1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright 2014 Joyent, Inc. All rights reserved. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/sysmacros.h> 29 #include <sys/kmem.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/errno.h> 33 #include <sys/mman.h> 34 #include <sys/cmn_err.h> 35 #include <sys/cred.h> 36 #include <sys/vmsystm.h> 37 #include <sys/machsystm.h> 38 #include <sys/debug.h> 39 #include <vm/as.h> 40 #include <vm/seg.h> 41 #include <sys/vmparam.h> 42 #include <sys/vfs.h> 43 #include <sys/elf.h> 44 #include <sys/machelf.h> 45 #include <sys/corectl.h> 46 #include <sys/exec.h> 47 #include <sys/exechdr.h> 48 #include <sys/autoconf.h> 49 #include <sys/mem.h> 50 #include <vm/seg_dev.h> 51 #include <sys/vmparam.h> 52 #include <sys/mmapobj.h> 53 #include <sys/atomic.h> 54 55 /* 56 * Theory statement: 57 * 58 * The main driving force behind mmapobj is to interpret and map ELF files 59 * inside of the kernel instead of having the linker be responsible for this. 60 * 61 * mmapobj also supports the AOUT 4.x binary format as well as flat files in 62 * a read only manner. 63 * 64 * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD 65 * or PT_SUNWBSS segment according to the ELF standard. Refer to the "Linker 66 * and Libraries Guide" for more information about the standard and mapping 67 * rules. 68 * 69 * Having mmapobj interpret and map objects will allow the kernel to make the 70 * best decision for where to place the mappings for said objects. Thus, we 71 * can make optimizations inside of the kernel for specific platforms or cache 72 * mapping information to make mapping objects faster. The cache is ignored 73 * if ASLR is enabled. 74 * 75 * The lib_va_hash will be one such optimization. For each ELF object that 76 * mmapobj is asked to interpret, we will attempt to cache the information 77 * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of 78 * the same objects. We will cache up to LIBVA_CACHED_SEGS (see below) program 79 * headers which should cover a majority of the libraries out there without 80 * wasting space. In order to make sure that the cached information is valid, 81 * we check the passed in vnode's mtime and ctime to make sure the vnode 82 * has not been modified since the last time we used it. 83 * 84 * In addition, the lib_va_hash may contain a preferred starting VA for the 85 * object which can be useful for platforms which support a shared context. 86 * This will increase the likelyhood that library text can be shared among 87 * many different processes. We limit the reserved VA space for 32 bit objects 88 * in order to minimize fragmenting the processes address space. 89 * 90 * In addition to the above, the mmapobj interface allows for padding to be 91 * requested before the first mapping and after the last mapping created. 92 * When padding is requested, no additional optimizations will be made for 93 * that request. 94 */ 95 96 /* 97 * Threshold to prevent allocating too much kernel memory to read in the 98 * program headers for an object. If it requires more than below, 99 * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the 100 * program headers which could possibly fail. If less memory than below is 101 * needed, then we use a KM_SLEEP allocation and are willing to wait for the 102 * memory if we need to. 103 */ 104 size_t mmapobj_alloc_threshold = 65536; 105 106 /* Debug stats for test coverage */ 107 #ifdef DEBUG 108 struct mobj_stats { 109 uint_t mobjs_unmap_called; 110 uint_t mobjs_remap_devnull; 111 uint_t mobjs_lookup_start; 112 uint_t mobjs_alloc_start; 113 uint_t mobjs_alloc_vmem; 114 uint_t mobjs_add_collision; 115 uint_t mobjs_get_addr; 116 uint_t mobjs_map_flat_no_padding; 117 uint_t mobjs_map_flat_padding; 118 uint_t mobjs_map_ptload_text; 119 uint_t mobjs_map_ptload_initdata; 120 uint_t mobjs_map_ptload_preread; 121 uint_t mobjs_map_ptload_unaligned_text; 122 uint_t mobjs_map_ptload_unaligned_map_fail; 123 uint_t mobjs_map_ptload_unaligned_read_fail; 124 uint_t mobjs_zfoddiff; 125 uint_t mobjs_zfoddiff_nowrite; 126 uint_t mobjs_zfodextra; 127 uint_t mobjs_ptload_failed; 128 uint_t mobjs_map_elf_no_holes; 129 uint_t mobjs_unmap_hole; 130 uint_t mobjs_nomem_header; 131 uint_t mobjs_inval_header; 132 uint_t mobjs_overlap_header; 133 uint_t mobjs_np2_align; 134 uint_t mobjs_np2_align_overflow; 135 uint_t mobjs_exec_padding; 136 uint_t mobjs_exec_addr_mapped; 137 uint_t mobjs_exec_addr_devnull; 138 uint_t mobjs_exec_addr_in_use; 139 uint_t mobjs_lvp_found; 140 uint_t mobjs_no_loadable_yet; 141 uint_t mobjs_nothing_to_map; 142 uint_t mobjs_e2big; 143 uint_t mobjs_dyn_pad_align; 144 uint_t mobjs_dyn_pad_noalign; 145 uint_t mobjs_alloc_start_fail; 146 uint_t mobjs_lvp_nocache; 147 uint_t mobjs_extra_padding; 148 uint_t mobjs_lvp_not_needed; 149 uint_t mobjs_no_mem_map_sz; 150 uint_t mobjs_check_exec_failed; 151 uint_t mobjs_lvp_used; 152 uint_t mobjs_wrong_model; 153 uint_t mobjs_noexec_fs; 154 uint_t mobjs_e2big_et_rel; 155 uint_t mobjs_et_rel_mapped; 156 uint_t mobjs_unknown_elf_type; 157 uint_t mobjs_phent32_too_small; 158 uint_t mobjs_phent64_too_small; 159 uint_t mobjs_inval_elf_class; 160 uint_t mobjs_too_many_phdrs; 161 uint_t mobjs_no_phsize; 162 uint_t mobjs_phsize_large; 163 uint_t mobjs_phsize_xtralarge; 164 uint_t mobjs_fast_wrong_model; 165 uint_t mobjs_fast_e2big; 166 uint_t mobjs_fast; 167 uint_t mobjs_fast_success; 168 uint_t mobjs_fast_not_now; 169 uint_t mobjs_small_file; 170 uint_t mobjs_read_error; 171 uint_t mobjs_unsupported; 172 uint_t mobjs_flat_e2big; 173 uint_t mobjs_phent_align32; 174 uint_t mobjs_phent_align64; 175 uint_t mobjs_lib_va_find_hit; 176 uint_t mobjs_lib_va_find_delay_delete; 177 uint_t mobjs_lib_va_find_delete; 178 uint_t mobjs_lib_va_add_delay_delete; 179 uint_t mobjs_lib_va_add_delete; 180 uint_t mobjs_lib_va_create_failure; 181 uint_t mobjs_min_align; 182 #if defined(__sparc) 183 uint_t mobjs_aout_uzero_fault; 184 uint_t mobjs_aout_64bit_try; 185 uint_t mobjs_aout_noexec; 186 uint_t mobjs_aout_e2big; 187 uint_t mobjs_aout_lib; 188 uint_t mobjs_aout_fixed; 189 uint_t mobjs_aout_zfoddiff; 190 uint_t mobjs_aout_map_bss; 191 uint_t mobjs_aout_bss_fail; 192 uint_t mobjs_aout_nlist; 193 uint_t mobjs_aout_addr_in_use; 194 #endif 195 } mobj_stats; 196 197 #define MOBJ_STAT_ADD(stat) ((mobj_stats.mobjs_##stat)++) 198 #else 199 #define MOBJ_STAT_ADD(stat) 200 #endif 201 202 /* 203 * Check if addr is at or above the address space reserved for the stack. 204 * The stack is at the top of the address space for all sparc processes 205 * and 64 bit x86 processes. For 32 bit x86, the stack is not at the top 206 * of the address space and thus this check wil always return false for 207 * 32 bit x86 processes. 208 */ 209 #if defined(__sparc) 210 #define OVERLAPS_STACK(addr, p) \ 211 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))) 212 #elif defined(__amd64) 213 #define OVERLAPS_STACK(addr, p) \ 214 ((p->p_model == DATAMODEL_LP64) && \ 215 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))) 216 #elif defined(__i386) 217 #define OVERLAPS_STACK(addr, p) 0 218 #endif 219 220 /* lv_flags values - bitmap */ 221 #define LV_ELF32 0x1 /* 32 bit ELF file */ 222 #define LV_ELF64 0x2 /* 64 bit ELF file */ 223 #define LV_DEL 0x4 /* delete when lv_refcnt hits zero */ 224 225 /* 226 * Note: lv_num_segs will denote how many segments this file has and will 227 * only be set after the lv_mps array has been filled out. 228 * lv_mps can only be valid if lv_num_segs is non-zero. 229 */ 230 struct lib_va { 231 struct lib_va *lv_next; 232 caddr_t lv_base_va; /* start va for library */ 233 ssize_t lv_len; /* total va span of library */ 234 size_t lv_align; /* minimum alignment */ 235 uint64_t lv_nodeid; /* filesystem node id */ 236 uint64_t lv_fsid; /* filesystem id */ 237 timestruc_t lv_ctime; /* last time file was changed */ 238 timestruc_t lv_mtime; /* or modified */ 239 mmapobj_result_t lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */ 240 int lv_num_segs; /* # segs for this file */ 241 int lv_flags; 242 uint_t lv_refcnt; /* number of holds on struct */ 243 }; 244 245 #define LIB_VA_SIZE 1024 246 #define LIB_VA_MASK (LIB_VA_SIZE - 1) 247 #define LIB_VA_MUTEX_SHIFT 3 248 249 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1)) 250 #error "LIB_VA_SIZE is not a power of 2" 251 #endif 252 253 static struct lib_va *lib_va_hash[LIB_VA_SIZE]; 254 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT]; 255 256 #define LIB_VA_HASH_MUTEX(index) \ 257 (&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT]) 258 259 #define LIB_VA_HASH(nodeid) \ 260 (((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK) 261 262 #define LIB_VA_MATCH_ID(arg1, arg2) \ 263 ((arg1)->lv_nodeid == (arg2)->va_nodeid && \ 264 (arg1)->lv_fsid == (arg2)->va_fsid) 265 266 #define LIB_VA_MATCH_TIME(arg1, arg2) \ 267 ((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec && \ 268 (arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec && \ 269 (arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec && \ 270 (arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec) 271 272 #define LIB_VA_MATCH(arg1, arg2) \ 273 (LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2)) 274 275 /* 276 * lib_va will be used for optimized allocation of address ranges for 277 * libraries, such that subsequent mappings of the same library will attempt 278 * to use the same VA as previous mappings of that library. 279 * In order to map libraries at the same VA in many processes, we need to carve 280 * out our own address space for them which is unique across many processes. 281 * We use different arenas for 32 bit and 64 bit libraries. 282 * 283 * Since the 32 bit address space is relatively small, we limit the number of 284 * libraries which try to use consistent virtual addresses to lib_threshold. 285 * For 64 bit libraries there is no such limit since the address space is large. 286 */ 287 static vmem_t *lib_va_32_arena; 288 static vmem_t *lib_va_64_arena; 289 uint_t lib_threshold = 20; /* modifiable via /etc/system */ 290 291 static kmutex_t lib_va_init_mutex; /* no need to initialize */ 292 293 /* 294 * Number of 32 bit and 64 bit libraries in lib_va hash. 295 */ 296 static uint_t libs_mapped_32 = 0; 297 static uint_t libs_mapped_64 = 0; 298 299 /* 300 * Free up the resources associated with lvp as well as lvp itself. 301 * We also decrement the number of libraries mapped via a lib_va 302 * cached virtual address. 303 */ 304 void 305 lib_va_free(struct lib_va *lvp) 306 { 307 int is_64bit = lvp->lv_flags & LV_ELF64; 308 ASSERT(lvp->lv_refcnt == 0); 309 310 if (lvp->lv_base_va != NULL) { 311 vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena, 312 lvp->lv_base_va, lvp->lv_len); 313 if (is_64bit) { 314 atomic_dec_32(&libs_mapped_64); 315 } else { 316 atomic_dec_32(&libs_mapped_32); 317 } 318 } 319 kmem_free(lvp, sizeof (struct lib_va)); 320 } 321 322 /* 323 * See if the file associated with the vap passed in is in the lib_va hash. 324 * If it is and the file has not been modified since last use, then 325 * return a pointer to that data. Otherwise, return NULL if the file has 326 * changed or the file was not found in the hash. 327 */ 328 static struct lib_va * 329 lib_va_find(vattr_t *vap) 330 { 331 struct lib_va *lvp; 332 struct lib_va *del = NULL; 333 struct lib_va **tmp; 334 uint_t index; 335 index = LIB_VA_HASH(vap->va_nodeid); 336 337 mutex_enter(LIB_VA_HASH_MUTEX(index)); 338 tmp = &lib_va_hash[index]; 339 while (*tmp != NULL) { 340 lvp = *tmp; 341 if (LIB_VA_MATCH_ID(lvp, vap)) { 342 if (LIB_VA_MATCH_TIME(lvp, vap)) { 343 ASSERT((lvp->lv_flags & LV_DEL) == 0); 344 lvp->lv_refcnt++; 345 MOBJ_STAT_ADD(lib_va_find_hit); 346 } else { 347 /* 348 * file was updated since last use. 349 * need to remove it from list. 350 */ 351 del = lvp; 352 *tmp = del->lv_next; 353 del->lv_next = NULL; 354 /* 355 * If we can't delete it now, mark it for later 356 */ 357 if (del->lv_refcnt) { 358 MOBJ_STAT_ADD(lib_va_find_delay_delete); 359 del->lv_flags |= LV_DEL; 360 del = NULL; 361 } 362 lvp = NULL; 363 } 364 mutex_exit(LIB_VA_HASH_MUTEX(index)); 365 if (del) { 366 ASSERT(del->lv_refcnt == 0); 367 MOBJ_STAT_ADD(lib_va_find_delete); 368 lib_va_free(del); 369 } 370 return (lvp); 371 } 372 tmp = &lvp->lv_next; 373 } 374 mutex_exit(LIB_VA_HASH_MUTEX(index)); 375 return (NULL); 376 } 377 378 /* 379 * Add a new entry to the lib_va hash. 380 * Search the hash while holding the appropriate mutex to make sure that the 381 * data is not already in the cache. If we find data that is in the cache 382 * already and has not been modified since last use, we return NULL. If it 383 * has been modified since last use, we will remove that entry from 384 * the hash and it will be deleted once it's reference count reaches zero. 385 * If there is no current entry in the hash we will add the new entry and 386 * return it to the caller who is responsible for calling lib_va_release to 387 * drop their reference count on it. 388 * 389 * lv_num_segs will be set to zero since the caller needs to add that 390 * information to the data structure. 391 */ 392 static struct lib_va * 393 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap) 394 { 395 struct lib_va *lvp; 396 uint_t index; 397 model_t model; 398 struct lib_va **tmp; 399 struct lib_va *del = NULL; 400 401 model = get_udatamodel(); 402 index = LIB_VA_HASH(vap->va_nodeid); 403 404 lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP); 405 406 mutex_enter(LIB_VA_HASH_MUTEX(index)); 407 408 /* 409 * Make sure not adding same data a second time. 410 * The hash chains should be relatively short and adding 411 * is a relatively rare event, so it's worth the check. 412 */ 413 tmp = &lib_va_hash[index]; 414 while (*tmp != NULL) { 415 if (LIB_VA_MATCH_ID(*tmp, vap)) { 416 if (LIB_VA_MATCH_TIME(*tmp, vap)) { 417 mutex_exit(LIB_VA_HASH_MUTEX(index)); 418 kmem_free(lvp, sizeof (struct lib_va)); 419 return (NULL); 420 } 421 422 /* 423 * We have the same nodeid and fsid but the file has 424 * been modified since we last saw it. 425 * Need to remove the old node and add this new 426 * one. 427 * Could probably use a callback mechanism to make 428 * this cleaner. 429 */ 430 ASSERT(del == NULL); 431 del = *tmp; 432 *tmp = del->lv_next; 433 del->lv_next = NULL; 434 435 /* 436 * Check to see if we can free it. If lv_refcnt 437 * is greater than zero, than some other thread 438 * has a reference to the one we want to delete 439 * and we can not delete it. All of this is done 440 * under the lib_va_hash_mutex lock so it is atomic. 441 */ 442 if (del->lv_refcnt) { 443 MOBJ_STAT_ADD(lib_va_add_delay_delete); 444 del->lv_flags |= LV_DEL; 445 del = NULL; 446 } 447 /* tmp is already advanced */ 448 continue; 449 } 450 tmp = &((*tmp)->lv_next); 451 } 452 453 lvp->lv_base_va = base_va; 454 lvp->lv_len = len; 455 lvp->lv_align = align; 456 lvp->lv_nodeid = vap->va_nodeid; 457 lvp->lv_fsid = vap->va_fsid; 458 lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec; 459 lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec; 460 lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec; 461 lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec; 462 lvp->lv_next = NULL; 463 lvp->lv_refcnt = 1; 464 465 /* Caller responsible for filling this and lv_mps out */ 466 lvp->lv_num_segs = 0; 467 468 if (model == DATAMODEL_LP64) { 469 lvp->lv_flags = LV_ELF64; 470 } else { 471 ASSERT(model == DATAMODEL_ILP32); 472 lvp->lv_flags = LV_ELF32; 473 } 474 475 if (base_va != NULL) { 476 if (model == DATAMODEL_LP64) { 477 atomic_inc_32(&libs_mapped_64); 478 } else { 479 ASSERT(model == DATAMODEL_ILP32); 480 atomic_inc_32(&libs_mapped_32); 481 } 482 } 483 ASSERT(*tmp == NULL); 484 *tmp = lvp; 485 mutex_exit(LIB_VA_HASH_MUTEX(index)); 486 if (del) { 487 ASSERT(del->lv_refcnt == 0); 488 MOBJ_STAT_ADD(lib_va_add_delete); 489 lib_va_free(del); 490 } 491 return (lvp); 492 } 493 494 /* 495 * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash. 496 * In addition, if this is the last hold and lvp is marked for deletion, 497 * free up it's reserved address space and free the structure. 498 */ 499 static void 500 lib_va_release(struct lib_va *lvp) 501 { 502 uint_t index; 503 int to_del = 0; 504 505 ASSERT(lvp->lv_refcnt > 0); 506 507 index = LIB_VA_HASH(lvp->lv_nodeid); 508 mutex_enter(LIB_VA_HASH_MUTEX(index)); 509 if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) { 510 to_del = 1; 511 } 512 mutex_exit(LIB_VA_HASH_MUTEX(index)); 513 if (to_del) { 514 ASSERT(lvp->lv_next == 0); 515 lib_va_free(lvp); 516 } 517 } 518 519 /* 520 * Dummy function for mapping through /dev/null 521 * Normally I would have used mmmmap in common/io/mem.c 522 * but that is a static function, and for /dev/null, it 523 * just returns -1. 524 */ 525 /* ARGSUSED */ 526 static int 527 mmapobj_dummy(dev_t dev, off_t off, int prot) 528 { 529 return (-1); 530 } 531 532 /* 533 * Called when an error occurred which requires mmapobj to return failure. 534 * All mapped objects will be unmapped and /dev/null mappings will be 535 * reclaimed if necessary. 536 * num_mapped is the number of elements of mrp which have been mapped, and 537 * num_segs is the total number of elements in mrp. 538 * For e_type ET_EXEC, we need to unmap all of the elements in mrp since 539 * we had already made reservations for them. 540 * If num_mapped equals num_segs, then we know that we had fully mapped 541 * the file and only need to clean up the segments described. 542 * If they are not equal, then for ET_DYN we will unmap the range from the 543 * end of the last mapped segment to the end of the last segment in mrp 544 * since we would have made a reservation for that memory earlier. 545 * If e_type is passed in as zero, num_mapped must equal num_segs. 546 */ 547 void 548 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs, 549 ushort_t e_type) 550 { 551 int i; 552 struct as *as = curproc->p_as; 553 caddr_t addr; 554 size_t size; 555 556 if (e_type == ET_EXEC) { 557 num_mapped = num_segs; 558 } 559 #ifdef DEBUG 560 if (e_type == 0) { 561 ASSERT(num_mapped == num_segs); 562 } 563 #endif 564 565 MOBJ_STAT_ADD(unmap_called); 566 for (i = 0; i < num_mapped; i++) { 567 568 /* 569 * If we are going to have to create a mapping we need to 570 * make sure that no one else will use the address we 571 * need to remap between the time it is unmapped and 572 * mapped below. 573 */ 574 if (mrp[i].mr_flags & MR_RESV) { 575 as_rangelock(as); 576 } 577 /* Always need to unmap what we mapped */ 578 (void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize); 579 580 /* Need to reclaim /dev/null reservation from earlier */ 581 if (mrp[i].mr_flags & MR_RESV) { 582 struct segdev_crargs dev_a; 583 584 ASSERT(e_type != ET_DYN); 585 /* 586 * Use seg_dev segment driver for /dev/null mapping. 587 */ 588 dev_a.mapfunc = mmapobj_dummy; 589 dev_a.dev = makedevice(mm_major, M_NULL); 590 dev_a.offset = 0; 591 dev_a.type = 0; /* neither PRIVATE nor SHARED */ 592 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE; 593 dev_a.hat_attr = 0; 594 dev_a.hat_flags = 0; 595 596 (void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize, 597 segdev_create, &dev_a); 598 MOBJ_STAT_ADD(remap_devnull); 599 as_rangeunlock(as); 600 } 601 } 602 603 if (num_mapped != num_segs) { 604 ASSERT(e_type == ET_DYN); 605 /* Need to unmap any reservation made after last mapped seg */ 606 if (num_mapped == 0) { 607 addr = mrp[0].mr_addr; 608 } else { 609 addr = mrp[num_mapped - 1].mr_addr + 610 mrp[num_mapped - 1].mr_msize; 611 } 612 size = (size_t)mrp[num_segs - 1].mr_addr + 613 mrp[num_segs - 1].mr_msize - (size_t)addr; 614 (void) as_unmap(as, addr, size); 615 616 /* 617 * Now we need to unmap the holes between mapped segs. 618 * Note that we have not mapped all of the segments and thus 619 * the holes between segments would not have been unmapped 620 * yet. If num_mapped == num_segs, then all of the holes 621 * between segments would have already been unmapped. 622 */ 623 624 for (i = 1; i < num_mapped; i++) { 625 addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize; 626 size = mrp[i].mr_addr - addr; 627 (void) as_unmap(as, addr, size); 628 } 629 } 630 } 631 632 /* 633 * We need to add the start address into mrp so that the unmap function 634 * has absolute addresses to use. 635 */ 636 static void 637 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr) 638 { 639 int i; 640 641 for (i = 0; i < num_mapped; i++) { 642 mrp[i].mr_addr += (size_t)start_addr; 643 } 644 mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC); 645 } 646 647 static caddr_t 648 mmapobj_lookup_start_addr(struct lib_va *lvp) 649 { 650 proc_t *p = curproc; 651 struct as *as = p->p_as; 652 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 653 int error; 654 uint_t ma_flags = _MAP_LOW32; 655 caddr_t base = NULL; 656 size_t len; 657 size_t align; 658 659 ASSERT(lvp != NULL); 660 MOBJ_STAT_ADD(lookup_start); 661 662 as_rangelock(as); 663 664 base = lvp->lv_base_va; 665 len = lvp->lv_len; 666 667 /* 668 * If we don't have an expected base address, or the one that we want 669 * to use is not available or acceptable, go get an acceptable 670 * address range. 671 */ 672 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) || 673 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) != 674 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) { 675 if (lvp->lv_flags & LV_ELF64) { 676 ma_flags = 0; 677 } 678 679 align = lvp->lv_align; 680 if (align > 1) { 681 ma_flags |= MAP_ALIGN; 682 } 683 684 base = (caddr_t)align; 685 map_addr(&base, len, 0, 1, ma_flags); 686 } 687 688 /* 689 * Need to reserve the address space we're going to use. 690 * Don't reserve swap space since we'll be mapping over this. 691 */ 692 if (base != NULL) { 693 crargs.flags |= MAP_NORESERVE; 694 error = as_map(as, base, len, segvn_create, &crargs); 695 if (error) { 696 base = NULL; 697 } 698 } 699 700 as_rangeunlock(as); 701 return (base); 702 } 703 704 /* 705 * Get the starting address for a given file to be mapped and return it 706 * to the caller. If we're using lib_va and we need to allocate an address, 707 * we will attempt to allocate it from the global reserved pool such that the 708 * same address can be used in the future for this file. If we can't use the 709 * reserved address then we just get one that will fit in our address space. 710 * 711 * Returns the starting virtual address for the range to be mapped or NULL 712 * if an error is encountered. If we successfully insert the requested info 713 * into the lib_va hash, then *lvpp will be set to point to this lib_va 714 * structure. The structure will have a hold on it and thus lib_va_release 715 * needs to be called on it by the caller. This function will not fill out 716 * lv_mps or lv_num_segs since it does not have enough information to do so. 717 * The caller is responsible for doing this making sure that any modifications 718 * to lv_mps are visible before setting lv_num_segs. 719 */ 720 static caddr_t 721 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va, 722 int randomize, size_t align, vattr_t *vap) 723 { 724 proc_t *p = curproc; 725 struct as *as = p->p_as; 726 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 727 int error; 728 model_t model; 729 uint_t ma_flags = _MAP_LOW32; 730 caddr_t base = NULL; 731 vmem_t *model_vmem; 732 size_t lib_va_start; 733 size_t lib_va_end; 734 size_t lib_va_len; 735 736 ASSERT(lvpp != NULL); 737 ASSERT((randomize & use_lib_va) != 1); 738 739 MOBJ_STAT_ADD(alloc_start); 740 model = get_udatamodel(); 741 742 if (model == DATAMODEL_LP64) { 743 ma_flags = 0; 744 model_vmem = lib_va_64_arena; 745 } else { 746 ASSERT(model == DATAMODEL_ILP32); 747 model_vmem = lib_va_32_arena; 748 } 749 750 if (align > 1) { 751 ma_flags |= MAP_ALIGN; 752 } 753 754 if (randomize != 0) 755 ma_flags |= _MAP_RANDOMIZE; 756 757 if (use_lib_va) { 758 /* 759 * The first time through, we need to setup the lib_va arenas. 760 * We call map_addr to find a suitable range of memory to map 761 * the given library, and we will set the highest address 762 * in our vmem arena to the end of this adddress range. 763 * We allow up to half of the address space to be used 764 * for lib_va addresses but we do not prevent any allocations 765 * in this range from other allocation paths. 766 */ 767 if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) { 768 mutex_enter(&lib_va_init_mutex); 769 if (lib_va_64_arena == NULL) { 770 base = (caddr_t)align; 771 as_rangelock(as); 772 map_addr(&base, len, 0, 1, ma_flags); 773 as_rangeunlock(as); 774 if (base == NULL) { 775 mutex_exit(&lib_va_init_mutex); 776 MOBJ_STAT_ADD(lib_va_create_failure); 777 goto nolibva; 778 } 779 lib_va_end = (size_t)base + len; 780 lib_va_len = lib_va_end >> 1; 781 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE); 782 lib_va_start = lib_va_end - lib_va_len; 783 784 /* 785 * Need to make sure we avoid the address hole. 786 * We know lib_va_end is valid but we need to 787 * make sure lib_va_start is as well. 788 */ 789 if ((lib_va_end > (size_t)hole_end) && 790 (lib_va_start < (size_t)hole_end)) { 791 lib_va_start = P2ROUNDUP( 792 (size_t)hole_end, PAGESIZE); 793 lib_va_len = lib_va_end - lib_va_start; 794 } 795 lib_va_64_arena = vmem_create("lib_va_64", 796 (void *)lib_va_start, lib_va_len, PAGESIZE, 797 NULL, NULL, NULL, 0, 798 VM_NOSLEEP | VMC_IDENTIFIER); 799 if (lib_va_64_arena == NULL) { 800 mutex_exit(&lib_va_init_mutex); 801 goto nolibva; 802 } 803 } 804 model_vmem = lib_va_64_arena; 805 mutex_exit(&lib_va_init_mutex); 806 } else if (lib_va_32_arena == NULL && 807 model == DATAMODEL_ILP32) { 808 mutex_enter(&lib_va_init_mutex); 809 if (lib_va_32_arena == NULL) { 810 base = (caddr_t)align; 811 as_rangelock(as); 812 map_addr(&base, len, 0, 1, ma_flags); 813 as_rangeunlock(as); 814 if (base == NULL) { 815 mutex_exit(&lib_va_init_mutex); 816 MOBJ_STAT_ADD(lib_va_create_failure); 817 goto nolibva; 818 } 819 lib_va_end = (size_t)base + len; 820 lib_va_len = lib_va_end >> 1; 821 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE); 822 lib_va_start = lib_va_end - lib_va_len; 823 lib_va_32_arena = vmem_create("lib_va_32", 824 (void *)lib_va_start, lib_va_len, PAGESIZE, 825 NULL, NULL, NULL, 0, 826 VM_NOSLEEP | VMC_IDENTIFIER); 827 if (lib_va_32_arena == NULL) { 828 mutex_exit(&lib_va_init_mutex); 829 goto nolibva; 830 } 831 } 832 model_vmem = lib_va_32_arena; 833 mutex_exit(&lib_va_init_mutex); 834 } 835 836 if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) { 837 base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL, 838 NULL, VM_NOSLEEP | VM_ENDALLOC); 839 MOBJ_STAT_ADD(alloc_vmem); 840 } 841 842 /* 843 * Even if the address fails to fit in our address space, 844 * or we can't use a reserved address, 845 * we should still save it off in lib_va_hash. 846 */ 847 *lvpp = lib_va_add_hash(base, len, align, vap); 848 849 /* 850 * Check for collision on insertion and free up our VA space. 851 * This is expected to be rare, so we'll just reset base to 852 * NULL instead of looking it up in the lib_va hash. 853 */ 854 if (*lvpp == NULL) { 855 if (base != NULL) { 856 vmem_xfree(model_vmem, base, len); 857 base = NULL; 858 MOBJ_STAT_ADD(add_collision); 859 } 860 } 861 } 862 863 nolibva: 864 as_rangelock(as); 865 866 /* 867 * If we don't have an expected base address, or the one that we want 868 * to use is not available or acceptable, go get an acceptable 869 * address range. 870 * 871 * If ASLR is enabled, we should never have used the cache, and should 872 * also start our real work here, in the consequent of the next 873 * condition. 874 */ 875 if (randomize != 0) 876 ASSERT(base == NULL); 877 878 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) || 879 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) != 880 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) { 881 MOBJ_STAT_ADD(get_addr); 882 base = (caddr_t)align; 883 map_addr(&base, len, 0, 1, ma_flags); 884 } 885 886 /* 887 * Need to reserve the address space we're going to use. 888 * Don't reserve swap space since we'll be mapping over this. 889 */ 890 if (base != NULL) { 891 /* Don't reserve swap space since we'll be mapping over this */ 892 crargs.flags |= MAP_NORESERVE; 893 error = as_map(as, base, len, segvn_create, &crargs); 894 if (error) { 895 base = NULL; 896 } 897 } 898 899 as_rangeunlock(as); 900 return (base); 901 } 902 903 /* 904 * Map the file associated with vp into the address space as a single 905 * read only private mapping. 906 * Returns 0 for success, and non-zero for failure to map the file. 907 */ 908 static int 909 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding, 910 cred_t *fcred) 911 { 912 int error = 0; 913 struct as *as = curproc->p_as; 914 caddr_t addr = NULL; 915 caddr_t start_addr; 916 size_t len; 917 size_t pad_len; 918 int prot = PROT_USER | PROT_READ; 919 uint_t ma_flags = _MAP_LOW32; 920 vattr_t vattr; 921 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 922 923 if (get_udatamodel() == DATAMODEL_LP64) { 924 ma_flags = 0; 925 } 926 927 vattr.va_mask = AT_SIZE; 928 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 929 if (error) { 930 return (error); 931 } 932 933 len = vattr.va_size; 934 935 ma_flags |= MAP_PRIVATE; 936 if (padding == 0) { 937 MOBJ_STAT_ADD(map_flat_no_padding); 938 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, 939 ma_flags, fcred, NULL); 940 if (error == 0) { 941 mrp[0].mr_addr = addr; 942 mrp[0].mr_msize = len; 943 mrp[0].mr_fsize = len; 944 mrp[0].mr_offset = 0; 945 mrp[0].mr_prot = prot; 946 mrp[0].mr_flags = 0; 947 } 948 return (error); 949 } 950 951 /* padding was requested so there's more work to be done */ 952 MOBJ_STAT_ADD(map_flat_padding); 953 954 /* No need to reserve swap space now since it will be reserved later */ 955 crargs.flags |= MAP_NORESERVE; 956 957 /* Need to setup padding which can only be in PAGESIZE increments. */ 958 ASSERT((padding & PAGEOFFSET) == 0); 959 pad_len = len + (2 * padding); 960 961 as_rangelock(as); 962 map_addr(&addr, pad_len, 0, 1, ma_flags); 963 error = as_map(as, addr, pad_len, segvn_create, &crargs); 964 as_rangeunlock(as); 965 if (error) { 966 return (error); 967 } 968 start_addr = addr; 969 addr += padding; 970 ma_flags |= MAP_FIXED; 971 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags, 972 fcred, NULL); 973 if (error == 0) { 974 mrp[0].mr_addr = start_addr; 975 mrp[0].mr_msize = padding; 976 mrp[0].mr_fsize = 0; 977 mrp[0].mr_offset = 0; 978 mrp[0].mr_prot = 0; 979 mrp[0].mr_flags = MR_PADDING; 980 981 mrp[1].mr_addr = addr; 982 mrp[1].mr_msize = len; 983 mrp[1].mr_fsize = len; 984 mrp[1].mr_offset = 0; 985 mrp[1].mr_prot = prot; 986 mrp[1].mr_flags = 0; 987 988 mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE); 989 mrp[2].mr_msize = padding; 990 mrp[2].mr_fsize = 0; 991 mrp[2].mr_offset = 0; 992 mrp[2].mr_prot = 0; 993 mrp[2].mr_flags = MR_PADDING; 994 } else { 995 /* Need to cleanup the as_map from earlier */ 996 (void) as_unmap(as, start_addr, pad_len); 997 } 998 return (error); 999 } 1000 1001 /* 1002 * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's 1003 * address space. 1004 * vp - vnode to be mapped in 1005 * addr - start address 1006 * len - length of vp to be mapped 1007 * zfodlen - length of zero filled memory after len above 1008 * offset - offset into file where mapping should start 1009 * prot - protections for this mapping 1010 * fcred - credentials for the file associated with vp at open time. 1011 */ 1012 static int 1013 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 1014 off_t offset, int prot, cred_t *fcred) 1015 { 1016 int error = 0; 1017 caddr_t zfodbase, oldaddr; 1018 size_t oldlen; 1019 size_t end; 1020 size_t zfoddiff; 1021 label_t ljb; 1022 struct as *as = curproc->p_as; 1023 model_t model; 1024 int full_page; 1025 1026 /* 1027 * See if addr and offset are aligned such that we can map in 1028 * full pages instead of partial pages. 1029 */ 1030 full_page = (((uintptr_t)addr & PAGEOFFSET) == 1031 ((uintptr_t)offset & PAGEOFFSET)); 1032 1033 model = get_udatamodel(); 1034 1035 oldaddr = addr; 1036 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1037 if (len) { 1038 spgcnt_t availm, npages; 1039 int preread; 1040 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1041 1042 if (model == DATAMODEL_ILP32) { 1043 mflag |= _MAP_LOW32; 1044 } 1045 /* We may need to map in extra bytes */ 1046 oldlen = len; 1047 len += ((size_t)oldaddr & PAGEOFFSET); 1048 1049 if (full_page) { 1050 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1051 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1052 mflag |= MAP_TEXT; 1053 MOBJ_STAT_ADD(map_ptload_text); 1054 } else { 1055 mflag |= MAP_INITDATA; 1056 MOBJ_STAT_ADD(map_ptload_initdata); 1057 } 1058 1059 /* 1060 * maxprot is passed as PROT_ALL so that mdb can 1061 * write to this segment. 1062 */ 1063 if (error = VOP_MAP(vp, (offset_t)offset, as, &addr, 1064 len, prot, PROT_ALL, mflag, fcred, NULL)) { 1065 return (error); 1066 } 1067 1068 /* 1069 * If the segment can fit and is relatively small, then 1070 * we prefault the entire segment in. This is based 1071 * on the model that says the best working set of a 1072 * small program is all of its pages. 1073 * We only do this if freemem will not drop below 1074 * lotsfree since we don't want to induce paging. 1075 */ 1076 npages = (spgcnt_t)btopr(len); 1077 availm = freemem - lotsfree; 1078 preread = (npages < availm && len < PGTHRESH) ? 1 : 0; 1079 1080 /* 1081 * If we aren't prefaulting the segment, 1082 * increment "deficit", if necessary to ensure 1083 * that pages will become available when this 1084 * process starts executing. 1085 */ 1086 if (preread == 0 && npages > availm && 1087 deficit < lotsfree) { 1088 deficit += MIN((pgcnt_t)(npages - availm), 1089 lotsfree - deficit); 1090 } 1091 1092 if (preread) { 1093 (void) as_faulta(as, addr, len); 1094 MOBJ_STAT_ADD(map_ptload_preread); 1095 } 1096 } else { 1097 /* 1098 * addr and offset were not aligned such that we could 1099 * use VOP_MAP, thus we need to as_map the memory we 1100 * need and then read the data in from disk. 1101 * This code path is a corner case which should never 1102 * be taken, but hand crafted binaries could trigger 1103 * this logic and it needs to work correctly. 1104 */ 1105 MOBJ_STAT_ADD(map_ptload_unaligned_text); 1106 as_rangelock(as); 1107 (void) as_unmap(as, addr, len); 1108 1109 /* 1110 * We use zfod_argsp because we need to be able to 1111 * write to the mapping and then we'll change the 1112 * protections later if they are incorrect. 1113 */ 1114 error = as_map(as, addr, len, segvn_create, zfod_argsp); 1115 as_rangeunlock(as); 1116 if (error) { 1117 MOBJ_STAT_ADD(map_ptload_unaligned_map_fail); 1118 return (error); 1119 } 1120 1121 /* Now read in the data from disk */ 1122 error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset, 1123 UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL); 1124 if (error) { 1125 MOBJ_STAT_ADD(map_ptload_unaligned_read_fail); 1126 return (error); 1127 } 1128 1129 /* 1130 * Now set protections. 1131 */ 1132 if (prot != PROT_ZFOD) { 1133 (void) as_setprot(as, addr, len, prot); 1134 } 1135 } 1136 } 1137 1138 if (zfodlen) { 1139 end = (size_t)addr + len; 1140 zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE); 1141 zfoddiff = (uintptr_t)zfodbase - end; 1142 if (zfoddiff) { 1143 /* 1144 * Before we go to zero the remaining space on the last 1145 * page, make sure we have write permission. 1146 * 1147 * We need to be careful how we zero-fill the last page 1148 * if the protection does not include PROT_WRITE. Using 1149 * as_setprot() can cause the VM segment code to call 1150 * segvn_vpage(), which must allocate a page struct for 1151 * each page in the segment. If we have a very large 1152 * segment, this may fail, so we check for that, even 1153 * though we ignore other return values from as_setprot. 1154 */ 1155 MOBJ_STAT_ADD(zfoddiff); 1156 if ((prot & PROT_WRITE) == 0) { 1157 if (as_setprot(as, (caddr_t)end, zfoddiff, 1158 prot | PROT_WRITE) == ENOMEM) 1159 return (ENOMEM); 1160 MOBJ_STAT_ADD(zfoddiff_nowrite); 1161 } 1162 if (on_fault(&ljb)) { 1163 no_fault(); 1164 if ((prot & PROT_WRITE) == 0) { 1165 (void) as_setprot(as, (caddr_t)end, 1166 zfoddiff, prot); 1167 } 1168 return (EFAULT); 1169 } 1170 uzero((void *)end, zfoddiff); 1171 no_fault(); 1172 1173 /* 1174 * Remove write protection to return to original state 1175 */ 1176 if ((prot & PROT_WRITE) == 0) { 1177 (void) as_setprot(as, (caddr_t)end, 1178 zfoddiff, prot); 1179 } 1180 } 1181 if (zfodlen > zfoddiff) { 1182 struct segvn_crargs crargs = 1183 SEGVN_ZFOD_ARGS(prot, PROT_ALL); 1184 1185 MOBJ_STAT_ADD(zfodextra); 1186 zfodlen -= zfoddiff; 1187 crargs.szc = AS_MAP_NO_LPOOB; 1188 1189 1190 as_rangelock(as); 1191 (void) as_unmap(as, (caddr_t)zfodbase, zfodlen); 1192 error = as_map(as, (caddr_t)zfodbase, 1193 zfodlen, segvn_create, &crargs); 1194 as_rangeunlock(as); 1195 if (error) { 1196 return (error); 1197 } 1198 } 1199 } 1200 return (0); 1201 } 1202 1203 /* 1204 * Map the ELF file represented by vp into the users address space. The 1205 * first mapping will start at start_addr and there will be num_elements 1206 * mappings. The mappings are described by the data in mrp which may be 1207 * modified upon returning from this function. 1208 * Returns 0 for success or errno for failure. 1209 */ 1210 static int 1211 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp, 1212 int num_elements, cred_t *fcred, ushort_t e_type) 1213 { 1214 int i; 1215 int ret; 1216 caddr_t lo; 1217 caddr_t hi; 1218 struct as *as = curproc->p_as; 1219 1220 for (i = 0; i < num_elements; i++) { 1221 caddr_t addr; 1222 size_t p_memsz; 1223 size_t p_filesz; 1224 size_t zfodlen; 1225 offset_t p_offset; 1226 size_t dif; 1227 int prot; 1228 1229 /* Always need to adjust mr_addr */ 1230 addr = start_addr + (size_t)(mrp[i].mr_addr); 1231 mrp[i].mr_addr = 1232 (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1233 1234 /* Padding has already been mapped */ 1235 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) { 1236 continue; 1237 } 1238 1239 /* Can't execute code from "noexec" mounted filesystem. */ 1240 if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) && 1241 ((mrp[i].mr_prot & PROT_EXEC) != 0)) { 1242 MOBJ_STAT_ADD(noexec_fs); 1243 return (EACCES); 1244 } 1245 1246 p_memsz = mrp[i].mr_msize; 1247 p_filesz = mrp[i].mr_fsize; 1248 zfodlen = p_memsz - p_filesz; 1249 p_offset = mrp[i].mr_offset; 1250 dif = (uintptr_t)(addr) & PAGEOFFSET; 1251 prot = mrp[i].mr_prot | PROT_USER; 1252 ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen, 1253 p_offset, prot, fcred); 1254 if (ret != 0) { 1255 MOBJ_STAT_ADD(ptload_failed); 1256 mmapobj_unmap(mrp, i, num_elements, e_type); 1257 return (ret); 1258 } 1259 1260 /* Need to cleanup mrp to reflect the actual values used */ 1261 mrp[i].mr_msize += dif; 1262 mrp[i].mr_offset = (size_t)addr & PAGEOFFSET; 1263 } 1264 1265 /* Also need to unmap any holes created above */ 1266 if (num_elements == 1) { 1267 MOBJ_STAT_ADD(map_elf_no_holes); 1268 return (0); 1269 } 1270 if (e_type == ET_EXEC) { 1271 return (0); 1272 } 1273 1274 as_rangelock(as); 1275 lo = start_addr; 1276 hi = mrp[0].mr_addr; 1277 1278 /* Remove holes made by the rest of the segments */ 1279 for (i = 0; i < num_elements - 1; i++) { 1280 lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) + 1281 mrp[i].mr_msize, PAGESIZE); 1282 hi = mrp[i + 1].mr_addr; 1283 if (lo < hi) { 1284 /* 1285 * If as_unmap fails we just use up a bit of extra 1286 * space 1287 */ 1288 (void) as_unmap(as, (caddr_t)lo, 1289 (size_t)hi - (size_t)lo); 1290 MOBJ_STAT_ADD(unmap_hole); 1291 } 1292 } 1293 as_rangeunlock(as); 1294 1295 return (0); 1296 } 1297 1298 /* Ugly hack to get STRUCT_* macros to work below */ 1299 struct myphdr { 1300 Phdr x; /* native version */ 1301 }; 1302 1303 struct myphdr32 { 1304 Elf32_Phdr x; 1305 }; 1306 1307 /* 1308 * Calculate and return the number of loadable segments in the ELF Phdr 1309 * represented by phdrbase as well as the len of the total mapping and 1310 * the max alignment that is needed for a given segment. On success, 1311 * 0 is returned, and *len, *loadable and *align have been filled out. 1312 * On failure, errno will be returned, which in this case is ENOTSUP 1313 * if we were passed an ELF file with overlapping segments. 1314 */ 1315 static int 1316 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len, 1317 int *loadable, size_t *align) 1318 { 1319 int i; 1320 int hsize; 1321 model_t model; 1322 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */ 1323 uint_t p_type; 1324 offset_t p_offset; 1325 size_t p_memsz; 1326 size_t p_align; 1327 caddr_t vaddr; 1328 int num_segs = 0; 1329 caddr_t start_addr = NULL; 1330 caddr_t p_end = NULL; 1331 size_t max_align = 0; 1332 size_t min_align = PAGESIZE; /* needed for vmem_xalloc */ 1333 STRUCT_HANDLE(myphdr, mph); 1334 #if defined(__sparc) 1335 extern int vac_size; 1336 1337 /* 1338 * Want to prevent aliasing by making the start address at least be 1339 * aligned to vac_size. 1340 */ 1341 min_align = MAX(PAGESIZE, vac_size); 1342 #endif 1343 1344 model = get_udatamodel(); 1345 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1346 1347 /* hsize alignment should have been checked before calling this func */ 1348 if (model == DATAMODEL_LP64) { 1349 hsize = ehdrp->e_phentsize; 1350 if (hsize & 7) { 1351 return (ENOTSUP); 1352 } 1353 } else { 1354 ASSERT(model == DATAMODEL_ILP32); 1355 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize; 1356 if (hsize & 3) { 1357 return (ENOTSUP); 1358 } 1359 } 1360 1361 /* 1362 * Determine the span of all loadable segments and calculate the 1363 * number of loadable segments. 1364 */ 1365 for (i = 0; i < nphdrs; i++) { 1366 p_type = STRUCT_FGET(mph, x.p_type); 1367 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) { 1368 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr); 1369 p_memsz = STRUCT_FGET(mph, x.p_memsz); 1370 1371 /* 1372 * Skip this header if it requests no memory to be 1373 * mapped. 1374 */ 1375 if (p_memsz == 0) { 1376 STRUCT_SET_HANDLE(mph, model, 1377 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1378 hsize)); 1379 MOBJ_STAT_ADD(nomem_header); 1380 continue; 1381 } 1382 if (num_segs++ == 0) { 1383 /* 1384 * The p_vaddr of the first PT_LOAD segment 1385 * must either be NULL or within the first 1386 * page in order to be interpreted. 1387 * Otherwise, its an invalid file. 1388 */ 1389 if (e_type == ET_DYN && 1390 ((caddr_t)((uintptr_t)vaddr & 1391 (uintptr_t)PAGEMASK) != NULL)) { 1392 MOBJ_STAT_ADD(inval_header); 1393 return (ENOTSUP); 1394 } 1395 start_addr = vaddr; 1396 /* 1397 * For the first segment, we need to map from 1398 * the beginning of the file, so we will 1399 * adjust the size of the mapping to include 1400 * this memory. 1401 */ 1402 p_offset = STRUCT_FGET(mph, x.p_offset); 1403 } else { 1404 p_offset = 0; 1405 } 1406 /* 1407 * Check to make sure that this mapping wouldn't 1408 * overlap a previous mapping. 1409 */ 1410 if (vaddr < p_end) { 1411 MOBJ_STAT_ADD(overlap_header); 1412 return (ENOTSUP); 1413 } 1414 1415 p_end = vaddr + p_memsz + p_offset; 1416 p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE); 1417 1418 p_align = STRUCT_FGET(mph, x.p_align); 1419 if (p_align > 1 && p_align > max_align) { 1420 max_align = p_align; 1421 if (max_align < min_align) { 1422 max_align = min_align; 1423 MOBJ_STAT_ADD(min_align); 1424 } 1425 } 1426 } 1427 STRUCT_SET_HANDLE(mph, model, 1428 (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize)); 1429 } 1430 1431 /* 1432 * The alignment should be a power of 2, if it isn't we forgive it 1433 * and round up. On overflow, we'll set the alignment to max_align 1434 * rounded down to the nearest power of 2. 1435 */ 1436 if (max_align > 0 && !ISP2(max_align)) { 1437 MOBJ_STAT_ADD(np2_align); 1438 *align = 2 * (1L << (highbit(max_align) - 1)); 1439 if (*align < max_align || 1440 (*align > UINT_MAX && model == DATAMODEL_ILP32)) { 1441 MOBJ_STAT_ADD(np2_align_overflow); 1442 *align = 1L << (highbit(max_align) - 1); 1443 } 1444 } else { 1445 *align = max_align; 1446 } 1447 1448 ASSERT(*align >= PAGESIZE || *align == 0); 1449 1450 *loadable = num_segs; 1451 *len = p_end - start_addr; 1452 return (0); 1453 } 1454 1455 /* 1456 * Check the address space to see if the virtual addresses to be used are 1457 * available. If they are not, return errno for failure. On success, 0 1458 * will be returned, and the virtual addresses for each mmapobj_result_t 1459 * will be reserved. Note that a reservation could have earlier been made 1460 * for a given segment via a /dev/null mapping. If that is the case, then 1461 * we can use that VA space for our mappings. 1462 * Note: this function will only be used for ET_EXEC binaries. 1463 */ 1464 int 1465 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr) 1466 { 1467 int i; 1468 struct as *as = curproc->p_as; 1469 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1470 int ret; 1471 caddr_t myaddr; 1472 size_t mylen; 1473 struct seg *seg; 1474 1475 /* No need to reserve swap space now since it will be reserved later */ 1476 crargs.flags |= MAP_NORESERVE; 1477 as_rangelock(as); 1478 for (i = 0; i < loadable; i++) { 1479 1480 myaddr = start_addr + (size_t)mrp[i].mr_addr; 1481 mylen = mrp[i].mr_msize; 1482 1483 /* See if there is a hole in the as for this range */ 1484 if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) { 1485 ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr); 1486 ASSERT(mylen == mrp[i].mr_msize); 1487 1488 #ifdef DEBUG 1489 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) { 1490 MOBJ_STAT_ADD(exec_padding); 1491 } 1492 #endif 1493 ret = as_map(as, myaddr, mylen, segvn_create, &crargs); 1494 if (ret) { 1495 as_rangeunlock(as); 1496 mmapobj_unmap_exec(mrp, i, start_addr); 1497 return (ret); 1498 } 1499 } else { 1500 /* 1501 * There is a mapping that exists in the range 1502 * so check to see if it was a "reservation" 1503 * from /dev/null. The mapping is from 1504 * /dev/null if the mapping comes from 1505 * segdev and the type is neither MAP_SHARED 1506 * nor MAP_PRIVATE. 1507 */ 1508 AS_LOCK_ENTER(as, RW_READER); 1509 seg = as_findseg(as, myaddr, 0); 1510 MOBJ_STAT_ADD(exec_addr_mapped); 1511 if (seg && seg->s_ops == &segdev_ops && 1512 ((SEGOP_GETTYPE(seg, myaddr) & 1513 (MAP_SHARED | MAP_PRIVATE)) == 0) && 1514 myaddr >= seg->s_base && 1515 myaddr + mylen <= 1516 seg->s_base + seg->s_size) { 1517 MOBJ_STAT_ADD(exec_addr_devnull); 1518 AS_LOCK_EXIT(as); 1519 (void) as_unmap(as, myaddr, mylen); 1520 ret = as_map(as, myaddr, mylen, segvn_create, 1521 &crargs); 1522 mrp[i].mr_flags |= MR_RESV; 1523 if (ret) { 1524 as_rangeunlock(as); 1525 /* Need to remap what we unmapped */ 1526 mmapobj_unmap_exec(mrp, i + 1, 1527 start_addr); 1528 return (ret); 1529 } 1530 } else { 1531 AS_LOCK_EXIT(as); 1532 as_rangeunlock(as); 1533 mmapobj_unmap_exec(mrp, i, start_addr); 1534 MOBJ_STAT_ADD(exec_addr_in_use); 1535 return (EADDRINUSE); 1536 } 1537 } 1538 } 1539 as_rangeunlock(as); 1540 return (0); 1541 } 1542 1543 /* 1544 * Walk through the ELF program headers and extract all useful information 1545 * for PT_LOAD and PT_SUNWBSS segments into mrp. 1546 * Return 0 on success or error on failure. 1547 */ 1548 static int 1549 process_phdrs(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp, 1550 vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred) 1551 { 1552 int i; 1553 caddr_t start_addr = NULL; 1554 caddr_t vaddr; 1555 size_t len = 0; 1556 size_t lib_len = 0; 1557 int ret; 1558 int prot; 1559 struct lib_va *lvp = NULL; 1560 vattr_t vattr; 1561 struct as *as = curproc->p_as; 1562 int error; 1563 int loadable = 0; 1564 int current = 0; 1565 int use_lib_va = 1; 1566 size_t align = 0; 1567 size_t add_pad = 0; 1568 int hdr_seen = 0; 1569 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */ 1570 uint_t p_type; 1571 offset_t p_offset; 1572 size_t p_memsz; 1573 size_t p_filesz; 1574 uint_t p_flags; 1575 int hsize; 1576 model_t model; 1577 STRUCT_HANDLE(myphdr, mph); 1578 1579 model = get_udatamodel(); 1580 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1581 1582 /* 1583 * Need to make sure that hsize is aligned properly. 1584 * For 32bit processes, 4 byte alignment is required. 1585 * For 64bit processes, 8 byte alignment is required. 1586 * If the alignment isn't correct, we need to return failure 1587 * since it could cause an alignment error panic while walking 1588 * the phdr array. 1589 */ 1590 if (model == DATAMODEL_LP64) { 1591 hsize = ehdrp->e_phentsize; 1592 if (hsize & 7) { 1593 MOBJ_STAT_ADD(phent_align64); 1594 return (ENOTSUP); 1595 } 1596 } else { 1597 ASSERT(model == DATAMODEL_ILP32); 1598 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize; 1599 if (hsize & 3) { 1600 MOBJ_STAT_ADD(phent_align32); 1601 return (ENOTSUP); 1602 } 1603 } 1604 1605 if ((padding != 0) || secflag_enabled(curproc, PROC_SEC_ASLR)) { 1606 use_lib_va = 0; 1607 } 1608 if (e_type == ET_DYN) { 1609 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME; 1610 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 1611 if (error) { 1612 return (error); 1613 } 1614 /* Check to see if we already have a description for this lib */ 1615 if (!secflag_enabled(curproc, PROC_SEC_ASLR)) 1616 lvp = lib_va_find(&vattr); 1617 1618 if (lvp != NULL) { 1619 MOBJ_STAT_ADD(lvp_found); 1620 if (use_lib_va) { 1621 start_addr = mmapobj_lookup_start_addr(lvp); 1622 if (start_addr == NULL) { 1623 lib_va_release(lvp); 1624 return (ENOMEM); 1625 } 1626 } 1627 1628 /* 1629 * loadable may be zero if the original allocator 1630 * of lvp hasn't finished setting it up but the rest 1631 * of the fields will be accurate. 1632 */ 1633 loadable = lvp->lv_num_segs; 1634 len = lvp->lv_len; 1635 align = lvp->lv_align; 1636 } 1637 } 1638 1639 /* 1640 * Determine the span of all loadable segments and calculate the 1641 * number of loadable segments, the total len spanned by the mappings 1642 * and the max alignment, if we didn't get them above. 1643 */ 1644 if (loadable == 0) { 1645 MOBJ_STAT_ADD(no_loadable_yet); 1646 ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len, 1647 &loadable, &align); 1648 if (ret != 0) { 1649 /* 1650 * Since it'd be an invalid file, we shouldn't have 1651 * cached it previously. 1652 */ 1653 ASSERT(lvp == NULL); 1654 return (ret); 1655 } 1656 #ifdef DEBUG 1657 if (lvp) { 1658 ASSERT(len == lvp->lv_len); 1659 ASSERT(align == lvp->lv_align); 1660 } 1661 #endif 1662 } 1663 1664 /* Make sure there's something to map. */ 1665 if (len == 0 || loadable == 0) { 1666 /* 1667 * Since it'd be an invalid file, we shouldn't have 1668 * cached it previously. 1669 */ 1670 ASSERT(lvp == NULL); 1671 MOBJ_STAT_ADD(nothing_to_map); 1672 return (ENOTSUP); 1673 } 1674 1675 lib_len = len; 1676 if (padding != 0) { 1677 loadable += 2; 1678 } 1679 if (loadable > *num_mapped) { 1680 *num_mapped = loadable; 1681 /* cleanup previous reservation */ 1682 if (start_addr) { 1683 (void) as_unmap(as, start_addr, lib_len); 1684 } 1685 MOBJ_STAT_ADD(e2big); 1686 if (lvp) { 1687 lib_va_release(lvp); 1688 } 1689 return (E2BIG); 1690 } 1691 1692 /* 1693 * We now know the size of the object to map and now we need to 1694 * get the start address to map it at. It's possible we already 1695 * have it if we found all the info we need in the lib_va cache. 1696 */ 1697 if (e_type == ET_DYN && start_addr == NULL) { 1698 /* 1699 * Need to make sure padding does not throw off 1700 * required alignment. We can only specify an 1701 * alignment for the starting address to be mapped, 1702 * so we round padding up to the alignment and map 1703 * from there and then throw out the extra later. 1704 */ 1705 if (padding != 0) { 1706 if (align > 1) { 1707 add_pad = P2ROUNDUP(padding, align); 1708 len += add_pad; 1709 MOBJ_STAT_ADD(dyn_pad_align); 1710 } else { 1711 MOBJ_STAT_ADD(dyn_pad_noalign); 1712 len += padding; /* at beginning */ 1713 } 1714 len += padding; /* at end of mapping */ 1715 } 1716 /* 1717 * At this point, if lvp is non-NULL, then above we 1718 * already found it in the cache but did not get 1719 * the start address since we were not going to use lib_va. 1720 * Since we know that lib_va will not be used, it's safe 1721 * to call mmapobj_alloc_start_addr and know that lvp 1722 * will not be modified. 1723 */ 1724 ASSERT(lvp ? use_lib_va == 0 : 1); 1725 start_addr = mmapobj_alloc_start_addr(&lvp, len, 1726 use_lib_va, 1727 secflag_enabled(curproc, PROC_SEC_ASLR), 1728 align, &vattr); 1729 if (start_addr == NULL) { 1730 if (lvp) { 1731 lib_va_release(lvp); 1732 } 1733 MOBJ_STAT_ADD(alloc_start_fail); 1734 return (ENOMEM); 1735 } 1736 /* 1737 * If we can't cache it, no need to hang on to it. 1738 * Setting lv_num_segs to non-zero will make that 1739 * field active and since there are too many segments 1740 * to cache, all future users will not try to use lv_mps. 1741 */ 1742 if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) { 1743 lvp->lv_num_segs = loadable; 1744 lib_va_release(lvp); 1745 lvp = NULL; 1746 MOBJ_STAT_ADD(lvp_nocache); 1747 } 1748 /* 1749 * Free the beginning of the mapping if the padding 1750 * was not aligned correctly. 1751 */ 1752 if (padding != 0 && add_pad != padding) { 1753 (void) as_unmap(as, start_addr, 1754 add_pad - padding); 1755 start_addr += (add_pad - padding); 1756 MOBJ_STAT_ADD(extra_padding); 1757 } 1758 } 1759 1760 /* 1761 * At this point, we have reserved the virtual address space 1762 * for our mappings. Now we need to start filling out the mrp 1763 * array to describe all of the individual mappings we are going 1764 * to return. 1765 * For ET_EXEC there has been no memory reservation since we are 1766 * using fixed addresses. While filling in the mrp array below, 1767 * we will have the first segment biased to start at addr 0 1768 * and the rest will be biased by this same amount. Thus if there 1769 * is padding, the first padding will start at addr 0, and the next 1770 * segment will start at the value of padding. 1771 */ 1772 1773 /* We'll fill out padding later, so start filling in mrp at index 1 */ 1774 if (padding != 0) { 1775 current = 1; 1776 } 1777 1778 /* If we have no more need for lvp let it go now */ 1779 if (lvp != NULL && use_lib_va == 0) { 1780 lib_va_release(lvp); 1781 MOBJ_STAT_ADD(lvp_not_needed); 1782 lvp = NULL; 1783 } 1784 1785 /* Now fill out the mrp structs from the program headers */ 1786 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1787 for (i = 0; i < nphdrs; i++) { 1788 p_type = STRUCT_FGET(mph, x.p_type); 1789 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) { 1790 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr); 1791 p_memsz = STRUCT_FGET(mph, x.p_memsz); 1792 p_filesz = STRUCT_FGET(mph, x.p_filesz); 1793 p_offset = STRUCT_FGET(mph, x.p_offset); 1794 p_flags = STRUCT_FGET(mph, x.p_flags); 1795 1796 /* 1797 * Skip this header if it requests no memory to be 1798 * mapped. 1799 */ 1800 if (p_memsz == 0) { 1801 STRUCT_SET_HANDLE(mph, model, 1802 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1803 hsize)); 1804 MOBJ_STAT_ADD(no_mem_map_sz); 1805 continue; 1806 } 1807 1808 prot = 0; 1809 if (p_flags & PF_R) 1810 prot |= PROT_READ; 1811 if (p_flags & PF_W) 1812 prot |= PROT_WRITE; 1813 if (p_flags & PF_X) 1814 prot |= PROT_EXEC; 1815 1816 ASSERT(current < loadable); 1817 mrp[current].mr_msize = p_memsz; 1818 mrp[current].mr_fsize = p_filesz; 1819 mrp[current].mr_offset = p_offset; 1820 mrp[current].mr_prot = prot; 1821 1822 if (hdr_seen == 0 && p_filesz != 0) { 1823 mrp[current].mr_flags = MR_HDR_ELF; 1824 /* 1825 * We modify mr_offset because we 1826 * need to map the ELF header as well, and if 1827 * we didn't then the header could be left out 1828 * of the mapping that we will create later. 1829 * Since we're removing the offset, we need to 1830 * account for that in the other fields as well 1831 * since we will be mapping the memory from 0 1832 * to p_offset. 1833 */ 1834 if (e_type == ET_DYN) { 1835 mrp[current].mr_offset = 0; 1836 mrp[current].mr_msize += p_offset; 1837 mrp[current].mr_fsize += p_offset; 1838 } else { 1839 ASSERT(e_type == ET_EXEC); 1840 /* 1841 * Save off the start addr which will be 1842 * our bias for the rest of the 1843 * ET_EXEC mappings. 1844 */ 1845 start_addr = vaddr - padding; 1846 } 1847 mrp[current].mr_addr = (caddr_t)padding; 1848 hdr_seen = 1; 1849 } else { 1850 if (e_type == ET_EXEC) { 1851 /* bias mr_addr */ 1852 mrp[current].mr_addr = 1853 vaddr - (size_t)start_addr; 1854 } else { 1855 mrp[current].mr_addr = vaddr + padding; 1856 } 1857 mrp[current].mr_flags = 0; 1858 } 1859 current++; 1860 } 1861 1862 /* Move to next phdr */ 1863 STRUCT_SET_HANDLE(mph, model, 1864 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1865 hsize)); 1866 } 1867 1868 /* Now fill out the padding segments */ 1869 if (padding != 0) { 1870 mrp[0].mr_addr = NULL; 1871 mrp[0].mr_msize = padding; 1872 mrp[0].mr_fsize = 0; 1873 mrp[0].mr_offset = 0; 1874 mrp[0].mr_prot = 0; 1875 mrp[0].mr_flags = MR_PADDING; 1876 1877 /* Setup padding for the last segment */ 1878 ASSERT(current == loadable - 1); 1879 mrp[current].mr_addr = (caddr_t)lib_len + padding; 1880 mrp[current].mr_msize = padding; 1881 mrp[current].mr_fsize = 0; 1882 mrp[current].mr_offset = 0; 1883 mrp[current].mr_prot = 0; 1884 mrp[current].mr_flags = MR_PADDING; 1885 } 1886 1887 /* 1888 * Need to make sure address ranges desired are not in use or 1889 * are previously allocated reservations from /dev/null. For 1890 * ET_DYN, we already made sure our address range was free. 1891 */ 1892 if (e_type == ET_EXEC) { 1893 ret = check_exec_addrs(loadable, mrp, start_addr); 1894 if (ret != 0) { 1895 ASSERT(lvp == NULL); 1896 MOBJ_STAT_ADD(check_exec_failed); 1897 return (ret); 1898 } 1899 } 1900 1901 /* Finish up our business with lvp. */ 1902 if (lvp) { 1903 ASSERT(e_type == ET_DYN); 1904 if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) { 1905 bcopy(mrp, lvp->lv_mps, 1906 loadable * sizeof (mmapobj_result_t)); 1907 membar_producer(); 1908 } 1909 /* 1910 * Setting lv_num_segs to a non-zero value indicates that 1911 * lv_mps is now valid and can be used by other threads. 1912 * So, the above stores need to finish before lv_num_segs 1913 * is updated. lv_mps is only valid if lv_num_segs is 1914 * greater than LIBVA_CACHED_SEGS. 1915 */ 1916 lvp->lv_num_segs = loadable; 1917 lib_va_release(lvp); 1918 MOBJ_STAT_ADD(lvp_used); 1919 } 1920 1921 /* Now that we have mrp completely filled out go map it */ 1922 ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type); 1923 if (ret == 0) { 1924 *num_mapped = loadable; 1925 } 1926 1927 return (ret); 1928 } 1929 1930 /* 1931 * Take the ELF file passed in, and do the work of mapping it. 1932 * num_mapped in - # elements in user buffer 1933 * num_mapped out - # sections mapped and length of mrp array if 1934 * no errors. 1935 */ 1936 static int 1937 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp, 1938 uint_t *num_mapped, size_t padding, cred_t *fcred) 1939 { 1940 int error; 1941 offset_t phoff; 1942 int nphdrs; 1943 unsigned char ei_class; 1944 unsigned short phentsize; 1945 ssize_t phsizep; 1946 caddr_t phbasep; 1947 int to_map; 1948 model_t model; 1949 1950 ei_class = ehdrp->e_ident[EI_CLASS]; 1951 model = get_udatamodel(); 1952 if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) || 1953 (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) { 1954 MOBJ_STAT_ADD(wrong_model); 1955 return (ENOTSUP); 1956 } 1957 1958 /* Can't execute code from "noexec" mounted filesystem. */ 1959 if (ehdrp->e_type == ET_EXEC && 1960 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) { 1961 MOBJ_STAT_ADD(noexec_fs); 1962 return (EACCES); 1963 } 1964 1965 /* 1966 * Relocatable and core files are mapped as a single flat file 1967 * since no interpretation is done on them by mmapobj. 1968 */ 1969 if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) { 1970 to_map = padding ? 3 : 1; 1971 if (*num_mapped < to_map) { 1972 *num_mapped = to_map; 1973 MOBJ_STAT_ADD(e2big_et_rel); 1974 return (E2BIG); 1975 } 1976 error = mmapobj_map_flat(vp, mrp, padding, fcred); 1977 if (error == 0) { 1978 *num_mapped = to_map; 1979 mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF; 1980 MOBJ_STAT_ADD(et_rel_mapped); 1981 } 1982 return (error); 1983 } 1984 1985 /* Check for an unknown ELF type */ 1986 if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) { 1987 MOBJ_STAT_ADD(unknown_elf_type); 1988 return (ENOTSUP); 1989 } 1990 1991 if (ei_class == ELFCLASS32) { 1992 Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp; 1993 ASSERT(model == DATAMODEL_ILP32); 1994 nphdrs = e32hdr->e_phnum; 1995 phentsize = e32hdr->e_phentsize; 1996 if (phentsize < sizeof (Elf32_Phdr)) { 1997 MOBJ_STAT_ADD(phent32_too_small); 1998 return (ENOTSUP); 1999 } 2000 phoff = e32hdr->e_phoff; 2001 } else if (ei_class == ELFCLASS64) { 2002 Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp; 2003 ASSERT(model == DATAMODEL_LP64); 2004 nphdrs = e64hdr->e_phnum; 2005 phentsize = e64hdr->e_phentsize; 2006 if (phentsize < sizeof (Elf64_Phdr)) { 2007 MOBJ_STAT_ADD(phent64_too_small); 2008 return (ENOTSUP); 2009 } 2010 phoff = e64hdr->e_phoff; 2011 } else { 2012 /* fallthrough case for an invalid ELF class */ 2013 MOBJ_STAT_ADD(inval_elf_class); 2014 return (ENOTSUP); 2015 } 2016 2017 /* 2018 * nphdrs should only have this value for core files which are handled 2019 * above as a single mapping. If other file types ever use this 2020 * sentinel, then we'll add the support needed to handle this here. 2021 */ 2022 if (nphdrs == PN_XNUM) { 2023 MOBJ_STAT_ADD(too_many_phdrs); 2024 return (ENOTSUP); 2025 } 2026 2027 phsizep = nphdrs * phentsize; 2028 2029 if (phsizep == 0) { 2030 MOBJ_STAT_ADD(no_phsize); 2031 return (ENOTSUP); 2032 } 2033 2034 /* Make sure we only wait for memory if it's a reasonable request */ 2035 if (phsizep > mmapobj_alloc_threshold) { 2036 MOBJ_STAT_ADD(phsize_large); 2037 if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) { 2038 MOBJ_STAT_ADD(phsize_xtralarge); 2039 return (ENOMEM); 2040 } 2041 } else { 2042 phbasep = kmem_alloc(phsizep, KM_SLEEP); 2043 } 2044 2045 if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep, 2046 (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 2047 fcred, NULL)) != 0) { 2048 kmem_free(phbasep, phsizep); 2049 return (error); 2050 } 2051 2052 /* Now process the phdr's */ 2053 error = process_phdrs(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped, 2054 padding, fcred); 2055 kmem_free(phbasep, phsizep); 2056 return (error); 2057 } 2058 2059 #if defined(__sparc) 2060 /* 2061 * Hack to support 64 bit kernels running AOUT 4.x programs. 2062 * This is the sizeof (struct nlist) for a 32 bit kernel. 2063 * Since AOUT programs are 32 bit only, they will never use the 64 bit 2064 * sizeof (struct nlist) and thus creating a #define is the simplest 2065 * way around this since this is a format which is not being updated. 2066 * This will be used in the place of sizeof (struct nlist) below. 2067 */ 2068 #define NLIST_SIZE (0xC) 2069 2070 static int 2071 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp, 2072 uint_t *num_mapped, struct exec *hdr, cred_t *fcred) 2073 { 2074 int error; 2075 size_t size; 2076 size_t osize; 2077 size_t nsize; /* nlist size */ 2078 size_t msize; 2079 size_t zfoddiff; 2080 caddr_t addr; 2081 caddr_t start_addr; 2082 struct as *as = curproc->p_as; 2083 int prot = PROT_USER | PROT_READ | PROT_EXEC; 2084 uint_t mflag = MAP_PRIVATE | _MAP_LOW32; 2085 offset_t off = 0; 2086 int segnum = 0; 2087 uint_t to_map; 2088 int is_library = 0; 2089 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 2090 2091 /* Only 32bit apps supported by this file format */ 2092 if (get_udatamodel() != DATAMODEL_ILP32) { 2093 MOBJ_STAT_ADD(aout_64bit_try); 2094 return (ENOTSUP); 2095 } 2096 2097 /* Check to see if this is a library */ 2098 if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) { 2099 is_library = 1; 2100 } 2101 2102 /* 2103 * Can't execute code from "noexec" mounted filesystem. Unlike ELF, 2104 * aout libraries are always mapped with something PROT_EXEC, so this 2105 * doesn't need to be checked for specific parts 2106 */ 2107 if ((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) { 2108 MOBJ_STAT_ADD(aout_noexec); 2109 return (EACCES); 2110 } 2111 2112 /* 2113 * There are 2 ways to calculate the mapped size of executable: 2114 * 1) rounded text size + data size + bss size. 2115 * 2) starting offset for text + text size + data size + text relocation 2116 * size + data relocation size + room for nlist data structure. 2117 * 2118 * The larger of the two sizes will be used to map this binary. 2119 */ 2120 osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss; 2121 2122 off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec); 2123 2124 nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize + 2125 hdr->a_drsize + NLIST_SIZE; 2126 2127 size = MAX(osize, nsize); 2128 if (size != nsize) { 2129 nsize = 0; 2130 } 2131 2132 /* 2133 * 1 seg for text and 1 seg for initialized data. 2134 * 1 seg for bss (if can't fit in leftover space of init data) 2135 * 1 seg for nlist if needed. 2136 */ 2137 to_map = 2 + (nsize ? 1 : 0) + 2138 (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0); 2139 if (*num_mapped < to_map) { 2140 *num_mapped = to_map; 2141 MOBJ_STAT_ADD(aout_e2big); 2142 return (E2BIG); 2143 } 2144 2145 /* Reserve address space for the whole mapping */ 2146 if (is_library) { 2147 /* We'll let VOP_MAP below pick our address for us */ 2148 addr = NULL; 2149 MOBJ_STAT_ADD(aout_lib); 2150 } else { 2151 /* 2152 * default start address for fixed binaries from AOUT 4.x 2153 * standard. 2154 */ 2155 MOBJ_STAT_ADD(aout_fixed); 2156 mflag |= MAP_FIXED; 2157 addr = (caddr_t)0x2000; 2158 as_rangelock(as); 2159 if (as_gap(as, size, &addr, &size, 0, NULL) != 0) { 2160 as_rangeunlock(as); 2161 MOBJ_STAT_ADD(aout_addr_in_use); 2162 return (EADDRINUSE); 2163 } 2164 crargs.flags |= MAP_NORESERVE; 2165 error = as_map(as, addr, size, segvn_create, &crargs); 2166 ASSERT(addr == (caddr_t)0x2000); 2167 as_rangeunlock(as); 2168 } 2169 2170 start_addr = addr; 2171 osize = size; 2172 2173 /* 2174 * Map as large as we need, backed by file, this will be text, and 2175 * possibly the nlist segment. We map over this mapping for bss and 2176 * initialized data segments. 2177 */ 2178 error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL, 2179 mflag, fcred, NULL); 2180 if (error) { 2181 if (!is_library) { 2182 (void) as_unmap(as, start_addr, osize); 2183 } 2184 return (error); 2185 } 2186 2187 /* pickup the value of start_addr and osize for libraries */ 2188 start_addr = addr; 2189 osize = size; 2190 2191 /* 2192 * We have our initial reservation/allocation so we need to use fixed 2193 * addresses from now on. 2194 */ 2195 mflag |= MAP_FIXED; 2196 2197 mrp[0].mr_addr = addr; 2198 mrp[0].mr_msize = hdr->a_text; 2199 mrp[0].mr_fsize = hdr->a_text; 2200 mrp[0].mr_offset = 0; 2201 mrp[0].mr_prot = PROT_READ | PROT_EXEC; 2202 mrp[0].mr_flags = MR_HDR_AOUT; 2203 2204 2205 /* 2206 * Map initialized data. We are mapping over a portion of the 2207 * previous mapping which will be unmapped in VOP_MAP below. 2208 */ 2209 off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE); 2210 msize = off; 2211 addr += off; 2212 size = hdr->a_data; 2213 error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL, 2214 mflag, fcred, NULL); 2215 if (error) { 2216 (void) as_unmap(as, start_addr, osize); 2217 return (error); 2218 } 2219 msize += size; 2220 mrp[1].mr_addr = addr; 2221 mrp[1].mr_msize = size; 2222 mrp[1].mr_fsize = size; 2223 mrp[1].mr_offset = 0; 2224 mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 2225 mrp[1].mr_flags = 0; 2226 2227 /* Need to zero out remainder of page */ 2228 addr += hdr->a_data; 2229 zfoddiff = P2PHASE((size_t)addr, PAGESIZE); 2230 if (zfoddiff) { 2231 label_t ljb; 2232 2233 MOBJ_STAT_ADD(aout_zfoddiff); 2234 zfoddiff = PAGESIZE - zfoddiff; 2235 if (on_fault(&ljb)) { 2236 no_fault(); 2237 MOBJ_STAT_ADD(aout_uzero_fault); 2238 (void) as_unmap(as, start_addr, osize); 2239 return (EFAULT); 2240 } 2241 uzero(addr, zfoddiff); 2242 no_fault(); 2243 } 2244 msize += zfoddiff; 2245 segnum = 2; 2246 2247 /* Map bss */ 2248 if (hdr->a_bss > zfoddiff) { 2249 struct segvn_crargs crargs = 2250 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 2251 MOBJ_STAT_ADD(aout_map_bss); 2252 addr += zfoddiff; 2253 size = hdr->a_bss - zfoddiff; 2254 as_rangelock(as); 2255 (void) as_unmap(as, addr, size); 2256 error = as_map(as, addr, size, segvn_create, &crargs); 2257 as_rangeunlock(as); 2258 msize += size; 2259 2260 if (error) { 2261 MOBJ_STAT_ADD(aout_bss_fail); 2262 (void) as_unmap(as, start_addr, osize); 2263 return (error); 2264 } 2265 mrp[2].mr_addr = addr; 2266 mrp[2].mr_msize = size; 2267 mrp[2].mr_fsize = 0; 2268 mrp[2].mr_offset = 0; 2269 mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 2270 mrp[2].mr_flags = 0; 2271 2272 addr += size; 2273 segnum = 3; 2274 } 2275 2276 /* 2277 * If we have extra bits left over, we need to include that in how 2278 * much we mapped to make sure the nlist logic is correct 2279 */ 2280 msize = P2ROUNDUP(msize, PAGESIZE); 2281 2282 if (nsize && msize < nsize) { 2283 MOBJ_STAT_ADD(aout_nlist); 2284 mrp[segnum].mr_addr = addr; 2285 mrp[segnum].mr_msize = nsize - msize; 2286 mrp[segnum].mr_fsize = 0; 2287 mrp[segnum].mr_offset = 0; 2288 mrp[segnum].mr_prot = PROT_READ | PROT_EXEC; 2289 mrp[segnum].mr_flags = 0; 2290 } 2291 2292 *num_mapped = to_map; 2293 return (0); 2294 } 2295 #endif 2296 2297 /* 2298 * These are the two types of files that we can interpret and we want to read 2299 * in enough info to cover both types when looking at the initial header. 2300 */ 2301 #define MAX_HEADER_SIZE (MAX(sizeof (Ehdr), sizeof (struct exec))) 2302 2303 /* 2304 * Map vp passed in in an interpreted manner. ELF and AOUT files will be 2305 * interpreted and mapped appropriately for execution. 2306 * num_mapped in - # elements in mrp 2307 * num_mapped out - # sections mapped and length of mrp array if 2308 * no errors or E2BIG returned. 2309 * 2310 * Returns 0 on success, errno value on failure. 2311 */ 2312 static int 2313 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp, 2314 uint_t *num_mapped, size_t padding, cred_t *fcred) 2315 { 2316 int error = 0; 2317 vattr_t vattr; 2318 struct lib_va *lvp; 2319 caddr_t start_addr; 2320 model_t model; 2321 2322 /* 2323 * header has to be aligned to the native size of ulong_t in order 2324 * to avoid an unaligned access when dereferencing the header as 2325 * a ulong_t. Thus we allocate our array on the stack of type 2326 * ulong_t and then have header, which we dereference later as a char 2327 * array point at lheader. 2328 */ 2329 ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1]; 2330 caddr_t header = (caddr_t)&lheader; 2331 2332 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE; 2333 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 2334 if (error) { 2335 return (error); 2336 } 2337 2338 /* 2339 * Check lib_va to see if we already have a full description 2340 * for this library. This is the fast path and only used for 2341 * ET_DYN ELF files (dynamic libraries). 2342 */ 2343 if (padding == 0 && !secflag_enabled(curproc, PROC_SEC_ASLR) && 2344 ((lvp = lib_va_find(&vattr)) != NULL)) { 2345 int num_segs; 2346 2347 model = get_udatamodel(); 2348 if ((model == DATAMODEL_ILP32 && 2349 lvp->lv_flags & LV_ELF64) || 2350 (model == DATAMODEL_LP64 && 2351 lvp->lv_flags & LV_ELF32)) { 2352 lib_va_release(lvp); 2353 MOBJ_STAT_ADD(fast_wrong_model); 2354 return (ENOTSUP); 2355 } 2356 num_segs = lvp->lv_num_segs; 2357 if (*num_mapped < num_segs) { 2358 *num_mapped = num_segs; 2359 lib_va_release(lvp); 2360 MOBJ_STAT_ADD(fast_e2big); 2361 return (E2BIG); 2362 } 2363 2364 /* 2365 * Check to see if we have all the mappable program headers 2366 * cached. 2367 */ 2368 if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) { 2369 MOBJ_STAT_ADD(fast); 2370 start_addr = mmapobj_lookup_start_addr(lvp); 2371 if (start_addr == NULL) { 2372 lib_va_release(lvp); 2373 return (ENOMEM); 2374 } 2375 2376 bcopy(lvp->lv_mps, mrp, 2377 num_segs * sizeof (mmapobj_result_t)); 2378 2379 error = mmapobj_map_elf(vp, start_addr, mrp, 2380 num_segs, fcred, ET_DYN); 2381 2382 lib_va_release(lvp); 2383 if (error == 0) { 2384 *num_mapped = num_segs; 2385 MOBJ_STAT_ADD(fast_success); 2386 } 2387 return (error); 2388 } 2389 MOBJ_STAT_ADD(fast_not_now); 2390 2391 /* Release it for now since we'll look it up below */ 2392 lib_va_release(lvp); 2393 } 2394 2395 /* 2396 * Time to see if this is a file we can interpret. If it's smaller 2397 * than this, then we can't interpret it. 2398 */ 2399 if (vattr.va_size < MAX_HEADER_SIZE) { 2400 MOBJ_STAT_ADD(small_file); 2401 return (ENOTSUP); 2402 } 2403 2404 if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0, 2405 UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) { 2406 MOBJ_STAT_ADD(read_error); 2407 return (error); 2408 } 2409 2410 /* Verify file type */ 2411 if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 && 2412 header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) { 2413 return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped, 2414 padding, fcred)); 2415 } 2416 2417 #if defined(__sparc) 2418 /* On sparc, check for 4.X AOUT format */ 2419 switch (((struct exec *)header)->a_magic) { 2420 case OMAGIC: 2421 case ZMAGIC: 2422 case NMAGIC: 2423 return (doaoutwork(vp, mrp, num_mapped, 2424 (struct exec *)lheader, fcred)); 2425 } 2426 #endif 2427 2428 /* Unsupported type */ 2429 MOBJ_STAT_ADD(unsupported); 2430 return (ENOTSUP); 2431 } 2432 2433 /* 2434 * Given a vnode, map it as either a flat file or interpret it and map 2435 * it according to the rules of the file type. 2436 * *num_mapped will contain the size of the mmapobj_result_t array passed in. 2437 * If padding is non-zero, the mappings will be padded by that amount 2438 * rounded up to the nearest pagesize. 2439 * If the mapping is successful, *num_mapped will contain the number of 2440 * distinct mappings created, and mrp will point to the array of 2441 * mmapobj_result_t's which describe these mappings. 2442 * 2443 * On error, -1 is returned and errno is set appropriately. 2444 * A special error case will set errno to E2BIG when there are more than 2445 * *num_mapped mappings to be created and *num_mapped will be set to the 2446 * number of mappings needed. 2447 */ 2448 int 2449 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp, 2450 uint_t *num_mapped, size_t padding, cred_t *fcred) 2451 { 2452 int to_map; 2453 int error = 0; 2454 2455 ASSERT((padding & PAGEOFFSET) == 0); 2456 ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0); 2457 ASSERT(num_mapped != NULL); 2458 ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0); 2459 2460 if ((flags & MMOBJ_INTERPRET) == 0) { 2461 to_map = padding ? 3 : 1; 2462 if (*num_mapped < to_map) { 2463 *num_mapped = to_map; 2464 MOBJ_STAT_ADD(flat_e2big); 2465 return (E2BIG); 2466 } 2467 error = mmapobj_map_flat(vp, mrp, padding, fcred); 2468 2469 if (error) { 2470 return (error); 2471 } 2472 *num_mapped = to_map; 2473 return (0); 2474 } 2475 2476 error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred); 2477 return (error); 2478 } 2479