xref: /illumos-gate/usr/src/uts/common/os/mmapobj.c (revision 66582b606a8194f7f3ba5b3a3a6dca5b0d346361)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2014 Joyent, Inc.  All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/errno.h>
33 #include <sys/mman.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/vmsystm.h>
37 #include <sys/machsystm.h>
38 #include <sys/debug.h>
39 #include <vm/as.h>
40 #include <vm/seg.h>
41 #include <sys/vmparam.h>
42 #include <sys/vfs.h>
43 #include <sys/elf.h>
44 #include <sys/machelf.h>
45 #include <sys/corectl.h>
46 #include <sys/exec.h>
47 #include <sys/exechdr.h>
48 #include <sys/autoconf.h>
49 #include <sys/mem.h>
50 #include <vm/seg_dev.h>
51 #include <sys/vmparam.h>
52 #include <sys/mmapobj.h>
53 #include <sys/atomic.h>
54 
55 /*
56  * Theory statement:
57  *
58  * The main driving force behind mmapobj is to interpret and map ELF files
59  * inside of the kernel instead of having the linker be responsible for this.
60  *
61  * mmapobj also supports the AOUT 4.x binary format as well as flat files in
62  * a read only manner.
63  *
64  * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD
65  * or PT_SUNWBSS segment according to the ELF standard.  Refer to the "Linker
66  * and Libraries Guide" for more information about the standard and mapping
67  * rules.
68  *
69  * Having mmapobj interpret and map objects will allow the kernel to make the
70  * best decision for where to place the mappings for said objects.  Thus, we
71  * can make optimizations inside of the kernel for specific platforms or cache
72  * mapping information to make mapping objects faster.  The cache is ignored
73  * if ASLR is enabled.
74  *
75  * The lib_va_hash will be one such optimization.  For each ELF object that
76  * mmapobj is asked to interpret, we will attempt to cache the information
77  * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of
78  * the same objects.  We will cache up to LIBVA_CACHED_SEGS (see below) program
79  * headers which should cover a majority of the libraries out there without
80  * wasting space.  In order to make sure that the cached information is valid,
81  * we check the passed in vnode's mtime and ctime to make sure the vnode
82  * has not been modified since the last time we used it.
83  *
84  * In addition, the lib_va_hash may contain a preferred starting VA for the
85  * object which can be useful for platforms which support a shared context.
86  * This will increase the likelyhood that library text can be shared among
87  * many different processes.  We limit the reserved VA space for 32 bit objects
88  * in order to minimize fragmenting the processes address space.
89  *
90  * In addition to the above, the mmapobj interface allows for padding to be
91  * requested before the first mapping and after the last mapping created.
92  * When padding is requested, no additional optimizations will be made for
93  * that request.
94  */
95 
96 /*
97  * Threshold to prevent allocating too much kernel memory to read in the
98  * program headers for an object.  If it requires more than below,
99  * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the
100  * program headers which could possibly fail.  If less memory than below is
101  * needed, then we use a KM_SLEEP allocation and are willing to wait for the
102  * memory if we need to.
103  */
104 size_t mmapobj_alloc_threshold = 65536;
105 
106 /* Debug stats for test coverage */
107 #ifdef DEBUG
108 struct mobj_stats {
109 	uint_t	mobjs_unmap_called;
110 	uint_t	mobjs_remap_devnull;
111 	uint_t	mobjs_lookup_start;
112 	uint_t	mobjs_alloc_start;
113 	uint_t	mobjs_alloc_vmem;
114 	uint_t	mobjs_add_collision;
115 	uint_t	mobjs_get_addr;
116 	uint_t	mobjs_map_flat_no_padding;
117 	uint_t	mobjs_map_flat_padding;
118 	uint_t	mobjs_map_ptload_text;
119 	uint_t	mobjs_map_ptload_initdata;
120 	uint_t	mobjs_map_ptload_preread;
121 	uint_t	mobjs_map_ptload_unaligned_text;
122 	uint_t	mobjs_map_ptload_unaligned_map_fail;
123 	uint_t	mobjs_map_ptload_unaligned_read_fail;
124 	uint_t	mobjs_zfoddiff;
125 	uint_t	mobjs_zfoddiff_nowrite;
126 	uint_t	mobjs_zfodextra;
127 	uint_t	mobjs_ptload_failed;
128 	uint_t	mobjs_map_elf_no_holes;
129 	uint_t	mobjs_unmap_hole;
130 	uint_t	mobjs_nomem_header;
131 	uint_t	mobjs_inval_header;
132 	uint_t	mobjs_overlap_header;
133 	uint_t	mobjs_np2_align;
134 	uint_t	mobjs_np2_align_overflow;
135 	uint_t	mobjs_exec_padding;
136 	uint_t	mobjs_exec_addr_mapped;
137 	uint_t	mobjs_exec_addr_devnull;
138 	uint_t	mobjs_exec_addr_in_use;
139 	uint_t	mobjs_lvp_found;
140 	uint_t	mobjs_no_loadable_yet;
141 	uint_t	mobjs_nothing_to_map;
142 	uint_t	mobjs_e2big;
143 	uint_t	mobjs_dyn_pad_align;
144 	uint_t	mobjs_dyn_pad_noalign;
145 	uint_t	mobjs_alloc_start_fail;
146 	uint_t	mobjs_lvp_nocache;
147 	uint_t	mobjs_extra_padding;
148 	uint_t	mobjs_lvp_not_needed;
149 	uint_t	mobjs_no_mem_map_sz;
150 	uint_t	mobjs_check_exec_failed;
151 	uint_t	mobjs_lvp_used;
152 	uint_t	mobjs_wrong_model;
153 	uint_t	mobjs_noexec_fs;
154 	uint_t	mobjs_e2big_et_rel;
155 	uint_t	mobjs_et_rel_mapped;
156 	uint_t	mobjs_unknown_elf_type;
157 	uint_t	mobjs_phent32_too_small;
158 	uint_t	mobjs_phent64_too_small;
159 	uint_t	mobjs_inval_elf_class;
160 	uint_t	mobjs_too_many_phdrs;
161 	uint_t	mobjs_no_phsize;
162 	uint_t	mobjs_phsize_large;
163 	uint_t	mobjs_phsize_xtralarge;
164 	uint_t	mobjs_fast_wrong_model;
165 	uint_t	mobjs_fast_e2big;
166 	uint_t	mobjs_fast;
167 	uint_t	mobjs_fast_success;
168 	uint_t	mobjs_fast_not_now;
169 	uint_t	mobjs_small_file;
170 	uint_t	mobjs_read_error;
171 	uint_t	mobjs_unsupported;
172 	uint_t	mobjs_flat_e2big;
173 	uint_t	mobjs_phent_align32;
174 	uint_t	mobjs_phent_align64;
175 	uint_t	mobjs_lib_va_find_hit;
176 	uint_t	mobjs_lib_va_find_delay_delete;
177 	uint_t	mobjs_lib_va_find_delete;
178 	uint_t	mobjs_lib_va_add_delay_delete;
179 	uint_t	mobjs_lib_va_add_delete;
180 	uint_t	mobjs_lib_va_create_failure;
181 	uint_t	mobjs_min_align;
182 #if defined(__sparc)
183 	uint_t	mobjs_aout_uzero_fault;
184 	uint_t	mobjs_aout_64bit_try;
185 	uint_t	mobjs_aout_noexec;
186 	uint_t	mobjs_aout_e2big;
187 	uint_t	mobjs_aout_lib;
188 	uint_t	mobjs_aout_fixed;
189 	uint_t	mobjs_aout_zfoddiff;
190 	uint_t	mobjs_aout_map_bss;
191 	uint_t	mobjs_aout_bss_fail;
192 	uint_t	mobjs_aout_nlist;
193 	uint_t	mobjs_aout_addr_in_use;
194 #endif
195 } mobj_stats;
196 
197 #define	MOBJ_STAT_ADD(stat)		((mobj_stats.mobjs_##stat)++)
198 #else
199 #define	MOBJ_STAT_ADD(stat)
200 #endif
201 
202 /*
203  * Check if addr is at or above the address space reserved for the stack.
204  * The stack is at the top of the address space for all sparc processes
205  * and 64 bit x86 processes.  For 32 bit x86, the stack is not at the top
206  * of the address space and thus this check wil always return false for
207  * 32 bit x86 processes.
208  */
209 #if defined(__sparc)
210 #define	OVERLAPS_STACK(addr, p)						\
211 	(addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))
212 #elif defined(__amd64)
213 #define	OVERLAPS_STACK(addr, p)						\
214 	((p->p_model == DATAMODEL_LP64) &&				\
215 	(addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))))
216 #elif defined(__i386)
217 #define	OVERLAPS_STACK(addr, p)	0
218 #endif
219 
220 /* lv_flags values - bitmap */
221 #define	LV_ELF32	0x1		/* 32 bit ELF file */
222 #define	LV_ELF64	0x2		/* 64 bit ELF file */
223 #define	LV_DEL		0x4		/* delete when lv_refcnt hits zero */
224 
225 /*
226  * Note: lv_num_segs will denote how many segments this file has and will
227  * only be set after the lv_mps array has been filled out.
228  * lv_mps can only be valid if lv_num_segs is non-zero.
229  */
230 struct lib_va {
231 	struct lib_va		*lv_next;
232 	caddr_t			lv_base_va;	/* start va for library */
233 	ssize_t			lv_len;		/* total va span of library */
234 	size_t			lv_align;	/* minimum alignment */
235 	uint64_t		lv_nodeid;	/* filesystem node id */
236 	uint64_t		lv_fsid;	/* filesystem id */
237 	timestruc_t		lv_ctime;	/* last time file was changed */
238 	timestruc_t		lv_mtime;	/* or modified */
239 	mmapobj_result_t	lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */
240 	int			lv_num_segs;	/* # segs for this file */
241 	int			lv_flags;
242 	uint_t			lv_refcnt;	/* number of holds on struct */
243 };
244 
245 #define	LIB_VA_SIZE	1024
246 #define	LIB_VA_MASK	(LIB_VA_SIZE - 1)
247 #define	LIB_VA_MUTEX_SHIFT	3
248 
249 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1))
250 #error	"LIB_VA_SIZE is not a power of 2"
251 #endif
252 
253 static struct lib_va *lib_va_hash[LIB_VA_SIZE];
254 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT];
255 
256 #define	LIB_VA_HASH_MUTEX(index)					\
257 	(&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT])
258 
259 #define	LIB_VA_HASH(nodeid)						\
260 	(((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK)
261 
262 #define	LIB_VA_MATCH_ID(arg1, arg2)					\
263 	((arg1)->lv_nodeid == (arg2)->va_nodeid &&			\
264 	(arg1)->lv_fsid == (arg2)->va_fsid)
265 
266 #define	LIB_VA_MATCH_TIME(arg1, arg2)					\
267 	((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec &&		\
268 	(arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec &&		\
269 	(arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec &&		\
270 	(arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec)
271 
272 #define	LIB_VA_MATCH(arg1, arg2)					\
273 	(LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2))
274 
275 /*
276  * lib_va will be used for optimized allocation of address ranges for
277  * libraries, such that subsequent mappings of the same library will attempt
278  * to use the same VA as previous mappings of that library.
279  * In order to map libraries at the same VA in many processes, we need to carve
280  * out our own address space for them which is unique across many processes.
281  * We use different arenas for 32 bit and 64 bit libraries.
282  *
283  * Since the 32 bit address space is relatively small, we limit the number of
284  * libraries which try to use consistent virtual addresses to lib_threshold.
285  * For 64 bit libraries there is no such limit since the address space is large.
286  */
287 static vmem_t *lib_va_32_arena;
288 static vmem_t *lib_va_64_arena;
289 uint_t lib_threshold = 20;	/* modifiable via /etc/system */
290 
291 static kmutex_t lib_va_init_mutex;	/* no need to initialize */
292 
293 /*
294  * Number of 32 bit and 64 bit libraries in lib_va hash.
295  */
296 static uint_t libs_mapped_32 = 0;
297 static uint_t libs_mapped_64 = 0;
298 
299 /*
300  * Free up the resources associated with lvp as well as lvp itself.
301  * We also decrement the number of libraries mapped via a lib_va
302  * cached virtual address.
303  */
304 void
305 lib_va_free(struct lib_va *lvp)
306 {
307 	int is_64bit = lvp->lv_flags & LV_ELF64;
308 	ASSERT(lvp->lv_refcnt == 0);
309 
310 	if (lvp->lv_base_va != NULL) {
311 		vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena,
312 		    lvp->lv_base_va, lvp->lv_len);
313 		if (is_64bit) {
314 			atomic_dec_32(&libs_mapped_64);
315 		} else {
316 			atomic_dec_32(&libs_mapped_32);
317 		}
318 	}
319 	kmem_free(lvp, sizeof (struct lib_va));
320 }
321 
322 /*
323  * See if the file associated with the vap passed in is in the lib_va hash.
324  * If it is and the file has not been modified since last use, then
325  * return a pointer to that data.  Otherwise, return NULL if the file has
326  * changed or the file was not found in the hash.
327  */
328 static struct lib_va *
329 lib_va_find(vattr_t *vap)
330 {
331 	struct lib_va *lvp;
332 	struct lib_va *del = NULL;
333 	struct lib_va **tmp;
334 	uint_t index;
335 	index = LIB_VA_HASH(vap->va_nodeid);
336 
337 	mutex_enter(LIB_VA_HASH_MUTEX(index));
338 	tmp = &lib_va_hash[index];
339 	while (*tmp != NULL) {
340 		lvp = *tmp;
341 		if (LIB_VA_MATCH_ID(lvp, vap)) {
342 			if (LIB_VA_MATCH_TIME(lvp, vap)) {
343 				ASSERT((lvp->lv_flags & LV_DEL) == 0);
344 				lvp->lv_refcnt++;
345 				MOBJ_STAT_ADD(lib_va_find_hit);
346 			} else {
347 				/*
348 				 * file was updated since last use.
349 				 * need to remove it from list.
350 				 */
351 				del = lvp;
352 				*tmp = del->lv_next;
353 				del->lv_next = NULL;
354 				/*
355 				 * If we can't delete it now, mark it for later
356 				 */
357 				if (del->lv_refcnt) {
358 					MOBJ_STAT_ADD(lib_va_find_delay_delete);
359 					del->lv_flags |= LV_DEL;
360 					del = NULL;
361 				}
362 				lvp = NULL;
363 			}
364 			mutex_exit(LIB_VA_HASH_MUTEX(index));
365 			if (del) {
366 				ASSERT(del->lv_refcnt == 0);
367 				MOBJ_STAT_ADD(lib_va_find_delete);
368 				lib_va_free(del);
369 			}
370 			return (lvp);
371 		}
372 		tmp = &lvp->lv_next;
373 	}
374 	mutex_exit(LIB_VA_HASH_MUTEX(index));
375 	return (NULL);
376 }
377 
378 /*
379  * Add a new entry to the lib_va hash.
380  * Search the hash while holding the appropriate mutex to make sure that the
381  * data is not already in the cache.  If we find data that is in the cache
382  * already and has not been modified since last use, we return NULL.  If it
383  * has been modified since last use, we will remove that entry from
384  * the hash and it will be deleted once it's reference count reaches zero.
385  * If there is no current entry in the hash we will add the new entry and
386  * return it to the caller who is responsible for calling lib_va_release to
387  * drop their reference count on it.
388  *
389  * lv_num_segs will be set to zero since the caller needs to add that
390  * information to the data structure.
391  */
392 static struct lib_va *
393 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap)
394 {
395 	struct lib_va *lvp;
396 	uint_t index;
397 	model_t model;
398 	struct lib_va **tmp;
399 	struct lib_va *del = NULL;
400 
401 	model = get_udatamodel();
402 	index = LIB_VA_HASH(vap->va_nodeid);
403 
404 	lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP);
405 
406 	mutex_enter(LIB_VA_HASH_MUTEX(index));
407 
408 	/*
409 	 * Make sure not adding same data a second time.
410 	 * The hash chains should be relatively short and adding
411 	 * is a relatively rare event, so it's worth the check.
412 	 */
413 	tmp = &lib_va_hash[index];
414 	while (*tmp != NULL) {
415 		if (LIB_VA_MATCH_ID(*tmp, vap)) {
416 			if (LIB_VA_MATCH_TIME(*tmp, vap)) {
417 				mutex_exit(LIB_VA_HASH_MUTEX(index));
418 				kmem_free(lvp, sizeof (struct lib_va));
419 				return (NULL);
420 			}
421 
422 			/*
423 			 * We have the same nodeid and fsid but the file has
424 			 * been modified since we last saw it.
425 			 * Need to remove the old node and add this new
426 			 * one.
427 			 * Could probably use a callback mechanism to make
428 			 * this cleaner.
429 			 */
430 			ASSERT(del == NULL);
431 			del = *tmp;
432 			*tmp = del->lv_next;
433 			del->lv_next = NULL;
434 
435 			/*
436 			 * Check to see if we can free it.  If lv_refcnt
437 			 * is greater than zero, than some other thread
438 			 * has a reference to the one we want to delete
439 			 * and we can not delete it.  All of this is done
440 			 * under the lib_va_hash_mutex lock so it is atomic.
441 			 */
442 			if (del->lv_refcnt) {
443 				MOBJ_STAT_ADD(lib_va_add_delay_delete);
444 				del->lv_flags |= LV_DEL;
445 				del = NULL;
446 			}
447 			/* tmp is already advanced */
448 			continue;
449 		}
450 		tmp = &((*tmp)->lv_next);
451 	}
452 
453 	lvp->lv_base_va = base_va;
454 	lvp->lv_len = len;
455 	lvp->lv_align = align;
456 	lvp->lv_nodeid = vap->va_nodeid;
457 	lvp->lv_fsid = vap->va_fsid;
458 	lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec;
459 	lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec;
460 	lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec;
461 	lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec;
462 	lvp->lv_next = NULL;
463 	lvp->lv_refcnt = 1;
464 
465 	/* Caller responsible for filling this and lv_mps out */
466 	lvp->lv_num_segs = 0;
467 
468 	if (model == DATAMODEL_LP64) {
469 		lvp->lv_flags = LV_ELF64;
470 	} else {
471 		ASSERT(model == DATAMODEL_ILP32);
472 		lvp->lv_flags = LV_ELF32;
473 	}
474 
475 	if (base_va != NULL) {
476 		if (model == DATAMODEL_LP64) {
477 			atomic_inc_32(&libs_mapped_64);
478 		} else {
479 			ASSERT(model == DATAMODEL_ILP32);
480 			atomic_inc_32(&libs_mapped_32);
481 		}
482 	}
483 	ASSERT(*tmp == NULL);
484 	*tmp = lvp;
485 	mutex_exit(LIB_VA_HASH_MUTEX(index));
486 	if (del) {
487 		ASSERT(del->lv_refcnt == 0);
488 		MOBJ_STAT_ADD(lib_va_add_delete);
489 		lib_va_free(del);
490 	}
491 	return (lvp);
492 }
493 
494 /*
495  * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash.
496  * In addition, if this is the last hold and lvp is marked for deletion,
497  * free up it's reserved address space and free the structure.
498  */
499 static void
500 lib_va_release(struct lib_va *lvp)
501 {
502 	uint_t index;
503 	int to_del = 0;
504 
505 	ASSERT(lvp->lv_refcnt > 0);
506 
507 	index = LIB_VA_HASH(lvp->lv_nodeid);
508 	mutex_enter(LIB_VA_HASH_MUTEX(index));
509 	if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) {
510 		to_del = 1;
511 	}
512 	mutex_exit(LIB_VA_HASH_MUTEX(index));
513 	if (to_del) {
514 		ASSERT(lvp->lv_next == 0);
515 		lib_va_free(lvp);
516 	}
517 }
518 
519 /*
520  * Dummy function for mapping through /dev/null
521  * Normally I would have used mmmmap in common/io/mem.c
522  * but that is a static function, and for /dev/null, it
523  * just returns -1.
524  */
525 /* ARGSUSED */
526 static int
527 mmapobj_dummy(dev_t dev, off_t off, int prot)
528 {
529 	return (-1);
530 }
531 
532 /*
533  * Called when an error occurred which requires mmapobj to return failure.
534  * All mapped objects will be unmapped and /dev/null mappings will be
535  * reclaimed if necessary.
536  * num_mapped is the number of elements of mrp which have been mapped, and
537  * num_segs is the total number of elements in mrp.
538  * For e_type ET_EXEC, we need to unmap all of the elements in mrp since
539  * we had already made reservations for them.
540  * If num_mapped equals num_segs, then we know that we had fully mapped
541  * the file and only need to clean up the segments described.
542  * If they are not equal, then for ET_DYN we will unmap the range from the
543  * end of the last mapped segment to the end of the last segment in mrp
544  * since we would have made a reservation for that memory earlier.
545  * If e_type is passed in as zero, num_mapped must equal num_segs.
546  */
547 void
548 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs,
549     ushort_t e_type)
550 {
551 	int i;
552 	struct as *as = curproc->p_as;
553 	caddr_t addr;
554 	size_t size;
555 
556 	if (e_type == ET_EXEC) {
557 		num_mapped = num_segs;
558 	}
559 #ifdef DEBUG
560 	if (e_type == 0) {
561 		ASSERT(num_mapped == num_segs);
562 	}
563 #endif
564 
565 	MOBJ_STAT_ADD(unmap_called);
566 	for (i = 0; i < num_mapped; i++) {
567 
568 		/*
569 		 * If we are going to have to create a mapping we need to
570 		 * make sure that no one else will use the address we
571 		 * need to remap between the time it is unmapped and
572 		 * mapped below.
573 		 */
574 		if (mrp[i].mr_flags & MR_RESV) {
575 			as_rangelock(as);
576 		}
577 		/* Always need to unmap what we mapped */
578 		(void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize);
579 
580 		/* Need to reclaim /dev/null reservation from earlier */
581 		if (mrp[i].mr_flags & MR_RESV) {
582 			struct segdev_crargs dev_a;
583 
584 			ASSERT(e_type != ET_DYN);
585 			/*
586 			 * Use seg_dev segment driver for /dev/null mapping.
587 			 */
588 			dev_a.mapfunc = mmapobj_dummy;
589 			dev_a.dev = makedevice(mm_major, M_NULL);
590 			dev_a.offset = 0;
591 			dev_a.type = 0;		/* neither PRIVATE nor SHARED */
592 			dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
593 			dev_a.hat_attr = 0;
594 			dev_a.hat_flags = 0;
595 
596 			(void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize,
597 			    segdev_create, &dev_a);
598 			MOBJ_STAT_ADD(remap_devnull);
599 			as_rangeunlock(as);
600 		}
601 	}
602 
603 	if (num_mapped != num_segs) {
604 		ASSERT(e_type == ET_DYN);
605 		/* Need to unmap any reservation made after last mapped seg */
606 		if (num_mapped == 0) {
607 			addr = mrp[0].mr_addr;
608 		} else {
609 			addr = mrp[num_mapped - 1].mr_addr +
610 			    mrp[num_mapped - 1].mr_msize;
611 		}
612 		size = (size_t)mrp[num_segs - 1].mr_addr +
613 		    mrp[num_segs - 1].mr_msize - (size_t)addr;
614 		(void) as_unmap(as, addr, size);
615 
616 		/*
617 		 * Now we need to unmap the holes between mapped segs.
618 		 * Note that we have not mapped all of the segments and thus
619 		 * the holes between segments would not have been unmapped
620 		 * yet.  If num_mapped == num_segs, then all of the holes
621 		 * between segments would have already been unmapped.
622 		 */
623 
624 		for (i = 1; i < num_mapped; i++) {
625 			addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize;
626 			size = mrp[i].mr_addr - addr;
627 			(void) as_unmap(as, addr, size);
628 		}
629 	}
630 }
631 
632 /*
633  * We need to add the start address into mrp so that the unmap function
634  * has absolute addresses to use.
635  */
636 static void
637 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr)
638 {
639 	int i;
640 
641 	for (i = 0; i < num_mapped; i++) {
642 		mrp[i].mr_addr += (size_t)start_addr;
643 	}
644 	mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC);
645 }
646 
647 static caddr_t
648 mmapobj_lookup_start_addr(struct lib_va *lvp)
649 {
650 	proc_t *p = curproc;
651 	struct as *as = p->p_as;
652 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
653 	int error;
654 	uint_t ma_flags = _MAP_LOW32;
655 	caddr_t base = NULL;
656 	size_t len;
657 	size_t align;
658 
659 	ASSERT(lvp != NULL);
660 	MOBJ_STAT_ADD(lookup_start);
661 
662 	as_rangelock(as);
663 
664 	base = lvp->lv_base_va;
665 	len = lvp->lv_len;
666 
667 	/*
668 	 * If we don't have an expected base address, or the one that we want
669 	 * to use is not available or acceptable, go get an acceptable
670 	 * address range.
671 	 */
672 	if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
673 	    valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
674 	    RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
675 		if (lvp->lv_flags & LV_ELF64) {
676 			ma_flags = 0;
677 		}
678 
679 		align = lvp->lv_align;
680 		if (align > 1) {
681 			ma_flags |= MAP_ALIGN;
682 		}
683 
684 		base = (caddr_t)align;
685 		map_addr(&base, len, 0, 1, ma_flags);
686 	}
687 
688 	/*
689 	 * Need to reserve the address space we're going to use.
690 	 * Don't reserve swap space since we'll be mapping over this.
691 	 */
692 	if (base != NULL) {
693 		crargs.flags |= MAP_NORESERVE;
694 		error = as_map(as, base, len, segvn_create, &crargs);
695 		if (error) {
696 			base = NULL;
697 		}
698 	}
699 
700 	as_rangeunlock(as);
701 	return (base);
702 }
703 
704 /*
705  * Get the starting address for a given file to be mapped and return it
706  * to the caller.  If we're using lib_va and we need to allocate an address,
707  * we will attempt to allocate it from the global reserved pool such that the
708  * same address can be used in the future for this file.  If we can't use the
709  * reserved address then we just get one that will fit in our address space.
710  *
711  * Returns the starting virtual address for the range to be mapped or NULL
712  * if an error is encountered. If we successfully insert the requested info
713  * into the lib_va hash, then *lvpp will be set to point to this lib_va
714  * structure.  The structure will have a hold on it and thus lib_va_release
715  * needs to be called on it by the caller.  This function will not fill out
716  * lv_mps or lv_num_segs since it does not have enough information to do so.
717  * The caller is responsible for doing this making sure that any modifications
718  * to lv_mps are visible before setting lv_num_segs.
719  */
720 static caddr_t
721 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va,
722     int randomize, size_t align, vattr_t *vap)
723 {
724 	proc_t *p = curproc;
725 	struct as *as = p->p_as;
726 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
727 	int error;
728 	model_t model;
729 	uint_t ma_flags = _MAP_LOW32;
730 	caddr_t base = NULL;
731 	vmem_t *model_vmem;
732 	size_t lib_va_start;
733 	size_t lib_va_end;
734 	size_t lib_va_len;
735 
736 	ASSERT(lvpp != NULL);
737 	ASSERT((randomize & use_lib_va) != 1);
738 
739 	MOBJ_STAT_ADD(alloc_start);
740 	model = get_udatamodel();
741 
742 	if (model == DATAMODEL_LP64) {
743 		ma_flags = 0;
744 		model_vmem = lib_va_64_arena;
745 	} else {
746 		ASSERT(model == DATAMODEL_ILP32);
747 		model_vmem = lib_va_32_arena;
748 	}
749 
750 	if (align > 1) {
751 		ma_flags |= MAP_ALIGN;
752 	}
753 
754 	if (randomize != 0)
755 		ma_flags |= _MAP_RANDOMIZE;
756 
757 	if (use_lib_va) {
758 		/*
759 		 * The first time through, we need to setup the lib_va arenas.
760 		 * We call map_addr to find a suitable range of memory to map
761 		 * the given library, and we will set the highest address
762 		 * in our vmem arena to the end of this adddress range.
763 		 * We allow up to half of the address space to be used
764 		 * for lib_va addresses but we do not prevent any allocations
765 		 * in this range from other allocation paths.
766 		 */
767 		if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) {
768 			mutex_enter(&lib_va_init_mutex);
769 			if (lib_va_64_arena == NULL) {
770 				base = (caddr_t)align;
771 				as_rangelock(as);
772 				map_addr(&base, len, 0, 1, ma_flags);
773 				as_rangeunlock(as);
774 				if (base == NULL) {
775 					mutex_exit(&lib_va_init_mutex);
776 					MOBJ_STAT_ADD(lib_va_create_failure);
777 					goto nolibva;
778 				}
779 				lib_va_end = (size_t)base + len;
780 				lib_va_len = lib_va_end >> 1;
781 				lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
782 				lib_va_start = lib_va_end - lib_va_len;
783 
784 				/*
785 				 * Need to make sure we avoid the address hole.
786 				 * We know lib_va_end is valid but we need to
787 				 * make sure lib_va_start is as well.
788 				 */
789 				if ((lib_va_end > (size_t)hole_end) &&
790 				    (lib_va_start < (size_t)hole_end)) {
791 					lib_va_start = P2ROUNDUP(
792 					    (size_t)hole_end, PAGESIZE);
793 					lib_va_len = lib_va_end - lib_va_start;
794 				}
795 				lib_va_64_arena = vmem_create("lib_va_64",
796 				    (void *)lib_va_start, lib_va_len, PAGESIZE,
797 				    NULL, NULL, NULL, 0,
798 				    VM_NOSLEEP | VMC_IDENTIFIER);
799 				if (lib_va_64_arena == NULL) {
800 					mutex_exit(&lib_va_init_mutex);
801 					goto nolibva;
802 				}
803 			}
804 			model_vmem = lib_va_64_arena;
805 			mutex_exit(&lib_va_init_mutex);
806 		} else if (lib_va_32_arena == NULL &&
807 		    model == DATAMODEL_ILP32) {
808 			mutex_enter(&lib_va_init_mutex);
809 			if (lib_va_32_arena == NULL) {
810 				base = (caddr_t)align;
811 				as_rangelock(as);
812 				map_addr(&base, len, 0, 1, ma_flags);
813 				as_rangeunlock(as);
814 				if (base == NULL) {
815 					mutex_exit(&lib_va_init_mutex);
816 					MOBJ_STAT_ADD(lib_va_create_failure);
817 					goto nolibva;
818 				}
819 				lib_va_end = (size_t)base + len;
820 				lib_va_len = lib_va_end >> 1;
821 				lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
822 				lib_va_start = lib_va_end - lib_va_len;
823 				lib_va_32_arena = vmem_create("lib_va_32",
824 				    (void *)lib_va_start, lib_va_len, PAGESIZE,
825 				    NULL, NULL, NULL, 0,
826 				    VM_NOSLEEP | VMC_IDENTIFIER);
827 				if (lib_va_32_arena == NULL) {
828 					mutex_exit(&lib_va_init_mutex);
829 					goto nolibva;
830 				}
831 			}
832 			model_vmem = lib_va_32_arena;
833 			mutex_exit(&lib_va_init_mutex);
834 		}
835 
836 		if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) {
837 			base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL,
838 			    NULL, VM_NOSLEEP | VM_ENDALLOC);
839 			MOBJ_STAT_ADD(alloc_vmem);
840 		}
841 
842 		/*
843 		 * Even if the address fails to fit in our address space,
844 		 * or we can't use a reserved address,
845 		 * we should still save it off in lib_va_hash.
846 		 */
847 		*lvpp = lib_va_add_hash(base, len, align, vap);
848 
849 		/*
850 		 * Check for collision on insertion and free up our VA space.
851 		 * This is expected to be rare, so we'll just reset base to
852 		 * NULL instead of looking it up in the lib_va hash.
853 		 */
854 		if (*lvpp == NULL) {
855 			if (base != NULL) {
856 				vmem_xfree(model_vmem, base, len);
857 				base = NULL;
858 				MOBJ_STAT_ADD(add_collision);
859 			}
860 		}
861 	}
862 
863 nolibva:
864 	as_rangelock(as);
865 
866 	/*
867 	 * If we don't have an expected base address, or the one that we want
868 	 * to use is not available or acceptable, go get an acceptable
869 	 * address range.
870 	 *
871 	 * If ASLR is enabled, we should never have used the cache, and should
872 	 * also start our real work here, in the consequent of the next
873 	 * condition.
874 	 */
875 	if (randomize != 0)
876 		ASSERT(base == NULL);
877 
878 	if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
879 	    valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
880 	    RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
881 		MOBJ_STAT_ADD(get_addr);
882 		base = (caddr_t)align;
883 		map_addr(&base, len, 0, 1, ma_flags);
884 	}
885 
886 	/*
887 	 * Need to reserve the address space we're going to use.
888 	 * Don't reserve swap space since we'll be mapping over this.
889 	 */
890 	if (base != NULL) {
891 		/* Don't reserve swap space since we'll be mapping over this */
892 		crargs.flags |= MAP_NORESERVE;
893 		error = as_map(as, base, len, segvn_create, &crargs);
894 		if (error) {
895 			base = NULL;
896 		}
897 	}
898 
899 	as_rangeunlock(as);
900 	return (base);
901 }
902 
903 /*
904  * Map the file associated with vp into the address space as a single
905  * read only private mapping.
906  * Returns 0 for success, and non-zero for failure to map the file.
907  */
908 static int
909 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding,
910     cred_t *fcred)
911 {
912 	int error = 0;
913 	struct as *as = curproc->p_as;
914 	caddr_t addr = NULL;
915 	caddr_t start_addr;
916 	size_t len;
917 	size_t pad_len;
918 	int prot = PROT_USER | PROT_READ;
919 	uint_t ma_flags = _MAP_LOW32;
920 	vattr_t vattr;
921 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
922 
923 	if (get_udatamodel() == DATAMODEL_LP64) {
924 		ma_flags = 0;
925 	}
926 
927 	vattr.va_mask = AT_SIZE;
928 	error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
929 	if (error) {
930 		return (error);
931 	}
932 
933 	len = vattr.va_size;
934 
935 	ma_flags |= MAP_PRIVATE;
936 	if (padding == 0) {
937 		MOBJ_STAT_ADD(map_flat_no_padding);
938 		error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL,
939 		    ma_flags, fcred, NULL);
940 		if (error == 0) {
941 			mrp[0].mr_addr = addr;
942 			mrp[0].mr_msize = len;
943 			mrp[0].mr_fsize = len;
944 			mrp[0].mr_offset = 0;
945 			mrp[0].mr_prot = prot;
946 			mrp[0].mr_flags = 0;
947 		}
948 		return (error);
949 	}
950 
951 	/* padding was requested so there's more work to be done */
952 	MOBJ_STAT_ADD(map_flat_padding);
953 
954 	/* No need to reserve swap space now since it will be reserved later */
955 	crargs.flags |= MAP_NORESERVE;
956 
957 	/* Need to setup padding which can only be in PAGESIZE increments. */
958 	ASSERT((padding & PAGEOFFSET) == 0);
959 	pad_len = len + (2 * padding);
960 
961 	as_rangelock(as);
962 	map_addr(&addr, pad_len, 0, 1, ma_flags);
963 	error = as_map(as, addr, pad_len, segvn_create, &crargs);
964 	as_rangeunlock(as);
965 	if (error) {
966 		return (error);
967 	}
968 	start_addr = addr;
969 	addr += padding;
970 	ma_flags |= MAP_FIXED;
971 	error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags,
972 	    fcred, NULL);
973 	if (error == 0) {
974 		mrp[0].mr_addr = start_addr;
975 		mrp[0].mr_msize = padding;
976 		mrp[0].mr_fsize = 0;
977 		mrp[0].mr_offset = 0;
978 		mrp[0].mr_prot = 0;
979 		mrp[0].mr_flags = MR_PADDING;
980 
981 		mrp[1].mr_addr = addr;
982 		mrp[1].mr_msize = len;
983 		mrp[1].mr_fsize = len;
984 		mrp[1].mr_offset = 0;
985 		mrp[1].mr_prot = prot;
986 		mrp[1].mr_flags = 0;
987 
988 		mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE);
989 		mrp[2].mr_msize = padding;
990 		mrp[2].mr_fsize = 0;
991 		mrp[2].mr_offset = 0;
992 		mrp[2].mr_prot = 0;
993 		mrp[2].mr_flags = MR_PADDING;
994 	} else {
995 		/* Need to cleanup the as_map from earlier */
996 		(void) as_unmap(as, start_addr, pad_len);
997 	}
998 	return (error);
999 }
1000 
1001 /*
1002  * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's
1003  * address space.
1004  * vp - vnode to be mapped in
1005  * addr - start address
1006  * len - length of vp to be mapped
1007  * zfodlen - length of zero filled memory after len above
1008  * offset - offset into file where mapping should start
1009  * prot - protections for this mapping
1010  * fcred - credentials for the file associated with vp at open time.
1011  */
1012 static int
1013 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen,
1014     off_t offset, int prot, cred_t *fcred)
1015 {
1016 	int error = 0;
1017 	caddr_t zfodbase, oldaddr;
1018 	size_t oldlen;
1019 	size_t end;
1020 	size_t zfoddiff;
1021 	label_t ljb;
1022 	struct as *as = curproc->p_as;
1023 	model_t model;
1024 	int full_page;
1025 
1026 	/*
1027 	 * See if addr and offset are aligned such that we can map in
1028 	 * full pages instead of partial pages.
1029 	 */
1030 	full_page = (((uintptr_t)addr & PAGEOFFSET) ==
1031 	    ((uintptr_t)offset & PAGEOFFSET));
1032 
1033 	model = get_udatamodel();
1034 
1035 	oldaddr = addr;
1036 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1037 	if (len) {
1038 		spgcnt_t availm, npages;
1039 		int preread;
1040 		uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1041 
1042 		if (model == DATAMODEL_ILP32) {
1043 			mflag |= _MAP_LOW32;
1044 		}
1045 		/* We may need to map in extra bytes */
1046 		oldlen = len;
1047 		len += ((size_t)oldaddr & PAGEOFFSET);
1048 
1049 		if (full_page) {
1050 			offset = (off_t)((uintptr_t)offset & PAGEMASK);
1051 			if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1052 				mflag |= MAP_TEXT;
1053 				MOBJ_STAT_ADD(map_ptload_text);
1054 			} else {
1055 				mflag |= MAP_INITDATA;
1056 				MOBJ_STAT_ADD(map_ptload_initdata);
1057 			}
1058 
1059 			/*
1060 			 * maxprot is passed as PROT_ALL so that mdb can
1061 			 * write to this segment.
1062 			 */
1063 			if (error = VOP_MAP(vp, (offset_t)offset, as, &addr,
1064 			    len, prot, PROT_ALL, mflag, fcred, NULL)) {
1065 				return (error);
1066 			}
1067 
1068 			/*
1069 			 * If the segment can fit and is relatively small, then
1070 			 * we prefault the entire segment in.  This is based
1071 			 * on the model that says the best working set of a
1072 			 * small program is all of its pages.
1073 			 * We only do this if freemem will not drop below
1074 			 * lotsfree since we don't want to induce paging.
1075 			 */
1076 			npages = (spgcnt_t)btopr(len);
1077 			availm = freemem - lotsfree;
1078 			preread = (npages < availm && len < PGTHRESH) ? 1 : 0;
1079 
1080 			/*
1081 			 * If we aren't prefaulting the segment,
1082 			 * increment "deficit", if necessary to ensure
1083 			 * that pages will become available when this
1084 			 * process starts executing.
1085 			 */
1086 			if (preread == 0 && npages > availm &&
1087 			    deficit < lotsfree) {
1088 				deficit += MIN((pgcnt_t)(npages - availm),
1089 				    lotsfree - deficit);
1090 			}
1091 
1092 			if (preread) {
1093 				(void) as_faulta(as, addr, len);
1094 				MOBJ_STAT_ADD(map_ptload_preread);
1095 			}
1096 		} else {
1097 			/*
1098 			 * addr and offset were not aligned such that we could
1099 			 * use VOP_MAP, thus we need to as_map the memory we
1100 			 * need and then read the data in from disk.
1101 			 * This code path is a corner case which should never
1102 			 * be taken, but hand crafted binaries could trigger
1103 			 * this logic and it needs to work correctly.
1104 			 */
1105 			MOBJ_STAT_ADD(map_ptload_unaligned_text);
1106 			as_rangelock(as);
1107 			(void) as_unmap(as, addr, len);
1108 
1109 			/*
1110 			 * We use zfod_argsp because we need to be able to
1111 			 * write to the mapping and then we'll change the
1112 			 * protections later if they are incorrect.
1113 			 */
1114 			error = as_map(as, addr, len, segvn_create, zfod_argsp);
1115 			as_rangeunlock(as);
1116 			if (error) {
1117 				MOBJ_STAT_ADD(map_ptload_unaligned_map_fail);
1118 				return (error);
1119 			}
1120 
1121 			/* Now read in the data from disk */
1122 			error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset,
1123 			    UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL);
1124 			if (error) {
1125 				MOBJ_STAT_ADD(map_ptload_unaligned_read_fail);
1126 				return (error);
1127 			}
1128 
1129 			/*
1130 			 * Now set protections.
1131 			 */
1132 			if (prot != PROT_ZFOD) {
1133 				(void) as_setprot(as, addr, len, prot);
1134 			}
1135 		}
1136 	}
1137 
1138 	if (zfodlen) {
1139 		end = (size_t)addr + len;
1140 		zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE);
1141 		zfoddiff = (uintptr_t)zfodbase - end;
1142 		if (zfoddiff) {
1143 			/*
1144 			 * Before we go to zero the remaining space on the last
1145 			 * page, make sure we have write permission.
1146 			 *
1147 			 * We need to be careful how we zero-fill the last page
1148 			 * if the protection does not include PROT_WRITE. Using
1149 			 * as_setprot() can cause the VM segment code to call
1150 			 * segvn_vpage(), which must allocate a page struct for
1151 			 * each page in the segment. If we have a very large
1152 			 * segment, this may fail, so we check for that, even
1153 			 * though we ignore other return values from as_setprot.
1154 			 */
1155 			MOBJ_STAT_ADD(zfoddiff);
1156 			if ((prot & PROT_WRITE) == 0) {
1157 				if (as_setprot(as, (caddr_t)end, zfoddiff,
1158 				    prot | PROT_WRITE) == ENOMEM)
1159 					return (ENOMEM);
1160 				MOBJ_STAT_ADD(zfoddiff_nowrite);
1161 			}
1162 			if (on_fault(&ljb)) {
1163 				no_fault();
1164 				if ((prot & PROT_WRITE) == 0) {
1165 					(void) as_setprot(as, (caddr_t)end,
1166 					    zfoddiff, prot);
1167 				}
1168 				return (EFAULT);
1169 			}
1170 			uzero((void *)end, zfoddiff);
1171 			no_fault();
1172 
1173 			/*
1174 			 * Remove write protection to return to original state
1175 			 */
1176 			if ((prot & PROT_WRITE) == 0) {
1177 				(void) as_setprot(as, (caddr_t)end,
1178 				    zfoddiff, prot);
1179 			}
1180 		}
1181 		if (zfodlen > zfoddiff) {
1182 			struct segvn_crargs crargs =
1183 			    SEGVN_ZFOD_ARGS(prot, PROT_ALL);
1184 
1185 			MOBJ_STAT_ADD(zfodextra);
1186 			zfodlen -= zfoddiff;
1187 			crargs.szc = AS_MAP_NO_LPOOB;
1188 
1189 
1190 			as_rangelock(as);
1191 			(void) as_unmap(as, (caddr_t)zfodbase, zfodlen);
1192 			error = as_map(as, (caddr_t)zfodbase,
1193 			    zfodlen, segvn_create, &crargs);
1194 			as_rangeunlock(as);
1195 			if (error) {
1196 				return (error);
1197 			}
1198 		}
1199 	}
1200 	return (0);
1201 }
1202 
1203 /*
1204  * Map the ELF file represented by vp into the users address space.  The
1205  * first mapping will start at start_addr and there will be num_elements
1206  * mappings.  The mappings are described by the data in mrp which may be
1207  * modified upon returning from this function.
1208  * Returns 0 for success or errno for failure.
1209  */
1210 static int
1211 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp,
1212     int num_elements, cred_t *fcred, ushort_t e_type)
1213 {
1214 	int i;
1215 	int ret;
1216 	caddr_t lo;
1217 	caddr_t hi;
1218 	struct as *as = curproc->p_as;
1219 
1220 	for (i = 0; i < num_elements; i++) {
1221 		caddr_t addr;
1222 		size_t p_memsz;
1223 		size_t p_filesz;
1224 		size_t zfodlen;
1225 		offset_t p_offset;
1226 		size_t dif;
1227 		int prot;
1228 
1229 		/* Always need to adjust mr_addr */
1230 		addr = start_addr + (size_t)(mrp[i].mr_addr);
1231 		mrp[i].mr_addr =
1232 		    (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1233 
1234 		/* Padding has already been mapped */
1235 		if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1236 			continue;
1237 		}
1238 
1239 		/* Can't execute code from "noexec" mounted filesystem. */
1240 		if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) &&
1241 		    ((mrp[i].mr_prot & PROT_EXEC) != 0)) {
1242 			MOBJ_STAT_ADD(noexec_fs);
1243 			return (EACCES);
1244 		}
1245 
1246 		p_memsz = mrp[i].mr_msize;
1247 		p_filesz = mrp[i].mr_fsize;
1248 		zfodlen = p_memsz - p_filesz;
1249 		p_offset = mrp[i].mr_offset;
1250 		dif = (uintptr_t)(addr) & PAGEOFFSET;
1251 		prot = mrp[i].mr_prot | PROT_USER;
1252 		ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen,
1253 		    p_offset, prot, fcred);
1254 		if (ret != 0) {
1255 			MOBJ_STAT_ADD(ptload_failed);
1256 			mmapobj_unmap(mrp, i, num_elements, e_type);
1257 			return (ret);
1258 		}
1259 
1260 		/* Need to cleanup mrp to reflect the actual values used */
1261 		mrp[i].mr_msize += dif;
1262 		mrp[i].mr_offset = (size_t)addr & PAGEOFFSET;
1263 	}
1264 
1265 	/* Also need to unmap any holes created above */
1266 	if (num_elements == 1) {
1267 		MOBJ_STAT_ADD(map_elf_no_holes);
1268 		return (0);
1269 	}
1270 	if (e_type == ET_EXEC) {
1271 		return (0);
1272 	}
1273 
1274 	as_rangelock(as);
1275 	lo = start_addr;
1276 	hi = mrp[0].mr_addr;
1277 
1278 	/* Remove holes made by the rest of the segments */
1279 	for (i = 0; i < num_elements - 1; i++) {
1280 		lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) +
1281 		    mrp[i].mr_msize, PAGESIZE);
1282 		hi = mrp[i + 1].mr_addr;
1283 		if (lo < hi) {
1284 			/*
1285 			 * If as_unmap fails we just use up a bit of extra
1286 			 * space
1287 			 */
1288 			(void) as_unmap(as, (caddr_t)lo,
1289 			    (size_t)hi - (size_t)lo);
1290 			MOBJ_STAT_ADD(unmap_hole);
1291 		}
1292 	}
1293 	as_rangeunlock(as);
1294 
1295 	return (0);
1296 }
1297 
1298 /* Ugly hack to get STRUCT_* macros to work below */
1299 struct myphdr {
1300 	Phdr		x;	/* native version */
1301 };
1302 
1303 struct myphdr32 {
1304 	Elf32_Phdr	x;
1305 };
1306 
1307 /*
1308  * Calculate and return the number of loadable segments in the ELF Phdr
1309  * represented by phdrbase as well as the len of the total mapping and
1310  * the max alignment that is needed for a given segment.  On success,
1311  * 0 is returned, and *len, *loadable and *align have been filled out.
1312  * On failure, errno will be returned, which in this case is ENOTSUP
1313  * if we were passed an ELF file with overlapping segments.
1314  */
1315 static int
1316 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len,
1317     int *loadable, size_t *align)
1318 {
1319 	int i;
1320 	int hsize;
1321 	model_t model;
1322 	ushort_t e_type = ehdrp->e_type;	/* same offset 32 and 64 bit */
1323 	uint_t p_type;
1324 	offset_t p_offset;
1325 	size_t p_memsz;
1326 	size_t p_align;
1327 	caddr_t vaddr;
1328 	int num_segs = 0;
1329 	caddr_t start_addr = NULL;
1330 	caddr_t p_end = NULL;
1331 	size_t max_align = 0;
1332 	size_t min_align = PAGESIZE;	/* needed for vmem_xalloc */
1333 	STRUCT_HANDLE(myphdr, mph);
1334 #if defined(__sparc)
1335 	extern int vac_size;
1336 
1337 	/*
1338 	 * Want to prevent aliasing by making the start address at least be
1339 	 * aligned to vac_size.
1340 	 */
1341 	min_align = MAX(PAGESIZE, vac_size);
1342 #endif
1343 
1344 	model = get_udatamodel();
1345 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1346 
1347 	/* hsize alignment should have been checked before calling this func */
1348 	if (model == DATAMODEL_LP64) {
1349 		hsize = ehdrp->e_phentsize;
1350 		if (hsize & 7) {
1351 			return (ENOTSUP);
1352 		}
1353 	} else {
1354 		ASSERT(model == DATAMODEL_ILP32);
1355 		hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1356 		if (hsize & 3) {
1357 			return (ENOTSUP);
1358 		}
1359 	}
1360 
1361 	/*
1362 	 * Determine the span of all loadable segments and calculate the
1363 	 * number of loadable segments.
1364 	 */
1365 	for (i = 0; i < nphdrs; i++) {
1366 		p_type = STRUCT_FGET(mph, x.p_type);
1367 		if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1368 			vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1369 			p_memsz = STRUCT_FGET(mph, x.p_memsz);
1370 
1371 			/*
1372 			 * Skip this header if it requests no memory to be
1373 			 * mapped.
1374 			 */
1375 			if (p_memsz == 0) {
1376 				STRUCT_SET_HANDLE(mph, model,
1377 				    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1378 				    hsize));
1379 				MOBJ_STAT_ADD(nomem_header);
1380 				continue;
1381 			}
1382 			if (num_segs++ == 0) {
1383 				/*
1384 				 * The p_vaddr of the first PT_LOAD segment
1385 				 * must either be NULL or within the first
1386 				 * page in order to be interpreted.
1387 				 * Otherwise, its an invalid file.
1388 				 */
1389 				if (e_type == ET_DYN &&
1390 				    ((caddr_t)((uintptr_t)vaddr &
1391 				    (uintptr_t)PAGEMASK) != NULL)) {
1392 					MOBJ_STAT_ADD(inval_header);
1393 					return (ENOTSUP);
1394 				}
1395 				start_addr = vaddr;
1396 				/*
1397 				 * For the first segment, we need to map from
1398 				 * the beginning of the file, so we will
1399 				 * adjust the size of the mapping to include
1400 				 * this memory.
1401 				 */
1402 				p_offset = STRUCT_FGET(mph, x.p_offset);
1403 			} else {
1404 				p_offset = 0;
1405 			}
1406 			/*
1407 			 * Check to make sure that this mapping wouldn't
1408 			 * overlap a previous mapping.
1409 			 */
1410 			if (vaddr < p_end) {
1411 				MOBJ_STAT_ADD(overlap_header);
1412 				return (ENOTSUP);
1413 			}
1414 
1415 			p_end = vaddr + p_memsz + p_offset;
1416 			p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE);
1417 
1418 			p_align = STRUCT_FGET(mph, x.p_align);
1419 			if (p_align > 1 && p_align > max_align) {
1420 				max_align = p_align;
1421 				if (max_align < min_align) {
1422 					max_align = min_align;
1423 					MOBJ_STAT_ADD(min_align);
1424 				}
1425 			}
1426 		}
1427 		STRUCT_SET_HANDLE(mph, model,
1428 		    (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize));
1429 	}
1430 
1431 	/*
1432 	 * The alignment should be a power of 2, if it isn't we forgive it
1433 	 * and round up.  On overflow, we'll set the alignment to max_align
1434 	 * rounded down to the nearest power of 2.
1435 	 */
1436 	if (max_align > 0 && !ISP2(max_align)) {
1437 		MOBJ_STAT_ADD(np2_align);
1438 		*align = 2 * (1L << (highbit(max_align) - 1));
1439 		if (*align < max_align ||
1440 		    (*align > UINT_MAX && model == DATAMODEL_ILP32)) {
1441 			MOBJ_STAT_ADD(np2_align_overflow);
1442 			*align = 1L << (highbit(max_align) - 1);
1443 		}
1444 	} else {
1445 		*align = max_align;
1446 	}
1447 
1448 	ASSERT(*align >= PAGESIZE || *align == 0);
1449 
1450 	*loadable = num_segs;
1451 	*len = p_end - start_addr;
1452 	return (0);
1453 }
1454 
1455 /*
1456  * Check the address space to see if the virtual addresses to be used are
1457  * available.  If they are not, return errno for failure.  On success, 0
1458  * will be returned, and the virtual addresses for each mmapobj_result_t
1459  * will be reserved.  Note that a reservation could have earlier been made
1460  * for a given segment via a /dev/null mapping.  If that is the case, then
1461  * we can use that VA space for our mappings.
1462  * Note: this function will only be used for ET_EXEC binaries.
1463  */
1464 int
1465 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr)
1466 {
1467 	int i;
1468 	struct as *as = curproc->p_as;
1469 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1470 	int ret;
1471 	caddr_t myaddr;
1472 	size_t mylen;
1473 	struct seg *seg;
1474 
1475 	/* No need to reserve swap space now since it will be reserved later */
1476 	crargs.flags |= MAP_NORESERVE;
1477 	as_rangelock(as);
1478 	for (i = 0; i < loadable; i++) {
1479 
1480 		myaddr = start_addr + (size_t)mrp[i].mr_addr;
1481 		mylen = mrp[i].mr_msize;
1482 
1483 		/* See if there is a hole in the as for this range */
1484 		if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) {
1485 			ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr);
1486 			ASSERT(mylen == mrp[i].mr_msize);
1487 
1488 #ifdef DEBUG
1489 			if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1490 				MOBJ_STAT_ADD(exec_padding);
1491 			}
1492 #endif
1493 			ret = as_map(as, myaddr, mylen, segvn_create, &crargs);
1494 			if (ret) {
1495 				as_rangeunlock(as);
1496 				mmapobj_unmap_exec(mrp, i, start_addr);
1497 				return (ret);
1498 			}
1499 		} else {
1500 			/*
1501 			 * There is a mapping that exists in the range
1502 			 * so check to see if it was a "reservation"
1503 			 * from /dev/null.  The mapping is from
1504 			 * /dev/null if the mapping comes from
1505 			 * segdev and the type is neither MAP_SHARED
1506 			 * nor MAP_PRIVATE.
1507 			 */
1508 			AS_LOCK_ENTER(as, RW_READER);
1509 			seg = as_findseg(as, myaddr, 0);
1510 			MOBJ_STAT_ADD(exec_addr_mapped);
1511 			if (seg && seg->s_ops == &segdev_ops &&
1512 			    ((SEGOP_GETTYPE(seg, myaddr) &
1513 			    (MAP_SHARED | MAP_PRIVATE)) == 0) &&
1514 			    myaddr >= seg->s_base &&
1515 			    myaddr + mylen <=
1516 			    seg->s_base + seg->s_size) {
1517 				MOBJ_STAT_ADD(exec_addr_devnull);
1518 				AS_LOCK_EXIT(as);
1519 				(void) as_unmap(as, myaddr, mylen);
1520 				ret = as_map(as, myaddr, mylen, segvn_create,
1521 				    &crargs);
1522 				mrp[i].mr_flags |= MR_RESV;
1523 				if (ret) {
1524 					as_rangeunlock(as);
1525 					/* Need to remap what we unmapped */
1526 					mmapobj_unmap_exec(mrp, i + 1,
1527 					    start_addr);
1528 					return (ret);
1529 				}
1530 			} else {
1531 				AS_LOCK_EXIT(as);
1532 				as_rangeunlock(as);
1533 				mmapobj_unmap_exec(mrp, i, start_addr);
1534 				MOBJ_STAT_ADD(exec_addr_in_use);
1535 				return (EADDRINUSE);
1536 			}
1537 		}
1538 	}
1539 	as_rangeunlock(as);
1540 	return (0);
1541 }
1542 
1543 /*
1544  * Walk through the ELF program headers and extract all useful information
1545  * for PT_LOAD and PT_SUNWBSS segments into mrp.
1546  * Return 0 on success or error on failure.
1547  */
1548 static int
1549 process_phdrs(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp,
1550     vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred)
1551 {
1552 	int i;
1553 	caddr_t start_addr = NULL;
1554 	caddr_t vaddr;
1555 	size_t len = 0;
1556 	size_t lib_len = 0;
1557 	int ret;
1558 	int prot;
1559 	struct lib_va *lvp = NULL;
1560 	vattr_t vattr;
1561 	struct as *as = curproc->p_as;
1562 	int error;
1563 	int loadable = 0;
1564 	int current = 0;
1565 	int use_lib_va = 1;
1566 	size_t align = 0;
1567 	size_t add_pad = 0;
1568 	int hdr_seen = 0;
1569 	ushort_t e_type = ehdrp->e_type;	/* same offset 32 and 64 bit */
1570 	uint_t p_type;
1571 	offset_t p_offset;
1572 	size_t p_memsz;
1573 	size_t p_filesz;
1574 	uint_t p_flags;
1575 	int hsize;
1576 	model_t model;
1577 	STRUCT_HANDLE(myphdr, mph);
1578 
1579 	model = get_udatamodel();
1580 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1581 
1582 	/*
1583 	 * Need to make sure that hsize is aligned properly.
1584 	 * For 32bit processes, 4 byte alignment is required.
1585 	 * For 64bit processes, 8 byte alignment is required.
1586 	 * If the alignment isn't correct, we need to return failure
1587 	 * since it could cause an alignment error panic while walking
1588 	 * the phdr array.
1589 	 */
1590 	if (model == DATAMODEL_LP64) {
1591 		hsize = ehdrp->e_phentsize;
1592 		if (hsize & 7) {
1593 			MOBJ_STAT_ADD(phent_align64);
1594 			return (ENOTSUP);
1595 		}
1596 	} else {
1597 		ASSERT(model == DATAMODEL_ILP32);
1598 		hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1599 		if (hsize & 3) {
1600 			MOBJ_STAT_ADD(phent_align32);
1601 			return (ENOTSUP);
1602 		}
1603 	}
1604 
1605 	if ((padding != 0) || secflag_enabled(curproc, PROC_SEC_ASLR)) {
1606 		use_lib_va = 0;
1607 	}
1608 	if (e_type == ET_DYN) {
1609 		vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME;
1610 		error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
1611 		if (error) {
1612 			return (error);
1613 		}
1614 		/* Check to see if we already have a description for this lib */
1615 		if (!secflag_enabled(curproc, PROC_SEC_ASLR))
1616 			lvp = lib_va_find(&vattr);
1617 
1618 		if (lvp != NULL) {
1619 			MOBJ_STAT_ADD(lvp_found);
1620 			if (use_lib_va) {
1621 				start_addr = mmapobj_lookup_start_addr(lvp);
1622 				if (start_addr == NULL) {
1623 					lib_va_release(lvp);
1624 					return (ENOMEM);
1625 				}
1626 			}
1627 
1628 			/*
1629 			 * loadable may be zero if the original allocator
1630 			 * of lvp hasn't finished setting it up but the rest
1631 			 * of the fields will be accurate.
1632 			 */
1633 			loadable = lvp->lv_num_segs;
1634 			len = lvp->lv_len;
1635 			align = lvp->lv_align;
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * Determine the span of all loadable segments and calculate the
1641 	 * number of loadable segments, the total len spanned by the mappings
1642 	 * and the max alignment, if we didn't get them above.
1643 	 */
1644 	if (loadable == 0) {
1645 		MOBJ_STAT_ADD(no_loadable_yet);
1646 		ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len,
1647 		    &loadable, &align);
1648 		if (ret != 0) {
1649 			/*
1650 			 * Since it'd be an invalid file, we shouldn't have
1651 			 * cached it previously.
1652 			 */
1653 			ASSERT(lvp == NULL);
1654 			return (ret);
1655 		}
1656 #ifdef DEBUG
1657 		if (lvp) {
1658 			ASSERT(len == lvp->lv_len);
1659 			ASSERT(align == lvp->lv_align);
1660 		}
1661 #endif
1662 	}
1663 
1664 	/* Make sure there's something to map. */
1665 	if (len == 0 || loadable == 0) {
1666 		/*
1667 		 * Since it'd be an invalid file, we shouldn't have
1668 		 * cached it previously.
1669 		 */
1670 		ASSERT(lvp == NULL);
1671 		MOBJ_STAT_ADD(nothing_to_map);
1672 		return (ENOTSUP);
1673 	}
1674 
1675 	lib_len = len;
1676 	if (padding != 0) {
1677 		loadable += 2;
1678 	}
1679 	if (loadable > *num_mapped) {
1680 		*num_mapped = loadable;
1681 		/* cleanup previous reservation */
1682 		if (start_addr) {
1683 			(void) as_unmap(as, start_addr, lib_len);
1684 		}
1685 		MOBJ_STAT_ADD(e2big);
1686 		if (lvp) {
1687 			lib_va_release(lvp);
1688 		}
1689 		return (E2BIG);
1690 	}
1691 
1692 	/*
1693 	 * We now know the size of the object to map and now we need to
1694 	 * get the start address to map it at.  It's possible we already
1695 	 * have it if we found all the info we need in the lib_va cache.
1696 	 */
1697 	if (e_type == ET_DYN && start_addr == NULL) {
1698 		/*
1699 		 * Need to make sure padding does not throw off
1700 		 * required alignment.  We can only specify an
1701 		 * alignment for the starting address to be mapped,
1702 		 * so we round padding up to the alignment and map
1703 		 * from there and then throw out the extra later.
1704 		 */
1705 		if (padding != 0) {
1706 			if (align > 1) {
1707 				add_pad = P2ROUNDUP(padding, align);
1708 				len += add_pad;
1709 				MOBJ_STAT_ADD(dyn_pad_align);
1710 			} else {
1711 				MOBJ_STAT_ADD(dyn_pad_noalign);
1712 				len += padding;	/* at beginning */
1713 			}
1714 			len += padding;	/* at end of mapping */
1715 		}
1716 		/*
1717 		 * At this point, if lvp is non-NULL, then above we
1718 		 * already found it in the cache but did not get
1719 		 * the start address since we were not going to use lib_va.
1720 		 * Since we know that lib_va will not be used, it's safe
1721 		 * to call mmapobj_alloc_start_addr and know that lvp
1722 		 * will not be modified.
1723 		 */
1724 		ASSERT(lvp ? use_lib_va == 0 : 1);
1725 		start_addr = mmapobj_alloc_start_addr(&lvp, len,
1726 		    use_lib_va,
1727 		    secflag_enabled(curproc, PROC_SEC_ASLR),
1728 		    align, &vattr);
1729 		if (start_addr == NULL) {
1730 			if (lvp) {
1731 				lib_va_release(lvp);
1732 			}
1733 			MOBJ_STAT_ADD(alloc_start_fail);
1734 			return (ENOMEM);
1735 		}
1736 		/*
1737 		 * If we can't cache it, no need to hang on to it.
1738 		 * Setting lv_num_segs to non-zero will make that
1739 		 * field active and since there are too many segments
1740 		 * to cache, all future users will not try to use lv_mps.
1741 		 */
1742 		if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) {
1743 			lvp->lv_num_segs = loadable;
1744 			lib_va_release(lvp);
1745 			lvp = NULL;
1746 			MOBJ_STAT_ADD(lvp_nocache);
1747 		}
1748 		/*
1749 		 * Free the beginning of the mapping if the padding
1750 		 * was not aligned correctly.
1751 		 */
1752 		if (padding != 0 && add_pad != padding) {
1753 			(void) as_unmap(as, start_addr,
1754 			    add_pad - padding);
1755 			start_addr += (add_pad - padding);
1756 			MOBJ_STAT_ADD(extra_padding);
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * At this point, we have reserved the virtual address space
1762 	 * for our mappings.  Now we need to start filling out the mrp
1763 	 * array to describe all of the individual mappings we are going
1764 	 * to return.
1765 	 * For ET_EXEC there has been no memory reservation since we are
1766 	 * using fixed addresses.  While filling in the mrp array below,
1767 	 * we will have the first segment biased to start at addr 0
1768 	 * and the rest will be biased by this same amount.  Thus if there
1769 	 * is padding, the first padding will start at addr 0, and the next
1770 	 * segment will start at the value of padding.
1771 	 */
1772 
1773 	/* We'll fill out padding later, so start filling in mrp at index 1 */
1774 	if (padding != 0) {
1775 		current = 1;
1776 	}
1777 
1778 	/* If we have no more need for lvp let it go now */
1779 	if (lvp != NULL && use_lib_va == 0) {
1780 		lib_va_release(lvp);
1781 		MOBJ_STAT_ADD(lvp_not_needed);
1782 		lvp = NULL;
1783 	}
1784 
1785 	/* Now fill out the mrp structs from the program headers */
1786 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1787 	for (i = 0; i < nphdrs; i++) {
1788 		p_type = STRUCT_FGET(mph, x.p_type);
1789 		if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1790 			vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1791 			p_memsz = STRUCT_FGET(mph, x.p_memsz);
1792 			p_filesz = STRUCT_FGET(mph, x.p_filesz);
1793 			p_offset = STRUCT_FGET(mph, x.p_offset);
1794 			p_flags = STRUCT_FGET(mph, x.p_flags);
1795 
1796 			/*
1797 			 * Skip this header if it requests no memory to be
1798 			 * mapped.
1799 			 */
1800 			if (p_memsz == 0) {
1801 				STRUCT_SET_HANDLE(mph, model,
1802 				    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1803 				    hsize));
1804 				MOBJ_STAT_ADD(no_mem_map_sz);
1805 				continue;
1806 			}
1807 
1808 			prot = 0;
1809 			if (p_flags & PF_R)
1810 				prot |= PROT_READ;
1811 			if (p_flags & PF_W)
1812 				prot |= PROT_WRITE;
1813 			if (p_flags & PF_X)
1814 				prot |= PROT_EXEC;
1815 
1816 			ASSERT(current < loadable);
1817 			mrp[current].mr_msize = p_memsz;
1818 			mrp[current].mr_fsize = p_filesz;
1819 			mrp[current].mr_offset = p_offset;
1820 			mrp[current].mr_prot = prot;
1821 
1822 			if (hdr_seen == 0 && p_filesz != 0) {
1823 				mrp[current].mr_flags = MR_HDR_ELF;
1824 				/*
1825 				 * We modify mr_offset because we
1826 				 * need to map the ELF header as well, and if
1827 				 * we didn't then the header could be left out
1828 				 * of the mapping that we will create later.
1829 				 * Since we're removing the offset, we need to
1830 				 * account for that in the other fields as well
1831 				 * since we will be mapping the memory from 0
1832 				 * to p_offset.
1833 				 */
1834 				if (e_type == ET_DYN) {
1835 					mrp[current].mr_offset = 0;
1836 					mrp[current].mr_msize += p_offset;
1837 					mrp[current].mr_fsize += p_offset;
1838 				} else {
1839 					ASSERT(e_type == ET_EXEC);
1840 					/*
1841 					 * Save off the start addr which will be
1842 					 * our bias for the rest of the
1843 					 * ET_EXEC mappings.
1844 					 */
1845 					start_addr = vaddr - padding;
1846 				}
1847 				mrp[current].mr_addr = (caddr_t)padding;
1848 				hdr_seen = 1;
1849 			} else {
1850 				if (e_type == ET_EXEC) {
1851 					/* bias mr_addr */
1852 					mrp[current].mr_addr =
1853 					    vaddr - (size_t)start_addr;
1854 				} else {
1855 					mrp[current].mr_addr = vaddr + padding;
1856 				}
1857 				mrp[current].mr_flags = 0;
1858 			}
1859 			current++;
1860 		}
1861 
1862 		/* Move to next phdr */
1863 		STRUCT_SET_HANDLE(mph, model,
1864 		    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1865 		    hsize));
1866 	}
1867 
1868 	/* Now fill out the padding segments */
1869 	if (padding != 0) {
1870 		mrp[0].mr_addr = NULL;
1871 		mrp[0].mr_msize = padding;
1872 		mrp[0].mr_fsize = 0;
1873 		mrp[0].mr_offset = 0;
1874 		mrp[0].mr_prot = 0;
1875 		mrp[0].mr_flags = MR_PADDING;
1876 
1877 		/* Setup padding for the last segment */
1878 		ASSERT(current == loadable - 1);
1879 		mrp[current].mr_addr = (caddr_t)lib_len + padding;
1880 		mrp[current].mr_msize = padding;
1881 		mrp[current].mr_fsize = 0;
1882 		mrp[current].mr_offset = 0;
1883 		mrp[current].mr_prot = 0;
1884 		mrp[current].mr_flags = MR_PADDING;
1885 	}
1886 
1887 	/*
1888 	 * Need to make sure address ranges desired are not in use or
1889 	 * are previously allocated reservations from /dev/null.  For
1890 	 * ET_DYN, we already made sure our address range was free.
1891 	 */
1892 	if (e_type == ET_EXEC) {
1893 		ret = check_exec_addrs(loadable, mrp, start_addr);
1894 		if (ret != 0) {
1895 			ASSERT(lvp == NULL);
1896 			MOBJ_STAT_ADD(check_exec_failed);
1897 			return (ret);
1898 		}
1899 	}
1900 
1901 	/* Finish up our business with lvp. */
1902 	if (lvp) {
1903 		ASSERT(e_type == ET_DYN);
1904 		if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) {
1905 			bcopy(mrp, lvp->lv_mps,
1906 			    loadable * sizeof (mmapobj_result_t));
1907 			membar_producer();
1908 		}
1909 		/*
1910 		 * Setting lv_num_segs to a non-zero value indicates that
1911 		 * lv_mps is now valid and can be used by other threads.
1912 		 * So, the above stores need to finish before lv_num_segs
1913 		 * is updated. lv_mps is only valid if lv_num_segs is
1914 		 * greater than LIBVA_CACHED_SEGS.
1915 		 */
1916 		lvp->lv_num_segs = loadable;
1917 		lib_va_release(lvp);
1918 		MOBJ_STAT_ADD(lvp_used);
1919 	}
1920 
1921 	/* Now that we have mrp completely filled out go map it */
1922 	ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type);
1923 	if (ret == 0) {
1924 		*num_mapped = loadable;
1925 	}
1926 
1927 	return (ret);
1928 }
1929 
1930 /*
1931  * Take the ELF file passed in, and do the work of mapping it.
1932  * num_mapped in - # elements in user buffer
1933  * num_mapped out - # sections mapped and length of mrp array if
1934  *			no errors.
1935  */
1936 static int
1937 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp,
1938     uint_t *num_mapped, size_t padding, cred_t *fcred)
1939 {
1940 	int error;
1941 	offset_t phoff;
1942 	int nphdrs;
1943 	unsigned char ei_class;
1944 	unsigned short phentsize;
1945 	ssize_t phsizep;
1946 	caddr_t phbasep;
1947 	int to_map;
1948 	model_t model;
1949 
1950 	ei_class = ehdrp->e_ident[EI_CLASS];
1951 	model = get_udatamodel();
1952 	if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) ||
1953 	    (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) {
1954 		MOBJ_STAT_ADD(wrong_model);
1955 		return (ENOTSUP);
1956 	}
1957 
1958 	/* Can't execute code from "noexec" mounted filesystem. */
1959 	if (ehdrp->e_type == ET_EXEC &&
1960 	    (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
1961 		MOBJ_STAT_ADD(noexec_fs);
1962 		return (EACCES);
1963 	}
1964 
1965 	/*
1966 	 * Relocatable and core files are mapped as a single flat file
1967 	 * since no interpretation is done on them by mmapobj.
1968 	 */
1969 	if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) {
1970 		to_map = padding ? 3 : 1;
1971 		if (*num_mapped < to_map) {
1972 			*num_mapped = to_map;
1973 			MOBJ_STAT_ADD(e2big_et_rel);
1974 			return (E2BIG);
1975 		}
1976 		error = mmapobj_map_flat(vp, mrp, padding, fcred);
1977 		if (error == 0) {
1978 			*num_mapped = to_map;
1979 			mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF;
1980 			MOBJ_STAT_ADD(et_rel_mapped);
1981 		}
1982 		return (error);
1983 	}
1984 
1985 	/* Check for an unknown ELF type */
1986 	if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) {
1987 		MOBJ_STAT_ADD(unknown_elf_type);
1988 		return (ENOTSUP);
1989 	}
1990 
1991 	if (ei_class == ELFCLASS32) {
1992 		Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp;
1993 		ASSERT(model == DATAMODEL_ILP32);
1994 		nphdrs = e32hdr->e_phnum;
1995 		phentsize = e32hdr->e_phentsize;
1996 		if (phentsize < sizeof (Elf32_Phdr)) {
1997 			MOBJ_STAT_ADD(phent32_too_small);
1998 			return (ENOTSUP);
1999 		}
2000 		phoff = e32hdr->e_phoff;
2001 	} else if (ei_class == ELFCLASS64) {
2002 		Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp;
2003 		ASSERT(model == DATAMODEL_LP64);
2004 		nphdrs = e64hdr->e_phnum;
2005 		phentsize = e64hdr->e_phentsize;
2006 		if (phentsize < sizeof (Elf64_Phdr)) {
2007 			MOBJ_STAT_ADD(phent64_too_small);
2008 			return (ENOTSUP);
2009 		}
2010 		phoff = e64hdr->e_phoff;
2011 	} else {
2012 		/* fallthrough case for an invalid ELF class */
2013 		MOBJ_STAT_ADD(inval_elf_class);
2014 		return (ENOTSUP);
2015 	}
2016 
2017 	/*
2018 	 * nphdrs should only have this value for core files which are handled
2019 	 * above as a single mapping.  If other file types ever use this
2020 	 * sentinel, then we'll add the support needed to handle this here.
2021 	 */
2022 	if (nphdrs == PN_XNUM) {
2023 		MOBJ_STAT_ADD(too_many_phdrs);
2024 		return (ENOTSUP);
2025 	}
2026 
2027 	phsizep = nphdrs * phentsize;
2028 
2029 	if (phsizep == 0) {
2030 		MOBJ_STAT_ADD(no_phsize);
2031 		return (ENOTSUP);
2032 	}
2033 
2034 	/* Make sure we only wait for memory if it's a reasonable request */
2035 	if (phsizep > mmapobj_alloc_threshold) {
2036 		MOBJ_STAT_ADD(phsize_large);
2037 		if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) {
2038 			MOBJ_STAT_ADD(phsize_xtralarge);
2039 			return (ENOMEM);
2040 		}
2041 	} else {
2042 		phbasep = kmem_alloc(phsizep, KM_SLEEP);
2043 	}
2044 
2045 	if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep,
2046 	    (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
2047 	    fcred, NULL)) != 0) {
2048 		kmem_free(phbasep, phsizep);
2049 		return (error);
2050 	}
2051 
2052 	/* Now process the phdr's */
2053 	error = process_phdrs(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped,
2054 	    padding, fcred);
2055 	kmem_free(phbasep, phsizep);
2056 	return (error);
2057 }
2058 
2059 #if defined(__sparc)
2060 /*
2061  * Hack to support 64 bit kernels running AOUT 4.x programs.
2062  * This is the sizeof (struct nlist) for a 32 bit kernel.
2063  * Since AOUT programs are 32 bit only, they will never use the 64 bit
2064  * sizeof (struct nlist) and thus creating a #define is the simplest
2065  * way around this since this is a format which is not being updated.
2066  * This will be used in the place of sizeof (struct nlist) below.
2067  */
2068 #define	NLIST_SIZE	(0xC)
2069 
2070 static int
2071 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp,
2072     uint_t *num_mapped, struct exec *hdr, cred_t *fcred)
2073 {
2074 	int error;
2075 	size_t size;
2076 	size_t osize;
2077 	size_t nsize;	/* nlist size */
2078 	size_t msize;
2079 	size_t zfoddiff;
2080 	caddr_t addr;
2081 	caddr_t start_addr;
2082 	struct as *as = curproc->p_as;
2083 	int prot = PROT_USER | PROT_READ | PROT_EXEC;
2084 	uint_t mflag = MAP_PRIVATE | _MAP_LOW32;
2085 	offset_t off = 0;
2086 	int segnum = 0;
2087 	uint_t to_map;
2088 	int is_library = 0;
2089 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2090 
2091 	/* Only 32bit apps supported by this file format */
2092 	if (get_udatamodel() != DATAMODEL_ILP32) {
2093 		MOBJ_STAT_ADD(aout_64bit_try);
2094 		return (ENOTSUP);
2095 	}
2096 
2097 	/* Check to see if this is a library */
2098 	if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) {
2099 		is_library = 1;
2100 	}
2101 
2102 	/*
2103 	 * Can't execute code from "noexec" mounted filesystem.  Unlike ELF,
2104 	 * aout libraries are always mapped with something PROT_EXEC, so this
2105 	 * doesn't need to be checked for specific parts
2106 	 */
2107 	if ((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
2108 		MOBJ_STAT_ADD(aout_noexec);
2109 		return (EACCES);
2110 	}
2111 
2112 	/*
2113 	 * There are 2 ways to calculate the mapped size of executable:
2114 	 * 1) rounded text size + data size + bss size.
2115 	 * 2) starting offset for text + text size + data size + text relocation
2116 	 *    size + data relocation size + room for nlist data structure.
2117 	 *
2118 	 * The larger of the two sizes will be used to map this binary.
2119 	 */
2120 	osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss;
2121 
2122 	off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec);
2123 
2124 	nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize +
2125 	    hdr->a_drsize + NLIST_SIZE;
2126 
2127 	size = MAX(osize, nsize);
2128 	if (size != nsize) {
2129 		nsize = 0;
2130 	}
2131 
2132 	/*
2133 	 * 1 seg for text and 1 seg for initialized data.
2134 	 * 1 seg for bss (if can't fit in leftover space of init data)
2135 	 * 1 seg for nlist if needed.
2136 	 */
2137 	to_map = 2 + (nsize ? 1 : 0) +
2138 	    (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0);
2139 	if (*num_mapped < to_map) {
2140 		*num_mapped = to_map;
2141 		MOBJ_STAT_ADD(aout_e2big);
2142 		return (E2BIG);
2143 	}
2144 
2145 	/* Reserve address space for the whole mapping */
2146 	if (is_library) {
2147 		/* We'll let VOP_MAP below pick our address for us */
2148 		addr = NULL;
2149 		MOBJ_STAT_ADD(aout_lib);
2150 	} else {
2151 		/*
2152 		 * default start address for fixed binaries from AOUT 4.x
2153 		 * standard.
2154 		 */
2155 		MOBJ_STAT_ADD(aout_fixed);
2156 		mflag |= MAP_FIXED;
2157 		addr = (caddr_t)0x2000;
2158 		as_rangelock(as);
2159 		if (as_gap(as, size, &addr, &size, 0, NULL) != 0) {
2160 			as_rangeunlock(as);
2161 			MOBJ_STAT_ADD(aout_addr_in_use);
2162 			return (EADDRINUSE);
2163 		}
2164 		crargs.flags |= MAP_NORESERVE;
2165 		error = as_map(as, addr, size, segvn_create, &crargs);
2166 		ASSERT(addr == (caddr_t)0x2000);
2167 		as_rangeunlock(as);
2168 	}
2169 
2170 	start_addr = addr;
2171 	osize = size;
2172 
2173 	/*
2174 	 * Map as large as we need, backed by file, this will be text, and
2175 	 * possibly the nlist segment.  We map over this mapping for bss and
2176 	 * initialized data segments.
2177 	 */
2178 	error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL,
2179 	    mflag, fcred, NULL);
2180 	if (error) {
2181 		if (!is_library) {
2182 			(void) as_unmap(as, start_addr, osize);
2183 		}
2184 		return (error);
2185 	}
2186 
2187 	/* pickup the value of start_addr and osize for libraries */
2188 	start_addr = addr;
2189 	osize = size;
2190 
2191 	/*
2192 	 * We have our initial reservation/allocation so we need to use fixed
2193 	 * addresses from now on.
2194 	 */
2195 	mflag |= MAP_FIXED;
2196 
2197 	mrp[0].mr_addr = addr;
2198 	mrp[0].mr_msize = hdr->a_text;
2199 	mrp[0].mr_fsize = hdr->a_text;
2200 	mrp[0].mr_offset = 0;
2201 	mrp[0].mr_prot = PROT_READ | PROT_EXEC;
2202 	mrp[0].mr_flags = MR_HDR_AOUT;
2203 
2204 
2205 	/*
2206 	 * Map initialized data. We are mapping over a portion of the
2207 	 * previous mapping which will be unmapped in VOP_MAP below.
2208 	 */
2209 	off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE);
2210 	msize = off;
2211 	addr += off;
2212 	size = hdr->a_data;
2213 	error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL,
2214 	    mflag, fcred, NULL);
2215 	if (error) {
2216 		(void) as_unmap(as, start_addr, osize);
2217 		return (error);
2218 	}
2219 	msize += size;
2220 	mrp[1].mr_addr = addr;
2221 	mrp[1].mr_msize = size;
2222 	mrp[1].mr_fsize = size;
2223 	mrp[1].mr_offset = 0;
2224 	mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2225 	mrp[1].mr_flags = 0;
2226 
2227 	/* Need to zero out remainder of page */
2228 	addr += hdr->a_data;
2229 	zfoddiff = P2PHASE((size_t)addr, PAGESIZE);
2230 	if (zfoddiff) {
2231 		label_t ljb;
2232 
2233 		MOBJ_STAT_ADD(aout_zfoddiff);
2234 		zfoddiff = PAGESIZE - zfoddiff;
2235 		if (on_fault(&ljb)) {
2236 			no_fault();
2237 			MOBJ_STAT_ADD(aout_uzero_fault);
2238 			(void) as_unmap(as, start_addr, osize);
2239 			return (EFAULT);
2240 		}
2241 		uzero(addr, zfoddiff);
2242 		no_fault();
2243 	}
2244 	msize += zfoddiff;
2245 	segnum = 2;
2246 
2247 	/* Map bss */
2248 	if (hdr->a_bss > zfoddiff) {
2249 		struct segvn_crargs crargs =
2250 		    SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2251 		MOBJ_STAT_ADD(aout_map_bss);
2252 		addr += zfoddiff;
2253 		size = hdr->a_bss - zfoddiff;
2254 		as_rangelock(as);
2255 		(void) as_unmap(as, addr, size);
2256 		error = as_map(as, addr, size, segvn_create, &crargs);
2257 		as_rangeunlock(as);
2258 		msize += size;
2259 
2260 		if (error) {
2261 			MOBJ_STAT_ADD(aout_bss_fail);
2262 			(void) as_unmap(as, start_addr, osize);
2263 			return (error);
2264 		}
2265 		mrp[2].mr_addr = addr;
2266 		mrp[2].mr_msize = size;
2267 		mrp[2].mr_fsize = 0;
2268 		mrp[2].mr_offset = 0;
2269 		mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2270 		mrp[2].mr_flags = 0;
2271 
2272 		addr += size;
2273 		segnum = 3;
2274 	}
2275 
2276 	/*
2277 	 * If we have extra bits left over, we need to include that in how
2278 	 * much we mapped to make sure the nlist logic is correct
2279 	 */
2280 	msize = P2ROUNDUP(msize, PAGESIZE);
2281 
2282 	if (nsize && msize < nsize) {
2283 		MOBJ_STAT_ADD(aout_nlist);
2284 		mrp[segnum].mr_addr = addr;
2285 		mrp[segnum].mr_msize = nsize - msize;
2286 		mrp[segnum].mr_fsize = 0;
2287 		mrp[segnum].mr_offset = 0;
2288 		mrp[segnum].mr_prot = PROT_READ | PROT_EXEC;
2289 		mrp[segnum].mr_flags = 0;
2290 	}
2291 
2292 	*num_mapped = to_map;
2293 	return (0);
2294 }
2295 #endif
2296 
2297 /*
2298  * These are the two types of files that we can interpret and we want to read
2299  * in enough info to cover both types when looking at the initial header.
2300  */
2301 #define	MAX_HEADER_SIZE	(MAX(sizeof (Ehdr), sizeof (struct exec)))
2302 
2303 /*
2304  * Map vp passed in in an interpreted manner.  ELF and AOUT files will be
2305  * interpreted and mapped appropriately for execution.
2306  * num_mapped in - # elements in mrp
2307  * num_mapped out - # sections mapped and length of mrp array if
2308  *		    no errors or E2BIG returned.
2309  *
2310  * Returns 0 on success, errno value on failure.
2311  */
2312 static int
2313 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp,
2314     uint_t *num_mapped, size_t padding, cred_t *fcred)
2315 {
2316 	int error = 0;
2317 	vattr_t vattr;
2318 	struct lib_va *lvp;
2319 	caddr_t start_addr;
2320 	model_t model;
2321 
2322 	/*
2323 	 * header has to be aligned to the native size of ulong_t in order
2324 	 * to avoid an unaligned access when dereferencing the header as
2325 	 * a ulong_t.  Thus we allocate our array on the stack of type
2326 	 * ulong_t and then have header, which we dereference later as a char
2327 	 * array point at lheader.
2328 	 */
2329 	ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1];
2330 	caddr_t header = (caddr_t)&lheader;
2331 
2332 	vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE;
2333 	error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
2334 	if (error) {
2335 		return (error);
2336 	}
2337 
2338 	/*
2339 	 * Check lib_va to see if we already have a full description
2340 	 * for this library.  This is the fast path and only used for
2341 	 * ET_DYN ELF files (dynamic libraries).
2342 	 */
2343 	if (padding == 0 && !secflag_enabled(curproc, PROC_SEC_ASLR) &&
2344 	    ((lvp = lib_va_find(&vattr)) != NULL)) {
2345 		int num_segs;
2346 
2347 		model = get_udatamodel();
2348 		if ((model == DATAMODEL_ILP32 &&
2349 		    lvp->lv_flags & LV_ELF64) ||
2350 		    (model == DATAMODEL_LP64 &&
2351 		    lvp->lv_flags & LV_ELF32)) {
2352 			lib_va_release(lvp);
2353 			MOBJ_STAT_ADD(fast_wrong_model);
2354 			return (ENOTSUP);
2355 		}
2356 		num_segs = lvp->lv_num_segs;
2357 		if (*num_mapped < num_segs) {
2358 			*num_mapped = num_segs;
2359 			lib_va_release(lvp);
2360 			MOBJ_STAT_ADD(fast_e2big);
2361 			return (E2BIG);
2362 		}
2363 
2364 		/*
2365 		 * Check to see if we have all the mappable program headers
2366 		 * cached.
2367 		 */
2368 		if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) {
2369 			MOBJ_STAT_ADD(fast);
2370 			start_addr = mmapobj_lookup_start_addr(lvp);
2371 			if (start_addr == NULL) {
2372 				lib_va_release(lvp);
2373 				return (ENOMEM);
2374 			}
2375 
2376 			bcopy(lvp->lv_mps, mrp,
2377 			    num_segs * sizeof (mmapobj_result_t));
2378 
2379 			error = mmapobj_map_elf(vp, start_addr, mrp,
2380 			    num_segs, fcred, ET_DYN);
2381 
2382 			lib_va_release(lvp);
2383 			if (error == 0) {
2384 				*num_mapped = num_segs;
2385 				MOBJ_STAT_ADD(fast_success);
2386 			}
2387 			return (error);
2388 		}
2389 		MOBJ_STAT_ADD(fast_not_now);
2390 
2391 		/* Release it for now since we'll look it up below */
2392 		lib_va_release(lvp);
2393 	}
2394 
2395 	/*
2396 	 * Time to see if this is a file we can interpret.  If it's smaller
2397 	 * than this, then we can't interpret it.
2398 	 */
2399 	if (vattr.va_size < MAX_HEADER_SIZE) {
2400 		MOBJ_STAT_ADD(small_file);
2401 		return (ENOTSUP);
2402 	}
2403 
2404 	if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0,
2405 	    UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) {
2406 		MOBJ_STAT_ADD(read_error);
2407 		return (error);
2408 	}
2409 
2410 	/* Verify file type */
2411 	if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 &&
2412 	    header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) {
2413 		return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped,
2414 		    padding, fcred));
2415 	}
2416 
2417 #if defined(__sparc)
2418 	/* On sparc, check for 4.X AOUT format */
2419 	switch (((struct exec *)header)->a_magic) {
2420 	case OMAGIC:
2421 	case ZMAGIC:
2422 	case NMAGIC:
2423 		return (doaoutwork(vp, mrp, num_mapped,
2424 		    (struct exec *)lheader, fcred));
2425 	}
2426 #endif
2427 
2428 	/* Unsupported type */
2429 	MOBJ_STAT_ADD(unsupported);
2430 	return (ENOTSUP);
2431 }
2432 
2433 /*
2434  * Given a vnode, map it as either a flat file or interpret it and map
2435  * it according to the rules of the file type.
2436  * *num_mapped will contain the size of the mmapobj_result_t array passed in.
2437  * If padding is non-zero, the mappings will be padded by that amount
2438  * rounded up to the nearest pagesize.
2439  * If the mapping is successful, *num_mapped will contain the number of
2440  * distinct mappings created, and mrp will point to the array of
2441  * mmapobj_result_t's which describe these mappings.
2442  *
2443  * On error, -1 is returned and errno is set appropriately.
2444  * A special error case will set errno to E2BIG when there are more than
2445  * *num_mapped mappings to be created and *num_mapped will be set to the
2446  * number of mappings needed.
2447  */
2448 int
2449 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp,
2450     uint_t *num_mapped, size_t padding, cred_t *fcred)
2451 {
2452 	int to_map;
2453 	int error = 0;
2454 
2455 	ASSERT((padding & PAGEOFFSET) == 0);
2456 	ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0);
2457 	ASSERT(num_mapped != NULL);
2458 	ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0);
2459 
2460 	if ((flags & MMOBJ_INTERPRET) == 0) {
2461 		to_map = padding ? 3 : 1;
2462 		if (*num_mapped < to_map) {
2463 			*num_mapped = to_map;
2464 			MOBJ_STAT_ADD(flat_e2big);
2465 			return (E2BIG);
2466 		}
2467 		error = mmapobj_map_flat(vp, mrp, padding, fcred);
2468 
2469 		if (error) {
2470 			return (error);
2471 		}
2472 		*num_mapped = to_map;
2473 		return (0);
2474 	}
2475 
2476 	error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred);
2477 	return (error);
2478 }
2479