xref: /illumos-gate/usr/src/uts/common/os/mmapobj.c (revision dd72704bd9e794056c558153663c739e2012d721)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2014 Joyent, Inc.  All rights reserved.
25  * Copyright 2022 Garrett D'Amore <garrett@damore.org>
26  */
27 
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/errno.h>
34 #include <sys/mman.h>
35 #include <sys/cmn_err.h>
36 #include <sys/cred.h>
37 #include <sys/vmsystm.h>
38 #include <sys/machsystm.h>
39 #include <sys/debug.h>
40 #include <vm/as.h>
41 #include <vm/seg.h>
42 #include <sys/vmparam.h>
43 #include <sys/vfs.h>
44 #include <sys/elf.h>
45 #include <sys/machelf.h>
46 #include <sys/corectl.h>
47 #include <sys/exec.h>
48 #include <sys/exechdr.h>
49 #include <sys/autoconf.h>
50 #include <sys/mem.h>
51 #include <vm/seg_dev.h>
52 #include <sys/vmparam.h>
53 #include <sys/mmapobj.h>
54 #include <sys/atomic.h>
55 
56 /*
57  * Theory statement:
58  *
59  * The main driving force behind mmapobj is to interpret and map ELF files
60  * inside of the kernel instead of having the linker be responsible for this.
61  *
62  * mmapobj also supports the AOUT 4.x binary format as well as flat files in
63  * a read only manner.
64  *
65  * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD
66  * or PT_SUNWBSS segment according to the ELF standard.  Refer to the "Linker
67  * and Libraries Guide" for more information about the standard and mapping
68  * rules.
69  *
70  * Having mmapobj interpret and map objects will allow the kernel to make the
71  * best decision for where to place the mappings for said objects.  Thus, we
72  * can make optimizations inside of the kernel for specific platforms or cache
73  * mapping information to make mapping objects faster.  The cache is ignored
74  * if ASLR is enabled.
75  *
76  * The lib_va_hash will be one such optimization.  For each ELF object that
77  * mmapobj is asked to interpret, we will attempt to cache the information
78  * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of
79  * the same objects.  We will cache up to LIBVA_CACHED_SEGS (see below) program
80  * headers which should cover a majority of the libraries out there without
81  * wasting space.  In order to make sure that the cached information is valid,
82  * we check the passed in vnode's mtime and ctime to make sure the vnode
83  * has not been modified since the last time we used it.
84  *
85  * In addition, the lib_va_hash may contain a preferred starting VA for the
86  * object which can be useful for platforms which support a shared context.
87  * This will increase the likelyhood that library text can be shared among
88  * many different processes.  We limit the reserved VA space for 32 bit objects
89  * in order to minimize fragmenting the processes address space.
90  *
91  * In addition to the above, the mmapobj interface allows for padding to be
92  * requested before the first mapping and after the last mapping created.
93  * When padding is requested, no additional optimizations will be made for
94  * that request.
95  */
96 
97 /*
98  * Threshold to prevent allocating too much kernel memory to read in the
99  * program headers for an object.  If it requires more than below,
100  * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the
101  * program headers which could possibly fail.  If less memory than below is
102  * needed, then we use a KM_SLEEP allocation and are willing to wait for the
103  * memory if we need to.
104  */
105 size_t mmapobj_alloc_threshold = 65536;
106 
107 /* Debug stats for test coverage */
108 #ifdef DEBUG
109 struct mobj_stats {
110 	uint_t	mobjs_unmap_called;
111 	uint_t	mobjs_remap_devnull;
112 	uint_t	mobjs_lookup_start;
113 	uint_t	mobjs_alloc_start;
114 	uint_t	mobjs_alloc_vmem;
115 	uint_t	mobjs_add_collision;
116 	uint_t	mobjs_get_addr;
117 	uint_t	mobjs_map_flat_no_padding;
118 	uint_t	mobjs_map_flat_padding;
119 	uint_t	mobjs_map_ptload_text;
120 	uint_t	mobjs_map_ptload_initdata;
121 	uint_t	mobjs_map_ptload_preread;
122 	uint_t	mobjs_map_ptload_unaligned_text;
123 	uint_t	mobjs_map_ptload_unaligned_map_fail;
124 	uint_t	mobjs_map_ptload_unaligned_read_fail;
125 	uint_t	mobjs_zfoddiff;
126 	uint_t	mobjs_zfoddiff_nowrite;
127 	uint_t	mobjs_zfodextra;
128 	uint_t	mobjs_ptload_failed;
129 	uint_t	mobjs_map_elf_no_holes;
130 	uint_t	mobjs_unmap_hole;
131 	uint_t	mobjs_nomem_header;
132 	uint_t	mobjs_inval_header;
133 	uint_t	mobjs_overlap_header;
134 	uint_t	mobjs_np2_align;
135 	uint_t	mobjs_np2_align_overflow;
136 	uint_t	mobjs_exec_padding;
137 	uint_t	mobjs_exec_addr_mapped;
138 	uint_t	mobjs_exec_addr_devnull;
139 	uint_t	mobjs_exec_addr_in_use;
140 	uint_t	mobjs_lvp_found;
141 	uint_t	mobjs_no_loadable_yet;
142 	uint_t	mobjs_nothing_to_map;
143 	uint_t	mobjs_e2big;
144 	uint_t	mobjs_dyn_pad_align;
145 	uint_t	mobjs_dyn_pad_noalign;
146 	uint_t	mobjs_alloc_start_fail;
147 	uint_t	mobjs_lvp_nocache;
148 	uint_t	mobjs_extra_padding;
149 	uint_t	mobjs_lvp_not_needed;
150 	uint_t	mobjs_no_mem_map_sz;
151 	uint_t	mobjs_check_exec_failed;
152 	uint_t	mobjs_lvp_used;
153 	uint_t	mobjs_wrong_model;
154 	uint_t	mobjs_noexec_fs;
155 	uint_t	mobjs_e2big_et_rel;
156 	uint_t	mobjs_et_rel_mapped;
157 	uint_t	mobjs_unknown_elf_type;
158 	uint_t	mobjs_phent32_too_small;
159 	uint_t	mobjs_phent64_too_small;
160 	uint_t	mobjs_inval_elf_class;
161 	uint_t	mobjs_too_many_phdrs;
162 	uint_t	mobjs_no_phsize;
163 	uint_t	mobjs_phsize_large;
164 	uint_t	mobjs_phsize_xtralarge;
165 	uint_t	mobjs_fast_wrong_model;
166 	uint_t	mobjs_fast_e2big;
167 	uint_t	mobjs_fast;
168 	uint_t	mobjs_fast_success;
169 	uint_t	mobjs_fast_not_now;
170 	uint_t	mobjs_small_file;
171 	uint_t	mobjs_read_error;
172 	uint_t	mobjs_unsupported;
173 	uint_t	mobjs_flat_e2big;
174 	uint_t	mobjs_phent_align32;
175 	uint_t	mobjs_phent_align64;
176 	uint_t	mobjs_lib_va_find_hit;
177 	uint_t	mobjs_lib_va_find_delay_delete;
178 	uint_t	mobjs_lib_va_find_delete;
179 	uint_t	mobjs_lib_va_add_delay_delete;
180 	uint_t	mobjs_lib_va_add_delete;
181 	uint_t	mobjs_lib_va_create_failure;
182 	uint_t	mobjs_min_align;
183 } mobj_stats;
184 
185 #define	MOBJ_STAT_ADD(stat)		((mobj_stats.mobjs_##stat)++)
186 #else
187 #define	MOBJ_STAT_ADD(stat)
188 #endif
189 
190 /*
191  * Check if addr is at or above the address space reserved for the stack.
192  * The stack is at the top of the address space for all sparc processes
193  * and 64 bit x86 processes.  For 32 bit x86, the stack is not at the top
194  * of the address space and thus this check wil always return false for
195  * 32 bit x86 processes.
196  */
197 #if defined(__sparc)
198 #define	OVERLAPS_STACK(addr, p)						\
199 	(addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))
200 #elif defined(__amd64)
201 #define	OVERLAPS_STACK(addr, p)						\
202 	((p->p_model == DATAMODEL_LP64) &&				\
203 	(addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))))
204 #endif
205 
206 /* lv_flags values - bitmap */
207 #define	LV_ELF32	0x1		/* 32 bit ELF file */
208 #define	LV_ELF64	0x2		/* 64 bit ELF file */
209 #define	LV_DEL		0x4		/* delete when lv_refcnt hits zero */
210 
211 /*
212  * Note: lv_num_segs will denote how many segments this file has and will
213  * only be set after the lv_mps array has been filled out.
214  * lv_mps can only be valid if lv_num_segs is non-zero.
215  */
216 struct lib_va {
217 	struct lib_va		*lv_next;
218 	caddr_t			lv_base_va;	/* start va for library */
219 	ssize_t			lv_len;		/* total va span of library */
220 	size_t			lv_align;	/* minimum alignment */
221 	uint64_t		lv_nodeid;	/* filesystem node id */
222 	uint64_t		lv_fsid;	/* filesystem id */
223 	timestruc_t		lv_ctime;	/* last time file was changed */
224 	timestruc_t		lv_mtime;	/* or modified */
225 	mmapobj_result_t	lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */
226 	int			lv_num_segs;	/* # segs for this file */
227 	int			lv_flags;
228 	uint_t			lv_refcnt;	/* number of holds on struct */
229 };
230 
231 #define	LIB_VA_SIZE	1024
232 #define	LIB_VA_MASK	(LIB_VA_SIZE - 1)
233 #define	LIB_VA_MUTEX_SHIFT	3
234 
235 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1))
236 #error	"LIB_VA_SIZE is not a power of 2"
237 #endif
238 
239 static struct lib_va *lib_va_hash[LIB_VA_SIZE];
240 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT];
241 
242 #define	LIB_VA_HASH_MUTEX(index)					\
243 	(&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT])
244 
245 #define	LIB_VA_HASH(nodeid)						\
246 	(((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK)
247 
248 #define	LIB_VA_MATCH_ID(arg1, arg2)					\
249 	((arg1)->lv_nodeid == (arg2)->va_nodeid &&			\
250 	(arg1)->lv_fsid == (arg2)->va_fsid)
251 
252 #define	LIB_VA_MATCH_TIME(arg1, arg2)					\
253 	((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec &&		\
254 	(arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec &&		\
255 	(arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec &&		\
256 	(arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec)
257 
258 #define	LIB_VA_MATCH(arg1, arg2)					\
259 	(LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2))
260 
261 /*
262  * lib_va will be used for optimized allocation of address ranges for
263  * libraries, such that subsequent mappings of the same library will attempt
264  * to use the same VA as previous mappings of that library.
265  * In order to map libraries at the same VA in many processes, we need to carve
266  * out our own address space for them which is unique across many processes.
267  * We use different arenas for 32 bit and 64 bit libraries.
268  *
269  * Since the 32 bit address space is relatively small, we limit the number of
270  * libraries which try to use consistent virtual addresses to lib_threshold.
271  * For 64 bit libraries there is no such limit since the address space is large.
272  */
273 static vmem_t *lib_va_32_arena;
274 static vmem_t *lib_va_64_arena;
275 uint_t lib_threshold = 20;	/* modifiable via /etc/system */
276 
277 static kmutex_t lib_va_init_mutex;	/* no need to initialize */
278 
279 /*
280  * Number of 32 bit and 64 bit libraries in lib_va hash.
281  */
282 static uint_t libs_mapped_32 = 0;
283 static uint_t libs_mapped_64 = 0;
284 
285 /*
286  * Free up the resources associated with lvp as well as lvp itself.
287  * We also decrement the number of libraries mapped via a lib_va
288  * cached virtual address.
289  */
290 void
291 lib_va_free(struct lib_va *lvp)
292 {
293 	int is_64bit = lvp->lv_flags & LV_ELF64;
294 	ASSERT(lvp->lv_refcnt == 0);
295 
296 	if (lvp->lv_base_va != NULL) {
297 		vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena,
298 		    lvp->lv_base_va, lvp->lv_len);
299 		if (is_64bit) {
300 			atomic_dec_32(&libs_mapped_64);
301 		} else {
302 			atomic_dec_32(&libs_mapped_32);
303 		}
304 	}
305 	kmem_free(lvp, sizeof (struct lib_va));
306 }
307 
308 /*
309  * See if the file associated with the vap passed in is in the lib_va hash.
310  * If it is and the file has not been modified since last use, then
311  * return a pointer to that data.  Otherwise, return NULL if the file has
312  * changed or the file was not found in the hash.
313  */
314 static struct lib_va *
315 lib_va_find(vattr_t *vap)
316 {
317 	struct lib_va *lvp;
318 	struct lib_va *del = NULL;
319 	struct lib_va **tmp;
320 	uint_t index;
321 	index = LIB_VA_HASH(vap->va_nodeid);
322 
323 	mutex_enter(LIB_VA_HASH_MUTEX(index));
324 	tmp = &lib_va_hash[index];
325 	while (*tmp != NULL) {
326 		lvp = *tmp;
327 		if (LIB_VA_MATCH_ID(lvp, vap)) {
328 			if (LIB_VA_MATCH_TIME(lvp, vap)) {
329 				ASSERT((lvp->lv_flags & LV_DEL) == 0);
330 				lvp->lv_refcnt++;
331 				MOBJ_STAT_ADD(lib_va_find_hit);
332 			} else {
333 				/*
334 				 * file was updated since last use.
335 				 * need to remove it from list.
336 				 */
337 				del = lvp;
338 				*tmp = del->lv_next;
339 				del->lv_next = NULL;
340 				/*
341 				 * If we can't delete it now, mark it for later
342 				 */
343 				if (del->lv_refcnt) {
344 					MOBJ_STAT_ADD(lib_va_find_delay_delete);
345 					del->lv_flags |= LV_DEL;
346 					del = NULL;
347 				}
348 				lvp = NULL;
349 			}
350 			mutex_exit(LIB_VA_HASH_MUTEX(index));
351 			if (del) {
352 				ASSERT(del->lv_refcnt == 0);
353 				MOBJ_STAT_ADD(lib_va_find_delete);
354 				lib_va_free(del);
355 			}
356 			return (lvp);
357 		}
358 		tmp = &lvp->lv_next;
359 	}
360 	mutex_exit(LIB_VA_HASH_MUTEX(index));
361 	return (NULL);
362 }
363 
364 /*
365  * Add a new entry to the lib_va hash.
366  * Search the hash while holding the appropriate mutex to make sure that the
367  * data is not already in the cache.  If we find data that is in the cache
368  * already and has not been modified since last use, we return NULL.  If it
369  * has been modified since last use, we will remove that entry from
370  * the hash and it will be deleted once it's reference count reaches zero.
371  * If there is no current entry in the hash we will add the new entry and
372  * return it to the caller who is responsible for calling lib_va_release to
373  * drop their reference count on it.
374  *
375  * lv_num_segs will be set to zero since the caller needs to add that
376  * information to the data structure.
377  */
378 static struct lib_va *
379 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap)
380 {
381 	struct lib_va *lvp;
382 	uint_t index;
383 	model_t model;
384 	struct lib_va **tmp;
385 	struct lib_va *del = NULL;
386 
387 	model = get_udatamodel();
388 	index = LIB_VA_HASH(vap->va_nodeid);
389 
390 	lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP);
391 
392 	mutex_enter(LIB_VA_HASH_MUTEX(index));
393 
394 	/*
395 	 * Make sure not adding same data a second time.
396 	 * The hash chains should be relatively short and adding
397 	 * is a relatively rare event, so it's worth the check.
398 	 */
399 	tmp = &lib_va_hash[index];
400 	while (*tmp != NULL) {
401 		if (LIB_VA_MATCH_ID(*tmp, vap)) {
402 			if (LIB_VA_MATCH_TIME(*tmp, vap)) {
403 				mutex_exit(LIB_VA_HASH_MUTEX(index));
404 				kmem_free(lvp, sizeof (struct lib_va));
405 				return (NULL);
406 			}
407 
408 			/*
409 			 * We have the same nodeid and fsid but the file has
410 			 * been modified since we last saw it.
411 			 * Need to remove the old node and add this new
412 			 * one.
413 			 * Could probably use a callback mechanism to make
414 			 * this cleaner.
415 			 */
416 			ASSERT(del == NULL);
417 			del = *tmp;
418 			*tmp = del->lv_next;
419 			del->lv_next = NULL;
420 
421 			/*
422 			 * Check to see if we can free it.  If lv_refcnt
423 			 * is greater than zero, than some other thread
424 			 * has a reference to the one we want to delete
425 			 * and we can not delete it.  All of this is done
426 			 * under the lib_va_hash_mutex lock so it is atomic.
427 			 */
428 			if (del->lv_refcnt) {
429 				MOBJ_STAT_ADD(lib_va_add_delay_delete);
430 				del->lv_flags |= LV_DEL;
431 				del = NULL;
432 			}
433 			/* tmp is already advanced */
434 			continue;
435 		}
436 		tmp = &((*tmp)->lv_next);
437 	}
438 
439 	lvp->lv_base_va = base_va;
440 	lvp->lv_len = len;
441 	lvp->lv_align = align;
442 	lvp->lv_nodeid = vap->va_nodeid;
443 	lvp->lv_fsid = vap->va_fsid;
444 	lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec;
445 	lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec;
446 	lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec;
447 	lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec;
448 	lvp->lv_next = NULL;
449 	lvp->lv_refcnt = 1;
450 
451 	/* Caller responsible for filling this and lv_mps out */
452 	lvp->lv_num_segs = 0;
453 
454 	if (model == DATAMODEL_LP64) {
455 		lvp->lv_flags = LV_ELF64;
456 	} else {
457 		ASSERT(model == DATAMODEL_ILP32);
458 		lvp->lv_flags = LV_ELF32;
459 	}
460 
461 	if (base_va != NULL) {
462 		if (model == DATAMODEL_LP64) {
463 			atomic_inc_32(&libs_mapped_64);
464 		} else {
465 			ASSERT(model == DATAMODEL_ILP32);
466 			atomic_inc_32(&libs_mapped_32);
467 		}
468 	}
469 	ASSERT(*tmp == NULL);
470 	*tmp = lvp;
471 	mutex_exit(LIB_VA_HASH_MUTEX(index));
472 	if (del) {
473 		ASSERT(del->lv_refcnt == 0);
474 		MOBJ_STAT_ADD(lib_va_add_delete);
475 		lib_va_free(del);
476 	}
477 	return (lvp);
478 }
479 
480 /*
481  * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash.
482  * In addition, if this is the last hold and lvp is marked for deletion,
483  * free up it's reserved address space and free the structure.
484  */
485 static void
486 lib_va_release(struct lib_va *lvp)
487 {
488 	uint_t index;
489 	int to_del = 0;
490 
491 	ASSERT(lvp->lv_refcnt > 0);
492 
493 	index = LIB_VA_HASH(lvp->lv_nodeid);
494 	mutex_enter(LIB_VA_HASH_MUTEX(index));
495 	if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) {
496 		to_del = 1;
497 	}
498 	mutex_exit(LIB_VA_HASH_MUTEX(index));
499 	if (to_del) {
500 		ASSERT(lvp->lv_next == 0);
501 		lib_va_free(lvp);
502 	}
503 }
504 
505 /*
506  * Dummy function for mapping through /dev/null
507  * Normally I would have used mmmmap in common/io/mem.c
508  * but that is a static function, and for /dev/null, it
509  * just returns -1.
510  */
511 /* ARGSUSED */
512 static int
513 mmapobj_dummy(dev_t dev, off_t off, int prot)
514 {
515 	return (-1);
516 }
517 
518 /*
519  * Called when an error occurred which requires mmapobj to return failure.
520  * All mapped objects will be unmapped and /dev/null mappings will be
521  * reclaimed if necessary.
522  * num_mapped is the number of elements of mrp which have been mapped, and
523  * num_segs is the total number of elements in mrp.
524  * For e_type ET_EXEC, we need to unmap all of the elements in mrp since
525  * we had already made reservations for them.
526  * If num_mapped equals num_segs, then we know that we had fully mapped
527  * the file and only need to clean up the segments described.
528  * If they are not equal, then for ET_DYN we will unmap the range from the
529  * end of the last mapped segment to the end of the last segment in mrp
530  * since we would have made a reservation for that memory earlier.
531  * If e_type is passed in as zero, num_mapped must equal num_segs.
532  */
533 void
534 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs,
535     ushort_t e_type)
536 {
537 	int i;
538 	struct as *as = curproc->p_as;
539 	caddr_t addr;
540 	size_t size;
541 
542 	if (e_type == ET_EXEC) {
543 		num_mapped = num_segs;
544 	}
545 #ifdef DEBUG
546 	if (e_type == 0) {
547 		ASSERT(num_mapped == num_segs);
548 	}
549 #endif
550 
551 	MOBJ_STAT_ADD(unmap_called);
552 	for (i = 0; i < num_mapped; i++) {
553 
554 		/*
555 		 * If we are going to have to create a mapping we need to
556 		 * make sure that no one else will use the address we
557 		 * need to remap between the time it is unmapped and
558 		 * mapped below.
559 		 */
560 		if (mrp[i].mr_flags & MR_RESV) {
561 			as_rangelock(as);
562 		}
563 		/* Always need to unmap what we mapped */
564 		(void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize);
565 
566 		/* Need to reclaim /dev/null reservation from earlier */
567 		if (mrp[i].mr_flags & MR_RESV) {
568 			struct segdev_crargs dev_a;
569 
570 			ASSERT(e_type != ET_DYN);
571 			/*
572 			 * Use seg_dev segment driver for /dev/null mapping.
573 			 */
574 			dev_a.mapfunc = mmapobj_dummy;
575 			dev_a.dev = makedevice(mm_major, M_NULL);
576 			dev_a.offset = 0;
577 			dev_a.type = 0;		/* neither PRIVATE nor SHARED */
578 			dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
579 			dev_a.hat_attr = 0;
580 			dev_a.hat_flags = 0;
581 
582 			(void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize,
583 			    segdev_create, &dev_a);
584 			MOBJ_STAT_ADD(remap_devnull);
585 			as_rangeunlock(as);
586 		}
587 	}
588 
589 	if (num_mapped != num_segs) {
590 		ASSERT(e_type == ET_DYN);
591 		/* Need to unmap any reservation made after last mapped seg */
592 		if (num_mapped == 0) {
593 			addr = mrp[0].mr_addr;
594 		} else {
595 			addr = mrp[num_mapped - 1].mr_addr +
596 			    mrp[num_mapped - 1].mr_msize;
597 		}
598 		size = (size_t)mrp[num_segs - 1].mr_addr +
599 		    mrp[num_segs - 1].mr_msize - (size_t)addr;
600 		(void) as_unmap(as, addr, size);
601 
602 		/*
603 		 * Now we need to unmap the holes between mapped segs.
604 		 * Note that we have not mapped all of the segments and thus
605 		 * the holes between segments would not have been unmapped
606 		 * yet.  If num_mapped == num_segs, then all of the holes
607 		 * between segments would have already been unmapped.
608 		 */
609 
610 		for (i = 1; i < num_mapped; i++) {
611 			addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize;
612 			size = mrp[i].mr_addr - addr;
613 			(void) as_unmap(as, addr, size);
614 		}
615 	}
616 }
617 
618 /*
619  * We need to add the start address into mrp so that the unmap function
620  * has absolute addresses to use.
621  */
622 static void
623 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr)
624 {
625 	int i;
626 
627 	for (i = 0; i < num_mapped; i++) {
628 		mrp[i].mr_addr += (size_t)start_addr;
629 	}
630 	mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC);
631 }
632 
633 static caddr_t
634 mmapobj_lookup_start_addr(struct lib_va *lvp)
635 {
636 	proc_t *p = curproc;
637 	struct as *as = p->p_as;
638 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
639 	int error;
640 	uint_t ma_flags = _MAP_LOW32;
641 	caddr_t base = NULL;
642 	size_t len;
643 	size_t align;
644 
645 	ASSERT(lvp != NULL);
646 	MOBJ_STAT_ADD(lookup_start);
647 
648 	as_rangelock(as);
649 
650 	base = lvp->lv_base_va;
651 	len = lvp->lv_len;
652 
653 	/*
654 	 * If we don't have an expected base address, or the one that we want
655 	 * to use is not available or acceptable, go get an acceptable
656 	 * address range.
657 	 */
658 	if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
659 	    valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
660 	    RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
661 		if (lvp->lv_flags & LV_ELF64) {
662 			ma_flags = 0;
663 		}
664 
665 		align = lvp->lv_align;
666 		if (align > 1) {
667 			ma_flags |= MAP_ALIGN;
668 		}
669 
670 		base = (caddr_t)align;
671 		map_addr(&base, len, 0, 1, ma_flags);
672 	}
673 
674 	/*
675 	 * Need to reserve the address space we're going to use.
676 	 * Don't reserve swap space since we'll be mapping over this.
677 	 */
678 	if (base != NULL) {
679 		crargs.flags |= MAP_NORESERVE;
680 		error = as_map(as, base, len, segvn_create, &crargs);
681 		if (error) {
682 			base = NULL;
683 		}
684 	}
685 
686 	as_rangeunlock(as);
687 	return (base);
688 }
689 
690 /*
691  * Get the starting address for a given file to be mapped and return it
692  * to the caller.  If we're using lib_va and we need to allocate an address,
693  * we will attempt to allocate it from the global reserved pool such that the
694  * same address can be used in the future for this file.  If we can't use the
695  * reserved address then we just get one that will fit in our address space.
696  *
697  * Returns the starting virtual address for the range to be mapped or NULL
698  * if an error is encountered. If we successfully insert the requested info
699  * into the lib_va hash, then *lvpp will be set to point to this lib_va
700  * structure.  The structure will have a hold on it and thus lib_va_release
701  * needs to be called on it by the caller.  This function will not fill out
702  * lv_mps or lv_num_segs since it does not have enough information to do so.
703  * The caller is responsible for doing this making sure that any modifications
704  * to lv_mps are visible before setting lv_num_segs.
705  */
706 static caddr_t
707 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va,
708     int randomize, size_t align, vattr_t *vap)
709 {
710 	proc_t *p = curproc;
711 	struct as *as = p->p_as;
712 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
713 	int error;
714 	model_t model;
715 	uint_t ma_flags = _MAP_LOW32;
716 	caddr_t base = NULL;
717 	vmem_t *model_vmem;
718 	size_t lib_va_start;
719 	size_t lib_va_end;
720 	size_t lib_va_len;
721 
722 	ASSERT(lvpp != NULL);
723 	ASSERT((randomize & use_lib_va) != 1);
724 
725 	MOBJ_STAT_ADD(alloc_start);
726 	model = get_udatamodel();
727 
728 	if (model == DATAMODEL_LP64) {
729 		ma_flags = 0;
730 		model_vmem = lib_va_64_arena;
731 	} else {
732 		ASSERT(model == DATAMODEL_ILP32);
733 		model_vmem = lib_va_32_arena;
734 	}
735 
736 	if (align > 1) {
737 		ma_flags |= MAP_ALIGN;
738 	}
739 
740 	if (randomize != 0)
741 		ma_flags |= _MAP_RANDOMIZE;
742 
743 	if (use_lib_va) {
744 		/*
745 		 * The first time through, we need to setup the lib_va arenas.
746 		 * We call map_addr to find a suitable range of memory to map
747 		 * the given library, and we will set the highest address
748 		 * in our vmem arena to the end of this adddress range.
749 		 * We allow up to half of the address space to be used
750 		 * for lib_va addresses but we do not prevent any allocations
751 		 * in this range from other allocation paths.
752 		 */
753 		if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) {
754 			mutex_enter(&lib_va_init_mutex);
755 			if (lib_va_64_arena == NULL) {
756 				base = (caddr_t)align;
757 				as_rangelock(as);
758 				map_addr(&base, len, 0, 1, ma_flags);
759 				as_rangeunlock(as);
760 				if (base == NULL) {
761 					mutex_exit(&lib_va_init_mutex);
762 					MOBJ_STAT_ADD(lib_va_create_failure);
763 					goto nolibva;
764 				}
765 				lib_va_end = (size_t)base + len;
766 				lib_va_len = lib_va_end >> 1;
767 				lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
768 				lib_va_start = lib_va_end - lib_va_len;
769 
770 				/*
771 				 * Need to make sure we avoid the address hole.
772 				 * We know lib_va_end is valid but we need to
773 				 * make sure lib_va_start is as well.
774 				 */
775 				if ((lib_va_end > (size_t)hole_end) &&
776 				    (lib_va_start < (size_t)hole_end)) {
777 					lib_va_start = P2ROUNDUP(
778 					    (size_t)hole_end, PAGESIZE);
779 					lib_va_len = lib_va_end - lib_va_start;
780 				}
781 				lib_va_64_arena = vmem_create("lib_va_64",
782 				    (void *)lib_va_start, lib_va_len, PAGESIZE,
783 				    NULL, NULL, NULL, 0,
784 				    VM_NOSLEEP | VMC_IDENTIFIER);
785 				if (lib_va_64_arena == NULL) {
786 					mutex_exit(&lib_va_init_mutex);
787 					goto nolibva;
788 				}
789 			}
790 			model_vmem = lib_va_64_arena;
791 			mutex_exit(&lib_va_init_mutex);
792 		} else if (lib_va_32_arena == NULL &&
793 		    model == DATAMODEL_ILP32) {
794 			mutex_enter(&lib_va_init_mutex);
795 			if (lib_va_32_arena == NULL) {
796 				base = (caddr_t)align;
797 				as_rangelock(as);
798 				map_addr(&base, len, 0, 1, ma_flags);
799 				as_rangeunlock(as);
800 				if (base == NULL) {
801 					mutex_exit(&lib_va_init_mutex);
802 					MOBJ_STAT_ADD(lib_va_create_failure);
803 					goto nolibva;
804 				}
805 				lib_va_end = (size_t)base + len;
806 				lib_va_len = lib_va_end >> 1;
807 				lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
808 				lib_va_start = lib_va_end - lib_va_len;
809 				lib_va_32_arena = vmem_create("lib_va_32",
810 				    (void *)lib_va_start, lib_va_len, PAGESIZE,
811 				    NULL, NULL, NULL, 0,
812 				    VM_NOSLEEP | VMC_IDENTIFIER);
813 				if (lib_va_32_arena == NULL) {
814 					mutex_exit(&lib_va_init_mutex);
815 					goto nolibva;
816 				}
817 			}
818 			model_vmem = lib_va_32_arena;
819 			mutex_exit(&lib_va_init_mutex);
820 		}
821 
822 		if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) {
823 			base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL,
824 			    NULL, VM_NOSLEEP | VM_ENDALLOC);
825 			MOBJ_STAT_ADD(alloc_vmem);
826 		}
827 
828 		/*
829 		 * Even if the address fails to fit in our address space,
830 		 * or we can't use a reserved address,
831 		 * we should still save it off in lib_va_hash.
832 		 */
833 		*lvpp = lib_va_add_hash(base, len, align, vap);
834 
835 		/*
836 		 * Check for collision on insertion and free up our VA space.
837 		 * This is expected to be rare, so we'll just reset base to
838 		 * NULL instead of looking it up in the lib_va hash.
839 		 */
840 		if (*lvpp == NULL) {
841 			if (base != NULL) {
842 				vmem_xfree(model_vmem, base, len);
843 				base = NULL;
844 				MOBJ_STAT_ADD(add_collision);
845 			}
846 		}
847 	}
848 
849 nolibva:
850 	as_rangelock(as);
851 
852 	/*
853 	 * If we don't have an expected base address, or the one that we want
854 	 * to use is not available or acceptable, go get an acceptable
855 	 * address range.
856 	 *
857 	 * If ASLR is enabled, we should never have used the cache, and should
858 	 * also start our real work here, in the consequent of the next
859 	 * condition.
860 	 */
861 	if (randomize != 0)
862 		ASSERT(base == NULL);
863 
864 	if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
865 	    valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
866 	    RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
867 		MOBJ_STAT_ADD(get_addr);
868 		base = (caddr_t)align;
869 		map_addr(&base, len, 0, 1, ma_flags);
870 	}
871 
872 	/*
873 	 * Need to reserve the address space we're going to use.
874 	 * Don't reserve swap space since we'll be mapping over this.
875 	 */
876 	if (base != NULL) {
877 		/* Don't reserve swap space since we'll be mapping over this */
878 		crargs.flags |= MAP_NORESERVE;
879 		error = as_map(as, base, len, segvn_create, &crargs);
880 		if (error) {
881 			base = NULL;
882 		}
883 	}
884 
885 	as_rangeunlock(as);
886 	return (base);
887 }
888 
889 /*
890  * Map the file associated with vp into the address space as a single
891  * read only private mapping.
892  * Returns 0 for success, and non-zero for failure to map the file.
893  */
894 static int
895 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding,
896     cred_t *fcred)
897 {
898 	int error = 0;
899 	struct as *as = curproc->p_as;
900 	caddr_t addr = NULL;
901 	caddr_t start_addr;
902 	size_t len;
903 	size_t pad_len;
904 	int prot = PROT_USER | PROT_READ;
905 	uint_t ma_flags = _MAP_LOW32;
906 	vattr_t vattr;
907 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
908 
909 	if (get_udatamodel() == DATAMODEL_LP64) {
910 		ma_flags = 0;
911 	}
912 
913 	vattr.va_mask = AT_SIZE;
914 	error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
915 	if (error) {
916 		return (error);
917 	}
918 
919 	len = vattr.va_size;
920 
921 	ma_flags |= MAP_PRIVATE;
922 	if (padding == 0) {
923 		MOBJ_STAT_ADD(map_flat_no_padding);
924 		error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL,
925 		    ma_flags, fcred, NULL);
926 		if (error == 0) {
927 			mrp[0].mr_addr = addr;
928 			mrp[0].mr_msize = len;
929 			mrp[0].mr_fsize = len;
930 			mrp[0].mr_offset = 0;
931 			mrp[0].mr_prot = prot;
932 			mrp[0].mr_flags = 0;
933 		}
934 		return (error);
935 	}
936 
937 	/* padding was requested so there's more work to be done */
938 	MOBJ_STAT_ADD(map_flat_padding);
939 
940 	/* No need to reserve swap space now since it will be reserved later */
941 	crargs.flags |= MAP_NORESERVE;
942 
943 	/* Need to setup padding which can only be in PAGESIZE increments. */
944 	ASSERT((padding & PAGEOFFSET) == 0);
945 	pad_len = len + (2 * padding);
946 
947 	as_rangelock(as);
948 	map_addr(&addr, pad_len, 0, 1, ma_flags);
949 	error = as_map(as, addr, pad_len, segvn_create, &crargs);
950 	as_rangeunlock(as);
951 	if (error) {
952 		return (error);
953 	}
954 	start_addr = addr;
955 	addr += padding;
956 	ma_flags |= MAP_FIXED;
957 	error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags,
958 	    fcred, NULL);
959 	if (error == 0) {
960 		mrp[0].mr_addr = start_addr;
961 		mrp[0].mr_msize = padding;
962 		mrp[0].mr_fsize = 0;
963 		mrp[0].mr_offset = 0;
964 		mrp[0].mr_prot = 0;
965 		mrp[0].mr_flags = MR_PADDING;
966 
967 		mrp[1].mr_addr = addr;
968 		mrp[1].mr_msize = len;
969 		mrp[1].mr_fsize = len;
970 		mrp[1].mr_offset = 0;
971 		mrp[1].mr_prot = prot;
972 		mrp[1].mr_flags = 0;
973 
974 		mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE);
975 		mrp[2].mr_msize = padding;
976 		mrp[2].mr_fsize = 0;
977 		mrp[2].mr_offset = 0;
978 		mrp[2].mr_prot = 0;
979 		mrp[2].mr_flags = MR_PADDING;
980 	} else {
981 		/* Need to cleanup the as_map from earlier */
982 		(void) as_unmap(as, start_addr, pad_len);
983 	}
984 	return (error);
985 }
986 
987 /*
988  * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's
989  * address space.
990  * vp - vnode to be mapped in
991  * addr - start address
992  * len - length of vp to be mapped
993  * zfodlen - length of zero filled memory after len above
994  * offset - offset into file where mapping should start
995  * prot - protections for this mapping
996  * fcred - credentials for the file associated with vp at open time.
997  */
998 static int
999 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len,
1000     volatile size_t zfodlen, off_t offset, int prot, cred_t *fcred)
1001 {
1002 	int error = 0;
1003 	caddr_t zfodbase, oldaddr;
1004 	size_t oldlen;
1005 	size_t end;
1006 	size_t zfoddiff;
1007 	label_t ljb;
1008 	struct as *as = curproc->p_as;
1009 	model_t model;
1010 	int full_page;
1011 
1012 	/*
1013 	 * See if addr and offset are aligned such that we can map in
1014 	 * full pages instead of partial pages.
1015 	 */
1016 	full_page = (((uintptr_t)addr & PAGEOFFSET) ==
1017 	    ((uintptr_t)offset & PAGEOFFSET));
1018 
1019 	model = get_udatamodel();
1020 
1021 	oldaddr = addr;
1022 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1023 	if (len) {
1024 		spgcnt_t availm, npages;
1025 		int preread;
1026 		uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1027 
1028 		if (model == DATAMODEL_ILP32) {
1029 			mflag |= _MAP_LOW32;
1030 		}
1031 		/* We may need to map in extra bytes */
1032 		oldlen = len;
1033 		len += ((size_t)oldaddr & PAGEOFFSET);
1034 
1035 		if (full_page) {
1036 			offset = (off_t)((uintptr_t)offset & PAGEMASK);
1037 			if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1038 				mflag |= MAP_TEXT;
1039 				MOBJ_STAT_ADD(map_ptload_text);
1040 			} else {
1041 				mflag |= MAP_INITDATA;
1042 				MOBJ_STAT_ADD(map_ptload_initdata);
1043 			}
1044 
1045 			/*
1046 			 * maxprot is passed as PROT_ALL so that mdb can
1047 			 * write to this segment.
1048 			 */
1049 			if ((error = VOP_MAP(vp, (offset_t)offset, as, &addr,
1050 			    len, prot, PROT_ALL, mflag, fcred, NULL)) != 0) {
1051 				return (error);
1052 			}
1053 
1054 			/*
1055 			 * If the segment can fit and is relatively small, then
1056 			 * we prefault the entire segment in.  This is based
1057 			 * on the model that says the best working set of a
1058 			 * small program is all of its pages.
1059 			 * We only do this if freemem will not drop below
1060 			 * lotsfree since we don't want to induce paging.
1061 			 */
1062 			npages = (spgcnt_t)btopr(len);
1063 			availm = freemem - lotsfree;
1064 			preread = (npages < availm && len < PGTHRESH) ? 1 : 0;
1065 
1066 			/*
1067 			 * If we aren't prefaulting the segment,
1068 			 * increment "deficit", if necessary to ensure
1069 			 * that pages will become available when this
1070 			 * process starts executing.
1071 			 */
1072 			if (preread == 0 && npages > availm &&
1073 			    deficit < lotsfree) {
1074 				deficit += MIN((pgcnt_t)(npages - availm),
1075 				    lotsfree - deficit);
1076 			}
1077 
1078 			if (preread) {
1079 				(void) as_faulta(as, addr, len);
1080 				MOBJ_STAT_ADD(map_ptload_preread);
1081 			}
1082 		} else {
1083 			/*
1084 			 * addr and offset were not aligned such that we could
1085 			 * use VOP_MAP, thus we need to as_map the memory we
1086 			 * need and then read the data in from disk.
1087 			 * This code path is a corner case which should never
1088 			 * be taken, but hand crafted binaries could trigger
1089 			 * this logic and it needs to work correctly.
1090 			 */
1091 			MOBJ_STAT_ADD(map_ptload_unaligned_text);
1092 			as_rangelock(as);
1093 			(void) as_unmap(as, addr, len);
1094 
1095 			/*
1096 			 * We use zfod_argsp because we need to be able to
1097 			 * write to the mapping and then we'll change the
1098 			 * protections later if they are incorrect.
1099 			 */
1100 			error = as_map(as, addr, len, segvn_create, zfod_argsp);
1101 			as_rangeunlock(as);
1102 			if (error) {
1103 				MOBJ_STAT_ADD(map_ptload_unaligned_map_fail);
1104 				return (error);
1105 			}
1106 
1107 			/* Now read in the data from disk */
1108 			error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset,
1109 			    UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL);
1110 			if (error) {
1111 				MOBJ_STAT_ADD(map_ptload_unaligned_read_fail);
1112 				return (error);
1113 			}
1114 
1115 			/*
1116 			 * Now set protections.
1117 			 */
1118 			if (prot != PROT_ZFOD) {
1119 				(void) as_setprot(as, addr, len, prot);
1120 			}
1121 		}
1122 	}
1123 
1124 	if (zfodlen) {
1125 		end = (size_t)addr + len;
1126 		zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE);
1127 		zfoddiff = (uintptr_t)zfodbase - end;
1128 		if (zfoddiff) {
1129 			/*
1130 			 * Before we go to zero the remaining space on the last
1131 			 * page, make sure we have write permission.
1132 			 *
1133 			 * We need to be careful how we zero-fill the last page
1134 			 * if the protection does not include PROT_WRITE. Using
1135 			 * as_setprot() can cause the VM segment code to call
1136 			 * segvn_vpage(), which must allocate a page struct for
1137 			 * each page in the segment. If we have a very large
1138 			 * segment, this may fail, so we check for that, even
1139 			 * though we ignore other return values from as_setprot.
1140 			 */
1141 			MOBJ_STAT_ADD(zfoddiff);
1142 			if ((prot & PROT_WRITE) == 0) {
1143 				if (as_setprot(as, (caddr_t)end, zfoddiff,
1144 				    prot | PROT_WRITE) == ENOMEM)
1145 					return (ENOMEM);
1146 				MOBJ_STAT_ADD(zfoddiff_nowrite);
1147 			}
1148 			if (on_fault(&ljb)) {
1149 				no_fault();
1150 				if ((prot & PROT_WRITE) == 0) {
1151 					(void) as_setprot(as, (caddr_t)end,
1152 					    zfoddiff, prot);
1153 				}
1154 				return (EFAULT);
1155 			}
1156 			uzero((void *)end, zfoddiff);
1157 			no_fault();
1158 
1159 			/*
1160 			 * Remove write protection to return to original state
1161 			 */
1162 			if ((prot & PROT_WRITE) == 0) {
1163 				(void) as_setprot(as, (caddr_t)end,
1164 				    zfoddiff, prot);
1165 			}
1166 		}
1167 		if (zfodlen > zfoddiff) {
1168 			struct segvn_crargs crargs =
1169 			    SEGVN_ZFOD_ARGS(prot, PROT_ALL);
1170 
1171 			MOBJ_STAT_ADD(zfodextra);
1172 			zfodlen -= zfoddiff;
1173 			crargs.szc = AS_MAP_NO_LPOOB;
1174 
1175 
1176 			as_rangelock(as);
1177 			(void) as_unmap(as, (caddr_t)zfodbase, zfodlen);
1178 			error = as_map(as, (caddr_t)zfodbase,
1179 			    zfodlen, segvn_create, &crargs);
1180 			as_rangeunlock(as);
1181 			if (error) {
1182 				return (error);
1183 			}
1184 		}
1185 	}
1186 	return (0);
1187 }
1188 
1189 /*
1190  * Map the ELF file represented by vp into the users address space.  The
1191  * first mapping will start at start_addr and there will be num_elements
1192  * mappings.  The mappings are described by the data in mrp which may be
1193  * modified upon returning from this function.
1194  * Returns 0 for success or errno for failure.
1195  */
1196 static int
1197 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp,
1198     int num_elements, cred_t *fcred, ushort_t e_type)
1199 {
1200 	int i;
1201 	int ret;
1202 	caddr_t lo;
1203 	caddr_t hi;
1204 	struct as *as = curproc->p_as;
1205 
1206 	for (i = 0; i < num_elements; i++) {
1207 		caddr_t addr;
1208 		size_t p_memsz;
1209 		size_t p_filesz;
1210 		size_t zfodlen;
1211 		offset_t p_offset;
1212 		size_t dif;
1213 		int prot;
1214 
1215 		/* Always need to adjust mr_addr */
1216 		addr = start_addr + (size_t)(mrp[i].mr_addr);
1217 		mrp[i].mr_addr =
1218 		    (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1219 
1220 		/* Padding has already been mapped */
1221 		if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1222 			continue;
1223 		}
1224 
1225 		/* Can't execute code from "noexec" mounted filesystem. */
1226 		if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) &&
1227 		    ((mrp[i].mr_prot & PROT_EXEC) != 0)) {
1228 			MOBJ_STAT_ADD(noexec_fs);
1229 			return (EACCES);
1230 		}
1231 
1232 		p_memsz = mrp[i].mr_msize;
1233 		p_filesz = mrp[i].mr_fsize;
1234 		zfodlen = p_memsz - p_filesz;
1235 		p_offset = mrp[i].mr_offset;
1236 		dif = (uintptr_t)(addr) & PAGEOFFSET;
1237 		prot = mrp[i].mr_prot | PROT_USER;
1238 		ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen,
1239 		    p_offset, prot, fcred);
1240 		if (ret != 0) {
1241 			MOBJ_STAT_ADD(ptload_failed);
1242 			mmapobj_unmap(mrp, i, num_elements, e_type);
1243 			return (ret);
1244 		}
1245 
1246 		/* Need to cleanup mrp to reflect the actual values used */
1247 		mrp[i].mr_msize += dif;
1248 		mrp[i].mr_offset = (size_t)addr & PAGEOFFSET;
1249 	}
1250 
1251 	/* Also need to unmap any holes created above */
1252 	if (num_elements == 1) {
1253 		MOBJ_STAT_ADD(map_elf_no_holes);
1254 		return (0);
1255 	}
1256 	if (e_type == ET_EXEC) {
1257 		return (0);
1258 	}
1259 
1260 	as_rangelock(as);
1261 	lo = start_addr;
1262 	hi = mrp[0].mr_addr;
1263 
1264 	/* Remove holes made by the rest of the segments */
1265 	for (i = 0; i < num_elements - 1; i++) {
1266 		lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) +
1267 		    mrp[i].mr_msize, PAGESIZE);
1268 		hi = mrp[i + 1].mr_addr;
1269 		if (lo < hi) {
1270 			/*
1271 			 * If as_unmap fails we just use up a bit of extra
1272 			 * space
1273 			 */
1274 			(void) as_unmap(as, (caddr_t)lo,
1275 			    (size_t)hi - (size_t)lo);
1276 			MOBJ_STAT_ADD(unmap_hole);
1277 		}
1278 	}
1279 	as_rangeunlock(as);
1280 
1281 	return (0);
1282 }
1283 
1284 /* Ugly hack to get STRUCT_* macros to work below */
1285 struct myphdr {
1286 	Phdr		x;	/* native version */
1287 };
1288 
1289 struct myphdr32 {
1290 	Elf32_Phdr	x;
1291 };
1292 
1293 /*
1294  * Calculate and return the number of loadable segments in the ELF Phdr
1295  * represented by phdrbase as well as the len of the total mapping and
1296  * the max alignment that is needed for a given segment.  On success,
1297  * 0 is returned, and *len, *loadable and *align have been filled out.
1298  * On failure, errno will be returned, which in this case is ENOTSUP
1299  * if we were passed an ELF file with overlapping segments.
1300  */
1301 static int
1302 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len,
1303     int *loadable, size_t *align)
1304 {
1305 	int i;
1306 	int hsize;
1307 	model_t model;
1308 	ushort_t e_type = ehdrp->e_type;	/* same offset 32 and 64 bit */
1309 	uint_t p_type;
1310 	offset_t p_offset;
1311 	size_t p_memsz;
1312 	size_t p_align;
1313 	caddr_t vaddr;
1314 	int num_segs = 0;
1315 	caddr_t start_addr = NULL;
1316 	caddr_t p_end = NULL;
1317 	size_t max_align = 0;
1318 	size_t min_align = PAGESIZE;	/* needed for vmem_xalloc */
1319 	STRUCT_HANDLE(myphdr, mph);
1320 #if defined(__sparc)
1321 	extern int vac_size;
1322 
1323 	/*
1324 	 * Want to prevent aliasing by making the start address at least be
1325 	 * aligned to vac_size.
1326 	 */
1327 	min_align = MAX(PAGESIZE, vac_size);
1328 #endif
1329 
1330 	model = get_udatamodel();
1331 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1332 
1333 	/* hsize alignment should have been checked before calling this func */
1334 	if (model == DATAMODEL_LP64) {
1335 		hsize = ehdrp->e_phentsize;
1336 		if (hsize & 7) {
1337 			return (ENOTSUP);
1338 		}
1339 	} else {
1340 		ASSERT(model == DATAMODEL_ILP32);
1341 		hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1342 		if (hsize & 3) {
1343 			return (ENOTSUP);
1344 		}
1345 	}
1346 
1347 	/*
1348 	 * Determine the span of all loadable segments and calculate the
1349 	 * number of loadable segments.
1350 	 */
1351 	for (i = 0; i < nphdrs; i++) {
1352 		p_type = STRUCT_FGET(mph, x.p_type);
1353 		if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1354 			vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1355 			p_memsz = STRUCT_FGET(mph, x.p_memsz);
1356 
1357 			/*
1358 			 * Skip this header if it requests no memory to be
1359 			 * mapped.
1360 			 */
1361 			if (p_memsz == 0) {
1362 				STRUCT_SET_HANDLE(mph, model,
1363 				    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1364 				    hsize));
1365 				MOBJ_STAT_ADD(nomem_header);
1366 				continue;
1367 			}
1368 			if (num_segs++ == 0) {
1369 				/*
1370 				 * The p_vaddr of the first PT_LOAD segment
1371 				 * must either be NULL or within the first
1372 				 * page in order to be interpreted.
1373 				 * Otherwise, its an invalid file.
1374 				 */
1375 				if (e_type == ET_DYN &&
1376 				    ((caddr_t)((uintptr_t)vaddr &
1377 				    (uintptr_t)PAGEMASK) != NULL)) {
1378 					MOBJ_STAT_ADD(inval_header);
1379 					return (ENOTSUP);
1380 				}
1381 				start_addr = vaddr;
1382 				/*
1383 				 * For the first segment, we need to map from
1384 				 * the beginning of the file, so we will
1385 				 * adjust the size of the mapping to include
1386 				 * this memory.
1387 				 */
1388 				p_offset = STRUCT_FGET(mph, x.p_offset);
1389 			} else {
1390 				p_offset = 0;
1391 			}
1392 			/*
1393 			 * Check to make sure that this mapping wouldn't
1394 			 * overlap a previous mapping.
1395 			 */
1396 			if (vaddr < p_end) {
1397 				MOBJ_STAT_ADD(overlap_header);
1398 				return (ENOTSUP);
1399 			}
1400 
1401 			p_end = vaddr + p_memsz + p_offset;
1402 			p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE);
1403 
1404 			p_align = STRUCT_FGET(mph, x.p_align);
1405 			if (p_align > 1 && p_align > max_align) {
1406 				max_align = p_align;
1407 				if (max_align < min_align) {
1408 					max_align = min_align;
1409 					MOBJ_STAT_ADD(min_align);
1410 				}
1411 			}
1412 		}
1413 		STRUCT_SET_HANDLE(mph, model,
1414 		    (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize));
1415 	}
1416 
1417 	/*
1418 	 * The alignment should be a power of 2, if it isn't we forgive it
1419 	 * and round up.  On overflow, we'll set the alignment to max_align
1420 	 * rounded down to the nearest power of 2.
1421 	 */
1422 	if (max_align > 0 && !ISP2(max_align)) {
1423 		MOBJ_STAT_ADD(np2_align);
1424 		*align = 2 * (1L << (highbit(max_align) - 1));
1425 		if (*align < max_align ||
1426 		    (*align > UINT_MAX && model == DATAMODEL_ILP32)) {
1427 			MOBJ_STAT_ADD(np2_align_overflow);
1428 			*align = 1L << (highbit(max_align) - 1);
1429 		}
1430 	} else {
1431 		*align = max_align;
1432 	}
1433 
1434 	ASSERT(*align >= PAGESIZE || *align == 0);
1435 
1436 	*loadable = num_segs;
1437 	*len = p_end - start_addr;
1438 	return (0);
1439 }
1440 
1441 /*
1442  * Check the address space to see if the virtual addresses to be used are
1443  * available.  If they are not, return errno for failure.  On success, 0
1444  * will be returned, and the virtual addresses for each mmapobj_result_t
1445  * will be reserved.  Note that a reservation could have earlier been made
1446  * for a given segment via a /dev/null mapping.  If that is the case, then
1447  * we can use that VA space for our mappings.
1448  * Note: this function will only be used for ET_EXEC binaries.
1449  */
1450 int
1451 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr)
1452 {
1453 	int i;
1454 	struct as *as = curproc->p_as;
1455 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1456 	int ret;
1457 	caddr_t myaddr;
1458 	size_t mylen;
1459 	struct seg *seg;
1460 
1461 	/* No need to reserve swap space now since it will be reserved later */
1462 	crargs.flags |= MAP_NORESERVE;
1463 	as_rangelock(as);
1464 	for (i = 0; i < loadable; i++) {
1465 
1466 		myaddr = start_addr + (size_t)mrp[i].mr_addr;
1467 		mylen = mrp[i].mr_msize;
1468 
1469 		/* See if there is a hole in the as for this range */
1470 		if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) {
1471 			ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr);
1472 			ASSERT(mylen == mrp[i].mr_msize);
1473 
1474 #ifdef DEBUG
1475 			if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1476 				MOBJ_STAT_ADD(exec_padding);
1477 			}
1478 #endif
1479 			ret = as_map(as, myaddr, mylen, segvn_create, &crargs);
1480 			if (ret) {
1481 				as_rangeunlock(as);
1482 				mmapobj_unmap_exec(mrp, i, start_addr);
1483 				return (ret);
1484 			}
1485 		} else {
1486 			/*
1487 			 * There is a mapping that exists in the range
1488 			 * so check to see if it was a "reservation"
1489 			 * from /dev/null.  The mapping is from
1490 			 * /dev/null if the mapping comes from
1491 			 * segdev and the type is neither MAP_SHARED
1492 			 * nor MAP_PRIVATE.
1493 			 */
1494 			AS_LOCK_ENTER(as, RW_READER);
1495 			seg = as_findseg(as, myaddr, 0);
1496 			MOBJ_STAT_ADD(exec_addr_mapped);
1497 			if (seg && seg->s_ops == &segdev_ops &&
1498 			    ((SEGOP_GETTYPE(seg, myaddr) &
1499 			    (MAP_SHARED | MAP_PRIVATE)) == 0) &&
1500 			    myaddr >= seg->s_base &&
1501 			    myaddr + mylen <=
1502 			    seg->s_base + seg->s_size) {
1503 				MOBJ_STAT_ADD(exec_addr_devnull);
1504 				AS_LOCK_EXIT(as);
1505 				(void) as_unmap(as, myaddr, mylen);
1506 				ret = as_map(as, myaddr, mylen, segvn_create,
1507 				    &crargs);
1508 				mrp[i].mr_flags |= MR_RESV;
1509 				if (ret) {
1510 					as_rangeunlock(as);
1511 					/* Need to remap what we unmapped */
1512 					mmapobj_unmap_exec(mrp, i + 1,
1513 					    start_addr);
1514 					return (ret);
1515 				}
1516 			} else {
1517 				AS_LOCK_EXIT(as);
1518 				as_rangeunlock(as);
1519 				mmapobj_unmap_exec(mrp, i, start_addr);
1520 				MOBJ_STAT_ADD(exec_addr_in_use);
1521 				return (EADDRINUSE);
1522 			}
1523 		}
1524 	}
1525 	as_rangeunlock(as);
1526 	return (0);
1527 }
1528 
1529 /*
1530  * Walk through the ELF program headers and extract all useful information
1531  * for PT_LOAD and PT_SUNWBSS segments into mrp.
1532  * Return 0 on success or error on failure.
1533  */
1534 static int
1535 process_phdrs(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp,
1536     vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred)
1537 {
1538 	int i;
1539 	caddr_t start_addr = NULL;
1540 	caddr_t vaddr;
1541 	size_t len = 0;
1542 	size_t lib_len = 0;
1543 	int ret;
1544 	int prot;
1545 	struct lib_va *lvp = NULL;
1546 	vattr_t vattr;
1547 	struct as *as = curproc->p_as;
1548 	int error;
1549 	int loadable = 0;
1550 	int current = 0;
1551 	int use_lib_va = 1;
1552 	size_t align = 0;
1553 	size_t add_pad = 0;
1554 	int hdr_seen = 0;
1555 	ushort_t e_type = ehdrp->e_type;	/* same offset 32 and 64 bit */
1556 	uint_t p_type;
1557 	offset_t p_offset;
1558 	size_t p_memsz;
1559 	size_t p_filesz;
1560 	uint_t p_flags;
1561 	int hsize;
1562 	model_t model;
1563 	STRUCT_HANDLE(myphdr, mph);
1564 
1565 	model = get_udatamodel();
1566 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1567 
1568 	/*
1569 	 * Need to make sure that hsize is aligned properly.
1570 	 * For 32bit processes, 4 byte alignment is required.
1571 	 * For 64bit processes, 8 byte alignment is required.
1572 	 * If the alignment isn't correct, we need to return failure
1573 	 * since it could cause an alignment error panic while walking
1574 	 * the phdr array.
1575 	 */
1576 	if (model == DATAMODEL_LP64) {
1577 		hsize = ehdrp->e_phentsize;
1578 		if (hsize & 7) {
1579 			MOBJ_STAT_ADD(phent_align64);
1580 			return (ENOTSUP);
1581 		}
1582 	} else {
1583 		ASSERT(model == DATAMODEL_ILP32);
1584 		hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1585 		if (hsize & 3) {
1586 			MOBJ_STAT_ADD(phent_align32);
1587 			return (ENOTSUP);
1588 		}
1589 	}
1590 
1591 	if ((padding != 0) || secflag_enabled(curproc, PROC_SEC_ASLR)) {
1592 		use_lib_va = 0;
1593 	}
1594 	if (e_type == ET_DYN) {
1595 		vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME;
1596 		error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
1597 		if (error) {
1598 			return (error);
1599 		}
1600 		/* Check to see if we already have a description for this lib */
1601 		if (!secflag_enabled(curproc, PROC_SEC_ASLR))
1602 			lvp = lib_va_find(&vattr);
1603 
1604 		if (lvp != NULL) {
1605 			MOBJ_STAT_ADD(lvp_found);
1606 			if (use_lib_va) {
1607 				start_addr = mmapobj_lookup_start_addr(lvp);
1608 				if (start_addr == NULL) {
1609 					lib_va_release(lvp);
1610 					return (ENOMEM);
1611 				}
1612 			}
1613 
1614 			/*
1615 			 * loadable may be zero if the original allocator
1616 			 * of lvp hasn't finished setting it up but the rest
1617 			 * of the fields will be accurate.
1618 			 */
1619 			loadable = lvp->lv_num_segs;
1620 			len = lvp->lv_len;
1621 			align = lvp->lv_align;
1622 		}
1623 	}
1624 
1625 	/*
1626 	 * Determine the span of all loadable segments and calculate the
1627 	 * number of loadable segments, the total len spanned by the mappings
1628 	 * and the max alignment, if we didn't get them above.
1629 	 */
1630 	if (loadable == 0) {
1631 		MOBJ_STAT_ADD(no_loadable_yet);
1632 		ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len,
1633 		    &loadable, &align);
1634 		if (ret != 0) {
1635 			/*
1636 			 * Since it'd be an invalid file, we shouldn't have
1637 			 * cached it previously.
1638 			 */
1639 			ASSERT(lvp == NULL);
1640 			return (ret);
1641 		}
1642 #ifdef DEBUG
1643 		if (lvp) {
1644 			ASSERT(len == lvp->lv_len);
1645 			ASSERT(align == lvp->lv_align);
1646 		}
1647 #endif
1648 	}
1649 
1650 	/* Make sure there's something to map. */
1651 	if (len == 0 || loadable == 0) {
1652 		/*
1653 		 * Since it'd be an invalid file, we shouldn't have
1654 		 * cached it previously.
1655 		 */
1656 		ASSERT(lvp == NULL);
1657 		MOBJ_STAT_ADD(nothing_to_map);
1658 		return (ENOTSUP);
1659 	}
1660 
1661 	lib_len = len;
1662 	if (padding != 0) {
1663 		loadable += 2;
1664 	}
1665 	if (loadable > *num_mapped) {
1666 		*num_mapped = loadable;
1667 		/* cleanup previous reservation */
1668 		if (start_addr) {
1669 			(void) as_unmap(as, start_addr, lib_len);
1670 		}
1671 		MOBJ_STAT_ADD(e2big);
1672 		if (lvp) {
1673 			lib_va_release(lvp);
1674 		}
1675 		return (E2BIG);
1676 	}
1677 
1678 	/*
1679 	 * We now know the size of the object to map and now we need to
1680 	 * get the start address to map it at.  It's possible we already
1681 	 * have it if we found all the info we need in the lib_va cache.
1682 	 */
1683 	if (e_type == ET_DYN && start_addr == NULL) {
1684 		/*
1685 		 * Need to make sure padding does not throw off
1686 		 * required alignment.  We can only specify an
1687 		 * alignment for the starting address to be mapped,
1688 		 * so we round padding up to the alignment and map
1689 		 * from there and then throw out the extra later.
1690 		 */
1691 		if (padding != 0) {
1692 			if (align > 1) {
1693 				add_pad = P2ROUNDUP(padding, align);
1694 				len += add_pad;
1695 				MOBJ_STAT_ADD(dyn_pad_align);
1696 			} else {
1697 				MOBJ_STAT_ADD(dyn_pad_noalign);
1698 				len += padding;	/* at beginning */
1699 			}
1700 			len += padding;	/* at end of mapping */
1701 		}
1702 		/*
1703 		 * At this point, if lvp is non-NULL, then above we
1704 		 * already found it in the cache but did not get
1705 		 * the start address since we were not going to use lib_va.
1706 		 * Since we know that lib_va will not be used, it's safe
1707 		 * to call mmapobj_alloc_start_addr and know that lvp
1708 		 * will not be modified.
1709 		 */
1710 		ASSERT(lvp ? use_lib_va == 0 : 1);
1711 		start_addr = mmapobj_alloc_start_addr(&lvp, len,
1712 		    use_lib_va,
1713 		    secflag_enabled(curproc, PROC_SEC_ASLR),
1714 		    align, &vattr);
1715 		if (start_addr == NULL) {
1716 			if (lvp) {
1717 				lib_va_release(lvp);
1718 			}
1719 			MOBJ_STAT_ADD(alloc_start_fail);
1720 			return (ENOMEM);
1721 		}
1722 		/*
1723 		 * If we can't cache it, no need to hang on to it.
1724 		 * Setting lv_num_segs to non-zero will make that
1725 		 * field active and since there are too many segments
1726 		 * to cache, all future users will not try to use lv_mps.
1727 		 */
1728 		if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) {
1729 			lvp->lv_num_segs = loadable;
1730 			lib_va_release(lvp);
1731 			lvp = NULL;
1732 			MOBJ_STAT_ADD(lvp_nocache);
1733 		}
1734 		/*
1735 		 * Free the beginning of the mapping if the padding
1736 		 * was not aligned correctly.
1737 		 */
1738 		if (padding != 0 && add_pad != padding) {
1739 			(void) as_unmap(as, start_addr,
1740 			    add_pad - padding);
1741 			start_addr += (add_pad - padding);
1742 			MOBJ_STAT_ADD(extra_padding);
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * At this point, we have reserved the virtual address space
1748 	 * for our mappings.  Now we need to start filling out the mrp
1749 	 * array to describe all of the individual mappings we are going
1750 	 * to return.
1751 	 * For ET_EXEC there has been no memory reservation since we are
1752 	 * using fixed addresses.  While filling in the mrp array below,
1753 	 * we will have the first segment biased to start at addr 0
1754 	 * and the rest will be biased by this same amount.  Thus if there
1755 	 * is padding, the first padding will start at addr 0, and the next
1756 	 * segment will start at the value of padding.
1757 	 */
1758 
1759 	/* We'll fill out padding later, so start filling in mrp at index 1 */
1760 	if (padding != 0) {
1761 		current = 1;
1762 	}
1763 
1764 	/* If we have no more need for lvp let it go now */
1765 	if (lvp != NULL && use_lib_va == 0) {
1766 		lib_va_release(lvp);
1767 		MOBJ_STAT_ADD(lvp_not_needed);
1768 		lvp = NULL;
1769 	}
1770 
1771 	/* Now fill out the mrp structs from the program headers */
1772 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1773 	for (i = 0; i < nphdrs; i++) {
1774 		p_type = STRUCT_FGET(mph, x.p_type);
1775 		if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1776 			vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1777 			p_memsz = STRUCT_FGET(mph, x.p_memsz);
1778 			p_filesz = STRUCT_FGET(mph, x.p_filesz);
1779 			p_offset = STRUCT_FGET(mph, x.p_offset);
1780 			p_flags = STRUCT_FGET(mph, x.p_flags);
1781 
1782 			/*
1783 			 * Skip this header if it requests no memory to be
1784 			 * mapped.
1785 			 */
1786 			if (p_memsz == 0) {
1787 				STRUCT_SET_HANDLE(mph, model,
1788 				    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1789 				    hsize));
1790 				MOBJ_STAT_ADD(no_mem_map_sz);
1791 				continue;
1792 			}
1793 
1794 			prot = 0;
1795 			if (p_flags & PF_R)
1796 				prot |= PROT_READ;
1797 			if (p_flags & PF_W)
1798 				prot |= PROT_WRITE;
1799 			if (p_flags & PF_X)
1800 				prot |= PROT_EXEC;
1801 
1802 			ASSERT(current < loadable);
1803 			mrp[current].mr_msize = p_memsz;
1804 			mrp[current].mr_fsize = p_filesz;
1805 			mrp[current].mr_offset = p_offset;
1806 			mrp[current].mr_prot = prot;
1807 
1808 			if (hdr_seen == 0 && p_filesz != 0) {
1809 				mrp[current].mr_flags = MR_HDR_ELF;
1810 				/*
1811 				 * We modify mr_offset because we
1812 				 * need to map the ELF header as well, and if
1813 				 * we didn't then the header could be left out
1814 				 * of the mapping that we will create later.
1815 				 * Since we're removing the offset, we need to
1816 				 * account for that in the other fields as well
1817 				 * since we will be mapping the memory from 0
1818 				 * to p_offset.
1819 				 */
1820 				if (e_type == ET_DYN) {
1821 					mrp[current].mr_offset = 0;
1822 					mrp[current].mr_msize += p_offset;
1823 					mrp[current].mr_fsize += p_offset;
1824 				} else {
1825 					ASSERT(e_type == ET_EXEC);
1826 					/*
1827 					 * Save off the start addr which will be
1828 					 * our bias for the rest of the
1829 					 * ET_EXEC mappings.
1830 					 */
1831 					start_addr = vaddr - padding;
1832 				}
1833 				mrp[current].mr_addr = (caddr_t)padding;
1834 				hdr_seen = 1;
1835 			} else {
1836 				if (e_type == ET_EXEC) {
1837 					/* bias mr_addr */
1838 					mrp[current].mr_addr =
1839 					    vaddr - (size_t)start_addr;
1840 				} else {
1841 					mrp[current].mr_addr = vaddr + padding;
1842 				}
1843 				mrp[current].mr_flags = 0;
1844 			}
1845 			current++;
1846 		}
1847 
1848 		/* Move to next phdr */
1849 		STRUCT_SET_HANDLE(mph, model,
1850 		    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1851 		    hsize));
1852 	}
1853 
1854 	/* Now fill out the padding segments */
1855 	if (padding != 0) {
1856 		mrp[0].mr_addr = NULL;
1857 		mrp[0].mr_msize = padding;
1858 		mrp[0].mr_fsize = 0;
1859 		mrp[0].mr_offset = 0;
1860 		mrp[0].mr_prot = 0;
1861 		mrp[0].mr_flags = MR_PADDING;
1862 
1863 		/* Setup padding for the last segment */
1864 		ASSERT(current == loadable - 1);
1865 		mrp[current].mr_addr = (caddr_t)lib_len + padding;
1866 		mrp[current].mr_msize = padding;
1867 		mrp[current].mr_fsize = 0;
1868 		mrp[current].mr_offset = 0;
1869 		mrp[current].mr_prot = 0;
1870 		mrp[current].mr_flags = MR_PADDING;
1871 	}
1872 
1873 	/*
1874 	 * Need to make sure address ranges desired are not in use or
1875 	 * are previously allocated reservations from /dev/null.  For
1876 	 * ET_DYN, we already made sure our address range was free.
1877 	 */
1878 	if (e_type == ET_EXEC) {
1879 		ret = check_exec_addrs(loadable, mrp, start_addr);
1880 		if (ret != 0) {
1881 			ASSERT(lvp == NULL);
1882 			MOBJ_STAT_ADD(check_exec_failed);
1883 			return (ret);
1884 		}
1885 	}
1886 
1887 	/* Finish up our business with lvp. */
1888 	if (lvp) {
1889 		ASSERT(e_type == ET_DYN);
1890 		if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) {
1891 			bcopy(mrp, lvp->lv_mps,
1892 			    loadable * sizeof (mmapobj_result_t));
1893 			membar_producer();
1894 		}
1895 		/*
1896 		 * Setting lv_num_segs to a non-zero value indicates that
1897 		 * lv_mps is now valid and can be used by other threads.
1898 		 * So, the above stores need to finish before lv_num_segs
1899 		 * is updated. lv_mps is only valid if lv_num_segs is
1900 		 * greater than LIBVA_CACHED_SEGS.
1901 		 */
1902 		lvp->lv_num_segs = loadable;
1903 		lib_va_release(lvp);
1904 		MOBJ_STAT_ADD(lvp_used);
1905 	}
1906 
1907 	/* Now that we have mrp completely filled out go map it */
1908 	ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type);
1909 	if (ret == 0) {
1910 		*num_mapped = loadable;
1911 	}
1912 
1913 	return (ret);
1914 }
1915 
1916 /*
1917  * Take the ELF file passed in, and do the work of mapping it.
1918  * num_mapped in - # elements in user buffer
1919  * num_mapped out - # sections mapped and length of mrp array if
1920  *			no errors.
1921  */
1922 static int
1923 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp,
1924     uint_t *num_mapped, size_t padding, cred_t *fcred)
1925 {
1926 	int error;
1927 	offset_t phoff;
1928 	int nphdrs;
1929 	unsigned char ei_class;
1930 	unsigned short phentsize;
1931 	ssize_t phsizep;
1932 	caddr_t phbasep;
1933 	int to_map;
1934 	model_t model;
1935 
1936 	ei_class = ehdrp->e_ident[EI_CLASS];
1937 	model = get_udatamodel();
1938 	if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) ||
1939 	    (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) {
1940 		MOBJ_STAT_ADD(wrong_model);
1941 		return (ENOTSUP);
1942 	}
1943 
1944 	/* Can't execute code from "noexec" mounted filesystem. */
1945 	if (ehdrp->e_type == ET_EXEC &&
1946 	    (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
1947 		MOBJ_STAT_ADD(noexec_fs);
1948 		return (EACCES);
1949 	}
1950 
1951 	/*
1952 	 * Relocatable and core files are mapped as a single flat file
1953 	 * since no interpretation is done on them by mmapobj.
1954 	 */
1955 	if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) {
1956 		to_map = padding ? 3 : 1;
1957 		if (*num_mapped < to_map) {
1958 			*num_mapped = to_map;
1959 			MOBJ_STAT_ADD(e2big_et_rel);
1960 			return (E2BIG);
1961 		}
1962 		error = mmapobj_map_flat(vp, mrp, padding, fcred);
1963 		if (error == 0) {
1964 			*num_mapped = to_map;
1965 			mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF;
1966 			MOBJ_STAT_ADD(et_rel_mapped);
1967 		}
1968 		return (error);
1969 	}
1970 
1971 	/* Check for an unknown ELF type */
1972 	if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) {
1973 		MOBJ_STAT_ADD(unknown_elf_type);
1974 		return (ENOTSUP);
1975 	}
1976 
1977 	if (ei_class == ELFCLASS32) {
1978 		Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp;
1979 		ASSERT(model == DATAMODEL_ILP32);
1980 		nphdrs = e32hdr->e_phnum;
1981 		phentsize = e32hdr->e_phentsize;
1982 		if (phentsize < sizeof (Elf32_Phdr)) {
1983 			MOBJ_STAT_ADD(phent32_too_small);
1984 			return (ENOTSUP);
1985 		}
1986 		phoff = e32hdr->e_phoff;
1987 	} else if (ei_class == ELFCLASS64) {
1988 		Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp;
1989 		ASSERT(model == DATAMODEL_LP64);
1990 		nphdrs = e64hdr->e_phnum;
1991 		phentsize = e64hdr->e_phentsize;
1992 		if (phentsize < sizeof (Elf64_Phdr)) {
1993 			MOBJ_STAT_ADD(phent64_too_small);
1994 			return (ENOTSUP);
1995 		}
1996 		phoff = e64hdr->e_phoff;
1997 	} else {
1998 		/* fallthrough case for an invalid ELF class */
1999 		MOBJ_STAT_ADD(inval_elf_class);
2000 		return (ENOTSUP);
2001 	}
2002 
2003 	/*
2004 	 * nphdrs should only have this value for core files which are handled
2005 	 * above as a single mapping.  If other file types ever use this
2006 	 * sentinel, then we'll add the support needed to handle this here.
2007 	 */
2008 	if (nphdrs == PN_XNUM) {
2009 		MOBJ_STAT_ADD(too_many_phdrs);
2010 		return (ENOTSUP);
2011 	}
2012 
2013 	phsizep = nphdrs * phentsize;
2014 
2015 	if (phsizep == 0) {
2016 		MOBJ_STAT_ADD(no_phsize);
2017 		return (ENOTSUP);
2018 	}
2019 
2020 	/* Make sure we only wait for memory if it's a reasonable request */
2021 	if (phsizep > mmapobj_alloc_threshold) {
2022 		MOBJ_STAT_ADD(phsize_large);
2023 		if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) {
2024 			MOBJ_STAT_ADD(phsize_xtralarge);
2025 			return (ENOMEM);
2026 		}
2027 	} else {
2028 		phbasep = kmem_alloc(phsizep, KM_SLEEP);
2029 	}
2030 
2031 	if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep,
2032 	    (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
2033 	    fcred, NULL)) != 0) {
2034 		kmem_free(phbasep, phsizep);
2035 		return (error);
2036 	}
2037 
2038 	/* Now process the phdr's */
2039 	error = process_phdrs(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped,
2040 	    padding, fcred);
2041 	kmem_free(phbasep, phsizep);
2042 	return (error);
2043 }
2044 
2045 /*
2046  * These are the two types of files that we can interpret and we want to read
2047  * in enough info to cover both types when looking at the initial header.
2048  */
2049 #define	MAX_HEADER_SIZE	(MAX(sizeof (Ehdr), sizeof (struct exec)))
2050 
2051 /*
2052  * Map vp passed in in an interpreted manner.  ELF and AOUT files will be
2053  * interpreted and mapped appropriately for execution.
2054  * num_mapped in - # elements in mrp
2055  * num_mapped out - # sections mapped and length of mrp array if
2056  *		    no errors or E2BIG returned.
2057  *
2058  * Returns 0 on success, errno value on failure.
2059  */
2060 static int
2061 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp,
2062     uint_t *num_mapped, size_t padding, cred_t *fcred)
2063 {
2064 	int error = 0;
2065 	vattr_t vattr;
2066 	struct lib_va *lvp;
2067 	caddr_t start_addr;
2068 	model_t model;
2069 
2070 	/*
2071 	 * header has to be aligned to the native size of ulong_t in order
2072 	 * to avoid an unaligned access when dereferencing the header as
2073 	 * a ulong_t.  Thus we allocate our array on the stack of type
2074 	 * ulong_t and then have header, which we dereference later as a char
2075 	 * array point at lheader.
2076 	 */
2077 	ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1];
2078 	caddr_t header = (caddr_t)&lheader;
2079 
2080 	vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE;
2081 	error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
2082 	if (error) {
2083 		return (error);
2084 	}
2085 
2086 	/*
2087 	 * Check lib_va to see if we already have a full description
2088 	 * for this library.  This is the fast path and only used for
2089 	 * ET_DYN ELF files (dynamic libraries).
2090 	 */
2091 	if (padding == 0 && !secflag_enabled(curproc, PROC_SEC_ASLR) &&
2092 	    ((lvp = lib_va_find(&vattr)) != NULL)) {
2093 		int num_segs;
2094 
2095 		model = get_udatamodel();
2096 		if ((model == DATAMODEL_ILP32 &&
2097 		    lvp->lv_flags & LV_ELF64) ||
2098 		    (model == DATAMODEL_LP64 &&
2099 		    lvp->lv_flags & LV_ELF32)) {
2100 			lib_va_release(lvp);
2101 			MOBJ_STAT_ADD(fast_wrong_model);
2102 			return (ENOTSUP);
2103 		}
2104 		num_segs = lvp->lv_num_segs;
2105 		if (*num_mapped < num_segs) {
2106 			*num_mapped = num_segs;
2107 			lib_va_release(lvp);
2108 			MOBJ_STAT_ADD(fast_e2big);
2109 			return (E2BIG);
2110 		}
2111 
2112 		/*
2113 		 * Check to see if we have all the mappable program headers
2114 		 * cached.
2115 		 */
2116 		if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) {
2117 			MOBJ_STAT_ADD(fast);
2118 			start_addr = mmapobj_lookup_start_addr(lvp);
2119 			if (start_addr == NULL) {
2120 				lib_va_release(lvp);
2121 				return (ENOMEM);
2122 			}
2123 
2124 			bcopy(lvp->lv_mps, mrp,
2125 			    num_segs * sizeof (mmapobj_result_t));
2126 
2127 			error = mmapobj_map_elf(vp, start_addr, mrp,
2128 			    num_segs, fcred, ET_DYN);
2129 
2130 			lib_va_release(lvp);
2131 			if (error == 0) {
2132 				*num_mapped = num_segs;
2133 				MOBJ_STAT_ADD(fast_success);
2134 			}
2135 			return (error);
2136 		}
2137 		MOBJ_STAT_ADD(fast_not_now);
2138 
2139 		/* Release it for now since we'll look it up below */
2140 		lib_va_release(lvp);
2141 	}
2142 
2143 	/*
2144 	 * Time to see if this is a file we can interpret.  If it's smaller
2145 	 * than this, then we can't interpret it.
2146 	 */
2147 	if (vattr.va_size < MAX_HEADER_SIZE) {
2148 		MOBJ_STAT_ADD(small_file);
2149 		return (ENOTSUP);
2150 	}
2151 
2152 	if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0,
2153 	    UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) {
2154 		MOBJ_STAT_ADD(read_error);
2155 		return (error);
2156 	}
2157 
2158 	/* Verify file type */
2159 	if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 &&
2160 	    header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) {
2161 		return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped,
2162 		    padding, fcred));
2163 	}
2164 
2165 	/* Unsupported type */
2166 	MOBJ_STAT_ADD(unsupported);
2167 	return (ENOTSUP);
2168 }
2169 
2170 /*
2171  * Given a vnode, map it as either a flat file or interpret it and map
2172  * it according to the rules of the file type.
2173  * *num_mapped will contain the size of the mmapobj_result_t array passed in.
2174  * If padding is non-zero, the mappings will be padded by that amount
2175  * rounded up to the nearest pagesize.
2176  * If the mapping is successful, *num_mapped will contain the number of
2177  * distinct mappings created, and mrp will point to the array of
2178  * mmapobj_result_t's which describe these mappings.
2179  *
2180  * On error, -1 is returned and errno is set appropriately.
2181  * A special error case will set errno to E2BIG when there are more than
2182  * *num_mapped mappings to be created and *num_mapped will be set to the
2183  * number of mappings needed.
2184  */
2185 int
2186 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp,
2187     uint_t *num_mapped, size_t padding, cred_t *fcred)
2188 {
2189 	int to_map;
2190 	int error = 0;
2191 
2192 	ASSERT((padding & PAGEOFFSET) == 0);
2193 	ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0);
2194 	ASSERT(num_mapped != NULL);
2195 	ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0);
2196 
2197 	if ((flags & MMOBJ_INTERPRET) == 0) {
2198 		to_map = padding ? 3 : 1;
2199 		if (*num_mapped < to_map) {
2200 			*num_mapped = to_map;
2201 			MOBJ_STAT_ADD(flat_e2big);
2202 			return (E2BIG);
2203 		}
2204 		error = mmapobj_map_flat(vp, mrp, padding, fcred);
2205 
2206 		if (error) {
2207 			return (error);
2208 		}
2209 		*num_mapped = to_map;
2210 		return (0);
2211 	}
2212 
2213 	error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred);
2214 	return (error);
2215 }
2216