xref: /illumos-gate/usr/src/uts/common/os/sig.c (revision 159cf8a6ecac7ecbb601c9653abfd0fa878075d8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/bitmap.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/errno.h>
41 #include <sys/proc.h>
42 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
43 #include <sys/signal.h>
44 #include <sys/siginfo.h>
45 #include <sys/fault.h>
46 #include <sys/ucontext.h>
47 #include <sys/procfs.h>
48 #include <sys/wait.h>
49 #include <sys/class.h>
50 #include <sys/mman.h>
51 #include <sys/procset.h>
52 #include <sys/kmem.h>
53 #include <sys/cpuvar.h>
54 #include <sys/prsystm.h>
55 #include <sys/debug.h>
56 #include <vm/as.h>
57 #include <sys/bitmap.h>
58 #include <c2/audit.h>
59 #include <sys/core.h>
60 #include <sys/schedctl.h>
61 #include <sys/contract/process_impl.h>
62 #include <sys/dtrace.h>
63 #include <sys/sdt.h>
64 
65 				/* MUST be contiguous */
66 k_sigset_t nullsmask = {0, 0};
67 
68 k_sigset_t fillset = {FILLSET0, FILLSET1};
69 
70 k_sigset_t cantmask = {CANTMASK0, CANTMASK1};
71 
72 k_sigset_t cantreset = {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0};
73 
74 k_sigset_t ignoredefault = {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
75 			|sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
76 			(sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
77 			|sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
78 			|sigmask(SIGJVM2))};
79 
80 k_sigset_t stopdefault = {(sigmask(SIGSTOP)|sigmask(SIGTSTP)
81 			|sigmask(SIGTTOU)|sigmask(SIGTTIN)), 0};
82 
83 k_sigset_t coredefault = {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)
84 			|sigmask(SIGIOT)|sigmask(SIGEMT)|sigmask(SIGFPE)
85 			|sigmask(SIGBUS)|sigmask(SIGSEGV)|sigmask(SIGSYS)
86 			|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0};
87 
88 k_sigset_t holdvfork = {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)),
89 			0};
90 
91 static	int	isjobstop(int);
92 static	void	post_sigcld(proc_t *, sigqueue_t *);
93 
94 /*
95  * Internal variables for counting number of user thread stop requests posted.
96  * They may not be accurate at some special situation such as that a virtually
97  * stopped thread starts to run.
98  */
99 static int num_utstop;
100 /*
101  * Internal variables for broadcasting an event when all thread stop requests
102  * are processed.
103  */
104 static kcondvar_t utstop_cv;
105 
106 static kmutex_t thread_stop_lock;
107 void del_one_utstop(void);
108 
109 /*
110  * Send the specified signal to the specified process.
111  */
112 void
113 psignal(proc_t *p, int sig)
114 {
115 	mutex_enter(&p->p_lock);
116 	sigtoproc(p, NULL, sig);
117 	mutex_exit(&p->p_lock);
118 }
119 
120 /*
121  * Send the specified signal to the specified thread.
122  */
123 void
124 tsignal(kthread_t *t, int sig)
125 {
126 	proc_t *p = ttoproc(t);
127 
128 	mutex_enter(&p->p_lock);
129 	sigtoproc(p, t, sig);
130 	mutex_exit(&p->p_lock);
131 }
132 
133 int
134 signal_is_blocked(kthread_t *t, int sig)
135 {
136 	return (sigismember(&t->t_hold, sig) ||
137 	    (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
138 }
139 
140 /*
141  * Return true if the signal can safely be discarded on generation.
142  * That is, if there is no need for the signal on the receiving end.
143  * The answer is true if the process is a zombie or
144  * if all of these conditions are true:
145  *	the signal is being ignored
146  *	the process is single-threaded
147  *	the signal is not being traced by /proc
148  * 	the signal is not blocked by the process
149  */
150 static int
151 sig_discardable(proc_t *p, int sig)
152 {
153 	kthread_t *t = p->p_tlist;
154 
155 	return (t == NULL ||		/* if zombie or ... */
156 	    (sigismember(&p->p_ignore, sig) &&	/* signal is ignored */
157 	    t->t_forw == t &&			/* and single-threaded */
158 	    !tracing(p, sig) &&			/* and no /proc tracing */
159 	    !signal_is_blocked(t, sig)));	/* and signal not blocked */
160 }
161 
162 /*
163  * Return true if this thread is going to eat this signal soon.
164  */
165 int
166 eat_signal(kthread_t *t, int sig)
167 {
168 	int rval = 0;
169 	ASSERT(THREAD_LOCK_HELD(t));
170 
171 	/*
172 	 * Do not do anything if the target thread has the signal blocked.
173 	 */
174 	if (!signal_is_blocked(t, sig)) {
175 		t->t_sig_check = 1;	/* have thread do an issig */
176 		if (t->t_state == TS_SLEEP && (t->t_flag & T_WAKEABLE)) {
177 			setrun_locked(t);
178 			rval = 1;
179 		} else if (t->t_state == TS_STOPPED && sig == SIGKILL) {
180 			ttoproc(t)->p_stopsig = 0;
181 			t->t_dtrace_stop = 0;
182 			t->t_schedflag |= TS_XSTART | TS_PSTART;
183 			setrun_locked(t);
184 		} else if (t != curthread && t->t_state == TS_ONPROC) {
185 			aston(t);	/* make it do issig promptly */
186 			if (t->t_cpu != CPU)
187 				poke_cpu(t->t_cpu->cpu_id);
188 			rval = 1;
189 		} else if (t->t_state == TS_RUN) {
190 			rval = 1;
191 		}
192 	}
193 
194 	return (rval);
195 }
196 
197 /*
198  * Post a signal.
199  * If a non-null thread pointer is passed, then post the signal
200  * to the thread/lwp, otherwise post the signal to the process.
201  */
202 void
203 sigtoproc(proc_t *p, kthread_t *t, int sig)
204 {
205 	kthread_t *tt;
206 	int ext = !(curproc->p_flag & SSYS) &&
207 	    (curproc->p_ct_process != p->p_ct_process);
208 
209 	ASSERT(MUTEX_HELD(&p->p_lock));
210 
211 	if (sig <= 0 || sig >= NSIG)
212 		return;
213 
214 	/*
215 	 * Regardless of origin or directedness,
216 	 * SIGKILL kills all lwps in the process immediately
217 	 * and jobcontrol signals affect all lwps in the process.
218 	 */
219 	if (sig == SIGKILL) {
220 		p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
221 		t = NULL;
222 	} else if (sig == SIGCONT) {
223 		/*
224 		 * The SSCONT flag will remain set until a stopping
225 		 * signal comes in (below).  This is harmless.
226 		 */
227 		p->p_flag |= SSCONT;
228 		sigdelq(p, NULL, SIGSTOP);
229 		sigdelq(p, NULL, SIGTSTP);
230 		sigdelq(p, NULL, SIGTTOU);
231 		sigdelq(p, NULL, SIGTTIN);
232 		sigdiffset(&p->p_sig, &stopdefault);
233 		sigdiffset(&p->p_extsig, &stopdefault);
234 		p->p_stopsig = 0;
235 		if ((tt = p->p_tlist) != NULL) {
236 			do {
237 				sigdelq(p, tt, SIGSTOP);
238 				sigdelq(p, tt, SIGTSTP);
239 				sigdelq(p, tt, SIGTTOU);
240 				sigdelq(p, tt, SIGTTIN);
241 				sigdiffset(&tt->t_sig, &stopdefault);
242 				sigdiffset(&tt->t_extsig, &stopdefault);
243 			} while ((tt = tt->t_forw) != p->p_tlist);
244 		}
245 		if ((tt = p->p_tlist) != NULL) {
246 			do {
247 				thread_lock(tt);
248 				if (tt->t_state == TS_STOPPED &&
249 				    tt->t_whystop == PR_JOBCONTROL) {
250 					tt->t_schedflag |= TS_XSTART;
251 					setrun_locked(tt);
252 				}
253 				thread_unlock(tt);
254 			} while ((tt = tt->t_forw) != p->p_tlist);
255 		}
256 	} else if (sigismember(&stopdefault, sig)) {
257 		/*
258 		 * This test has a race condition which we can't fix:
259 		 * By the time the stopping signal is received by
260 		 * the target process/thread, the signal handler
261 		 * and/or the detached state might have changed.
262 		 */
263 		if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
264 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
265 			p->p_flag &= ~SSCONT;
266 		sigdelq(p, NULL, SIGCONT);
267 		sigdelset(&p->p_sig, SIGCONT);
268 		sigdelset(&p->p_extsig, SIGCONT);
269 		if ((tt = p->p_tlist) != NULL) {
270 			do {
271 				sigdelq(p, tt, SIGCONT);
272 				sigdelset(&tt->t_sig, SIGCONT);
273 				sigdelset(&tt->t_extsig, SIGCONT);
274 			} while ((tt = tt->t_forw) != p->p_tlist);
275 		}
276 	}
277 
278 	if (sig_discardable(p, sig)) {
279 		DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
280 		    proc_t *, p, int, sig);
281 		return;
282 	}
283 
284 	if (t != NULL) {
285 		/*
286 		 * This is a directed signal, wake up the lwp.
287 		 */
288 		sigaddset(&t->t_sig, sig);
289 		if (ext)
290 			sigaddset(&t->t_extsig, sig);
291 		thread_lock(t);
292 		(void) eat_signal(t, sig);
293 		thread_unlock(t);
294 		DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
295 	} else if ((tt = p->p_tlist) != NULL) {
296 		/*
297 		 * Make sure that some lwp that already exists
298 		 * in the process fields the signal soon.
299 		 * Wake up an interruptibly sleeping lwp if necessary.
300 		 */
301 		int su = 0;
302 
303 		sigaddset(&p->p_sig, sig);
304 		if (ext)
305 			sigaddset(&p->p_extsig, sig);
306 		do {
307 			thread_lock(tt);
308 			if (eat_signal(tt, sig)) {
309 				thread_unlock(tt);
310 				break;
311 			}
312 			if (sig == SIGKILL && SUSPENDED(tt))
313 				su++;
314 			thread_unlock(tt);
315 		} while ((tt = tt->t_forw) != p->p_tlist);
316 		/*
317 		 * If the process is deadlocked, make somebody run and die.
318 		 */
319 		if (sig == SIGKILL && p->p_stat != SIDL &&
320 		    p->p_lwprcnt == 0 && p->p_lwpcnt == su) {
321 			thread_lock(tt);
322 			p->p_lwprcnt++;
323 			tt->t_schedflag |= TS_CSTART;
324 			setrun_locked(tt);
325 			thread_unlock(tt);
326 		}
327 
328 		DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
329 	}
330 }
331 
332 static int
333 isjobstop(int sig)
334 {
335 	proc_t *p = ttoproc(curthread);
336 
337 	ASSERT(MUTEX_HELD(&p->p_lock));
338 
339 	if (u.u_signal[sig-1] == SIG_DFL && sigismember(&stopdefault, sig)) {
340 		/*
341 		 * If SIGCONT has been posted since we promoted this signal
342 		 * from pending to current, then don't do a jobcontrol stop.
343 		 */
344 		if (!(p->p_flag & SSCONT) &&
345 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
346 		    curthread != p->p_agenttp) {
347 			sigqueue_t *sqp;
348 
349 			stop(PR_JOBCONTROL, sig);
350 			mutex_exit(&p->p_lock);
351 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
352 			mutex_enter(&pidlock);
353 			/*
354 			 * Only the first lwp to continue notifies the parent.
355 			 */
356 			if (p->p_pidflag & CLDCONT)
357 				siginfofree(sqp);
358 			else {
359 				p->p_pidflag |= CLDCONT;
360 				p->p_wcode = CLD_CONTINUED;
361 				p->p_wdata = SIGCONT;
362 				sigcld(p, sqp);
363 			}
364 			mutex_exit(&pidlock);
365 			mutex_enter(&p->p_lock);
366 		}
367 		return (1);
368 	}
369 	return (0);
370 }
371 
372 /*
373  * Returns true if the current process has a signal to process, and
374  * the signal is not held.  The signal to process is put in p_cursig.
375  * This is asked at least once each time a process enters the system
376  * (though this can usually be done without actually calling issig by
377  * checking the pending signal masks).  A signal does not do anything
378  * directly to a process; it sets a flag that asks the process to do
379  * something to itself.
380  *
381  * The "why" argument indicates the allowable side-effects of the call:
382  *
383  * FORREAL:  Extract the next pending signal from p_sig into p_cursig;
384  * stop the process if a stop has been requested or if a traced signal
385  * is pending.
386  *
387  * JUSTLOOKING:  Don't stop the process, just indicate whether or not
388  * a signal might be pending (FORREAL is needed to tell for sure).
389  *
390  * XXX: Changes to the logic in these routines should be propagated
391  * to lm_sigispending().  See bug 1201594.
392  */
393 
394 static int issig_forreal(void);
395 static int issig_justlooking(void);
396 
397 int
398 issig(int why)
399 {
400 	ASSERT(why == FORREAL || why == JUSTLOOKING);
401 
402 	return ((why == FORREAL)? issig_forreal() : issig_justlooking());
403 }
404 
405 
406 static int
407 issig_justlooking(void)
408 {
409 	kthread_t *t = curthread;
410 	klwp_t *lwp = ttolwp(t);
411 	proc_t *p = ttoproc(t);
412 	k_sigset_t set;
413 
414 	/*
415 	 * This function answers the question:
416 	 * "Is there any reason to call issig_forreal()?"
417 	 *
418 	 * We have to answer the question w/o grabbing any locks
419 	 * because we are (most likely) being called after we
420 	 * put ourselves on the sleep queue.
421 	 */
422 
423 	if (t->t_dtrace_stop | t->t_dtrace_sig)
424 		return (1);
425 
426 	/*
427 	 * Another piece of complexity in this process.  When single-stepping a
428 	 * process, we don't want an intervening signal or TP_PAUSE request to
429 	 * suspend the current thread.  Otherwise, the controlling process will
430 	 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
431 	 * We will trigger any remaining signals when we re-enter the kernel on
432 	 * the single step trap.
433 	 */
434 	if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
435 		return (0);
436 
437 	if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
438 	    (p->p_flag & (SEXITLWPS|SKILLED)) ||
439 	    (!lwp->lwp_nostop_r && ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
440 		(t->t_proc_flag & TP_HOLDLWP))) ||
441 	    (!lwp->lwp_nostop && (p->p_stopsig | (t->t_proc_flag &
442 		(TP_PRSTOP|TP_CHKPT|TP_PAUSE)))) ||
443 	    lwp->lwp_cursig)
444 		return (1);
445 
446 	if (p->p_flag & SVFWAIT)
447 		return (0);
448 	set = p->p_sig;
449 	sigorset(&set, &t->t_sig);
450 	if (schedctl_sigblock(t))	/* all blockable signals blocked */
451 		sigandset(&set, &cantmask);
452 	else
453 		sigdiffset(&set, &t->t_hold);
454 	if (p->p_flag & SVFORK)
455 		sigdiffset(&set, &holdvfork);
456 
457 	if (!sigisempty(&set)) {
458 		int sig;
459 
460 		for (sig = 1; sig < NSIG; sig++) {
461 			if (sigismember(&set, sig) &&
462 			    (tracing(p, sig) ||
463 			    !sigismember(&p->p_ignore, sig))) {
464 				/*
465 				 * Don't promote a signal that will stop
466 				 * the process when lwp_nostop is set.
467 				 */
468 				if (!lwp->lwp_nostop ||
469 				    u.u_signal[sig-1] != SIG_DFL ||
470 				    !sigismember(&stopdefault, sig))
471 					return (1);
472 			}
473 		}
474 	}
475 
476 	return (0);
477 }
478 
479 static int
480 issig_forreal(void)
481 {
482 	int sig = 0, ext = 0;
483 	kthread_t *t = curthread;
484 	klwp_t *lwp = ttolwp(t);
485 	proc_t *p = ttoproc(t);
486 	int toproc = 0;
487 	int sigcld_found = 0;
488 	int nostop_break = 0;
489 
490 	ASSERT(t->t_state == TS_ONPROC);
491 
492 	mutex_enter(&p->p_lock);
493 	schedctl_finish_sigblock(t);
494 
495 	if (t->t_dtrace_stop | t->t_dtrace_sig) {
496 		if (t->t_dtrace_stop) {
497 			/*
498 			 * If DTrace's "stop" action has been invoked on us,
499 			 * set TP_PRSTOP.
500 			 */
501 			t->t_proc_flag |= TP_PRSTOP;
502 		}
503 
504 		if (t->t_dtrace_sig != 0) {
505 			k_siginfo_t info;
506 
507 			/*
508 			 * Post the signal generated as the result of
509 			 * DTrace's "raise" action as a normal signal before
510 			 * the full-fledged signal checking begins.
511 			 */
512 			bzero(&info, sizeof (info));
513 			info.si_signo = t->t_dtrace_sig;
514 			info.si_code = SI_DTRACE;
515 
516 			sigaddq(p, NULL, &info, KM_NOSLEEP);
517 
518 			t->t_dtrace_sig = 0;
519 		}
520 	}
521 
522 	for (;;) {
523 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
524 			lwp->lwp_cursig = sig = SIGKILL;
525 			lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
526 			break;
527 		}
528 
529 		/*
530 		 * Another piece of complexity in this process.  When
531 		 * single-stepping a process, we don't want an intervening
532 		 * signal or TP_PAUSE request to suspend the current thread.
533 		 * Otherwise, the controlling process will hang beacuse we will
534 		 * be stopped with TS_PSTART set in t_schedflag.  We will
535 		 * trigger any remaining signals when we re-enter the kernel on
536 		 * the single step trap.
537 		 */
538 		if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
539 			sig = 0;
540 			break;
541 		}
542 
543 		/*
544 		 * Hold the lwp here for watchpoint manipulation.
545 		 */
546 		if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
547 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
548 			continue;
549 		}
550 
551 		if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
552 			if ((sig = lwp->lwp_cursig) != 0) {
553 				/*
554 				 * Make sure we call ISSIG() in post_syscall()
555 				 * to re-validate this current signal.
556 				 */
557 				t->t_sig_check = 1;
558 			}
559 			break;
560 		}
561 
562 		/*
563 		 * If the request is PR_CHECKPOINT, ignore the rest of signals
564 		 * or requests.  Honor other stop requests or signals later.
565 		 * Go back to top of loop here to check if an exit or hold
566 		 * event has occurred while stopped.
567 		 */
568 		if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
569 			stop(PR_CHECKPOINT, 0);
570 			continue;
571 		}
572 
573 		/*
574 		 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
575 		 * with signals or /proc.  Another lwp is executing fork1(),
576 		 * or is undergoing watchpoint activity (remapping a page),
577 		 * or is executing lwp_suspend() on this lwp.
578 		 * Again, go back to top of loop to check if an exit
579 		 * or hold event has occurred while stopped.
580 		 * We explicitly allow this form of stopping of one
581 		 * lwp in a process by another lwp in the same process,
582 		 * even if lwp->lwp_nostop is set, because otherwise a
583 		 * process can become deadlocked on a fork1().
584 		 * Allow this only if lwp_nostop_r is not set,
585 		 * to avoid a recursive call to prstop().
586 		 */
587 		if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
588 		    (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop_r) {
589 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
590 			continue;
591 		}
592 
593 		/*
594 		 * Honor requested stop before dealing with the
595 		 * current signal; a debugger may change it.
596 		 * Do not want to go back to loop here since this is a special
597 		 * stop that means: make incremental progress before the next
598 		 * stop. The danger is that returning to top of loop would most
599 		 * likely drop the thread right back here to stop soon after it
600 		 * was continued, violating the incremental progress request.
601 		 */
602 		if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
603 			stop(PR_REQUESTED, 0);
604 
605 		/*
606 		 * If a debugger wants us to take a signal it will have
607 		 * left it in lwp->lwp_cursig.  If lwp_cursig has been cleared
608 		 * or if it's being ignored, we continue on looking for another
609 		 * signal.  Otherwise we return the specified signal, provided
610 		 * it's not a signal that causes a job control stop.
611 		 *
612 		 * When stopped on PR_JOBCONTROL, there is no current
613 		 * signal; we cancel lwp->lwp_cursig temporarily before
614 		 * calling isjobstop().  The current signal may be reset
615 		 * by a debugger while we are stopped in isjobstop().
616 		 */
617 		if ((sig = lwp->lwp_cursig) != 0) {
618 			ext = lwp->lwp_extsig;
619 			lwp->lwp_cursig = 0;
620 			lwp->lwp_extsig = 0;
621 			if (!sigismember(&p->p_ignore, sig) &&
622 			    !isjobstop(sig)) {
623 				if (p->p_flag & (SEXITLWPS|SKILLED)) {
624 					sig = SIGKILL;
625 					ext = (p->p_flag & SEXTKILLED) != 0;
626 				}
627 				lwp->lwp_cursig = (uchar_t)sig;
628 				lwp->lwp_extsig = (uchar_t)ext;
629 				break;
630 			}
631 			/*
632 			 * The signal is being ignored or it caused a
633 			 * job-control stop.  If another current signal
634 			 * has not been established, return the current
635 			 * siginfo, if any, to the memory manager.
636 			 */
637 			if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
638 				siginfofree(lwp->lwp_curinfo);
639 				lwp->lwp_curinfo = NULL;
640 			}
641 			/*
642 			 * Loop around again in case we were stopped
643 			 * on a job control signal and a /proc stop
644 			 * request was posted or another current signal
645 			 * was established while we were stopped.
646 			 */
647 			continue;
648 		}
649 
650 		if (p->p_stopsig && !lwp->lwp_nostop &&
651 		    curthread != p->p_agenttp) {
652 			/*
653 			 * Some lwp in the process has already stopped
654 			 * showing PR_JOBCONTROL.  This is a stop in
655 			 * sympathy with the other lwp, even if this
656 			 * lwp is blocking the stopping signal.
657 			 */
658 			stop(PR_JOBCONTROL, p->p_stopsig);
659 			continue;
660 		}
661 
662 		/*
663 		 * Loop on the pending signals until we find a
664 		 * non-held signal that is traced or not ignored.
665 		 * First check the signals pending for the lwp,
666 		 * then the signals pending for the process as a whole.
667 		 */
668 		for (;;) {
669 			k_sigset_t tsig;
670 
671 			tsig = t->t_sig;
672 			if ((sig = fsig(&tsig, t)) != 0) {
673 				if (sig == SIGCLD)
674 					sigcld_found = 1;
675 				toproc = 0;
676 				if (tracing(p, sig) ||
677 				    !sigismember(&p->p_ignore, sig)) {
678 					if (sigismember(&t->t_extsig, sig))
679 						ext = 1;
680 					break;
681 				}
682 				sigdelset(&t->t_sig, sig);
683 				sigdelset(&t->t_extsig, sig);
684 				sigdelq(p, t, sig);
685 			} else if ((sig = fsig(&p->p_sig, t)) != 0) {
686 				if (sig == SIGCLD)
687 					sigcld_found = 1;
688 				toproc = 1;
689 				if (tracing(p, sig) ||
690 				    !sigismember(&p->p_ignore, sig)) {
691 					if (sigismember(&p->p_extsig, sig))
692 						ext = 1;
693 					break;
694 				}
695 				sigdelset(&p->p_sig, sig);
696 				sigdelset(&p->p_extsig, sig);
697 				sigdelq(p, NULL, sig);
698 			} else {
699 				/* no signal was found */
700 				break;
701 			}
702 		}
703 
704 		if (sig == 0) {	/* no signal was found */
705 			if (p->p_flag & (SEXITLWPS|SKILLED)) {
706 				lwp->lwp_cursig = SIGKILL;
707 				sig = SIGKILL;
708 				ext = (p->p_flag & SEXTKILLED) != 0;
709 			}
710 			break;
711 		}
712 
713 		/*
714 		 * If we have been informed not to stop (i.e., we are being
715 		 * called from within a network operation), then don't promote
716 		 * the signal at this time, just return the signal number.
717 		 * We will call issig() again later when it is safe.
718 		 *
719 		 * fsig() does not return a jobcontrol stopping signal
720 		 * with a default action of stopping the process if
721 		 * lwp_nostop is set, so we won't be causing a bogus
722 		 * EINTR by this action.  (Such a signal is eaten by
723 		 * isjobstop() when we loop around to do final checks.)
724 		 */
725 		if (lwp->lwp_nostop) {
726 			nostop_break = 1;
727 			break;
728 		}
729 
730 		/*
731 		 * Promote the signal from pending to current.
732 		 *
733 		 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
734 		 * if no siginfo_t exists for this signal.
735 		 */
736 		lwp->lwp_cursig = (uchar_t)sig;
737 		lwp->lwp_extsig = (uchar_t)ext;
738 		t->t_sig_check = 1;	/* so post_syscall will see signal */
739 		ASSERT(lwp->lwp_curinfo == NULL);
740 		sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
741 
742 		if (tracing(p, sig))
743 			stop(PR_SIGNALLED, sig);
744 
745 		/*
746 		 * Loop around to check for requested stop before
747 		 * performing the usual current-signal actions.
748 		 */
749 	}
750 
751 	mutex_exit(&p->p_lock);
752 
753 	/*
754 	 * If SIGCLD was dequeued, search for other pending SIGCLD's.
755 	 * Don't do it if we are returning SIGCLD and the signal
756 	 * handler will be reset by psig(); this enables reliable
757 	 * delivery of SIGCLD even when using the old, broken
758 	 * signal() interface for setting the signal handler.
759 	 */
760 	if (sigcld_found &&
761 	    (sig != SIGCLD || !sigismember(&u.u_sigresethand, SIGCLD)))
762 		sigcld_repost();
763 
764 	if (sig != 0)
765 		(void) undo_watch_step(NULL);
766 
767 	/*
768 	 * If we have been blocked since the p_lock was dropped off
769 	 * above, then this promoted signal might have been handled
770 	 * already when we were on the way back from sleep queue, so
771 	 * just ignore it.
772 	 * If we have been informed not to stop, just return the signal
773 	 * number. Also see comments above.
774 	 */
775 	if (!nostop_break) {
776 		sig = lwp->lwp_cursig;
777 	}
778 
779 	return (sig != 0);
780 }
781 
782 /*
783  * Return true if the process is currently stopped showing PR_JOBCONTROL.
784  * This is true only if all of the process's lwp's are so stopped.
785  * If this is asked by one of the lwps in the process, exclude that lwp.
786  */
787 int
788 jobstopped(proc_t *p)
789 {
790 	kthread_t *t;
791 
792 	ASSERT(MUTEX_HELD(&p->p_lock));
793 
794 	if ((t = p->p_tlist) == NULL)
795 		return (0);
796 
797 	do {
798 		thread_lock(t);
799 		/* ignore current, zombie and suspended lwps in the test */
800 		if (!(t == curthread || t->t_state == TS_ZOMB ||
801 		    SUSPENDED(t)) &&
802 		    (t->t_state != TS_STOPPED ||
803 		    t->t_whystop != PR_JOBCONTROL)) {
804 			thread_unlock(t);
805 			return (0);
806 		}
807 		thread_unlock(t);
808 	} while ((t = t->t_forw) != p->p_tlist);
809 
810 	return (1);
811 }
812 
813 /*
814  * Put ourself (curthread) into the stopped state and notify tracers.
815  */
816 void
817 stop(int why, int what)
818 {
819 	kthread_t	*t = curthread;
820 	proc_t		*p = ttoproc(t);
821 	klwp_t		*lwp = ttolwp(t);
822 	kthread_t	*tx;
823 	lwpent_t	*lep;
824 	int		procstop;
825 	int		flags = TS_ALLSTART;
826 	hrtime_t	stoptime;
827 
828 	/*
829 	 * Can't stop a system process.
830 	 */
831 	if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
832 		return;
833 
834 	ASSERT(MUTEX_HELD(&p->p_lock));
835 
836 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
837 		/*
838 		 * Don't stop an lwp with SIGKILL pending.
839 		 * Don't stop if the process or lwp is exiting.
840 		 */
841 		if (lwp->lwp_cursig == SIGKILL ||
842 		    sigismember(&t->t_sig, SIGKILL) ||
843 		    sigismember(&p->p_sig, SIGKILL) ||
844 		    (t->t_proc_flag & TP_LWPEXIT) ||
845 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
846 			p->p_stopsig = 0;
847 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
848 			return;
849 		}
850 	}
851 
852 	/*
853 	 * Make sure we don't deadlock on a recursive call to prstop().
854 	 * prstop() sets the lwp_nostop_r flag and increments lwp_nostop.
855 	 */
856 	if (lwp->lwp_nostop_r ||
857 	    (lwp->lwp_nostop &&
858 	    (why != PR_SUSPENDED || what != SUSPEND_NORMAL)))
859 		return;
860 
861 	/*
862 	 * Make sure the lwp is in an orderly state for inspection
863 	 * by a debugger through /proc or for dumping via core().
864 	 */
865 	schedctl_finish_sigblock(t);
866 	t->t_proc_flag |= TP_STOPPING;	/* must set before dropping p_lock */
867 	mutex_exit(&p->p_lock);
868 	stoptime = gethrtime();
869 	prstop(why, what);
870 	(void) undo_watch_step(NULL);
871 	mutex_enter(&p->p_lock);
872 	ASSERT(t->t_state == TS_ONPROC);
873 
874 	switch (why) {
875 	case PR_CHECKPOINT:
876 		/*
877 		 * The situation may have changed since we dropped
878 		 * and reacquired p->p_lock. Double-check now
879 		 * whether we should stop or not.
880 		 */
881 		if (!(t->t_proc_flag & TP_CHKPT)) {
882 			t->t_proc_flag &= ~TP_STOPPING;
883 			return;
884 		}
885 		t->t_proc_flag &= ~TP_CHKPT;
886 		flags &= ~TS_RESUME;
887 		break;
888 
889 	case PR_JOBCONTROL:
890 		ASSERT(what == SIGSTOP || what == SIGTSTP ||
891 			what == SIGTTIN || what == SIGTTOU);
892 		flags &= ~TS_XSTART;
893 		break;
894 
895 	case PR_SUSPENDED:
896 		ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
897 		/*
898 		 * The situation may have changed since we dropped
899 		 * and reacquired p->p_lock.  Double-check now
900 		 * whether we should stop or not.
901 		 */
902 		if (what == SUSPEND_PAUSE) {
903 			if (!(t->t_proc_flag & TP_PAUSE)) {
904 				t->t_proc_flag &= ~TP_STOPPING;
905 				return;
906 			}
907 			flags &= ~TS_UNPAUSE;
908 		} else {
909 			if (!((t->t_proc_flag & TP_HOLDLWP) ||
910 			    (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
911 				t->t_proc_flag &= ~TP_STOPPING;
912 				return;
913 			}
914 			/*
915 			 * If SHOLDFORK is in effect and we are stopping
916 			 * while asleep (not at the top of the stack),
917 			 * we return now to allow the hold to take effect
918 			 * when we reach the top of the kernel stack.
919 			 */
920 			if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
921 				t->t_proc_flag &= ~TP_STOPPING;
922 				return;
923 			}
924 			flags &= ~TS_CSTART;
925 		}
926 		break;
927 
928 	default:	/* /proc stop */
929 		flags &= ~TS_PSTART;
930 		/*
931 		 * Do synchronous stop unless the async-stop flag is set.
932 		 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
933 		 * then no debugger is present and we also do synchronous stop.
934 		 */
935 		if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
936 		    !(p->p_proc_flag & P_PR_ASYNC)) {
937 			int notify;
938 
939 			for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
940 				notify = 0;
941 				thread_lock(tx);
942 				if (ISTOPPED(tx) ||
943 				    (tx->t_proc_flag & TP_PRSTOP)) {
944 					thread_unlock(tx);
945 					continue;
946 				}
947 				tx->t_proc_flag |= TP_PRSTOP;
948 				tx->t_sig_check = 1;
949 				if (tx->t_state == TS_SLEEP &&
950 				    (tx->t_flag & T_WAKEABLE)) {
951 					/*
952 					 * Don't actually wake it up if it's
953 					 * in one of the lwp_*() syscalls.
954 					 * Mark it virtually stopped and
955 					 * notify /proc waiters (below).
956 					 */
957 					if (tx->t_wchan0 == NULL)
958 						setrun_locked(tx);
959 					else {
960 						tx->t_proc_flag |= TP_PRVSTOP;
961 						tx->t_stoptime = stoptime;
962 						notify = 1;
963 					}
964 				}
965 				/*
966 				 * force the thread into the kernel
967 				 * if it is not already there.
968 				 */
969 				if (tx->t_state == TS_ONPROC &&
970 				    tx->t_cpu != CPU)
971 					poke_cpu(tx->t_cpu->cpu_id);
972 				thread_unlock(tx);
973 				lep = p->p_lwpdir[tx->t_dslot].ld_entry;
974 				if (notify && lep->le_trace)
975 					prnotify(lep->le_trace);
976 			}
977 			/*
978 			 * We do this just in case one of the threads we asked
979 			 * to stop is in holdlwps() (called from cfork()) or
980 			 * lwp_suspend().
981 			 */
982 			cv_broadcast(&p->p_holdlwps);
983 		}
984 		break;
985 	}
986 
987 	t->t_stoptime = stoptime;
988 
989 	if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
990 		/*
991 		 * Determine if the whole process is jobstopped.
992 		 */
993 		if (jobstopped(p)) {
994 			sigqueue_t *sqp;
995 			int sig;
996 
997 			if ((sig = p->p_stopsig) == 0)
998 				p->p_stopsig = (uchar_t)(sig = what);
999 			mutex_exit(&p->p_lock);
1000 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1001 			mutex_enter(&pidlock);
1002 			/*
1003 			 * The last lwp to stop notifies the parent.
1004 			 * Turn off the CLDCONT flag now so the first
1005 			 * lwp to continue knows what to do.
1006 			 */
1007 			p->p_pidflag &= ~CLDCONT;
1008 			p->p_wcode = CLD_STOPPED;
1009 			p->p_wdata = sig;
1010 			sigcld(p, sqp);
1011 			/*
1012 			 * Grab p->p_lock before releasing pidlock so the
1013 			 * parent and the child don't have a race condition.
1014 			 */
1015 			mutex_enter(&p->p_lock);
1016 			mutex_exit(&pidlock);
1017 			p->p_stopsig = 0;
1018 		} else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1019 			/*
1020 			 * Set p->p_stopsig and wake up sleeping lwps
1021 			 * so they will stop in sympathy with this lwp.
1022 			 */
1023 			p->p_stopsig = (uchar_t)what;
1024 			pokelwps(p);
1025 			/*
1026 			 * We do this just in case one of the threads we asked
1027 			 * to stop is in holdlwps() (called from cfork()) or
1028 			 * lwp_suspend().
1029 			 */
1030 			cv_broadcast(&p->p_holdlwps);
1031 		}
1032 	}
1033 
1034 	if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1035 		/*
1036 		 * Do process-level notification when all lwps are
1037 		 * either stopped on events of interest to /proc
1038 		 * or are stopped showing PR_SUSPENDED or are zombies.
1039 		 */
1040 		procstop = 1;
1041 		for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1042 			if (VSTOPPED(tx))
1043 				continue;
1044 			thread_lock(tx);
1045 			switch (tx->t_state) {
1046 			case TS_ZOMB:
1047 				break;
1048 			case TS_STOPPED:
1049 				/* neither ISTOPPED nor SUSPENDED? */
1050 				if ((tx->t_schedflag &
1051 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1052 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1053 					procstop = 0;
1054 				break;
1055 			case TS_SLEEP:
1056 				/* not paused for watchpoints? */
1057 				if (!(tx->t_flag & T_WAKEABLE) ||
1058 				    tx->t_wchan0 == NULL ||
1059 				    !(tx->t_proc_flag & TP_PAUSE))
1060 					procstop = 0;
1061 				break;
1062 			default:
1063 				procstop = 0;
1064 				break;
1065 			}
1066 			thread_unlock(tx);
1067 		}
1068 		if (procstop) {
1069 			/* there must not be any remapped watched pages now */
1070 			ASSERT(p->p_mapcnt == 0);
1071 			if (p->p_proc_flag & P_PR_PTRACE) {
1072 				/* ptrace() compatibility */
1073 				mutex_exit(&p->p_lock);
1074 				mutex_enter(&pidlock);
1075 				p->p_wcode = CLD_TRAPPED;
1076 				p->p_wdata = (why == PR_SIGNALLED)?
1077 				    what : SIGTRAP;
1078 				cv_broadcast(&p->p_parent->p_cv);
1079 				/*
1080 				 * Grab p->p_lock before releasing pidlock so
1081 				 * parent and child don't have a race condition.
1082 				 */
1083 				mutex_enter(&p->p_lock);
1084 				mutex_exit(&pidlock);
1085 			}
1086 			if (p->p_trace)			/* /proc */
1087 				prnotify(p->p_trace);
1088 			cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1089 			cv_broadcast(&p->p_holdlwps);	/* holdwatch() */
1090 		}
1091 		if (why != PR_SUSPENDED) {
1092 			lep = p->p_lwpdir[t->t_dslot].ld_entry;
1093 			if (lep->le_trace)		/* /proc */
1094 				prnotify(lep->le_trace);
1095 			/*
1096 			 * Special notification for creation of the agent lwp.
1097 			 */
1098 			if (t == p->p_agenttp &&
1099 			    (t->t_proc_flag & TP_PRSTOP) &&
1100 			    p->p_trace)
1101 				prnotify(p->p_trace);
1102 			/*
1103 			 * The situation may have changed since we dropped
1104 			 * and reacquired p->p_lock. Double-check now
1105 			 * whether we should stop or not.
1106 			 */
1107 			if (!(t->t_proc_flag & TP_STOPPING)) {
1108 				if (t->t_proc_flag & TP_PRSTOP)
1109 					t->t_proc_flag |= TP_STOPPING;
1110 			}
1111 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1112 			prnostep(lwp);
1113 		}
1114 	}
1115 
1116 	if (why == PR_SUSPENDED) {
1117 
1118 		/*
1119 		 * We always broadcast in the case of SUSPEND_PAUSE.  This is
1120 		 * because checks for TP_PAUSE take precedence over checks for
1121 		 * SHOLDWATCH.  If a thread is trying to stop because of
1122 		 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1123 		 * waiting for the rest of the threads to enter a stopped state.
1124 		 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1125 		 * lwp and not know it, so broadcast just in case.
1126 		 */
1127 		if (what == SUSPEND_PAUSE ||
1128 		    --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1129 			cv_broadcast(&p->p_holdlwps);
1130 
1131 	}
1132 
1133 	/*
1134 	 * Need to do this here (rather than after the thread is officially
1135 	 * stopped) because we can't call mutex_enter from a stopped thread.
1136 	 */
1137 	if (why == PR_CHECKPOINT)
1138 		del_one_utstop();
1139 
1140 	thread_lock(t);
1141 	ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1142 	t->t_schedflag |= flags;
1143 	t->t_whystop = (short)why;
1144 	t->t_whatstop = (short)what;
1145 	CL_STOP(t, why, what);
1146 	(void) new_mstate(t, LMS_STOPPED);
1147 	thread_stop(t);			/* set stop state and drop lock */
1148 
1149 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1150 		/*
1151 		 * We may have gotten a SIGKILL or a SIGCONT when
1152 		 * we released p->p_lock; make one last check.
1153 		 * Also check for a /proc run-on-last-close.
1154 		 */
1155 		if (sigismember(&t->t_sig, SIGKILL) ||
1156 		    sigismember(&p->p_sig, SIGKILL) ||
1157 		    (t->t_proc_flag & TP_LWPEXIT) ||
1158 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
1159 			p->p_stopsig = 0;
1160 			thread_lock(t);
1161 			t->t_schedflag |= TS_XSTART | TS_PSTART;
1162 			setrun_locked(t);
1163 			thread_unlock_nopreempt(t);
1164 		} else if (why == PR_JOBCONTROL) {
1165 			if (p->p_flag & SSCONT) {
1166 				/*
1167 				 * This resulted from a SIGCONT posted
1168 				 * while we were not holding p->p_lock.
1169 				 */
1170 				p->p_stopsig = 0;
1171 				thread_lock(t);
1172 				t->t_schedflag |= TS_XSTART;
1173 				setrun_locked(t);
1174 				thread_unlock_nopreempt(t);
1175 			}
1176 		} else if (!(t->t_proc_flag & TP_STOPPING)) {
1177 			/*
1178 			 * This resulted from a /proc run-on-last-close.
1179 			 */
1180 			thread_lock(t);
1181 			t->t_schedflag |= TS_PSTART;
1182 			setrun_locked(t);
1183 			thread_unlock_nopreempt(t);
1184 		}
1185 	}
1186 
1187 	t->t_proc_flag &= ~TP_STOPPING;
1188 	mutex_exit(&p->p_lock);
1189 
1190 	swtch();
1191 	setallwatch();	/* reestablish any watchpoints set while stopped */
1192 	mutex_enter(&p->p_lock);
1193 	prbarrier(p);	/* barrier against /proc locking */
1194 }
1195 
1196 /* Interface for resetting user thread stop count. */
1197 void
1198 utstop_init(void)
1199 {
1200 	mutex_enter(&thread_stop_lock);
1201 	num_utstop = 0;
1202 	mutex_exit(&thread_stop_lock);
1203 }
1204 
1205 /* Interface for registering a user thread stop request. */
1206 void
1207 add_one_utstop(void)
1208 {
1209 	mutex_enter(&thread_stop_lock);
1210 	num_utstop++;
1211 	mutex_exit(&thread_stop_lock);
1212 }
1213 
1214 /* Interface for cancelling a user thread stop request */
1215 void
1216 del_one_utstop(void)
1217 {
1218 	mutex_enter(&thread_stop_lock);
1219 	num_utstop--;
1220 	if (num_utstop == 0)
1221 		cv_broadcast(&utstop_cv);
1222 	mutex_exit(&thread_stop_lock);
1223 }
1224 
1225 /* Interface to wait for all user threads to be stopped */
1226 void
1227 utstop_timedwait(clock_t ticks)
1228 {
1229 	mutex_enter(&thread_stop_lock);
1230 	if (num_utstop > 0)
1231 		(void) cv_timedwait(&utstop_cv, &thread_stop_lock,
1232 		    ticks + lbolt);
1233 	mutex_exit(&thread_stop_lock);
1234 }
1235 
1236 /*
1237  * Perform the action specified by the current signal.
1238  * The usual sequence is:
1239  * 	if (issig())
1240  * 		psig();
1241  * The signal bit has already been cleared by issig(),
1242  * the current signal number has been stored in lwp_cursig,
1243  * and the current siginfo is now referenced by lwp_curinfo.
1244  */
1245 void
1246 psig(void)
1247 {
1248 	kthread_t *t = curthread;
1249 	proc_t *p = ttoproc(t);
1250 	klwp_t *lwp = ttolwp(t);
1251 	void (*func)();
1252 	int sig, rc, code, ext;
1253 	pid_t pid = -1;
1254 	id_t ctid = 0;
1255 	zoneid_t zoneid = -1;
1256 	sigqueue_t *sqp = NULL;
1257 
1258 	mutex_enter(&p->p_lock);
1259 	schedctl_finish_sigblock(t);
1260 	code = CLD_KILLED;
1261 
1262 	if (p->p_flag & SEXITLWPS) {
1263 		lwp_exit();
1264 		return;			/* not reached */
1265 	}
1266 	sig = lwp->lwp_cursig;
1267 	ext = lwp->lwp_extsig;
1268 
1269 	ASSERT(sig < NSIG);
1270 
1271 	/*
1272 	 * Re-check lwp_cursig after we acquire p_lock.  Since p_lock was
1273 	 * dropped between issig() and psig(), a debugger may have cleared
1274 	 * lwp_cursig via /proc in the intervening window.
1275 	 */
1276 	if (sig == 0) {
1277 		if (lwp->lwp_curinfo) {
1278 			siginfofree(lwp->lwp_curinfo);
1279 			lwp->lwp_curinfo = NULL;
1280 		}
1281 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1282 			t->t_flag &= ~T_TOMASK;
1283 			t->t_hold = lwp->lwp_sigoldmask;
1284 		}
1285 		mutex_exit(&p->p_lock);
1286 		return;
1287 	}
1288 	func = u.u_signal[sig-1];
1289 
1290 	/*
1291 	 * The signal disposition could have changed since we promoted
1292 	 * this signal from pending to current (we dropped p->p_lock).
1293 	 * This can happen only in a multi-threaded process.
1294 	 */
1295 	if (sigismember(&p->p_ignore, sig) ||
1296 	    (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1297 		lwp->lwp_cursig = 0;
1298 		lwp->lwp_extsig = 0;
1299 		if (lwp->lwp_curinfo) {
1300 			siginfofree(lwp->lwp_curinfo);
1301 			lwp->lwp_curinfo = NULL;
1302 		}
1303 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1304 			t->t_flag &= ~T_TOMASK;
1305 			t->t_hold = lwp->lwp_sigoldmask;
1306 		}
1307 		mutex_exit(&p->p_lock);
1308 		return;
1309 	}
1310 
1311 	/*
1312 	 * We check lwp_curinfo first since pr_setsig can actually
1313 	 * stuff a sigqueue_t there for SIGKILL.
1314 	 */
1315 	if (lwp->lwp_curinfo) {
1316 		sqp = lwp->lwp_curinfo;
1317 	} else if (sig == SIGKILL && p->p_killsqp) {
1318 		sqp = p->p_killsqp;
1319 	}
1320 
1321 	if (sqp != NULL) {
1322 		if (SI_FROMUSER(&sqp->sq_info)) {
1323 			pid = sqp->sq_info.si_pid;
1324 			ctid = sqp->sq_info.si_ctid;
1325 			zoneid = sqp->sq_info.si_zoneid;
1326 		}
1327 		/*
1328 		 * If we have a sigqueue_t, its sq_external value
1329 		 * trumps the lwp_extsig value.  It is theoretically
1330 		 * possible to make lwp_extsig reflect reality, but it
1331 		 * would unnecessarily complicate things elsewhere.
1332 		 */
1333 		ext = sqp->sq_external;
1334 	}
1335 
1336 	if (func == SIG_DFL) {
1337 		mutex_exit(&p->p_lock);
1338 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1339 		    NULL, void (*)(void), func);
1340 	} else {
1341 		k_siginfo_t *sip = NULL;
1342 
1343 		/*
1344 		 * If DTrace user-land tracing is active, give DTrace a
1345 		 * chance to defer the signal until after tracing is
1346 		 * complete.
1347 		 */
1348 		if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1349 			mutex_exit(&p->p_lock);
1350 			return;
1351 		}
1352 
1353 		/*
1354 		 * save siginfo pointer here, in case the
1355 		 * the signal's reset bit is on
1356 		 *
1357 		 * The presence of a current signal prevents paging
1358 		 * from succeeding over a network.  We copy the current
1359 		 * signal information to the side and cancel the current
1360 		 * signal so that sendsig() will succeed.
1361 		 */
1362 		if (sigismember(&p->p_siginfo, sig)) {
1363 			if (sqp) {
1364 				bcopy(&sqp->sq_info, &lwp->lwp_siginfo,
1365 				    sizeof (k_siginfo_t));
1366 				sip = &lwp->lwp_siginfo;
1367 			} else if (sig == SIGPROF &&
1368 			    t->t_rprof != NULL &&
1369 			    t->t_rprof->rp_anystate &&
1370 			    lwp->lwp_siginfo.si_signo == SIGPROF) {
1371 				sip = &lwp->lwp_siginfo;
1372 			}
1373 		}
1374 
1375 		if (t->t_flag & T_TOMASK)
1376 			t->t_flag &= ~T_TOMASK;
1377 		else
1378 			lwp->lwp_sigoldmask = t->t_hold;
1379 		sigorset(&t->t_hold, &u.u_sigmask[sig-1]);
1380 		if (!sigismember(&u.u_signodefer, sig))
1381 			sigaddset(&t->t_hold, sig);
1382 		if (sigismember(&u.u_sigresethand, sig))
1383 			setsigact(sig, SIG_DFL, nullsmask, 0);
1384 
1385 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1386 		    sip, void (*)(void), func);
1387 
1388 		lwp->lwp_cursig = 0;
1389 		lwp->lwp_extsig = 0;
1390 		if (lwp->lwp_curinfo) {
1391 			/* p->p_killsqp is freed by freeproc */
1392 			siginfofree(lwp->lwp_curinfo);
1393 			lwp->lwp_curinfo = NULL;
1394 		}
1395 		mutex_exit(&p->p_lock);
1396 		lwp->lwp_ru.nsignals++;
1397 
1398 		if (p->p_model == DATAMODEL_NATIVE)
1399 			rc = sendsig(sig, sip, func);
1400 #ifdef _SYSCALL32_IMPL
1401 		else
1402 			rc = sendsig32(sig, sip, func);
1403 #endif	/* _SYSCALL32_IMPL */
1404 		if (rc)
1405 			return;
1406 		sig = lwp->lwp_cursig = SIGSEGV;
1407 		ext = 0;	/* lwp_extsig was set above */
1408 		pid = -1;
1409 		ctid = 0;
1410 	}
1411 
1412 	if (sigismember(&coredefault, sig)) {
1413 		/*
1414 		 * Terminate all LWPs but don't discard them.
1415 		 * If another lwp beat us to the punch by calling exit(),
1416 		 * evaporate now.
1417 		 */
1418 		if (exitlwps(1) != 0) {
1419 			mutex_enter(&p->p_lock);
1420 			lwp_exit();
1421 		}
1422 		/* if we got a SIGKILL from anywhere, no core dump */
1423 		if (p->p_flag & SKILLED) {
1424 			sig = SIGKILL;
1425 			ext = (p->p_flag & SEXTKILLED) != 0;
1426 		} else {
1427 #ifdef C2_AUDIT
1428 			if (audit_active)		/* audit core dump */
1429 				audit_core_start(sig);
1430 #endif
1431 			if (core(sig, ext) == 0)
1432 				code = CLD_DUMPED;
1433 #ifdef C2_AUDIT
1434 			if (audit_active)		/* audit core dump */
1435 				audit_core_finish(code);
1436 #endif
1437 		}
1438 	}
1439 	if (ext)
1440 		contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1441 		    zoneid);
1442 
1443 	exit(code, sig);
1444 }
1445 
1446 /*
1447  * Find next unheld signal in ssp for thread t.
1448  */
1449 int
1450 fsig(k_sigset_t *ssp, kthread_t *t)
1451 {
1452 	proc_t *p = ttoproc(t);
1453 	user_t *up = PTOU(p);
1454 	int i;
1455 	k_sigset_t temp;
1456 
1457 	ASSERT(MUTEX_HELD(&p->p_lock));
1458 
1459 	/*
1460 	 * Don't promote any signals for the parent of a vfork()d
1461 	 * child that hasn't yet released the parent's memory.
1462 	 */
1463 	if (p->p_flag & SVFWAIT)
1464 		return (0);
1465 
1466 	temp = *ssp;
1467 	sigdiffset(&temp, &t->t_hold);
1468 
1469 	/*
1470 	 * Don't promote stopping signals (except SIGSTOP) for a child
1471 	 * of vfork() that hasn't yet released the parent's memory.
1472 	 */
1473 	if (p->p_flag & SVFORK)
1474 		sigdiffset(&temp, &holdvfork);
1475 
1476 	/*
1477 	 * Don't promote a signal that will stop
1478 	 * the process when lwp_nostop is set.
1479 	 */
1480 	if (ttolwp(t)->lwp_nostop) {
1481 		sigdelset(&temp, SIGSTOP);
1482 		if (!p->p_pgidp->pid_pgorphaned) {
1483 			if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1484 				sigdelset(&temp, SIGTSTP);
1485 			if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1486 				sigdelset(&temp, SIGTTIN);
1487 			if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1488 				sigdelset(&temp, SIGTTOU);
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * Choose SIGKILL and SIGPROF before all other pending signals.
1494 	 * The rest are promoted in signal number order.
1495 	 */
1496 	if (sigismember(&temp, SIGKILL))
1497 		return (SIGKILL);
1498 	if (sigismember(&temp, SIGPROF))
1499 		return (SIGPROF);
1500 
1501 	for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1502 		if (temp.__sigbits[i])
1503 			return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1504 			    lowbit(temp.__sigbits[i]));
1505 	}
1506 
1507 	return (0);
1508 }
1509 
1510 void
1511 setsigact(int sig, void (*disp)(), k_sigset_t mask, int flags)
1512 {
1513 	proc_t *p = ttoproc(curthread);
1514 	kthread_t *t;
1515 
1516 	ASSERT(MUTEX_HELD(&p->p_lock));
1517 
1518 	u.u_signal[sig - 1] = disp;
1519 
1520 	/*
1521 	 * Honor the SA_SIGINFO flag if the signal is being caught.
1522 	 * Force the SA_SIGINFO flag if the signal is not being caught.
1523 	 * This is necessary to make sigqueue() and sigwaitinfo() work
1524 	 * properly together when the signal is set to default or is
1525 	 * being temporarily ignored.
1526 	 */
1527 	if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1528 		sigaddset(&p->p_siginfo, sig);
1529 	else
1530 		sigdelset(&p->p_siginfo, sig);
1531 
1532 	if (disp != SIG_DFL && disp != SIG_IGN) {
1533 		sigdelset(&p->p_ignore, sig);
1534 		u.u_sigmask[sig - 1] = mask;
1535 		if (!sigismember(&cantreset, sig)) {
1536 			if (flags & SA_RESETHAND)
1537 				sigaddset(&u.u_sigresethand, sig);
1538 			else
1539 				sigdelset(&u.u_sigresethand, sig);
1540 		}
1541 		if (flags & SA_NODEFER)
1542 			sigaddset(&u.u_signodefer, sig);
1543 		else
1544 			sigdelset(&u.u_signodefer, sig);
1545 		if (flags & SA_RESTART)
1546 			sigaddset(&u.u_sigrestart, sig);
1547 		else
1548 			sigdelset(&u.u_sigrestart, sig);
1549 		if (flags & SA_ONSTACK)
1550 			sigaddset(&u.u_sigonstack, sig);
1551 		else
1552 			sigdelset(&u.u_sigonstack, sig);
1553 
1554 	} else if (disp == SIG_IGN ||
1555 	    (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1556 		/*
1557 		 * Setting the signal action to SIG_IGN results in the
1558 		 * discarding of all pending signals of that signal number.
1559 		 * Setting the signal action to SIG_DFL does the same *only*
1560 		 * if the signal's default behavior is to be ignored.
1561 		 */
1562 		sigaddset(&p->p_ignore, sig);
1563 		sigdelset(&p->p_sig, sig);
1564 		sigdelset(&p->p_extsig, sig);
1565 		sigdelq(p, NULL, sig);
1566 		t = p->p_tlist;
1567 		do {
1568 			sigdelset(&t->t_sig, sig);
1569 			sigdelset(&t->t_extsig, sig);
1570 			sigdelq(p, t, sig);
1571 		} while ((t = t->t_forw) != p->p_tlist);
1572 
1573 	} else {
1574 		/*
1575 		 * The signal action is being set to SIG_DFL and the default
1576 		 * behavior is to do something: make sure it is not ignored.
1577 		 */
1578 		sigdelset(&p->p_ignore, sig);
1579 	}
1580 
1581 	if (sig == SIGCLD) {
1582 		if (flags & SA_NOCLDWAIT)
1583 			p->p_flag |= SNOWAIT;
1584 		else
1585 			p->p_flag &= ~SNOWAIT;
1586 
1587 		if (flags & SA_NOCLDSTOP)
1588 			p->p_flag &= ~SJCTL;
1589 		else
1590 			p->p_flag |= SJCTL;
1591 
1592 		if (p->p_flag & SNOWAIT || disp == SIG_IGN) {
1593 			proc_t *cp, *tp;
1594 
1595 			mutex_exit(&p->p_lock);
1596 			mutex_enter(&pidlock);
1597 			for (cp = p->p_child; cp != NULL; cp = tp) {
1598 				tp = cp->p_sibling;
1599 				if (cp->p_stat == SZOMB)
1600 					freeproc(cp);
1601 			}
1602 			mutex_exit(&pidlock);
1603 			mutex_enter(&p->p_lock);
1604 		}
1605 	}
1606 }
1607 
1608 /*
1609  * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1610  * Called from exec_common() for a process undergoing execve()
1611  * and from cfork() for a newly-created child of vfork().
1612  * In the vfork() case, 'p' is not the current process.
1613  * In both cases, there is only one thread in the process.
1614  */
1615 void
1616 sigdefault(proc_t *p)
1617 {
1618 	kthread_t *t = p->p_tlist;
1619 	struct user *up = PTOU(p);
1620 	int sig;
1621 
1622 	ASSERT(MUTEX_HELD(&p->p_lock));
1623 
1624 	for (sig = 1; sig < NSIG; sig++) {
1625 		if (up->u_signal[sig - 1] != SIG_DFL &&
1626 		    up->u_signal[sig - 1] != SIG_IGN) {
1627 			up->u_signal[sig - 1] = SIG_DFL;
1628 			sigemptyset(&up->u_sigmask[sig - 1]);
1629 			if (sigismember(&ignoredefault, sig)) {
1630 				sigdelq(p, NULL, sig);
1631 				sigdelq(p, t, sig);
1632 			}
1633 			if (sig == SIGCLD)
1634 				p->p_flag &= ~(SNOWAIT|SJCTL);
1635 		}
1636 	}
1637 	sigorset(&p->p_ignore, &ignoredefault);
1638 	sigfillset(&p->p_siginfo);
1639 	sigdiffset(&p->p_siginfo, &cantmask);
1640 	sigdiffset(&p->p_sig, &ignoredefault);
1641 	sigdiffset(&p->p_extsig, &ignoredefault);
1642 	sigdiffset(&t->t_sig, &ignoredefault);
1643 	sigdiffset(&t->t_extsig, &ignoredefault);
1644 }
1645 
1646 void
1647 sigcld(proc_t *cp, sigqueue_t *sqp)
1648 {
1649 	proc_t *pp = cp->p_parent;
1650 
1651 	ASSERT(MUTEX_HELD(&pidlock));
1652 
1653 	switch (cp->p_wcode) {
1654 	case CLD_EXITED:
1655 	case CLD_DUMPED:
1656 	case CLD_KILLED:
1657 		ASSERT(cp->p_stat == SZOMB);
1658 		/*
1659 		 * The broadcast on p_srwchan_cv is a kludge to
1660 		 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1661 		 */
1662 		cv_broadcast(&cp->p_srwchan_cv);
1663 
1664 		/*
1665 		 * Add to newstate list of the parent
1666 		 */
1667 		add_ns(pp, cp);
1668 
1669 		cv_broadcast(&pp->p_cv);
1670 		if ((pp->p_flag & SNOWAIT) ||
1671 		    (PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN))
1672 			freeproc(cp);
1673 		else {
1674 			post_sigcld(cp, sqp);
1675 			sqp = NULL;
1676 		}
1677 		break;
1678 
1679 	case CLD_STOPPED:
1680 	case CLD_CONTINUED:
1681 		cv_broadcast(&pp->p_cv);
1682 		if (pp->p_flag & SJCTL) {
1683 			post_sigcld(cp, sqp);
1684 			sqp = NULL;
1685 		}
1686 		break;
1687 	}
1688 
1689 	if (sqp)
1690 		siginfofree(sqp);
1691 }
1692 
1693 /*
1694  * Common code called from sigcld() and issig_forreal()
1695  * Give the parent process a SIGCLD if it does not have one pending,
1696  * else mark the child process so a SIGCLD can be posted later.
1697  */
1698 static void
1699 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1700 {
1701 	proc_t *pp = cp->p_parent;
1702 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1703 	k_siginfo_t info;
1704 
1705 	ASSERT(MUTEX_HELD(&pidlock));
1706 	mutex_enter(&pp->p_lock);
1707 
1708 	/*
1709 	 * If a SIGCLD is pending, or if SIGCLD is not now being caught,
1710 	 * then just mark the child process so that its SIGCLD will
1711 	 * be posted later, when the first SIGCLD is taken off the
1712 	 * queue or when the parent is ready to receive it, if ever.
1713 	 */
1714 	if (handler == SIG_DFL || handler == SIG_IGN ||
1715 	    sigismember(&pp->p_sig, SIGCLD))
1716 		cp->p_pidflag |= CLDPEND;
1717 	else {
1718 		cp->p_pidflag &= ~CLDPEND;
1719 		if (sqp == NULL) {
1720 			/*
1721 			 * This can only happen when the parent is init.
1722 			 * (See call to sigcld(q, NULL) in exit().)
1723 			 * Use KM_NOSLEEP to avoid deadlock.
1724 			 */
1725 			ASSERT(pp == proc_init);
1726 			winfo(cp, &info, 0);
1727 			sigaddq(pp, NULL, &info, KM_NOSLEEP);
1728 		} else {
1729 			winfo(cp, &sqp->sq_info, 0);
1730 			sigaddqa(pp, NULL, sqp);
1731 			sqp = NULL;
1732 		}
1733 	}
1734 
1735 	mutex_exit(&pp->p_lock);
1736 
1737 	if (sqp)
1738 		siginfofree(sqp);
1739 }
1740 
1741 /*
1742  * Search for a child that has a pending SIGCLD for us, the parent.
1743  * The queue of SIGCLD signals is implied by the list of children.
1744  * We post the SIGCLD signals one at a time so they don't get lost.
1745  * When one is dequeued, another is enqueued, until there are no more.
1746  */
1747 void
1748 sigcld_repost()
1749 {
1750 	proc_t *pp = curproc;
1751 	proc_t *cp;
1752 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1753 	sigqueue_t *sqp;
1754 
1755 	/*
1756 	 * Don't bother if SIGCLD is not now being caught.
1757 	 */
1758 	if (handler == SIG_DFL || handler == SIG_IGN)
1759 		return;
1760 
1761 	sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1762 	mutex_enter(&pidlock);
1763 	for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1764 		if (cp->p_pidflag & CLDPEND) {
1765 			post_sigcld(cp, sqp);
1766 			mutex_exit(&pidlock);
1767 			return;
1768 		}
1769 	}
1770 	mutex_exit(&pidlock);
1771 	kmem_free(sqp, sizeof (sigqueue_t));
1772 }
1773 
1774 /*
1775  * count number of sigqueue send by sigaddqa()
1776  */
1777 void
1778 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1779 {
1780 	sigqhdr_t *sqh;
1781 
1782 	sqh = (sigqhdr_t *)sigqp->sq_backptr;
1783 	ASSERT(sqh);
1784 
1785 	mutex_enter(&sqh->sqb_lock);
1786 	sqh->sqb_sent++;
1787 	mutex_exit(&sqh->sqb_lock);
1788 
1789 	if (cmd == SN_SEND)
1790 		sigaddqa(p, t, sigqp);
1791 	else
1792 		siginfofree(sigqp);
1793 }
1794 
1795 int
1796 sigsendproc(proc_t *p, sigsend_t *pv)
1797 {
1798 	struct cred *cr;
1799 	proc_t *myprocp = curproc;
1800 
1801 	ASSERT(MUTEX_HELD(&pidlock));
1802 
1803 	if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1804 		return (EPERM);
1805 
1806 	cr = CRED();
1807 
1808 	if (pv->checkperm == 0 ||
1809 	    (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1810 	    prochasprocperm(p, myprocp, cr)) {
1811 		pv->perm++;
1812 		if (pv->sig) {
1813 			/* Make sure we should be setting si_pid and friends */
1814 			ASSERT(pv->sicode <= 0);
1815 			if (SI_CANQUEUE(pv->sicode)) {
1816 				sigqueue_t *sqp;
1817 
1818 				mutex_enter(&myprocp->p_lock);
1819 				sqp = sigqalloc(myprocp->p_sigqhdr);
1820 				mutex_exit(&myprocp->p_lock);
1821 				if (sqp == NULL)
1822 					return (EAGAIN);
1823 				sqp->sq_info.si_signo = pv->sig;
1824 				sqp->sq_info.si_code = pv->sicode;
1825 				sqp->sq_info.si_pid = myprocp->p_pid;
1826 				sqp->sq_info.si_ctid = PRCTID(myprocp);
1827 				sqp->sq_info.si_zoneid = getzoneid();
1828 				sqp->sq_info.si_uid = crgetruid(cr);
1829 				sqp->sq_info.si_value = pv->value;
1830 				mutex_enter(&p->p_lock);
1831 				sigqsend(SN_SEND, p, NULL, sqp);
1832 				mutex_exit(&p->p_lock);
1833 			} else {
1834 				k_siginfo_t info;
1835 				bzero(&info, sizeof (info));
1836 				info.si_signo = pv->sig;
1837 				info.si_code = pv->sicode;
1838 				info.si_pid = myprocp->p_pid;
1839 				info.si_ctid = PRCTID(myprocp);
1840 				info.si_zoneid = getzoneid();
1841 				info.si_uid = crgetruid(cr);
1842 				mutex_enter(&p->p_lock);
1843 				/*
1844 				 * XXX: Should be KM_SLEEP but
1845 				 * we have to avoid deadlock.
1846 				 */
1847 				sigaddq(p, NULL, &info, KM_NOSLEEP);
1848 				mutex_exit(&p->p_lock);
1849 			}
1850 		}
1851 	}
1852 
1853 	return (0);
1854 }
1855 
1856 int
1857 sigsendset(procset_t *psp, sigsend_t *pv)
1858 {
1859 	int error;
1860 
1861 	error = dotoprocs(psp, sigsendproc, (char *)pv);
1862 	if (error == 0 && pv->perm == 0)
1863 		return (EPERM);
1864 
1865 	return (error);
1866 }
1867 
1868 /*
1869  * Dequeue a queued siginfo structure.
1870  * If a non-null thread pointer is passed then dequeue from
1871  * the thread queue, otherwise dequeue from the process queue.
1872  */
1873 void
1874 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1875 {
1876 	sigqueue_t **psqp, *sqp;
1877 
1878 	ASSERT(MUTEX_HELD(&p->p_lock));
1879 
1880 	*qpp = NULL;
1881 
1882 	if (t != NULL) {
1883 		sigdelset(&t->t_sig, sig);
1884 		sigdelset(&t->t_extsig, sig);
1885 		psqp = &t->t_sigqueue;
1886 	} else {
1887 		sigdelset(&p->p_sig, sig);
1888 		sigdelset(&p->p_extsig, sig);
1889 		psqp = &p->p_sigqueue;
1890 	}
1891 
1892 	for (;;) {
1893 		if ((sqp = *psqp) == NULL)
1894 			return;
1895 		if (sqp->sq_info.si_signo == sig)
1896 			break;
1897 		else
1898 			psqp = &sqp->sq_next;
1899 	}
1900 	*qpp = sqp;
1901 	*psqp = sqp->sq_next;
1902 	for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1903 		if (sqp->sq_info.si_signo == sig) {
1904 			if (t != (kthread_t *)NULL) {
1905 				sigaddset(&t->t_sig, sig);
1906 				t->t_sig_check = 1;
1907 			} else {
1908 				sigaddset(&p->p_sig, sig);
1909 				set_proc_ast(p);
1910 			}
1911 			break;
1912 		}
1913 	}
1914 }
1915 
1916 /*
1917  * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1918  */
1919 void
1920 sigcld_delete(k_siginfo_t *ip)
1921 {
1922 	proc_t *p = curproc;
1923 	int another_sigcld = 0;
1924 	sigqueue_t **psqp, *sqp;
1925 
1926 	ASSERT(ip->si_signo == SIGCLD);
1927 
1928 	mutex_enter(&p->p_lock);
1929 
1930 	if (!sigismember(&p->p_sig, SIGCLD)) {
1931 		mutex_exit(&p->p_lock);
1932 		return;
1933 	}
1934 
1935 	psqp = &p->p_sigqueue;
1936 	for (;;) {
1937 		if ((sqp = *psqp) == NULL) {
1938 			mutex_exit(&p->p_lock);
1939 			return;
1940 		}
1941 		if (sqp->sq_info.si_signo == SIGCLD) {
1942 			if (sqp->sq_info.si_pid == ip->si_pid &&
1943 			    sqp->sq_info.si_code == ip->si_code &&
1944 			    sqp->sq_info.si_status == ip->si_status)
1945 				break;
1946 			another_sigcld = 1;
1947 		}
1948 		psqp = &sqp->sq_next;
1949 	}
1950 	*psqp = sqp->sq_next;
1951 
1952 	siginfofree(sqp);
1953 
1954 	for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1955 		if (sqp->sq_info.si_signo == SIGCLD)
1956 			another_sigcld = 1;
1957 	}
1958 
1959 	if (!another_sigcld) {
1960 		sigdelset(&p->p_sig, SIGCLD);
1961 		sigdelset(&p->p_extsig, SIGCLD);
1962 	}
1963 
1964 	mutex_exit(&p->p_lock);
1965 }
1966 
1967 /*
1968  * Delete queued siginfo structures.
1969  * If a non-null thread pointer is passed then delete from
1970  * the thread queue, otherwise delete from the process queue.
1971  */
1972 void
1973 sigdelq(proc_t *p, kthread_t *t, int sig)
1974 {
1975 	sigqueue_t **psqp, *sqp;
1976 
1977 	/*
1978 	 * We must be holding p->p_lock unless the process is
1979 	 * being reaped or has failed to get started on fork.
1980 	 */
1981 	ASSERT(MUTEX_HELD(&p->p_lock) ||
1982 	    p->p_stat == SIDL || p->p_stat == SZOMB);
1983 
1984 	if (t != (kthread_t *)NULL)
1985 		psqp = &t->t_sigqueue;
1986 	else
1987 		psqp = &p->p_sigqueue;
1988 
1989 	while (*psqp) {
1990 		sqp = *psqp;
1991 		if (sig == 0 || sqp->sq_info.si_signo == sig) {
1992 			*psqp = sqp->sq_next;
1993 			siginfofree(sqp);
1994 		} else
1995 			psqp = &sqp->sq_next;
1996 	}
1997 }
1998 
1999 /*
2000  * Insert a siginfo structure into a queue.
2001  * If a non-null thread pointer is passed then add to the thread queue,
2002  * otherwise add to the process queue.
2003  *
2004  * The function sigaddqins() is called with sigqueue already allocated.
2005  * It is called from sigaddqa() and sigaddq() below.
2006  *
2007  * The value of si_code implicitly indicates whether sigp is to be
2008  * explicitly queued, or to be queued to depth one.
2009  */
2010 static void
2011 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2012 {
2013 	sigqueue_t **psqp;
2014 	int sig = sigqp->sq_info.si_signo;
2015 
2016 	sigqp->sq_external = (curproc != &p0) &&
2017 	    (curproc->p_ct_process != p->p_ct_process);
2018 
2019 	/*
2020 	 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2021 	 * is set, and even if it did, we would want to avoid situation
2022 	 * (which would be unique to SIGKILL) where one thread dequeued
2023 	 * the sigqueue_t and another executed psig().  So we create a
2024 	 * separate stash for SIGKILL's sigqueue_t.  Because a second
2025 	 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2026 	 * if (and only if) it was non-extracontractual.
2027 	 */
2028 	if (sig == SIGKILL) {
2029 		if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2030 			if (p->p_killsqp != NULL)
2031 				siginfofree(p->p_killsqp);
2032 			p->p_killsqp = sigqp;
2033 			sigqp->sq_next = NULL;
2034 		} else {
2035 			siginfofree(sigqp);
2036 		}
2037 		return;
2038 	}
2039 
2040 	ASSERT(sig >= 1 && sig < NSIG);
2041 	if (t != NULL)	/* directed to a thread */
2042 		psqp = &t->t_sigqueue;
2043 	else 		/* directed to a process */
2044 		psqp = &p->p_sigqueue;
2045 	if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2046 	    sigismember(&p->p_siginfo, sig)) {
2047 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2048 				;
2049 	} else {
2050 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2051 			if ((*psqp)->sq_info.si_signo == sig) {
2052 				siginfofree(sigqp);
2053 				return;
2054 			}
2055 		}
2056 	}
2057 	*psqp = sigqp;
2058 	sigqp->sq_next = NULL;
2059 }
2060 
2061 /*
2062  * The function sigaddqa() is called with sigqueue already allocated.
2063  * If signal is ignored, discard but guarantee KILL and generation semantics.
2064  * It is called from sigqueue() and other places.
2065  */
2066 void
2067 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2068 {
2069 	int sig = sigqp->sq_info.si_signo;
2070 
2071 	ASSERT(MUTEX_HELD(&p->p_lock));
2072 	ASSERT(sig >= 1 && sig < NSIG);
2073 
2074 	if (sig_discardable(p, sig))
2075 		siginfofree(sigqp);
2076 	else
2077 		sigaddqins(p, t, sigqp);
2078 
2079 	sigtoproc(p, t, sig);
2080 }
2081 
2082 /*
2083  * Allocate the sigqueue_t structure and call sigaddqins().
2084  */
2085 void
2086 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2087 {
2088 	sigqueue_t *sqp;
2089 	int sig = infop->si_signo;
2090 
2091 	ASSERT(MUTEX_HELD(&p->p_lock));
2092 	ASSERT(sig >= 1 && sig < NSIG);
2093 
2094 	/*
2095 	 * If the signal will be discarded by sigtoproc() or
2096 	 * if the process isn't requesting siginfo and it isn't
2097 	 * blocking the signal (it *could* change it's mind while
2098 	 * the signal is pending) then don't bother creating one.
2099 	 */
2100 	if (!sig_discardable(p, sig) &&
2101 	    (sigismember(&p->p_siginfo, sig) ||
2102 	    (curproc->p_ct_process != p->p_ct_process) ||
2103 	    (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2104 	    ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2105 		bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2106 		sqp->sq_func = NULL;
2107 		sqp->sq_next = NULL;
2108 		sigaddqins(p, t, sqp);
2109 	}
2110 	sigtoproc(p, t, sig);
2111 }
2112 
2113 /*
2114  * Handle stop-on-fault processing for the debugger.  Returns 0
2115  * if the fault is cleared during the stop, nonzero if it isn't.
2116  */
2117 int
2118 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2119 {
2120 	proc_t *p = ttoproc(curthread);
2121 	klwp_t *lwp = ttolwp(curthread);
2122 
2123 	ASSERT(prismember(&p->p_fltmask, fault));
2124 
2125 	/*
2126 	 * Record current fault and siginfo structure so debugger can
2127 	 * find it.
2128 	 */
2129 	mutex_enter(&p->p_lock);
2130 	lwp->lwp_curflt = (uchar_t)fault;
2131 	lwp->lwp_siginfo = *sip;
2132 
2133 	stop(PR_FAULTED, fault);
2134 
2135 	fault = lwp->lwp_curflt;
2136 	lwp->lwp_curflt = 0;
2137 	mutex_exit(&p->p_lock);
2138 	return (fault);
2139 }
2140 
2141 void
2142 sigorset(k_sigset_t *s1, k_sigset_t *s2)
2143 {
2144 	s1->__sigbits[0] |= s2->__sigbits[0];
2145 	s1->__sigbits[1] |= s2->__sigbits[1];
2146 }
2147 
2148 void
2149 sigandset(k_sigset_t *s1, k_sigset_t *s2)
2150 {
2151 	s1->__sigbits[0] &= s2->__sigbits[0];
2152 	s1->__sigbits[1] &= s2->__sigbits[1];
2153 }
2154 
2155 void
2156 sigdiffset(k_sigset_t *s1, k_sigset_t *s2)
2157 {
2158 	s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2159 	s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2160 }
2161 
2162 /*
2163  * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2164  * if there are any signals the thread might take on return from the kernel.
2165  * If ksigset_t's were a single word, we would do:
2166  *	return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2167  */
2168 int
2169 sigcheck(proc_t *p, kthread_t *t)
2170 {
2171 	sc_shared_t *tdp = t->t_schedctl;
2172 
2173 	/*
2174 	 * If signals are blocked via the schedctl interface
2175 	 * then we only check for the unmaskable signals.
2176 	 */
2177 	if (tdp != NULL && tdp->sc_sigblock)
2178 		return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2179 		    CANTMASK0);
2180 
2181 	return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2182 		    ~t->t_hold.__sigbits[0]) |
2183 		(((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2184 		    ~t->t_hold.__sigbits[1]) & FILLSET1));
2185 }
2186 
2187 /* ONC_PLUS EXTRACT START */
2188 void
2189 sigintr(k_sigset_t *smask, int intable)
2190 {
2191 	proc_t *p;
2192 	int owned;
2193 	k_sigset_t lmask;		/* local copy of cantmask */
2194 	klwp_t *lwp = ttolwp(curthread);
2195 
2196 	/*
2197 	 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2198 	 *    and SIGTERM. (Preserving the existing masks).
2199 	 *    This function supports the -intr nfs and ufs mount option.
2200 	 */
2201 
2202 	/*
2203 	 * don't do kernel threads
2204 	 */
2205 	if (lwp == NULL)
2206 		return;
2207 
2208 	/*
2209 	 * get access to signal mask
2210 	 */
2211 	p = ttoproc(curthread);
2212 	owned = mutex_owned(&p->p_lock);	/* this is filthy */
2213 	if (!owned)
2214 		mutex_enter(&p->p_lock);
2215 
2216 	/*
2217 	 * remember the current mask
2218 	 */
2219 	schedctl_finish_sigblock(curthread);
2220 	*smask = curthread->t_hold;
2221 
2222 	/*
2223 	 * mask out all signals
2224 	 */
2225 	sigfillset(&curthread->t_hold);
2226 
2227 	/*
2228 	 * Unmask the non-maskable signals (e.g., KILL), as long as
2229 	 * they aren't already masked (which could happen at exit).
2230 	 * The first sigdiffset sets lmask to (cantmask & ~curhold).  The
2231 	 * second sets the current hold mask to (~0 & ~lmask), which reduces
2232 	 * to (~cantmask | curhold).
2233 	 */
2234 	lmask = cantmask;
2235 	sigdiffset(&lmask, smask);
2236 	sigdiffset(&curthread->t_hold, &lmask);
2237 
2238 	/*
2239 	 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2240 	 * Re-enable INT if it's originally enabled and the NFS mount option
2241 	 * nointr is not set.
2242 	 */
2243 	if (!sigismember(smask, SIGHUP))
2244 		sigdelset(&curthread->t_hold, SIGHUP);
2245 	if (!sigismember(smask, SIGINT) && intable)
2246 		sigdelset(&curthread->t_hold, SIGINT);
2247 	if (!sigismember(smask, SIGQUIT))
2248 		sigdelset(&curthread->t_hold, SIGQUIT);
2249 	if (!sigismember(smask, SIGTERM))
2250 		sigdelset(&curthread->t_hold, SIGTERM);
2251 
2252 	/*
2253 	 * release access to signal mask
2254 	 */
2255 	if (!owned)
2256 		mutex_exit(&p->p_lock);
2257 
2258 	/*
2259 	 * Indicate that this lwp is not to be stopped.
2260 	 */
2261 	lwp->lwp_nostop++;
2262 
2263 }
2264 /* ONC_PLUS EXTRACT END */
2265 
2266 void
2267 sigunintr(k_sigset_t *smask)
2268 {
2269 	proc_t *p;
2270 	int owned;
2271 	klwp_t *lwp = ttolwp(curthread);
2272 
2273 	/*
2274 	 * Reset previous mask (See sigintr() above)
2275 	 */
2276 	if (lwp != NULL) {
2277 		lwp->lwp_nostop--;	/* restore lwp stoppability */
2278 		p = ttoproc(curthread);
2279 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2280 		if (!owned)
2281 			mutex_enter(&p->p_lock);
2282 		curthread->t_hold = *smask;
2283 		/* so unmasked signals will be seen */
2284 		curthread->t_sig_check = 1;
2285 		if (!owned)
2286 			mutex_exit(&p->p_lock);
2287 	}
2288 }
2289 
2290 void
2291 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2292 {
2293 	proc_t	*p;
2294 	int owned;
2295 	/*
2296 	 * Save current signal mask in oldmask, then
2297 	 * set it to newmask.
2298 	 */
2299 	if (ttolwp(curthread) != NULL) {
2300 		p = ttoproc(curthread);
2301 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2302 		if (!owned)
2303 			mutex_enter(&p->p_lock);
2304 		schedctl_finish_sigblock(curthread);
2305 		if (oldmask != NULL)
2306 			*oldmask = curthread->t_hold;
2307 		curthread->t_hold = *newmask;
2308 		curthread->t_sig_check = 1;
2309 		if (!owned)
2310 			mutex_exit(&p->p_lock);
2311 	}
2312 }
2313 
2314 /*
2315  * Return true if the signal number is in range
2316  * and the signal code specifies signal queueing.
2317  */
2318 int
2319 sigwillqueue(int sig, int code)
2320 {
2321 	if (sig >= 0 && sig < NSIG) {
2322 		switch (code) {
2323 		case SI_QUEUE:
2324 		case SI_TIMER:
2325 		case SI_ASYNCIO:
2326 		case SI_MESGQ:
2327 			return (1);
2328 		}
2329 	}
2330 	return (0);
2331 }
2332 
2333 #ifndef	UCHAR_MAX
2334 #define	UCHAR_MAX	255
2335 #endif
2336 
2337 /*
2338  * The entire pool (with maxcount entries) is pre-allocated at
2339  * the first sigqueue/signotify call.
2340  */
2341 sigqhdr_t *
2342 sigqhdralloc(size_t size, uint_t maxcount)
2343 {
2344 	size_t i;
2345 	sigqueue_t *sq, *next;
2346 	sigqhdr_t *sqh;
2347 
2348 	i = (maxcount * size) + sizeof (sigqhdr_t);
2349 	ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX);
2350 	sqh = kmem_alloc(i, KM_SLEEP);
2351 	sqh->sqb_count = (uchar_t)maxcount;
2352 	sqh->sqb_maxcount = (uchar_t)maxcount;
2353 	sqh->sqb_size = (ushort_t)i;
2354 	sqh->sqb_pexited = 0;
2355 	sqh->sqb_sent = 0;
2356 	sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2357 	for (i = maxcount - 1; i != 0; i--) {
2358 		next = (sigqueue_t *)((uintptr_t)sq + size);
2359 		sq->sq_next = next;
2360 		sq = next;
2361 	}
2362 	sq->sq_next = NULL;
2363 	mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2364 	return (sqh);
2365 }
2366 
2367 static void sigqrel(sigqueue_t *);
2368 
2369 /*
2370  * allocate a sigqueue/signotify structure from the per process
2371  * pre-allocated pool.
2372  */
2373 sigqueue_t *
2374 sigqalloc(sigqhdr_t *sqh)
2375 {
2376 	sigqueue_t *sq = NULL;
2377 
2378 	ASSERT(MUTEX_HELD(&curproc->p_lock));
2379 
2380 	if (sqh != NULL) {
2381 		mutex_enter(&sqh->sqb_lock);
2382 		if (sqh->sqb_count > 0) {
2383 			sqh->sqb_count--;
2384 			sq = sqh->sqb_free;
2385 			sqh->sqb_free = sq->sq_next;
2386 			mutex_exit(&sqh->sqb_lock);
2387 			bzero(&sq->sq_info, sizeof (k_siginfo_t));
2388 			sq->sq_backptr = sqh;
2389 			sq->sq_func = sigqrel;
2390 			sq->sq_next = NULL;
2391 			sq->sq_external = 0;
2392 		} else {
2393 			mutex_exit(&sqh->sqb_lock);
2394 		}
2395 	}
2396 	return (sq);
2397 }
2398 
2399 /*
2400  * Return a sigqueue structure back to the pre-allocated pool.
2401  */
2402 static void
2403 sigqrel(sigqueue_t *sq)
2404 {
2405 	sigqhdr_t *sqh;
2406 
2407 	/* make sure that p_lock of the affected process is held */
2408 
2409 	sqh = (sigqhdr_t *)sq->sq_backptr;
2410 	mutex_enter(&sqh->sqb_lock);
2411 	if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2412 		mutex_exit(&sqh->sqb_lock);
2413 		mutex_destroy(&sqh->sqb_lock);
2414 		kmem_free(sqh, sqh->sqb_size);
2415 	} else {
2416 		sqh->sqb_count++;
2417 		sqh->sqb_sent--;
2418 		sq->sq_next = sqh->sqb_free;
2419 		sq->sq_backptr = NULL;
2420 		sqh->sqb_free = sq;
2421 		mutex_exit(&sqh->sqb_lock);
2422 	}
2423 }
2424 
2425 /*
2426  * Free up the pre-allocated sigqueue headers of sigqueue pool
2427  * and signotify pool, if possible.
2428  * Called only by the owning process during exec() and exit().
2429  */
2430 void
2431 sigqfree(proc_t *p)
2432 {
2433 	ASSERT(MUTEX_HELD(&p->p_lock));
2434 
2435 	if (p->p_sigqhdr != NULL) {	/* sigqueue pool */
2436 		sigqhdrfree(p->p_sigqhdr);
2437 		p->p_sigqhdr = NULL;
2438 	}
2439 	if (p->p_signhdr != NULL) {	/* signotify pool */
2440 		sigqhdrfree(p->p_signhdr);
2441 		p->p_signhdr = NULL;
2442 	}
2443 }
2444 
2445 /*
2446  * Free up the pre-allocated header and sigq pool if possible.
2447  */
2448 void
2449 sigqhdrfree(sigqhdr_t *sqh)
2450 {
2451 	mutex_enter(&sqh->sqb_lock);
2452 	if (sqh->sqb_sent == 0) {
2453 		mutex_exit(&sqh->sqb_lock);
2454 		mutex_destroy(&sqh->sqb_lock);
2455 		kmem_free(sqh, sqh->sqb_size);
2456 	} else {
2457 		sqh->sqb_pexited = 1;
2458 		mutex_exit(&sqh->sqb_lock);
2459 	}
2460 }
2461 
2462 /*
2463  * Free up a single sigqueue structure.
2464  * No other code should free a sigqueue directly.
2465  */
2466 void
2467 siginfofree(sigqueue_t *sqp)
2468 {
2469 	if (sqp != NULL) {
2470 		if (sqp->sq_func != NULL)
2471 			(sqp->sq_func)(sqp);
2472 		else
2473 			kmem_free(sqp, sizeof (sigqueue_t));
2474 	}
2475 }
2476 
2477 /*
2478  * Generate a synchronous signal caused by a hardware
2479  * condition encountered by an lwp.  Called from trap().
2480  */
2481 void
2482 trapsig(k_siginfo_t *ip, int restartable)
2483 {
2484 	proc_t *p = ttoproc(curthread);
2485 	int sig = ip->si_signo;
2486 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2487 
2488 	ASSERT(sig > 0 && sig < NSIG);
2489 
2490 	if (curthread->t_dtrace_on)
2491 		dtrace_safe_synchronous_signal();
2492 
2493 	mutex_enter(&p->p_lock);
2494 	schedctl_finish_sigblock(curthread);
2495 	/*
2496 	 * Avoid a possible infinite loop if the lwp is holding the
2497 	 * signal generated by a trap of a restartable instruction or
2498 	 * if the signal so generated is being ignored by the process.
2499 	 */
2500 	if (restartable &&
2501 	    (sigismember(&curthread->t_hold, sig) ||
2502 	    p->p_user.u_signal[sig-1] == SIG_IGN)) {
2503 		sigdelset(&curthread->t_hold, sig);
2504 		p->p_user.u_signal[sig-1] = SIG_DFL;
2505 		sigdelset(&p->p_ignore, sig);
2506 	}
2507 	bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2508 	sigaddqa(p, curthread, sqp);
2509 	mutex_exit(&p->p_lock);
2510 }
2511 
2512 #ifdef _SYSCALL32_IMPL
2513 
2514 /*
2515  * It's tricky to transmit a sigval between 32-bit and 64-bit
2516  * process, since in the 64-bit world, a pointer and an integer
2517  * are different sizes.  Since we're constrained by the standards
2518  * world not to change the types, and it's unclear how useful it is
2519  * to send pointers between address spaces this way, we preserve
2520  * the 'int' interpretation for 32-bit processes interoperating
2521  * with 64-bit processes.  The full semantics (pointers or integers)
2522  * are available for N-bit processes interoperating with N-bit
2523  * processes.
2524  */
2525 void
2526 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2527 {
2528 	bzero(dest, sizeof (*dest));
2529 
2530 	/*
2531 	 * The absolute minimum content is si_signo and si_code.
2532 	 */
2533 	dest->si_signo = src->si_signo;
2534 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2535 		return;
2536 
2537 	/*
2538 	 * A siginfo generated by user level is structured
2539 	 * differently from one generated by the kernel.
2540 	 */
2541 	if (SI_FROMUSER(src)) {
2542 		dest->si_pid = src->si_pid;
2543 		dest->si_ctid = src->si_ctid;
2544 		dest->si_zoneid = src->si_zoneid;
2545 		dest->si_uid = src->si_uid;
2546 		if (SI_CANQUEUE(src->si_code))
2547 			dest->si_value.sival_int =
2548 				(int32_t)src->si_value.sival_int;
2549 		return;
2550 	}
2551 
2552 	dest->si_errno = src->si_errno;
2553 
2554 	switch (src->si_signo) {
2555 	default:
2556 		dest->si_pid = src->si_pid;
2557 		dest->si_ctid = src->si_ctid;
2558 		dest->si_zoneid = src->si_zoneid;
2559 		dest->si_uid = src->si_uid;
2560 		dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2561 		break;
2562 	case SIGCLD:
2563 		dest->si_pid = src->si_pid;
2564 		dest->si_ctid = src->si_ctid;
2565 		dest->si_zoneid = src->si_zoneid;
2566 		dest->si_status = src->si_status;
2567 		dest->si_stime = src->si_stime;
2568 		dest->si_utime = src->si_utime;
2569 		break;
2570 	case SIGSEGV:
2571 	case SIGBUS:
2572 	case SIGILL:
2573 	case SIGTRAP:
2574 	case SIGFPE:
2575 	case SIGEMT:
2576 		dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2577 		dest->si_trapno = src->si_trapno;
2578 		dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2579 		break;
2580 	case SIGPOLL:
2581 	case SIGXFSZ:
2582 		dest->si_fd = src->si_fd;
2583 		dest->si_band = src->si_band;
2584 		break;
2585 	case SIGPROF:
2586 		dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2587 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2588 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2589 		dest->si_syscall = src->si_syscall;
2590 		dest->si_nsysarg = src->si_nsysarg;
2591 		dest->si_fault = src->si_fault;
2592 		break;
2593 	}
2594 }
2595 
2596 void
2597 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2598 {
2599 	bzero(dest, sizeof (*dest));
2600 
2601 	/*
2602 	 * The absolute minimum content is si_signo and si_code.
2603 	 */
2604 	dest->si_signo = src->si_signo;
2605 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2606 		return;
2607 
2608 	/*
2609 	 * A siginfo generated by user level is structured
2610 	 * differently from one generated by the kernel.
2611 	 */
2612 	if (SI_FROMUSER(src)) {
2613 		dest->si_pid = src->si_pid;
2614 		dest->si_ctid = src->si_ctid;
2615 		dest->si_zoneid = src->si_zoneid;
2616 		dest->si_uid = src->si_uid;
2617 		if (SI_CANQUEUE(src->si_code))
2618 			dest->si_value.sival_int =
2619 				(int)src->si_value.sival_int;
2620 		return;
2621 	}
2622 
2623 	dest->si_errno = src->si_errno;
2624 
2625 	switch (src->si_signo) {
2626 	default:
2627 		dest->si_pid = src->si_pid;
2628 		dest->si_ctid = src->si_ctid;
2629 		dest->si_zoneid = src->si_zoneid;
2630 		dest->si_uid = src->si_uid;
2631 		dest->si_value.sival_int = (int)src->si_value.sival_int;
2632 		break;
2633 	case SIGCLD:
2634 		dest->si_pid = src->si_pid;
2635 		dest->si_ctid = src->si_ctid;
2636 		dest->si_zoneid = src->si_zoneid;
2637 		dest->si_status = src->si_status;
2638 		dest->si_stime = src->si_stime;
2639 		dest->si_utime = src->si_utime;
2640 		break;
2641 	case SIGSEGV:
2642 	case SIGBUS:
2643 	case SIGILL:
2644 	case SIGTRAP:
2645 	case SIGFPE:
2646 	case SIGEMT:
2647 		dest->si_addr = (void *)(uintptr_t)src->si_addr;
2648 		dest->si_trapno = src->si_trapno;
2649 		dest->si_pc = (void *)(uintptr_t)src->si_pc;
2650 		break;
2651 	case SIGPOLL:
2652 	case SIGXFSZ:
2653 		dest->si_fd = src->si_fd;
2654 		dest->si_band = src->si_band;
2655 		break;
2656 	case SIGPROF:
2657 		dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2658 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2659 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2660 		dest->si_syscall = src->si_syscall;
2661 		dest->si_nsysarg = src->si_nsysarg;
2662 		dest->si_fault = src->si_fault;
2663 		break;
2664 	}
2665 }
2666 
2667 #endif /* _SYSCALL32_IMPL */
2668