1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/sysmacros.h> 28 #include <sys/kmem.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/errno.h> 32 #include <sys/mman.h> 33 #include <sys/cmn_err.h> 34 #include <sys/cred.h> 35 #include <sys/vmsystm.h> 36 #include <sys/machsystm.h> 37 #include <sys/debug.h> 38 #include <vm/as.h> 39 #include <vm/seg.h> 40 #include <sys/vmparam.h> 41 #include <sys/vfs.h> 42 #include <sys/elf.h> 43 #include <sys/machelf.h> 44 #include <sys/corectl.h> 45 #include <sys/exec.h> 46 #include <sys/exechdr.h> 47 #include <sys/autoconf.h> 48 #include <sys/mem.h> 49 #include <vm/seg_dev.h> 50 #include <sys/vmparam.h> 51 #include <sys/mmapobj.h> 52 #include <sys/atomic.h> 53 54 /* 55 * Theory statement: 56 * 57 * The main driving force behind mmapobj is to interpret and map ELF files 58 * inside of the kernel instead of having the linker be responsible for this. 59 * 60 * mmapobj also supports the AOUT 4.x binary format as well as flat files in 61 * a read only manner. 62 * 63 * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD 64 * or PT_SUNWBSS segment according to the ELF standard. Refer to the "Linker 65 * and Libraries Guide" for more information about the standard and mapping 66 * rules. 67 * 68 * Having mmapobj interpret and map objects will allow the kernel to make the 69 * best decision for where to place the mappings for said objects. Thus, we 70 * can make optimizations inside of the kernel for specific platforms or 71 * cache mapping information to make mapping objects faster. 72 * 73 * The lib_va_hash will be one such optimization. For each ELF object that 74 * mmapobj is asked to interpret, we will attempt to cache the information 75 * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of 76 * the same objects. We will cache up to LIBVA_CACHED_SEGS (see below) program 77 * headers which should cover a majority of the libraries out there without 78 * wasting space. In order to make sure that the cached information is valid, 79 * we check the passed in vnode's mtime and ctime to make sure the vnode 80 * has not been modified since the last time we used it. 81 * 82 * In addition, the lib_va_hash may contain a preferred starting VA for the 83 * object which can be useful for platforms which support a shared context. 84 * This will increase the likelyhood that library text can be shared among 85 * many different processes. We limit the reserved VA space for 32 bit objects 86 * in order to minimize fragmenting the processes address space. 87 * 88 * In addition to the above, the mmapobj interface allows for padding to be 89 * requested before the first mapping and after the last mapping created. 90 * When padding is requested, no additional optimizations will be made for 91 * that request. 92 */ 93 94 /* 95 * Threshold to prevent allocating too much kernel memory to read in the 96 * program headers for an object. If it requires more than below, 97 * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the 98 * program headers which could possibly fail. If less memory than below is 99 * needed, then we use a KM_SLEEP allocation and are willing to wait for the 100 * memory if we need to. 101 */ 102 size_t mmapobj_alloc_threshold = 65536; 103 104 /* Debug stats for test coverage */ 105 #ifdef DEBUG 106 struct mobj_stats { 107 uint_t mobjs_unmap_called; 108 uint_t mobjs_remap_devnull; 109 uint_t mobjs_lookup_start; 110 uint_t mobjs_alloc_start; 111 uint_t mobjs_alloc_vmem; 112 uint_t mobjs_add_collision; 113 uint_t mobjs_get_addr; 114 uint_t mobjs_map_flat_no_padding; 115 uint_t mobjs_map_flat_padding; 116 uint_t mobjs_map_ptload_text; 117 uint_t mobjs_map_ptload_initdata; 118 uint_t mobjs_map_ptload_preread; 119 uint_t mobjs_map_ptload_unaligned_text; 120 uint_t mobjs_map_ptload_unaligned_map_fail; 121 uint_t mobjs_map_ptload_unaligned_read_fail; 122 uint_t mobjs_zfoddiff; 123 uint_t mobjs_zfoddiff_nowrite; 124 uint_t mobjs_zfodextra; 125 uint_t mobjs_ptload_failed; 126 uint_t mobjs_map_elf_no_holes; 127 uint_t mobjs_unmap_hole; 128 uint_t mobjs_nomem_header; 129 uint_t mobjs_inval_header; 130 uint_t mobjs_overlap_header; 131 uint_t mobjs_np2_align; 132 uint_t mobjs_np2_align_overflow; 133 uint_t mobjs_exec_padding; 134 uint_t mobjs_exec_addr_mapped; 135 uint_t mobjs_exec_addr_devnull; 136 uint_t mobjs_exec_addr_in_use; 137 uint_t mobjs_lvp_found; 138 uint_t mobjs_no_loadable_yet; 139 uint_t mobjs_nothing_to_map; 140 uint_t mobjs_e2big; 141 uint_t mobjs_dyn_pad_align; 142 uint_t mobjs_dyn_pad_noalign; 143 uint_t mobjs_alloc_start_fail; 144 uint_t mobjs_lvp_nocache; 145 uint_t mobjs_extra_padding; 146 uint_t mobjs_lvp_not_needed; 147 uint_t mobjs_no_mem_map_sz; 148 uint_t mobjs_check_exec_failed; 149 uint_t mobjs_lvp_used; 150 uint_t mobjs_wrong_model; 151 uint_t mobjs_noexec_fs; 152 uint_t mobjs_e2big_et_rel; 153 uint_t mobjs_et_rel_mapped; 154 uint_t mobjs_unknown_elf_type; 155 uint_t mobjs_phent32_too_small; 156 uint_t mobjs_phent64_too_small; 157 uint_t mobjs_inval_elf_class; 158 uint_t mobjs_too_many_phdrs; 159 uint_t mobjs_no_phsize; 160 uint_t mobjs_phsize_large; 161 uint_t mobjs_phsize_xtralarge; 162 uint_t mobjs_fast_wrong_model; 163 uint_t mobjs_fast_e2big; 164 uint_t mobjs_fast; 165 uint_t mobjs_fast_success; 166 uint_t mobjs_fast_not_now; 167 uint_t mobjs_small_file; 168 uint_t mobjs_read_error; 169 uint_t mobjs_unsupported; 170 uint_t mobjs_flat_e2big; 171 uint_t mobjs_phent_align32; 172 uint_t mobjs_phent_align64; 173 uint_t mobjs_lib_va_find_hit; 174 uint_t mobjs_lib_va_find_delay_delete; 175 uint_t mobjs_lib_va_find_delete; 176 uint_t mobjs_lib_va_add_delay_delete; 177 uint_t mobjs_lib_va_add_delete; 178 uint_t mobjs_lib_va_create_failure; 179 uint_t mobjs_min_align; 180 #if defined(__sparc) 181 uint_t mobjs_aout_uzero_fault; 182 uint_t mobjs_aout_64bit_try; 183 uint_t mobjs_aout_noexec; 184 uint_t mobjs_aout_e2big; 185 uint_t mobjs_aout_lib; 186 uint_t mobjs_aout_fixed; 187 uint_t mobjs_aout_zfoddiff; 188 uint_t mobjs_aout_map_bss; 189 uint_t mobjs_aout_bss_fail; 190 uint_t mobjs_aout_nlist; 191 uint_t mobjs_aout_addr_in_use; 192 #endif 193 } mobj_stats; 194 195 #define MOBJ_STAT_ADD(stat) ((mobj_stats.mobjs_##stat)++) 196 #else 197 #define MOBJ_STAT_ADD(stat) 198 #endif 199 200 /* lv_flags values - bitmap */ 201 #define LV_ELF32 0x1 /* 32 bit ELF file */ 202 #define LV_ELF64 0x2 /* 64 bit ELF file */ 203 #define LV_DEL 0x4 /* delete when lv_refcnt hits zero */ 204 205 /* 206 * Note: lv_num_segs will denote how many segments this file has and will 207 * only be set after the lv_mps array has been filled out. 208 * lv_mps can only be valid if lv_num_segs is non-zero. 209 */ 210 struct lib_va { 211 struct lib_va *lv_next; 212 caddr_t lv_base_va; /* start va for library */ 213 ssize_t lv_len; /* total va span of library */ 214 size_t lv_align; /* minimum alignment */ 215 uint64_t lv_nodeid; /* filesystem node id */ 216 uint64_t lv_fsid; /* filesystem id */ 217 timestruc_t lv_ctime; /* last time file was changed */ 218 timestruc_t lv_mtime; /* or modified */ 219 mmapobj_result_t lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */ 220 int lv_num_segs; /* # segs for this file */ 221 int lv_flags; 222 uint_t lv_refcnt; /* number of holds on struct */ 223 }; 224 225 #define LIB_VA_SIZE 1024 226 #define LIB_VA_MASK (LIB_VA_SIZE - 1) 227 #define LIB_VA_MUTEX_SHIFT 3 228 229 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1)) 230 #error "LIB_VA_SIZE is not a power of 2" 231 #endif 232 233 static struct lib_va *lib_va_hash[LIB_VA_SIZE]; 234 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT]; 235 236 #define LIB_VA_HASH_MUTEX(index) \ 237 (&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT]) 238 239 #define LIB_VA_HASH(nodeid) \ 240 (((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK) 241 242 #define LIB_VA_MATCH_ID(arg1, arg2) \ 243 ((arg1)->lv_nodeid == (arg2)->va_nodeid && \ 244 (arg1)->lv_fsid == (arg2)->va_fsid) 245 246 #define LIB_VA_MATCH_TIME(arg1, arg2) \ 247 ((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec && \ 248 (arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec && \ 249 (arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec && \ 250 (arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec) 251 252 #define LIB_VA_MATCH(arg1, arg2) \ 253 (LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2)) 254 255 /* 256 * lib_va will be used for optimized allocation of address ranges for 257 * libraries, such that subsequent mappings of the same library will attempt 258 * to use the same VA as previous mappings of that library. 259 * In order to map libraries at the same VA in many processes, we need to carve 260 * out our own address space for them which is unique across many processes. 261 * We use different arenas for 32 bit and 64 bit libraries. 262 * 263 * Since the 32 bit address space is relatively small, we limit the number of 264 * libraries which try to use consistent virtual addresses to lib_threshold. 265 * For 64 bit libraries there is no such limit since the address space is large. 266 */ 267 static vmem_t *lib_va_32_arena; 268 static vmem_t *lib_va_64_arena; 269 uint_t lib_threshold = 20; /* modifiable via /etc/system */ 270 271 static kmutex_t lib_va_init_mutex; /* no need to initialize */ 272 273 /* 274 * Number of 32 bit and 64 bit libraries in lib_va hash. 275 */ 276 static uint_t libs_mapped_32 = 0; 277 static uint_t libs_mapped_64 = 0; 278 279 /* 280 * Free up the resources associated with lvp as well as lvp itself. 281 * We also decrement the number of libraries mapped via a lib_va 282 * cached virtual address. 283 */ 284 void 285 lib_va_free(struct lib_va *lvp) 286 { 287 int is_64bit = lvp->lv_flags & LV_ELF64; 288 ASSERT(lvp->lv_refcnt == 0); 289 290 if (lvp->lv_base_va != NULL) { 291 vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena, 292 lvp->lv_base_va, lvp->lv_len); 293 if (is_64bit) { 294 atomic_add_32(&libs_mapped_64, -1); 295 } else { 296 atomic_add_32(&libs_mapped_32, -1); 297 } 298 } 299 kmem_free(lvp, sizeof (struct lib_va)); 300 } 301 302 /* 303 * See if the file associated with the vap passed in is in the lib_va hash. 304 * If it is and the file has not been modified since last use, then 305 * return a pointer to that data. Otherwise, return NULL if the file has 306 * changed or the file was not found in the hash. 307 */ 308 static struct lib_va * 309 lib_va_find(vattr_t *vap) 310 { 311 struct lib_va *lvp; 312 struct lib_va *del = NULL; 313 struct lib_va **tmp; 314 uint_t index; 315 index = LIB_VA_HASH(vap->va_nodeid); 316 317 mutex_enter(LIB_VA_HASH_MUTEX(index)); 318 tmp = &lib_va_hash[index]; 319 while (*tmp != NULL) { 320 lvp = *tmp; 321 if (LIB_VA_MATCH_ID(lvp, vap)) { 322 if (LIB_VA_MATCH_TIME(lvp, vap)) { 323 ASSERT((lvp->lv_flags & LV_DEL) == 0); 324 lvp->lv_refcnt++; 325 MOBJ_STAT_ADD(lib_va_find_hit); 326 } else { 327 /* 328 * file was updated since last use. 329 * need to remove it from list. 330 */ 331 del = lvp; 332 *tmp = del->lv_next; 333 del->lv_next = NULL; 334 /* 335 * If we can't delete it now, mark it for later 336 */ 337 if (del->lv_refcnt) { 338 MOBJ_STAT_ADD(lib_va_find_delay_delete); 339 del->lv_flags |= LV_DEL; 340 del = NULL; 341 } 342 lvp = NULL; 343 } 344 mutex_exit(LIB_VA_HASH_MUTEX(index)); 345 if (del) { 346 ASSERT(del->lv_refcnt == 0); 347 MOBJ_STAT_ADD(lib_va_find_delete); 348 lib_va_free(del); 349 } 350 return (lvp); 351 } 352 tmp = &lvp->lv_next; 353 } 354 mutex_exit(LIB_VA_HASH_MUTEX(index)); 355 return (NULL); 356 } 357 358 /* 359 * Add a new entry to the lib_va hash. 360 * Search the hash while holding the appropriate mutex to make sure that the 361 * data is not already in the cache. If we find data that is in the cache 362 * already and has not been modified since last use, we return NULL. If it 363 * has been modified since last use, we will remove that entry from 364 * the hash and it will be deleted once it's reference count reaches zero. 365 * If there is no current entry in the hash we will add the new entry and 366 * return it to the caller who is responsible for calling lib_va_release to 367 * drop their reference count on it. 368 * 369 * lv_num_segs will be set to zero since the caller needs to add that 370 * information to the data structure. 371 */ 372 static struct lib_va * 373 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap) 374 { 375 struct lib_va *lvp; 376 uint_t index; 377 model_t model; 378 struct lib_va **tmp; 379 struct lib_va *del = NULL; 380 381 model = get_udatamodel(); 382 index = LIB_VA_HASH(vap->va_nodeid); 383 384 lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP); 385 386 mutex_enter(LIB_VA_HASH_MUTEX(index)); 387 388 /* 389 * Make sure not adding same data a second time. 390 * The hash chains should be relatively short and adding 391 * is a relatively rare event, so it's worth the check. 392 */ 393 tmp = &lib_va_hash[index]; 394 while (*tmp != NULL) { 395 if (LIB_VA_MATCH_ID(*tmp, vap)) { 396 if (LIB_VA_MATCH_TIME(*tmp, vap)) { 397 mutex_exit(LIB_VA_HASH_MUTEX(index)); 398 kmem_free(lvp, sizeof (struct lib_va)); 399 return (NULL); 400 } 401 402 /* 403 * We have the same nodeid and fsid but the file has 404 * been modified since we last saw it. 405 * Need to remove the old node and add this new 406 * one. 407 * Could probably use a callback mechanism to make 408 * this cleaner. 409 */ 410 ASSERT(del == NULL); 411 del = *tmp; 412 *tmp = del->lv_next; 413 del->lv_next = NULL; 414 415 /* 416 * Check to see if we can free it. If lv_refcnt 417 * is greater than zero, than some other thread 418 * has a reference to the one we want to delete 419 * and we can not delete it. All of this is done 420 * under the lib_va_hash_mutex lock so it is atomic. 421 */ 422 if (del->lv_refcnt) { 423 MOBJ_STAT_ADD(lib_va_add_delay_delete); 424 del->lv_flags |= LV_DEL; 425 del = NULL; 426 } 427 /* tmp is already advanced */ 428 continue; 429 } 430 tmp = &((*tmp)->lv_next); 431 } 432 433 lvp->lv_base_va = base_va; 434 lvp->lv_len = len; 435 lvp->lv_align = align; 436 lvp->lv_nodeid = vap->va_nodeid; 437 lvp->lv_fsid = vap->va_fsid; 438 lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec; 439 lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec; 440 lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec; 441 lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec; 442 lvp->lv_next = NULL; 443 lvp->lv_refcnt = 1; 444 445 /* Caller responsible for filling this and lv_mps out */ 446 lvp->lv_num_segs = 0; 447 448 if (model == DATAMODEL_LP64) { 449 lvp->lv_flags = LV_ELF64; 450 } else { 451 ASSERT(model == DATAMODEL_ILP32); 452 lvp->lv_flags = LV_ELF32; 453 } 454 455 if (base_va != NULL) { 456 if (model == DATAMODEL_LP64) { 457 atomic_add_32(&libs_mapped_64, 1); 458 } else { 459 ASSERT(model == DATAMODEL_ILP32); 460 atomic_add_32(&libs_mapped_32, 1); 461 } 462 } 463 ASSERT(*tmp == NULL); 464 *tmp = lvp; 465 mutex_exit(LIB_VA_HASH_MUTEX(index)); 466 if (del) { 467 ASSERT(del->lv_refcnt == 0); 468 MOBJ_STAT_ADD(lib_va_add_delete); 469 lib_va_free(del); 470 } 471 return (lvp); 472 } 473 474 /* 475 * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash. 476 * In addition, if this is the last hold and lvp is marked for deletion, 477 * free up it's reserved address space and free the structure. 478 */ 479 static void 480 lib_va_release(struct lib_va *lvp) 481 { 482 uint_t index; 483 int to_del = 0; 484 485 ASSERT(lvp->lv_refcnt > 0); 486 487 index = LIB_VA_HASH(lvp->lv_nodeid); 488 mutex_enter(LIB_VA_HASH_MUTEX(index)); 489 if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) { 490 to_del = 1; 491 } 492 mutex_exit(LIB_VA_HASH_MUTEX(index)); 493 if (to_del) { 494 ASSERT(lvp->lv_next == 0); 495 lib_va_free(lvp); 496 } 497 } 498 499 /* 500 * Dummy function for mapping through /dev/null 501 * Normally I would have used mmmmap in common/io/mem.c 502 * but that is a static function, and for /dev/null, it 503 * just returns -1. 504 */ 505 /* ARGSUSED */ 506 static int 507 mmapobj_dummy(dev_t dev, off_t off, int prot) 508 { 509 return (-1); 510 } 511 512 /* 513 * Called when an error occurred which requires mmapobj to return failure. 514 * All mapped objects will be unmapped and /dev/null mappings will be 515 * reclaimed if necessary. 516 * num_mapped is the number of elements of mrp which have been mapped, and 517 * num_segs is the total number of elements in mrp. 518 * For e_type ET_EXEC, we need to unmap all of the elements in mrp since 519 * we had already made reservations for them. 520 * If num_mapped equals num_segs, then we know that we had fully mapped 521 * the file and only need to clean up the segments described. 522 * If they are not equal, then for ET_DYN we will unmap the range from the 523 * end of the last mapped segment to the end of the last segment in mrp 524 * since we would have made a reservation for that memory earlier. 525 * If e_type is passed in as zero, num_mapped must equal num_segs. 526 */ 527 void 528 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs, 529 ushort_t e_type) 530 { 531 int i; 532 struct as *as = curproc->p_as; 533 caddr_t addr; 534 size_t size; 535 536 if (e_type == ET_EXEC) { 537 num_mapped = num_segs; 538 } 539 #ifdef DEBUG 540 if (e_type == 0) { 541 ASSERT(num_mapped == num_segs); 542 } 543 #endif 544 545 MOBJ_STAT_ADD(unmap_called); 546 for (i = 0; i < num_mapped; i++) { 547 548 /* 549 * If we are going to have to create a mapping we need to 550 * make sure that no one else will use the address we 551 * need to remap between the time it is unmapped and 552 * mapped below. 553 */ 554 if (mrp[i].mr_flags & MR_RESV) { 555 as_rangelock(as); 556 } 557 /* Always need to unmap what we mapped */ 558 (void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize); 559 560 /* Need to reclaim /dev/null reservation from earlier */ 561 if (mrp[i].mr_flags & MR_RESV) { 562 struct segdev_crargs dev_a; 563 564 ASSERT(e_type != ET_DYN); 565 /* 566 * Use seg_dev segment driver for /dev/null mapping. 567 */ 568 dev_a.mapfunc = mmapobj_dummy; 569 dev_a.dev = makedevice(mm_major, M_NULL); 570 dev_a.offset = 0; 571 dev_a.type = 0; /* neither PRIVATE nor SHARED */ 572 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE; 573 dev_a.hat_attr = 0; 574 dev_a.hat_flags = 0; 575 576 (void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize, 577 segdev_create, &dev_a); 578 MOBJ_STAT_ADD(remap_devnull); 579 as_rangeunlock(as); 580 } 581 } 582 583 if (num_mapped != num_segs) { 584 ASSERT(e_type == ET_DYN); 585 /* Need to unmap any reservation made after last mapped seg */ 586 if (num_mapped == 0) { 587 addr = mrp[0].mr_addr; 588 } else { 589 addr = mrp[num_mapped - 1].mr_addr + 590 mrp[num_mapped - 1].mr_msize; 591 } 592 size = (size_t)mrp[num_segs - 1].mr_addr + 593 mrp[num_segs - 1].mr_msize - (size_t)addr; 594 (void) as_unmap(as, addr, size); 595 596 /* 597 * Now we need to unmap the holes between mapped segs. 598 * Note that we have not mapped all of the segments and thus 599 * the holes between segments would not have been unmapped 600 * yet. If num_mapped == num_segs, then all of the holes 601 * between segments would have already been unmapped. 602 */ 603 604 for (i = 1; i < num_mapped; i++) { 605 addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize; 606 size = mrp[i].mr_addr - addr; 607 (void) as_unmap(as, addr, size); 608 } 609 } 610 } 611 612 /* 613 * We need to add the start address into mrp so that the unmap function 614 * has absolute addresses to use. 615 */ 616 static void 617 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr) 618 { 619 int i; 620 621 for (i = 0; i < num_mapped; i++) { 622 mrp[i].mr_addr += (size_t)start_addr; 623 } 624 mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC); 625 } 626 627 static caddr_t 628 mmapobj_lookup_start_addr(struct lib_va *lvp) 629 { 630 struct as *as = curproc->p_as; 631 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 632 int error; 633 uint_t ma_flags = _MAP_LOW32; 634 caddr_t base = NULL; 635 size_t len; 636 size_t align; 637 638 ASSERT(lvp != NULL); 639 MOBJ_STAT_ADD(lookup_start); 640 641 as_rangelock(as); 642 643 base = lvp->lv_base_va; 644 len = lvp->lv_len; 645 646 /* 647 * If we don't have an expected base address, or the one that we want 648 * to use is not available or acceptable, go get an acceptable 649 * address range. 650 */ 651 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) || 652 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) != 653 RANGE_OKAY) { 654 655 if (lvp->lv_flags & LV_ELF64) { 656 ma_flags = 0; 657 } 658 659 align = lvp->lv_align; 660 if (align > 1) { 661 ma_flags |= MAP_ALIGN; 662 } 663 664 base = (caddr_t)align; 665 map_addr(&base, len, 0, 1, ma_flags); 666 } 667 668 /* 669 * Need to reserve the address space we're going to use. 670 * Don't reserve swap space since we'll be mapping over this. 671 */ 672 if (base != NULL) { 673 crargs.flags |= MAP_NORESERVE; 674 error = as_map(as, base, len, segvn_create, &crargs); 675 if (error) { 676 base = NULL; 677 } 678 } 679 680 as_rangeunlock(as); 681 return (base); 682 } 683 684 /* 685 * Get the starting address for a given file to be mapped and return it 686 * to the caller. If we're using lib_va and we need to allocate an address, 687 * we will attempt to allocate it from the global reserved pool such that the 688 * same address can be used in the future for this file. If we can't use the 689 * reserved address then we just get one that will fit in our address space. 690 * 691 * Returns the starting virtual address for the range to be mapped or NULL 692 * if an error is encountered. If we successfully insert the requested info 693 * into the lib_va hash, then *lvpp will be set to point to this lib_va 694 * structure. The structure will have a hold on it and thus lib_va_release 695 * needs to be called on it by the caller. This function will not fill out 696 * lv_mps or lv_num_segs since it does not have enough information to do so. 697 * The caller is responsible for doing this making sure that any modifications 698 * to lv_mps are visible before setting lv_num_segs. 699 */ 700 static caddr_t 701 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va, 702 size_t align, vattr_t *vap) 703 { 704 struct as *as = curproc->p_as; 705 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 706 int error; 707 model_t model; 708 uint_t ma_flags = _MAP_LOW32; 709 caddr_t base = NULL; 710 vmem_t *model_vmem; 711 size_t lib_va_start; 712 size_t lib_va_end; 713 size_t lib_va_len; 714 715 ASSERT(lvpp != NULL); 716 717 MOBJ_STAT_ADD(alloc_start); 718 model = get_udatamodel(); 719 720 if (model == DATAMODEL_LP64) { 721 ma_flags = 0; 722 model_vmem = lib_va_64_arena; 723 } else { 724 ASSERT(model == DATAMODEL_ILP32); 725 model_vmem = lib_va_32_arena; 726 } 727 728 if (align > 1) { 729 ma_flags |= MAP_ALIGN; 730 } 731 if (use_lib_va) { 732 /* 733 * The first time through, we need to setup the lib_va arenas. 734 * We call map_addr to find a suitable range of memory to map 735 * the given library, and we will set the highest address 736 * in our vmem arena to the end of this adddress range. 737 * We allow up to half of the address space to be used 738 * for lib_va addresses but we do not prevent any allocations 739 * in this range from other allocation paths. 740 */ 741 if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) { 742 mutex_enter(&lib_va_init_mutex); 743 if (lib_va_64_arena == NULL) { 744 base = (caddr_t)align; 745 as_rangelock(as); 746 map_addr(&base, len, 0, 1, ma_flags); 747 as_rangeunlock(as); 748 if (base == NULL) { 749 mutex_exit(&lib_va_init_mutex); 750 MOBJ_STAT_ADD(lib_va_create_failure); 751 goto nolibva; 752 } 753 lib_va_end = (size_t)base + len; 754 lib_va_len = lib_va_end >> 1; 755 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE); 756 lib_va_start = lib_va_end - lib_va_len; 757 758 /* 759 * Need to make sure we avoid the address hole. 760 * We know lib_va_end is valid but we need to 761 * make sure lib_va_start is as well. 762 */ 763 if ((lib_va_end > (size_t)hole_end) && 764 (lib_va_start < (size_t)hole_end)) { 765 lib_va_start = P2ROUNDUP( 766 (size_t)hole_end, PAGESIZE); 767 lib_va_len = lib_va_end - lib_va_start; 768 } 769 lib_va_64_arena = vmem_create("lib_va_64", 770 (void *)lib_va_start, lib_va_len, PAGESIZE, 771 NULL, NULL, NULL, 0, 772 VM_NOSLEEP | VMC_IDENTIFIER); 773 if (lib_va_64_arena == NULL) { 774 mutex_exit(&lib_va_init_mutex); 775 goto nolibva; 776 } 777 } 778 model_vmem = lib_va_64_arena; 779 mutex_exit(&lib_va_init_mutex); 780 } else if (lib_va_32_arena == NULL && 781 model == DATAMODEL_ILP32) { 782 mutex_enter(&lib_va_init_mutex); 783 if (lib_va_32_arena == NULL) { 784 base = (caddr_t)align; 785 as_rangelock(as); 786 map_addr(&base, len, 0, 1, ma_flags); 787 as_rangeunlock(as); 788 if (base == NULL) { 789 mutex_exit(&lib_va_init_mutex); 790 MOBJ_STAT_ADD(lib_va_create_failure); 791 goto nolibva; 792 } 793 lib_va_end = (size_t)base + len; 794 lib_va_len = lib_va_end >> 1; 795 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE); 796 lib_va_start = lib_va_end - lib_va_len; 797 lib_va_32_arena = vmem_create("lib_va_32", 798 (void *)lib_va_start, lib_va_len, PAGESIZE, 799 NULL, NULL, NULL, 0, 800 VM_NOSLEEP | VMC_IDENTIFIER); 801 if (lib_va_32_arena == NULL) { 802 mutex_exit(&lib_va_init_mutex); 803 goto nolibva; 804 } 805 } 806 model_vmem = lib_va_32_arena; 807 mutex_exit(&lib_va_init_mutex); 808 } 809 810 if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) { 811 base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL, 812 NULL, VM_NOSLEEP | VM_ENDALLOC); 813 MOBJ_STAT_ADD(alloc_vmem); 814 } 815 816 /* 817 * Even if the address fails to fit in our address space, 818 * or we can't use a reserved address, 819 * we should still save it off in lib_va_hash. 820 */ 821 *lvpp = lib_va_add_hash(base, len, align, vap); 822 823 /* 824 * Check for collision on insertion and free up our VA space. 825 * This is expected to be rare, so we'll just reset base to 826 * NULL instead of looking it up in the lib_va hash. 827 */ 828 if (*lvpp == NULL) { 829 if (base != NULL) { 830 vmem_xfree(model_vmem, base, len); 831 base = NULL; 832 MOBJ_STAT_ADD(add_collision); 833 } 834 } 835 } 836 837 nolibva: 838 as_rangelock(as); 839 840 /* 841 * If we don't have an expected base address, or the one that we want 842 * to use is not available or acceptable, go get an acceptable 843 * address range. 844 */ 845 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) || 846 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) != 847 RANGE_OKAY) { 848 MOBJ_STAT_ADD(get_addr); 849 base = (caddr_t)align; 850 map_addr(&base, len, 0, 1, ma_flags); 851 } 852 853 /* 854 * Need to reserve the address space we're going to use. 855 * Don't reserve swap space since we'll be mapping over this. 856 */ 857 if (base != NULL) { 858 /* Don't reserve swap space since we'll be mapping over this */ 859 crargs.flags |= MAP_NORESERVE; 860 error = as_map(as, base, len, segvn_create, &crargs); 861 if (error) { 862 base = NULL; 863 } 864 } 865 866 as_rangeunlock(as); 867 return (base); 868 } 869 870 /* 871 * Map the file associated with vp into the address space as a single 872 * read only private mapping. 873 * Returns 0 for success, and non-zero for failure to map the file. 874 */ 875 static int 876 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding, 877 cred_t *fcred) 878 { 879 int error = 0; 880 struct as *as = curproc->p_as; 881 caddr_t addr = NULL; 882 caddr_t start_addr; 883 size_t len; 884 size_t pad_len; 885 int prot = PROT_USER | PROT_READ; 886 uint_t ma_flags = _MAP_LOW32; 887 vattr_t vattr; 888 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 889 890 if (get_udatamodel() == DATAMODEL_LP64) { 891 ma_flags = 0; 892 } 893 894 vattr.va_mask = AT_SIZE; 895 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 896 if (error) { 897 return (error); 898 } 899 900 len = vattr.va_size; 901 902 ma_flags |= MAP_PRIVATE; 903 if (padding == 0) { 904 MOBJ_STAT_ADD(map_flat_no_padding); 905 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, 906 ma_flags, fcred, NULL); 907 if (error == 0) { 908 mrp[0].mr_addr = addr; 909 mrp[0].mr_msize = len; 910 mrp[0].mr_fsize = len; 911 mrp[0].mr_offset = 0; 912 mrp[0].mr_prot = prot; 913 mrp[0].mr_flags = 0; 914 } 915 return (error); 916 } 917 918 /* padding was requested so there's more work to be done */ 919 MOBJ_STAT_ADD(map_flat_padding); 920 921 /* No need to reserve swap space now since it will be reserved later */ 922 crargs.flags |= MAP_NORESERVE; 923 924 /* Need to setup padding which can only be in PAGESIZE increments. */ 925 ASSERT((padding & PAGEOFFSET) == 0); 926 pad_len = len + (2 * padding); 927 928 as_rangelock(as); 929 map_addr(&addr, pad_len, 0, 1, ma_flags); 930 error = as_map(as, addr, pad_len, segvn_create, &crargs); 931 as_rangeunlock(as); 932 if (error) { 933 return (error); 934 } 935 start_addr = addr; 936 addr += padding; 937 ma_flags |= MAP_FIXED; 938 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags, 939 fcred, NULL); 940 if (error == 0) { 941 mrp[0].mr_addr = start_addr; 942 mrp[0].mr_msize = padding; 943 mrp[0].mr_fsize = 0; 944 mrp[0].mr_offset = 0; 945 mrp[0].mr_prot = 0; 946 mrp[0].mr_flags = MR_PADDING; 947 948 mrp[1].mr_addr = addr; 949 mrp[1].mr_msize = len; 950 mrp[1].mr_fsize = len; 951 mrp[1].mr_offset = 0; 952 mrp[1].mr_prot = prot; 953 mrp[1].mr_flags = 0; 954 955 mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE); 956 mrp[2].mr_msize = padding; 957 mrp[2].mr_fsize = 0; 958 mrp[2].mr_offset = 0; 959 mrp[2].mr_prot = 0; 960 mrp[2].mr_flags = MR_PADDING; 961 } else { 962 /* Need to cleanup the as_map from earlier */ 963 (void) as_unmap(as, start_addr, pad_len); 964 } 965 return (error); 966 } 967 968 /* 969 * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's 970 * address space. 971 * vp - vnode to be mapped in 972 * addr - start address 973 * len - length of vp to be mapped 974 * zfodlen - length of zero filled memory after len above 975 * offset - offset into file where mapping should start 976 * prot - protections for this mapping 977 * fcred - credentials for the file associated with vp at open time. 978 */ 979 static int 980 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 981 off_t offset, int prot, cred_t *fcred) 982 { 983 int error = 0; 984 caddr_t zfodbase, oldaddr; 985 size_t oldlen; 986 size_t end; 987 size_t zfoddiff; 988 label_t ljb; 989 struct as *as = curproc->p_as; 990 model_t model; 991 int full_page; 992 993 /* 994 * See if addr and offset are aligned such that we can map in 995 * full pages instead of partial pages. 996 */ 997 full_page = (((uintptr_t)addr & PAGEOFFSET) == 998 ((uintptr_t)offset & PAGEOFFSET)); 999 1000 model = get_udatamodel(); 1001 1002 oldaddr = addr; 1003 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1004 if (len) { 1005 spgcnt_t availm, npages; 1006 int preread; 1007 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1008 1009 if (model == DATAMODEL_ILP32) { 1010 mflag |= _MAP_LOW32; 1011 } 1012 /* We may need to map in extra bytes */ 1013 oldlen = len; 1014 len += ((size_t)oldaddr & PAGEOFFSET); 1015 1016 if (full_page) { 1017 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1018 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1019 mflag |= MAP_TEXT; 1020 MOBJ_STAT_ADD(map_ptload_text); 1021 } else { 1022 mflag |= MAP_INITDATA; 1023 MOBJ_STAT_ADD(map_ptload_initdata); 1024 } 1025 1026 /* 1027 * maxprot is passed as PROT_ALL so that mdb can 1028 * write to this segment. 1029 */ 1030 if (error = VOP_MAP(vp, (offset_t)offset, as, &addr, 1031 len, prot, PROT_ALL, mflag, fcred, NULL)) { 1032 return (error); 1033 } 1034 1035 /* 1036 * If the segment can fit and is relatively small, then 1037 * we prefault the entire segment in. This is based 1038 * on the model that says the best working set of a 1039 * small program is all of its pages. 1040 * We only do this if freemem will not drop below 1041 * lotsfree since we don't want to induce paging. 1042 */ 1043 npages = (spgcnt_t)btopr(len); 1044 availm = freemem - lotsfree; 1045 preread = (npages < availm && len < PGTHRESH) ? 1 : 0; 1046 1047 /* 1048 * If we aren't prefaulting the segment, 1049 * increment "deficit", if necessary to ensure 1050 * that pages will become available when this 1051 * process starts executing. 1052 */ 1053 if (preread == 0 && npages > availm && 1054 deficit < lotsfree) { 1055 deficit += MIN((pgcnt_t)(npages - availm), 1056 lotsfree - deficit); 1057 } 1058 1059 if (preread) { 1060 (void) as_faulta(as, addr, len); 1061 MOBJ_STAT_ADD(map_ptload_preread); 1062 } 1063 } else { 1064 /* 1065 * addr and offset were not aligned such that we could 1066 * use VOP_MAP, thus we need to as_map the memory we 1067 * need and then read the data in from disk. 1068 * This code path is a corner case which should never 1069 * be taken, but hand crafted binaries could trigger 1070 * this logic and it needs to work correctly. 1071 */ 1072 MOBJ_STAT_ADD(map_ptload_unaligned_text); 1073 as_rangelock(as); 1074 (void) as_unmap(as, addr, len); 1075 1076 /* 1077 * We use zfod_argsp because we need to be able to 1078 * write to the mapping and then we'll change the 1079 * protections later if they are incorrect. 1080 */ 1081 error = as_map(as, addr, len, segvn_create, zfod_argsp); 1082 as_rangeunlock(as); 1083 if (error) { 1084 MOBJ_STAT_ADD(map_ptload_unaligned_map_fail); 1085 return (error); 1086 } 1087 1088 /* Now read in the data from disk */ 1089 error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset, 1090 UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL); 1091 if (error) { 1092 MOBJ_STAT_ADD(map_ptload_unaligned_read_fail); 1093 return (error); 1094 } 1095 1096 /* 1097 * Now set protections. 1098 */ 1099 if (prot != PROT_ZFOD) { 1100 (void) as_setprot(as, addr, len, prot); 1101 } 1102 } 1103 } 1104 1105 if (zfodlen) { 1106 end = (size_t)addr + len; 1107 zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE); 1108 zfoddiff = (uintptr_t)zfodbase - end; 1109 if (zfoddiff) { 1110 MOBJ_STAT_ADD(zfoddiff); 1111 if ((prot & PROT_WRITE) == 0) { 1112 (void) as_setprot(as, (caddr_t)end, 1113 zfoddiff, prot | PROT_WRITE); 1114 MOBJ_STAT_ADD(zfoddiff_nowrite); 1115 } 1116 if (on_fault(&ljb)) { 1117 no_fault(); 1118 if ((prot & PROT_WRITE) == 0) { 1119 (void) as_setprot(as, (caddr_t)end, 1120 zfoddiff, prot); 1121 } 1122 return (EFAULT); 1123 } 1124 uzero((void *)end, zfoddiff); 1125 no_fault(); 1126 1127 /* 1128 * Remove write protection to return to original state 1129 */ 1130 if ((prot & PROT_WRITE) == 0) { 1131 (void) as_setprot(as, (caddr_t)end, 1132 zfoddiff, prot); 1133 } 1134 } 1135 if (zfodlen > zfoddiff) { 1136 struct segvn_crargs crargs = 1137 SEGVN_ZFOD_ARGS(prot, PROT_ALL); 1138 1139 MOBJ_STAT_ADD(zfodextra); 1140 zfodlen -= zfoddiff; 1141 crargs.szc = AS_MAP_NO_LPOOB; 1142 1143 1144 as_rangelock(as); 1145 (void) as_unmap(as, (caddr_t)zfodbase, zfodlen); 1146 error = as_map(as, (caddr_t)zfodbase, 1147 zfodlen, segvn_create, &crargs); 1148 as_rangeunlock(as); 1149 if (error) { 1150 return (error); 1151 } 1152 } 1153 } 1154 return (0); 1155 } 1156 1157 /* 1158 * Map the ELF file represented by vp into the users address space. The 1159 * first mapping will start at start_addr and there will be num_elements 1160 * mappings. The mappings are described by the data in mrp which may be 1161 * modified upon returning from this function. 1162 * Returns 0 for success or errno for failure. 1163 */ 1164 static int 1165 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp, 1166 int num_elements, cred_t *fcred, ushort_t e_type) 1167 { 1168 int i; 1169 int ret; 1170 caddr_t lo; 1171 caddr_t hi; 1172 struct as *as = curproc->p_as; 1173 1174 for (i = 0; i < num_elements; i++) { 1175 caddr_t addr; 1176 size_t p_memsz; 1177 size_t p_filesz; 1178 size_t zfodlen; 1179 offset_t p_offset; 1180 size_t dif; 1181 int prot; 1182 1183 /* Always need to adjust mr_addr */ 1184 addr = start_addr + (size_t)(mrp[i].mr_addr); 1185 mrp[i].mr_addr = 1186 (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1187 1188 /* Padding has already been mapped */ 1189 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) { 1190 continue; 1191 } 1192 p_memsz = mrp[i].mr_msize; 1193 p_filesz = mrp[i].mr_fsize; 1194 zfodlen = p_memsz - p_filesz; 1195 p_offset = mrp[i].mr_offset; 1196 dif = (uintptr_t)(addr) & PAGEOFFSET; 1197 prot = mrp[i].mr_prot | PROT_USER; 1198 ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen, 1199 p_offset, prot, fcred); 1200 if (ret != 0) { 1201 MOBJ_STAT_ADD(ptload_failed); 1202 mmapobj_unmap(mrp, i, num_elements, e_type); 1203 return (ret); 1204 } 1205 1206 /* Need to cleanup mrp to reflect the actual values used */ 1207 mrp[i].mr_msize += dif; 1208 mrp[i].mr_offset = (size_t)addr & PAGEOFFSET; 1209 } 1210 1211 /* Also need to unmap any holes created above */ 1212 if (num_elements == 1) { 1213 MOBJ_STAT_ADD(map_elf_no_holes); 1214 return (0); 1215 } 1216 if (e_type == ET_EXEC) { 1217 return (0); 1218 } 1219 1220 as_rangelock(as); 1221 lo = start_addr; 1222 hi = mrp[0].mr_addr; 1223 1224 /* Remove holes made by the rest of the segments */ 1225 for (i = 0; i < num_elements - 1; i++) { 1226 lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) + 1227 mrp[i].mr_msize, PAGESIZE); 1228 hi = mrp[i + 1].mr_addr; 1229 if (lo < hi) { 1230 /* 1231 * If as_unmap fails we just use up a bit of extra 1232 * space 1233 */ 1234 (void) as_unmap(as, (caddr_t)lo, 1235 (size_t)hi - (size_t)lo); 1236 MOBJ_STAT_ADD(unmap_hole); 1237 } 1238 } 1239 as_rangeunlock(as); 1240 1241 return (0); 1242 } 1243 1244 /* Ugly hack to get STRUCT_* macros to work below */ 1245 struct myphdr { 1246 Phdr x; /* native version */ 1247 }; 1248 1249 struct myphdr32 { 1250 Elf32_Phdr x; 1251 }; 1252 1253 /* 1254 * Calculate and return the number of loadable segments in the ELF Phdr 1255 * represented by phdrbase as well as the len of the total mapping and 1256 * the max alignment that is needed for a given segment. On success, 1257 * 0 is returned, and *len, *loadable and *align have been filled out. 1258 * On failure, errno will be returned, which in this case is ENOTSUP 1259 * if we were passed an ELF file with overlapping segments. 1260 */ 1261 static int 1262 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len, 1263 int *loadable, size_t *align) 1264 { 1265 int i; 1266 int hsize; 1267 model_t model; 1268 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */ 1269 uint_t p_type; 1270 offset_t p_offset; 1271 size_t p_memsz; 1272 size_t p_align; 1273 caddr_t vaddr; 1274 int num_segs = 0; 1275 caddr_t start_addr = NULL; 1276 caddr_t p_end = NULL; 1277 size_t max_align = 0; 1278 size_t min_align = PAGESIZE; /* needed for vmem_xalloc */ 1279 STRUCT_HANDLE(myphdr, mph); 1280 #if defined(__sparc) 1281 extern int vac_size; 1282 1283 /* 1284 * Want to prevent aliasing by making the start address at least be 1285 * aligned to vac_size. 1286 */ 1287 min_align = MAX(PAGESIZE, vac_size); 1288 #endif 1289 1290 model = get_udatamodel(); 1291 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1292 1293 /* hsize alignment should have been checked before calling this func */ 1294 if (model == DATAMODEL_LP64) { 1295 hsize = ehdrp->e_phentsize; 1296 if (hsize & 7) { 1297 return (ENOTSUP); 1298 } 1299 } else { 1300 ASSERT(model == DATAMODEL_ILP32); 1301 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize; 1302 if (hsize & 3) { 1303 return (ENOTSUP); 1304 } 1305 } 1306 1307 /* 1308 * Determine the span of all loadable segments and calculate the 1309 * number of loadable segments. 1310 */ 1311 for (i = 0; i < nphdrs; i++) { 1312 p_type = STRUCT_FGET(mph, x.p_type); 1313 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) { 1314 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr); 1315 p_memsz = STRUCT_FGET(mph, x.p_memsz); 1316 1317 /* 1318 * Skip this header if it requests no memory to be 1319 * mapped. 1320 */ 1321 if (p_memsz == 0) { 1322 STRUCT_SET_HANDLE(mph, model, 1323 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1324 hsize)); 1325 MOBJ_STAT_ADD(nomem_header); 1326 continue; 1327 } 1328 if (num_segs++ == 0) { 1329 /* 1330 * The p_vaddr of the first PT_LOAD segment 1331 * must either be NULL or within the first 1332 * page in order to be interpreted. 1333 * Otherwise, its an invalid file. 1334 */ 1335 if (e_type == ET_DYN && 1336 ((caddr_t)((uintptr_t)vaddr & 1337 (uintptr_t)PAGEMASK) != NULL)) { 1338 MOBJ_STAT_ADD(inval_header); 1339 return (ENOTSUP); 1340 } 1341 start_addr = vaddr; 1342 /* 1343 * For the first segment, we need to map from 1344 * the beginning of the file, so we will 1345 * adjust the size of the mapping to include 1346 * this memory. 1347 */ 1348 p_offset = STRUCT_FGET(mph, x.p_offset); 1349 } else { 1350 p_offset = 0; 1351 } 1352 /* 1353 * Check to make sure that this mapping wouldn't 1354 * overlap a previous mapping. 1355 */ 1356 if (vaddr < p_end) { 1357 MOBJ_STAT_ADD(overlap_header); 1358 return (ENOTSUP); 1359 } 1360 1361 p_end = vaddr + p_memsz + p_offset; 1362 p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE); 1363 1364 p_align = STRUCT_FGET(mph, x.p_align); 1365 if (p_align > 1 && p_align > max_align) { 1366 max_align = p_align; 1367 if (max_align < min_align) { 1368 max_align = min_align; 1369 MOBJ_STAT_ADD(min_align); 1370 } 1371 } 1372 } 1373 STRUCT_SET_HANDLE(mph, model, 1374 (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize)); 1375 } 1376 1377 /* 1378 * The alignment should be a power of 2, if it isn't we forgive it 1379 * and round up. On overflow, we'll set the alignment to max_align 1380 * rounded down to the nearest power of 2. 1381 */ 1382 if (max_align > 0 && !ISP2(max_align)) { 1383 MOBJ_STAT_ADD(np2_align); 1384 *align = 2 * (1L << (highbit(max_align) - 1)); 1385 if (*align < max_align || 1386 (*align > UINT_MAX && model == DATAMODEL_ILP32)) { 1387 MOBJ_STAT_ADD(np2_align_overflow); 1388 *align = 1L << (highbit(max_align) - 1); 1389 } 1390 } else { 1391 *align = max_align; 1392 } 1393 1394 ASSERT(*align >= PAGESIZE || *align == 0); 1395 1396 *loadable = num_segs; 1397 *len = p_end - start_addr; 1398 return (0); 1399 } 1400 1401 /* 1402 * Check the address space to see if the virtual addresses to be used are 1403 * available. If they are not, return errno for failure. On success, 0 1404 * will be returned, and the virtual addresses for each mmapobj_result_t 1405 * will be reserved. Note that a reservation could have earlier been made 1406 * for a given segment via a /dev/null mapping. If that is the case, then 1407 * we can use that VA space for our mappings. 1408 * Note: this function will only be used for ET_EXEC binaries. 1409 */ 1410 int 1411 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr) 1412 { 1413 int i; 1414 struct as *as = curproc->p_as; 1415 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1416 int ret; 1417 caddr_t myaddr; 1418 size_t mylen; 1419 struct seg *seg; 1420 1421 /* No need to reserve swap space now since it will be reserved later */ 1422 crargs.flags |= MAP_NORESERVE; 1423 as_rangelock(as); 1424 for (i = 0; i < loadable; i++) { 1425 1426 myaddr = start_addr + (size_t)mrp[i].mr_addr; 1427 mylen = mrp[i].mr_msize; 1428 1429 /* See if there is a hole in the as for this range */ 1430 if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) { 1431 ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr); 1432 ASSERT(mylen == mrp[i].mr_msize); 1433 1434 #ifdef DEBUG 1435 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) { 1436 MOBJ_STAT_ADD(exec_padding); 1437 } 1438 #endif 1439 ret = as_map(as, myaddr, mylen, segvn_create, &crargs); 1440 if (ret) { 1441 as_rangeunlock(as); 1442 mmapobj_unmap_exec(mrp, i, start_addr); 1443 return (ret); 1444 } 1445 } else { 1446 /* 1447 * There is a mapping that exists in the range 1448 * so check to see if it was a "reservation" 1449 * from /dev/null. The mapping is from 1450 * /dev/null if the mapping comes from 1451 * segdev and the type is neither MAP_SHARED 1452 * nor MAP_PRIVATE. 1453 */ 1454 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1455 seg = as_findseg(as, myaddr, 0); 1456 MOBJ_STAT_ADD(exec_addr_mapped); 1457 if (seg && seg->s_ops == &segdev_ops && 1458 ((SEGOP_GETTYPE(seg, myaddr) & 1459 (MAP_SHARED | MAP_PRIVATE)) == 0) && 1460 myaddr >= seg->s_base && 1461 myaddr + mylen <= 1462 seg->s_base + seg->s_size) { 1463 MOBJ_STAT_ADD(exec_addr_devnull); 1464 AS_LOCK_EXIT(as, &as->a_lock); 1465 (void) as_unmap(as, myaddr, mylen); 1466 ret = as_map(as, myaddr, mylen, segvn_create, 1467 &crargs); 1468 mrp[i].mr_flags |= MR_RESV; 1469 if (ret) { 1470 as_rangeunlock(as); 1471 /* Need to remap what we unmapped */ 1472 mmapobj_unmap_exec(mrp, i + 1, 1473 start_addr); 1474 return (ret); 1475 } 1476 } else { 1477 AS_LOCK_EXIT(as, &as->a_lock); 1478 as_rangeunlock(as); 1479 mmapobj_unmap_exec(mrp, i, start_addr); 1480 MOBJ_STAT_ADD(exec_addr_in_use); 1481 return (EADDRINUSE); 1482 } 1483 } 1484 } 1485 as_rangeunlock(as); 1486 return (0); 1487 } 1488 1489 /* 1490 * Walk through the ELF program headers and extract all useful information 1491 * for PT_LOAD and PT_SUNWBSS segments into mrp. 1492 * Return 0 on success or error on failure. 1493 */ 1494 static int 1495 process_phdr(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp, 1496 vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred) 1497 { 1498 int i; 1499 caddr_t start_addr = NULL; 1500 caddr_t vaddr; 1501 size_t len = 0; 1502 size_t lib_len = 0; 1503 int ret; 1504 int prot; 1505 struct lib_va *lvp = NULL; 1506 vattr_t vattr; 1507 struct as *as = curproc->p_as; 1508 int error; 1509 int loadable = 0; 1510 int current = 0; 1511 int use_lib_va = 1; 1512 size_t align = 0; 1513 size_t add_pad = 0; 1514 int hdr_seen = 0; 1515 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */ 1516 uint_t p_type; 1517 offset_t p_offset; 1518 size_t p_memsz; 1519 size_t p_filesz; 1520 uint_t p_flags; 1521 int hsize; 1522 model_t model; 1523 STRUCT_HANDLE(myphdr, mph); 1524 1525 model = get_udatamodel(); 1526 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1527 1528 /* 1529 * Need to make sure that hsize is aligned properly. 1530 * For 32bit processes, 4 byte alignment is required. 1531 * For 64bit processes, 8 byte alignment is required. 1532 * If the alignment isn't correct, we need to return failure 1533 * since it could cause an alignment error panic while walking 1534 * the phdr array. 1535 */ 1536 if (model == DATAMODEL_LP64) { 1537 hsize = ehdrp->e_phentsize; 1538 if (hsize & 7) { 1539 MOBJ_STAT_ADD(phent_align64); 1540 return (ENOTSUP); 1541 } 1542 } else { 1543 ASSERT(model == DATAMODEL_ILP32); 1544 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize; 1545 if (hsize & 3) { 1546 MOBJ_STAT_ADD(phent_align32); 1547 return (ENOTSUP); 1548 } 1549 } 1550 1551 if (padding != 0) { 1552 use_lib_va = 0; 1553 } 1554 if (e_type == ET_DYN) { 1555 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME; 1556 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 1557 if (error) { 1558 return (error); 1559 } 1560 /* Check to see if we already have a description for this lib */ 1561 lvp = lib_va_find(&vattr); 1562 1563 if (lvp != NULL) { 1564 MOBJ_STAT_ADD(lvp_found); 1565 if (use_lib_va) { 1566 start_addr = mmapobj_lookup_start_addr(lvp); 1567 if (start_addr == NULL) { 1568 lib_va_release(lvp); 1569 return (ENOMEM); 1570 } 1571 } 1572 1573 /* 1574 * loadable may be zero if the original allocator 1575 * of lvp hasn't finished setting it up but the rest 1576 * of the fields will be accurate. 1577 */ 1578 loadable = lvp->lv_num_segs; 1579 len = lvp->lv_len; 1580 align = lvp->lv_align; 1581 } 1582 } 1583 1584 /* 1585 * Determine the span of all loadable segments and calculate the 1586 * number of loadable segments, the total len spanned by the mappings 1587 * and the max alignment, if we didn't get them above. 1588 */ 1589 if (loadable == 0) { 1590 MOBJ_STAT_ADD(no_loadable_yet); 1591 ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len, 1592 &loadable, &align); 1593 if (ret != 0) { 1594 /* 1595 * Since it'd be an invalid file, we shouldn't have 1596 * cached it previously. 1597 */ 1598 ASSERT(lvp == NULL); 1599 return (ret); 1600 } 1601 #ifdef DEBUG 1602 if (lvp) { 1603 ASSERT(len == lvp->lv_len); 1604 ASSERT(align == lvp->lv_align); 1605 } 1606 #endif 1607 } 1608 1609 /* Make sure there's something to map. */ 1610 if (len == 0 || loadable == 0) { 1611 /* 1612 * Since it'd be an invalid file, we shouldn't have 1613 * cached it previously. 1614 */ 1615 ASSERT(lvp == NULL); 1616 MOBJ_STAT_ADD(nothing_to_map); 1617 return (ENOTSUP); 1618 } 1619 1620 lib_len = len; 1621 if (padding != 0) { 1622 loadable += 2; 1623 } 1624 if (loadable > *num_mapped) { 1625 *num_mapped = loadable; 1626 /* cleanup previous reservation */ 1627 if (start_addr) { 1628 (void) as_unmap(as, start_addr, lib_len); 1629 } 1630 MOBJ_STAT_ADD(e2big); 1631 if (lvp) { 1632 lib_va_release(lvp); 1633 } 1634 return (E2BIG); 1635 } 1636 1637 /* 1638 * We now know the size of the object to map and now we need to 1639 * get the start address to map it at. It's possible we already 1640 * have it if we found all the info we need in the lib_va cache. 1641 */ 1642 if (e_type == ET_DYN && start_addr == NULL) { 1643 /* 1644 * Need to make sure padding does not throw off 1645 * required alignment. We can only specify an 1646 * alignment for the starting address to be mapped, 1647 * so we round padding up to the alignment and map 1648 * from there and then throw out the extra later. 1649 */ 1650 if (padding != 0) { 1651 if (align > 1) { 1652 add_pad = P2ROUNDUP(padding, align); 1653 len += add_pad; 1654 MOBJ_STAT_ADD(dyn_pad_align); 1655 } else { 1656 MOBJ_STAT_ADD(dyn_pad_noalign); 1657 len += padding; /* at beginning */ 1658 } 1659 len += padding; /* at end of mapping */ 1660 } 1661 /* 1662 * At this point, if lvp is non-NULL, then above we 1663 * already found it in the cache but did not get 1664 * the start address since we were not going to use lib_va. 1665 * Since we know that lib_va will not be used, it's safe 1666 * to call mmapobj_alloc_start_addr and know that lvp 1667 * will not be modified. 1668 */ 1669 ASSERT(lvp ? use_lib_va == 0 : 1); 1670 start_addr = mmapobj_alloc_start_addr(&lvp, len, 1671 use_lib_va, align, &vattr); 1672 if (start_addr == NULL) { 1673 if (lvp) { 1674 lib_va_release(lvp); 1675 } 1676 MOBJ_STAT_ADD(alloc_start_fail); 1677 return (ENOMEM); 1678 } 1679 /* 1680 * If we can't cache it, no need to hang on to it. 1681 * Setting lv_num_segs to non-zero will make that 1682 * field active and since there are too many segments 1683 * to cache, all future users will not try to use lv_mps. 1684 */ 1685 if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) { 1686 lvp->lv_num_segs = loadable; 1687 lib_va_release(lvp); 1688 lvp = NULL; 1689 MOBJ_STAT_ADD(lvp_nocache); 1690 } 1691 /* 1692 * Free the beginning of the mapping if the padding 1693 * was not aligned correctly. 1694 */ 1695 if (padding != 0 && add_pad != padding) { 1696 (void) as_unmap(as, start_addr, 1697 add_pad - padding); 1698 start_addr += (add_pad - padding); 1699 MOBJ_STAT_ADD(extra_padding); 1700 } 1701 } 1702 1703 /* 1704 * At this point, we have reserved the virtual address space 1705 * for our mappings. Now we need to start filling out the mrp 1706 * array to describe all of the individual mappings we are going 1707 * to return. 1708 * For ET_EXEC there has been no memory reservation since we are 1709 * using fixed addresses. While filling in the mrp array below, 1710 * we will have the first segment biased to start at addr 0 1711 * and the rest will be biased by this same amount. Thus if there 1712 * is padding, the first padding will start at addr 0, and the next 1713 * segment will start at the value of padding. 1714 */ 1715 1716 /* We'll fill out padding later, so start filling in mrp at index 1 */ 1717 if (padding != 0) { 1718 current = 1; 1719 } 1720 1721 /* If we have no more need for lvp let it go now */ 1722 if (lvp != NULL && use_lib_va == 0) { 1723 lib_va_release(lvp); 1724 MOBJ_STAT_ADD(lvp_not_needed); 1725 lvp = NULL; 1726 } 1727 1728 /* Now fill out the mrp structs from the program headers */ 1729 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1730 for (i = 0; i < nphdrs; i++) { 1731 p_type = STRUCT_FGET(mph, x.p_type); 1732 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) { 1733 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr); 1734 p_memsz = STRUCT_FGET(mph, x.p_memsz); 1735 p_filesz = STRUCT_FGET(mph, x.p_filesz); 1736 p_offset = STRUCT_FGET(mph, x.p_offset); 1737 p_flags = STRUCT_FGET(mph, x.p_flags); 1738 1739 /* 1740 * Skip this header if it requests no memory to be 1741 * mapped. 1742 */ 1743 if (p_memsz == 0) { 1744 STRUCT_SET_HANDLE(mph, model, 1745 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1746 hsize)); 1747 MOBJ_STAT_ADD(no_mem_map_sz); 1748 continue; 1749 } 1750 1751 prot = 0; 1752 if (p_flags & PF_R) 1753 prot |= PROT_READ; 1754 if (p_flags & PF_W) 1755 prot |= PROT_WRITE; 1756 if (p_flags & PF_X) 1757 prot |= PROT_EXEC; 1758 1759 ASSERT(current < loadable); 1760 mrp[current].mr_msize = p_memsz; 1761 mrp[current].mr_fsize = p_filesz; 1762 mrp[current].mr_offset = p_offset; 1763 mrp[current].mr_prot = prot; 1764 1765 if (hdr_seen == 0 && p_filesz != 0) { 1766 mrp[current].mr_flags = MR_HDR_ELF; 1767 /* 1768 * We modify mr_offset because we 1769 * need to map the ELF header as well, and if 1770 * we didn't then the header could be left out 1771 * of the mapping that we will create later. 1772 * Since we're removing the offset, we need to 1773 * account for that in the other fields as well 1774 * since we will be mapping the memory from 0 1775 * to p_offset. 1776 */ 1777 if (e_type == ET_DYN) { 1778 mrp[current].mr_offset = 0; 1779 mrp[current].mr_msize += p_offset; 1780 mrp[current].mr_fsize += p_offset; 1781 } else { 1782 ASSERT(e_type == ET_EXEC); 1783 /* 1784 * Save off the start addr which will be 1785 * our bias for the rest of the 1786 * ET_EXEC mappings. 1787 */ 1788 start_addr = vaddr - padding; 1789 } 1790 mrp[current].mr_addr = (caddr_t)padding; 1791 hdr_seen = 1; 1792 } else { 1793 if (e_type == ET_EXEC) { 1794 /* bias mr_addr */ 1795 mrp[current].mr_addr = 1796 vaddr - (size_t)start_addr; 1797 } else { 1798 mrp[current].mr_addr = vaddr + padding; 1799 } 1800 mrp[current].mr_flags = 0; 1801 } 1802 current++; 1803 } 1804 1805 /* Move to next phdr */ 1806 STRUCT_SET_HANDLE(mph, model, 1807 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1808 hsize)); 1809 } 1810 1811 /* Now fill out the padding segments */ 1812 if (padding != 0) { 1813 mrp[0].mr_addr = NULL; 1814 mrp[0].mr_msize = padding; 1815 mrp[0].mr_fsize = 0; 1816 mrp[0].mr_offset = 0; 1817 mrp[0].mr_prot = 0; 1818 mrp[0].mr_flags = MR_PADDING; 1819 1820 /* Setup padding for the last segment */ 1821 ASSERT(current == loadable - 1); 1822 mrp[current].mr_addr = (caddr_t)lib_len + padding; 1823 mrp[current].mr_msize = padding; 1824 mrp[current].mr_fsize = 0; 1825 mrp[current].mr_offset = 0; 1826 mrp[current].mr_prot = 0; 1827 mrp[current].mr_flags = MR_PADDING; 1828 } 1829 1830 /* 1831 * Need to make sure address ranges desired are not in use or 1832 * are previously allocated reservations from /dev/null. For 1833 * ET_DYN, we already made sure our address range was free. 1834 */ 1835 if (e_type == ET_EXEC) { 1836 ret = check_exec_addrs(loadable, mrp, start_addr); 1837 if (ret != 0) { 1838 ASSERT(lvp == NULL); 1839 MOBJ_STAT_ADD(check_exec_failed); 1840 return (ret); 1841 } 1842 } 1843 1844 /* Finish up our business with lvp. */ 1845 if (lvp) { 1846 ASSERT(e_type == ET_DYN); 1847 if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) { 1848 bcopy(mrp, lvp->lv_mps, 1849 loadable * sizeof (mmapobj_result_t)); 1850 membar_producer(); 1851 } 1852 /* 1853 * Setting lv_num_segs to a non-zero value indicates that 1854 * lv_mps is now valid and can be used by other threads. 1855 * So, the above stores need to finish before lv_num_segs 1856 * is updated. lv_mps is only valid if lv_num_segs is 1857 * greater than LIBVA_CACHED_SEGS. 1858 */ 1859 lvp->lv_num_segs = loadable; 1860 lib_va_release(lvp); 1861 MOBJ_STAT_ADD(lvp_used); 1862 } 1863 1864 /* Now that we have mrp completely filled out go map it */ 1865 ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type); 1866 if (ret == 0) { 1867 *num_mapped = loadable; 1868 } 1869 1870 return (ret); 1871 } 1872 1873 /* 1874 * Take the ELF file passed in, and do the work of mapping it. 1875 * num_mapped in - # elements in user buffer 1876 * num_mapped out - # sections mapped and length of mrp array if 1877 * no errors. 1878 */ 1879 static int 1880 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp, 1881 uint_t *num_mapped, size_t padding, cred_t *fcred) 1882 { 1883 int error; 1884 offset_t phoff; 1885 int nphdrs; 1886 unsigned char ei_class; 1887 unsigned short phentsize; 1888 ssize_t phsizep; 1889 caddr_t phbasep; 1890 int to_map; 1891 model_t model; 1892 1893 ei_class = ehdrp->e_ident[EI_CLASS]; 1894 model = get_udatamodel(); 1895 if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) || 1896 (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) { 1897 MOBJ_STAT_ADD(wrong_model); 1898 return (ENOTSUP); 1899 } 1900 1901 /* Can't execute code from "noexec" mounted filesystem. */ 1902 if (ehdrp->e_type == ET_EXEC && 1903 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) { 1904 MOBJ_STAT_ADD(noexec_fs); 1905 return (EACCES); 1906 } 1907 1908 /* 1909 * Relocatable and core files are mapped as a single flat file 1910 * since no interpretation is done on them by mmapobj. 1911 */ 1912 if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) { 1913 to_map = padding ? 3 : 1; 1914 if (*num_mapped < to_map) { 1915 *num_mapped = to_map; 1916 MOBJ_STAT_ADD(e2big_et_rel); 1917 return (E2BIG); 1918 } 1919 error = mmapobj_map_flat(vp, mrp, padding, fcred); 1920 if (error == 0) { 1921 *num_mapped = to_map; 1922 mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF; 1923 MOBJ_STAT_ADD(et_rel_mapped); 1924 } 1925 return (error); 1926 } 1927 1928 /* Check for an unknown ELF type */ 1929 if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) { 1930 MOBJ_STAT_ADD(unknown_elf_type); 1931 return (ENOTSUP); 1932 } 1933 1934 if (ei_class == ELFCLASS32) { 1935 Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp; 1936 ASSERT(model == DATAMODEL_ILP32); 1937 nphdrs = e32hdr->e_phnum; 1938 phentsize = e32hdr->e_phentsize; 1939 if (phentsize < sizeof (Elf32_Phdr)) { 1940 MOBJ_STAT_ADD(phent32_too_small); 1941 return (ENOTSUP); 1942 } 1943 phoff = e32hdr->e_phoff; 1944 } else if (ei_class == ELFCLASS64) { 1945 Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp; 1946 ASSERT(model == DATAMODEL_LP64); 1947 nphdrs = e64hdr->e_phnum; 1948 phentsize = e64hdr->e_phentsize; 1949 if (phentsize < sizeof (Elf64_Phdr)) { 1950 MOBJ_STAT_ADD(phent64_too_small); 1951 return (ENOTSUP); 1952 } 1953 phoff = e64hdr->e_phoff; 1954 } else { 1955 /* fallthrough case for an invalid ELF class */ 1956 MOBJ_STAT_ADD(inval_elf_class); 1957 return (ENOTSUP); 1958 } 1959 1960 /* 1961 * nphdrs should only have this value for core files which are handled 1962 * above as a single mapping. If other file types ever use this 1963 * sentinel, then we'll add the support needed to handle this here. 1964 */ 1965 if (nphdrs == PN_XNUM) { 1966 MOBJ_STAT_ADD(too_many_phdrs); 1967 return (ENOTSUP); 1968 } 1969 1970 phsizep = nphdrs * phentsize; 1971 1972 if (phsizep == 0) { 1973 MOBJ_STAT_ADD(no_phsize); 1974 return (ENOTSUP); 1975 } 1976 1977 /* Make sure we only wait for memory if it's a reasonable request */ 1978 if (phsizep > mmapobj_alloc_threshold) { 1979 MOBJ_STAT_ADD(phsize_large); 1980 if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) { 1981 MOBJ_STAT_ADD(phsize_xtralarge); 1982 return (ENOMEM); 1983 } 1984 } else { 1985 phbasep = kmem_alloc(phsizep, KM_SLEEP); 1986 } 1987 1988 if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep, 1989 (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1990 fcred, NULL)) != 0) { 1991 kmem_free(phbasep, phsizep); 1992 return (error); 1993 } 1994 1995 /* Now process the phdr's */ 1996 error = process_phdr(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped, 1997 padding, fcred); 1998 kmem_free(phbasep, phsizep); 1999 return (error); 2000 } 2001 2002 #if defined(__sparc) 2003 /* 2004 * Hack to support 64 bit kernels running AOUT 4.x programs. 2005 * This is the sizeof (struct nlist) for a 32 bit kernel. 2006 * Since AOUT programs are 32 bit only, they will never use the 64 bit 2007 * sizeof (struct nlist) and thus creating a #define is the simplest 2008 * way around this since this is a format which is not being updated. 2009 * This will be used in the place of sizeof (struct nlist) below. 2010 */ 2011 #define NLIST_SIZE (0xC) 2012 2013 static int 2014 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp, 2015 uint_t *num_mapped, struct exec *hdr, cred_t *fcred) 2016 { 2017 int error; 2018 size_t size; 2019 size_t osize; 2020 size_t nsize; /* nlist size */ 2021 size_t msize; 2022 size_t zfoddiff; 2023 caddr_t addr; 2024 caddr_t start_addr; 2025 struct as *as = curproc->p_as; 2026 int prot = PROT_USER | PROT_READ | PROT_EXEC; 2027 uint_t mflag = MAP_PRIVATE | _MAP_LOW32; 2028 offset_t off = 0; 2029 int segnum = 0; 2030 uint_t to_map; 2031 int is_library = 0; 2032 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 2033 2034 /* Only 32bit apps supported by this file format */ 2035 if (get_udatamodel() != DATAMODEL_ILP32) { 2036 MOBJ_STAT_ADD(aout_64bit_try); 2037 return (ENOTSUP); 2038 } 2039 2040 /* Check to see if this is a library */ 2041 if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) { 2042 is_library = 1; 2043 } 2044 2045 /* Can't execute code from "noexec" mounted filesystem. */ 2046 if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) && (is_library == 0)) { 2047 MOBJ_STAT_ADD(aout_noexec); 2048 return (EACCES); 2049 } 2050 2051 /* 2052 * There are 2 ways to calculate the mapped size of executable: 2053 * 1) rounded text size + data size + bss size. 2054 * 2) starting offset for text + text size + data size + text relocation 2055 * size + data relocation size + room for nlist data structure. 2056 * 2057 * The larger of the two sizes will be used to map this binary. 2058 */ 2059 osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss; 2060 2061 off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec); 2062 2063 nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize + 2064 hdr->a_drsize + NLIST_SIZE; 2065 2066 size = MAX(osize, nsize); 2067 if (size != nsize) { 2068 nsize = 0; 2069 } 2070 2071 /* 2072 * 1 seg for text and 1 seg for initialized data. 2073 * 1 seg for bss (if can't fit in leftover space of init data) 2074 * 1 seg for nlist if needed. 2075 */ 2076 to_map = 2 + (nsize ? 1 : 0) + 2077 (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0); 2078 if (*num_mapped < to_map) { 2079 *num_mapped = to_map; 2080 MOBJ_STAT_ADD(aout_e2big); 2081 return (E2BIG); 2082 } 2083 2084 /* Reserve address space for the whole mapping */ 2085 if (is_library) { 2086 /* We'll let VOP_MAP below pick our address for us */ 2087 addr = NULL; 2088 MOBJ_STAT_ADD(aout_lib); 2089 } else { 2090 /* 2091 * default start address for fixed binaries from AOUT 4.x 2092 * standard. 2093 */ 2094 MOBJ_STAT_ADD(aout_fixed); 2095 mflag |= MAP_FIXED; 2096 addr = (caddr_t)0x2000; 2097 as_rangelock(as); 2098 if (as_gap(as, size, &addr, &size, 0, NULL) != 0) { 2099 as_rangeunlock(as); 2100 MOBJ_STAT_ADD(aout_addr_in_use); 2101 return (EADDRINUSE); 2102 } 2103 crargs.flags |= MAP_NORESERVE; 2104 error = as_map(as, addr, size, segvn_create, &crargs); 2105 ASSERT(addr == (caddr_t)0x2000); 2106 as_rangeunlock(as); 2107 } 2108 2109 start_addr = addr; 2110 osize = size; 2111 2112 /* 2113 * Map as large as we need, backed by file, this will be text, and 2114 * possibly the nlist segment. We map over this mapping for bss and 2115 * initialized data segments. 2116 */ 2117 error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL, 2118 mflag, fcred, NULL); 2119 if (error) { 2120 if (!is_library) { 2121 (void) as_unmap(as, start_addr, osize); 2122 } 2123 return (error); 2124 } 2125 2126 /* pickup the value of start_addr and osize for libraries */ 2127 start_addr = addr; 2128 osize = size; 2129 2130 /* 2131 * We have our initial reservation/allocation so we need to use fixed 2132 * addresses from now on. 2133 */ 2134 mflag |= MAP_FIXED; 2135 2136 mrp[0].mr_addr = addr; 2137 mrp[0].mr_msize = hdr->a_text; 2138 mrp[0].mr_fsize = hdr->a_text; 2139 mrp[0].mr_offset = 0; 2140 mrp[0].mr_prot = PROT_READ | PROT_EXEC; 2141 mrp[0].mr_flags = MR_HDR_AOUT; 2142 2143 2144 /* 2145 * Map initialized data. We are mapping over a portion of the 2146 * previous mapping which will be unmapped in VOP_MAP below. 2147 */ 2148 off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE); 2149 msize = off; 2150 addr += off; 2151 size = hdr->a_data; 2152 error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL, 2153 mflag, fcred, NULL); 2154 if (error) { 2155 (void) as_unmap(as, start_addr, osize); 2156 return (error); 2157 } 2158 msize += size; 2159 mrp[1].mr_addr = addr; 2160 mrp[1].mr_msize = size; 2161 mrp[1].mr_fsize = size; 2162 mrp[1].mr_offset = 0; 2163 mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 2164 mrp[1].mr_flags = 0; 2165 2166 /* Need to zero out remainder of page */ 2167 addr += hdr->a_data; 2168 zfoddiff = P2PHASE((size_t)addr, PAGESIZE); 2169 if (zfoddiff) { 2170 label_t ljb; 2171 2172 MOBJ_STAT_ADD(aout_zfoddiff); 2173 zfoddiff = PAGESIZE - zfoddiff; 2174 if (on_fault(&ljb)) { 2175 no_fault(); 2176 MOBJ_STAT_ADD(aout_uzero_fault); 2177 (void) as_unmap(as, start_addr, osize); 2178 return (EFAULT); 2179 } 2180 uzero(addr, zfoddiff); 2181 no_fault(); 2182 } 2183 msize += zfoddiff; 2184 segnum = 2; 2185 2186 /* Map bss */ 2187 if (hdr->a_bss > zfoddiff) { 2188 struct segvn_crargs crargs = 2189 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 2190 MOBJ_STAT_ADD(aout_map_bss); 2191 addr += zfoddiff; 2192 size = hdr->a_bss - zfoddiff; 2193 as_rangelock(as); 2194 (void) as_unmap(as, addr, size); 2195 error = as_map(as, addr, size, segvn_create, &crargs); 2196 as_rangeunlock(as); 2197 msize += size; 2198 2199 if (error) { 2200 MOBJ_STAT_ADD(aout_bss_fail); 2201 (void) as_unmap(as, start_addr, osize); 2202 return (error); 2203 } 2204 mrp[2].mr_addr = addr; 2205 mrp[2].mr_msize = size; 2206 mrp[2].mr_fsize = 0; 2207 mrp[2].mr_offset = 0; 2208 mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 2209 mrp[2].mr_flags = 0; 2210 2211 addr += size; 2212 segnum = 3; 2213 } 2214 2215 /* 2216 * If we have extra bits left over, we need to include that in how 2217 * much we mapped to make sure the nlist logic is correct 2218 */ 2219 msize = P2ROUNDUP(msize, PAGESIZE); 2220 2221 if (nsize && msize < nsize) { 2222 MOBJ_STAT_ADD(aout_nlist); 2223 mrp[segnum].mr_addr = addr; 2224 mrp[segnum].mr_msize = nsize - msize; 2225 mrp[segnum].mr_fsize = 0; 2226 mrp[segnum].mr_offset = 0; 2227 mrp[segnum].mr_prot = PROT_READ | PROT_EXEC; 2228 mrp[segnum].mr_flags = 0; 2229 } 2230 2231 *num_mapped = to_map; 2232 return (0); 2233 } 2234 #endif 2235 2236 /* 2237 * These are the two types of files that we can interpret and we want to read 2238 * in enough info to cover both types when looking at the initial header. 2239 */ 2240 #define MAX_HEADER_SIZE (MAX(sizeof (Ehdr), sizeof (struct exec))) 2241 2242 /* 2243 * Map vp passed in in an interpreted manner. ELF and AOUT files will be 2244 * interpreted and mapped appropriately for execution. 2245 * num_mapped in - # elements in mrp 2246 * num_mapped out - # sections mapped and length of mrp array if 2247 * no errors or E2BIG returned. 2248 * 2249 * Returns 0 on success, errno value on failure. 2250 */ 2251 static int 2252 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp, 2253 uint_t *num_mapped, size_t padding, cred_t *fcred) 2254 { 2255 int error = 0; 2256 vattr_t vattr; 2257 struct lib_va *lvp; 2258 caddr_t start_addr; 2259 model_t model; 2260 2261 /* 2262 * header has to be aligned to the native size of ulong_t in order 2263 * to avoid an unaligned access when dereferencing the header as 2264 * a ulong_t. Thus we allocate our array on the stack of type 2265 * ulong_t and then have header, which we dereference later as a char 2266 * array point at lheader. 2267 */ 2268 ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1]; 2269 caddr_t header = (caddr_t)&lheader; 2270 2271 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE; 2272 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 2273 if (error) { 2274 return (error); 2275 } 2276 2277 /* 2278 * Check lib_va to see if we already have a full description 2279 * for this library. This is the fast path and only used for 2280 * ET_DYN ELF files (dynamic libraries). 2281 */ 2282 if (padding == 0 && (lvp = lib_va_find(&vattr)) != NULL) { 2283 int num_segs; 2284 2285 model = get_udatamodel(); 2286 if ((model == DATAMODEL_ILP32 && 2287 lvp->lv_flags & LV_ELF64) || 2288 (model == DATAMODEL_LP64 && 2289 lvp->lv_flags & LV_ELF32)) { 2290 lib_va_release(lvp); 2291 MOBJ_STAT_ADD(fast_wrong_model); 2292 return (ENOTSUP); 2293 } 2294 num_segs = lvp->lv_num_segs; 2295 if (*num_mapped < num_segs) { 2296 *num_mapped = num_segs; 2297 lib_va_release(lvp); 2298 MOBJ_STAT_ADD(fast_e2big); 2299 return (E2BIG); 2300 } 2301 2302 /* 2303 * Check to see if we have all the mappable program headers 2304 * cached. 2305 */ 2306 if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) { 2307 MOBJ_STAT_ADD(fast); 2308 start_addr = mmapobj_lookup_start_addr(lvp); 2309 if (start_addr == NULL) { 2310 lib_va_release(lvp); 2311 return (ENOMEM); 2312 } 2313 2314 bcopy(lvp->lv_mps, mrp, 2315 num_segs * sizeof (mmapobj_result_t)); 2316 2317 error = mmapobj_map_elf(vp, start_addr, mrp, 2318 num_segs, fcred, ET_DYN); 2319 2320 lib_va_release(lvp); 2321 if (error == 0) { 2322 *num_mapped = num_segs; 2323 MOBJ_STAT_ADD(fast_success); 2324 } 2325 return (error); 2326 } 2327 MOBJ_STAT_ADD(fast_not_now); 2328 2329 /* Release it for now since we'll look it up below */ 2330 lib_va_release(lvp); 2331 } 2332 2333 /* 2334 * Time to see if this is a file we can interpret. If it's smaller 2335 * than this, then we can't interpret it. 2336 */ 2337 if (vattr.va_size < MAX_HEADER_SIZE) { 2338 MOBJ_STAT_ADD(small_file); 2339 return (ENOTSUP); 2340 } 2341 2342 if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0, 2343 UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) { 2344 MOBJ_STAT_ADD(read_error); 2345 return (error); 2346 } 2347 2348 /* Verify file type */ 2349 if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 && 2350 header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) { 2351 return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped, 2352 padding, fcred)); 2353 } 2354 2355 #if defined(__sparc) 2356 /* On sparc, check for 4.X AOUT format */ 2357 switch (((struct exec *)header)->a_magic) { 2358 case OMAGIC: 2359 case ZMAGIC: 2360 case NMAGIC: 2361 return (doaoutwork(vp, mrp, num_mapped, 2362 (struct exec *)lheader, fcred)); 2363 } 2364 #endif 2365 2366 /* Unsupported type */ 2367 MOBJ_STAT_ADD(unsupported); 2368 return (ENOTSUP); 2369 } 2370 2371 /* 2372 * Given a vnode, map it as either a flat file or interpret it and map 2373 * it according to the rules of the file type. 2374 * *num_mapped will contain the size of the mmapobj_result_t array passed in. 2375 * If padding is non-zero, the mappings will be padded by that amount 2376 * rounded up to the nearest pagesize. 2377 * If the mapping is successful, *num_mapped will contain the number of 2378 * distinct mappings created, and mrp will point to the array of 2379 * mmapobj_result_t's which describe these mappings. 2380 * 2381 * On error, -1 is returned and errno is set appropriately. 2382 * A special error case will set errno to E2BIG when there are more than 2383 * *num_mapped mappings to be created and *num_mapped will be set to the 2384 * number of mappings needed. 2385 */ 2386 int 2387 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp, 2388 uint_t *num_mapped, size_t padding, cred_t *fcred) 2389 { 2390 int to_map; 2391 int error = 0; 2392 2393 ASSERT((padding & PAGEOFFSET) == 0); 2394 ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0); 2395 ASSERT(num_mapped != NULL); 2396 ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0); 2397 2398 if ((flags & MMOBJ_INTERPRET) == 0) { 2399 to_map = padding ? 3 : 1; 2400 if (*num_mapped < to_map) { 2401 *num_mapped = to_map; 2402 MOBJ_STAT_ADD(flat_e2big); 2403 return (E2BIG); 2404 } 2405 error = mmapobj_map_flat(vp, mrp, padding, fcred); 2406 2407 if (error) { 2408 return (error); 2409 } 2410 *num_mapped = to_map; 2411 return (0); 2412 } 2413 2414 error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred); 2415 return (error); 2416 } 2417