xref: /illumos-gate/usr/src/uts/common/os/mmapobj.c (revision 35a5a3587fd94b666239c157d3722745250ccbd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/sysmacros.h>
28 #include <sys/kmem.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/errno.h>
32 #include <sys/mman.h>
33 #include <sys/cmn_err.h>
34 #include <sys/cred.h>
35 #include <sys/vmsystm.h>
36 #include <sys/machsystm.h>
37 #include <sys/debug.h>
38 #include <vm/as.h>
39 #include <vm/seg.h>
40 #include <sys/vmparam.h>
41 #include <sys/vfs.h>
42 #include <sys/elf.h>
43 #include <sys/machelf.h>
44 #include <sys/corectl.h>
45 #include <sys/exec.h>
46 #include <sys/exechdr.h>
47 #include <sys/autoconf.h>
48 #include <sys/mem.h>
49 #include <vm/seg_dev.h>
50 #include <sys/vmparam.h>
51 #include <sys/mmapobj.h>
52 #include <sys/atomic.h>
53 
54 /*
55  * Theory statement:
56  *
57  * The main driving force behind mmapobj is to interpret and map ELF files
58  * inside of the kernel instead of having the linker be responsible for this.
59  *
60  * mmapobj also supports the AOUT 4.x binary format as well as flat files in
61  * a read only manner.
62  *
63  * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD
64  * or PT_SUNWBSS segment according to the ELF standard.  Refer to the "Linker
65  * and Libraries Guide" for more information about the standard and mapping
66  * rules.
67  *
68  * Having mmapobj interpret and map objects will allow the kernel to make the
69  * best decision for where to place the mappings for said objects.  Thus, we
70  * can make optimizations inside of the kernel for specific platforms or
71  * cache mapping information to make mapping objects faster.
72  *
73  * The lib_va_hash will be one such optimization.  For each ELF object that
74  * mmapobj is asked to interpret, we will attempt to cache the information
75  * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of
76  * the same objects.  We will cache up to LIBVA_CACHED_SEGS (see below) program
77  * headers which should cover a majority of the libraries out there without
78  * wasting space.  In order to make sure that the cached information is valid,
79  * we check the passed in vnode's mtime and ctime to make sure the vnode
80  * has not been modified since the last time we used it.
81  *
82  * In addition, the lib_va_hash may contain a preferred starting VA for the
83  * object which can be useful for platforms which support a shared context.
84  * This will increase the likelyhood that library text can be shared among
85  * many different processes.  We limit the reserved VA space for 32 bit objects
86  * in order to minimize fragmenting the processes address space.
87  *
88  * In addition to the above, the mmapobj interface allows for padding to be
89  * requested before the first mapping and after the last mapping created.
90  * When padding is requested, no additional optimizations will be made for
91  * that request.
92  */
93 
94 /*
95  * Threshold to prevent allocating too much kernel memory to read in the
96  * program headers for an object.  If it requires more than below,
97  * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the
98  * program headers which could possibly fail.  If less memory than below is
99  * needed, then we use a KM_SLEEP allocation and are willing to wait for the
100  * memory if we need to.
101  */
102 size_t mmapobj_alloc_threshold = 65536;
103 
104 /* Debug stats for test coverage */
105 #ifdef DEBUG
106 struct mobj_stats {
107 	uint_t	mobjs_unmap_called;
108 	uint_t	mobjs_remap_devnull;
109 	uint_t	mobjs_lookup_start;
110 	uint_t	mobjs_alloc_start;
111 	uint_t	mobjs_alloc_vmem;
112 	uint_t	mobjs_add_collision;
113 	uint_t	mobjs_get_addr;
114 	uint_t	mobjs_map_flat_no_padding;
115 	uint_t	mobjs_map_flat_padding;
116 	uint_t	mobjs_map_ptload_text;
117 	uint_t	mobjs_map_ptload_initdata;
118 	uint_t	mobjs_map_ptload_preread;
119 	uint_t	mobjs_map_ptload_unaligned_text;
120 	uint_t	mobjs_map_ptload_unaligned_map_fail;
121 	uint_t	mobjs_map_ptload_unaligned_read_fail;
122 	uint_t	mobjs_zfoddiff;
123 	uint_t	mobjs_zfoddiff_nowrite;
124 	uint_t	mobjs_zfodextra;
125 	uint_t	mobjs_ptload_failed;
126 	uint_t	mobjs_map_elf_no_holes;
127 	uint_t	mobjs_unmap_hole;
128 	uint_t	mobjs_nomem_header;
129 	uint_t	mobjs_inval_header;
130 	uint_t	mobjs_overlap_header;
131 	uint_t	mobjs_np2_align;
132 	uint_t	mobjs_np2_align_overflow;
133 	uint_t	mobjs_exec_padding;
134 	uint_t	mobjs_exec_addr_mapped;
135 	uint_t	mobjs_exec_addr_devnull;
136 	uint_t	mobjs_exec_addr_in_use;
137 	uint_t	mobjs_lvp_found;
138 	uint_t	mobjs_no_loadable_yet;
139 	uint_t	mobjs_nothing_to_map;
140 	uint_t	mobjs_e2big;
141 	uint_t	mobjs_dyn_pad_align;
142 	uint_t	mobjs_dyn_pad_noalign;
143 	uint_t	mobjs_alloc_start_fail;
144 	uint_t	mobjs_lvp_nocache;
145 	uint_t	mobjs_extra_padding;
146 	uint_t	mobjs_lvp_not_needed;
147 	uint_t	mobjs_no_mem_map_sz;
148 	uint_t	mobjs_check_exec_failed;
149 	uint_t	mobjs_lvp_used;
150 	uint_t	mobjs_wrong_model;
151 	uint_t	mobjs_noexec_fs;
152 	uint_t	mobjs_e2big_et_rel;
153 	uint_t	mobjs_et_rel_mapped;
154 	uint_t	mobjs_unknown_elf_type;
155 	uint_t	mobjs_phent32_too_small;
156 	uint_t	mobjs_phent64_too_small;
157 	uint_t	mobjs_inval_elf_class;
158 	uint_t	mobjs_too_many_phdrs;
159 	uint_t	mobjs_no_phsize;
160 	uint_t	mobjs_phsize_large;
161 	uint_t	mobjs_phsize_xtralarge;
162 	uint_t	mobjs_fast_wrong_model;
163 	uint_t	mobjs_fast_e2big;
164 	uint_t	mobjs_fast;
165 	uint_t	mobjs_fast_success;
166 	uint_t	mobjs_fast_not_now;
167 	uint_t	mobjs_small_file;
168 	uint_t	mobjs_read_error;
169 	uint_t	mobjs_unsupported;
170 	uint_t	mobjs_flat_e2big;
171 	uint_t	mobjs_phent_align32;
172 	uint_t	mobjs_phent_align64;
173 	uint_t	mobjs_lib_va_find_hit;
174 	uint_t	mobjs_lib_va_find_delay_delete;
175 	uint_t	mobjs_lib_va_find_delete;
176 	uint_t	mobjs_lib_va_add_delay_delete;
177 	uint_t	mobjs_lib_va_add_delete;
178 	uint_t	mobjs_lib_va_create_failure;
179 	uint_t	mobjs_min_align;
180 #if defined(__sparc)
181 	uint_t	mobjs_aout_uzero_fault;
182 	uint_t	mobjs_aout_64bit_try;
183 	uint_t	mobjs_aout_noexec;
184 	uint_t	mobjs_aout_e2big;
185 	uint_t	mobjs_aout_lib;
186 	uint_t	mobjs_aout_fixed;
187 	uint_t	mobjs_aout_zfoddiff;
188 	uint_t	mobjs_aout_map_bss;
189 	uint_t	mobjs_aout_bss_fail;
190 	uint_t	mobjs_aout_nlist;
191 	uint_t	mobjs_aout_addr_in_use;
192 #endif
193 } mobj_stats;
194 
195 #define	MOBJ_STAT_ADD(stat)		((mobj_stats.mobjs_##stat)++)
196 #else
197 #define	MOBJ_STAT_ADD(stat)
198 #endif
199 
200 /*
201  * Check if addr is at or above the address space reserved for the stack.
202  * The stack is at the top of the address space for all sparc processes
203  * and 64 bit x86 processes.  For 32 bit x86, the stack is not at the top
204  * of the address space and thus this check wil always return false for
205  * 32 bit x86 processes.
206  */
207 #if defined(__sparc)
208 #define	OVERLAPS_STACK(addr, p)						\
209 	(addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))
210 #elif defined(__amd64)
211 #define	OVERLAPS_STACK(addr, p)						\
212 	((p->p_model == DATAMODEL_LP64) &&				\
213 	(addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))))
214 #elif defined(__i386)
215 #define	OVERLAPS_STACK(addr, p)	0
216 #endif
217 
218 /* lv_flags values - bitmap */
219 #define	LV_ELF32	0x1		/* 32 bit ELF file */
220 #define	LV_ELF64	0x2		/* 64 bit ELF file */
221 #define	LV_DEL		0x4		/* delete when lv_refcnt hits zero */
222 
223 /*
224  * Note: lv_num_segs will denote how many segments this file has and will
225  * only be set after the lv_mps array has been filled out.
226  * lv_mps can only be valid if lv_num_segs is non-zero.
227  */
228 struct lib_va {
229 	struct lib_va		*lv_next;
230 	caddr_t			lv_base_va;	/* start va for library */
231 	ssize_t			lv_len;		/* total va span of library */
232 	size_t			lv_align;	/* minimum alignment */
233 	uint64_t		lv_nodeid;	/* filesystem node id */
234 	uint64_t		lv_fsid;	/* filesystem id */
235 	timestruc_t		lv_ctime;	/* last time file was changed */
236 	timestruc_t		lv_mtime;	/* or modified */
237 	mmapobj_result_t	lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */
238 	int			lv_num_segs;	/* # segs for this file */
239 	int			lv_flags;
240 	uint_t			lv_refcnt;	/* number of holds on struct */
241 };
242 
243 #define	LIB_VA_SIZE	1024
244 #define	LIB_VA_MASK	(LIB_VA_SIZE - 1)
245 #define	LIB_VA_MUTEX_SHIFT	3
246 
247 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1))
248 #error	"LIB_VA_SIZE is not a power of 2"
249 #endif
250 
251 static struct lib_va *lib_va_hash[LIB_VA_SIZE];
252 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT];
253 
254 #define	LIB_VA_HASH_MUTEX(index)					\
255 	(&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT])
256 
257 #define	LIB_VA_HASH(nodeid)						\
258 	(((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK)
259 
260 #define	LIB_VA_MATCH_ID(arg1, arg2)					\
261 	((arg1)->lv_nodeid == (arg2)->va_nodeid &&			\
262 	(arg1)->lv_fsid == (arg2)->va_fsid)
263 
264 #define	LIB_VA_MATCH_TIME(arg1, arg2)					\
265 	((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec &&		\
266 	(arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec &&		\
267 	(arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec &&		\
268 	(arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec)
269 
270 #define	LIB_VA_MATCH(arg1, arg2)					\
271 	(LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2))
272 
273 /*
274  * lib_va will be used for optimized allocation of address ranges for
275  * libraries, such that subsequent mappings of the same library will attempt
276  * to use the same VA as previous mappings of that library.
277  * In order to map libraries at the same VA in many processes, we need to carve
278  * out our own address space for them which is unique across many processes.
279  * We use different arenas for 32 bit and 64 bit libraries.
280  *
281  * Since the 32 bit address space is relatively small, we limit the number of
282  * libraries which try to use consistent virtual addresses to lib_threshold.
283  * For 64 bit libraries there is no such limit since the address space is large.
284  */
285 static vmem_t *lib_va_32_arena;
286 static vmem_t *lib_va_64_arena;
287 uint_t lib_threshold = 20;	/* modifiable via /etc/system */
288 
289 static kmutex_t lib_va_init_mutex;	/* no need to initialize */
290 
291 /*
292  * Number of 32 bit and 64 bit libraries in lib_va hash.
293  */
294 static uint_t libs_mapped_32 = 0;
295 static uint_t libs_mapped_64 = 0;
296 
297 /*
298  * Free up the resources associated with lvp as well as lvp itself.
299  * We also decrement the number of libraries mapped via a lib_va
300  * cached virtual address.
301  */
302 void
303 lib_va_free(struct lib_va *lvp)
304 {
305 	int is_64bit = lvp->lv_flags & LV_ELF64;
306 	ASSERT(lvp->lv_refcnt == 0);
307 
308 	if (lvp->lv_base_va != NULL) {
309 		vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena,
310 		    lvp->lv_base_va, lvp->lv_len);
311 		if (is_64bit) {
312 			atomic_add_32(&libs_mapped_64, -1);
313 		} else {
314 			atomic_add_32(&libs_mapped_32, -1);
315 		}
316 	}
317 	kmem_free(lvp, sizeof (struct lib_va));
318 }
319 
320 /*
321  * See if the file associated with the vap passed in is in the lib_va hash.
322  * If it is and the file has not been modified since last use, then
323  * return a pointer to that data.  Otherwise, return NULL if the file has
324  * changed or the file was not found in the hash.
325  */
326 static struct lib_va *
327 lib_va_find(vattr_t *vap)
328 {
329 	struct lib_va *lvp;
330 	struct lib_va *del = NULL;
331 	struct lib_va **tmp;
332 	uint_t index;
333 	index = LIB_VA_HASH(vap->va_nodeid);
334 
335 	mutex_enter(LIB_VA_HASH_MUTEX(index));
336 	tmp = &lib_va_hash[index];
337 	while (*tmp != NULL) {
338 		lvp = *tmp;
339 		if (LIB_VA_MATCH_ID(lvp, vap)) {
340 			if (LIB_VA_MATCH_TIME(lvp, vap)) {
341 				ASSERT((lvp->lv_flags & LV_DEL) == 0);
342 				lvp->lv_refcnt++;
343 				MOBJ_STAT_ADD(lib_va_find_hit);
344 			} else {
345 				/*
346 				 * file was updated since last use.
347 				 * need to remove it from list.
348 				 */
349 				del = lvp;
350 				*tmp = del->lv_next;
351 				del->lv_next = NULL;
352 				/*
353 				 * If we can't delete it now, mark it for later
354 				 */
355 				if (del->lv_refcnt) {
356 					MOBJ_STAT_ADD(lib_va_find_delay_delete);
357 					del->lv_flags |= LV_DEL;
358 					del = NULL;
359 				}
360 				lvp = NULL;
361 			}
362 			mutex_exit(LIB_VA_HASH_MUTEX(index));
363 			if (del) {
364 				ASSERT(del->lv_refcnt == 0);
365 				MOBJ_STAT_ADD(lib_va_find_delete);
366 				lib_va_free(del);
367 			}
368 			return (lvp);
369 		}
370 		tmp = &lvp->lv_next;
371 	}
372 	mutex_exit(LIB_VA_HASH_MUTEX(index));
373 	return (NULL);
374 }
375 
376 /*
377  * Add a new entry to the lib_va hash.
378  * Search the hash while holding the appropriate mutex to make sure that the
379  * data is not already in the cache.  If we find data that is in the cache
380  * already and has not been modified since last use, we return NULL.  If it
381  * has been modified since last use, we will remove that entry from
382  * the hash and it will be deleted once it's reference count reaches zero.
383  * If there is no current entry in the hash we will add the new entry and
384  * return it to the caller who is responsible for calling lib_va_release to
385  * drop their reference count on it.
386  *
387  * lv_num_segs will be set to zero since the caller needs to add that
388  * information to the data structure.
389  */
390 static struct lib_va *
391 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap)
392 {
393 	struct lib_va *lvp;
394 	uint_t index;
395 	model_t model;
396 	struct lib_va **tmp;
397 	struct lib_va *del = NULL;
398 
399 	model = get_udatamodel();
400 	index = LIB_VA_HASH(vap->va_nodeid);
401 
402 	lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP);
403 
404 	mutex_enter(LIB_VA_HASH_MUTEX(index));
405 
406 	/*
407 	 * Make sure not adding same data a second time.
408 	 * The hash chains should be relatively short and adding
409 	 * is a relatively rare event, so it's worth the check.
410 	 */
411 	tmp = &lib_va_hash[index];
412 	while (*tmp != NULL) {
413 		if (LIB_VA_MATCH_ID(*tmp, vap)) {
414 			if (LIB_VA_MATCH_TIME(*tmp, vap)) {
415 				mutex_exit(LIB_VA_HASH_MUTEX(index));
416 				kmem_free(lvp, sizeof (struct lib_va));
417 				return (NULL);
418 			}
419 
420 			/*
421 			 * We have the same nodeid and fsid but the file has
422 			 * been modified since we last saw it.
423 			 * Need to remove the old node and add this new
424 			 * one.
425 			 * Could probably use a callback mechanism to make
426 			 * this cleaner.
427 			 */
428 			ASSERT(del == NULL);
429 			del = *tmp;
430 			*tmp = del->lv_next;
431 			del->lv_next = NULL;
432 
433 			/*
434 			 * Check to see if we can free it.  If lv_refcnt
435 			 * is greater than zero, than some other thread
436 			 * has a reference to the one we want to delete
437 			 * and we can not delete it.  All of this is done
438 			 * under the lib_va_hash_mutex lock so it is atomic.
439 			 */
440 			if (del->lv_refcnt) {
441 				MOBJ_STAT_ADD(lib_va_add_delay_delete);
442 				del->lv_flags |= LV_DEL;
443 				del = NULL;
444 			}
445 			/* tmp is already advanced */
446 			continue;
447 		}
448 		tmp = &((*tmp)->lv_next);
449 	}
450 
451 	lvp->lv_base_va = base_va;
452 	lvp->lv_len = len;
453 	lvp->lv_align = align;
454 	lvp->lv_nodeid = vap->va_nodeid;
455 	lvp->lv_fsid = vap->va_fsid;
456 	lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec;
457 	lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec;
458 	lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec;
459 	lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec;
460 	lvp->lv_next = NULL;
461 	lvp->lv_refcnt = 1;
462 
463 	/* Caller responsible for filling this and lv_mps out */
464 	lvp->lv_num_segs = 0;
465 
466 	if (model == DATAMODEL_LP64) {
467 		lvp->lv_flags = LV_ELF64;
468 	} else {
469 		ASSERT(model == DATAMODEL_ILP32);
470 		lvp->lv_flags = LV_ELF32;
471 	}
472 
473 	if (base_va != NULL) {
474 		if (model == DATAMODEL_LP64) {
475 			atomic_add_32(&libs_mapped_64, 1);
476 		} else {
477 			ASSERT(model == DATAMODEL_ILP32);
478 			atomic_add_32(&libs_mapped_32, 1);
479 		}
480 	}
481 	ASSERT(*tmp == NULL);
482 	*tmp = lvp;
483 	mutex_exit(LIB_VA_HASH_MUTEX(index));
484 	if (del) {
485 		ASSERT(del->lv_refcnt == 0);
486 		MOBJ_STAT_ADD(lib_va_add_delete);
487 		lib_va_free(del);
488 	}
489 	return (lvp);
490 }
491 
492 /*
493  * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash.
494  * In addition, if this is the last hold and lvp is marked for deletion,
495  * free up it's reserved address space and free the structure.
496  */
497 static void
498 lib_va_release(struct lib_va *lvp)
499 {
500 	uint_t index;
501 	int to_del = 0;
502 
503 	ASSERT(lvp->lv_refcnt > 0);
504 
505 	index = LIB_VA_HASH(lvp->lv_nodeid);
506 	mutex_enter(LIB_VA_HASH_MUTEX(index));
507 	if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) {
508 		to_del = 1;
509 	}
510 	mutex_exit(LIB_VA_HASH_MUTEX(index));
511 	if (to_del) {
512 		ASSERT(lvp->lv_next == 0);
513 		lib_va_free(lvp);
514 	}
515 }
516 
517 /*
518  * Dummy function for mapping through /dev/null
519  * Normally I would have used mmmmap in common/io/mem.c
520  * but that is a static function, and for /dev/null, it
521  * just returns -1.
522  */
523 /* ARGSUSED */
524 static int
525 mmapobj_dummy(dev_t dev, off_t off, int prot)
526 {
527 	return (-1);
528 }
529 
530 /*
531  * Called when an error occurred which requires mmapobj to return failure.
532  * All mapped objects will be unmapped and /dev/null mappings will be
533  * reclaimed if necessary.
534  * num_mapped is the number of elements of mrp which have been mapped, and
535  * num_segs is the total number of elements in mrp.
536  * For e_type ET_EXEC, we need to unmap all of the elements in mrp since
537  * we had already made reservations for them.
538  * If num_mapped equals num_segs, then we know that we had fully mapped
539  * the file and only need to clean up the segments described.
540  * If they are not equal, then for ET_DYN we will unmap the range from the
541  * end of the last mapped segment to the end of the last segment in mrp
542  * since we would have made a reservation for that memory earlier.
543  * If e_type is passed in as zero, num_mapped must equal num_segs.
544  */
545 void
546 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs,
547     ushort_t e_type)
548 {
549 	int i;
550 	struct as *as = curproc->p_as;
551 	caddr_t addr;
552 	size_t size;
553 
554 	if (e_type == ET_EXEC) {
555 		num_mapped = num_segs;
556 	}
557 #ifdef DEBUG
558 	if (e_type == 0) {
559 		ASSERT(num_mapped == num_segs);
560 	}
561 #endif
562 
563 	MOBJ_STAT_ADD(unmap_called);
564 	for (i = 0; i < num_mapped; i++) {
565 
566 		/*
567 		 * If we are going to have to create a mapping we need to
568 		 * make sure that no one else will use the address we
569 		 * need to remap between the time it is unmapped and
570 		 * mapped below.
571 		 */
572 		if (mrp[i].mr_flags & MR_RESV) {
573 			as_rangelock(as);
574 		}
575 		/* Always need to unmap what we mapped */
576 		(void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize);
577 
578 		/* Need to reclaim /dev/null reservation from earlier */
579 		if (mrp[i].mr_flags & MR_RESV) {
580 			struct segdev_crargs dev_a;
581 
582 			ASSERT(e_type != ET_DYN);
583 			/*
584 			 * Use seg_dev segment driver for /dev/null mapping.
585 			 */
586 			dev_a.mapfunc = mmapobj_dummy;
587 			dev_a.dev = makedevice(mm_major, M_NULL);
588 			dev_a.offset = 0;
589 			dev_a.type = 0;		/* neither PRIVATE nor SHARED */
590 			dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
591 			dev_a.hat_attr = 0;
592 			dev_a.hat_flags = 0;
593 
594 			(void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize,
595 			    segdev_create, &dev_a);
596 			MOBJ_STAT_ADD(remap_devnull);
597 			as_rangeunlock(as);
598 		}
599 	}
600 
601 	if (num_mapped != num_segs) {
602 		ASSERT(e_type == ET_DYN);
603 		/* Need to unmap any reservation made after last mapped seg */
604 		if (num_mapped == 0) {
605 			addr = mrp[0].mr_addr;
606 		} else {
607 			addr = mrp[num_mapped - 1].mr_addr +
608 			    mrp[num_mapped - 1].mr_msize;
609 		}
610 		size = (size_t)mrp[num_segs - 1].mr_addr +
611 		    mrp[num_segs - 1].mr_msize - (size_t)addr;
612 		(void) as_unmap(as, addr, size);
613 
614 		/*
615 		 * Now we need to unmap the holes between mapped segs.
616 		 * Note that we have not mapped all of the segments and thus
617 		 * the holes between segments would not have been unmapped
618 		 * yet.  If num_mapped == num_segs, then all of the holes
619 		 * between segments would have already been unmapped.
620 		 */
621 
622 		for (i = 1; i < num_mapped; i++) {
623 			addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize;
624 			size = mrp[i].mr_addr - addr;
625 			(void) as_unmap(as, addr, size);
626 		}
627 	}
628 }
629 
630 /*
631  * We need to add the start address into mrp so that the unmap function
632  * has absolute addresses to use.
633  */
634 static void
635 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr)
636 {
637 	int i;
638 
639 	for (i = 0; i < num_mapped; i++) {
640 		mrp[i].mr_addr += (size_t)start_addr;
641 	}
642 	mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC);
643 }
644 
645 static caddr_t
646 mmapobj_lookup_start_addr(struct lib_va *lvp)
647 {
648 	proc_t *p = curproc;
649 	struct as *as = p->p_as;
650 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
651 	int error;
652 	uint_t ma_flags = _MAP_LOW32;
653 	caddr_t base = NULL;
654 	size_t len;
655 	size_t align;
656 
657 	ASSERT(lvp != NULL);
658 	MOBJ_STAT_ADD(lookup_start);
659 
660 	as_rangelock(as);
661 
662 	base = lvp->lv_base_va;
663 	len = lvp->lv_len;
664 
665 	/*
666 	 * If we don't have an expected base address, or the one that we want
667 	 * to use is not available or acceptable, go get an acceptable
668 	 * address range.
669 	 */
670 	if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
671 	    valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
672 	    RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
673 		if (lvp->lv_flags & LV_ELF64) {
674 			ma_flags = 0;
675 		}
676 
677 		align = lvp->lv_align;
678 		if (align > 1) {
679 			ma_flags |= MAP_ALIGN;
680 		}
681 
682 		base = (caddr_t)align;
683 		map_addr(&base, len, 0, 1, ma_flags);
684 	}
685 
686 	/*
687 	 * Need to reserve the address space we're going to use.
688 	 * Don't reserve swap space since we'll be mapping over this.
689 	 */
690 	if (base != NULL) {
691 		crargs.flags |= MAP_NORESERVE;
692 		error = as_map(as, base, len, segvn_create, &crargs);
693 		if (error) {
694 			base = NULL;
695 		}
696 	}
697 
698 	as_rangeunlock(as);
699 	return (base);
700 }
701 
702 /*
703  * Get the starting address for a given file to be mapped and return it
704  * to the caller.  If we're using lib_va and we need to allocate an address,
705  * we will attempt to allocate it from the global reserved pool such that the
706  * same address can be used in the future for this file.  If we can't use the
707  * reserved address then we just get one that will fit in our address space.
708  *
709  * Returns the starting virtual address for the range to be mapped or NULL
710  * if an error is encountered. If we successfully insert the requested info
711  * into the lib_va hash, then *lvpp will be set to point to this lib_va
712  * structure.  The structure will have a hold on it and thus lib_va_release
713  * needs to be called on it by the caller.  This function will not fill out
714  * lv_mps or lv_num_segs since it does not have enough information to do so.
715  * The caller is responsible for doing this making sure that any modifications
716  * to lv_mps are visible before setting lv_num_segs.
717  */
718 static caddr_t
719 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va,
720     size_t align, vattr_t *vap)
721 {
722 	proc_t *p = curproc;
723 	struct as *as = p->p_as;
724 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
725 	int error;
726 	model_t model;
727 	uint_t ma_flags = _MAP_LOW32;
728 	caddr_t base = NULL;
729 	vmem_t *model_vmem;
730 	size_t lib_va_start;
731 	size_t lib_va_end;
732 	size_t lib_va_len;
733 
734 	ASSERT(lvpp != NULL);
735 
736 	MOBJ_STAT_ADD(alloc_start);
737 	model = get_udatamodel();
738 
739 	if (model == DATAMODEL_LP64) {
740 		ma_flags = 0;
741 		model_vmem = lib_va_64_arena;
742 	} else {
743 		ASSERT(model == DATAMODEL_ILP32);
744 		model_vmem = lib_va_32_arena;
745 	}
746 
747 	if (align > 1) {
748 		ma_flags |= MAP_ALIGN;
749 	}
750 	if (use_lib_va) {
751 		/*
752 		 * The first time through, we need to setup the lib_va arenas.
753 		 * We call map_addr to find a suitable range of memory to map
754 		 * the given library, and we will set the highest address
755 		 * in our vmem arena to the end of this adddress range.
756 		 * We allow up to half of the address space to be used
757 		 * for lib_va addresses but we do not prevent any allocations
758 		 * in this range from other allocation paths.
759 		 */
760 		if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) {
761 			mutex_enter(&lib_va_init_mutex);
762 			if (lib_va_64_arena == NULL) {
763 				base = (caddr_t)align;
764 				as_rangelock(as);
765 				map_addr(&base, len, 0, 1, ma_flags);
766 				as_rangeunlock(as);
767 				if (base == NULL) {
768 					mutex_exit(&lib_va_init_mutex);
769 					MOBJ_STAT_ADD(lib_va_create_failure);
770 					goto nolibva;
771 				}
772 				lib_va_end = (size_t)base + len;
773 				lib_va_len = lib_va_end >> 1;
774 				lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
775 				lib_va_start = lib_va_end - lib_va_len;
776 
777 				/*
778 				 * Need to make sure we avoid the address hole.
779 				 * We know lib_va_end is valid but we need to
780 				 * make sure lib_va_start is as well.
781 				 */
782 				if ((lib_va_end > (size_t)hole_end) &&
783 				    (lib_va_start < (size_t)hole_end)) {
784 					lib_va_start = P2ROUNDUP(
785 					    (size_t)hole_end, PAGESIZE);
786 					lib_va_len = lib_va_end - lib_va_start;
787 				}
788 				lib_va_64_arena = vmem_create("lib_va_64",
789 				    (void *)lib_va_start, lib_va_len, PAGESIZE,
790 				    NULL, NULL, NULL, 0,
791 				    VM_NOSLEEP | VMC_IDENTIFIER);
792 				if (lib_va_64_arena == NULL) {
793 					mutex_exit(&lib_va_init_mutex);
794 					goto nolibva;
795 				}
796 			}
797 			model_vmem = lib_va_64_arena;
798 			mutex_exit(&lib_va_init_mutex);
799 		} else if (lib_va_32_arena == NULL &&
800 		    model == DATAMODEL_ILP32) {
801 			mutex_enter(&lib_va_init_mutex);
802 			if (lib_va_32_arena == NULL) {
803 				base = (caddr_t)align;
804 				as_rangelock(as);
805 				map_addr(&base, len, 0, 1, ma_flags);
806 				as_rangeunlock(as);
807 				if (base == NULL) {
808 					mutex_exit(&lib_va_init_mutex);
809 					MOBJ_STAT_ADD(lib_va_create_failure);
810 					goto nolibva;
811 				}
812 				lib_va_end = (size_t)base + len;
813 				lib_va_len = lib_va_end >> 1;
814 				lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
815 				lib_va_start = lib_va_end - lib_va_len;
816 				lib_va_32_arena = vmem_create("lib_va_32",
817 				    (void *)lib_va_start, lib_va_len, PAGESIZE,
818 				    NULL, NULL, NULL, 0,
819 				    VM_NOSLEEP | VMC_IDENTIFIER);
820 				if (lib_va_32_arena == NULL) {
821 					mutex_exit(&lib_va_init_mutex);
822 					goto nolibva;
823 				}
824 			}
825 			model_vmem = lib_va_32_arena;
826 			mutex_exit(&lib_va_init_mutex);
827 		}
828 
829 		if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) {
830 			base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL,
831 			    NULL, VM_NOSLEEP | VM_ENDALLOC);
832 			MOBJ_STAT_ADD(alloc_vmem);
833 		}
834 
835 		/*
836 		 * Even if the address fails to fit in our address space,
837 		 * or we can't use a reserved address,
838 		 * we should still save it off in lib_va_hash.
839 		 */
840 		*lvpp = lib_va_add_hash(base, len, align, vap);
841 
842 		/*
843 		 * Check for collision on insertion and free up our VA space.
844 		 * This is expected to be rare, so we'll just reset base to
845 		 * NULL instead of looking it up in the lib_va hash.
846 		 */
847 		if (*lvpp == NULL) {
848 			if (base != NULL) {
849 				vmem_xfree(model_vmem, base, len);
850 				base = NULL;
851 				MOBJ_STAT_ADD(add_collision);
852 			}
853 		}
854 	}
855 
856 nolibva:
857 	as_rangelock(as);
858 
859 	/*
860 	 * If we don't have an expected base address, or the one that we want
861 	 * to use is not available or acceptable, go get an acceptable
862 	 * address range.
863 	 */
864 	if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
865 	    valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
866 	    RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
867 		MOBJ_STAT_ADD(get_addr);
868 		base = (caddr_t)align;
869 		map_addr(&base, len, 0, 1, ma_flags);
870 	}
871 
872 	/*
873 	 * Need to reserve the address space we're going to use.
874 	 * Don't reserve swap space since we'll be mapping over this.
875 	 */
876 	if (base != NULL) {
877 		/* Don't reserve swap space since we'll be mapping over this */
878 		crargs.flags |= MAP_NORESERVE;
879 		error = as_map(as, base, len, segvn_create, &crargs);
880 		if (error) {
881 			base = NULL;
882 		}
883 	}
884 
885 	as_rangeunlock(as);
886 	return (base);
887 }
888 
889 /*
890  * Map the file associated with vp into the address space as a single
891  * read only private mapping.
892  * Returns 0 for success, and non-zero for failure to map the file.
893  */
894 static int
895 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding,
896     cred_t *fcred)
897 {
898 	int error = 0;
899 	struct as *as = curproc->p_as;
900 	caddr_t addr = NULL;
901 	caddr_t start_addr;
902 	size_t len;
903 	size_t pad_len;
904 	int prot = PROT_USER | PROT_READ;
905 	uint_t ma_flags = _MAP_LOW32;
906 	vattr_t vattr;
907 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
908 
909 	if (get_udatamodel() == DATAMODEL_LP64) {
910 		ma_flags = 0;
911 	}
912 
913 	vattr.va_mask = AT_SIZE;
914 	error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
915 	if (error) {
916 		return (error);
917 	}
918 
919 	len = vattr.va_size;
920 
921 	ma_flags |= MAP_PRIVATE;
922 	if (padding == 0) {
923 		MOBJ_STAT_ADD(map_flat_no_padding);
924 		error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL,
925 		    ma_flags, fcred, NULL);
926 		if (error == 0) {
927 			mrp[0].mr_addr = addr;
928 			mrp[0].mr_msize = len;
929 			mrp[0].mr_fsize = len;
930 			mrp[0].mr_offset = 0;
931 			mrp[0].mr_prot = prot;
932 			mrp[0].mr_flags = 0;
933 		}
934 		return (error);
935 	}
936 
937 	/* padding was requested so there's more work to be done */
938 	MOBJ_STAT_ADD(map_flat_padding);
939 
940 	/* No need to reserve swap space now since it will be reserved later */
941 	crargs.flags |= MAP_NORESERVE;
942 
943 	/* Need to setup padding which can only be in PAGESIZE increments. */
944 	ASSERT((padding & PAGEOFFSET) == 0);
945 	pad_len = len + (2 * padding);
946 
947 	as_rangelock(as);
948 	map_addr(&addr, pad_len, 0, 1, ma_flags);
949 	error = as_map(as, addr, pad_len, segvn_create, &crargs);
950 	as_rangeunlock(as);
951 	if (error) {
952 		return (error);
953 	}
954 	start_addr = addr;
955 	addr += padding;
956 	ma_flags |= MAP_FIXED;
957 	error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags,
958 	    fcred, NULL);
959 	if (error == 0) {
960 		mrp[0].mr_addr = start_addr;
961 		mrp[0].mr_msize = padding;
962 		mrp[0].mr_fsize = 0;
963 		mrp[0].mr_offset = 0;
964 		mrp[0].mr_prot = 0;
965 		mrp[0].mr_flags = MR_PADDING;
966 
967 		mrp[1].mr_addr = addr;
968 		mrp[1].mr_msize = len;
969 		mrp[1].mr_fsize = len;
970 		mrp[1].mr_offset = 0;
971 		mrp[1].mr_prot = prot;
972 		mrp[1].mr_flags = 0;
973 
974 		mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE);
975 		mrp[2].mr_msize = padding;
976 		mrp[2].mr_fsize = 0;
977 		mrp[2].mr_offset = 0;
978 		mrp[2].mr_prot = 0;
979 		mrp[2].mr_flags = MR_PADDING;
980 	} else {
981 		/* Need to cleanup the as_map from earlier */
982 		(void) as_unmap(as, start_addr, pad_len);
983 	}
984 	return (error);
985 }
986 
987 /*
988  * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's
989  * address space.
990  * vp - vnode to be mapped in
991  * addr - start address
992  * len - length of vp to be mapped
993  * zfodlen - length of zero filled memory after len above
994  * offset - offset into file where mapping should start
995  * prot - protections for this mapping
996  * fcred - credentials for the file associated with vp at open time.
997  */
998 static int
999 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen,
1000     off_t offset, int prot, cred_t *fcred)
1001 {
1002 	int error = 0;
1003 	caddr_t zfodbase, oldaddr;
1004 	size_t oldlen;
1005 	size_t end;
1006 	size_t zfoddiff;
1007 	label_t ljb;
1008 	struct as *as = curproc->p_as;
1009 	model_t model;
1010 	int full_page;
1011 
1012 	/*
1013 	 * See if addr and offset are aligned such that we can map in
1014 	 * full pages instead of partial pages.
1015 	 */
1016 	full_page = (((uintptr_t)addr & PAGEOFFSET) ==
1017 	    ((uintptr_t)offset & PAGEOFFSET));
1018 
1019 	model = get_udatamodel();
1020 
1021 	oldaddr = addr;
1022 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1023 	if (len) {
1024 		spgcnt_t availm, npages;
1025 		int preread;
1026 		uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1027 
1028 		if (model == DATAMODEL_ILP32) {
1029 			mflag |= _MAP_LOW32;
1030 		}
1031 		/* We may need to map in extra bytes */
1032 		oldlen = len;
1033 		len += ((size_t)oldaddr & PAGEOFFSET);
1034 
1035 		if (full_page) {
1036 			offset = (off_t)((uintptr_t)offset & PAGEMASK);
1037 			if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1038 				mflag |= MAP_TEXT;
1039 				MOBJ_STAT_ADD(map_ptload_text);
1040 			} else {
1041 				mflag |= MAP_INITDATA;
1042 				MOBJ_STAT_ADD(map_ptload_initdata);
1043 			}
1044 
1045 			/*
1046 			 * maxprot is passed as PROT_ALL so that mdb can
1047 			 * write to this segment.
1048 			 */
1049 			if (error = VOP_MAP(vp, (offset_t)offset, as, &addr,
1050 			    len, prot, PROT_ALL, mflag, fcred, NULL)) {
1051 				return (error);
1052 			}
1053 
1054 			/*
1055 			 * If the segment can fit and is relatively small, then
1056 			 * we prefault the entire segment in.  This is based
1057 			 * on the model that says the best working set of a
1058 			 * small program is all of its pages.
1059 			 * We only do this if freemem will not drop below
1060 			 * lotsfree since we don't want to induce paging.
1061 			 */
1062 			npages = (spgcnt_t)btopr(len);
1063 			availm = freemem - lotsfree;
1064 			preread = (npages < availm && len < PGTHRESH) ? 1 : 0;
1065 
1066 			/*
1067 			 * If we aren't prefaulting the segment,
1068 			 * increment "deficit", if necessary to ensure
1069 			 * that pages will become available when this
1070 			 * process starts executing.
1071 			 */
1072 			if (preread == 0 && npages > availm &&
1073 			    deficit < lotsfree) {
1074 				deficit += MIN((pgcnt_t)(npages - availm),
1075 				    lotsfree - deficit);
1076 			}
1077 
1078 			if (preread) {
1079 				(void) as_faulta(as, addr, len);
1080 				MOBJ_STAT_ADD(map_ptload_preread);
1081 			}
1082 		} else {
1083 			/*
1084 			 * addr and offset were not aligned such that we could
1085 			 * use VOP_MAP, thus we need to as_map the memory we
1086 			 * need and then read the data in from disk.
1087 			 * This code path is a corner case which should never
1088 			 * be taken, but hand crafted binaries could trigger
1089 			 * this logic and it needs to work correctly.
1090 			 */
1091 			MOBJ_STAT_ADD(map_ptload_unaligned_text);
1092 			as_rangelock(as);
1093 			(void) as_unmap(as, addr, len);
1094 
1095 			/*
1096 			 * We use zfod_argsp because we need to be able to
1097 			 * write to the mapping and then we'll change the
1098 			 * protections later if they are incorrect.
1099 			 */
1100 			error = as_map(as, addr, len, segvn_create, zfod_argsp);
1101 			as_rangeunlock(as);
1102 			if (error) {
1103 				MOBJ_STAT_ADD(map_ptload_unaligned_map_fail);
1104 				return (error);
1105 			}
1106 
1107 			/* Now read in the data from disk */
1108 			error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset,
1109 			    UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL);
1110 			if (error) {
1111 				MOBJ_STAT_ADD(map_ptload_unaligned_read_fail);
1112 				return (error);
1113 			}
1114 
1115 			/*
1116 			 * Now set protections.
1117 			 */
1118 			if (prot != PROT_ZFOD) {
1119 				(void) as_setprot(as, addr, len, prot);
1120 			}
1121 		}
1122 	}
1123 
1124 	if (zfodlen) {
1125 		end = (size_t)addr + len;
1126 		zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE);
1127 		zfoddiff = (uintptr_t)zfodbase - end;
1128 		if (zfoddiff) {
1129 			MOBJ_STAT_ADD(zfoddiff);
1130 			if ((prot & PROT_WRITE) == 0) {
1131 				(void) as_setprot(as, (caddr_t)end,
1132 				    zfoddiff, prot | PROT_WRITE);
1133 				MOBJ_STAT_ADD(zfoddiff_nowrite);
1134 			}
1135 			if (on_fault(&ljb)) {
1136 				no_fault();
1137 				if ((prot & PROT_WRITE) == 0) {
1138 					(void) as_setprot(as, (caddr_t)end,
1139 					    zfoddiff, prot);
1140 				}
1141 				return (EFAULT);
1142 			}
1143 			uzero((void *)end, zfoddiff);
1144 			no_fault();
1145 
1146 			/*
1147 			 * Remove write protection to return to original state
1148 			 */
1149 			if ((prot & PROT_WRITE) == 0) {
1150 				(void) as_setprot(as, (caddr_t)end,
1151 				    zfoddiff, prot);
1152 			}
1153 		}
1154 		if (zfodlen > zfoddiff) {
1155 			struct segvn_crargs crargs =
1156 			    SEGVN_ZFOD_ARGS(prot, PROT_ALL);
1157 
1158 			MOBJ_STAT_ADD(zfodextra);
1159 			zfodlen -= zfoddiff;
1160 			crargs.szc = AS_MAP_NO_LPOOB;
1161 
1162 
1163 			as_rangelock(as);
1164 			(void) as_unmap(as, (caddr_t)zfodbase, zfodlen);
1165 			error = as_map(as, (caddr_t)zfodbase,
1166 			    zfodlen, segvn_create, &crargs);
1167 			as_rangeunlock(as);
1168 			if (error) {
1169 				return (error);
1170 			}
1171 		}
1172 	}
1173 	return (0);
1174 }
1175 
1176 /*
1177  * Map the ELF file represented by vp into the users address space.  The
1178  * first mapping will start at start_addr and there will be num_elements
1179  * mappings.  The mappings are described by the data in mrp which may be
1180  * modified upon returning from this function.
1181  * Returns 0 for success or errno for failure.
1182  */
1183 static int
1184 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp,
1185     int num_elements, cred_t *fcred, ushort_t e_type)
1186 {
1187 	int i;
1188 	int ret;
1189 	caddr_t lo;
1190 	caddr_t hi;
1191 	struct as *as = curproc->p_as;
1192 
1193 	for (i = 0; i < num_elements; i++) {
1194 		caddr_t addr;
1195 		size_t p_memsz;
1196 		size_t p_filesz;
1197 		size_t zfodlen;
1198 		offset_t p_offset;
1199 		size_t dif;
1200 		int prot;
1201 
1202 		/* Always need to adjust mr_addr */
1203 		addr = start_addr + (size_t)(mrp[i].mr_addr);
1204 		mrp[i].mr_addr =
1205 		    (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1206 
1207 		/* Padding has already been mapped */
1208 		if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1209 			continue;
1210 		}
1211 		p_memsz = mrp[i].mr_msize;
1212 		p_filesz = mrp[i].mr_fsize;
1213 		zfodlen = p_memsz - p_filesz;
1214 		p_offset = mrp[i].mr_offset;
1215 		dif = (uintptr_t)(addr) & PAGEOFFSET;
1216 		prot = mrp[i].mr_prot | PROT_USER;
1217 		ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen,
1218 		    p_offset, prot, fcred);
1219 		if (ret != 0) {
1220 			MOBJ_STAT_ADD(ptload_failed);
1221 			mmapobj_unmap(mrp, i, num_elements, e_type);
1222 			return (ret);
1223 		}
1224 
1225 		/* Need to cleanup mrp to reflect the actual values used */
1226 		mrp[i].mr_msize += dif;
1227 		mrp[i].mr_offset = (size_t)addr & PAGEOFFSET;
1228 	}
1229 
1230 	/* Also need to unmap any holes created above */
1231 	if (num_elements == 1) {
1232 		MOBJ_STAT_ADD(map_elf_no_holes);
1233 		return (0);
1234 	}
1235 	if (e_type == ET_EXEC) {
1236 		return (0);
1237 	}
1238 
1239 	as_rangelock(as);
1240 	lo = start_addr;
1241 	hi = mrp[0].mr_addr;
1242 
1243 	/* Remove holes made by the rest of the segments */
1244 	for (i = 0; i < num_elements - 1; i++) {
1245 		lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) +
1246 		    mrp[i].mr_msize, PAGESIZE);
1247 		hi = mrp[i + 1].mr_addr;
1248 		if (lo < hi) {
1249 			/*
1250 			 * If as_unmap fails we just use up a bit of extra
1251 			 * space
1252 			 */
1253 			(void) as_unmap(as, (caddr_t)lo,
1254 			    (size_t)hi - (size_t)lo);
1255 			MOBJ_STAT_ADD(unmap_hole);
1256 		}
1257 	}
1258 	as_rangeunlock(as);
1259 
1260 	return (0);
1261 }
1262 
1263 /* Ugly hack to get STRUCT_* macros to work below */
1264 struct myphdr {
1265 	Phdr		x;	/* native version */
1266 };
1267 
1268 struct myphdr32 {
1269 	Elf32_Phdr	x;
1270 };
1271 
1272 /*
1273  * Calculate and return the number of loadable segments in the ELF Phdr
1274  * represented by phdrbase as well as the len of the total mapping and
1275  * the max alignment that is needed for a given segment.  On success,
1276  * 0 is returned, and *len, *loadable and *align have been filled out.
1277  * On failure, errno will be returned, which in this case is ENOTSUP
1278  * if we were passed an ELF file with overlapping segments.
1279  */
1280 static int
1281 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len,
1282     int *loadable, size_t *align)
1283 {
1284 	int i;
1285 	int hsize;
1286 	model_t model;
1287 	ushort_t e_type = ehdrp->e_type;	/* same offset 32 and 64 bit */
1288 	uint_t p_type;
1289 	offset_t p_offset;
1290 	size_t p_memsz;
1291 	size_t p_align;
1292 	caddr_t vaddr;
1293 	int num_segs = 0;
1294 	caddr_t start_addr = NULL;
1295 	caddr_t p_end = NULL;
1296 	size_t max_align = 0;
1297 	size_t min_align = PAGESIZE;	/* needed for vmem_xalloc */
1298 	STRUCT_HANDLE(myphdr, mph);
1299 #if defined(__sparc)
1300 	extern int vac_size;
1301 
1302 	/*
1303 	 * Want to prevent aliasing by making the start address at least be
1304 	 * aligned to vac_size.
1305 	 */
1306 	min_align = MAX(PAGESIZE, vac_size);
1307 #endif
1308 
1309 	model = get_udatamodel();
1310 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1311 
1312 	/* hsize alignment should have been checked before calling this func */
1313 	if (model == DATAMODEL_LP64) {
1314 		hsize = ehdrp->e_phentsize;
1315 		if (hsize & 7) {
1316 			return (ENOTSUP);
1317 		}
1318 	} else {
1319 		ASSERT(model == DATAMODEL_ILP32);
1320 		hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1321 		if (hsize & 3) {
1322 			return (ENOTSUP);
1323 		}
1324 	}
1325 
1326 	/*
1327 	 * Determine the span of all loadable segments and calculate the
1328 	 * number of loadable segments.
1329 	 */
1330 	for (i = 0; i < nphdrs; i++) {
1331 		p_type = STRUCT_FGET(mph, x.p_type);
1332 		if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1333 			vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1334 			p_memsz = STRUCT_FGET(mph, x.p_memsz);
1335 
1336 			/*
1337 			 * Skip this header if it requests no memory to be
1338 			 * mapped.
1339 			 */
1340 			if (p_memsz == 0) {
1341 				STRUCT_SET_HANDLE(mph, model,
1342 				    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1343 				    hsize));
1344 				MOBJ_STAT_ADD(nomem_header);
1345 				continue;
1346 			}
1347 			if (num_segs++ == 0) {
1348 				/*
1349 				 * The p_vaddr of the first PT_LOAD segment
1350 				 * must either be NULL or within the first
1351 				 * page in order to be interpreted.
1352 				 * Otherwise, its an invalid file.
1353 				 */
1354 				if (e_type == ET_DYN &&
1355 				    ((caddr_t)((uintptr_t)vaddr &
1356 				    (uintptr_t)PAGEMASK) != NULL)) {
1357 					MOBJ_STAT_ADD(inval_header);
1358 					return (ENOTSUP);
1359 				}
1360 				start_addr = vaddr;
1361 				/*
1362 				 * For the first segment, we need to map from
1363 				 * the beginning of the file, so we will
1364 				 * adjust the size of the mapping to include
1365 				 * this memory.
1366 				 */
1367 				p_offset = STRUCT_FGET(mph, x.p_offset);
1368 			} else {
1369 				p_offset = 0;
1370 			}
1371 			/*
1372 			 * Check to make sure that this mapping wouldn't
1373 			 * overlap a previous mapping.
1374 			 */
1375 			if (vaddr < p_end) {
1376 				MOBJ_STAT_ADD(overlap_header);
1377 				return (ENOTSUP);
1378 			}
1379 
1380 			p_end = vaddr + p_memsz + p_offset;
1381 			p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE);
1382 
1383 			p_align = STRUCT_FGET(mph, x.p_align);
1384 			if (p_align > 1 && p_align > max_align) {
1385 				max_align = p_align;
1386 				if (max_align < min_align) {
1387 					max_align = min_align;
1388 					MOBJ_STAT_ADD(min_align);
1389 				}
1390 			}
1391 		}
1392 		STRUCT_SET_HANDLE(mph, model,
1393 		    (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize));
1394 	}
1395 
1396 	/*
1397 	 * The alignment should be a power of 2, if it isn't we forgive it
1398 	 * and round up.  On overflow, we'll set the alignment to max_align
1399 	 * rounded down to the nearest power of 2.
1400 	 */
1401 	if (max_align > 0 && !ISP2(max_align)) {
1402 		MOBJ_STAT_ADD(np2_align);
1403 		*align = 2 * (1L << (highbit(max_align) - 1));
1404 		if (*align < max_align ||
1405 		    (*align > UINT_MAX && model == DATAMODEL_ILP32)) {
1406 			MOBJ_STAT_ADD(np2_align_overflow);
1407 			*align = 1L << (highbit(max_align) - 1);
1408 		}
1409 	} else {
1410 		*align = max_align;
1411 	}
1412 
1413 	ASSERT(*align >= PAGESIZE || *align == 0);
1414 
1415 	*loadable = num_segs;
1416 	*len = p_end - start_addr;
1417 	return (0);
1418 }
1419 
1420 /*
1421  * Check the address space to see if the virtual addresses to be used are
1422  * available.  If they are not, return errno for failure.  On success, 0
1423  * will be returned, and the virtual addresses for each mmapobj_result_t
1424  * will be reserved.  Note that a reservation could have earlier been made
1425  * for a given segment via a /dev/null mapping.  If that is the case, then
1426  * we can use that VA space for our mappings.
1427  * Note: this function will only be used for ET_EXEC binaries.
1428  */
1429 int
1430 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr)
1431 {
1432 	int i;
1433 	struct as *as = curproc->p_as;
1434 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1435 	int ret;
1436 	caddr_t myaddr;
1437 	size_t mylen;
1438 	struct seg *seg;
1439 
1440 	/* No need to reserve swap space now since it will be reserved later */
1441 	crargs.flags |= MAP_NORESERVE;
1442 	as_rangelock(as);
1443 	for (i = 0; i < loadable; i++) {
1444 
1445 		myaddr = start_addr + (size_t)mrp[i].mr_addr;
1446 		mylen = mrp[i].mr_msize;
1447 
1448 		/* See if there is a hole in the as for this range */
1449 		if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) {
1450 			ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr);
1451 			ASSERT(mylen == mrp[i].mr_msize);
1452 
1453 #ifdef DEBUG
1454 			if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1455 				MOBJ_STAT_ADD(exec_padding);
1456 			}
1457 #endif
1458 			ret = as_map(as, myaddr, mylen, segvn_create, &crargs);
1459 			if (ret) {
1460 				as_rangeunlock(as);
1461 				mmapobj_unmap_exec(mrp, i, start_addr);
1462 				return (ret);
1463 			}
1464 		} else {
1465 			/*
1466 			 * There is a mapping that exists in the range
1467 			 * so check to see if it was a "reservation"
1468 			 * from /dev/null.  The mapping is from
1469 			 * /dev/null if the mapping comes from
1470 			 * segdev and the type is neither MAP_SHARED
1471 			 * nor MAP_PRIVATE.
1472 			 */
1473 			AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1474 			seg = as_findseg(as, myaddr, 0);
1475 			MOBJ_STAT_ADD(exec_addr_mapped);
1476 			if (seg && seg->s_ops == &segdev_ops &&
1477 			    ((SEGOP_GETTYPE(seg, myaddr) &
1478 			    (MAP_SHARED | MAP_PRIVATE)) == 0) &&
1479 			    myaddr >= seg->s_base &&
1480 			    myaddr + mylen <=
1481 			    seg->s_base + seg->s_size) {
1482 				MOBJ_STAT_ADD(exec_addr_devnull);
1483 				AS_LOCK_EXIT(as, &as->a_lock);
1484 				(void) as_unmap(as, myaddr, mylen);
1485 				ret = as_map(as, myaddr, mylen, segvn_create,
1486 				    &crargs);
1487 				mrp[i].mr_flags |= MR_RESV;
1488 				if (ret) {
1489 					as_rangeunlock(as);
1490 					/* Need to remap what we unmapped */
1491 					mmapobj_unmap_exec(mrp, i + 1,
1492 					    start_addr);
1493 					return (ret);
1494 				}
1495 			} else {
1496 				AS_LOCK_EXIT(as, &as->a_lock);
1497 				as_rangeunlock(as);
1498 				mmapobj_unmap_exec(mrp, i, start_addr);
1499 				MOBJ_STAT_ADD(exec_addr_in_use);
1500 				return (EADDRINUSE);
1501 			}
1502 		}
1503 	}
1504 	as_rangeunlock(as);
1505 	return (0);
1506 }
1507 
1508 /*
1509  * Walk through the ELF program headers and extract all useful information
1510  * for PT_LOAD and PT_SUNWBSS segments into mrp.
1511  * Return 0 on success or error on failure.
1512  */
1513 static int
1514 process_phdr(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp,
1515     vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred)
1516 {
1517 	int i;
1518 	caddr_t start_addr = NULL;
1519 	caddr_t vaddr;
1520 	size_t len = 0;
1521 	size_t lib_len = 0;
1522 	int ret;
1523 	int prot;
1524 	struct lib_va *lvp = NULL;
1525 	vattr_t vattr;
1526 	struct as *as = curproc->p_as;
1527 	int error;
1528 	int loadable = 0;
1529 	int current = 0;
1530 	int use_lib_va = 1;
1531 	size_t align = 0;
1532 	size_t add_pad = 0;
1533 	int hdr_seen = 0;
1534 	ushort_t e_type = ehdrp->e_type;	/* same offset 32 and 64 bit */
1535 	uint_t p_type;
1536 	offset_t p_offset;
1537 	size_t p_memsz;
1538 	size_t p_filesz;
1539 	uint_t p_flags;
1540 	int hsize;
1541 	model_t model;
1542 	STRUCT_HANDLE(myphdr, mph);
1543 
1544 	model = get_udatamodel();
1545 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1546 
1547 	/*
1548 	 * Need to make sure that hsize is aligned properly.
1549 	 * For 32bit processes, 4 byte alignment is required.
1550 	 * For 64bit processes, 8 byte alignment is required.
1551 	 * If the alignment isn't correct, we need to return failure
1552 	 * since it could cause an alignment error panic while walking
1553 	 * the phdr array.
1554 	 */
1555 	if (model == DATAMODEL_LP64) {
1556 		hsize = ehdrp->e_phentsize;
1557 		if (hsize & 7) {
1558 			MOBJ_STAT_ADD(phent_align64);
1559 			return (ENOTSUP);
1560 		}
1561 	} else {
1562 		ASSERT(model == DATAMODEL_ILP32);
1563 		hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1564 		if (hsize & 3) {
1565 			MOBJ_STAT_ADD(phent_align32);
1566 			return (ENOTSUP);
1567 		}
1568 	}
1569 
1570 	if (padding != 0) {
1571 		use_lib_va = 0;
1572 	}
1573 	if (e_type == ET_DYN) {
1574 		vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME;
1575 		error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
1576 		if (error) {
1577 			return (error);
1578 		}
1579 		/* Check to see if we already have a description for this lib */
1580 		lvp = lib_va_find(&vattr);
1581 
1582 		if (lvp != NULL) {
1583 			MOBJ_STAT_ADD(lvp_found);
1584 			if (use_lib_va) {
1585 				start_addr = mmapobj_lookup_start_addr(lvp);
1586 				if (start_addr == NULL) {
1587 					lib_va_release(lvp);
1588 					return (ENOMEM);
1589 				}
1590 			}
1591 
1592 			/*
1593 			 * loadable may be zero if the original allocator
1594 			 * of lvp hasn't finished setting it up but the rest
1595 			 * of the fields will be accurate.
1596 			 */
1597 			loadable = lvp->lv_num_segs;
1598 			len = lvp->lv_len;
1599 			align = lvp->lv_align;
1600 		}
1601 	}
1602 
1603 	/*
1604 	 * Determine the span of all loadable segments and calculate the
1605 	 * number of loadable segments, the total len spanned by the mappings
1606 	 * and the max alignment, if we didn't get them above.
1607 	 */
1608 	if (loadable == 0) {
1609 		MOBJ_STAT_ADD(no_loadable_yet);
1610 		ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len,
1611 		    &loadable, &align);
1612 		if (ret != 0) {
1613 			/*
1614 			 * Since it'd be an invalid file, we shouldn't have
1615 			 * cached it previously.
1616 			 */
1617 			ASSERT(lvp == NULL);
1618 			return (ret);
1619 		}
1620 #ifdef DEBUG
1621 		if (lvp) {
1622 			ASSERT(len == lvp->lv_len);
1623 			ASSERT(align == lvp->lv_align);
1624 		}
1625 #endif
1626 	}
1627 
1628 	/* Make sure there's something to map. */
1629 	if (len == 0 || loadable == 0) {
1630 		/*
1631 		 * Since it'd be an invalid file, we shouldn't have
1632 		 * cached it previously.
1633 		 */
1634 		ASSERT(lvp == NULL);
1635 		MOBJ_STAT_ADD(nothing_to_map);
1636 		return (ENOTSUP);
1637 	}
1638 
1639 	lib_len = len;
1640 	if (padding != 0) {
1641 		loadable += 2;
1642 	}
1643 	if (loadable > *num_mapped) {
1644 		*num_mapped = loadable;
1645 		/* cleanup previous reservation */
1646 		if (start_addr) {
1647 			(void) as_unmap(as, start_addr, lib_len);
1648 		}
1649 		MOBJ_STAT_ADD(e2big);
1650 		if (lvp) {
1651 			lib_va_release(lvp);
1652 		}
1653 		return (E2BIG);
1654 	}
1655 
1656 	/*
1657 	 * We now know the size of the object to map and now we need to
1658 	 * get the start address to map it at.  It's possible we already
1659 	 * have it if we found all the info we need in the lib_va cache.
1660 	 */
1661 	if (e_type == ET_DYN && start_addr == NULL) {
1662 		/*
1663 		 * Need to make sure padding does not throw off
1664 		 * required alignment.  We can only specify an
1665 		 * alignment for the starting address to be mapped,
1666 		 * so we round padding up to the alignment and map
1667 		 * from there and then throw out the extra later.
1668 		 */
1669 		if (padding != 0) {
1670 			if (align > 1) {
1671 				add_pad = P2ROUNDUP(padding, align);
1672 				len += add_pad;
1673 				MOBJ_STAT_ADD(dyn_pad_align);
1674 			} else {
1675 				MOBJ_STAT_ADD(dyn_pad_noalign);
1676 				len += padding;	/* at beginning */
1677 			}
1678 			len += padding;	/* at end of mapping */
1679 		}
1680 		/*
1681 		 * At this point, if lvp is non-NULL, then above we
1682 		 * already found it in the cache but did not get
1683 		 * the start address since we were not going to use lib_va.
1684 		 * Since we know that lib_va will not be used, it's safe
1685 		 * to call mmapobj_alloc_start_addr and know that lvp
1686 		 * will not be modified.
1687 		 */
1688 		ASSERT(lvp ? use_lib_va == 0 : 1);
1689 		start_addr = mmapobj_alloc_start_addr(&lvp, len,
1690 		    use_lib_va, align, &vattr);
1691 		if (start_addr == NULL) {
1692 			if (lvp) {
1693 				lib_va_release(lvp);
1694 			}
1695 			MOBJ_STAT_ADD(alloc_start_fail);
1696 			return (ENOMEM);
1697 		}
1698 		/*
1699 		 * If we can't cache it, no need to hang on to it.
1700 		 * Setting lv_num_segs to non-zero will make that
1701 		 * field active and since there are too many segments
1702 		 * to cache, all future users will not try to use lv_mps.
1703 		 */
1704 		if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) {
1705 			lvp->lv_num_segs = loadable;
1706 			lib_va_release(lvp);
1707 			lvp = NULL;
1708 			MOBJ_STAT_ADD(lvp_nocache);
1709 		}
1710 		/*
1711 		 * Free the beginning of the mapping if the padding
1712 		 * was not aligned correctly.
1713 		 */
1714 		if (padding != 0 && add_pad != padding) {
1715 			(void) as_unmap(as, start_addr,
1716 			    add_pad - padding);
1717 			start_addr += (add_pad - padding);
1718 			MOBJ_STAT_ADD(extra_padding);
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * At this point, we have reserved the virtual address space
1724 	 * for our mappings.  Now we need to start filling out the mrp
1725 	 * array to describe all of the individual mappings we are going
1726 	 * to return.
1727 	 * For ET_EXEC there has been no memory reservation since we are
1728 	 * using fixed addresses.  While filling in the mrp array below,
1729 	 * we will have the first segment biased to start at addr 0
1730 	 * and the rest will be biased by this same amount.  Thus if there
1731 	 * is padding, the first padding will start at addr 0, and the next
1732 	 * segment will start at the value of padding.
1733 	 */
1734 
1735 	/* We'll fill out padding later, so start filling in mrp at index 1 */
1736 	if (padding != 0) {
1737 		current = 1;
1738 	}
1739 
1740 	/* If we have no more need for lvp let it go now */
1741 	if (lvp != NULL && use_lib_va == 0) {
1742 		lib_va_release(lvp);
1743 		MOBJ_STAT_ADD(lvp_not_needed);
1744 		lvp = NULL;
1745 	}
1746 
1747 	/* Now fill out the mrp structs from the program headers */
1748 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1749 	for (i = 0; i < nphdrs; i++) {
1750 		p_type = STRUCT_FGET(mph, x.p_type);
1751 		if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1752 			vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1753 			p_memsz = STRUCT_FGET(mph, x.p_memsz);
1754 			p_filesz = STRUCT_FGET(mph, x.p_filesz);
1755 			p_offset = STRUCT_FGET(mph, x.p_offset);
1756 			p_flags = STRUCT_FGET(mph, x.p_flags);
1757 
1758 			/*
1759 			 * Skip this header if it requests no memory to be
1760 			 * mapped.
1761 			 */
1762 			if (p_memsz == 0) {
1763 				STRUCT_SET_HANDLE(mph, model,
1764 				    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1765 				    hsize));
1766 				MOBJ_STAT_ADD(no_mem_map_sz);
1767 				continue;
1768 			}
1769 
1770 			prot = 0;
1771 			if (p_flags & PF_R)
1772 				prot |= PROT_READ;
1773 			if (p_flags & PF_W)
1774 				prot |= PROT_WRITE;
1775 			if (p_flags & PF_X)
1776 				prot |= PROT_EXEC;
1777 
1778 			ASSERT(current < loadable);
1779 			mrp[current].mr_msize = p_memsz;
1780 			mrp[current].mr_fsize = p_filesz;
1781 			mrp[current].mr_offset = p_offset;
1782 			mrp[current].mr_prot = prot;
1783 
1784 			if (hdr_seen == 0 && p_filesz != 0) {
1785 				mrp[current].mr_flags = MR_HDR_ELF;
1786 				/*
1787 				 * We modify mr_offset because we
1788 				 * need to map the ELF header as well, and if
1789 				 * we didn't then the header could be left out
1790 				 * of the mapping that we will create later.
1791 				 * Since we're removing the offset, we need to
1792 				 * account for that in the other fields as well
1793 				 * since we will be mapping the memory from 0
1794 				 * to p_offset.
1795 				 */
1796 				if (e_type == ET_DYN) {
1797 					mrp[current].mr_offset = 0;
1798 					mrp[current].mr_msize += p_offset;
1799 					mrp[current].mr_fsize += p_offset;
1800 				} else {
1801 					ASSERT(e_type == ET_EXEC);
1802 					/*
1803 					 * Save off the start addr which will be
1804 					 * our bias for the rest of the
1805 					 * ET_EXEC mappings.
1806 					 */
1807 					start_addr = vaddr - padding;
1808 				}
1809 				mrp[current].mr_addr = (caddr_t)padding;
1810 				hdr_seen = 1;
1811 			} else {
1812 				if (e_type == ET_EXEC) {
1813 					/* bias mr_addr */
1814 					mrp[current].mr_addr =
1815 					    vaddr - (size_t)start_addr;
1816 				} else {
1817 					mrp[current].mr_addr = vaddr + padding;
1818 				}
1819 				mrp[current].mr_flags = 0;
1820 			}
1821 			current++;
1822 		}
1823 
1824 		/* Move to next phdr */
1825 		STRUCT_SET_HANDLE(mph, model,
1826 		    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1827 		    hsize));
1828 	}
1829 
1830 	/* Now fill out the padding segments */
1831 	if (padding != 0) {
1832 		mrp[0].mr_addr = NULL;
1833 		mrp[0].mr_msize = padding;
1834 		mrp[0].mr_fsize = 0;
1835 		mrp[0].mr_offset = 0;
1836 		mrp[0].mr_prot = 0;
1837 		mrp[0].mr_flags = MR_PADDING;
1838 
1839 		/* Setup padding for the last segment */
1840 		ASSERT(current == loadable - 1);
1841 		mrp[current].mr_addr = (caddr_t)lib_len + padding;
1842 		mrp[current].mr_msize = padding;
1843 		mrp[current].mr_fsize = 0;
1844 		mrp[current].mr_offset = 0;
1845 		mrp[current].mr_prot = 0;
1846 		mrp[current].mr_flags = MR_PADDING;
1847 	}
1848 
1849 	/*
1850 	 * Need to make sure address ranges desired are not in use or
1851 	 * are previously allocated reservations from /dev/null.  For
1852 	 * ET_DYN, we already made sure our address range was free.
1853 	 */
1854 	if (e_type == ET_EXEC) {
1855 		ret = check_exec_addrs(loadable, mrp, start_addr);
1856 		if (ret != 0) {
1857 			ASSERT(lvp == NULL);
1858 			MOBJ_STAT_ADD(check_exec_failed);
1859 			return (ret);
1860 		}
1861 	}
1862 
1863 	/* Finish up our business with lvp. */
1864 	if (lvp) {
1865 		ASSERT(e_type == ET_DYN);
1866 		if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) {
1867 			bcopy(mrp, lvp->lv_mps,
1868 			    loadable * sizeof (mmapobj_result_t));
1869 			membar_producer();
1870 		}
1871 		/*
1872 		 * Setting lv_num_segs to a non-zero value indicates that
1873 		 * lv_mps is now valid and can be used by other threads.
1874 		 * So, the above stores need to finish before lv_num_segs
1875 		 * is updated. lv_mps is only valid if lv_num_segs is
1876 		 * greater than LIBVA_CACHED_SEGS.
1877 		 */
1878 		lvp->lv_num_segs = loadable;
1879 		lib_va_release(lvp);
1880 		MOBJ_STAT_ADD(lvp_used);
1881 	}
1882 
1883 	/* Now that we have mrp completely filled out go map it */
1884 	ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type);
1885 	if (ret == 0) {
1886 		*num_mapped = loadable;
1887 	}
1888 
1889 	return (ret);
1890 }
1891 
1892 /*
1893  * Take the ELF file passed in, and do the work of mapping it.
1894  * num_mapped in - # elements in user buffer
1895  * num_mapped out - # sections mapped and length of mrp array if
1896  *			no errors.
1897  */
1898 static int
1899 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp,
1900     uint_t *num_mapped, size_t padding, cred_t *fcred)
1901 {
1902 	int error;
1903 	offset_t phoff;
1904 	int nphdrs;
1905 	unsigned char ei_class;
1906 	unsigned short phentsize;
1907 	ssize_t phsizep;
1908 	caddr_t phbasep;
1909 	int to_map;
1910 	model_t model;
1911 
1912 	ei_class = ehdrp->e_ident[EI_CLASS];
1913 	model = get_udatamodel();
1914 	if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) ||
1915 	    (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) {
1916 		MOBJ_STAT_ADD(wrong_model);
1917 		return (ENOTSUP);
1918 	}
1919 
1920 	/* Can't execute code from "noexec" mounted filesystem. */
1921 	if (ehdrp->e_type == ET_EXEC &&
1922 	    (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
1923 		MOBJ_STAT_ADD(noexec_fs);
1924 		return (EACCES);
1925 	}
1926 
1927 	/*
1928 	 * Relocatable and core files are mapped as a single flat file
1929 	 * since no interpretation is done on them by mmapobj.
1930 	 */
1931 	if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) {
1932 		to_map = padding ? 3 : 1;
1933 		if (*num_mapped < to_map) {
1934 			*num_mapped = to_map;
1935 			MOBJ_STAT_ADD(e2big_et_rel);
1936 			return (E2BIG);
1937 		}
1938 		error = mmapobj_map_flat(vp, mrp, padding, fcred);
1939 		if (error == 0) {
1940 			*num_mapped = to_map;
1941 			mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF;
1942 			MOBJ_STAT_ADD(et_rel_mapped);
1943 		}
1944 		return (error);
1945 	}
1946 
1947 	/* Check for an unknown ELF type */
1948 	if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) {
1949 		MOBJ_STAT_ADD(unknown_elf_type);
1950 		return (ENOTSUP);
1951 	}
1952 
1953 	if (ei_class == ELFCLASS32) {
1954 		Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp;
1955 		ASSERT(model == DATAMODEL_ILP32);
1956 		nphdrs = e32hdr->e_phnum;
1957 		phentsize = e32hdr->e_phentsize;
1958 		if (phentsize < sizeof (Elf32_Phdr)) {
1959 			MOBJ_STAT_ADD(phent32_too_small);
1960 			return (ENOTSUP);
1961 		}
1962 		phoff = e32hdr->e_phoff;
1963 	} else if (ei_class == ELFCLASS64) {
1964 		Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp;
1965 		ASSERT(model == DATAMODEL_LP64);
1966 		nphdrs = e64hdr->e_phnum;
1967 		phentsize = e64hdr->e_phentsize;
1968 		if (phentsize < sizeof (Elf64_Phdr)) {
1969 			MOBJ_STAT_ADD(phent64_too_small);
1970 			return (ENOTSUP);
1971 		}
1972 		phoff = e64hdr->e_phoff;
1973 	} else {
1974 		/* fallthrough case for an invalid ELF class */
1975 		MOBJ_STAT_ADD(inval_elf_class);
1976 		return (ENOTSUP);
1977 	}
1978 
1979 	/*
1980 	 * nphdrs should only have this value for core files which are handled
1981 	 * above as a single mapping.  If other file types ever use this
1982 	 * sentinel, then we'll add the support needed to handle this here.
1983 	 */
1984 	if (nphdrs == PN_XNUM) {
1985 		MOBJ_STAT_ADD(too_many_phdrs);
1986 		return (ENOTSUP);
1987 	}
1988 
1989 	phsizep = nphdrs * phentsize;
1990 
1991 	if (phsizep == 0) {
1992 		MOBJ_STAT_ADD(no_phsize);
1993 		return (ENOTSUP);
1994 	}
1995 
1996 	/* Make sure we only wait for memory if it's a reasonable request */
1997 	if (phsizep > mmapobj_alloc_threshold) {
1998 		MOBJ_STAT_ADD(phsize_large);
1999 		if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) {
2000 			MOBJ_STAT_ADD(phsize_xtralarge);
2001 			return (ENOMEM);
2002 		}
2003 	} else {
2004 		phbasep = kmem_alloc(phsizep, KM_SLEEP);
2005 	}
2006 
2007 	if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep,
2008 	    (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
2009 	    fcred, NULL)) != 0) {
2010 		kmem_free(phbasep, phsizep);
2011 		return (error);
2012 	}
2013 
2014 	/* Now process the phdr's */
2015 	error = process_phdr(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped,
2016 	    padding, fcred);
2017 	kmem_free(phbasep, phsizep);
2018 	return (error);
2019 }
2020 
2021 #if defined(__sparc)
2022 /*
2023  * Hack to support 64 bit kernels running AOUT 4.x programs.
2024  * This is the sizeof (struct nlist) for a 32 bit kernel.
2025  * Since AOUT programs are 32 bit only, they will never use the 64 bit
2026  * sizeof (struct nlist) and thus creating a #define is the simplest
2027  * way around this since this is a format which is not being updated.
2028  * This will be used in the place of sizeof (struct nlist) below.
2029  */
2030 #define	NLIST_SIZE	(0xC)
2031 
2032 static int
2033 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp,
2034     uint_t *num_mapped, struct exec *hdr, cred_t *fcred)
2035 {
2036 	int error;
2037 	size_t size;
2038 	size_t osize;
2039 	size_t nsize;	/* nlist size */
2040 	size_t msize;
2041 	size_t zfoddiff;
2042 	caddr_t addr;
2043 	caddr_t start_addr;
2044 	struct as *as = curproc->p_as;
2045 	int prot = PROT_USER | PROT_READ | PROT_EXEC;
2046 	uint_t mflag = MAP_PRIVATE | _MAP_LOW32;
2047 	offset_t off = 0;
2048 	int segnum = 0;
2049 	uint_t to_map;
2050 	int is_library = 0;
2051 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2052 
2053 	/* Only 32bit apps supported by this file format */
2054 	if (get_udatamodel() != DATAMODEL_ILP32) {
2055 		MOBJ_STAT_ADD(aout_64bit_try);
2056 		return (ENOTSUP);
2057 	}
2058 
2059 	/* Check to see if this is a library */
2060 	if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) {
2061 		is_library = 1;
2062 	}
2063 
2064 	/* Can't execute code from "noexec" mounted filesystem. */
2065 	if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) && (is_library == 0)) {
2066 		MOBJ_STAT_ADD(aout_noexec);
2067 		return (EACCES);
2068 	}
2069 
2070 	/*
2071 	 * There are 2 ways to calculate the mapped size of executable:
2072 	 * 1) rounded text size + data size + bss size.
2073 	 * 2) starting offset for text + text size + data size + text relocation
2074 	 *    size + data relocation size + room for nlist data structure.
2075 	 *
2076 	 * The larger of the two sizes will be used to map this binary.
2077 	 */
2078 	osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss;
2079 
2080 	off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec);
2081 
2082 	nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize +
2083 	    hdr->a_drsize + NLIST_SIZE;
2084 
2085 	size = MAX(osize, nsize);
2086 	if (size != nsize) {
2087 		nsize = 0;
2088 	}
2089 
2090 	/*
2091 	 * 1 seg for text and 1 seg for initialized data.
2092 	 * 1 seg for bss (if can't fit in leftover space of init data)
2093 	 * 1 seg for nlist if needed.
2094 	 */
2095 	to_map = 2 + (nsize ? 1 : 0) +
2096 	    (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0);
2097 	if (*num_mapped < to_map) {
2098 		*num_mapped = to_map;
2099 		MOBJ_STAT_ADD(aout_e2big);
2100 		return (E2BIG);
2101 	}
2102 
2103 	/* Reserve address space for the whole mapping */
2104 	if (is_library) {
2105 		/* We'll let VOP_MAP below pick our address for us */
2106 		addr = NULL;
2107 		MOBJ_STAT_ADD(aout_lib);
2108 	} else {
2109 		/*
2110 		 * default start address for fixed binaries from AOUT 4.x
2111 		 * standard.
2112 		 */
2113 		MOBJ_STAT_ADD(aout_fixed);
2114 		mflag |= MAP_FIXED;
2115 		addr = (caddr_t)0x2000;
2116 		as_rangelock(as);
2117 		if (as_gap(as, size, &addr, &size, 0, NULL) != 0) {
2118 			as_rangeunlock(as);
2119 			MOBJ_STAT_ADD(aout_addr_in_use);
2120 			return (EADDRINUSE);
2121 		}
2122 		crargs.flags |= MAP_NORESERVE;
2123 		error = as_map(as, addr, size, segvn_create, &crargs);
2124 		ASSERT(addr == (caddr_t)0x2000);
2125 		as_rangeunlock(as);
2126 	}
2127 
2128 	start_addr = addr;
2129 	osize = size;
2130 
2131 	/*
2132 	 * Map as large as we need, backed by file, this will be text, and
2133 	 * possibly the nlist segment.  We map over this mapping for bss and
2134 	 * initialized data segments.
2135 	 */
2136 	error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL,
2137 	    mflag, fcred, NULL);
2138 	if (error) {
2139 		if (!is_library) {
2140 			(void) as_unmap(as, start_addr, osize);
2141 		}
2142 		return (error);
2143 	}
2144 
2145 	/* pickup the value of start_addr and osize for libraries */
2146 	start_addr = addr;
2147 	osize = size;
2148 
2149 	/*
2150 	 * We have our initial reservation/allocation so we need to use fixed
2151 	 * addresses from now on.
2152 	 */
2153 	mflag |= MAP_FIXED;
2154 
2155 	mrp[0].mr_addr = addr;
2156 	mrp[0].mr_msize = hdr->a_text;
2157 	mrp[0].mr_fsize = hdr->a_text;
2158 	mrp[0].mr_offset = 0;
2159 	mrp[0].mr_prot = PROT_READ | PROT_EXEC;
2160 	mrp[0].mr_flags = MR_HDR_AOUT;
2161 
2162 
2163 	/*
2164 	 * Map initialized data. We are mapping over a portion of the
2165 	 * previous mapping which will be unmapped in VOP_MAP below.
2166 	 */
2167 	off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE);
2168 	msize = off;
2169 	addr += off;
2170 	size = hdr->a_data;
2171 	error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL,
2172 	    mflag, fcred, NULL);
2173 	if (error) {
2174 		(void) as_unmap(as, start_addr, osize);
2175 		return (error);
2176 	}
2177 	msize += size;
2178 	mrp[1].mr_addr = addr;
2179 	mrp[1].mr_msize = size;
2180 	mrp[1].mr_fsize = size;
2181 	mrp[1].mr_offset = 0;
2182 	mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2183 	mrp[1].mr_flags = 0;
2184 
2185 	/* Need to zero out remainder of page */
2186 	addr += hdr->a_data;
2187 	zfoddiff = P2PHASE((size_t)addr, PAGESIZE);
2188 	if (zfoddiff) {
2189 		label_t ljb;
2190 
2191 		MOBJ_STAT_ADD(aout_zfoddiff);
2192 		zfoddiff = PAGESIZE - zfoddiff;
2193 		if (on_fault(&ljb)) {
2194 			no_fault();
2195 			MOBJ_STAT_ADD(aout_uzero_fault);
2196 			(void) as_unmap(as, start_addr, osize);
2197 			return (EFAULT);
2198 		}
2199 		uzero(addr, zfoddiff);
2200 		no_fault();
2201 	}
2202 	msize += zfoddiff;
2203 	segnum = 2;
2204 
2205 	/* Map bss */
2206 	if (hdr->a_bss > zfoddiff) {
2207 		struct segvn_crargs crargs =
2208 		    SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2209 		MOBJ_STAT_ADD(aout_map_bss);
2210 		addr += zfoddiff;
2211 		size = hdr->a_bss - zfoddiff;
2212 		as_rangelock(as);
2213 		(void) as_unmap(as, addr, size);
2214 		error = as_map(as, addr, size, segvn_create, &crargs);
2215 		as_rangeunlock(as);
2216 		msize += size;
2217 
2218 		if (error) {
2219 			MOBJ_STAT_ADD(aout_bss_fail);
2220 			(void) as_unmap(as, start_addr, osize);
2221 			return (error);
2222 		}
2223 		mrp[2].mr_addr = addr;
2224 		mrp[2].mr_msize = size;
2225 		mrp[2].mr_fsize = 0;
2226 		mrp[2].mr_offset = 0;
2227 		mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2228 		mrp[2].mr_flags = 0;
2229 
2230 		addr += size;
2231 		segnum = 3;
2232 	}
2233 
2234 	/*
2235 	 * If we have extra bits left over, we need to include that in how
2236 	 * much we mapped to make sure the nlist logic is correct
2237 	 */
2238 	msize = P2ROUNDUP(msize, PAGESIZE);
2239 
2240 	if (nsize && msize < nsize) {
2241 		MOBJ_STAT_ADD(aout_nlist);
2242 		mrp[segnum].mr_addr = addr;
2243 		mrp[segnum].mr_msize = nsize - msize;
2244 		mrp[segnum].mr_fsize = 0;
2245 		mrp[segnum].mr_offset = 0;
2246 		mrp[segnum].mr_prot = PROT_READ | PROT_EXEC;
2247 		mrp[segnum].mr_flags = 0;
2248 	}
2249 
2250 	*num_mapped = to_map;
2251 	return (0);
2252 }
2253 #endif
2254 
2255 /*
2256  * These are the two types of files that we can interpret and we want to read
2257  * in enough info to cover both types when looking at the initial header.
2258  */
2259 #define	MAX_HEADER_SIZE	(MAX(sizeof (Ehdr), sizeof (struct exec)))
2260 
2261 /*
2262  * Map vp passed in in an interpreted manner.  ELF and AOUT files will be
2263  * interpreted and mapped appropriately for execution.
2264  * num_mapped in - # elements in mrp
2265  * num_mapped out - # sections mapped and length of mrp array if
2266  *		    no errors or E2BIG returned.
2267  *
2268  * Returns 0 on success, errno value on failure.
2269  */
2270 static int
2271 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp,
2272     uint_t *num_mapped, size_t padding, cred_t *fcred)
2273 {
2274 	int error = 0;
2275 	vattr_t vattr;
2276 	struct lib_va *lvp;
2277 	caddr_t start_addr;
2278 	model_t model;
2279 
2280 	/*
2281 	 * header has to be aligned to the native size of ulong_t in order
2282 	 * to avoid an unaligned access when dereferencing the header as
2283 	 * a ulong_t.  Thus we allocate our array on the stack of type
2284 	 * ulong_t and then have header, which we dereference later as a char
2285 	 * array point at lheader.
2286 	 */
2287 	ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1];
2288 	caddr_t header = (caddr_t)&lheader;
2289 
2290 	vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE;
2291 	error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
2292 	if (error) {
2293 		return (error);
2294 	}
2295 
2296 	/*
2297 	 * Check lib_va to see if we already have a full description
2298 	 * for this library.  This is the fast path and only used for
2299 	 * ET_DYN ELF files (dynamic libraries).
2300 	 */
2301 	if (padding == 0 && (lvp = lib_va_find(&vattr)) != NULL) {
2302 		int num_segs;
2303 
2304 		model = get_udatamodel();
2305 		if ((model == DATAMODEL_ILP32 &&
2306 		    lvp->lv_flags & LV_ELF64) ||
2307 		    (model == DATAMODEL_LP64 &&
2308 		    lvp->lv_flags & LV_ELF32)) {
2309 			lib_va_release(lvp);
2310 			MOBJ_STAT_ADD(fast_wrong_model);
2311 			return (ENOTSUP);
2312 		}
2313 		num_segs = lvp->lv_num_segs;
2314 		if (*num_mapped < num_segs) {
2315 			*num_mapped = num_segs;
2316 			lib_va_release(lvp);
2317 			MOBJ_STAT_ADD(fast_e2big);
2318 			return (E2BIG);
2319 		}
2320 
2321 		/*
2322 		 * Check to see if we have all the mappable program headers
2323 		 * cached.
2324 		 */
2325 		if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) {
2326 			MOBJ_STAT_ADD(fast);
2327 			start_addr = mmapobj_lookup_start_addr(lvp);
2328 			if (start_addr == NULL) {
2329 				lib_va_release(lvp);
2330 				return (ENOMEM);
2331 			}
2332 
2333 			bcopy(lvp->lv_mps, mrp,
2334 			    num_segs * sizeof (mmapobj_result_t));
2335 
2336 			error = mmapobj_map_elf(vp, start_addr, mrp,
2337 			    num_segs, fcred, ET_DYN);
2338 
2339 			lib_va_release(lvp);
2340 			if (error == 0) {
2341 				*num_mapped = num_segs;
2342 				MOBJ_STAT_ADD(fast_success);
2343 			}
2344 			return (error);
2345 		}
2346 		MOBJ_STAT_ADD(fast_not_now);
2347 
2348 		/* Release it for now since we'll look it up below */
2349 		lib_va_release(lvp);
2350 	}
2351 
2352 	/*
2353 	 * Time to see if this is a file we can interpret.  If it's smaller
2354 	 * than this, then we can't interpret it.
2355 	 */
2356 	if (vattr.va_size < MAX_HEADER_SIZE) {
2357 		MOBJ_STAT_ADD(small_file);
2358 		return (ENOTSUP);
2359 	}
2360 
2361 	if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0,
2362 	    UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) {
2363 		MOBJ_STAT_ADD(read_error);
2364 		return (error);
2365 	}
2366 
2367 	/* Verify file type */
2368 	if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 &&
2369 	    header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) {
2370 		return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped,
2371 		    padding, fcred));
2372 	}
2373 
2374 #if defined(__sparc)
2375 	/* On sparc, check for 4.X AOUT format */
2376 	switch (((struct exec *)header)->a_magic) {
2377 	case OMAGIC:
2378 	case ZMAGIC:
2379 	case NMAGIC:
2380 		return (doaoutwork(vp, mrp, num_mapped,
2381 		    (struct exec *)lheader, fcred));
2382 	}
2383 #endif
2384 
2385 	/* Unsupported type */
2386 	MOBJ_STAT_ADD(unsupported);
2387 	return (ENOTSUP);
2388 }
2389 
2390 /*
2391  * Given a vnode, map it as either a flat file or interpret it and map
2392  * it according to the rules of the file type.
2393  * *num_mapped will contain the size of the mmapobj_result_t array passed in.
2394  * If padding is non-zero, the mappings will be padded by that amount
2395  * rounded up to the nearest pagesize.
2396  * If the mapping is successful, *num_mapped will contain the number of
2397  * distinct mappings created, and mrp will point to the array of
2398  * mmapobj_result_t's which describe these mappings.
2399  *
2400  * On error, -1 is returned and errno is set appropriately.
2401  * A special error case will set errno to E2BIG when there are more than
2402  * *num_mapped mappings to be created and *num_mapped will be set to the
2403  * number of mappings needed.
2404  */
2405 int
2406 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp,
2407     uint_t *num_mapped, size_t padding, cred_t *fcred)
2408 {
2409 	int to_map;
2410 	int error = 0;
2411 
2412 	ASSERT((padding & PAGEOFFSET) == 0);
2413 	ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0);
2414 	ASSERT(num_mapped != NULL);
2415 	ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0);
2416 
2417 	if ((flags & MMOBJ_INTERPRET) == 0) {
2418 		to_map = padding ? 3 : 1;
2419 		if (*num_mapped < to_map) {
2420 			*num_mapped = to_map;
2421 			MOBJ_STAT_ADD(flat_e2big);
2422 			return (E2BIG);
2423 		}
2424 		error = mmapobj_map_flat(vp, mrp, padding, fcred);
2425 
2426 		if (error) {
2427 			return (error);
2428 		}
2429 		*num_mapped = to_map;
2430 		return (0);
2431 	}
2432 
2433 	error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred);
2434 	return (error);
2435 }
2436