xref: /illumos-gate/usr/src/uts/common/os/pid.c (revision 6d317d2f8bc347904716264ebe052812c3fc217a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved	*/
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/proc.h>
34 #include <sys/kmem.h>
35 #include <sys/tuneable.h>
36 #include <sys/var.h>
37 #include <sys/cred.h>
38 #include <sys/systm.h>
39 #include <sys/prsystm.h>
40 #include <sys/vnode.h>
41 #include <sys/session.h>
42 #include <sys/cpuvar.h>
43 #include <sys/cmn_err.h>
44 #include <sys/bitmap.h>
45 #include <sys/debug.h>
46 #include <c2/audit.h>
47 #include <sys/project.h>
48 #include <sys/task.h>
49 #include <sys/zone.h>
50 
51 /* directory entries for /proc */
52 union procent {
53 	proc_t *pe_proc;
54 	union procent *pe_next;
55 };
56 
57 struct pid pid0 = {
58 	0,		/* pid_prinactive */
59 	1,		/* pid_pgorphaned */
60 	0,		/* pid_padding	*/
61 	0,		/* pid_prslot	*/
62 	0,		/* pid_id	*/
63 	NULL,		/* pid_pglink	*/
64 	NULL,		/* pid_pgtail	*/
65 	NULL,		/* pid_link	*/
66 	3		/* pid_ref	*/
67 };
68 
69 static int pid_hashlen = 4;	/* desired average hash chain length */
70 static int pid_hashsz;		/* number of buckets in the hash table */
71 
72 #define	HASHPID(pid)	(pidhash[((pid)&(pid_hashsz-1))])
73 
74 extern uint_t nproc;
75 extern struct kmem_cache *process_cache;
76 static void	upcount_init(void);
77 
78 kmutex_t	pidlock;	/* global process lock */
79 kmutex_t	pr_pidlock;	/* /proc global process lock */
80 kcondvar_t	*pr_pid_cv;	/* for /proc, one per process slot */
81 struct plock	*proc_lock;	/* persistent array of p_lock's */
82 
83 /*
84  * See the comment above pid_getlockslot() for a detailed explanation of this
85  * constant.  Note that a PLOCK_SHIFT of 3 implies 64-byte coherence
86  * granularity; if the coherence granularity is ever changed, this constant
87  * should be modified to reflect the change to minimize proc_lock false
88  * sharing (correctness, however, is guaranteed regardless of the coherence
89  * granularity).
90  */
91 #define	PLOCK_SHIFT	3
92 
93 static kmutex_t	pidlinklock;
94 static struct pid **pidhash;
95 static pid_t minpid;
96 static pid_t mpid = FAMOUS_PIDS;	/* one more than the last famous pid */
97 static union procent *procdir;
98 static union procent *procentfree;
99 
100 static struct pid *
101 pid_lookup(pid_t pid)
102 {
103 	struct pid *pidp;
104 
105 	ASSERT(MUTEX_HELD(&pidlinklock));
106 
107 	for (pidp = HASHPID(pid); pidp; pidp = pidp->pid_link) {
108 		if (pidp->pid_id == pid) {
109 			ASSERT(pidp->pid_ref > 0);
110 			break;
111 		}
112 	}
113 	return (pidp);
114 }
115 
116 void
117 pid_setmin(void)
118 {
119 	if (jump_pid && jump_pid > mpid)
120 		minpid = mpid = jump_pid;
121 	else
122 		minpid = mpid;
123 }
124 
125 /*
126  * When prslots are simply used as an index to determine a process' p_lock,
127  * adjacent prslots share adjacent p_locks.  On machines where the size
128  * of a mutex is smaller than that of a cache line (which, as of this writing,
129  * is true for all machines on which Solaris runs), this can potentially
130  * induce false sharing.  The standard solution for false sharing is to pad
131  * out one's data structures (in this case, struct plock).  However,
132  * given the size and (generally) sparse use of the proc_lock array, this
133  * is suboptimal.  We therefore stride through the proc_lock array with
134  * a stride of PLOCK_SHIFT.  PLOCK_SHIFT should be defined as:
135  *
136  *   log_2 (coherence_granularity / sizeof (kmutex_t))
137  *
138  * Under this scheme, false sharing is still possible -- but only when
139  * the number of active processes is very large.  Note that the one-to-one
140  * mapping between prslots and lockslots is maintained.
141  */
142 static int
143 pid_getlockslot(int prslot)
144 {
145 	int even = (v.v_proc >> PLOCK_SHIFT) << PLOCK_SHIFT;
146 	int perlap = even >> PLOCK_SHIFT;
147 
148 	if (prslot >= even)
149 		return (prslot);
150 
151 	return (((prslot % perlap) << PLOCK_SHIFT) + (prslot / perlap));
152 }
153 
154 /*
155  * This function allocates a pid structure, a free pid, and optionally a
156  * slot in the proc table for it.
157  *
158  * pid_allocate() returns the new pid on success, -1 on failure.
159  */
160 pid_t
161 pid_allocate(proc_t *prp, pid_t pid, int flags)
162 {
163 	struct pid *pidp;
164 	union procent *pep;
165 	pid_t newpid, startpid;
166 
167 	pidp = kmem_zalloc(sizeof (struct pid), KM_SLEEP);
168 
169 	mutex_enter(&pidlinklock);
170 	pep = procentfree;
171 	if ((flags & PID_ALLOC_PROC) && pep == NULL) {
172 		/*
173 		 * ran out of /proc directory entries
174 		 */
175 		goto failed;
176 	}
177 
178 	if (pid != 0) {
179 		VERIFY(minpid == 0);
180 		VERIFY3P(pid, <, mpid);
181 		VERIFY3P(pid_lookup(pid), ==, NULL);
182 		newpid = pid;
183 	} else {
184 		/*
185 		 * Allocate a pid
186 		 */
187 		ASSERT(minpid <= mpid && mpid < maxpid);
188 
189 		startpid = mpid;
190 		for (;;) {
191 			newpid = mpid;
192 			if (++mpid == maxpid)
193 				mpid = minpid;
194 
195 			if (pid_lookup(newpid) == NULL)
196 				break;
197 
198 			if (mpid == startpid)
199 				goto failed;
200 		}
201 	}
202 
203 	/*
204 	 * Put pid into the pid hash table.
205 	 */
206 	pidp->pid_link = HASHPID(newpid);
207 	HASHPID(newpid) = pidp;
208 	pidp->pid_ref = 1;
209 	pidp->pid_id = newpid;
210 
211 	if (flags & PID_ALLOC_PROC) {
212 		procentfree = pep->pe_next;
213 		pidp->pid_prslot = pep - procdir;
214 		pep->pe_proc = prp;
215 		prp->p_pidp = pidp;
216 		prp->p_lockp = &proc_lock[pid_getlockslot(pidp->pid_prslot)];
217 	} else {
218 		pidp->pid_prslot = 0;
219 	}
220 
221 	mutex_exit(&pidlinklock);
222 
223 	return (newpid);
224 
225 failed:
226 	mutex_exit(&pidlinklock);
227 	kmem_free(pidp, sizeof (struct pid));
228 	return (-1);
229 }
230 
231 /*
232  * decrement the reference count for pid
233  */
234 int
235 pid_rele(struct pid *pidp)
236 {
237 	struct pid **pidpp;
238 
239 	mutex_enter(&pidlinklock);
240 	ASSERT(pidp != &pid0);
241 
242 	pidpp = &HASHPID(pidp->pid_id);
243 	for (;;) {
244 		ASSERT(*pidpp != NULL);
245 		if (*pidpp == pidp)
246 			break;
247 		pidpp = &(*pidpp)->pid_link;
248 	}
249 
250 	*pidpp = pidp->pid_link;
251 	mutex_exit(&pidlinklock);
252 
253 	kmem_free(pidp, sizeof (*pidp));
254 	return (0);
255 }
256 
257 void
258 proc_entry_free(struct pid *pidp)
259 {
260 	mutex_enter(&pidlinklock);
261 	pidp->pid_prinactive = 1;
262 	procdir[pidp->pid_prslot].pe_next = procentfree;
263 	procentfree = &procdir[pidp->pid_prslot];
264 	mutex_exit(&pidlinklock);
265 }
266 
267 /*
268  * The original task needs to be passed in since the process has already been
269  * detached from the task at this point in time.
270  */
271 void
272 pid_exit(proc_t *prp, struct task *tk)
273 {
274 	struct pid *pidp;
275 	zone_t	*zone = prp->p_zone;
276 
277 	ASSERT(MUTEX_HELD(&pidlock));
278 
279 	/*
280 	 * Exit process group.  If it is NULL, it's because fork failed
281 	 * before calling pgjoin().
282 	 */
283 	ASSERT(prp->p_pgidp != NULL || prp->p_stat == SIDL);
284 	if (prp->p_pgidp != NULL)
285 		pgexit(prp);
286 
287 	sess_rele(prp->p_sessp, B_TRUE);
288 
289 	pidp = prp->p_pidp;
290 
291 	proc_entry_free(pidp);
292 
293 	if (audit_active)
294 		audit_pfree(prp);
295 
296 	if (practive == prp) {
297 		practive = prp->p_next;
298 	}
299 
300 	if (prp->p_next) {
301 		prp->p_next->p_prev = prp->p_prev;
302 	}
303 	if (prp->p_prev) {
304 		prp->p_prev->p_next = prp->p_next;
305 	}
306 
307 	PID_RELE(pidp);
308 
309 	mutex_destroy(&prp->p_crlock);
310 	kmem_cache_free(process_cache, prp);
311 	nproc--;
312 
313 	/*
314 	 * Decrement the process counts of the original task, project and zone.
315 	 */
316 	mutex_enter(&zone->zone_nlwps_lock);
317 	tk->tk_nprocs--;
318 	tk->tk_proj->kpj_nprocs--;
319 	zone->zone_nprocs--;
320 	mutex_exit(&zone->zone_nlwps_lock);
321 }
322 
323 /*
324  * Find a process visible from the specified zone given its process ID.
325  */
326 proc_t *
327 prfind_zone(pid_t pid, zoneid_t zoneid)
328 {
329 	struct pid *pidp;
330 	proc_t *p;
331 
332 	ASSERT(MUTEX_HELD(&pidlock));
333 
334 	mutex_enter(&pidlinklock);
335 	pidp = pid_lookup(pid);
336 	mutex_exit(&pidlinklock);
337 	if (pidp != NULL && pidp->pid_prinactive == 0) {
338 		p = procdir[pidp->pid_prslot].pe_proc;
339 		if (zoneid == ALL_ZONES || p->p_zone->zone_id == zoneid)
340 			return (p);
341 	}
342 	return (NULL);
343 }
344 
345 /*
346  * Find a process given its process ID.  This obeys zone restrictions,
347  * so if the caller is in a non-global zone it won't find processes
348  * associated with other zones.  Use prfind_zone(pid, ALL_ZONES) to
349  * bypass this restriction.
350  */
351 proc_t *
352 prfind(pid_t pid)
353 {
354 	zoneid_t zoneid;
355 
356 	if (INGLOBALZONE(curproc))
357 		zoneid = ALL_ZONES;
358 	else
359 		zoneid = getzoneid();
360 	return (prfind_zone(pid, zoneid));
361 }
362 
363 proc_t *
364 pgfind_zone(pid_t pgid, zoneid_t zoneid)
365 {
366 	struct pid *pidp;
367 
368 	ASSERT(MUTEX_HELD(&pidlock));
369 
370 	mutex_enter(&pidlinklock);
371 	pidp = pid_lookup(pgid);
372 	mutex_exit(&pidlinklock);
373 	if (pidp != NULL) {
374 		proc_t *p = pidp->pid_pglink;
375 
376 		if (zoneid == ALL_ZONES || pgid == 0 || p == NULL ||
377 		    p->p_zone->zone_id == zoneid)
378 			return (p);
379 	}
380 	return (NULL);
381 }
382 
383 /*
384  * return the head of the list of processes whose process group ID is 'pgid',
385  * or NULL, if no such process group
386  */
387 proc_t *
388 pgfind(pid_t pgid)
389 {
390 	zoneid_t zoneid;
391 
392 	if (INGLOBALZONE(curproc))
393 		zoneid = ALL_ZONES;
394 	else
395 		zoneid = getzoneid();
396 	return (pgfind_zone(pgid, zoneid));
397 }
398 
399 /*
400  * Sets P_PR_LOCK on a non-system process.  Process must be fully created
401  * and not exiting to succeed.
402  *
403  * Returns 0 on success.
404  * Returns 1 if P_PR_LOCK is set.
405  * Returns -1 if proc is in invalid state.
406  */
407 int
408 sprtrylock_proc(proc_t *p)
409 {
410 	ASSERT(MUTEX_HELD(&p->p_lock));
411 
412 	/* skip system and incomplete processes */
413 	if (p->p_stat == SIDL || p->p_stat == SZOMB ||
414 	    (p->p_flag & (SSYS | SEXITING | SEXITLWPS))) {
415 		return (-1);
416 	}
417 
418 	if (p->p_proc_flag & P_PR_LOCK)
419 		return (1);
420 
421 	p->p_proc_flag |= P_PR_LOCK;
422 
423 	return (0);
424 }
425 
426 /*
427  * Wait for P_PR_LOCK to become clear.  Returns with p_lock dropped,
428  * and the proc pointer no longer valid, as the proc may have exited.
429  */
430 void
431 sprwaitlock_proc(proc_t *p)
432 {
433 	kmutex_t *mp;
434 
435 	ASSERT(MUTEX_HELD(&p->p_lock));
436 	ASSERT(p->p_proc_flag & P_PR_LOCK);
437 
438 	/*
439 	 * p_lock is persistent, but p itself is not -- it could
440 	 * vanish during cv_wait().  Load p->p_lock now so we can
441 	 * drop it after cv_wait() without referencing p.
442 	 */
443 	mp = &p->p_lock;
444 	cv_wait(&pr_pid_cv[p->p_slot], mp);
445 	mutex_exit(mp);
446 }
447 
448 /*
449  * If pid exists, find its proc, acquire its p_lock and mark it P_PR_LOCK.
450  * Returns the proc pointer on success, NULL on failure.  sprlock() is
451  * really just a stripped-down version of pr_p_lock() to allow practive
452  * walkers like dofusers() and dumpsys() to synchronize with /proc.
453  */
454 proc_t *
455 sprlock_zone(pid_t pid, zoneid_t zoneid)
456 {
457 	proc_t *p;
458 	int ret;
459 
460 	for (;;) {
461 		mutex_enter(&pidlock);
462 		if ((p = prfind_zone(pid, zoneid)) == NULL) {
463 			mutex_exit(&pidlock);
464 			return (NULL);
465 		}
466 		mutex_enter(&p->p_lock);
467 		mutex_exit(&pidlock);
468 
469 		if (panicstr)
470 			return (p);
471 
472 		ret = sprtrylock_proc(p);
473 		if (ret == -1) {
474 			mutex_exit(&p->p_lock);
475 			return (NULL);
476 		} else if (ret == 0) {
477 			break;
478 		}
479 		sprwaitlock_proc(p);
480 	}
481 	return (p);
482 }
483 
484 proc_t *
485 sprlock(pid_t pid)
486 {
487 	zoneid_t zoneid;
488 
489 	if (INGLOBALZONE(curproc))
490 		zoneid = ALL_ZONES;
491 	else
492 		zoneid = getzoneid();
493 	return (sprlock_zone(pid, zoneid));
494 }
495 
496 void
497 sprlock_proc(proc_t *p)
498 {
499 	ASSERT(MUTEX_HELD(&p->p_lock));
500 
501 	while (p->p_proc_flag & P_PR_LOCK) {
502 		cv_wait(&pr_pid_cv[p->p_slot], &p->p_lock);
503 	}
504 
505 	p->p_proc_flag |= P_PR_LOCK;
506 }
507 
508 void
509 sprunlock(proc_t *p)
510 {
511 	if (panicstr) {
512 		mutex_exit(&p->p_lock);
513 		return;
514 	}
515 
516 	ASSERT(p->p_proc_flag & P_PR_LOCK);
517 	ASSERT(MUTEX_HELD(&p->p_lock));
518 
519 	cv_signal(&pr_pid_cv[p->p_slot]);
520 	p->p_proc_flag &= ~P_PR_LOCK;
521 	mutex_exit(&p->p_lock);
522 }
523 
524 void
525 pid_init(void)
526 {
527 	int i;
528 
529 	pid_hashsz = 1 << highbit(v.v_proc / pid_hashlen);
530 
531 	pidhash = kmem_zalloc(sizeof (struct pid *) * pid_hashsz, KM_SLEEP);
532 	procdir = kmem_alloc(sizeof (union procent) * v.v_proc, KM_SLEEP);
533 	pr_pid_cv = kmem_zalloc(sizeof (kcondvar_t) * v.v_proc, KM_SLEEP);
534 	proc_lock = kmem_zalloc(sizeof (struct plock) * v.v_proc, KM_SLEEP);
535 
536 	nproc = 1;
537 	practive = proc_sched;
538 	proc_sched->p_next = NULL;
539 	procdir[0].pe_proc = proc_sched;
540 
541 	procentfree = &procdir[1];
542 	for (i = 1; i < v.v_proc - 1; i++)
543 		procdir[i].pe_next = &procdir[i+1];
544 	procdir[i].pe_next = NULL;
545 
546 	HASHPID(0) = &pid0;
547 
548 	upcount_init();
549 }
550 
551 proc_t *
552 pid_entry(int slot)
553 {
554 	union procent *pep;
555 	proc_t *prp;
556 
557 	ASSERT(MUTEX_HELD(&pidlock));
558 	ASSERT(slot >= 0 && slot < v.v_proc);
559 
560 	pep = procdir[slot].pe_next;
561 	if (pep >= procdir && pep < &procdir[v.v_proc])
562 		return (NULL);
563 	prp = procdir[slot].pe_proc;
564 	if (prp != 0 && prp->p_stat == SIDL)
565 		return (NULL);
566 	return (prp);
567 }
568 
569 /*
570  * Send the specified signal to all processes whose process group ID is
571  * equal to 'pgid'
572  */
573 
574 void
575 signal(pid_t pgid, int sig)
576 {
577 	struct pid *pidp;
578 	proc_t *prp;
579 
580 	mutex_enter(&pidlock);
581 	mutex_enter(&pidlinklock);
582 	if (pgid == 0 || (pidp = pid_lookup(pgid)) == NULL) {
583 		mutex_exit(&pidlinklock);
584 		mutex_exit(&pidlock);
585 		return;
586 	}
587 	mutex_exit(&pidlinklock);
588 	for (prp = pidp->pid_pglink; prp; prp = prp->p_pglink) {
589 		mutex_enter(&prp->p_lock);
590 		sigtoproc(prp, NULL, sig);
591 		mutex_exit(&prp->p_lock);
592 	}
593 	mutex_exit(&pidlock);
594 }
595 
596 /*
597  * Send the specified signal to the specified process
598  */
599 
600 void
601 prsignal(struct pid *pidp, int sig)
602 {
603 	if (!(pidp->pid_prinactive))
604 		psignal(procdir[pidp->pid_prslot].pe_proc, sig);
605 }
606 
607 #include <sys/sunddi.h>
608 
609 /*
610  * DDI/DKI interfaces for drivers to send signals to processes
611  */
612 
613 /*
614  * obtain an opaque reference to a process for signaling
615  */
616 void *
617 proc_ref(void)
618 {
619 	struct pid *pidp;
620 
621 	mutex_enter(&pidlock);
622 	pidp = curproc->p_pidp;
623 	PID_HOLD(pidp);
624 	mutex_exit(&pidlock);
625 
626 	return (pidp);
627 }
628 
629 /*
630  * release a reference to a process
631  * - a process can exit even if a driver has a reference to it
632  * - one proc_unref for every proc_ref
633  */
634 void
635 proc_unref(void *pref)
636 {
637 	mutex_enter(&pidlock);
638 	PID_RELE((struct pid *)pref);
639 	mutex_exit(&pidlock);
640 }
641 
642 /*
643  * send a signal to a process
644  *
645  * - send the process the signal
646  * - if the process went away, return a -1
647  * - if the process is still there return 0
648  */
649 int
650 proc_signal(void *pref, int sig)
651 {
652 	struct pid *pidp = pref;
653 
654 	prsignal(pidp, sig);
655 	return (pidp->pid_prinactive ? -1 : 0);
656 }
657 
658 
659 static struct upcount	**upc_hash;	/* a boot time allocated array */
660 static ulong_t		upc_hashmask;
661 #define	UPC_HASH(x, y)	((ulong_t)(x ^ y) & upc_hashmask)
662 
663 /*
664  * Get us off the ground.  Called once at boot.
665  */
666 void
667 upcount_init(void)
668 {
669 	ulong_t	upc_hashsize;
670 
671 	/*
672 	 * An entry per MB of memory is our current guess
673 	 */
674 	/*
675 	 * 2^20 is a meg, so shifting right by 20 - PAGESHIFT
676 	 * converts pages to megs (without overflowing a u_int
677 	 * if you have more than 4G of memory, like ptob(physmem)/1M
678 	 * would).
679 	 */
680 	upc_hashsize = (1 << highbit(physmem >> (20 - PAGESHIFT)));
681 	upc_hashmask = upc_hashsize - 1;
682 	upc_hash = kmem_zalloc(upc_hashsize * sizeof (struct upcount *),
683 	    KM_SLEEP);
684 }
685 
686 /*
687  * Increment the number of processes associated with a given uid and zoneid.
688  */
689 void
690 upcount_inc(uid_t uid, zoneid_t zoneid)
691 {
692 	struct upcount	**upc, **hupc;
693 	struct upcount	*new;
694 
695 	ASSERT(MUTEX_HELD(&pidlock));
696 	new = NULL;
697 	hupc = &upc_hash[UPC_HASH(uid, zoneid)];
698 top:
699 	upc = hupc;
700 	while ((*upc) != NULL) {
701 		if ((*upc)->up_uid == uid && (*upc)->up_zoneid == zoneid) {
702 			(*upc)->up_count++;
703 			if (new) {
704 				/*
705 				 * did not need `new' afterall.
706 				 */
707 				kmem_free(new, sizeof (*new));
708 			}
709 			return;
710 		}
711 		upc = &(*upc)->up_next;
712 	}
713 
714 	/*
715 	 * There is no entry for this <uid,zoneid> pair.
716 	 * Allocate one.  If we have to drop pidlock, check
717 	 * again.
718 	 */
719 	if (new == NULL) {
720 		new = (struct upcount *)kmem_alloc(sizeof (*new), KM_NOSLEEP);
721 		if (new == NULL) {
722 			mutex_exit(&pidlock);
723 			new = (struct upcount *)kmem_alloc(sizeof (*new),
724 			    KM_SLEEP);
725 			mutex_enter(&pidlock);
726 			goto top;
727 		}
728 	}
729 
730 
731 	/*
732 	 * On the assumption that a new user is going to do some
733 	 * more forks, put the new upcount structure on the front.
734 	 */
735 	upc = hupc;
736 
737 	new->up_uid = uid;
738 	new->up_zoneid = zoneid;
739 	new->up_count = 1;
740 	new->up_next = *upc;
741 
742 	*upc = new;
743 }
744 
745 /*
746  * Decrement the number of processes a given uid and zoneid has.
747  */
748 void
749 upcount_dec(uid_t uid, zoneid_t zoneid)
750 {
751 	struct	upcount **upc;
752 	struct	upcount *done;
753 
754 	ASSERT(MUTEX_HELD(&pidlock));
755 
756 	upc = &upc_hash[UPC_HASH(uid, zoneid)];
757 	while ((*upc) != NULL) {
758 		if ((*upc)->up_uid == uid && (*upc)->up_zoneid == zoneid) {
759 			(*upc)->up_count--;
760 			if ((*upc)->up_count == 0) {
761 				done = *upc;
762 				*upc = (*upc)->up_next;
763 				kmem_free(done, sizeof (*done));
764 			}
765 			return;
766 		}
767 		upc = &(*upc)->up_next;
768 	}
769 	cmn_err(CE_PANIC, "decr_upcount-off the end");
770 }
771 
772 /*
773  * Returns the number of processes a uid has.
774  * Non-existent uid's are assumed to have no processes.
775  */
776 int
777 upcount_get(uid_t uid, zoneid_t zoneid)
778 {
779 	struct	upcount *upc;
780 
781 	ASSERT(MUTEX_HELD(&pidlock));
782 
783 	upc = upc_hash[UPC_HASH(uid, zoneid)];
784 	while (upc != NULL) {
785 		if (upc->up_uid == uid && upc->up_zoneid == zoneid) {
786 			return (upc->up_count);
787 		}
788 		upc = upc->up_next;
789 	}
790 	return (0);
791 }
792