150 static int
151 sig_discardable(proc_t *p, int sig)
152 {
153 	kthread_t *t = p->p_tlist;
154 
155 	return (t == NULL ||		/* if zombie or ... */
156 	    (sigismember(&p->p_ignore, sig) &&	/* signal is ignored */
157 	    t->t_forw == t &&			/* and single-threaded */
158 	    !tracing(p, sig) &&			/* and no /proc tracing */
159 	    !signal_is_blocked(t, sig)));	/* and signal not blocked */
160 }
161 
162 /*
163  * Return true if this thread is going to eat this signal soon.
164  */
165 int
166 eat_signal(kthread_t *t, int sig)
167 {
168 	int rval = 0;
169 	ASSERT(THREAD_LOCK_HELD(t));
170 
171 	/*
172 	 * Do not do anything if the target thread has the signal blocked.
173 	 */
174 	if (!signal_is_blocked(t, sig)) {
175 		t->t_sig_check = 1;	/* have thread do an issig */
176 		if (t->t_state == TS_SLEEP && (t->t_flag & T_WAKEABLE)) {
177 			setrun_locked(t);
178 			rval = 1;
179 		} else if (t->t_state == TS_STOPPED && sig == SIGKILL) {
180 			ttoproc(t)->p_stopsig = 0;
181 			t->t_dtrace_stop = 0;
182 			t->t_schedflag |= TS_XSTART | TS_PSTART;
183 			setrun_locked(t);
184 		} else if (t != curthread && t->t_state == TS_ONPROC) {
185 			aston(t);	/* make it do issig promptly */
186 			if (t->t_cpu != CPU)
187 				poke_cpu(t->t_cpu->cpu_id);
188 			rval = 1;
189 		} else if (t->t_state == TS_RUN) {
190 			rval = 1;
191 		}
192 	}
193 
194 	return (rval);
195 }
196 
197 /*
198  * Post a signal.
199  * If a non-null thread pointer is passed, then post the signal
200  * to the thread/lwp, otherwise post the signal to the process.
201  */
202 void
203 sigtoproc(proc_t *p, kthread_t *t, int sig)
204 {
205 	kthread_t *tt;
206 	int ext = !(curproc->p_flag & SSYS) &&
207 	    (curproc->p_ct_process != p->p_ct_process);
208 
209 	ASSERT(MUTEX_HELD(&p->p_lock));
210 
211 	if (sig <= 0 || sig >= NSIG)
212 		return;
213 
214 	/*
215 	 * Regardless of origin or directedness,
216 	 * SIGKILL kills all lwps in the process immediately
217 	 * and jobcontrol signals affect all lwps in the process.
218 	 */
219 	if (sig == SIGKILL) {
220 		p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
221 		t = NULL;
222 	} else if (sig == SIGCONT) {
223 		/*
224 		 * The SSCONT flag will remain set until a stopping
225 		 * signal comes in (below).  This is harmless.
226 		 */
227 		p->p_flag |= SSCONT;
228 		sigdelq(p, NULL, SIGSTOP);
229 		sigdelq(p, NULL, SIGTSTP);
230 		sigdelq(p, NULL, SIGTTOU);
231 		sigdelq(p, NULL, SIGTTIN);
232 		sigdiffset(&p->p_sig, &stopdefault);
233 		sigdiffset(&p->p_extsig, &stopdefault);
234 		p->p_stopsig = 0;
235 		if ((tt = p->p_tlist) != NULL) {
236 			do {
237 				sigdelq(p, tt, SIGSTOP);
238 				sigdelq(p, tt, SIGTSTP);
239 				sigdelq(p, tt, SIGTTOU);
240 				sigdelq(p, tt, SIGTTIN);
241 				sigdiffset(&tt->t_sig, &stopdefault);
242 				sigdiffset(&tt->t_extsig, &stopdefault);
243 			} while ((tt = tt->t_forw) != p->p_tlist);
244 		}
245 		if ((tt = p->p_tlist) != NULL) {
246 			do {
247 				thread_lock(tt);
248 				if (tt->t_state == TS_STOPPED &&
249 				    tt->t_whystop == PR_JOBCONTROL) {
250 					tt->t_schedflag |= TS_XSTART;
251 					setrun_locked(tt);
252 				}
253 				thread_unlock(tt);
254 			} while ((tt = tt->t_forw) != p->p_tlist);
255 		}
256 	} else if (sigismember(&stopdefault, sig)) {
257 		/*
258 		 * This test has a race condition which we can't fix:
259 		 * By the time the stopping signal is received by
260 		 * the target process/thread, the signal handler
261 		 * and/or the detached state might have changed.
262 		 */
263 		if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
264 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
265 			p->p_flag &= ~SSCONT;
266 		sigdelq(p, NULL, SIGCONT);
267 		sigdelset(&p->p_sig, SIGCONT);
268 		sigdelset(&p->p_extsig, SIGCONT);
269 		if ((tt = p->p_tlist) != NULL) {
270 			do {
271 				sigdelq(p, tt, SIGCONT);
272 				sigdelset(&tt->t_sig, SIGCONT);
273 				sigdelset(&tt->t_extsig, SIGCONT);
274 			} while ((tt = tt->t_forw) != p->p_tlist);
275 		}
276 	}
277 
278 	if (sig_discardable(p, sig)) {
279 		DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
280 		    proc_t *, p, int, sig);
281 		return;
282 	}
283 
284 	if (t != NULL) {
285 		/*
286 		 * This is a directed signal, wake up the lwp.
287 		 */
288 		sigaddset(&t->t_sig, sig);
289 		if (ext)
290 			sigaddset(&t->t_extsig, sig);
291 		thread_lock(t);
292 		(void) eat_signal(t, sig);
293 		thread_unlock(t);
294 		DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
295 	} else if ((tt = p->p_tlist) != NULL) {
296 		/*
297 		 * Make sure that some lwp that already exists
298 		 * in the process fields the signal soon.
299 		 * Wake up an interruptibly sleeping lwp if necessary.
300 		 */
301 		int su = 0;
302 
303 		sigaddset(&p->p_sig, sig);
304 		if (ext)
305 			sigaddset(&p->p_extsig, sig);
306 		do {
307 			thread_lock(tt);
308 			if (eat_signal(tt, sig)) {
309 				thread_unlock(tt);
310 				break;
311 			}
312 			if (sig == SIGKILL && SUSPENDED(tt))
313 				su++;
314 			thread_unlock(tt);
315 		} while ((tt = tt->t_forw) != p->p_tlist);
316 		/*
317 		 * If the process is deadlocked, make somebody run and die.
318 		 */
319 		if (sig == SIGKILL && p->p_stat != SIDL &&
320 		    p->p_lwprcnt == 0 && p->p_lwpcnt == su) {
321 			thread_lock(tt);
322 			p->p_lwprcnt++;
323 			tt->t_schedflag |= TS_CSTART;
324 			setrun_locked(tt);
325 			thread_unlock(tt);
326 		}
327 
328 		DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
329 	}
330 }
331 
332 static int
333 isjobstop(int sig)
334 {
335 	proc_t *p = ttoproc(curthread);
336 
337 	ASSERT(MUTEX_HELD(&p->p_lock));
338 
339 	if (u.u_signal[sig-1] == SIG_DFL && sigismember(&stopdefault, sig)) {
340 		/*
341 		 * If SIGCONT has been posted since we promoted this signal
342 		 * from pending to current, then don't do a jobcontrol stop.
343 		 */
344 		if (!(p->p_flag & SSCONT) &&
345 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
346 		    curthread != p->p_agenttp) {
347 			sigqueue_t *sqp;
348 
349 			stop(PR_JOBCONTROL, sig);
350 			mutex_exit(&p->p_lock);
351 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
352 			mutex_enter(&pidlock);
353 			/*
354 			 * Only the first lwp to continue notifies the parent.
355 			 */
356 			if (p->p_pidflag & CLDCONT)
357 				siginfofree(sqp);
358 			else {
359 				p->p_pidflag |= CLDCONT;
360 				p->p_wcode = CLD_CONTINUED;
361 				p->p_wdata = SIGCONT;
362 				sigcld(p, sqp);
363 			}
364 			mutex_exit(&pidlock);
365 			mutex_enter(&p->p_lock);
366 		}
367 		return (1);
368 	}
369 	return (0);
370 }
371 
372 /*
373  * Returns true if the current process has a signal to process, and
374  * the signal is not held.  The signal to process is put in p_cursig.
375  * This is asked at least once each time a process enters the system
376  * (though this can usually be done without actually calling issig by
377  * checking the pending signal masks).  A signal does not do anything
378  * directly to a process; it sets a flag that asks the process to do
379  * something to itself.
380  *
381  * The "why" argument indicates the allowable side-effects of the call:
382  *
383  * FORREAL:  Extract the next pending signal from p_sig into p_cursig;
384  * stop the process if a stop has been requested or if a traced signal
385  * is pending.
386  *
387  * JUSTLOOKING:  Don't stop the process, just indicate whether or not
388  * a signal might be pending (FORREAL is needed to tell for sure).
389  *
390  * XXX: Changes to the logic in these routines should be propagated
391  * to lm_sigispending().  See bug 1201594.
392  */
393 
394 static int issig_forreal(void);
395 static int issig_justlooking(void);
396 
397 int
398 issig(int why)
399 {
400 	ASSERT(why == FORREAL || why == JUSTLOOKING);
401 
402 	return ((why == FORREAL)? issig_forreal() : issig_justlooking());
403 }
404 
405 
406 static int
407 issig_justlooking(void)
408 {
409 	kthread_t *t = curthread;
410 	klwp_t *lwp = ttolwp(t);
411 	proc_t *p = ttoproc(t);
412 	k_sigset_t set;
413 
414 	/*
415 	 * This function answers the question:
416 	 * "Is there any reason to call issig_forreal()?"
417 	 *
418 	 * We have to answer the question w/o grabbing any locks
419 	 * because we are (most likely) being called after we
420 	 * put ourselves on the sleep queue.
421 	 */
422 
423 	if (t->t_dtrace_stop | t->t_dtrace_sig)
424 		return (1);
425 
426 	/*
427 	 * Another piece of complexity in this process.  When single-stepping a
428 	 * process, we don't want an intervening signal or TP_PAUSE request to
429 	 * suspend the current thread.  Otherwise, the controlling process will
430 	 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
431 	 * We will trigger any remaining signals when we re-enter the kernel on
432 	 * the single step trap.
433 	 */
434 	if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
435 		return (0);
436 
437 	if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
438 	    (p->p_flag & (SEXITLWPS|SKILLED)) ||
439 	    (lwp->lwp_nostop == 0 &&
440 	    (p->p_stopsig | (p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
441 	    (t->t_proc_flag &
442 	    (TP_PRSTOP|TP_HOLDLWP|TP_CHKPT|TP_PAUSE)))) ||
443 	    lwp->lwp_cursig)
444 		return (1);
445 
446 	if (p->p_flag & SVFWAIT)
447 		return (0);
448 	set = p->p_sig;
449 	sigorset(&set, &t->t_sig);
450 	if (schedctl_sigblock(t))	/* all blockable signals blocked */
451 		sigandset(&set, &cantmask);
452 	else
453 		sigdiffset(&set, &t->t_hold);
454 	if (p->p_flag & SVFORK)
455 		sigdiffset(&set, &holdvfork);
456 
457 	if (!sigisempty(&set)) {
458 		int sig;
459 
460 		for (sig = 1; sig < NSIG; sig++) {
461 			if (sigismember(&set, sig) &&
462 			    (tracing(p, sig) ||
463 			    !sigismember(&p->p_ignore, sig))) {
464 				/*
465 				 * Don't promote a signal that will stop
466 				 * the process when lwp_nostop is set.
467 				 */
468 				if (!lwp->lwp_nostop ||
469 				    u.u_signal[sig-1] != SIG_DFL ||
470 				    !sigismember(&stopdefault, sig))
471 					return (1);
472 			}
473 		}
474 	}
475 
476 	return (0);
477 }
478 
479 static int
480 issig_forreal(void)
481 {
482 	int sig = 0, ext = 0;
483 	kthread_t *t = curthread;
484 	klwp_t *lwp = ttolwp(t);
485 	proc_t *p = ttoproc(t);
486 	int toproc = 0;
487 	int sigcld_found = 0;
488 	int nostop_break = 0;
489 
490 	ASSERT(t->t_state == TS_ONPROC);
491 
492 	mutex_enter(&p->p_lock);
493 	schedctl_finish_sigblock(t);
494 
495 	if (t->t_dtrace_stop | t->t_dtrace_sig) {
496 		if (t->t_dtrace_stop) {
497 			/*
498 			 * If DTrace's "stop" action has been invoked on us,
499 			 * set TP_PRSTOP.
500 			 */
501 			t->t_proc_flag |= TP_PRSTOP;
502 		}
503 
504 		if (t->t_dtrace_sig != 0) {
505 			k_siginfo_t info;
506 
507 			/*
508 			 * Post the signal generated as the result of
509 			 * DTrace's "raise" action as a normal signal before
510 			 * the full-fledged signal checking begins.
511 			 */
512 			bzero(&info, sizeof (info));
513 			info.si_signo = t->t_dtrace_sig;
514 			info.si_code = SI_DTRACE;
515 
516 			sigaddq(p, NULL, &info, KM_NOSLEEP);
517 
518 			t->t_dtrace_sig = 0;
519 		}
520 	}
521 
522 	for (;;) {
523 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
524 			lwp->lwp_cursig = sig = SIGKILL;
525 			lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
526 			break;
527 		}
528 
529 		/*
530 		 * Another piece of complexity in this process.  When
531 		 * single-stepping a process, we don't want an intervening
532 		 * signal or TP_PAUSE request to suspend the current thread.
533 		 * Otherwise, the controlling process will hang beacuse we will
534 		 * be stopped with TS_PSTART set in t_schedflag.  We will
535 		 * trigger any remaining signals when we re-enter the kernel on
536 		 * the single step trap.
537 		 */
538 		if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
539 			sig = 0;
540 			break;
541 		}
542 
543 		/*
544 		 * Hold the lwp here for watchpoint manipulation.
545 		 */
546 		if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
547 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
548 			continue;
549 		}
550 
551 		if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
552 			if ((sig = lwp->lwp_cursig) != 0) {
553 				/*
554 				 * Make sure we call ISSIG() in post_syscall()
555 				 * to re-validate this current signal.
556 				 */
557 				t->t_sig_check = 1;
558 			}
559 			break;
560 		}
561 
562 		/*
563 		 * If the request is PR_CHECKPOINT, ignore the rest of signals
564 		 * or requests.  Honor other stop requests or signals later.
565 		 * Go back to top of loop here to check if an exit or hold
566 		 * event has occurred while stopped.
567 		 */
568 		if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
569 			stop(PR_CHECKPOINT, 0);
570 			continue;
571 		}
572 
573 		/*
574 		 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
575 		 * with signals or /proc.  Another lwp is executing fork1(),
576 		 * or is undergoing watchpoint activity (remapping a page),
577 		 * or is executing lwp_suspend() on this lwp.
578 		 * Again, go back to top of loop to check if an exit
579 		 * or hold event has occurred while stopped.
580 		 */
581 		if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
582 		    (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop) {
583 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
584 			continue;
585 		}
586 
587 		/*
588 		 * Honor requested stop before dealing with the
589 		 * current signal; a debugger may change it.
590 		 * Do not want to go back to loop here since this is a special
591 		 * stop that means: make incremental progress before the next
592 		 * stop. The danger is that returning to top of loop would most
593 		 * likely drop the thread right back here to stop soon after it
594 		 * was continued, violating the incremental progress request.
595 		 */
596 		if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
597 			stop(PR_REQUESTED, 0);
598 
599 		/*
600 		 * If a debugger wants us to take a signal it will have
601 		 * left it in lwp->lwp_cursig.  If lwp_cursig has been cleared
602 		 * or if it's being ignored, we continue on looking for another
603 		 * signal.  Otherwise we return the specified signal, provided
604 		 * it's not a signal that causes a job control stop.
605 		 *
606 		 * When stopped on PR_JOBCONTROL, there is no current
607 		 * signal; we cancel lwp->lwp_cursig temporarily before
608 		 * calling isjobstop().  The current signal may be reset
609 		 * by a debugger while we are stopped in isjobstop().
610 		 */
611 		if ((sig = lwp->lwp_cursig) != 0) {
612 			ext = lwp->lwp_extsig;
613 			lwp->lwp_cursig = 0;
614 			lwp->lwp_extsig = 0;
615 			if (!sigismember(&p->p_ignore, sig) &&
616 			    !isjobstop(sig)) {
617 				if (p->p_flag & (SEXITLWPS|SKILLED)) {
618 					sig = SIGKILL;
619 					ext = (p->p_flag & SEXTKILLED) != 0;
620 				}
621 				lwp->lwp_cursig = (uchar_t)sig;
622 				lwp->lwp_extsig = (uchar_t)ext;
623 				break;
624 			}
625 			/*
626 			 * The signal is being ignored or it caused a
627 			 * job-control stop.  If another current signal
628 			 * has not been established, return the current
629 			 * siginfo, if any, to the memory manager.
630 			 */
631 			if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
632 				siginfofree(lwp->lwp_curinfo);
633 				lwp->lwp_curinfo = NULL;
634 			}
635 			/*
636 			 * Loop around again in case we were stopped
637 			 * on a job control signal and a /proc stop
638 			 * request was posted or another current signal
639 			 * was established while we were stopped.
640 			 */
641 			continue;
642 		}
643 
644 		if (p->p_stopsig && !lwp->lwp_nostop &&
645 		    curthread != p->p_agenttp) {
646 			/*
647 			 * Some lwp in the process has already stopped
648 			 * showing PR_JOBCONTROL.  This is a stop in
649 			 * sympathy with the other lwp, even if this
650 			 * lwp is blocking the stopping signal.
651 			 */
652 			stop(PR_JOBCONTROL, p->p_stopsig);
653 			continue;
654 		}
655 
656 		/*
657 		 * Loop on the pending signals until we find a
658 		 * non-held signal that is traced or not ignored.
659 		 * First check the signals pending for the lwp,
660 		 * then the signals pending for the process as a whole.
661 		 */
662 		for (;;) {
663 			k_sigset_t tsig;
664 
665 			tsig = t->t_sig;
666 			if ((sig = fsig(&tsig, t)) != 0) {
667 				if (sig == SIGCLD)
668 					sigcld_found = 1;
669 				toproc = 0;
670 				if (tracing(p, sig) ||
671 				    !sigismember(&p->p_ignore, sig)) {
672 					if (sigismember(&t->t_extsig, sig))
673 						ext = 1;
674 					break;
675 				}
676 				sigdelset(&t->t_sig, sig);
677 				sigdelset(&t->t_extsig, sig);
678 				sigdelq(p, t, sig);
679 			} else if ((sig = fsig(&p->p_sig, t)) != 0) {
680 				if (sig == SIGCLD)
681 					sigcld_found = 1;
682 				toproc = 1;
683 				if (tracing(p, sig) ||
684 				    !sigismember(&p->p_ignore, sig)) {
685 					if (sigismember(&p->p_extsig, sig))
686 						ext = 1;
687 					break;
688 				}
689 				sigdelset(&p->p_sig, sig);
690 				sigdelset(&p->p_extsig, sig);
691 				sigdelq(p, NULL, sig);
692 			} else {
693 				/* no signal was found */
694 				break;
695 			}
696 		}
697 
698 		if (sig == 0) {	/* no signal was found */
699 			if (p->p_flag & (SEXITLWPS|SKILLED)) {
700 				lwp->lwp_cursig = SIGKILL;
701 				sig = SIGKILL;
702 				ext = (p->p_flag & SEXTKILLED) != 0;
703 			}
704 			break;
705 		}
706 
707 		/*
708 		 * If we have been informed not to stop (i.e., we are being
709 		 * called from within a network operation), then don't promote
710 		 * the signal at this time, just return the signal number.
711 		 * We will call issig() again later when it is safe.
712 		 *
713 		 * fsig() does not return a jobcontrol stopping signal
714 		 * with a default action of stopping the process if
715 		 * lwp_nostop is set, so we won't be causing a bogus
716 		 * EINTR by this action.  (Such a signal is eaten by
717 		 * isjobstop() when we loop around to do final checks.)
718 		 */
719 		if (lwp->lwp_nostop) {
720 			nostop_break = 1;
721 			break;
722 		}
723 
724 		/*
725 		 * Promote the signal from pending to current.
726 		 *
727 		 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
728 		 * if no siginfo_t exists for this signal.
729 		 */
730 		lwp->lwp_cursig = (uchar_t)sig;
731 		lwp->lwp_extsig = (uchar_t)ext;
732 		t->t_sig_check = 1;	/* so post_syscall will see signal */
733 		ASSERT(lwp->lwp_curinfo == NULL);
734 		sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
735 
736 		if (tracing(p, sig))
737 			stop(PR_SIGNALLED, sig);
738 
739 		/*
740 		 * Loop around to check for requested stop before
741 		 * performing the usual current-signal actions.
742 		 */
743 	}
744 
745 	mutex_exit(&p->p_lock);
746 
747 	/*
748 	 * If SIGCLD was dequeued, search for other pending SIGCLD's.
749 	 * Don't do it if we are returning SIGCLD and the signal
750 	 * handler will be reset by psig(); this enables reliable
751 	 * delivery of SIGCLD even when using the old, broken
752 	 * signal() interface for setting the signal handler.
753 	 */
754 	if (sigcld_found &&
755 	    (sig != SIGCLD || !sigismember(&u.u_sigresethand, SIGCLD)))
756 		sigcld_repost();
757 
758 	if (sig != 0)
759 		(void) undo_watch_step(NULL);
760 
761 	/*
762 	 * If we have been blocked since the p_lock was dropped off
763 	 * above, then this promoted signal might have been handled
764 	 * already when we were on the way back from sleep queue, so
765 	 * just ignore it.
766 	 * If we have been informed not to stop, just return the signal
767 	 * number. Also see comments above.
768 	 */
769 	if (!nostop_break) {
770 		sig = lwp->lwp_cursig;
771 	}
772 
773 	return (sig != 0);
774 }
775 
776 /*
777  * Return true if the process is currently stopped showing PR_JOBCONTROL.
778  * This is true only if all of the process's lwp's are so stopped.
779  * If this is asked by one of the lwps in the process, exclude that lwp.
780  */
781 int
782 jobstopped(proc_t *p)
783 {
784 	kthread_t *t;
785 
786 	ASSERT(MUTEX_HELD(&p->p_lock));
787 
788 	if ((t = p->p_tlist) == NULL)
789 		return (0);
790 
791 	do {
792 		thread_lock(t);
793 		/* ignore current, zombie and suspended lwps in the test */
794 		if (!(t == curthread || t->t_state == TS_ZOMB ||
795 		    SUSPENDED(t)) &&
796 		    (t->t_state != TS_STOPPED ||
797 		    t->t_whystop != PR_JOBCONTROL)) {
798 			thread_unlock(t);
799 			return (0);
800 		}
801 		thread_unlock(t);
802 	} while ((t = t->t_forw) != p->p_tlist);
803 
804 	return (1);
805 }
806 
807 /*
808  * Put ourself (curthread) into the stopped state and notify tracers.
809  */
810 void
811 stop(int why, int what)
812 {
813 	kthread_t	*t = curthread;
814 	proc_t		*p = ttoproc(t);
815 	klwp_t		*lwp = ttolwp(t);
816 	kthread_t	*tx;
817 	lwpent_t	*lep;
818 	int		procstop;
819 	int		flags = TS_ALLSTART;
820 	hrtime_t	stoptime;
821 
822 	/*
823 	 * Can't stop a system process.
824 	 */
825 	if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
826 		return;
827 
828 	ASSERT(MUTEX_HELD(&p->p_lock));
829 
830 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
831 		/*
832 		 * Don't stop an lwp with SIGKILL pending.
833 		 * Don't stop if the process or lwp is exiting.
834 		 */
835 		if (lwp->lwp_cursig == SIGKILL ||
836 		    sigismember(&t->t_sig, SIGKILL) ||
837 		    sigismember(&p->p_sig, SIGKILL) ||
838 		    (t->t_proc_flag & TP_LWPEXIT) ||
839 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
840 			p->p_stopsig = 0;
841 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
842 			return;
843 		}
844 	}
845 
846 	/*
847 	 * Make sure we don't deadlock on a recursive call to prstop().
848 	 * prstop() sets the lwp_nostop flag.
849 	 */
850 	if (lwp->lwp_nostop)
851 		return;
852 
853 	/*
854 	 * Make sure the lwp is in an orderly state for inspection
855 	 * by a debugger through /proc or for dumping via core().
856 	 */
857 	schedctl_finish_sigblock(t);
858 	t->t_proc_flag |= TP_STOPPING;	/* must set before dropping p_lock */
859 	mutex_exit(&p->p_lock);
860 	stoptime = gethrtime();
861 	prstop(why, what);
862 	(void) undo_watch_step(NULL);
863 	mutex_enter(&p->p_lock);
864 	ASSERT(t->t_state == TS_ONPROC);
865 
866 	switch (why) {
867 	case PR_CHECKPOINT:
868 		/*
869 		 * The situation may have changed since we dropped
870 		 * and reacquired p->p_lock. Double-check now
871 		 * whether we should stop or not.
872 		 */
873 		if (!(t->t_proc_flag & TP_CHKPT)) {
874 			t->t_proc_flag &= ~TP_STOPPING;
875 			return;
876 		}
877 		t->t_proc_flag &= ~TP_CHKPT;
878 		flags &= ~TS_RESUME;
879 		break;
880 
881 	case PR_JOBCONTROL:
882 		ASSERT(what == SIGSTOP || what == SIGTSTP ||
883 			what == SIGTTIN || what == SIGTTOU);
884 		flags &= ~TS_XSTART;
885 		break;
886 
887 	case PR_SUSPENDED:
888 		ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
889 		/*
890 		 * The situation may have changed since we dropped
891 		 * and reacquired p->p_lock.  Double-check now
892 		 * whether we should stop or not.
893 		 */
894 		if (what == SUSPEND_PAUSE) {
895 			if (!(t->t_proc_flag & TP_PAUSE)) {
896 				t->t_proc_flag &= ~TP_STOPPING;
897 				return;
898 			}
899 			flags &= ~TS_UNPAUSE;
900 		} else {
901 			if (!((t->t_proc_flag & TP_HOLDLWP) ||
902 			    (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
903 				t->t_proc_flag &= ~TP_STOPPING;
904 				return;
905 			}
906 			/*
907 			 * If SHOLDFORK is in effect and we are stopping
908 			 * while asleep (not at the top of the stack),
909 			 * we return now to allow the hold to take effect
910 			 * when we reach the top of the kernel stack.
911 			 */
912 			if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
913 				t->t_proc_flag &= ~TP_STOPPING;
914 				return;
915 			}
916 			flags &= ~TS_CSTART;
917 		}
918 		break;
919 
920 	default:	/* /proc stop */
921 		flags &= ~TS_PSTART;
922 		/*
923 		 * Do synchronous stop unless the async-stop flag is set.
924 		 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
925 		 * then no debugger is present and we also do synchronous stop.
926 		 */
927 		if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
928 		    !(p->p_proc_flag & P_PR_ASYNC)) {
929 			int notify;
930 
931 			for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
932 				notify = 0;
933 				thread_lock(tx);
934 				if (ISTOPPED(tx) ||
935 				    (tx->t_proc_flag & TP_PRSTOP)) {
936 					thread_unlock(tx);
937 					continue;
938 				}
939 				tx->t_proc_flag |= TP_PRSTOP;
940 				tx->t_sig_check = 1;
941 				if (tx->t_state == TS_SLEEP &&
942 				    (tx->t_flag & T_WAKEABLE)) {
943 					/*
944 					 * Don't actually wake it up if it's
945 					 * in one of the lwp_*() syscalls.
946 					 * Mark it virtually stopped and
947 					 * notify /proc waiters (below).
948 					 */
949 					if (tx->t_wchan0 == NULL)
950 						setrun_locked(tx);
951 					else {
952 						tx->t_proc_flag |= TP_PRVSTOP;
953 						tx->t_stoptime = stoptime;
954 						notify = 1;
955 					}
956 				}
957 				/*
958 				 * force the thread into the kernel
959 				 * if it is not already there.
960 				 */
961 				if (tx->t_state == TS_ONPROC &&
962 				    tx->t_cpu != CPU)
963 					poke_cpu(tx->t_cpu->cpu_id);
964 				thread_unlock(tx);
965 				lep = p->p_lwpdir[tx->t_dslot].ld_entry;
966 				if (notify && lep->le_trace)
967 					prnotify(lep->le_trace);
968 			}
969 			/*
970 			 * We do this just in case one of the threads we asked
971 			 * to stop is in holdlwps() (called from cfork()) or
972 			 * lwp_suspend().
973 			 */
974 			cv_broadcast(&p->p_holdlwps);
975 		}
976 		break;
977 	}
978 
979 	t->t_stoptime = stoptime;
980 
981 	if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
982 		/*
983 		 * Determine if the whole process is jobstopped.
984 		 */
985 		if (jobstopped(p)) {
986 			sigqueue_t *sqp;
987 			int sig;
988 
989 			if ((sig = p->p_stopsig) == 0)
990 				p->p_stopsig = (uchar_t)(sig = what);
991 			mutex_exit(&p->p_lock);
992 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
993 			mutex_enter(&pidlock);
994 			/*
995 			 * The last lwp to stop notifies the parent.
996 			 * Turn off the CLDCONT flag now so the first
997 			 * lwp to continue knows what to do.
998 			 */
999 			p->p_pidflag &= ~CLDCONT;
1000 			p->p_wcode = CLD_STOPPED;
1001 			p->p_wdata = sig;
1002 			sigcld(p, sqp);
1003 			/*
1004 			 * Grab p->p_lock before releasing pidlock so the
1005 			 * parent and the child don't have a race condition.
1006 			 */
1007 			mutex_enter(&p->p_lock);
1008 			mutex_exit(&pidlock);
1009 			p->p_stopsig = 0;
1010 		} else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1011 			/*
1012 			 * Set p->p_stopsig and wake up sleeping lwps
1013 			 * so they will stop in sympathy with this lwp.
1014 			 */
1015 			p->p_stopsig = (uchar_t)what;
1016 			pokelwps(p);
1017 			/*
1018 			 * We do this just in case one of the threads we asked
1019 			 * to stop is in holdlwps() (called from cfork()) or
1020 			 * lwp_suspend().
1021 			 */
1022 			cv_broadcast(&p->p_holdlwps);
1023 		}
1024 	}
1025 
1026 	if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1027 		/*
1028 		 * Do process-level notification when all lwps are
1029 		 * either stopped on events of interest to /proc
1030 		 * or are stopped showing PR_SUSPENDED or are zombies.
1031 		 */
1032 		procstop = 1;
1033 		for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1034 			if (VSTOPPED(tx))
1035 				continue;
1036 			thread_lock(tx);
1037 			switch (tx->t_state) {
1038 			case TS_ZOMB:
1039 				break;
1040 			case TS_STOPPED:
1041 				/* neither ISTOPPED nor SUSPENDED? */
1042 				if ((tx->t_schedflag &
1043 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1044 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1045 					procstop = 0;
1046 				break;
1047 			case TS_SLEEP:
1048 				/* not paused for watchpoints? */
1049 				if (!(tx->t_flag & T_WAKEABLE) ||
1050 				    tx->t_wchan0 == NULL ||
1051 				    !(tx->t_proc_flag & TP_PAUSE))
1052 					procstop = 0;
1053 				break;
1054 			default:
1055 				procstop = 0;
1056 				break;
1057 			}
1058 			thread_unlock(tx);
1059 		}
1060 		if (procstop) {
1061 			/* there must not be any remapped watched pages now */
1062 			ASSERT(p->p_mapcnt == 0);
1063 			if (p->p_proc_flag & P_PR_PTRACE) {
1064 				/* ptrace() compatibility */
1065 				mutex_exit(&p->p_lock);
1066 				mutex_enter(&pidlock);
1067 				p->p_wcode = CLD_TRAPPED;
1068 				p->p_wdata = (why == PR_SIGNALLED)?
1069 				    what : SIGTRAP;
1070 				cv_broadcast(&p->p_parent->p_cv);
1071 				/*
1072 				 * Grab p->p_lock before releasing pidlock so
1073 				 * parent and child don't have a race condition.
1074 				 */
1075 				mutex_enter(&p->p_lock);
1076 				mutex_exit(&pidlock);
1077 			}
1078 			if (p->p_trace)			/* /proc */
1079 				prnotify(p->p_trace);
1080 			cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1081 			cv_broadcast(&p->p_holdlwps);	/* holdwatch() */
1082 		}
1083 		if (why != PR_SUSPENDED) {
1084 			lep = p->p_lwpdir[t->t_dslot].ld_entry;
1085 			if (lep->le_trace)		/* /proc */
1086 				prnotify(lep->le_trace);
1087 			/*
1088 			 * Special notification for creation of the agent lwp.
1089 			 */
1090 			if (t == p->p_agenttp &&
1091 			    (t->t_proc_flag & TP_PRSTOP) &&
1092 			    p->p_trace)
1093 				prnotify(p->p_trace);
1094 			/*
1095 			 * The situation may have changed since we dropped
1096 			 * and reacquired p->p_lock. Double-check now
1097 			 * whether we should stop or not.
1098 			 */
1099 			if (!(t->t_proc_flag & TP_STOPPING)) {
1100 				if (t->t_proc_flag & TP_PRSTOP)
1101 					t->t_proc_flag |= TP_STOPPING;
1102 			}
1103 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1104 			prnostep(lwp);
1105 		}
1106 	}
1107 
1108 	if (why == PR_SUSPENDED) {
1109 
1110 		/*
1111 		 * We always broadcast in the case of SUSPEND_PAUSE.  This is
1112 		 * because checks for TP_PAUSE take precedence over checks for
1113 		 * SHOLDWATCH.  If a thread is trying to stop because of
1114 		 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1115 		 * waiting for the rest of the threads to enter a stopped state.
1116 		 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1117 		 * lwp and not know it, so broadcast just in case.
1118 		 */
1119 		if (what == SUSPEND_PAUSE ||
1120 		    --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1121 			cv_broadcast(&p->p_holdlwps);
1122 
1123 	}
1124 
1125 	/*
1126 	 * Need to do this here (rather than after the thread is officially
1127 	 * stopped) because we can't call mutex_enter from a stopped thread.
1128 	 */
1129 	if (why == PR_CHECKPOINT)
1130 		del_one_utstop();
1131 
1132 	thread_lock(t);
1133 	ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1134 	t->t_schedflag |= flags;
1135 	t->t_whystop = (short)why;
1136 	t->t_whatstop = (short)what;
1137 	CL_STOP(t, why, what);
1138 	(void) new_mstate(t, LMS_STOPPED);
1139 	thread_stop(t);			/* set stop state and drop lock */
1140 
1141 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1142 		/*
1143 		 * We may have gotten a SIGKILL or a SIGCONT when
1144 		 * we released p->p_lock; make one last check.
1145 		 * Also check for a /proc run-on-last-close.
1146 		 */
1147 		if (sigismember(&t->t_sig, SIGKILL) ||
1148 		    sigismember(&p->p_sig, SIGKILL) ||
1149 		    (t->t_proc_flag & TP_LWPEXIT) ||
1150 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
1151 			p->p_stopsig = 0;
1152 			thread_lock(t);
1153 			t->t_schedflag |= TS_XSTART | TS_PSTART;
1154 			setrun_locked(t);
1155 			thread_unlock_nopreempt(t);
1156 		} else if (why == PR_JOBCONTROL) {
1157 			if (p->p_flag & SSCONT) {
1158 				/*
1159 				 * This resulted from a SIGCONT posted
1160 				 * while we were not holding p->p_lock.
1161 				 */
1162 				p->p_stopsig = 0;
1163 				thread_lock(t);
1164 				t->t_schedflag |= TS_XSTART;
1165 				setrun_locked(t);
1166 				thread_unlock_nopreempt(t);
1167 			}
1168 		} else if (!(t->t_proc_flag & TP_STOPPING)) {
1169 			/*
1170 			 * This resulted from a /proc run-on-last-close.
1171 			 */
1172 			thread_lock(t);
1173 			t->t_schedflag |= TS_PSTART;
1174 			setrun_locked(t);
1175 			thread_unlock_nopreempt(t);
1176 		}
1177 	}
1178 
1179 	t->t_proc_flag &= ~TP_STOPPING;
1180 	mutex_exit(&p->p_lock);
1181 
1182 	swtch();
1183 	setallwatch();	/* reestablish any watchpoints set while stopped */
1184 	mutex_enter(&p->p_lock);
1185 	prbarrier(p);	/* barrier against /proc locking */
1186 }
1187 
1188 /* Interface for resetting user thread stop count. */
1189 void
1190 utstop_init(void)
1191 {
1192 	mutex_enter(&thread_stop_lock);
1193 	num_utstop = 0;
1194 	mutex_exit(&thread_stop_lock);
1195 }
1196 
1197 /* Interface for registering a user thread stop request. */
1198 void
1199 add_one_utstop(void)
1200 {
1201 	mutex_enter(&thread_stop_lock);
1202 	num_utstop++;
1203 	mutex_exit(&thread_stop_lock);
1204 }
1205 
1206 /* Interface for cancelling a user thread stop request */
1207 void
1208 del_one_utstop(void)
1209 {
1210 	mutex_enter(&thread_stop_lock);
1211 	num_utstop--;
1212 	if (num_utstop == 0)
1213 		cv_broadcast(&utstop_cv);
1214 	mutex_exit(&thread_stop_lock);
1215 }
1216 
1217 /* Interface to wait for all user threads to be stopped */
1218 void
1219 utstop_timedwait(clock_t ticks)
1220 {
1221 	mutex_enter(&thread_stop_lock);
1222 	if (num_utstop > 0)
1223 		(void) cv_timedwait(&utstop_cv, &thread_stop_lock,
1224 		    ticks + lbolt);
1225 	mutex_exit(&thread_stop_lock);
1226 }
1227 
1228 /*
1229  * Perform the action specified by the current signal.
1230  * The usual sequence is:
1231  * 	if (issig())
1232  * 		psig();
1233  * The signal bit has already been cleared by issig(),
1234  * the current signal number has been stored in lwp_cursig,
1235  * and the current siginfo is now referenced by lwp_curinfo.
1236  */
1237 void
1238 psig(void)
1239 {
1240 	kthread_t *t = curthread;
1241 	proc_t *p = ttoproc(t);
1242 	klwp_t *lwp = ttolwp(t);
1243 	void (*func)();
1244 	int sig, rc, code, ext;
1245 	pid_t pid = -1;
1246 	id_t ctid = 0;
1247 	zoneid_t zoneid = -1;
1248 	sigqueue_t *sqp = NULL;
1249 
1250 	mutex_enter(&p->p_lock);
1251 	schedctl_finish_sigblock(t);
1252 	code = CLD_KILLED;
1253 
1254 	if (p->p_flag & SEXITLWPS) {
1255 		lwp_exit();
1256 		return;			/* not reached */
1257 	}
1258 	sig = lwp->lwp_cursig;
1259 	ext = lwp->lwp_extsig;
1260 
1261 	ASSERT(sig < NSIG);
1262 
1263 	/*
1264 	 * Re-check lwp_cursig after we acquire p_lock.  Since p_lock was
1265 	 * dropped between issig() and psig(), a debugger may have cleared
1266 	 * lwp_cursig via /proc in the intervening window.
1267 	 */
1268 	if (sig == 0) {
1269 		if (lwp->lwp_curinfo) {
1270 			siginfofree(lwp->lwp_curinfo);
1271 			lwp->lwp_curinfo = NULL;
1272 		}
1273 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1274 			t->t_flag &= ~T_TOMASK;
1275 			t->t_hold = lwp->lwp_sigoldmask;
1276 		}
1277 		mutex_exit(&p->p_lock);
1278 		return;
1279 	}
1280 	func = u.u_signal[sig-1];
1281 
1282 	/*
1283 	 * The signal disposition could have changed since we promoted
1284 	 * this signal from pending to current (we dropped p->p_lock).
1285 	 * This can happen only in a multi-threaded process.
1286 	 */
1287 	if (sigismember(&p->p_ignore, sig) ||
1288 	    (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1289 		lwp->lwp_cursig = 0;
1290 		lwp->lwp_extsig = 0;
1291 		if (lwp->lwp_curinfo) {
1292 			siginfofree(lwp->lwp_curinfo);
1293 			lwp->lwp_curinfo = NULL;
1294 		}
1295 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1296 			t->t_flag &= ~T_TOMASK;
1297 			t->t_hold = lwp->lwp_sigoldmask;
1298 		}
1299 		mutex_exit(&p->p_lock);
1300 		return;
1301 	}
1302 
1303 	/*
1304 	 * We check lwp_curinfo first since pr_setsig can actually
1305 	 * stuff a sigqueue_t there for SIGKILL.
1306 	 */
1307 	if (lwp->lwp_curinfo) {
1308 		sqp = lwp->lwp_curinfo;
1309 	} else if (sig == SIGKILL && p->p_killsqp) {
1310 		sqp = p->p_killsqp;
1311 	}
1312 
1313 	if (sqp != NULL) {
1314 		if (SI_FROMUSER(&sqp->sq_info)) {
1315 			pid = sqp->sq_info.si_pid;
1316 			ctid = sqp->sq_info.si_ctid;
1317 			zoneid = sqp->sq_info.si_zoneid;
1318 		}
1319 		/*
1320 		 * If we have a sigqueue_t, its sq_external value
1321 		 * trumps the lwp_extsig value.  It is theoretically
1322 		 * possible to make lwp_extsig reflect reality, but it
1323 		 * would unnecessarily complicate things elsewhere.
1324 		 */
1325 		ext = sqp->sq_external;
1326 	}
1327 
1328 	if (func == SIG_DFL) {
1329 		mutex_exit(&p->p_lock);
1330 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1331 		    NULL, void (*)(void), func);
1332 	} else {
1333 		k_siginfo_t *sip = NULL;
1334 
1335 		/*
1336 		 * If DTrace user-land tracing is active, give DTrace a
1337 		 * chance to defer the signal until after tracing is
1338 		 * complete.
1339 		 */
1340 		if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1341 			mutex_exit(&p->p_lock);
1342 			return;
1343 		}
1344 
1345 		/*
1346 		 * save siginfo pointer here, in case the
1347 		 * the signal's reset bit is on
1348 		 *
1349 		 * The presence of a current signal prevents paging
1350 		 * from succeeding over a network.  We copy the current
1351 		 * signal information to the side and cancel the current
1352 		 * signal so that sendsig() will succeed.
1353 		 */
1354 		if (sigismember(&p->p_siginfo, sig)) {
1355 			if (sqp) {
1356 				bcopy(&sqp->sq_info, &lwp->lwp_siginfo,
1357 				    sizeof (k_siginfo_t));
1358 				sip = &lwp->lwp_siginfo;
1359 			} else if (sig == SIGPROF &&
1360 			    t->t_rprof != NULL &&
1361 			    t->t_rprof->rp_anystate &&
1362 			    lwp->lwp_siginfo.si_signo == SIGPROF) {
1363 				sip = &lwp->lwp_siginfo;
1364 			}
1365 		}
1366 
1367 		if (t->t_flag & T_TOMASK)
1368 			t->t_flag &= ~T_TOMASK;
1369 		else
1370 			lwp->lwp_sigoldmask = t->t_hold;
1371 		sigorset(&t->t_hold, &u.u_sigmask[sig-1]);
1372 		if (!sigismember(&u.u_signodefer, sig))
1373 			sigaddset(&t->t_hold, sig);
1374 		if (sigismember(&u.u_sigresethand, sig))
1375 			setsigact(sig, SIG_DFL, nullsmask, 0);
1376 
1377 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1378 		    sip, void (*)(void), func);
1379 
1380 		lwp->lwp_cursig = 0;
1381 		lwp->lwp_extsig = 0;
1382 		if (lwp->lwp_curinfo) {
1383 			/* p->p_killsqp is freed by freeproc */
1384 			siginfofree(lwp->lwp_curinfo);
1385 			lwp->lwp_curinfo = NULL;
1386 		}
1387 		mutex_exit(&p->p_lock);
1388 		lwp->lwp_ru.nsignals++;
1389 
1390 		if (p->p_model == DATAMODEL_NATIVE)
1391 			rc = sendsig(sig, sip, func);
1392 #ifdef _SYSCALL32_IMPL
1393 		else
1394 			rc = sendsig32(sig, sip, func);
1395 #endif	/* _SYSCALL32_IMPL */
1396 		if (rc)
1397 			return;
1398 		sig = lwp->lwp_cursig = SIGSEGV;
1399 		ext = 0;	/* lwp_extsig was set above */
1400 		pid = -1;
1401 		ctid = 0;
1402 	}
1403 
1404 	if (sigismember(&coredefault, sig)) {
1405 		/*
1406 		 * Terminate all LWPs but don't discard them.
1407 		 * If another lwp beat us to the punch by calling exit(),
1408 		 * evaporate now.
1409 		 */
1410 		if (exitlwps(1) != 0) {
1411 			mutex_enter(&p->p_lock);
1412 			lwp_exit();
1413 		}
1414 		/* if we got a SIGKILL from anywhere, no core dump */
1415 		if (p->p_flag & SKILLED) {
1416 			sig = SIGKILL;
1417 			ext = (p->p_flag & SEXTKILLED) != 0;
1418 		} else {
1419 #ifdef C2_AUDIT
1420 			if (audit_active)		/* audit core dump */
1421 				audit_core_start(sig);
1422 #endif
1423 			if (core(sig, ext) == 0)
1424 				code = CLD_DUMPED;
1425 #ifdef C2_AUDIT
1426 			if (audit_active)		/* audit core dump */
1427 				audit_core_finish(code);
1428 #endif
1429 		}
1430 	}
1431 	if (ext)
1432 		contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1433 		    zoneid);
1434 
1435 	exit(code, sig);
1436 }
1437 
1438 /*
1439  * Find next unheld signal in ssp for thread t.
1440  */
1441 int
1442 fsig(k_sigset_t *ssp, kthread_t *t)
1443 {
1444 	proc_t *p = ttoproc(t);
1445 	user_t *up = PTOU(p);
1446 	int i;
1447 	k_sigset_t temp;
1448 
1449 	ASSERT(MUTEX_HELD(&p->p_lock));
1450 
1451 	/*
1452 	 * Don't promote any signals for the parent of a vfork()d
1453 	 * child that hasn't yet released the parent's memory.
1454 	 */
1455 	if (p->p_flag & SVFWAIT)
1456 		return (0);
1457 
1458 	temp = *ssp;
1459 	sigdiffset(&temp, &t->t_hold);
1460 
1461 	/*
1462 	 * Don't promote stopping signals (except SIGSTOP) for a child
1463 	 * of vfork() that hasn't yet released the parent's memory.
1464 	 */
1465 	if (p->p_flag & SVFORK)
1466 		sigdiffset(&temp, &holdvfork);
1467 
1468 	/*
1469 	 * Don't promote a signal that will stop
1470 	 * the process when lwp_nostop is set.
1471 	 */
1472 	if (ttolwp(t)->lwp_nostop) {
1473 		sigdelset(&temp, SIGSTOP);
1474 		if (!p->p_pgidp->pid_pgorphaned) {
1475 			if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1476 				sigdelset(&temp, SIGTSTP);
1477 			if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1478 				sigdelset(&temp, SIGTTIN);
1479 			if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1480 				sigdelset(&temp, SIGTTOU);
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * Choose SIGKILL and SIGPROF before all other pending signals.
1486 	 * The rest are promoted in signal number order.
1487 	 */
1488 	if (sigismember(&temp, SIGKILL))
1489 		return (SIGKILL);
1490 	if (sigismember(&temp, SIGPROF))
1491 		return (SIGPROF);
1492 
1493 	for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1494 		if (temp.__sigbits[i])
1495 			return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1496 			    lowbit(temp.__sigbits[i]));
1497 	}
1498 
1499 	return (0);
1500 }
1501 
1502 void
1503 setsigact(int sig, void (*disp)(), k_sigset_t mask, int flags)
1504 {
1505 	proc_t *p = ttoproc(curthread);
1506 	kthread_t *t;
1507 
1508 	ASSERT(MUTEX_HELD(&p->p_lock));
1509 
1510 	u.u_signal[sig - 1] = disp;
1511 
1512 	/*
1513 	 * Honor the SA_SIGINFO flag if the signal is being caught.
1514 	 * Force the SA_SIGINFO flag if the signal is not being caught.
1515 	 * This is necessary to make sigqueue() and sigwaitinfo() work
1516 	 * properly together when the signal is set to default or is
1517 	 * being temporarily ignored.
1518 	 */
1519 	if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1520 		sigaddset(&p->p_siginfo, sig);
1521 	else
1522 		sigdelset(&p->p_siginfo, sig);
1523 
1524 	if (disp != SIG_DFL && disp != SIG_IGN) {
1525 		sigdelset(&p->p_ignore, sig);
1526 		u.u_sigmask[sig - 1] = mask;
1527 		if (!sigismember(&cantreset, sig)) {
1528 			if (flags & SA_RESETHAND)
1529 				sigaddset(&u.u_sigresethand, sig);
1530 			else
1531 				sigdelset(&u.u_sigresethand, sig);
1532 		}
1533 		if (flags & SA_NODEFER)
1534 			sigaddset(&u.u_signodefer, sig);
1535 		else
1536 			sigdelset(&u.u_signodefer, sig);
1537 		if (flags & SA_RESTART)
1538 			sigaddset(&u.u_sigrestart, sig);
1539 		else
1540 			sigdelset(&u.u_sigrestart, sig);
1541 		if (flags & SA_ONSTACK)
1542 			sigaddset(&u.u_sigonstack, sig);
1543 		else
1544 			sigdelset(&u.u_sigonstack, sig);
1545 
1546 	} else if (disp == SIG_IGN ||
1547 	    (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1548 		/*
1549 		 * Setting the signal action to SIG_IGN results in the
1550 		 * discarding of all pending signals of that signal number.
1551 		 * Setting the signal action to SIG_DFL does the same *only*
1552 		 * if the signal's default behavior is to be ignored.
1553 		 */
1554 		sigaddset(&p->p_ignore, sig);
1555 		sigdelset(&p->p_sig, sig);
1556 		sigdelset(&p->p_extsig, sig);
1557 		sigdelq(p, NULL, sig);
1558 		t = p->p_tlist;
1559 		do {
1560 			sigdelset(&t->t_sig, sig);
1561 			sigdelset(&t->t_extsig, sig);
1562 			sigdelq(p, t, sig);
1563 		} while ((t = t->t_forw) != p->p_tlist);
1564 
1565 	} else {
1566 		/*
1567 		 * The signal action is being set to SIG_DFL and the default
1568 		 * behavior is to do something: make sure it is not ignored.
1569 		 */
1570 		sigdelset(&p->p_ignore, sig);
1571 	}
1572 
1573 	if (sig == SIGCLD) {
1574 		if (flags & SA_NOCLDWAIT)
1575 			p->p_flag |= SNOWAIT;
1576 		else
1577 			p->p_flag &= ~SNOWAIT;
1578 
1579 		if (flags & SA_NOCLDSTOP)
1580 			p->p_flag &= ~SJCTL;
1581 		else
1582 			p->p_flag |= SJCTL;
1583 
1584 		if (p->p_flag & SNOWAIT || disp == SIG_IGN) {
1585 			proc_t *cp, *tp;
1586 
1587 			mutex_exit(&p->p_lock);
1588 			mutex_enter(&pidlock);
1589 			for (cp = p->p_child; cp != NULL; cp = tp) {
1590 				tp = cp->p_sibling;
1591 				if (cp->p_stat == SZOMB)
1592 					freeproc(cp);
1593 			}
1594 			mutex_exit(&pidlock);
1595 			mutex_enter(&p->p_lock);
1596 		}
1597 	}
1598 }
1599 
1600 /*
1601  * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1602  * Called from exec_common() for a process undergoing execve()
1603  * and from cfork() for a newly-created child of vfork().
1604  * In the vfork() case, 'p' is not the current process.
1605  * In both cases, there is only one thread in the process.
1606  */
1607 void
1608 sigdefault(proc_t *p)
1609 {
1610 	kthread_t *t = p->p_tlist;
1611 	struct user *up = PTOU(p);
1612 	int sig;
1613 
1614 	ASSERT(MUTEX_HELD(&p->p_lock));
1615 
1616 	for (sig = 1; sig < NSIG; sig++) {
1617 		if (up->u_signal[sig - 1] != SIG_DFL &&
1618 		    up->u_signal[sig - 1] != SIG_IGN) {
1619 			up->u_signal[sig - 1] = SIG_DFL;
1620 			sigemptyset(&up->u_sigmask[sig - 1]);
1621 			if (sigismember(&ignoredefault, sig)) {
1622 				sigdelq(p, NULL, sig);
1623 				sigdelq(p, t, sig);
1624 			}
1625 			if (sig == SIGCLD)
1626 				p->p_flag &= ~(SNOWAIT|SJCTL);
1627 		}
1628 	}
1629 	sigorset(&p->p_ignore, &ignoredefault);
1630 	sigfillset(&p->p_siginfo);
1631 	sigdiffset(&p->p_siginfo, &cantmask);
1632 	sigdiffset(&p->p_sig, &ignoredefault);
1633 	sigdiffset(&p->p_extsig, &ignoredefault);
1634 	sigdiffset(&t->t_sig, &ignoredefault);
1635 	sigdiffset(&t->t_extsig, &ignoredefault);
1636 }
1637 
1638 void
1639 sigcld(proc_t *cp, sigqueue_t *sqp)
1640 {
1641 	proc_t *pp = cp->p_parent;
1642 
1643 	ASSERT(MUTEX_HELD(&pidlock));
1644 
1645 	switch (cp->p_wcode) {
1646 	case CLD_EXITED:
1647 	case CLD_DUMPED:
1648 	case CLD_KILLED:
1649 		ASSERT(cp->p_stat == SZOMB);
1650 		/*
1651 		 * The broadcast on p_srwchan_cv is a kludge to
1652 		 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1653 		 */
1654 		cv_broadcast(&cp->p_srwchan_cv);
1655 
1656 		/*
1657 		 * Add to newstate list of the parent
1658 		 */
1659 		add_ns(pp, cp);
1660 
1661 		cv_broadcast(&pp->p_cv);
1662 		if ((pp->p_flag & SNOWAIT) ||
1663 		    (PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN))
1664 			freeproc(cp);
1665 		else {
1666 			post_sigcld(cp, sqp);
1667 			sqp = NULL;
1668 		}
1669 		break;
1670 
1671 	case CLD_STOPPED:
1672 	case CLD_CONTINUED:
1673 		cv_broadcast(&pp->p_cv);
1674 		if (pp->p_flag & SJCTL) {
1675 			post_sigcld(cp, sqp);
1676 			sqp = NULL;
1677 		}
1678 		break;
1679 	}
1680 
1681 	if (sqp)
1682 		siginfofree(sqp);
1683 }
1684 
1685 /*
1686  * Common code called from sigcld() and issig_forreal()
1687  * Give the parent process a SIGCLD if it does not have one pending,
1688  * else mark the child process so a SIGCLD can be posted later.
1689  */
1690 static void
1691 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1692 {
1693 	proc_t *pp = cp->p_parent;
1694 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1695 	k_siginfo_t info;
1696 
1697 	ASSERT(MUTEX_HELD(&pidlock));
1698 	mutex_enter(&pp->p_lock);
1699 
1700 	/*
1701 	 * If a SIGCLD is pending, or if SIGCLD is not now being caught,
1702 	 * then just mark the child process so that its SIGCLD will
1703 	 * be posted later, when the first SIGCLD is taken off the
1704 	 * queue or when the parent is ready to receive it, if ever.
1705 	 */
1706 	if (handler == SIG_DFL || handler == SIG_IGN ||
1707 	    sigismember(&pp->p_sig, SIGCLD))
1708 		cp->p_pidflag |= CLDPEND;
1709 	else {
1710 		cp->p_pidflag &= ~CLDPEND;
1711 		if (sqp == NULL) {
1712 			/*
1713 			 * This can only happen when the parent is init.
1714 			 * (See call to sigcld(q, NULL) in exit().)
1715 			 * Use KM_NOSLEEP to avoid deadlock.
1716 			 */
1717 			ASSERT(pp == proc_init);
1718 			winfo(cp, &info, 0);
1719 			sigaddq(pp, NULL, &info, KM_NOSLEEP);
1720 		} else {
1721 			winfo(cp, &sqp->sq_info, 0);
1722 			sigaddqa(pp, NULL, sqp);
1723 			sqp = NULL;
1724 		}
1725 	}
1726 
1727 	mutex_exit(&pp->p_lock);
1728 
1729 	if (sqp)
1730 		siginfofree(sqp);
1731 }
1732 
1733 /*
1734  * Search for a child that has a pending SIGCLD for us, the parent.
1735  * The queue of SIGCLD signals is implied by the list of children.
1736  * We post the SIGCLD signals one at a time so they don't get lost.
1737  * When one is dequeued, another is enqueued, until there are no more.
1738  */
1739 void
1740 sigcld_repost()
1741 {
1742 	proc_t *pp = curproc;
1743 	proc_t *cp;
1744 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1745 	sigqueue_t *sqp;
1746 
1747 	/*
1748 	 * Don't bother if SIGCLD is not now being caught.
1749 	 */
1750 	if (handler == SIG_DFL || handler == SIG_IGN)
1751 		return;
1752 
1753 	sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1754 	mutex_enter(&pidlock);
1755 	for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1756 		if (cp->p_pidflag & CLDPEND) {
1757 			post_sigcld(cp, sqp);
1758 			mutex_exit(&pidlock);
1759 			return;
1760 		}
1761 	}
1762 	mutex_exit(&pidlock);
1763 	kmem_free(sqp, sizeof (sigqueue_t));
1764 }
1765 
1766 /*
1767  * count number of sigqueue send by sigaddqa()
1768  */
1769 void
1770 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1771 {
1772 	sigqhdr_t *sqh;
1773 
1774 	sqh = (sigqhdr_t *)sigqp->sq_backptr;
1775 	ASSERT(sqh);
1776 
1777 	mutex_enter(&sqh->sqb_lock);
1778 	sqh->sqb_sent++;
1779 	mutex_exit(&sqh->sqb_lock);
1780 
1781 	if (cmd == SN_SEND)
1782 		sigaddqa(p, t, sigqp);
1783 	else
1784 		siginfofree(sigqp);
1785 }
1786 
1787 int
1788 sigsendproc(proc_t *p, sigsend_t *pv)
1789 {
1790 	struct cred *cr;
1791 	proc_t *myprocp = curproc;
1792 
1793 	ASSERT(MUTEX_HELD(&pidlock));
1794 
1795 	if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1796 		return (EPERM);
1797 
1798 	cr = CRED();
1799 
1800 	if (pv->checkperm == 0 ||
1801 	    (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1802 	    prochasprocperm(p, myprocp, cr)) {
1803 		pv->perm++;
1804 		if (pv->sig) {
1805 			/* Make sure we should be setting si_pid and friends */
1806 			ASSERT(pv->sicode <= 0);
1807 			if (SI_CANQUEUE(pv->sicode)) {
1808 				sigqueue_t *sqp;
1809 
1810 				mutex_enter(&myprocp->p_lock);
1811 				sqp = sigqalloc(myprocp->p_sigqhdr);
1812 				mutex_exit(&myprocp->p_lock);
1813 				if (sqp == NULL)
1814 					return (EAGAIN);
1815 				sqp->sq_info.si_signo = pv->sig;
1816 				sqp->sq_info.si_code = pv->sicode;
1817 				sqp->sq_info.si_pid = myprocp->p_pid;
1818 				sqp->sq_info.si_ctid = PRCTID(myprocp);
1819 				sqp->sq_info.si_zoneid = getzoneid();
1820 				sqp->sq_info.si_uid = crgetruid(cr);
1821 				sqp->sq_info.si_value = pv->value;
1822 				mutex_enter(&p->p_lock);
1823 				sigqsend(SN_SEND, p, NULL, sqp);
1824 				mutex_exit(&p->p_lock);
1825 			} else {
1826 				k_siginfo_t info;
1827 				bzero(&info, sizeof (info));
1828 				info.si_signo = pv->sig;
1829 				info.si_code = pv->sicode;
1830 				info.si_pid = myprocp->p_pid;
1831 				info.si_ctid = PRCTID(myprocp);
1832 				info.si_zoneid = getzoneid();
1833 				info.si_uid = crgetruid(cr);
1834 				mutex_enter(&p->p_lock);
1835 				/*
1836 				 * XXX: Should be KM_SLEEP but
1837 				 * we have to avoid deadlock.
1838 				 */
1839 				sigaddq(p, NULL, &info, KM_NOSLEEP);
1840 				mutex_exit(&p->p_lock);
1841 			}
1842 		}
1843 	}
1844 
1845 	return (0);
1846 }
1847 
1848 int
1849 sigsendset(procset_t *psp, sigsend_t *pv)
1850 {
1851 	int error;
1852 
1853 	error = dotoprocs(psp, sigsendproc, (char *)pv);
1854 	if (error == 0 && pv->perm == 0)
1855 		return (EPERM);
1856 
1857 	return (error);
1858 }
1859 
1860 /*
1861  * Dequeue a queued siginfo structure.
1862  * If a non-null thread pointer is passed then dequeue from
1863  * the thread queue, otherwise dequeue from the process queue.
1864  */
1865 void
1866 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1867 {
1868 	sigqueue_t **psqp, *sqp;
1869 
1870 	ASSERT(MUTEX_HELD(&p->p_lock));
1871 
1872 	*qpp = NULL;
1873 
1874 	if (t != NULL) {
1875 		sigdelset(&t->t_sig, sig);
1876 		sigdelset(&t->t_extsig, sig);
1877 		psqp = &t->t_sigqueue;
1878 	} else {
1879 		sigdelset(&p->p_sig, sig);
1880 		sigdelset(&p->p_extsig, sig);
1881 		psqp = &p->p_sigqueue;
1882 	}
1883 
1884 	for (;;) {
1885 		if ((sqp = *psqp) == NULL)
1886 			return;
1887 		if (sqp->sq_info.si_signo == sig)
1888 			break;
1889 		else
1890 			psqp = &sqp->sq_next;
1891 	}
1892 	*qpp = sqp;
1893 	*psqp = sqp->sq_next;
1894 	for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1895 		if (sqp->sq_info.si_signo == sig) {
1896 			if (t != (kthread_t *)NULL) {
1897 				sigaddset(&t->t_sig, sig);
1898 				t->t_sig_check = 1;
1899 			} else {
1900 				sigaddset(&p->p_sig, sig);
1901 				set_proc_ast(p);
1902 			}
1903 			break;
1904 		}
1905 	}
1906 }
1907 
1908 /*
1909  * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1910  */
1911 void
1912 sigcld_delete(k_siginfo_t *ip)
1913 {
1914 	proc_t *p = curproc;
1915 	int another_sigcld = 0;
1916 	sigqueue_t **psqp, *sqp;
1917 
1918 	ASSERT(ip->si_signo == SIGCLD);
1919 
1920 	mutex_enter(&p->p_lock);
1921 
1922 	if (!sigismember(&p->p_sig, SIGCLD)) {
1923 		mutex_exit(&p->p_lock);
1924 		return;
1925 	}
1926 
1927 	psqp = &p->p_sigqueue;
1928 	for (;;) {
1929 		if ((sqp = *psqp) == NULL) {
1930 			mutex_exit(&p->p_lock);
1931 			return;
1932 		}
1933 		if (sqp->sq_info.si_signo == SIGCLD) {
1934 			if (sqp->sq_info.si_pid == ip->si_pid &&
1935 			    sqp->sq_info.si_code == ip->si_code &&
1936 			    sqp->sq_info.si_status == ip->si_status)
1937 				break;
1938 			another_sigcld = 1;
1939 		}
1940 		psqp = &sqp->sq_next;
1941 	}
1942 	*psqp = sqp->sq_next;
1943 
1944 	siginfofree(sqp);
1945 
1946 	for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1947 		if (sqp->sq_info.si_signo == SIGCLD)
1948 			another_sigcld = 1;
1949 	}
1950 
1951 	if (!another_sigcld) {
1952 		sigdelset(&p->p_sig, SIGCLD);
1953 		sigdelset(&p->p_extsig, SIGCLD);
1954 	}
1955 
1956 	mutex_exit(&p->p_lock);
1957 }
1958 
1959 /*
1960  * Delete queued siginfo structures.
1961  * If a non-null thread pointer is passed then delete from
1962  * the thread queue, otherwise delete from the process queue.
1963  */
1964 void
1965 sigdelq(proc_t *p, kthread_t *t, int sig)
1966 {
1967 	sigqueue_t **psqp, *sqp;
1968 
1969 	/*
1970 	 * We must be holding p->p_lock unless the process is
1971 	 * being reaped or has failed to get started on fork.
1972 	 */
1973 	ASSERT(MUTEX_HELD(&p->p_lock) ||
1974 	    p->p_stat == SIDL || p->p_stat == SZOMB);
1975 
1976 	if (t != (kthread_t *)NULL)
1977 		psqp = &t->t_sigqueue;
1978 	else
1979 		psqp = &p->p_sigqueue;
1980 
1981 	while (*psqp) {
1982 		sqp = *psqp;
1983 		if (sig == 0 || sqp->sq_info.si_signo == sig) {
1984 			*psqp = sqp->sq_next;
1985 			siginfofree(sqp);
1986 		} else
1987 			psqp = &sqp->sq_next;
1988 	}
1989 }
1990 
1991 /*
1992  * Insert a siginfo structure into a queue.
1993  * If a non-null thread pointer is passed then add to the thread queue,
1994  * otherwise add to the process queue.
1995  *
1996  * The function sigaddqins() is called with sigqueue already allocated.
1997  * It is called from sigaddqa() and sigaddq() below.
1998  *
1999  * The value of si_code implicitly indicates whether sigp is to be
2000  * explicitly queued, or to be queued to depth one.
2001  */
2002 static void
2003 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2004 {
2005 	sigqueue_t **psqp;
2006 	int sig = sigqp->sq_info.si_signo;
2007 
2008 	sigqp->sq_external = (curproc != &p0) &&
2009 	    (curproc->p_ct_process != p->p_ct_process);
2010 
2011 	/*
2012 	 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2013 	 * is set, and even if it did, we would want to avoid situation
2014 	 * (which would be unique to SIGKILL) where one thread dequeued
2015 	 * the sigqueue_t and another executed psig().  So we create a
2016 	 * separate stash for SIGKILL's sigqueue_t.  Because a second
2017 	 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2018 	 * if (and only if) it was non-extracontractual.
2019 	 */
2020 	if (sig == SIGKILL) {
2021 		if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2022 			if (p->p_killsqp != NULL)
2023 				siginfofree(p->p_killsqp);
2024 			p->p_killsqp = sigqp;
2025 			sigqp->sq_next = NULL;
2026 		} else {
2027 			siginfofree(sigqp);
2028 		}
2029 		return;
2030 	}
2031 
2032 	ASSERT(sig >= 1 && sig < NSIG);
2033 	if (t != NULL)	/* directed to a thread */
2034 		psqp = &t->t_sigqueue;
2035 	else 		/* directed to a process */
2036 		psqp = &p->p_sigqueue;
2037 	if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2038 	    sigismember(&p->p_siginfo, sig)) {
2039 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2040 				;
2041 	} else {
2042 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2043 			if ((*psqp)->sq_info.si_signo == sig) {
2044 				siginfofree(sigqp);
2045 				return;
2046 			}
2047 		}
2048 	}
2049 	*psqp = sigqp;
2050 	sigqp->sq_next = NULL;
2051 }
2052 
2053 /*
2054  * The function sigaddqa() is called with sigqueue already allocated.
2055  * If signal is ignored, discard but guarantee KILL and generation semantics.
2056  * It is called from sigqueue() and other places.
2057  */
2058 void
2059 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2060 {
2061 	int sig = sigqp->sq_info.si_signo;
2062 
2063 	ASSERT(MUTEX_HELD(&p->p_lock));
2064 	ASSERT(sig >= 1 && sig < NSIG);
2065 
2066 	if (sig_discardable(p, sig))
2067 		siginfofree(sigqp);
2068 	else
2069 		sigaddqins(p, t, sigqp);
2070 
2071 	sigtoproc(p, t, sig);
2072 }
2073 
2074 /*
2075  * Allocate the sigqueue_t structure and call sigaddqins().
2076  */
2077 void
2078 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2079 {
2080 	sigqueue_t *sqp;
2081 	int sig = infop->si_signo;
2082 
2083 	ASSERT(MUTEX_HELD(&p->p_lock));
2084 	ASSERT(sig >= 1 && sig < NSIG);
2085 
2086 	/*
2087 	 * If the signal will be discarded by sigtoproc() or
2088 	 * if the process isn't requesting siginfo and it isn't
2089 	 * blocking the signal (it *could* change it's mind while
2090 	 * the signal is pending) then don't bother creating one.
2091 	 */
2092 	if (!sig_discardable(p, sig) &&
2093 	    (sigismember(&p->p_siginfo, sig) ||
2094 	    (curproc->p_ct_process != p->p_ct_process) ||
2095 	    (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2096 	    ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2097 		bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2098 		sqp->sq_func = NULL;
2099 		sqp->sq_next = NULL;
2100 		sigaddqins(p, t, sqp);
2101 	}
2102 	sigtoproc(p, t, sig);
2103 }
2104 
2105 /*
2106  * Handle stop-on-fault processing for the debugger.  Returns 0
2107  * if the fault is cleared during the stop, nonzero if it isn't.
2108  */
2109 int
2110 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2111 {
2112 	proc_t *p = ttoproc(curthread);
2113 	klwp_t *lwp = ttolwp(curthread);
2114 
2115 	ASSERT(prismember(&p->p_fltmask, fault));
2116 
2117 	/*
2118 	 * Record current fault and siginfo structure so debugger can
2119 	 * find it.
2120 	 */
2121 	mutex_enter(&p->p_lock);
2122 	lwp->lwp_curflt = (uchar_t)fault;
2123 	lwp->lwp_siginfo = *sip;
2124 
2125 	stop(PR_FAULTED, fault);
2126 
2127 	fault = lwp->lwp_curflt;
2128 	lwp->lwp_curflt = 0;
2129 	mutex_exit(&p->p_lock);
2130 	return (fault);
2131 }
2132 
2133 void
2134 sigorset(k_sigset_t *s1, k_sigset_t *s2)
2135 {
2136 	s1->__sigbits[0] |= s2->__sigbits[0];
2137 	s1->__sigbits[1] |= s2->__sigbits[1];
2138 }
2139 
2140 void
2141 sigandset(k_sigset_t *s1, k_sigset_t *s2)
2142 {
2143 	s1->__sigbits[0] &= s2->__sigbits[0];
2144 	s1->__sigbits[1] &= s2->__sigbits[1];
2145 }
2146 
2147 void
2148 sigdiffset(k_sigset_t *s1, k_sigset_t *s2)
2149 {
2150 	s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2151 	s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2152 }
2153 
2154 /*
2155  * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2156  * if there are any signals the thread might take on return from the kernel.
2157  * If ksigset_t's were a single word, we would do:
2158  *	return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2159  */
2160 int
2161 sigcheck(proc_t *p, kthread_t *t)
2162 {
2163 	sc_shared_t *tdp = t->t_schedctl;
2164 
2165 	/*
2166 	 * If signals are blocked via the schedctl interface
2167 	 * then we only check for the unmaskable signals.
2168 	 */
2169 	if (tdp != NULL && tdp->sc_sigblock)
2170 		return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2171 		    CANTMASK0);
2172 
2173 	return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2174 		    ~t->t_hold.__sigbits[0]) |
2175 		(((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2176 		    ~t->t_hold.__sigbits[1]) & FILLSET1));
2177 }
2178 
2179 /* ONC_PLUS EXTRACT START */
2180 void
2181 sigintr(k_sigset_t *smask, int intable)
2182 {
2183 	proc_t *p;
2184 	int owned;
2185 	k_sigset_t lmask;		/* local copy of cantmask */
2186 	klwp_t *lwp = ttolwp(curthread);
2187 
2188 	/*
2189 	 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2190 	 *    and SIGTERM. (Preserving the existing masks).
2191 	 *    This function supports the -intr nfs and ufs mount option.
2192 	 */
2193 
2194 	/*
2195 	 * don't do kernel threads
2196 	 */
2197 	if (lwp == NULL)
2198 		return;
2199 
2200 	/*
2201 	 * get access to signal mask
2202 	 */
2203 	p = ttoproc(curthread);
2204 	owned = mutex_owned(&p->p_lock);	/* this is filthy */
2205 	if (!owned)
2206 		mutex_enter(&p->p_lock);
2207 
2208 	/*
2209 	 * remember the current mask
2210 	 */
2211 	schedctl_finish_sigblock(curthread);
2212 	*smask = curthread->t_hold;
2213 
2214 	/*
2215 	 * mask out all signals
2216 	 */
2217 	sigfillset(&curthread->t_hold);
2218 
2219 	/*
2220 	 * Unmask the non-maskable signals (e.g., KILL), as long as
2221 	 * they aren't already masked (which could happen at exit).
2222 	 * The first sigdiffset sets lmask to (cantmask & ~curhold).  The
2223 	 * second sets the current hold mask to (~0 & ~lmask), which reduces
2224 	 * to (~cantmask | curhold).
2225 	 */
2226 	lmask = cantmask;
2227 	sigdiffset(&lmask, smask);
2228 	sigdiffset(&curthread->t_hold, &lmask);
2229 
2230 	/*
2231 	 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2232 	 * Re-enable INT if it's originally enabled and the NFS mount option
2233 	 * nointr is not set.
2234 	 */
2235 	if (!sigismember(smask, SIGHUP))
2236 		sigdelset(&curthread->t_hold, SIGHUP);
2237 	if (!sigismember(smask, SIGINT) && intable)
2238 		sigdelset(&curthread->t_hold, SIGINT);
2239 	if (!sigismember(smask, SIGQUIT))
2240 		sigdelset(&curthread->t_hold, SIGQUIT);
2241 	if (!sigismember(smask, SIGTERM))
2242 		sigdelset(&curthread->t_hold, SIGTERM);
2243 
2244 	/*
2245 	 * release access to signal mask
2246 	 */
2247 	if (!owned)
2248 		mutex_exit(&p->p_lock);
2249 
2250 	/*
2251 	 * Indicate that this lwp is not to be stopped.
2252 	 */
2253 	lwp->lwp_nostop++;
2254 
2255 }
2256 /* ONC_PLUS EXTRACT END */
2257 
2258 void
2259 sigunintr(k_sigset_t *smask)
2260 {
2261 	proc_t *p;
2262 	int owned;
2263 	klwp_t *lwp = ttolwp(curthread);
2264 
2265 	/*
2266 	 * Reset previous mask (See sigintr() above)
2267 	 */
2268 	if (lwp != NULL) {
2269 		lwp->lwp_nostop--;	/* restore lwp stoppability */
2270 		p = ttoproc(curthread);
2271 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2272 		if (!owned)
2273 			mutex_enter(&p->p_lock);
2274 		curthread->t_hold = *smask;
2275 		/* so unmasked signals will be seen */
2276 		curthread->t_sig_check = 1;
2277 		if (!owned)
2278 			mutex_exit(&p->p_lock);
2279 	}
2280 }
2281 
2282 void
2283 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2284 {
2285 	proc_t	*p;
2286 	int owned;
2287 	/*
2288 	 * Save current signal mask in oldmask, then
2289 	 * set it to newmask.
2290 	 */
2291 	if (ttolwp(curthread) != NULL) {
2292 		p = ttoproc(curthread);
2293 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2294 		if (!owned)
2295 			mutex_enter(&p->p_lock);
2296 		schedctl_finish_sigblock(curthread);
2297 		if (oldmask != NULL)
2298 			*oldmask = curthread->t_hold;
2299 		curthread->t_hold = *newmask;
2300 		curthread->t_sig_check = 1;
2301 		if (!owned)
2302 			mutex_exit(&p->p_lock);
2303 	}
2304 }
2305 
2306 /*
2307  * Return true if the signal number is in range
2308  * and the signal code specifies signal queueing.
2309  */
2310 int
2311 sigwillqueue(int sig, int code)
2312 {
2313 	if (sig >= 0 && sig < NSIG) {
2314 		switch (code) {
2315 		case SI_QUEUE:
2316 		case SI_TIMER:
2317 		case SI_ASYNCIO:
2318 		case SI_MESGQ:
2319 			return (1);
2320 		}
2321 	}
2322 	return (0);
2323 }
2324 
2325 #ifndef	UCHAR_MAX
2326 #define	UCHAR_MAX	255
2327 #endif
2328 
2329 /*
2330  * The entire pool (with maxcount entries) is pre-allocated at
2331  * the first sigqueue/signotify call.
2332  */
2333 sigqhdr_t *
2334 sigqhdralloc(size_t size, uint_t maxcount)
2335 {
2336 	size_t i;
2337 	sigqueue_t *sq, *next;
2338 	sigqhdr_t *sqh;
2339 
2340 	i = (maxcount * size) + sizeof (sigqhdr_t);
2341 	ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX);
2342 	sqh = kmem_alloc(i, KM_SLEEP);
2343 	sqh->sqb_count = (uchar_t)maxcount;
2344 	sqh->sqb_maxcount = (uchar_t)maxcount;
2345 	sqh->sqb_size = (ushort_t)i;
2346 	sqh->sqb_pexited = 0;
2347 	sqh->sqb_sent = 0;
2348 	sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2349 	for (i = maxcount - 1; i != 0; i--) {
2350 		next = (sigqueue_t *)((uintptr_t)sq + size);
2351 		sq->sq_next = next;
2352 		sq = next;
2353 	}
2354 	sq->sq_next = NULL;
2355 	mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2356 	return (sqh);
2357 }
2358 
2359 static void sigqrel(sigqueue_t *);
2360 
2361 /*
2362  * allocate a sigqueue/signotify structure from the per process
2363  * pre-allocated pool.
2364  */
2365 sigqueue_t *
2366 sigqalloc(sigqhdr_t *sqh)
2367 {
2368 	sigqueue_t *sq = NULL;
2369 
2370 	ASSERT(MUTEX_HELD(&curproc->p_lock));
2371 
2372 	if (sqh != NULL) {
2373 		mutex_enter(&sqh->sqb_lock);
2374 		if (sqh->sqb_count > 0) {
2375 			sqh->sqb_count--;
2376 			sq = sqh->sqb_free;
2377 			sqh->sqb_free = sq->sq_next;
2378 			mutex_exit(&sqh->sqb_lock);
2379 			bzero(&sq->sq_info, sizeof (k_siginfo_t));
2380 			sq->sq_backptr = sqh;
2381 			sq->sq_func = sigqrel;
2382 			sq->sq_next = NULL;
2383 			sq->sq_external = 0;
2384 		} else {
2385 			mutex_exit(&sqh->sqb_lock);
2386 		}
2387 	}
2388 	return (sq);
2389 }
2390 
2391 /*
2392  * Return a sigqueue structure back to the pre-allocated pool.
2393  */
2394 static void
2395 sigqrel(sigqueue_t *sq)
2396 {
2397 	sigqhdr_t *sqh;
2398 
2399 	/* make sure that p_lock of the affected process is held */
2400 
2401 	sqh = (sigqhdr_t *)sq->sq_backptr;
2402 	mutex_enter(&sqh->sqb_lock);
2403 	if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2404 		mutex_exit(&sqh->sqb_lock);
2405 		mutex_destroy(&sqh->sqb_lock);
2406 		kmem_free(sqh, sqh->sqb_size);
2407 	} else {
2408 		sqh->sqb_count++;
2409 		sqh->sqb_sent--;
2410 		sq->sq_next = sqh->sqb_free;
2411 		sq->sq_backptr = NULL;
2412 		sqh->sqb_free = sq;
2413 		mutex_exit(&sqh->sqb_lock);
2414 	}
2415 }
2416 
2417 /*
2418  * Free up the pre-allocated sigqueue headers of sigqueue pool
2419  * and signotify pool, if possible.
2420  * Called only by the owning process during exec() and exit().
2421  */
2422 void
2423 sigqfree(proc_t *p)
2424 {
2425 	ASSERT(MUTEX_HELD(&p->p_lock));
2426 
2427 	if (p->p_sigqhdr != NULL) {	/* sigqueue pool */
2428 		sigqhdrfree(p->p_sigqhdr);
2429 		p->p_sigqhdr = NULL;
2430 	}
2431 	if (p->p_signhdr != NULL) {	/* signotify pool */
2432 		sigqhdrfree(p->p_signhdr);
2433 		p->p_signhdr = NULL;
2434 	}
2435 }
2436 
2437 /*
2438  * Free up the pre-allocated header and sigq pool if possible.
2439  */
2440 void
2441 sigqhdrfree(sigqhdr_t *sqh)
2442 {
2443 	mutex_enter(&sqh->sqb_lock);
2444 	if (sqh->sqb_sent == 0) {
2445 		mutex_exit(&sqh->sqb_lock);
2446 		mutex_destroy(&sqh->sqb_lock);
2447 		kmem_free(sqh, sqh->sqb_size);
2448 	} else {
2449 		sqh->sqb_pexited = 1;
2450 		mutex_exit(&sqh->sqb_lock);
2451 	}
2452 }
2453 
2454 /*
2455  * Free up a single sigqueue structure.
2456  * No other code should free a sigqueue directly.
2457  */
2458 void
2459 siginfofree(sigqueue_t *sqp)
2460 {
2461 	if (sqp != NULL) {
2462 		if (sqp->sq_func != NULL)
2463 			(sqp->sq_func)(sqp);
2464 		else
2465 			kmem_free(sqp, sizeof (sigqueue_t));
2466 	}
2467 }
2468 
2469 /*
2470  * Generate a synchronous signal caused by a hardware
2471  * condition encountered by an lwp.  Called from trap().
2472  */
2473 void
2474 trapsig(k_siginfo_t *ip, int restartable)
2475 {
2476 	proc_t *p = ttoproc(curthread);
2477 	int sig = ip->si_signo;
2478 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2479 
2480 	ASSERT(sig > 0 && sig < NSIG);
2481 
2482 	if (curthread->t_dtrace_on)
2483 		dtrace_safe_synchronous_signal();
2484 
2485 	mutex_enter(&p->p_lock);
2486 	schedctl_finish_sigblock(curthread);
2487 	/*
2488 	 * Avoid a possible infinite loop if the lwp is holding the
2489 	 * signal generated by a trap of a restartable instruction or
2490 	 * if the signal so generated is being ignored by the process.
2491 	 */
2492 	if (restartable &&
2493 	    (sigismember(&curthread->t_hold, sig) ||
2494 	    p->p_user.u_signal[sig-1] == SIG_IGN)) {
2495 		sigdelset(&curthread->t_hold, sig);
2496 		p->p_user.u_signal[sig-1] = SIG_DFL;
2497 		sigdelset(&p->p_ignore, sig);
2498 	}
2499 	bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2500 	sigaddqa(p, curthread, sqp);
2501 	mutex_exit(&p->p_lock);
2502 }
2503 
2504 #ifdef _SYSCALL32_IMPL
2505 
2506 /*
2507  * It's tricky to transmit a sigval between 32-bit and 64-bit
2508  * process, since in the 64-bit world, a pointer and an integer
2509  * are different sizes.  Since we're constrained by the standards
2510  * world not to change the types, and it's unclear how useful it is
2511  * to send pointers between address spaces this way, we preserve
2512  * the 'int' interpretation for 32-bit processes interoperating
2513  * with 64-bit processes.  The full semantics (pointers or integers)
2514  * are available for N-bit processes interoperating with N-bit
2515  * processes.
2516  */
2517 void
2518 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2519 {
2520 	bzero(dest, sizeof (*dest));
2521 
2522 	/*
2523 	 * The absolute minimum content is si_signo and si_code.
2524 	 */
2525 	dest->si_signo = src->si_signo;
2526 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2527 		return;
2528 
2529 	/*
2530 	 * A siginfo generated by user level is structured
2531 	 * differently from one generated by the kernel.
2532 	 */
2533 	if (SI_FROMUSER(src)) {
2534 		dest->si_pid = src->si_pid;
2535 		dest->si_ctid = src->si_ctid;
2536 		dest->si_zoneid = src->si_zoneid;
2537 		dest->si_uid = src->si_uid;
2538 		if (SI_CANQUEUE(src->si_code))
2539 			dest->si_value.sival_int =
2540 				(int32_t)src->si_value.sival_int;
2541 		return;
2542 	}
2543 
2544 	dest->si_errno = src->si_errno;
2545 
2546 	switch (src->si_signo) {
2547 	default:
2548 		dest->si_pid = src->si_pid;
2549 		dest->si_ctid = src->si_ctid;
2550 		dest->si_zoneid = src->si_zoneid;
2551 		dest->si_uid = src->si_uid;
2552 		dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2553 		break;
2554 	case SIGCLD:
2555 		dest->si_pid = src->si_pid;
2556 		dest->si_ctid = src->si_ctid;
2557 		dest->si_zoneid = src->si_zoneid;
2558 		dest->si_status = src->si_status;
2559 		dest->si_stime = src->si_stime;
2560 		dest->si_utime = src->si_utime;
2561 		break;
2562 	case SIGSEGV:
2563 	case SIGBUS:
2564 	case SIGILL:
2565 	case SIGTRAP:
2566 	case SIGFPE:
2567 	case SIGEMT:
2568 		dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2569 		dest->si_trapno = src->si_trapno;
2570 		dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2571 		break;
2572 	case SIGPOLL:
2573 	case SIGXFSZ:
2574 		dest->si_fd = src->si_fd;
2575 		dest->si_band = src->si_band;
2576 		break;
2577 	case SIGPROF:
2578 		dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2579 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2580 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2581 		dest->si_syscall = src->si_syscall;
2582 		dest->si_nsysarg = src->si_nsysarg;
2583 		dest->si_fault = src->si_fault;
2584 		break;
2585 	}
2586 }
2587 
2588 void
2589 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2590 {
2591 	bzero(dest, sizeof (*dest));
2592 
2593 	/*
2594 	 * The absolute minimum content is si_signo and si_code.
2595 	 */
2596 	dest->si_signo = src->si_signo;
2597 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2598 		return;
2599 
2600 	/*
2601 	 * A siginfo generated by user level is structured
2602 	 * differently from one generated by the kernel.
2603 	 */
2604 	if (SI_FROMUSER(src)) {
2605 		dest->si_pid = src->si_pid;
2606 		dest->si_ctid = src->si_ctid;
2607 		dest->si_zoneid = src->si_zoneid;
2608 		dest->si_uid = src->si_uid;
2609 		if (SI_CANQUEUE(src->si_code))
2610 			dest->si_value.sival_int =
2611 				(int)src->si_value.sival_int;
2612 		return;
2613 	}
2614 
2615 	dest->si_errno = src->si_errno;
2616 
2617 	switch (src->si_signo) {
2618 	default:
2619 		dest->si_pid = src->si_pid;
2620 		dest->si_ctid = src->si_ctid;
2621 		dest->si_zoneid = src->si_zoneid;
2622 		dest->si_uid = src->si_uid;
2623 		dest->si_value.sival_int = (int)src->si_value.sival_int;
2624 		break;
2625 	case SIGCLD:
2626 		dest->si_pid = src->si_pid;
2627 		dest->si_ctid = src->si_ctid;
2628 		dest->si_zoneid = src->si_zoneid;
2629 		dest->si_status = src->si_status;
2630 		dest->si_stime = src->si_stime;
2631 		dest->si_utime = src->si_utime;
2632 		break;
2633 	case SIGSEGV:
2634 	case SIGBUS:
2635 	case SIGILL:
2636 	case SIGTRAP:
2637 	case SIGFPE:
2638 	case SIGEMT:
2639 		dest->si_addr = (void *)(uintptr_t)src->si_addr;
2640 		dest->si_trapno = src->si_trapno;
2641 		dest->si_pc = (void *)(uintptr_t)src->si_pc;
2642 		break;
2643 	case SIGPOLL:
2644 	case SIGXFSZ:
2645 		dest->si_fd = src->si_fd;
2646 		dest->si_band = src->si_band;
2647 		break;
2648 	case SIGPROF:
2649 		dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2650 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2651 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2652 		dest->si_syscall = src->si_syscall;
2653 		dest->si_nsysarg = src->si_nsysarg;
2654 		dest->si_fault = src->si_fault;
2655 		break;
2656 	}
2657 }
2658 
2659 #endif /* _SYSCALL32_IMPL */
2660