xref: /illumos-gate/usr/src/uts/common/os/schedctl.c (revision 60946fe0e0cab23f683e9de92451aa45b7913135)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/schedctl.h>
32 #include <sys/proc.h>
33 #include <sys/thread.h>
34 #include <sys/class.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/cmn_err.h>
38 #include <sys/stack.h>
39 #include <sys/debug.h>
40 #include <sys/cpuvar.h>
41 #include <sys/sobject.h>
42 #include <sys/door.h>
43 #include <sys/modctl.h>
44 #include <sys/syscall.h>
45 #include <sys/sysmacros.h>
46 #include <sys/vmsystm.h>
47 #include <sys/mman.h>
48 #include <sys/vnode.h>
49 #include <sys/swap.h>
50 #include <sys/lwp.h>
51 #include <sys/bitmap.h>
52 #include <sys/atomic.h>
53 #include <sys/fcntl.h>
54 #include <vm/seg_kp.h>
55 #include <vm/seg_vn.h>
56 #include <vm/as.h>
57 #include <fs/fs_subr.h>
58 
59 /*
60  * Page handling structures.  This is set up as a list of per-page
61  * control structures (sc_page_ctl), with p->p_pagep pointing to
62  * the first.  The per-page structures point to the actual pages
63  * and contain pointers to the user address for each mapped page.
64  *
65  * All data is protected by p->p_sc_lock.  Since this lock is
66  * held while waiting for memory, schedctl_shared_alloc() should
67  * not be called while holding p_lock.
68  */
69 
70 typedef struct sc_page_ctl {
71 	struct sc_page_ctl *spc_next;
72 	sc_shared_t	*spc_base;	/* base of kernel page */
73 	sc_shared_t	*spc_end;	/* end of usable space */
74 	ulong_t		*spc_map;	/* bitmap of allocated space on page */
75 	size_t		spc_space;	/* amount of space on page */
76 	caddr_t		spc_uaddr;	/* user-level address of the page */
77 	struct anon_map	*spc_amp;	/* anonymous memory structure */
78 } sc_page_ctl_t;
79 
80 static size_t	sc_pagesize;		/* size of usable space on page */
81 static size_t	sc_bitmap_len;		/* # of bits in allocation bitmap */
82 static size_t	sc_bitmap_words;	/* # of words in allocation bitmap */
83 
84 /* Context ops */
85 static void	schedctl_save(sc_shared_t *);
86 static void	schedctl_restore(sc_shared_t *);
87 static void	schedctl_fork(kthread_t *, kthread_t *);
88 
89 /* Functions for handling shared pages */
90 static int	schedctl_shared_alloc(sc_shared_t **, uintptr_t *);
91 static sc_page_ctl_t *schedctl_page_lookup(sc_shared_t *);
92 static int	schedctl_map(struct anon_map *, caddr_t *, caddr_t);
93 static int	schedctl_getpage(struct anon_map **, caddr_t *);
94 static void	schedctl_freepage(struct anon_map *, caddr_t);
95 
96 /*
97  * System call interface to scheduler activations.
98  * This always operates on the current lwp.
99  */
100 caddr_t
101 schedctl(void)
102 {
103 	kthread_t	*t = curthread;
104 	sc_shared_t	*ssp;
105 	uintptr_t	uaddr;
106 	int		error;
107 
108 	if (t->t_schedctl == NULL) {
109 		/*
110 		 * Allocate and initialize the shared structure.
111 		 */
112 		if ((error = schedctl_shared_alloc(&ssp, &uaddr)) != 0)
113 			return ((caddr_t)(uintptr_t)set_errno(error));
114 		bzero(ssp, sizeof (*ssp));
115 
116 		installctx(t, ssp, schedctl_save, schedctl_restore,
117 		    schedctl_fork, NULL, NULL, NULL);
118 
119 		thread_lock(t);	/* protect against ts_tick and ts_update */
120 		t->t_schedctl = ssp;
121 		t->t_sc_uaddr = uaddr;
122 		thread_unlock(t);
123 	}
124 
125 	return ((caddr_t)t->t_sc_uaddr);
126 }
127 
128 
129 /*
130  * Clean up scheduler activations state associated with an exiting
131  * (or execing) lwp.  t is always the current thread.
132  */
133 void
134 schedctl_lwp_cleanup(kthread_t *t)
135 {
136 	sc_shared_t	*ssp = t->t_schedctl;
137 	proc_t		*p = ttoproc(t);
138 	sc_page_ctl_t	*pagep;
139 	index_t		index;
140 
141 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
142 
143 	thread_lock(t);		/* protect against ts_tick and ts_update */
144 	t->t_schedctl = NULL;
145 	t->t_sc_uaddr = 0;
146 	thread_unlock(t);
147 
148 	/*
149 	 * Remove the context op to avoid the final call to
150 	 * schedctl_save when switching away from this lwp.
151 	 */
152 	(void) removectx(t, ssp, schedctl_save, schedctl_restore,
153 	    schedctl_fork, NULL, NULL, NULL);
154 
155 	/*
156 	 * Do not unmap the shared page until the process exits.
157 	 * User-level library code relies on this for adaptive mutex locking.
158 	 */
159 	mutex_enter(&p->p_sc_lock);
160 	ssp->sc_state = SC_FREE;
161 	pagep = schedctl_page_lookup(ssp);
162 	index = (index_t)(ssp - pagep->spc_base);
163 	BT_CLEAR(pagep->spc_map, index);
164 	pagep->spc_space += sizeof (sc_shared_t);
165 	mutex_exit(&p->p_sc_lock);
166 }
167 
168 
169 /*
170  * Cleanup the list of schedctl shared pages for the process.
171  * Called from exec() and exit() system calls.
172  */
173 void
174 schedctl_proc_cleanup(void)
175 {
176 	proc_t *p = curproc;
177 	sc_page_ctl_t *pagep;
178 	sc_page_ctl_t *next;
179 
180 	ASSERT(p->p_lwpcnt == 1);	/* we are single-threaded now */
181 	ASSERT(curthread->t_schedctl == NULL);
182 
183 	/*
184 	 * Since we are single-threaded, we don't have to hold p->p_sc_lock.
185 	 */
186 	pagep = p->p_pagep;
187 	p->p_pagep = NULL;
188 	while (pagep != NULL) {
189 		ASSERT(pagep->spc_space == sc_pagesize);
190 		next = pagep->spc_next;
191 		/*
192 		 * Unmap the user space and free the mapping structure.
193 		 */
194 		(void) as_unmap(p->p_as, pagep->spc_uaddr, PAGESIZE);
195 		schedctl_freepage(pagep->spc_amp, (caddr_t)(pagep->spc_base));
196 		kmem_free(pagep->spc_map, sizeof (ulong_t) * sc_bitmap_words);
197 		kmem_free(pagep, sizeof (sc_page_ctl_t));
198 		pagep = next;
199 	}
200 }
201 
202 
203 /*
204  * Called by resume just before switching away from the current thread.
205  * Save new thread state.
206  */
207 void
208 schedctl_save(sc_shared_t *ssp)
209 {
210 	ssp->sc_state = curthread->t_state;
211 }
212 
213 
214 /*
215  * Called by resume after switching to the current thread.
216  * Save new thread state and CPU.
217  */
218 void
219 schedctl_restore(sc_shared_t *ssp)
220 {
221 	ssp->sc_state = SC_ONPROC;
222 	ssp->sc_cpu = CPU->cpu_id;
223 }
224 
225 
226 /*
227  * On fork, remove inherited mappings from the child's address space.
228  * The child's threads must call schedctl() to get new shared mappings.
229  */
230 void
231 schedctl_fork(kthread_t *pt, kthread_t *ct)
232 {
233 	proc_t *pp = ttoproc(pt);
234 	proc_t *cp = ttoproc(ct);
235 	sc_page_ctl_t *pagep;
236 
237 	ASSERT(ct->t_schedctl == NULL);
238 
239 	/*
240 	 * Do this only once, whether we are doing fork1() or forkall().
241 	 * Don't do it at all if the child process is a child of vfork()
242 	 * because a child of vfork() borrows the parent's address space.
243 	 */
244 	if (pt != curthread || (cp->p_flag & SVFORK))
245 		return;
246 
247 	mutex_enter(&pp->p_sc_lock);
248 	for (pagep = pp->p_pagep; pagep != NULL; pagep = pagep->spc_next)
249 		(void) as_unmap(cp->p_as, pagep->spc_uaddr, PAGESIZE);
250 	mutex_exit(&pp->p_sc_lock);
251 }
252 
253 
254 /*
255  * Returns non-zero if the specified thread shouldn't be preempted at this time.
256  * Called by ts_preempt, ts_tick, and ts_update.
257  */
258 int
259 schedctl_get_nopreempt(kthread_t *t)
260 {
261 	ASSERT(THREAD_LOCK_HELD(t));
262 	return (t->t_schedctl->sc_preemptctl.sc_nopreempt);
263 }
264 
265 
266 /*
267  * Sets the value of the nopreempt field for the specified thread.
268  * Called by ts_preempt to clear the field on preemption.
269  */
270 void
271 schedctl_set_nopreempt(kthread_t *t, short val)
272 {
273 	ASSERT(THREAD_LOCK_HELD(t));
274 	t->t_schedctl->sc_preemptctl.sc_nopreempt = val;
275 }
276 
277 
278 /*
279  * Sets the value of the yield field for the specified thread.  Called by
280  * ts_preempt and ts_tick to set the field, and ts_yield to clear it.
281  * The kernel never looks at this field so we don't need a schedctl_get_yield
282  * function.
283  */
284 void
285 schedctl_set_yield(kthread_t *t, short val)
286 {
287 	ASSERT(THREAD_LOCK_HELD(t));
288 	t->t_schedctl->sc_preemptctl.sc_yield = val;
289 }
290 
291 
292 /*
293  * Returns non-zero if the specified thread has requested that all
294  * signals be blocked.  Called by signal-related code that tests
295  * the signal mask of a thread that may not be the current thread
296  * and where the process's p_lock cannot be acquired.
297  */
298 int
299 schedctl_sigblock(kthread_t *t)
300 {
301 	sc_shared_t *tdp = t->t_schedctl;
302 
303 	if (tdp != NULL)
304 		return (tdp->sc_sigblock);
305 	return (0);
306 }
307 
308 
309 /*
310  * If the sc_sigblock field is set for the specified thread, set
311  * its signal mask to block all maskable signals, then clear the
312  * sc_sigblock field.  This finishes what user-level code requested
313  * to be done when it set tdp->sc_shared->sc_sigblock non-zero.
314  * Called by signal-related code that holds the process's p_lock.
315  */
316 void
317 schedctl_finish_sigblock(kthread_t *t)
318 {
319 	sc_shared_t *tdp = t->t_schedctl;
320 
321 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
322 
323 	if (tdp != NULL && tdp->sc_sigblock) {
324 		t->t_hold.__sigbits[0] = FILLSET0 & ~CANTMASK0;
325 		t->t_hold.__sigbits[1] = FILLSET1 & ~CANTMASK1;
326 		tdp->sc_sigblock = 0;
327 	}
328 }
329 
330 
331 /*
332  * Return non-zero if the current thread has declared that it has
333  * a cancellation pending and that cancellation is not disabled.
334  * If SIGCANCEL is blocked, we must be going over the wire in an
335  * NFS transaction (sigintr() was called); return zero in this case.
336  */
337 int
338 schedctl_cancel_pending(void)
339 {
340 	sc_shared_t *tdp = curthread->t_schedctl;
341 
342 	if (tdp != NULL &&
343 	    (tdp->sc_flgs & SC_CANCEL_FLG) &&
344 	    !tdp->sc_sigblock &&
345 	    !sigismember(&curthread->t_hold, SIGCANCEL))
346 		return (1);
347 	return (0);
348 }
349 
350 
351 /*
352  * Inform libc that the kernel returned EINTR from some system call
353  * due to there being a cancellation pending (SC_CANCEL_FLG set or
354  * we received an SI_LWP SIGCANCEL while in a system call), rather
355  * than because of some other signal.  User-level code can try to
356  * recover from receiving other signals, but it can't recover from
357  * being cancelled.
358  */
359 void
360 schedctl_cancel_eintr(void)
361 {
362 	sc_shared_t *tdp = curthread->t_schedctl;
363 
364 	if (tdp != NULL)
365 		tdp->sc_flgs |= SC_EINTR_FLG;
366 }
367 
368 
369 /*
370  * Return non-zero if the current thread has declared that
371  * it is calling into the kernel to park, else return zero.
372  */
373 int
374 schedctl_is_park(void)
375 {
376 	sc_shared_t *tdp = curthread->t_schedctl;
377 
378 	if (tdp != NULL)
379 		return ((tdp->sc_flgs & SC_PARK_FLG) != 0);
380 	/*
381 	 * If we're here and there is no shared memory (how could
382 	 * that happen?) then just assume we really are here to park.
383 	 */
384 	return (1);
385 }
386 
387 
388 /*
389  * Declare thread is parking.
390  *
391  * libc will set "sc_flgs |= SC_PARK_FLG" before calling lwpsys_park(0, tid)
392  * in order to declare that the thread is calling into the kernel to park.
393  *
394  * This interface exists ONLY to support older versions of libthread which
395  * are not aware of the SC_PARK_FLG flag.
396  *
397  * Older versions of libthread which are not aware of the SC_PARK_FLG flag
398  * need to be modified or emulated to call lwpsys_park(4, ...) instead of
399  * lwpsys_park(0, ...).  This will invoke schedctl_set_park() before
400  * lwp_park() to declare that the thread is parking.
401  */
402 void
403 schedctl_set_park(void)
404 {
405 	sc_shared_t *tdp = curthread->t_schedctl;
406 	if (tdp != NULL)
407 		tdp->sc_flgs |= SC_PARK_FLG;
408 }
409 
410 
411 /*
412  * Clear the parking flag on return from parking in the kernel.
413  */
414 void
415 schedctl_unpark(void)
416 {
417 	sc_shared_t *tdp = curthread->t_schedctl;
418 
419 	if (tdp != NULL)
420 		tdp->sc_flgs &= ~SC_PARK_FLG;
421 }
422 
423 
424 /*
425  * Page handling code.
426  */
427 
428 void
429 schedctl_init(void)
430 {
431 	/*
432 	 * Amount of page that can hold sc_shared_t structures.  If
433 	 * sizeof (sc_shared_t) is a power of 2, this should just be
434 	 * PAGESIZE.
435 	 */
436 	sc_pagesize = PAGESIZE - (PAGESIZE % sizeof (sc_shared_t));
437 
438 	/*
439 	 * Allocation bitmap is one bit per struct on a page.
440 	 */
441 	sc_bitmap_len = sc_pagesize / sizeof (sc_shared_t);
442 	sc_bitmap_words = howmany(sc_bitmap_len, BT_NBIPUL);
443 }
444 
445 
446 int
447 schedctl_shared_alloc(sc_shared_t **kaddrp, uintptr_t *uaddrp)
448 {
449 	proc_t		*p = curproc;
450 	sc_page_ctl_t	*pagep;
451 	sc_shared_t	*ssp;
452 	caddr_t		base;
453 	index_t		index;
454 	int		error;
455 
456 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
457 	mutex_enter(&p->p_sc_lock);
458 
459 	/*
460 	 * Try to find space for the new data in existing pages
461 	 * within the process's list of shared pages.
462 	 */
463 	for (pagep = p->p_pagep; pagep != NULL; pagep = pagep->spc_next)
464 		if (pagep->spc_space != 0)
465 			break;
466 
467 	if (pagep != NULL)
468 		base = pagep->spc_uaddr;
469 	else {
470 		struct anon_map *amp;
471 		caddr_t kaddr;
472 
473 		/*
474 		 * No room, need to allocate a new page.  Also set up
475 		 * a mapping to the kernel address space for the new
476 		 * page and lock it in memory.
477 		 */
478 		if ((error = schedctl_getpage(&amp, &kaddr)) != 0) {
479 			mutex_exit(&p->p_sc_lock);
480 			return (error);
481 		}
482 		if ((error = schedctl_map(amp, &base, kaddr)) != 0) {
483 			schedctl_freepage(amp, kaddr);
484 			mutex_exit(&p->p_sc_lock);
485 			return (error);
486 		}
487 
488 		/*
489 		 * Allocate and initialize the page control structure.
490 		 */
491 		pagep = kmem_alloc(sizeof (sc_page_ctl_t), KM_SLEEP);
492 		pagep->spc_amp = amp;
493 		pagep->spc_base = (sc_shared_t *)kaddr;
494 		pagep->spc_end = (sc_shared_t *)(kaddr + sc_pagesize);
495 		pagep->spc_uaddr = base;
496 
497 		pagep->spc_map = kmem_zalloc(sizeof (ulong_t) * sc_bitmap_words,
498 		    KM_SLEEP);
499 		pagep->spc_space = sc_pagesize;
500 
501 		pagep->spc_next = p->p_pagep;
502 		p->p_pagep = pagep;
503 	}
504 
505 	/*
506 	 * Got a page, now allocate space for the data.  There should
507 	 * be space unless something's wrong.
508 	 */
509 	ASSERT(pagep != NULL && pagep->spc_space >= sizeof (sc_shared_t));
510 	index = bt_availbit(pagep->spc_map, sc_bitmap_len);
511 	ASSERT(index != -1);
512 
513 	/*
514 	 * Get location with pointer arithmetic.  spc_base is of type
515 	 * sc_shared_t *.  Mark as allocated.
516 	 */
517 	ssp = pagep->spc_base + index;
518 	BT_SET(pagep->spc_map, index);
519 	pagep->spc_space -= sizeof (sc_shared_t);
520 
521 	mutex_exit(&p->p_sc_lock);
522 
523 	/*
524 	 * Return kernel and user addresses.
525 	 */
526 	*kaddrp = ssp;
527 	*uaddrp = (uintptr_t)base + ((uintptr_t)ssp & PAGEOFFSET);
528 	return (0);
529 }
530 
531 
532 /*
533  * Find the page control structure corresponding to a kernel address.
534  */
535 static sc_page_ctl_t *
536 schedctl_page_lookup(sc_shared_t *ssp)
537 {
538 	proc_t *p = curproc;
539 	sc_page_ctl_t *pagep;
540 
541 	ASSERT(MUTEX_HELD(&p->p_sc_lock));
542 	for (pagep = p->p_pagep; pagep != NULL; pagep = pagep->spc_next) {
543 		if (ssp >= pagep->spc_base && ssp < pagep->spc_end)
544 			return (pagep);
545 	}
546 	return (NULL);		/* This "can't happen".  Should we panic? */
547 }
548 
549 
550 /*
551  * This function is called when a page needs to be mapped into a
552  * process's address space.  Allocate the user address space and
553  * set up the mapping to the page.  Assumes the page has already
554  * been allocated and locked in memory via schedctl_getpage.
555  */
556 static int
557 schedctl_map(struct anon_map *amp, caddr_t *uaddrp, caddr_t kaddr)
558 {
559 	caddr_t addr = NULL;
560 	struct as *as = curproc->p_as;
561 	struct segvn_crargs vn_a;
562 	int error;
563 
564 	as_rangelock(as);
565 	/* pass address of kernel mapping as offset to avoid VAC conflicts */
566 	map_addr(&addr, PAGESIZE, (offset_t)(uintptr_t)kaddr, 1, 0);
567 	if (addr == NULL) {
568 		as_rangeunlock(as);
569 		return (ENOMEM);
570 	}
571 
572 	/*
573 	 * Use segvn to set up the mapping to the page.
574 	 */
575 	vn_a.vp = NULL;
576 	vn_a.offset = 0;
577 	vn_a.cred = NULL;
578 	vn_a.type = MAP_SHARED;
579 	vn_a.prot = vn_a.maxprot = PROT_ALL;
580 	vn_a.flags = 0;
581 	vn_a.amp = amp;
582 	vn_a.szc = 0;
583 	vn_a.lgrp_mem_policy_flags = 0;
584 	error = as_map(as, addr, PAGESIZE, segvn_create, &vn_a);
585 	as_rangeunlock(as);
586 
587 	if (error)
588 		return (error);
589 
590 	*uaddrp = addr;
591 	return (0);
592 }
593 
594 
595 /*
596  * Allocate a new page from anonymous memory.  Also, create a kernel
597  * mapping to the page and lock the page in memory.
598  */
599 static int
600 schedctl_getpage(struct anon_map **newamp, caddr_t *newaddr)
601 {
602 	struct anon_map *amp;
603 	caddr_t kaddr;
604 
605 	/*
606 	 * Set up anonymous memory struct.  No swap reservation is
607 	 * needed since the page will be locked into memory.
608 	 */
609 	amp = anonmap_alloc(PAGESIZE, 0, ANON_SLEEP);
610 
611 	/*
612 	 * Allocate the page.
613 	 */
614 	kaddr = segkp_get_withanonmap(segkp, PAGESIZE,
615 	    KPD_NO_ANON | KPD_LOCKED | KPD_ZERO, amp);
616 	if (kaddr == NULL) {
617 		amp->refcnt--;
618 		anonmap_free(amp);
619 		return (ENOMEM);
620 	}
621 
622 	/*
623 	 * The page is left SE_SHARED locked so that it won't be
624 	 * paged out or relocated (KPD_LOCKED above).
625 	 */
626 
627 	*newamp = amp;
628 	*newaddr = kaddr;
629 	return (0);
630 }
631 
632 
633 /*
634  * Take the necessary steps to allow a page to be released.
635  * This is called when the process is doing exit() or exec().
636  * There should be no accesses to the page after this.
637  * The kernel mapping of the page is released and the page is unlocked.
638  */
639 static void
640 schedctl_freepage(struct anon_map *amp, caddr_t kaddr)
641 {
642 	/*
643 	 * Release the lock on the page and remove the kernel mapping.
644 	 */
645 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
646 	segkp_release(segkp, kaddr);
647 
648 	/*
649 	 * Decrement the refcnt so the anon_map structure will be freed.
650 	 */
651 	if (--amp->refcnt == 0) {
652 		/*
653 		 * The current process no longer has the page mapped, so
654 		 * we have to free everything rather than letting as_free
655 		 * do the work.
656 		 */
657 		anon_free(amp->ahp, 0, PAGESIZE);
658 		ANON_LOCK_EXIT(&amp->a_rwlock);
659 		anonmap_free(amp);
660 	} else {
661 		ANON_LOCK_EXIT(&amp->a_rwlock);
662 	}
663 }
664