1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Inter-Process Communication Message Facility. 34 * 35 * See os/ipc.c for a description of common IPC functionality. 36 * 37 * Resource controls 38 * ----------------- 39 * 40 * Control: zone.max-msg-ids (rc_zone_msgmni) 41 * Description: Maximum number of message queue ids allowed a zone. 42 * 43 * When msgget() is used to allocate a message queue, one id is 44 * allocated. If the id allocation doesn't succeed, msgget() fails 45 * and errno is set to ENOSPC. Upon successful msgctl(, IPC_RMID) 46 * the id is deallocated. 47 * 48 * Control: project.max-msg-ids (rc_project_msgmni) 49 * Description: Maximum number of message queue ids allowed a project. 50 * 51 * When msgget() is used to allocate a message queue, one id is 52 * allocated. If the id allocation doesn't succeed, msgget() fails 53 * and errno is set to ENOSPC. Upon successful msgctl(, IPC_RMID) 54 * the id is deallocated. 55 * 56 * Control: process.max-msg-qbytes (rc_process_msgmnb) 57 * Description: Maximum number of bytes of messages on a message queue. 58 * 59 * When msgget() successfully allocates a message queue, the minimum 60 * enforced value of this limit is used to initialize msg_qbytes. 61 * 62 * Control: process.max-msg-messages (rc_process_msgtql) 63 * Description: Maximum number of messages on a message queue. 64 * 65 * When msgget() successfully allocates a message queue, the minimum 66 * enforced value of this limit is used to initialize a per-queue 67 * limit on the number of messages. 68 */ 69 70 #include <sys/types.h> 71 #include <sys/t_lock.h> 72 #include <sys/param.h> 73 #include <sys/cred.h> 74 #include <sys/user.h> 75 #include <sys/proc.h> 76 #include <sys/time.h> 77 #include <sys/ipc.h> 78 #include <sys/ipc_impl.h> 79 #include <sys/msg.h> 80 #include <sys/msg_impl.h> 81 #include <sys/list.h> 82 #include <sys/systm.h> 83 #include <sys/sysmacros.h> 84 #include <sys/cpuvar.h> 85 #include <sys/kmem.h> 86 #include <sys/ddi.h> 87 #include <sys/errno.h> 88 #include <sys/cmn_err.h> 89 #include <sys/debug.h> 90 #include <sys/project.h> 91 #include <sys/modctl.h> 92 #include <sys/syscall.h> 93 #include <sys/policy.h> 94 #include <sys/zone.h> 95 96 #include <c2/audit.h> 97 98 /* 99 * The following tunables are obsolete. Though for compatibility we 100 * still read and interpret msginfo_msgmnb, msginfo_msgmni, and 101 * msginfo_msgtql (see os/project.c and os/rctl_proc.c), the preferred 102 * mechanism for administrating the IPC Message facility is through the 103 * resource controls described at the top of this file. 104 */ 105 size_t msginfo_msgmax = 2048; /* (obsolete) */ 106 size_t msginfo_msgmnb = 4096; /* (obsolete) */ 107 int msginfo_msgmni = 50; /* (obsolete) */ 108 int msginfo_msgtql = 40; /* (obsolete) */ 109 int msginfo_msgssz = 8; /* (obsolete) */ 110 int msginfo_msgmap = 0; /* (obsolete) */ 111 ushort_t msginfo_msgseg = 1024; /* (obsolete) */ 112 113 extern rctl_hndl_t rc_zone_msgmni; 114 extern rctl_hndl_t rc_project_msgmni; 115 extern rctl_hndl_t rc_process_msgmnb; 116 extern rctl_hndl_t rc_process_msgtql; 117 static ipc_service_t *msq_svc; 118 static zone_key_t msg_zone_key; 119 120 static void msg_dtor(kipc_perm_t *); 121 static void msg_rmid(kipc_perm_t *); 122 static void msg_remove_zone(zoneid_t, void *); 123 124 /* 125 * Module linkage information for the kernel. 126 */ 127 static ssize_t msgsys(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, 128 uintptr_t a4, uintptr_t a5); 129 130 static struct sysent ipcmsg_sysent = { 131 6, 132 #ifdef _LP64 133 SE_ARGC | SE_NOUNLOAD | SE_64RVAL, 134 #else 135 SE_ARGC | SE_NOUNLOAD | SE_32RVAL1, 136 #endif 137 (int (*)())msgsys 138 }; 139 140 #ifdef _SYSCALL32_IMPL 141 static ssize32_t msgsys32(int opcode, uint32_t a0, uint32_t a1, uint32_t a2, 142 uint32_t a4, uint32_t a5); 143 144 static struct sysent ipcmsg_sysent32 = { 145 6, 146 SE_ARGC | SE_NOUNLOAD | SE_32RVAL1, 147 (int (*)())msgsys32 148 }; 149 #endif /* _SYSCALL32_IMPL */ 150 151 static struct modlsys modlsys = { 152 &mod_syscallops, "System V message facility", &ipcmsg_sysent 153 }; 154 155 #ifdef _SYSCALL32_IMPL 156 static struct modlsys modlsys32 = { 157 &mod_syscallops32, "32-bit System V message facility", &ipcmsg_sysent32 158 }; 159 #endif 160 161 /* 162 * Big Theory statement for message queue correctness 163 * 164 * The msgrcv and msgsnd functions no longer uses cv_broadcast to wake up 165 * receivers who are waiting for an event. Using the cv_broadcast method 166 * resulted in negative scaling when the number of waiting receivers are large 167 * (the thundering herd problem). Instead, the receivers waiting to receive a 168 * message are now linked in a queue-like fashion and awaken one at a time in 169 * a controlled manner. 170 * 171 * Receivers can block on two different classes of waiting list: 172 * 1) "sendwait" list, which is the more complex list of the two. The 173 * receiver will be awakened by a sender posting a new message. There 174 * are two types of "sendwait" list used: 175 * a) msg_wait_snd: handles all receivers who are looking for 176 * a message type >= 0, but was unable to locate a match. 177 * 178 * slot 0: reserved for receivers that have designated they 179 * will take any message type. 180 * rest: consist of receivers requesting a specific type 181 * but the type was not present. The entries are 182 * hashed into a bucket in an attempt to keep 183 * any list search relatively short. 184 * b) msg_wait_snd_ngt: handles all receivers that have designated 185 * a negative message type. Unlike msg_wait_snd, the hash bucket 186 * serves a range of negative message types (-1 to -5, -6 to -10 187 * and so forth), where the last bucket is reserved for all the 188 * negative message types that hash outside of MSG_MAX_QNUM - 1. 189 * This is done this way to simplify the operation of locating a 190 * negative message type. 191 * 192 * 2) "copyout" list, where the receiver is awakened by another 193 * receiver after a message is copied out. This is a linked list 194 * of waiters that are awakened one at a time. Although the solution is 195 * not optimal, the complexity that would be added in for waking 196 * up the right entry far exceeds any potential pay back (too many 197 * correctness and corner case issues). 198 * 199 * The lists are doubly linked. In the case of the "sendwait" 200 * list, this allows the thread to remove itself from the list without having 201 * to traverse the list. In the case of the "copyout" list it simply allows 202 * us to use common functions with the "sendwait" list. 203 * 204 * To make sure receivers are not hung out to dry, we must guarantee: 205 * 1. If any queued message matches any receiver, then at least one 206 * matching receiver must be processing the request. 207 * 2. Blocking on the copyout queue is only temporary while messages 208 * are being copied out. The process is guaranted to wakeup 209 * when it gets to front of the queue (copyout is a FIFO). 210 * 211 * Rules for blocking and waking up: 212 * 1. A receiver entering msgrcv must examine all messages for a match 213 * before blocking on a sendwait queue. 214 * 2. If the receiver blocks because the message it chose is already 215 * being copied out, then when it wakes up needs to start start 216 * checking the messages from the beginning. 217 * 3) When ever a process returns from msgrcv for any reason, if it 218 * had attempted to copy a message or blocked waiting for a copy 219 * to complete it needs to wakeup the next receiver blocked on 220 * a copy out. 221 * 4) When a message is sent, the sender selects a process waiting 222 * for that type of message. This selection process rotates between 223 * receivers types of 0, negative and positive to prevent starvation of 224 * any one particular receiver type. 225 * 5) The following are the scenarios for processes that are awakened 226 * by a msgsnd: 227 * a) The process finds the message and is able to copy 228 * it out. Once complete, the process returns. 229 * b) The message that was sent that triggered the wakeup is no 230 * longer available (another process found the message first). 231 * We issue a wakeup on copy queue and then go back to 232 * sleep waiting for another matching message to be sent. 233 * c) The message that was supposed to be processed was 234 * already serviced by another process. However a different 235 * message is present which we can service. The message 236 * is copied and the process returns. 237 * d) The message is found, but some sort of error occurs that 238 * prevents the message from being copied. The receiver 239 * wakes up the next sender that can service this message 240 * type and returns an error to the caller. 241 * e) The message is found, but it is marked as being copied 242 * out. The receiver then goes to sleep on the copyout 243 * queue where it will be awakened again sometime in the future. 244 * 245 * 246 * 6) Whenever a message is found that matches the message type designated, 247 * but is being copied out we have to block on the copyout queue. 248 * After process copying finishes the copy out, it must wakeup (either 249 * directly or indirectly) all receivers who blocked on its copyout, 250 * so they are guaranteed a chance to examine the remaining messages. 251 * This is implemented via a chain of wakeups: Y wakes X, who wakes Z, 252 * and so on. The chain cannot be broken. This leads to the following 253 * cases: 254 * a) A receiver is finished copying the message (or encountered) 255 * an error), the first entry on the copyout queue is woken 256 * up. 257 * b) When the receiver is woken up, it attempts to locate 258 * a message type match. 259 * c) If a message type is found and 260 * -- MSG_RCVCOPY flag is not set, the message is 261 * marked for copying out. Regardless of the copyout 262 * success the next entry on the copyout queue is 263 * awakened and the operation is completed. 264 * -- MSG_RCVCOPY is set, we simply go back to sleep again 265 * on the copyout queue. 266 * d) If the message type is not found then we wakeup the next 267 * process on the copyout queue. 268 */ 269 270 static ulong_t msg_type_hash(long); 271 static int msgq_check_err(kmsqid_t *qp, int cvres); 272 static int msg_rcvq_sleep(list_t *, msgq_wakeup_t *, kmutex_t **, 273 kmsqid_t *); 274 static int msg_copyout(kmsqid_t *, long, kmutex_t **, size_t *, size_t, 275 struct msg *, struct ipcmsgbuf *, int); 276 static void msg_rcvq_wakeup_all(list_t *); 277 static void msg_wakeup_rdr(kmsqid_t *, msg_select_t **, long); 278 static msgq_wakeup_t *msg_fnd_any_snd(kmsqid_t *, int, long); 279 static msgq_wakeup_t *msg_fnd_any_rdr(kmsqid_t *, int, long); 280 static msgq_wakeup_t *msg_fnd_neg_snd(kmsqid_t *, int, long); 281 static msgq_wakeup_t *msg_fnd_spc_snd(kmsqid_t *, int, long); 282 static struct msg *msgrcv_lookup(kmsqid_t *, long); 283 284 msg_select_t msg_fnd_sndr[] = { 285 { msg_fnd_any_snd, &msg_fnd_sndr[1] }, 286 { msg_fnd_spc_snd, &msg_fnd_sndr[2] }, 287 { msg_fnd_neg_snd, &msg_fnd_sndr[0] } 288 }; 289 290 msg_select_t msg_fnd_rdr[1] = { 291 { msg_fnd_any_rdr, &msg_fnd_rdr[0] }, 292 }; 293 294 static struct modlinkage modlinkage = { 295 MODREV_1, 296 &modlsys, 297 #ifdef _SYSCALL32_IMPL 298 &modlsys32, 299 #endif 300 NULL 301 }; 302 303 304 int 305 _init(void) 306 { 307 int result; 308 309 msq_svc = ipcs_create("msqids", rc_project_msgmni, rc_zone_msgmni, 310 sizeof (kmsqid_t), msg_dtor, msg_rmid, AT_IPC_MSG, 311 offsetof(ipc_rqty_t, ipcq_msgmni)); 312 zone_key_create(&msg_zone_key, NULL, msg_remove_zone, NULL); 313 314 if ((result = mod_install(&modlinkage)) == 0) 315 return (0); 316 317 (void) zone_key_delete(msg_zone_key); 318 ipcs_destroy(msq_svc); 319 320 return (result); 321 } 322 323 int 324 _fini(void) 325 { 326 return (EBUSY); 327 } 328 329 int 330 _info(struct modinfo *modinfop) 331 { 332 return (mod_info(&modlinkage, modinfop)); 333 } 334 335 static void 336 msg_dtor(kipc_perm_t *perm) 337 { 338 kmsqid_t *qp = (kmsqid_t *)perm; 339 int ii; 340 341 for (ii = 0; ii <= MSG_MAX_QNUM; ii++) { 342 ASSERT(list_is_empty(&qp->msg_wait_snd[ii])); 343 ASSERT(list_is_empty(&qp->msg_wait_snd_ngt[ii])); 344 list_destroy(&qp->msg_wait_snd[ii]); 345 list_destroy(&qp->msg_wait_snd_ngt[ii]); 346 } 347 ASSERT(list_is_empty(&qp->msg_cpy_block)); 348 list_destroy(&qp->msg_cpy_block); 349 ASSERT(qp->msg_snd_cnt == 0); 350 ASSERT(qp->msg_cbytes == 0); 351 list_destroy(&qp->msg_list); 352 } 353 354 355 #define msg_hold(mp) (mp)->msg_copycnt++ 356 357 /* 358 * msg_rele - decrement the reference count on the message. When count 359 * reaches zero, free message header and contents. 360 */ 361 static void 362 msg_rele(struct msg *mp) 363 { 364 ASSERT(mp->msg_copycnt > 0); 365 if (mp->msg_copycnt-- == 1) { 366 if (mp->msg_addr) 367 kmem_free(mp->msg_addr, mp->msg_size); 368 kmem_free(mp, sizeof (struct msg)); 369 } 370 } 371 372 /* 373 * msgunlink - Unlink msg from queue, decrement byte count and wake up anyone 374 * waiting for free bytes on queue. 375 * 376 * Called with queue locked. 377 */ 378 static void 379 msgunlink(kmsqid_t *qp, struct msg *mp) 380 { 381 list_remove(&qp->msg_list, mp); 382 qp->msg_qnum--; 383 qp->msg_cbytes -= mp->msg_size; 384 msg_rele(mp); 385 386 /* Wake up waiting writers */ 387 if (qp->msg_snd_cnt) 388 cv_broadcast(&qp->msg_snd_cv); 389 } 390 391 static void 392 msg_rmid(kipc_perm_t *perm) 393 { 394 kmsqid_t *qp = (kmsqid_t *)perm; 395 struct msg *mp; 396 int ii; 397 398 399 while ((mp = list_head(&qp->msg_list)) != NULL) 400 msgunlink(qp, mp); 401 ASSERT(qp->msg_cbytes == 0); 402 403 /* 404 * Wake up everyone who is in a wait state of some sort 405 * for this message queue. 406 */ 407 for (ii = 0; ii <= MSG_MAX_QNUM; ii++) { 408 msg_rcvq_wakeup_all(&qp->msg_wait_snd[ii]); 409 msg_rcvq_wakeup_all(&qp->msg_wait_snd_ngt[ii]); 410 } 411 msg_rcvq_wakeup_all(&qp->msg_cpy_block); 412 if (qp->msg_snd_cnt) 413 cv_broadcast(&qp->msg_snd_cv); 414 } 415 416 /* 417 * msgctl system call. 418 * 419 * gets q lock (via ipc_lookup), releases before return. 420 * may call users of msg_lock 421 */ 422 static int 423 msgctl(int msgid, int cmd, void *arg) 424 { 425 STRUCT_DECL(msqid_ds, ds); /* SVR4 queue work area */ 426 kmsqid_t *qp; /* ptr to associated q */ 427 int error; 428 struct cred *cr; 429 model_t mdl = get_udatamodel(); 430 struct msqid_ds64 ds64; 431 kmutex_t *lock; 432 proc_t *pp = curproc; 433 434 STRUCT_INIT(ds, mdl); 435 cr = CRED(); 436 437 /* 438 * Perform pre- or non-lookup actions (e.g. copyins, RMID). 439 */ 440 switch (cmd) { 441 case IPC_SET: 442 if (copyin(arg, STRUCT_BUF(ds), STRUCT_SIZE(ds))) 443 return (set_errno(EFAULT)); 444 break; 445 446 case IPC_SET64: 447 if (copyin(arg, &ds64, sizeof (struct msqid_ds64))) 448 return (set_errno(EFAULT)); 449 break; 450 451 case IPC_RMID: 452 if (error = ipc_rmid(msq_svc, msgid, cr)) 453 return (set_errno(error)); 454 return (0); 455 } 456 457 /* 458 * get msqid_ds for this msgid 459 */ 460 if ((lock = ipc_lookup(msq_svc, msgid, (kipc_perm_t **)&qp)) == NULL) 461 return (set_errno(EINVAL)); 462 463 switch (cmd) { 464 case IPC_SET: 465 if (STRUCT_FGET(ds, msg_qbytes) > qp->msg_qbytes && 466 secpolicy_ipc_config(cr) != 0) { 467 mutex_exit(lock); 468 return (set_errno(EPERM)); 469 } 470 if (error = ipcperm_set(msq_svc, cr, &qp->msg_perm, 471 &STRUCT_BUF(ds)->msg_perm, mdl)) { 472 mutex_exit(lock); 473 return (set_errno(error)); 474 } 475 qp->msg_qbytes = STRUCT_FGET(ds, msg_qbytes); 476 qp->msg_ctime = gethrestime_sec(); 477 break; 478 479 case IPC_STAT: 480 if (error = ipcperm_access(&qp->msg_perm, MSG_R, cr)) { 481 mutex_exit(lock); 482 return (set_errno(error)); 483 } 484 485 if (qp->msg_rcv_cnt) 486 qp->msg_perm.ipc_mode |= MSG_RWAIT; 487 if (qp->msg_snd_cnt) 488 qp->msg_perm.ipc_mode |= MSG_WWAIT; 489 ipcperm_stat(&STRUCT_BUF(ds)->msg_perm, &qp->msg_perm, mdl); 490 qp->msg_perm.ipc_mode &= ~(MSG_RWAIT|MSG_WWAIT); 491 STRUCT_FSETP(ds, msg_first, NULL); /* kernel addr */ 492 STRUCT_FSETP(ds, msg_last, NULL); 493 STRUCT_FSET(ds, msg_cbytes, qp->msg_cbytes); 494 STRUCT_FSET(ds, msg_qnum, qp->msg_qnum); 495 STRUCT_FSET(ds, msg_qbytes, qp->msg_qbytes); 496 STRUCT_FSET(ds, msg_lspid, qp->msg_lspid); 497 STRUCT_FSET(ds, msg_lrpid, qp->msg_lrpid); 498 STRUCT_FSET(ds, msg_stime, qp->msg_stime); 499 STRUCT_FSET(ds, msg_rtime, qp->msg_rtime); 500 STRUCT_FSET(ds, msg_ctime, qp->msg_ctime); 501 break; 502 503 case IPC_SET64: 504 mutex_enter(&pp->p_lock); 505 if ((ds64.msgx_qbytes > qp->msg_qbytes) && 506 secpolicy_ipc_config(cr) != 0 && 507 rctl_test(rc_process_msgmnb, pp->p_rctls, pp, 508 ds64.msgx_qbytes, RCA_SAFE) & RCT_DENY) { 509 mutex_exit(&pp->p_lock); 510 mutex_exit(lock); 511 return (set_errno(EPERM)); 512 } 513 mutex_exit(&pp->p_lock); 514 if (error = ipcperm_set64(msq_svc, cr, &qp->msg_perm, 515 &ds64.msgx_perm)) { 516 mutex_exit(lock); 517 return (set_errno(error)); 518 } 519 qp->msg_qbytes = ds64.msgx_qbytes; 520 qp->msg_ctime = gethrestime_sec(); 521 break; 522 523 case IPC_STAT64: 524 if (qp->msg_rcv_cnt) 525 qp->msg_perm.ipc_mode |= MSG_RWAIT; 526 if (qp->msg_snd_cnt) 527 qp->msg_perm.ipc_mode |= MSG_WWAIT; 528 ipcperm_stat64(&ds64.msgx_perm, &qp->msg_perm); 529 qp->msg_perm.ipc_mode &= ~(MSG_RWAIT|MSG_WWAIT); 530 ds64.msgx_cbytes = qp->msg_cbytes; 531 ds64.msgx_qnum = qp->msg_qnum; 532 ds64.msgx_qbytes = qp->msg_qbytes; 533 ds64.msgx_lspid = qp->msg_lspid; 534 ds64.msgx_lrpid = qp->msg_lrpid; 535 ds64.msgx_stime = qp->msg_stime; 536 ds64.msgx_rtime = qp->msg_rtime; 537 ds64.msgx_ctime = qp->msg_ctime; 538 break; 539 540 default: 541 mutex_exit(lock); 542 return (set_errno(EINVAL)); 543 } 544 545 mutex_exit(lock); 546 547 /* 548 * Do copyout last (after releasing mutex). 549 */ 550 switch (cmd) { 551 case IPC_STAT: 552 if (copyout(STRUCT_BUF(ds), arg, STRUCT_SIZE(ds))) 553 return (set_errno(EFAULT)); 554 break; 555 556 case IPC_STAT64: 557 if (copyout(&ds64, arg, sizeof (struct msqid_ds64))) 558 return (set_errno(EFAULT)); 559 break; 560 } 561 562 return (0); 563 } 564 565 /* 566 * Remove all message queues associated with a given zone. Called by 567 * zone_shutdown when the zone is halted. 568 */ 569 /*ARGSUSED1*/ 570 static void 571 msg_remove_zone(zoneid_t zoneid, void *arg) 572 { 573 ipc_remove_zone(msq_svc, zoneid); 574 } 575 576 /* 577 * msgget system call. 578 */ 579 static int 580 msgget(key_t key, int msgflg) 581 { 582 kmsqid_t *qp; 583 kmutex_t *lock; 584 int id, error; 585 int ii; 586 proc_t *pp = curproc; 587 588 top: 589 if (error = ipc_get(msq_svc, key, msgflg, (kipc_perm_t **)&qp, &lock)) 590 return (set_errno(error)); 591 592 if (IPC_FREE(&qp->msg_perm)) { 593 mutex_exit(lock); 594 mutex_exit(&pp->p_lock); 595 596 list_create(&qp->msg_list, sizeof (struct msg), 597 offsetof(struct msg, msg_node)); 598 qp->msg_qnum = 0; 599 qp->msg_lspid = qp->msg_lrpid = 0; 600 qp->msg_stime = qp->msg_rtime = 0; 601 qp->msg_ctime = gethrestime_sec(); 602 qp->msg_ngt_cnt = 0; 603 qp->msg_neg_copy = 0; 604 for (ii = 0; ii <= MSG_MAX_QNUM; ii++) { 605 list_create(&qp->msg_wait_snd[ii], 606 sizeof (msgq_wakeup_t), 607 offsetof(msgq_wakeup_t, msgw_list)); 608 list_create(&qp->msg_wait_snd_ngt[ii], 609 sizeof (msgq_wakeup_t), 610 offsetof(msgq_wakeup_t, msgw_list)); 611 } 612 /* 613 * The proper initialization of msg_lowest_type is to the 614 * highest possible value. By doing this we guarantee that 615 * when the first send happens, the lowest type will be set 616 * properly. 617 */ 618 qp->msg_lowest_type = -1; 619 list_create(&qp->msg_cpy_block, 620 sizeof (msgq_wakeup_t), 621 offsetof(msgq_wakeup_t, msgw_list)); 622 qp->msg_fnd_sndr = &msg_fnd_sndr[0]; 623 qp->msg_fnd_rdr = &msg_fnd_rdr[0]; 624 qp->msg_rcv_cnt = 0; 625 qp->msg_snd_cnt = 0; 626 627 if (error = ipc_commit_begin(msq_svc, key, msgflg, 628 (kipc_perm_t *)qp)) { 629 if (error == EAGAIN) 630 goto top; 631 return (set_errno(error)); 632 } 633 qp->msg_qbytes = rctl_enforced_value(rc_process_msgmnb, 634 pp->p_rctls, pp); 635 qp->msg_qmax = rctl_enforced_value(rc_process_msgtql, 636 pp->p_rctls, pp); 637 lock = ipc_commit_end(msq_svc, &qp->msg_perm); 638 } 639 if (audit_active) 640 audit_ipcget(AT_IPC_MSG, (void *)qp); 641 id = qp->msg_perm.ipc_id; 642 mutex_exit(lock); 643 return (id); 644 } 645 646 static ssize_t 647 msgrcv(int msqid, struct ipcmsgbuf *msgp, size_t msgsz, long msgtyp, int msgflg) 648 { 649 struct msg *smp; /* ptr to best msg on q */ 650 kmsqid_t *qp; /* ptr to associated q */ 651 kmutex_t *lock; 652 size_t xtsz; /* transfer byte count */ 653 int error = 0; 654 int cvres; 655 ulong_t msg_hash; 656 msgq_wakeup_t msg_entry; 657 658 CPU_STATS_ADDQ(CPU, sys, msg, 1); /* bump msg send/rcv count */ 659 660 msg_hash = msg_type_hash(msgtyp); 661 if ((lock = ipc_lookup(msq_svc, msqid, (kipc_perm_t **)&qp)) == NULL) { 662 return ((ssize_t)set_errno(EINVAL)); 663 } 664 ipc_hold(msq_svc, (kipc_perm_t *)qp); 665 666 if (error = ipcperm_access(&qp->msg_perm, MSG_R, CRED())) { 667 goto msgrcv_out; 668 } 669 670 /* 671 * Various information (including the condvar_t) required for the 672 * process to sleep is provided by it's stack. 673 */ 674 msg_entry.msgw_thrd = curthread; 675 msg_entry.msgw_snd_wake = 0; 676 msg_entry.msgw_type = msgtyp; 677 findmsg: 678 smp = msgrcv_lookup(qp, msgtyp); 679 680 if (smp) { 681 /* 682 * We found a possible message to copy out. 683 */ 684 if ((smp->msg_flags & MSG_RCVCOPY) == 0) { 685 /* 686 * It is available, attempt to copy it. 687 */ 688 error = msg_copyout(qp, msgtyp, &lock, &xtsz, msgsz, 689 smp, msgp, msgflg); 690 /* 691 * Don't forget to wakeup a sleeper that blocked because 692 * we were copying things out. 693 */ 694 msg_wakeup_rdr(qp, &qp->msg_fnd_rdr, 0); 695 goto msgrcv_out; 696 } 697 /* 698 * The selected message is being copied out, so block. We do 699 * not need to wake the next person up on the msg_cpy_block list 700 * due to the fact some one is copying out and they will get 701 * things moving again once the copy is completed. 702 */ 703 cvres = msg_rcvq_sleep(&qp->msg_cpy_block, 704 &msg_entry, &lock, qp); 705 error = msgq_check_err(qp, cvres); 706 if (error) { 707 goto msgrcv_out; 708 } 709 goto findmsg; 710 } 711 /* 712 * There isn't a message to copy out that matches the designated 713 * criteria. 714 */ 715 if (msgflg & IPC_NOWAIT) { 716 error = ENOMSG; 717 goto msgrcv_out; 718 } 719 msg_wakeup_rdr(qp, &qp->msg_fnd_rdr, 0); 720 721 /* 722 * Wait for new message. We keep the negative and positive types 723 * separate for performance reasons. 724 */ 725 msg_entry.msgw_snd_wake = 0; 726 if (msgtyp >= 0) { 727 cvres = msg_rcvq_sleep(&qp->msg_wait_snd[msg_hash], 728 &msg_entry, &lock, qp); 729 } else { 730 qp->msg_ngt_cnt++; 731 cvres = msg_rcvq_sleep(&qp->msg_wait_snd_ngt[msg_hash], 732 &msg_entry, &lock, qp); 733 qp->msg_ngt_cnt--; 734 } 735 736 if (!(error = msgq_check_err(qp, cvres))) { 737 goto findmsg; 738 } 739 740 msgrcv_out: 741 if (error) { 742 msg_wakeup_rdr(qp, &qp->msg_fnd_rdr, 0); 743 if (msg_entry.msgw_snd_wake) { 744 msg_wakeup_rdr(qp, &qp->msg_fnd_sndr, 745 msg_entry.msgw_snd_wake); 746 } 747 ipc_rele(msq_svc, (kipc_perm_t *)qp); 748 return ((ssize_t)set_errno(error)); 749 } 750 ipc_rele(msq_svc, (kipc_perm_t *)qp); 751 return ((ssize_t)xtsz); 752 } 753 754 static int 755 msgq_check_err(kmsqid_t *qp, int cvres) 756 { 757 if (IPC_FREE(&qp->msg_perm)) { 758 return (EIDRM); 759 } 760 761 if (cvres == 0) { 762 return (EINTR); 763 } 764 765 return (0); 766 } 767 768 static int 769 msg_copyout(kmsqid_t *qp, long msgtyp, kmutex_t **lock, size_t *xtsz_ret, 770 size_t msgsz, struct msg *smp, struct ipcmsgbuf *msgp, int msgflg) 771 { 772 size_t xtsz; 773 STRUCT_HANDLE(ipcmsgbuf, umsgp); 774 model_t mdl = get_udatamodel(); 775 int copyerror = 0; 776 777 STRUCT_SET_HANDLE(umsgp, mdl, msgp); 778 if (msgsz < smp->msg_size) { 779 if ((msgflg & MSG_NOERROR) == 0) { 780 return (E2BIG); 781 } else { 782 xtsz = msgsz; 783 } 784 } else { 785 xtsz = smp->msg_size; 786 } 787 *xtsz_ret = xtsz; 788 789 /* 790 * To prevent a DOS attack we mark the message as being 791 * copied out and release mutex. When the copy is completed 792 * we need to acquire the mutex and make the appropriate updates. 793 */ 794 ASSERT((smp->msg_flags & MSG_RCVCOPY) == 0); 795 smp->msg_flags |= MSG_RCVCOPY; 796 msg_hold(smp); 797 if (msgtyp < 0) { 798 ASSERT(qp->msg_neg_copy == 0); 799 qp->msg_neg_copy = 1; 800 } 801 mutex_exit(*lock); 802 803 if (mdl == DATAMODEL_NATIVE) { 804 copyerror = copyout(&smp->msg_type, msgp, 805 sizeof (smp->msg_type)); 806 } else { 807 /* 808 * 32-bit callers need an imploded msg type. 809 */ 810 int32_t msg_type32 = smp->msg_type; 811 812 copyerror = copyout(&msg_type32, msgp, 813 sizeof (msg_type32)); 814 } 815 816 if (copyerror == 0 && xtsz) { 817 copyerror = copyout(smp->msg_addr, 818 STRUCT_FADDR(umsgp, mtext), xtsz); 819 } 820 821 /* 822 * Reclaim the mutex and make sure the message queue still exists. 823 */ 824 825 *lock = ipc_lock(msq_svc, qp->msg_perm.ipc_id); 826 if (msgtyp < 0) { 827 qp->msg_neg_copy = 0; 828 } 829 ASSERT(smp->msg_flags & MSG_RCVCOPY); 830 smp->msg_flags &= ~MSG_RCVCOPY; 831 msg_rele(smp); 832 if (IPC_FREE(&qp->msg_perm)) { 833 return (EIDRM); 834 } 835 if (copyerror) { 836 return (EFAULT); 837 } 838 qp->msg_lrpid = ttoproc(curthread)->p_pid; 839 qp->msg_rtime = gethrestime_sec(); 840 msgunlink(qp, smp); 841 return (0); 842 } 843 844 static struct msg * 845 msgrcv_lookup(kmsqid_t *qp, long msgtyp) 846 { 847 struct msg *smp = NULL; 848 int qp_low; 849 struct msg *mp; /* ptr to msg on q */ 850 int low_msgtype; 851 static struct msg neg_copy_smp; 852 853 mp = list_head(&qp->msg_list); 854 if (msgtyp == 0) { 855 smp = mp; 856 } else { 857 qp_low = qp->msg_lowest_type; 858 if (msgtyp > 0) { 859 /* 860 * If our lowest possible message type is larger than 861 * the message type desired, then we know there is 862 * no entry present. 863 */ 864 if (qp_low > msgtyp) { 865 return (NULL); 866 } 867 868 for (; mp; mp = list_next(&qp->msg_list, mp)) { 869 if (msgtyp == mp->msg_type) { 870 smp = mp; 871 break; 872 } 873 } 874 } else { 875 /* 876 * We have kept track of the lowest possible message 877 * type on the send queue. This allows us to terminate 878 * the search early if we find a message type of that 879 * type. Note, the lowest type may not be the actual 880 * lowest value in the system, it is only guaranteed 881 * that there isn't a value lower than that. 882 */ 883 low_msgtype = -msgtyp; 884 if (low_msgtype++ < qp_low) { 885 return (NULL); 886 } 887 if (qp->msg_neg_copy) { 888 neg_copy_smp.msg_flags = MSG_RCVCOPY; 889 return (&neg_copy_smp); 890 } 891 for (; mp; mp = list_next(&qp->msg_list, mp)) { 892 if (mp->msg_type < low_msgtype) { 893 smp = mp; 894 low_msgtype = mp->msg_type; 895 if (low_msgtype == qp_low) { 896 break; 897 } 898 } 899 } 900 if (smp) { 901 /* 902 * Update the lowest message type. 903 */ 904 qp->msg_lowest_type = smp->msg_type; 905 } 906 } 907 } 908 return (smp); 909 } 910 911 /* 912 * msgids system call. 913 */ 914 static int 915 msgids(int *buf, uint_t nids, uint_t *pnids) 916 { 917 int error; 918 919 if (error = ipc_ids(msq_svc, buf, nids, pnids)) 920 return (set_errno(error)); 921 922 return (0); 923 } 924 925 #define RND(x) roundup((x), sizeof (size_t)) 926 #define RND32(x) roundup((x), sizeof (size32_t)) 927 928 /* 929 * msgsnap system call. 930 */ 931 static int 932 msgsnap(int msqid, caddr_t buf, size_t bufsz, long msgtyp) 933 { 934 struct msg *mp; /* ptr to msg on q */ 935 kmsqid_t *qp; /* ptr to associated q */ 936 kmutex_t *lock; 937 size_t size; 938 size_t nmsg; 939 struct msg **snaplist; 940 int error, i; 941 model_t mdl = get_udatamodel(); 942 STRUCT_DECL(msgsnap_head, head); 943 STRUCT_DECL(msgsnap_mhead, mhead); 944 945 STRUCT_INIT(head, mdl); 946 STRUCT_INIT(mhead, mdl); 947 948 if (bufsz < STRUCT_SIZE(head)) 949 return (set_errno(EINVAL)); 950 951 if ((lock = ipc_lookup(msq_svc, msqid, (kipc_perm_t **)&qp)) == NULL) 952 return (set_errno(EINVAL)); 953 954 if (error = ipcperm_access(&qp->msg_perm, MSG_R, CRED())) { 955 mutex_exit(lock); 956 return (set_errno(error)); 957 } 958 ipc_hold(msq_svc, (kipc_perm_t *)qp); 959 960 /* 961 * First compute the required buffer size and 962 * the number of messages on the queue. 963 */ 964 size = nmsg = 0; 965 for (mp = list_head(&qp->msg_list); mp; 966 mp = list_next(&qp->msg_list, mp)) { 967 if (msgtyp == 0 || 968 (msgtyp > 0 && msgtyp == mp->msg_type) || 969 (msgtyp < 0 && mp->msg_type <= -msgtyp)) { 970 nmsg++; 971 if (mdl == DATAMODEL_NATIVE) 972 size += RND(mp->msg_size); 973 else 974 size += RND32(mp->msg_size); 975 } 976 } 977 978 size += STRUCT_SIZE(head) + nmsg * STRUCT_SIZE(mhead); 979 if (size > bufsz) 980 nmsg = 0; 981 982 if (nmsg > 0) { 983 /* 984 * Mark the messages as being copied. 985 */ 986 snaplist = (struct msg **)kmem_alloc(nmsg * 987 sizeof (struct msg *), KM_SLEEP); 988 i = 0; 989 for (mp = list_head(&qp->msg_list); mp; 990 mp = list_next(&qp->msg_list, mp)) { 991 if (msgtyp == 0 || 992 (msgtyp > 0 && msgtyp == mp->msg_type) || 993 (msgtyp < 0 && mp->msg_type <= -msgtyp)) { 994 msg_hold(mp); 995 snaplist[i] = mp; 996 i++; 997 } 998 } 999 } 1000 mutex_exit(lock); 1001 1002 /* 1003 * Copy out the buffer header. 1004 */ 1005 STRUCT_FSET(head, msgsnap_size, size); 1006 STRUCT_FSET(head, msgsnap_nmsg, nmsg); 1007 if (copyout(STRUCT_BUF(head), buf, STRUCT_SIZE(head))) 1008 error = EFAULT; 1009 1010 buf += STRUCT_SIZE(head); 1011 1012 /* 1013 * Now copy out the messages one by one. 1014 */ 1015 for (i = 0; i < nmsg; i++) { 1016 mp = snaplist[i]; 1017 if (error == 0) { 1018 STRUCT_FSET(mhead, msgsnap_mlen, mp->msg_size); 1019 STRUCT_FSET(mhead, msgsnap_mtype, mp->msg_type); 1020 if (copyout(STRUCT_BUF(mhead), buf, STRUCT_SIZE(mhead))) 1021 error = EFAULT; 1022 buf += STRUCT_SIZE(mhead); 1023 1024 if (error == 0 && 1025 mp->msg_size != 0 && 1026 copyout(mp->msg_addr, buf, mp->msg_size)) 1027 error = EFAULT; 1028 if (mdl == DATAMODEL_NATIVE) 1029 buf += RND(mp->msg_size); 1030 else 1031 buf += RND32(mp->msg_size); 1032 } 1033 lock = ipc_lock(msq_svc, qp->msg_perm.ipc_id); 1034 msg_rele(mp); 1035 /* Check for msg q deleted or reallocated */ 1036 if (IPC_FREE(&qp->msg_perm)) 1037 error = EIDRM; 1038 mutex_exit(lock); 1039 } 1040 1041 (void) ipc_lock(msq_svc, qp->msg_perm.ipc_id); 1042 ipc_rele(msq_svc, (kipc_perm_t *)qp); 1043 1044 if (nmsg > 0) 1045 kmem_free(snaplist, nmsg * sizeof (struct msg *)); 1046 1047 if (error) 1048 return (set_errno(error)); 1049 return (0); 1050 } 1051 1052 #define MSG_PREALLOC_LIMIT 8192 1053 1054 /* 1055 * msgsnd system call. 1056 */ 1057 static int 1058 msgsnd(int msqid, struct ipcmsgbuf *msgp, size_t msgsz, int msgflg) 1059 { 1060 kmsqid_t *qp; 1061 kmutex_t *lock = NULL; 1062 struct msg *mp = NULL; 1063 long type; 1064 int error = 0; 1065 model_t mdl = get_udatamodel(); 1066 STRUCT_HANDLE(ipcmsgbuf, umsgp); 1067 1068 CPU_STATS_ADDQ(CPU, sys, msg, 1); /* bump msg send/rcv count */ 1069 STRUCT_SET_HANDLE(umsgp, mdl, msgp); 1070 1071 if (mdl == DATAMODEL_NATIVE) { 1072 if (copyin(msgp, &type, sizeof (type))) 1073 return (set_errno(EFAULT)); 1074 } else { 1075 int32_t type32; 1076 if (copyin(msgp, &type32, sizeof (type32))) 1077 return (set_errno(EFAULT)); 1078 type = type32; 1079 } 1080 1081 if (type < 1) 1082 return (set_errno(EINVAL)); 1083 1084 /* 1085 * We want the value here large enough that most of the 1086 * the message operations will use the "lockless" path, 1087 * but small enough that a user can not reserve large 1088 * chunks of kernel memory unless they have a valid 1089 * reason to. 1090 */ 1091 if (msgsz <= MSG_PREALLOC_LIMIT) { 1092 /* 1093 * We are small enough that we can afford to do the 1094 * allocation now. This saves dropping the lock 1095 * and then reacquiring the lock. 1096 */ 1097 mp = kmem_zalloc(sizeof (struct msg), KM_SLEEP); 1098 mp->msg_copycnt = 1; 1099 mp->msg_size = msgsz; 1100 if (msgsz) { 1101 mp->msg_addr = kmem_alloc(msgsz, KM_SLEEP); 1102 if (copyin(STRUCT_FADDR(umsgp, mtext), 1103 mp->msg_addr, msgsz) == -1) { 1104 error = EFAULT; 1105 goto msgsnd_out; 1106 } 1107 } 1108 } 1109 1110 if ((lock = ipc_lookup(msq_svc, msqid, (kipc_perm_t **)&qp)) == NULL) { 1111 error = EINVAL; 1112 goto msgsnd_out; 1113 } 1114 1115 ipc_hold(msq_svc, (kipc_perm_t *)qp); 1116 1117 if (msgsz > qp->msg_qbytes) { 1118 error = EINVAL; 1119 goto msgsnd_out; 1120 } 1121 1122 if (error = ipcperm_access(&qp->msg_perm, MSG_W, CRED())) 1123 goto msgsnd_out; 1124 1125 top: 1126 /* 1127 * Allocate space on q, message header, & buffer space. 1128 */ 1129 ASSERT(qp->msg_qnum <= qp->msg_qmax); 1130 while ((msgsz > qp->msg_qbytes - qp->msg_cbytes) || 1131 (qp->msg_qnum == qp->msg_qmax)) { 1132 int cvres; 1133 1134 if (msgflg & IPC_NOWAIT) { 1135 error = EAGAIN; 1136 goto msgsnd_out; 1137 } 1138 1139 qp->msg_snd_cnt++; 1140 cvres = cv_wait_sig(&qp->msg_snd_cv, lock); 1141 lock = ipc_relock(msq_svc, qp->msg_perm.ipc_id, lock); 1142 qp->msg_snd_cnt--; 1143 1144 if (error = msgq_check_err(qp, cvres)) { 1145 goto msgsnd_out; 1146 } 1147 } 1148 1149 if (mp == NULL) { 1150 int failure; 1151 1152 mutex_exit(lock); 1153 ASSERT(msgsz > 0); 1154 mp = kmem_zalloc(sizeof (struct msg), KM_SLEEP); 1155 mp->msg_addr = kmem_alloc(msgsz, KM_SLEEP); 1156 mp->msg_size = msgsz; 1157 mp->msg_copycnt = 1; 1158 1159 failure = (copyin(STRUCT_FADDR(umsgp, mtext), 1160 mp->msg_addr, msgsz) == -1); 1161 lock = ipc_lock(msq_svc, qp->msg_perm.ipc_id); 1162 if (IPC_FREE(&qp->msg_perm)) { 1163 error = EIDRM; 1164 goto msgsnd_out; 1165 } 1166 if (failure) { 1167 error = EFAULT; 1168 goto msgsnd_out; 1169 } 1170 goto top; 1171 } 1172 1173 /* 1174 * Everything is available, put msg on q. 1175 */ 1176 qp->msg_qnum++; 1177 qp->msg_cbytes += msgsz; 1178 qp->msg_lspid = curproc->p_pid; 1179 qp->msg_stime = gethrestime_sec(); 1180 mp->msg_type = type; 1181 if (qp->msg_lowest_type > type) 1182 qp->msg_lowest_type = type; 1183 list_insert_tail(&qp->msg_list, mp); 1184 /* 1185 * Get the proper receiver going. 1186 */ 1187 msg_wakeup_rdr(qp, &qp->msg_fnd_sndr, type); 1188 1189 msgsnd_out: 1190 if (lock) 1191 ipc_rele(msq_svc, (kipc_perm_t *)qp); /* drops lock */ 1192 1193 if (error) { 1194 if (mp) 1195 msg_rele(mp); 1196 return (set_errno(error)); 1197 } 1198 1199 return (0); 1200 } 1201 1202 static void 1203 msg_wakeup_rdr(kmsqid_t *qp, msg_select_t **flist, long type) 1204 { 1205 msg_select_t *walker = *flist; 1206 msgq_wakeup_t *wakeup; 1207 ulong_t msg_hash; 1208 1209 msg_hash = msg_type_hash(type); 1210 1211 do { 1212 wakeup = walker->selection(qp, msg_hash, type); 1213 walker = walker->next_selection; 1214 } while (!wakeup && walker != *flist); 1215 1216 *flist = (*flist)->next_selection; 1217 if (wakeup) { 1218 if (type) { 1219 wakeup->msgw_snd_wake = type; 1220 } 1221 cv_signal(&wakeup->msgw_wake_cv); 1222 } 1223 } 1224 1225 static ulong_t 1226 msg_type_hash(long msg_type) 1227 { 1228 long temp; 1229 ulong_t hash; 1230 1231 if (msg_type < 0) { 1232 /* 1233 * Negative message types are hashed over an 1234 * interval. Any message type that hashes 1235 * beyond MSG_MAX_QNUM is automatically placed 1236 * in the last bucket. 1237 */ 1238 temp = -msg_type; 1239 hash = temp / MSG_NEG_INTERVAL; 1240 if (hash > MSG_MAX_QNUM) { 1241 hash = MSG_MAX_QNUM; 1242 } 1243 return (hash); 1244 } 1245 1246 /* 1247 * 0 or positive message type. The first bucket is reserved for 1248 * message receivers of type 0, the other buckets we hash into. 1249 */ 1250 if (msg_type) { 1251 return (1 + (msg_type % (MSG_MAX_QNUM))); 1252 } 1253 return (0); 1254 } 1255 1256 /* 1257 * Routines to see if we have a receiver of type 0 either blocked waiting 1258 * for a message. Simply return the first guy on the list. 1259 */ 1260 1261 static msgq_wakeup_t * 1262 /* LINTED */ 1263 msg_fnd_any_snd(kmsqid_t *qp, int msg_hash, long type) 1264 { 1265 return (list_head(&qp->msg_wait_snd[0])); 1266 } 1267 1268 static msgq_wakeup_t * 1269 /* LINTED */ 1270 msg_fnd_any_rdr(kmsqid_t *qp, int msg_hash, long type) 1271 { 1272 return (list_head(&qp->msg_cpy_block)); 1273 } 1274 1275 static msgq_wakeup_t * 1276 msg_fnd_spc_snd(kmsqid_t *qp, int msg_hash, long type) 1277 { 1278 msgq_wakeup_t *walker; 1279 1280 walker = list_head(&qp->msg_wait_snd[msg_hash]); 1281 1282 while (walker && walker->msgw_type != type && 1283 (walker = list_next(&qp->msg_wait_snd[msg_hash], walker))) 1284 continue; 1285 return (walker); 1286 } 1287 1288 static msgq_wakeup_t * 1289 msg_fnd_neg_snd(kmsqid_t *qp, int msg_hash, long type) 1290 { 1291 msgq_wakeup_t *qptr; 1292 int count; 1293 int check_index; 1294 int neg_index; 1295 int nbuckets; 1296 1297 if (!qp->msg_ngt_cnt) { 1298 return (NULL); 1299 } 1300 neg_index = msg_type_hash(-type); 1301 1302 /* 1303 * Check for a match among the negative type queues. Any buckets 1304 * at neg_index or larger can match the type. Use the last send 1305 * time to randomize the starting bucket to prevent starvation. 1306 * Search all buckets from neg_index to MSG_MAX_QNUM, starting 1307 * from the random starting point, and wrapping around after 1308 * MSG_MAX_QNUM. 1309 */ 1310 1311 nbuckets = MSG_MAX_QNUM - neg_index + 1; 1312 check_index = neg_index + (qp->msg_stime % nbuckets); 1313 1314 for (count = nbuckets; count > 0; count--) { 1315 qptr = list_head(&qp->msg_wait_snd_ngt[check_index]); 1316 while (qptr) { 1317 /* 1318 * The lowest hash bucket may actually contain 1319 * message types that are not valid for this 1320 * request. This can happen due to the fact that 1321 * the message buckets actually contain a consecutive 1322 * range of types. 1323 */ 1324 if (-qptr->msgw_type >= type) { 1325 return (qptr); 1326 } 1327 qptr = list_next(&qp->msg_wait_snd_ngt[msg_hash], qptr); 1328 } 1329 1330 if (++check_index > MSG_MAX_QNUM) { 1331 check_index = neg_index; 1332 } 1333 } 1334 return (NULL); 1335 } 1336 1337 static int 1338 msg_rcvq_sleep(list_t *queue, msgq_wakeup_t *entry, kmutex_t **lock, 1339 kmsqid_t *qp) 1340 { 1341 int cvres; 1342 1343 cv_init(&entry->msgw_wake_cv, NULL, 0, NULL); 1344 1345 list_insert_tail(queue, entry); 1346 1347 qp->msg_rcv_cnt++; 1348 cvres = cv_wait_sig(&entry->msgw_wake_cv, *lock); 1349 *lock = ipc_relock(msq_svc, qp->msg_perm.ipc_id, *lock); 1350 qp->msg_rcv_cnt--; 1351 /* 1352 * We have woken up, so remove ourselves from the waiter list. 1353 */ 1354 list_remove(queue, entry); 1355 1356 return (cvres); 1357 } 1358 1359 static void 1360 msg_rcvq_wakeup_all(list_t *q_ptr) 1361 { 1362 msgq_wakeup_t *q_walk; 1363 1364 q_walk = (msgq_wakeup_t *)list_head(q_ptr); 1365 while (q_walk) { 1366 /* 1367 * Walk the entire list, wake every process up. 1368 */ 1369 cv_signal(&q_walk->msgw_wake_cv); 1370 q_walk = list_next(q_ptr, q_walk); 1371 } 1372 } 1373 1374 /* 1375 * msgsys - System entry point for msgctl, msgget, msgrcv, and msgsnd 1376 * system calls. 1377 */ 1378 static ssize_t 1379 msgsys(int opcode, uintptr_t a1, uintptr_t a2, uintptr_t a3, 1380 uintptr_t a4, uintptr_t a5) 1381 { 1382 ssize_t error; 1383 1384 switch (opcode) { 1385 case MSGGET: 1386 error = msgget((key_t)a1, (int)a2); 1387 break; 1388 case MSGCTL: 1389 error = msgctl((int)a1, (int)a2, (void *)a3); 1390 break; 1391 case MSGRCV: 1392 error = msgrcv((int)a1, (struct ipcmsgbuf *)a2, 1393 (size_t)a3, (long)a4, (int)a5); 1394 break; 1395 case MSGSND: 1396 error = msgsnd((int)a1, (struct ipcmsgbuf *)a2, 1397 (size_t)a3, (int)a4); 1398 break; 1399 case MSGIDS: 1400 error = msgids((int *)a1, (uint_t)a2, (uint_t *)a3); 1401 break; 1402 case MSGSNAP: 1403 error = msgsnap((int)a1, (caddr_t)a2, (size_t)a3, (long)a4); 1404 break; 1405 default: 1406 error = set_errno(EINVAL); 1407 break; 1408 } 1409 1410 return (error); 1411 } 1412 1413 #ifdef _SYSCALL32_IMPL 1414 /* 1415 * msgsys32 - System entry point for msgctl, msgget, msgrcv, and msgsnd 1416 * system calls for 32-bit callers on LP64 kernel. 1417 */ 1418 static ssize32_t 1419 msgsys32(int opcode, uint32_t a1, uint32_t a2, uint32_t a3, 1420 uint32_t a4, uint32_t a5) 1421 { 1422 ssize_t error; 1423 1424 switch (opcode) { 1425 case MSGGET: 1426 error = msgget((key_t)a1, (int)a2); 1427 break; 1428 case MSGCTL: 1429 error = msgctl((int)a1, (int)a2, (void *)(uintptr_t)a3); 1430 break; 1431 case MSGRCV: 1432 error = msgrcv((int)a1, (struct ipcmsgbuf *)(uintptr_t)a2, 1433 (size_t)a3, (long)(int32_t)a4, (int)a5); 1434 break; 1435 case MSGSND: 1436 error = msgsnd((int)a1, (struct ipcmsgbuf *)(uintptr_t)a2, 1437 (size_t)(int32_t)a3, (int)a4); 1438 break; 1439 case MSGIDS: 1440 error = msgids((int *)(uintptr_t)a1, (uint_t)a2, 1441 (uint_t *)(uintptr_t)a3); 1442 break; 1443 case MSGSNAP: 1444 error = msgsnap((int)a1, (caddr_t)(uintptr_t)a2, (size_t)a3, 1445 (long)(int32_t)a4); 1446 break; 1447 default: 1448 error = set_errno(EINVAL); 1449 break; 1450 } 1451 1452 return (error); 1453 } 1454 #endif /* SYSCALL32_IMPL */ 1455