xref: /illumos-gate/usr/src/uts/common/os/schedctl.c (revision c21bd51d7acbaf77116c4cc3a23dfc6d16c637c2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  * Copyright 2021 Joyent, Inc.
26  */
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/schedctl.h>
31 #include <sys/proc.h>
32 #include <sys/thread.h>
33 #include <sys/class.h>
34 #include <sys/cred.h>
35 #include <sys/kmem.h>
36 #include <sys/cmn_err.h>
37 #include <sys/stack.h>
38 #include <sys/debug.h>
39 #include <sys/cpuvar.h>
40 #include <sys/sobject.h>
41 #include <sys/door.h>
42 #include <sys/modctl.h>
43 #include <sys/syscall.h>
44 #include <sys/sysmacros.h>
45 #include <sys/vmsystm.h>
46 #include <sys/mman.h>
47 #include <sys/vnode.h>
48 #include <sys/swap.h>
49 #include <sys/lwp.h>
50 #include <sys/bitmap.h>
51 #include <sys/atomic.h>
52 #include <sys/fcntl.h>
53 #include <vm/seg_kp.h>
54 #include <vm/seg_vn.h>
55 #include <vm/as.h>
56 #include <fs/fs_subr.h>
57 
58 /*
59  * Page handling structures.  This is set up as a list of per-page
60  * control structures (sc_page_ctl), with p->p_pagep pointing to
61  * the first.  The per-page structures point to the actual pages
62  * and contain pointers to the user address for each mapped page.
63  *
64  * All data is protected by p->p_sc_lock.  Since this lock is
65  * held while waiting for memory, schedctl_shared_alloc() should
66  * not be called while holding p_lock.
67  */
68 
69 typedef struct sc_page_ctl {
70 	struct sc_page_ctl *spc_next;
71 	sc_shared_t	*spc_base;	/* base of kernel page */
72 	sc_shared_t	*spc_end;	/* end of usable space */
73 	ulong_t		*spc_map;	/* bitmap of allocated space on page */
74 	size_t		spc_space;	/* amount of space on page */
75 	caddr_t		spc_uaddr;	/* user-level address of the page */
76 	struct anon_map	*spc_amp;	/* anonymous memory structure */
77 } sc_page_ctl_t;
78 
79 static size_t	sc_pagesize;		/* size of usable space on page */
80 static size_t	sc_bitmap_len;		/* # of bits in allocation bitmap */
81 static size_t	sc_bitmap_words;	/* # of words in allocation bitmap */
82 
83 /* Context ops */
84 static void	schedctl_save(sc_shared_t *);
85 static void	schedctl_restore(sc_shared_t *);
86 static void	schedctl_fork(kthread_t *, kthread_t *);
87 
88 /* Functions for handling shared pages */
89 static int	schedctl_shared_alloc(sc_shared_t **, uintptr_t *);
90 static sc_page_ctl_t *schedctl_page_lookup(sc_shared_t *);
91 static int	schedctl_map(struct anon_map *, caddr_t *, caddr_t);
92 static int	schedctl_getpage(struct anon_map **, caddr_t *);
93 static void	schedctl_freepage(struct anon_map *, caddr_t);
94 
95 /*
96  * System call interface to scheduler activations.
97  * This always operates on the current lwp.
98  */
99 caddr_t
100 schedctl(void)
101 {
102 	kthread_t	*t = curthread;
103 	sc_shared_t	*ssp;
104 	uintptr_t	uaddr;
105 	int		error;
106 
107 	if (t->t_schedctl == NULL) {
108 		/*
109 		 * Allocate and initialize the shared structure.
110 		 */
111 		if ((error = schedctl_shared_alloc(&ssp, &uaddr)) != 0)
112 			return ((caddr_t)(uintptr_t)set_errno(error));
113 		bzero(ssp, sizeof (*ssp));
114 
115 		installctx(t, ssp, schedctl_save, schedctl_restore,
116 		    schedctl_fork, NULL, NULL, NULL, NULL);
117 
118 		thread_lock(t);	/* protect against ts_tick and ts_update */
119 		t->t_schedctl = ssp;
120 		t->t_sc_uaddr = uaddr;
121 		ssp->sc_cid = t->t_cid;
122 		ssp->sc_cpri = t->t_cpri;
123 		ssp->sc_priority = DISP_PRIO(t);
124 		thread_unlock(t);
125 	}
126 
127 	return ((caddr_t)t->t_sc_uaddr);
128 }
129 
130 
131 /*
132  * Clean up scheduler activations state associated with an exiting
133  * (or execing) lwp.  t is always the current thread.
134  */
135 void
136 schedctl_lwp_cleanup(kthread_t *t)
137 {
138 	sc_shared_t	*ssp = t->t_schedctl;
139 	proc_t		*p = ttoproc(t);
140 	sc_page_ctl_t	*pagep;
141 	index_t		index;
142 
143 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
144 
145 	thread_lock(t);		/* protect against ts_tick and ts_update */
146 	t->t_schedctl = NULL;
147 	t->t_sc_uaddr = 0;
148 	thread_unlock(t);
149 
150 	/*
151 	 * Remove the context op to avoid the final call to
152 	 * schedctl_save when switching away from this lwp.
153 	 */
154 	(void) removectx(t, ssp, schedctl_save, schedctl_restore,
155 	    schedctl_fork, NULL, NULL, NULL);
156 
157 	/*
158 	 * Do not unmap the shared page until the process exits.
159 	 * User-level library code relies on this for adaptive mutex locking.
160 	 */
161 	mutex_enter(&p->p_sc_lock);
162 	ssp->sc_state = SC_FREE;
163 	pagep = schedctl_page_lookup(ssp);
164 	index = (index_t)(ssp - pagep->spc_base);
165 	BT_CLEAR(pagep->spc_map, index);
166 	pagep->spc_space += sizeof (sc_shared_t);
167 	mutex_exit(&p->p_sc_lock);
168 }
169 
170 
171 /*
172  * Cleanup the list of schedctl shared pages for the process.
173  * Called from exec() and exit() system calls.
174  */
175 void
176 schedctl_proc_cleanup(void)
177 {
178 	proc_t *p = curproc;
179 	sc_page_ctl_t *pagep;
180 	sc_page_ctl_t *next;
181 
182 	ASSERT(p->p_lwpcnt == 1);	/* we are single-threaded now */
183 	ASSERT(curthread->t_schedctl == NULL);
184 
185 	/*
186 	 * Since we are single-threaded, we don't have to hold p->p_sc_lock.
187 	 */
188 	pagep = p->p_pagep;
189 	p->p_pagep = NULL;
190 	while (pagep != NULL) {
191 		ASSERT(pagep->spc_space == sc_pagesize);
192 		next = pagep->spc_next;
193 		/*
194 		 * Unmap the user space and free the mapping structure.
195 		 */
196 		(void) as_unmap(p->p_as, pagep->spc_uaddr, PAGESIZE);
197 		schedctl_freepage(pagep->spc_amp, (caddr_t)(pagep->spc_base));
198 		kmem_free(pagep->spc_map, sizeof (ulong_t) * sc_bitmap_words);
199 		kmem_free(pagep, sizeof (sc_page_ctl_t));
200 		pagep = next;
201 	}
202 }
203 
204 
205 /*
206  * Called by resume just before switching away from the current thread.
207  * Save new thread state.
208  */
209 static void
210 schedctl_save(sc_shared_t *ssp)
211 {
212 	ssp->sc_state = curthread->t_state;
213 }
214 
215 
216 /*
217  * Called by resume after switching to the current thread.
218  * Save new thread state and CPU.
219  */
220 static void
221 schedctl_restore(sc_shared_t *ssp)
222 {
223 	ssp->sc_state = SC_ONPROC;
224 	ssp->sc_cpu = CPU->cpu_id;
225 }
226 
227 
228 /*
229  * On fork, remove inherited mappings from the child's address space.
230  * The child's threads must call schedctl() to get new shared mappings.
231  */
232 static void
233 schedctl_fork(kthread_t *pt, kthread_t *ct)
234 {
235 	proc_t *pp = ttoproc(pt);
236 	proc_t *cp = ttoproc(ct);
237 	sc_page_ctl_t *pagep;
238 
239 	ASSERT(ct->t_schedctl == NULL);
240 
241 	/*
242 	 * Do this only once, whether we are doing fork1() or forkall().
243 	 * Don't do it at all if the child process is a child of vfork()
244 	 * because a child of vfork() borrows the parent's address space.
245 	 */
246 	if (pt != curthread || (cp->p_flag & SVFORK))
247 		return;
248 
249 	mutex_enter(&pp->p_sc_lock);
250 	for (pagep = pp->p_pagep; pagep != NULL; pagep = pagep->spc_next)
251 		(void) as_unmap(cp->p_as, pagep->spc_uaddr, PAGESIZE);
252 	mutex_exit(&pp->p_sc_lock);
253 }
254 
255 
256 /*
257  * Returns non-zero if the specified thread shouldn't be preempted at this time.
258  * Called by ts_preempt(), ts_tick(), and ts_update().
259  */
260 int
261 schedctl_get_nopreempt(kthread_t *t)
262 {
263 	ASSERT(THREAD_LOCK_HELD(t));
264 	return (t->t_schedctl->sc_preemptctl.sc_nopreempt);
265 }
266 
267 
268 /*
269  * Sets the value of the nopreempt field for the specified thread.
270  * Called by ts_preempt() to clear the field on preemption.
271  */
272 void
273 schedctl_set_nopreempt(kthread_t *t, short val)
274 {
275 	ASSERT(THREAD_LOCK_HELD(t));
276 	t->t_schedctl->sc_preemptctl.sc_nopreempt = val;
277 }
278 
279 
280 /*
281  * Sets the value of the yield field for the specified thread.
282  * Called by ts_preempt() and ts_tick() to set the field, and
283  * ts_yield() to clear it.
284  * The kernel never looks at this field so we don't need a
285  * schedctl_get_yield() function.
286  */
287 void
288 schedctl_set_yield(kthread_t *t, short val)
289 {
290 	ASSERT(THREAD_LOCK_HELD(t));
291 	t->t_schedctl->sc_preemptctl.sc_yield = val;
292 }
293 
294 
295 /*
296  * Sets the values of the cid and priority fields for the specified thread.
297  * Called from thread_change_pri(), thread_change_epri(), THREAD_CHANGE_PRI().
298  * Called following calls to CL_FORKRET() and CL_ENTERCLASS().
299  */
300 void
301 schedctl_set_cidpri(kthread_t *t)
302 {
303 	sc_shared_t *tdp = t->t_schedctl;
304 
305 	if (tdp != NULL) {
306 		tdp->sc_cid = t->t_cid;
307 		tdp->sc_cpri = t->t_cpri;
308 		tdp->sc_priority = DISP_PRIO(t);
309 	}
310 }
311 
312 
313 /*
314  * Returns non-zero if the specified thread has requested that all
315  * signals be blocked.  Called by signal-related code that tests
316  * the signal mask of a thread that may not be the current thread
317  * and where the process's p_lock cannot be acquired.
318  */
319 int
320 schedctl_sigblock(kthread_t *t)
321 {
322 	sc_shared_t *tdp = t->t_schedctl;
323 
324 	if (tdp != NULL)
325 		return (tdp->sc_sigblock);
326 	return (0);
327 }
328 
329 
330 /*
331  * If the sc_sigblock field is set for the specified thread, set its signal
332  * mask to block all maskable signals, then clear the sc_sigblock field.  This
333  * accomplishes what user-level code requested to be done when it set
334  * tdp->sc_shared->sc_sigblock non-zero.
335  *
336  * This is generally called by signal-related code in the current thread.  In
337  * order to call against a thread other than curthread, p_lock for the
338  * containing process must be held.  Even then, the caller is not protected
339  * from races with the thread in question updating its own fields.  It is the
340  * responsibility of the caller to perform additional synchronization.
341  *
342  */
343 void
344 schedctl_finish_sigblock(kthread_t *t)
345 {
346 	sc_shared_t *tdp = t->t_schedctl;
347 
348 	ASSERT(t == curthread || MUTEX_HELD(&ttoproc(t)->p_lock));
349 
350 	if (tdp != NULL && tdp->sc_sigblock) {
351 		t->t_hold.__sigbits[0] = FILLSET0 & ~CANTMASK0;
352 		t->t_hold.__sigbits[1] = FILLSET1 & ~CANTMASK1;
353 		t->t_hold.__sigbits[2] = FILLSET2 & ~CANTMASK2;
354 		tdp->sc_sigblock = 0;
355 	}
356 }
357 
358 
359 /*
360  * Return non-zero if the current thread has declared that it has
361  * a cancellation pending and that cancellation is not disabled.
362  * If SIGCANCEL is blocked, we must be going over the wire in an
363  * NFS transaction (sigintr() was called); return zero in this case.
364  */
365 int
366 schedctl_cancel_pending(void)
367 {
368 	sc_shared_t *tdp = curthread->t_schedctl;
369 
370 	if (tdp != NULL &&
371 	    (tdp->sc_flgs & SC_CANCEL_FLG) &&
372 	    !tdp->sc_sigblock &&
373 	    !sigismember(&curthread->t_hold, SIGCANCEL))
374 		return (1);
375 	return (0);
376 }
377 
378 
379 /*
380  * Inform libc that the kernel returned EINTR from some system call
381  * due to there being a cancellation pending (SC_CANCEL_FLG set or
382  * we received an SI_LWP SIGCANCEL while in a system call), rather
383  * than because of some other signal.  User-level code can try to
384  * recover from receiving other signals, but it can't recover from
385  * being cancelled.
386  */
387 void
388 schedctl_cancel_eintr(void)
389 {
390 	sc_shared_t *tdp = curthread->t_schedctl;
391 
392 	if (tdp != NULL)
393 		tdp->sc_flgs |= SC_EINTR_FLG;
394 }
395 
396 
397 /*
398  * Return non-zero if the current thread has declared that
399  * it is calling into the kernel to park, else return zero.
400  */
401 int
402 schedctl_is_park(void)
403 {
404 	sc_shared_t *tdp = curthread->t_schedctl;
405 
406 	if (tdp != NULL)
407 		return ((tdp->sc_flgs & SC_PARK_FLG) != 0);
408 	/*
409 	 * If we're here and there is no shared memory (how could
410 	 * that happen?) then just assume we really are here to park.
411 	 */
412 	return (1);
413 }
414 
415 
416 /*
417  * Declare thread is parking.
418  *
419  * libc will set "sc_flgs |= SC_PARK_FLG" before calling lwpsys_park(0, tid)
420  * in order to declare that the thread is calling into the kernel to park.
421  *
422  * This interface exists ONLY to support older versions of libthread which
423  * are not aware of the SC_PARK_FLG flag.
424  *
425  * Older versions of libthread which are not aware of the SC_PARK_FLG flag
426  * need to be modified or emulated to call lwpsys_park(4, ...) instead of
427  * lwpsys_park(0, ...).  This will invoke schedctl_set_park() before
428  * lwp_park() to declare that the thread is parking.
429  */
430 void
431 schedctl_set_park(void)
432 {
433 	sc_shared_t *tdp = curthread->t_schedctl;
434 	if (tdp != NULL)
435 		tdp->sc_flgs |= SC_PARK_FLG;
436 }
437 
438 
439 /*
440  * Clear the parking flag on return from parking in the kernel.
441  */
442 void
443 schedctl_unpark(void)
444 {
445 	sc_shared_t *tdp = curthread->t_schedctl;
446 
447 	if (tdp != NULL)
448 		tdp->sc_flgs &= ~SC_PARK_FLG;
449 }
450 
451 
452 /*
453  * Page handling code.
454  */
455 
456 void
457 schedctl_init(void)
458 {
459 	/*
460 	 * Amount of page that can hold sc_shared_t structures.  If
461 	 * sizeof (sc_shared_t) is a power of 2, this should just be
462 	 * PAGESIZE.
463 	 */
464 	sc_pagesize = PAGESIZE - (PAGESIZE % sizeof (sc_shared_t));
465 
466 	/*
467 	 * Allocation bitmap is one bit per struct on a page.
468 	 */
469 	sc_bitmap_len = sc_pagesize / sizeof (sc_shared_t);
470 	sc_bitmap_words = howmany(sc_bitmap_len, BT_NBIPUL);
471 }
472 
473 
474 static int
475 schedctl_shared_alloc(sc_shared_t **kaddrp, uintptr_t *uaddrp)
476 {
477 	proc_t		*p = curproc;
478 	sc_page_ctl_t	*pagep;
479 	sc_shared_t	*ssp;
480 	caddr_t		base;
481 	index_t		index;
482 	int		error;
483 
484 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
485 	mutex_enter(&p->p_sc_lock);
486 
487 	/*
488 	 * Try to find space for the new data in existing pages
489 	 * within the process's list of shared pages.
490 	 */
491 	for (pagep = p->p_pagep; pagep != NULL; pagep = pagep->spc_next)
492 		if (pagep->spc_space != 0)
493 			break;
494 
495 	if (pagep != NULL)
496 		base = pagep->spc_uaddr;
497 	else {
498 		struct anon_map *amp;
499 		caddr_t kaddr;
500 
501 		/*
502 		 * No room, need to allocate a new page.  Also set up
503 		 * a mapping to the kernel address space for the new
504 		 * page and lock it in memory.
505 		 */
506 		if ((error = schedctl_getpage(&amp, &kaddr)) != 0) {
507 			mutex_exit(&p->p_sc_lock);
508 			return (error);
509 		}
510 		if ((error = schedctl_map(amp, &base, kaddr)) != 0) {
511 			schedctl_freepage(amp, kaddr);
512 			mutex_exit(&p->p_sc_lock);
513 			return (error);
514 		}
515 
516 		/*
517 		 * Allocate and initialize the page control structure.
518 		 */
519 		pagep = kmem_alloc(sizeof (sc_page_ctl_t), KM_SLEEP);
520 		pagep->spc_amp = amp;
521 		pagep->spc_base = (sc_shared_t *)kaddr;
522 		pagep->spc_end = (sc_shared_t *)(kaddr + sc_pagesize);
523 		pagep->spc_uaddr = base;
524 
525 		pagep->spc_map = kmem_zalloc(sizeof (ulong_t) * sc_bitmap_words,
526 		    KM_SLEEP);
527 		pagep->spc_space = sc_pagesize;
528 
529 		pagep->spc_next = p->p_pagep;
530 		p->p_pagep = pagep;
531 	}
532 
533 	/*
534 	 * Got a page, now allocate space for the data.  There should
535 	 * be space unless something's wrong.
536 	 */
537 	ASSERT(pagep != NULL && pagep->spc_space >= sizeof (sc_shared_t));
538 	index = bt_availbit(pagep->spc_map, sc_bitmap_len);
539 	ASSERT(index != -1);
540 
541 	/*
542 	 * Get location with pointer arithmetic.  spc_base is of type
543 	 * sc_shared_t *.  Mark as allocated.
544 	 */
545 	ssp = pagep->spc_base + index;
546 	BT_SET(pagep->spc_map, index);
547 	pagep->spc_space -= sizeof (sc_shared_t);
548 
549 	mutex_exit(&p->p_sc_lock);
550 
551 	/*
552 	 * Return kernel and user addresses.
553 	 */
554 	*kaddrp = ssp;
555 	*uaddrp = (uintptr_t)base + ((uintptr_t)ssp & PAGEOFFSET);
556 	return (0);
557 }
558 
559 
560 /*
561  * Find the page control structure corresponding to a kernel address.
562  */
563 static sc_page_ctl_t *
564 schedctl_page_lookup(sc_shared_t *ssp)
565 {
566 	proc_t *p = curproc;
567 	sc_page_ctl_t *pagep;
568 
569 	ASSERT(MUTEX_HELD(&p->p_sc_lock));
570 	for (pagep = p->p_pagep; pagep != NULL; pagep = pagep->spc_next) {
571 		if (ssp >= pagep->spc_base && ssp < pagep->spc_end)
572 			return (pagep);
573 	}
574 	return (NULL);		/* This "can't happen".  Should we panic? */
575 }
576 
577 
578 /*
579  * This function is called when a page needs to be mapped into a
580  * process's address space.  Allocate the user address space and
581  * set up the mapping to the page.  Assumes the page has already
582  * been allocated and locked in memory via schedctl_getpage.
583  */
584 static int
585 schedctl_map(struct anon_map *amp, caddr_t *uaddrp, caddr_t kaddr)
586 {
587 	caddr_t addr = NULL;
588 	struct as *as = curproc->p_as;
589 	struct segvn_crargs vn_a;
590 	int error;
591 
592 	as_rangelock(as);
593 	/* pass address of kernel mapping as offset to avoid VAC conflicts */
594 	map_addr(&addr, PAGESIZE, (offset_t)(uintptr_t)kaddr, 1, 0);
595 	if (addr == NULL) {
596 		as_rangeunlock(as);
597 		return (ENOMEM);
598 	}
599 
600 	/*
601 	 * Use segvn to set up the mapping to the page.
602 	 */
603 	vn_a.vp = NULL;
604 	vn_a.offset = 0;
605 	vn_a.cred = NULL;
606 	vn_a.type = MAP_SHARED;
607 	vn_a.prot = vn_a.maxprot = PROT_ALL;
608 	vn_a.flags = 0;
609 	vn_a.amp = amp;
610 	vn_a.szc = 0;
611 	vn_a.lgrp_mem_policy_flags = 0;
612 	error = as_map(as, addr, PAGESIZE, segvn_create, &vn_a);
613 	as_rangeunlock(as);
614 
615 	if (error)
616 		return (error);
617 
618 	*uaddrp = addr;
619 	return (0);
620 }
621 
622 
623 /*
624  * Allocate a new page from anonymous memory.  Also, create a kernel
625  * mapping to the page and lock the page in memory.
626  */
627 static int
628 schedctl_getpage(struct anon_map **newamp, caddr_t *newaddr)
629 {
630 	struct anon_map *amp;
631 	caddr_t kaddr;
632 
633 	/*
634 	 * Set up anonymous memory struct.  No swap reservation is
635 	 * needed since the page will be locked into memory.
636 	 */
637 	amp = anonmap_alloc(PAGESIZE, 0, ANON_SLEEP);
638 
639 	/*
640 	 * Allocate the page.
641 	 */
642 	kaddr = segkp_get_withanonmap(segkp, PAGESIZE,
643 	    KPD_NO_ANON | KPD_LOCKED | KPD_ZERO, amp);
644 	if (kaddr == NULL) {
645 		amp->refcnt--;
646 		anonmap_free(amp);
647 		return (ENOMEM);
648 	}
649 
650 	/*
651 	 * The page is left SE_SHARED locked so that it won't be
652 	 * paged out or relocated (KPD_LOCKED above).
653 	 */
654 
655 	*newamp = amp;
656 	*newaddr = kaddr;
657 	return (0);
658 }
659 
660 
661 /*
662  * Take the necessary steps to allow a page to be released.
663  * This is called when the process is doing exit() or exec().
664  * There should be no accesses to the page after this.
665  * The kernel mapping of the page is released and the page is unlocked.
666  */
667 static void
668 schedctl_freepage(struct anon_map *amp, caddr_t kaddr)
669 {
670 	/*
671 	 * Release the lock on the page and remove the kernel mapping.
672 	 */
673 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
674 	segkp_release(segkp, kaddr);
675 
676 	/*
677 	 * Decrement the refcnt so the anon_map structure will be freed.
678 	 */
679 	if (--amp->refcnt == 0) {
680 		/*
681 		 * The current process no longer has the page mapped, so
682 		 * we have to free everything rather than letting as_free
683 		 * do the work.
684 		 */
685 		anonmap_purge(amp);
686 		anon_free(amp->ahp, 0, PAGESIZE);
687 		ANON_LOCK_EXIT(&amp->a_rwlock);
688 		anonmap_free(amp);
689 	} else {
690 		ANON_LOCK_EXIT(&amp->a_rwlock);
691 	}
692 }
693