xref: /illumos-gate/usr/src/uts/common/os/msacct.c (revision c5749750a3e052f1194f65a303456224c51dea63)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (c) 2018, Joyent, Inc.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/user.h>
31 #include <sys/proc.h>
32 #include <sys/cpuvar.h>
33 #include <sys/thread.h>
34 #include <sys/debug.h>
35 #include <sys/msacct.h>
36 #include <sys/time.h>
37 #include <sys/zone.h>
38 
39 /*
40  * Mega-theory block comment:
41  *
42  * Microstate accounting uses finite states and the transitions between these
43  * states to measure timing and accounting information.  The state information
44  * is presently tracked for threads (via microstate accounting) and cpus (via
45  * cpu microstate accounting).  In each case, these accounting mechanisms use
46  * states and transitions to measure time spent in each state instead of
47  * clock-based sampling methodologies.
48  *
49  * For microstate accounting:
50  * state transitions are accomplished by calling new_mstate() to switch between
51  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
52  * by calling restore_mstate() which restores a thread to its previously running
53  * state.  This code is primarialy executed by the dispatcher in disp() before
54  * running a process that was put to sleep.  If the thread was not in a sleeping
55  * state, this call has little effect other than to update the count of time the
56  * thread has spent waiting on run-queues in its lifetime.
57  *
58  * For cpu microstate accounting:
59  * Cpu microstate accounting is similar to the microstate accounting for threads
60  * but it tracks user, system, and idle time for cpus.  Cpu microstate
61  * accounting does not track interrupt times as there is a pre-existing
62  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
63  * tracks time that user threads have spent active, idle, or in the system on a
64  * given cpu.  Cpu microstate accounting has fewer states which allows it to
65  * have better defined transitions.  The states transition in the following
66  * order:
67  *
68  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
69  *
70  * In order to get to the idle state, the cpu microstate must first go through
71  * the system state, and vice-versa for the user state from idle.  The switching
72  * of the microstates from user to system is done as part of the regular thread
73  * microstate accounting code, except for the idle state which is switched by
74  * the dispatcher before it runs the idle loop.
75  *
76  * Cpu percentages:
77  * Cpu percentages are now handled by and based upon microstate accounting
78  * information (the same is true for load averages).  The routines which handle
79  * the growing/shrinking and exponentiation of cpu percentages have been moved
80  * here as it now makes more sense for them to be generated from the microstate
81  * code.  Cpu percentages are generated similarly to the way they were before;
82  * however, now they are based upon high-resolution timestamps and the
83  * timestamps are modified at various state changes instead of during a clock()
84  * interrupt.  This allows us to generate more accurate cpu percentages which
85  * are also in-sync with microstate data.
86  */
87 
88 /*
89  * Initialize the microstate level and the
90  * associated accounting information for an LWP.
91  */
92 void
93 init_mstate(
94 	kthread_t	*t,
95 	int		init_state)
96 {
97 	struct mstate *ms;
98 	klwp_t *lwp;
99 	hrtime_t curtime;
100 
101 	ASSERT(init_state != LMS_WAIT_CPU);
102 	ASSERT((unsigned)init_state < NMSTATES);
103 
104 	if ((lwp = ttolwp(t)) != NULL) {
105 		ms = &lwp->lwp_mstate;
106 		curtime = gethrtime_unscaled();
107 		ms->ms_prev = LMS_SYSTEM;
108 		ms->ms_start = curtime;
109 		ms->ms_term = 0;
110 		ms->ms_state_start = curtime;
111 		t->t_mstate = init_state;
112 		t->t_waitrq = 0;
113 		t->t_hrtime = curtime;
114 		if ((t->t_proc_flag & TP_MSACCT) == 0)
115 			t->t_proc_flag |= TP_MSACCT;
116 		bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
117 	}
118 }
119 
120 /*
121  * Initialize the microstate level and associated accounting information
122  * for the specified cpu
123  */
124 
125 void
126 init_cpu_mstate(
127 	cpu_t *cpu,
128 	int init_state)
129 {
130 	ASSERT(init_state != CMS_DISABLED);
131 
132 	cpu->cpu_mstate = init_state;
133 	cpu->cpu_mstate_start = gethrtime_unscaled();
134 	cpu->cpu_waitrq = 0;
135 	bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
136 }
137 
138 /*
139  * sets cpu state to OFFLINE.  We don't actually track this time,
140  * but it serves as a useful placeholder state for when we're not
141  * doing anything.
142  */
143 
144 void
145 term_cpu_mstate(struct cpu *cpu)
146 {
147 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
148 	cpu->cpu_mstate = CMS_DISABLED;
149 	cpu->cpu_mstate_start = 0;
150 }
151 
152 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
153 
154 #define	NEW_CPU_MSTATE(state)						\
155 	gen = cpu->cpu_mstate_gen;					\
156 	cpu->cpu_mstate_gen = 0;					\
157 	/* Need membar_producer() here if stores not ordered / TSO */	\
158 	cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
159 	cpu->cpu_mstate = state;					\
160 	cpu->cpu_mstate_start = curtime;				\
161 	/* Need membar_producer() here if stores not ordered / TSO */	\
162 	cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
163 
164 void
165 new_cpu_mstate(int cmstate, hrtime_t curtime)
166 {
167 	cpu_t *cpu = CPU;
168 	uint16_t gen;
169 
170 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
171 	ASSERT(cmstate < NCMSTATES);
172 	ASSERT(cmstate != CMS_DISABLED);
173 
174 	/*
175 	 * This function cannot be re-entrant on a given CPU. As such,
176 	 * we ASSERT and panic if we are called on behalf of an interrupt.
177 	 * The one exception is for an interrupt which has previously
178 	 * blocked. Such an interrupt is being scheduled by the dispatcher
179 	 * just like a normal thread, and as such cannot arrive here
180 	 * in a re-entrant manner.
181 	 */
182 
183 	ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
184 	ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
185 
186 	/*
187 	 * LOCKING, or lack thereof:
188 	 *
189 	 * Updates to CPU mstate can only be made by the CPU
190 	 * itself, and the above check to ignore interrupts
191 	 * should prevent recursion into this function on a given
192 	 * processor. i.e. no possible write contention.
193 	 *
194 	 * However, reads of CPU mstate can occur at any time
195 	 * from any CPU. Any locking added to this code path
196 	 * would seriously impact syscall performance. So,
197 	 * instead we have a best-effort protection for readers.
198 	 * The reader will want to account for any time between
199 	 * cpu_mstate_start and the present time. This requires
200 	 * some guarantees that the reader is getting coherent
201 	 * information.
202 	 *
203 	 * We use a generation counter, which is set to 0 before
204 	 * we start making changes, and is set to a new value
205 	 * after we're done. Someone reading the CPU mstate
206 	 * should check for the same non-zero value of this
207 	 * counter both before and after reading all state. The
208 	 * important point is that the reader is not a
209 	 * performance-critical path, but this function is.
210 	 *
211 	 * The ordering of writes is critical. cpu_mstate_gen must
212 	 * be visibly zero on all CPUs before we change cpu_mstate
213 	 * and cpu_mstate_start. Additionally, cpu_mstate_gen must
214 	 * not be restored to oldgen+1 until after all of the other
215 	 * writes have become visible.
216 	 *
217 	 * Normally one puts membar_producer() calls to accomplish
218 	 * this. Unfortunately this routine is extremely performance
219 	 * critical (esp. in syscall_mstate below) and we cannot
220 	 * afford the additional time, particularly on some x86
221 	 * architectures with extremely slow sfence calls. On a
222 	 * CPU which guarantees write ordering (including sparc, x86,
223 	 * and amd64) this is not a problem. The compiler could still
224 	 * reorder the writes, so we make the four cpu fields
225 	 * volatile to prevent this.
226 	 *
227 	 * TSO warning: should we port to a non-TSO (or equivalent)
228 	 * CPU, this will break.
229 	 *
230 	 * The reader stills needs the membar_consumer() calls because,
231 	 * although the volatiles prevent the compiler from reordering
232 	 * loads, the CPU can still do so.
233 	 */
234 
235 	NEW_CPU_MSTATE(cmstate);
236 }
237 
238 /*
239  * Return an aggregation of user and system CPU time consumed by
240  * the specified thread in scaled nanoseconds.
241  */
242 hrtime_t
243 mstate_thread_onproc_time(kthread_t *t)
244 {
245 	hrtime_t aggr_time;
246 	hrtime_t now;
247 	hrtime_t waitrq;
248 	hrtime_t state_start;
249 	struct mstate *ms;
250 	klwp_t *lwp;
251 	int	mstate;
252 
253 	ASSERT(THREAD_LOCK_HELD(t));
254 
255 	if ((lwp = ttolwp(t)) == NULL)
256 		return (0);
257 
258 	mstate = t->t_mstate;
259 	waitrq = t->t_waitrq;
260 	ms = &lwp->lwp_mstate;
261 	state_start = ms->ms_state_start;
262 
263 	aggr_time = ms->ms_acct[LMS_USER] +
264 	    ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
265 
266 	now = gethrtime_unscaled();
267 
268 	/*
269 	 * NOTE: gethrtime_unscaled on X86 taken on different CPUs is
270 	 * inconsistent, so it is possible that now < state_start.
271 	 */
272 	if (mstate == LMS_USER || mstate == LMS_SYSTEM || mstate == LMS_TRAP) {
273 		/* if waitrq is zero, count all of the time. */
274 		if (waitrq == 0) {
275 			waitrq = now;
276 		}
277 
278 		if (waitrq > state_start) {
279 			aggr_time += waitrq - state_start;
280 		}
281 	}
282 
283 	scalehrtime(&aggr_time);
284 	return (aggr_time);
285 }
286 
287 /*
288  * Return the amount of onproc and runnable time this thread has experienced.
289  *
290  * Because the fields we read are not protected by locks when updated
291  * by the thread itself, this is an inherently racey interface.  In
292  * particular, the ASSERT(THREAD_LOCK_HELD(t)) doesn't guarantee as much
293  * as it might appear to.
294  *
295  * The implication for users of this interface is that onproc and runnable
296  * are *NOT* monotonically increasing; they may temporarily be larger than
297  * they should be.
298  */
299 void
300 mstate_systhread_times(kthread_t *t, hrtime_t *onproc, hrtime_t *runnable)
301 {
302 	struct mstate	*const	ms = &ttolwp(t)->lwp_mstate;
303 
304 	int		mstate;
305 	hrtime_t	now;
306 	hrtime_t	state_start;
307 	hrtime_t	waitrq;
308 	hrtime_t	aggr_onp;
309 	hrtime_t	aggr_run;
310 
311 	ASSERT(THREAD_LOCK_HELD(t));
312 	ASSERT(t->t_procp->p_flag & SSYS);
313 	ASSERT(ttolwp(t) != NULL);
314 
315 	/* shouldn't be any non-SYSTEM on-CPU time */
316 	ASSERT(ms->ms_acct[LMS_USER] == 0);
317 	ASSERT(ms->ms_acct[LMS_TRAP] == 0);
318 
319 	mstate = t->t_mstate;
320 	waitrq = t->t_waitrq;
321 	state_start = ms->ms_state_start;
322 
323 	aggr_onp = ms->ms_acct[LMS_SYSTEM];
324 	aggr_run = ms->ms_acct[LMS_WAIT_CPU];
325 
326 	now = gethrtime_unscaled();
327 
328 	/* if waitrq == 0, then there is no time to account to TS_RUN */
329 	if (waitrq == 0)
330 		waitrq = now;
331 
332 	/* If there is system time to accumulate, do so */
333 	if (mstate == LMS_SYSTEM && state_start < waitrq)
334 		aggr_onp += waitrq - state_start;
335 
336 	if (waitrq < now)
337 		aggr_run += now - waitrq;
338 
339 	scalehrtime(&aggr_onp);
340 	scalehrtime(&aggr_run);
341 
342 	*onproc = aggr_onp;
343 	*runnable = aggr_run;
344 }
345 
346 /*
347  * Return an aggregation of microstate times in scaled nanoseconds (high-res
348  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
349  * not.
350  */
351 hrtime_t
352 mstate_aggr_state(proc_t *p, int a_state)
353 {
354 	struct mstate *ms;
355 	kthread_t *t;
356 	klwp_t *lwp;
357 	hrtime_t aggr_time;
358 	hrtime_t scaledtime;
359 
360 	ASSERT(MUTEX_HELD(&p->p_lock));
361 	ASSERT((unsigned)a_state < NMSTATES);
362 
363 	aggr_time = p->p_acct[a_state];
364 	if (a_state == LMS_SYSTEM)
365 		aggr_time += p->p_acct[LMS_TRAP];
366 
367 	t = p->p_tlist;
368 	if (t == NULL)
369 		return (aggr_time);
370 
371 	do {
372 		if (t->t_proc_flag & TP_LWPEXIT)
373 			continue;
374 
375 		lwp = ttolwp(t);
376 		ms = &lwp->lwp_mstate;
377 		scaledtime = ms->ms_acct[a_state];
378 		scalehrtime(&scaledtime);
379 		aggr_time += scaledtime;
380 		if (a_state == LMS_SYSTEM) {
381 			scaledtime = ms->ms_acct[LMS_TRAP];
382 			scalehrtime(&scaledtime);
383 			aggr_time += scaledtime;
384 		}
385 	} while ((t = t->t_forw) != p->p_tlist);
386 
387 	return (aggr_time);
388 }
389 
390 
391 void
392 syscall_mstate(int fromms, int toms)
393 {
394 	kthread_t *t = curthread;
395 	zone_t *z = ttozone(t);
396 	struct mstate *ms;
397 	hrtime_t *mstimep;
398 	hrtime_t curtime;
399 	klwp_t *lwp;
400 	hrtime_t newtime;
401 	cpu_t *cpu;
402 	uint16_t gen;
403 
404 	if ((lwp = ttolwp(t)) == NULL)
405 		return;
406 
407 	ASSERT(fromms < NMSTATES);
408 	ASSERT(toms < NMSTATES);
409 
410 	ms = &lwp->lwp_mstate;
411 	mstimep = &ms->ms_acct[fromms];
412 	curtime = gethrtime_unscaled();
413 	newtime = curtime - ms->ms_state_start;
414 	while (newtime < 0) {
415 		curtime = gethrtime_unscaled();
416 		newtime = curtime - ms->ms_state_start;
417 	}
418 	*mstimep += newtime;
419 	t->t_mstate = toms;
420 	ms->ms_state_start = curtime;
421 	ms->ms_prev = fromms;
422 	kpreempt_disable(); /* don't change CPU while changing CPU's state */
423 	cpu = CPU;
424 	ASSERT(cpu == t->t_cpu);
425 
426 	if (fromms == LMS_USER) {
427 		CPU_UARRAY_VAL(z->zone_ustate, cpu->cpu_id,
428 		    ZONE_USTATE_UTIME) += newtime;
429 	} else if (fromms == LMS_SYSTEM) {
430 		CPU_UARRAY_VAL(z->zone_ustate, cpu->cpu_id,
431 		    ZONE_USTATE_STIME) += newtime;
432 	}
433 
434 	if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
435 		NEW_CPU_MSTATE(CMS_SYSTEM);
436 	} else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
437 		NEW_CPU_MSTATE(CMS_USER);
438 	}
439 	kpreempt_enable();
440 }
441 
442 #undef NEW_CPU_MSTATE
443 
444 /*
445  * The following is for computing the percentage of cpu time used recently
446  * by an lwp.  The function cpu_decay() is also called from /proc code.
447  *
448  * exp_x(x):
449  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
450  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
451  *
452  * Scaling for 64-bit scaled integer:
453  * The binary point is to the right of the high-order bit
454  * of the low-order 32-bit word.
455  */
456 
457 #define	LSHIFT	31
458 #define	LSI_ONE	((uint32_t)1 << LSHIFT)	/* 32-bit scaled integer 1 */
459 
460 #ifdef DEBUG
461 uint_t expx_cnt = 0;	/* number of calls to exp_x() */
462 uint_t expx_mul = 0;	/* number of long multiplies in exp_x() */
463 #endif
464 
465 static uint64_t
466 exp_x(uint64_t x)
467 {
468 	int i;
469 	uint64_t ull;
470 	uint32_t ui;
471 
472 #ifdef DEBUG
473 	expx_cnt++;
474 #endif
475 	/*
476 	 * By the formula:
477 	 *	exp(-x) = exp(-x/2) * exp(-x/2)
478 	 * we keep halving x until it becomes small enough for
479 	 * the following approximation to be accurate enough:
480 	 *	exp(-x) = 1 - x
481 	 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
482 	 * Our final error will be smaller than 4% .
483 	 */
484 
485 	/*
486 	 * Use a uint64_t for the initial shift calculation.
487 	 */
488 	ull = x >> (LSHIFT-2);
489 
490 	/*
491 	 * Short circuit:
492 	 * A number this large produces effectively 0 (actually .005).
493 	 * This way, we will never do more than 5 multiplies.
494 	 */
495 	if (ull >= (1 << 5))
496 		return (0);
497 
498 	ui = ull;	/* OK.  Now we can use a uint_t. */
499 	for (i = 0; ui != 0; i++)
500 		ui >>= 1;
501 
502 	if (i != 0) {
503 #ifdef DEBUG
504 		expx_mul += i;	/* seldom happens */
505 #endif
506 		x >>= i;
507 	}
508 
509 	/*
510 	 * Now we compute 1 - x and square it the number of times
511 	 * that we halved x above to produce the final result:
512 	 */
513 	x = LSI_ONE - x;
514 	while (i--)
515 		x = (x * x) >> LSHIFT;
516 
517 	return (x);
518 }
519 
520 /*
521  * Given the old percent cpu and a time delta in nanoseconds,
522  * return the new decayed percent cpu:  pct * exp(-tau),
523  * where 'tau' is the time delta multiplied by a decay factor.
524  * We have chosen the decay factor (cpu_decay_factor in param.c)
525  * to make the decay over five seconds be approximately 20%.
526  *
527  * 'pct' is a 32-bit scaled integer <= 1
528  * The binary point is to the right of the high-order bit
529  * of the 32-bit word.
530  */
531 static uint32_t
532 cpu_decay(uint32_t pct, hrtime_t nsec)
533 {
534 	uint64_t delta = (uint64_t)nsec;
535 
536 	delta /= cpu_decay_factor;
537 	return ((pct * exp_x(delta)) >> LSHIFT);
538 }
539 
540 /*
541  * Given the old percent cpu and a time delta in nanoseconds,
542  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
543  */
544 static uint32_t
545 cpu_grow(uint32_t pct, hrtime_t nsec)
546 {
547 	return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
548 }
549 
550 
551 /*
552  * Defined to determine whether a lwp is still on a processor.
553  */
554 
555 #define	T_ONPROC(kt)	\
556 	((kt)->t_mstate < LMS_SLEEP)
557 #define	T_OFFPROC(kt)	\
558 	((kt)->t_mstate >= LMS_SLEEP)
559 
560 uint_t
561 cpu_update_pct(kthread_t *t, hrtime_t newtime)
562 {
563 	hrtime_t delta;
564 	hrtime_t hrlb;
565 	uint_t pctcpu;
566 	uint_t npctcpu;
567 
568 	/*
569 	 * This routine can get called at PIL > 0, this *has* to be
570 	 * done atomically. Holding locks here causes bad things to happen.
571 	 * (read: deadlock).
572 	 */
573 
574 	do {
575 		pctcpu = t->t_pctcpu;
576 		hrlb = t->t_hrtime;
577 		delta = newtime - hrlb;
578 		if (delta < 0) {
579 			newtime = gethrtime_unscaled();
580 			delta = newtime - hrlb;
581 		}
582 		t->t_hrtime = newtime;
583 		scalehrtime(&delta);
584 		if (T_ONPROC(t) && t->t_waitrq == 0) {
585 			npctcpu = cpu_grow(pctcpu, delta);
586 		} else {
587 			npctcpu = cpu_decay(pctcpu, delta);
588 		}
589 	} while (atomic_cas_32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
590 
591 	return (npctcpu);
592 }
593 
594 /*
595  * Change the microstate level for the LWP and update the
596  * associated accounting information.  Return the previous
597  * LWP state.
598  */
599 int
600 new_mstate(kthread_t *t, int new_state)
601 {
602 	struct mstate *ms;
603 	unsigned state;
604 	hrtime_t *mstimep;
605 	hrtime_t curtime;
606 	hrtime_t newtime;
607 	hrtime_t oldtime;
608 	hrtime_t ztime;
609 	hrtime_t origstart;
610 	klwp_t *lwp;
611 	zone_t *z;
612 
613 	ASSERT(new_state != LMS_WAIT_CPU);
614 	ASSERT((unsigned)new_state < NMSTATES);
615 	ASSERT(t == curthread || THREAD_LOCK_HELD(t));
616 
617 	/*
618 	 * Don't do microstate processing for threads without a lwp (kernel
619 	 * threads).  Also, if we're an interrupt thread that is pinning another
620 	 * thread, our t_mstate hasn't been initialized.  We'd be modifying the
621 	 * microstate of the underlying lwp which doesn't realize that it's
622 	 * pinned.  In this case, also don't change the microstate.
623 	 */
624 	if (((lwp = ttolwp(t)) == NULL) || t->t_intr)
625 		return (LMS_SYSTEM);
626 
627 	curtime = gethrtime_unscaled();
628 
629 	/* adjust cpu percentages before we go any further */
630 	(void) cpu_update_pct(t, curtime);
631 
632 	ms = &lwp->lwp_mstate;
633 	state = t->t_mstate;
634 	origstart = ms->ms_state_start;
635 	do {
636 		switch (state) {
637 		case LMS_TFAULT:
638 		case LMS_DFAULT:
639 		case LMS_KFAULT:
640 		case LMS_USER_LOCK:
641 			mstimep = &ms->ms_acct[LMS_SYSTEM];
642 			break;
643 		default:
644 			mstimep = &ms->ms_acct[state];
645 			break;
646 		}
647 		ztime = newtime = curtime - ms->ms_state_start;
648 		if (newtime < 0) {
649 			curtime = gethrtime_unscaled();
650 			oldtime = *mstimep - 1; /* force CAS to fail */
651 			continue;
652 		}
653 		oldtime = *mstimep;
654 		newtime += oldtime;
655 		t->t_mstate = new_state;
656 		ms->ms_state_start = curtime;
657 	} while (atomic_cas_64((uint64_t *)mstimep, oldtime, newtime) !=
658 	    oldtime);
659 
660 	/*
661 	 * Remember the previous running microstate.
662 	 */
663 	if (state != LMS_SLEEP && state != LMS_STOPPED)
664 		ms->ms_prev = state;
665 
666 	/*
667 	 * Switch CPU microstate if appropriate
668 	 */
669 
670 	kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
671 
672 	ASSERT(t->t_cpu == CPU);
673 
674 	/*
675 	 * When the system boots the initial startup thread will have a
676 	 * ms_state_start of 0 which would add a huge system time to the global
677 	 * zone.  We want to skip aggregating that initial bit of work.
678 	 */
679 	if (origstart != 0) {
680 		z = ttozone(t);
681 		if (state == LMS_USER) {
682 			CPU_UARRAY_VAL(z->zone_ustate, t->t_cpu->cpu_id,
683 			    ZONE_USTATE_UTIME) += ztime;
684 		} else if (state == LMS_SYSTEM) {
685 			CPU_UARRAY_VAL(z->zone_ustate, t->t_cpu->cpu_id,
686 			    ZONE_USTATE_STIME) += ztime;
687 		}
688 	}
689 
690 	if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
691 		if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
692 			new_cpu_mstate(CMS_USER, curtime);
693 		else if (new_state != LMS_USER &&
694 		    t->t_cpu->cpu_mstate != CMS_SYSTEM)
695 			new_cpu_mstate(CMS_SYSTEM, curtime);
696 	}
697 	kpreempt_enable();
698 
699 	return (ms->ms_prev);
700 }
701 
702 /*
703  * Restore the LWP microstate to the previous runnable state.
704  * Called from disp() with the newly selected lwp.
705  */
706 void
707 restore_mstate(kthread_t *t)
708 {
709 	struct mstate *ms;
710 	hrtime_t *mstimep;
711 	klwp_t *lwp;
712 	hrtime_t curtime;
713 	hrtime_t waitrq;
714 	hrtime_t newtime;
715 	hrtime_t oldtime;
716 	hrtime_t waittime;
717 	zone_t *z;
718 
719 	/*
720 	 * Don't call restore mstate of threads without lwps.  (Kernel threads)
721 	 *
722 	 * threads with t_intr set shouldn't be in the dispatcher, so assert
723 	 * that nobody here has t_intr.
724 	 */
725 	ASSERT(t->t_intr == NULL);
726 
727 	if ((lwp = ttolwp(t)) == NULL)
728 		return;
729 
730 	curtime = gethrtime_unscaled();
731 	(void) cpu_update_pct(t, curtime);
732 	ms = &lwp->lwp_mstate;
733 	ASSERT((unsigned)t->t_mstate < NMSTATES);
734 	do {
735 		switch (t->t_mstate) {
736 		case LMS_SLEEP:
737 			/*
738 			 * Update the timer for the current sleep state.
739 			 */
740 			ASSERT((unsigned)ms->ms_prev < NMSTATES);
741 			switch (ms->ms_prev) {
742 			case LMS_TFAULT:
743 			case LMS_DFAULT:
744 			case LMS_KFAULT:
745 			case LMS_USER_LOCK:
746 				mstimep = &ms->ms_acct[ms->ms_prev];
747 				break;
748 			default:
749 				mstimep = &ms->ms_acct[LMS_SLEEP];
750 				break;
751 			}
752 			/*
753 			 * Return to the previous run state.
754 			 */
755 			t->t_mstate = ms->ms_prev;
756 			break;
757 		case LMS_STOPPED:
758 			mstimep = &ms->ms_acct[LMS_STOPPED];
759 			/*
760 			 * Return to the previous run state.
761 			 */
762 			t->t_mstate = ms->ms_prev;
763 			break;
764 		case LMS_TFAULT:
765 		case LMS_DFAULT:
766 		case LMS_KFAULT:
767 		case LMS_USER_LOCK:
768 			mstimep = &ms->ms_acct[LMS_SYSTEM];
769 			break;
770 		default:
771 			mstimep = &ms->ms_acct[t->t_mstate];
772 			break;
773 		}
774 		waitrq = t->t_waitrq;	/* hopefully atomic */
775 		if (waitrq == 0) {
776 			waitrq = curtime;
777 		}
778 		t->t_waitrq = 0;
779 		newtime = waitrq - ms->ms_state_start;
780 		if (newtime < 0) {
781 			curtime = gethrtime_unscaled();
782 			oldtime = *mstimep - 1; /* force CAS to fail */
783 			continue;
784 		}
785 		oldtime = *mstimep;
786 		newtime += oldtime;
787 	} while (atomic_cas_64((uint64_t *)mstimep, oldtime, newtime) !=
788 	    oldtime);
789 
790 	/*
791 	 * Update the WAIT_CPU timer and per-cpu waitrq total.
792 	 */
793 	z = ttozone(t);
794 	waittime = curtime - waitrq;
795 	ms->ms_acct[LMS_WAIT_CPU] += waittime;
796 
797 	/*
798 	 * We are in a disp context where we're not going to migrate CPUs.
799 	 */
800 	CPU_UARRAY_VAL(z->zone_ustate, CPU->cpu_id,
801 	    ZONE_USTATE_WTIME) += waittime;
802 
803 	CPU->cpu_waitrq += waittime;
804 	ms->ms_state_start = curtime;
805 }
806 
807 /*
808  * Copy lwp microstate accounting and resource usage information
809  * to the process.  (lwp is terminating)
810  */
811 void
812 term_mstate(kthread_t *t)
813 {
814 	struct mstate *ms;
815 	proc_t *p = ttoproc(t);
816 	klwp_t *lwp = ttolwp(t);
817 	int i;
818 	hrtime_t tmp;
819 
820 	ASSERT(MUTEX_HELD(&p->p_lock));
821 
822 	ms = &lwp->lwp_mstate;
823 	(void) new_mstate(t, LMS_STOPPED);
824 	ms->ms_term = ms->ms_state_start;
825 	tmp = ms->ms_term - ms->ms_start;
826 	scalehrtime(&tmp);
827 	p->p_mlreal += tmp;
828 	for (i = 0; i < NMSTATES; i++) {
829 		tmp = ms->ms_acct[i];
830 		scalehrtime(&tmp);
831 		p->p_acct[i] += tmp;
832 	}
833 	p->p_ru.minflt   += lwp->lwp_ru.minflt;
834 	p->p_ru.majflt   += lwp->lwp_ru.majflt;
835 	p->p_ru.nswap    += lwp->lwp_ru.nswap;
836 	p->p_ru.inblock  += lwp->lwp_ru.inblock;
837 	p->p_ru.oublock  += lwp->lwp_ru.oublock;
838 	p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
839 	p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
840 	p->p_ru.nsignals += lwp->lwp_ru.nsignals;
841 	p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
842 	p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
843 	p->p_ru.sysc	 += lwp->lwp_ru.sysc;
844 	p->p_ru.ioch	 += lwp->lwp_ru.ioch;
845 	p->p_defunct++;
846 }
847