1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/thread.h> 31 #include <sys/proc.h> 32 #include <sys/callb.h> 33 #include <sys/vnode.h> 34 #include <sys/debug.h> 35 #include <sys/systm.h> /* for bzero */ 36 #include <sys/memlist.h> 37 #include <sys/cmn_err.h> 38 #include <sys/sysmacros.h> 39 #include <sys/vmsystm.h> /* for NOMEMWAIT() */ 40 #include <sys/atomic.h> /* used to update kcage_freemem */ 41 #include <sys/kmem.h> /* for kmem_reap */ 42 #include <sys/errno.h> 43 #include <sys/mem_cage.h> 44 #include <vm/seg_kmem.h> 45 #include <vm/page.h> 46 #include <vm/hat.h> 47 #include <vm/vm_dep.h> 48 #include <sys/mem_config.h> 49 #include <sys/lgrp.h> 50 #include <sys/rwlock.h> 51 #include <sys/cpupart.h> 52 53 extern pri_t maxclsyspri; 54 55 #ifdef DEBUG 56 #define KCAGE_STATS 57 #endif 58 59 #ifdef KCAGE_STATS 60 61 #define KCAGE_STATS_VERSION 9 /* can help report generators */ 62 #define KCAGE_STATS_NSCANS 256 /* depth of scan statistics buffer */ 63 64 struct kcage_stats_scan { 65 /* managed by KCAGE_STAT_* macros */ 66 clock_t scan_lbolt; 67 uint_t scan_id; 68 69 /* set in kcage_cageout() */ 70 uint_t kt_passes; 71 clock_t kt_ticks; 72 pgcnt_t kt_kcage_freemem_start; 73 pgcnt_t kt_kcage_freemem_end; 74 pgcnt_t kt_freemem_start; 75 pgcnt_t kt_freemem_end; 76 uint_t kt_examined; 77 uint_t kt_cantlock; 78 uint_t kt_gotone; 79 uint_t kt_gotonefree; 80 uint_t kt_skiplevel; 81 uint_t kt_skipshared; 82 uint_t kt_skiprefd; 83 uint_t kt_destroy; 84 85 /* set in kcage_invalidate_page() */ 86 uint_t kip_reloclocked; 87 uint_t kip_relocmod; 88 uint_t kip_destroy; 89 uint_t kip_nomem; 90 uint_t kip_demotefailed; 91 92 /* set in kcage_expand() */ 93 uint_t ke_wanted; 94 uint_t ke_examined; 95 uint_t ke_lefthole; 96 uint_t ke_gotone; 97 uint_t ke_gotonefree; 98 }; 99 100 struct kcage_stats { 101 /* managed by KCAGE_STAT_* macros */ 102 uint_t version; 103 uint_t size; 104 105 /* set in kcage_cageout */ 106 uint_t kt_wakeups; 107 uint_t kt_scans; 108 uint_t kt_cageout_break; 109 110 /* set in kcage_expand */ 111 uint_t ke_calls; 112 uint_t ke_nopfn; 113 uint_t ke_nopaget; 114 uint_t ke_isnoreloc; 115 uint_t ke_deleting; 116 uint_t ke_lowfreemem; 117 uint_t ke_terminate; 118 119 /* set in kcage_freemem_add() */ 120 uint_t kfa_trottlewake; 121 122 /* set in kcage_freemem_sub() */ 123 uint_t kfs_cagewake; 124 125 /* set in kcage_create_throttle */ 126 uint_t kct_calls; 127 uint_t kct_cageout; 128 uint_t kct_critical; 129 uint_t kct_exempt; 130 uint_t kct_cagewake; 131 uint_t kct_wait; 132 uint_t kct_progress; 133 uint_t kct_noprogress; 134 uint_t kct_timeout; 135 136 /* set in kcage_cageout_wakeup */ 137 uint_t kcw_expandearly; 138 139 /* managed by KCAGE_STAT_* macros */ 140 uint_t scan_array_size; 141 uint_t scan_index; 142 struct kcage_stats_scan scans[KCAGE_STATS_NSCANS]; 143 }; 144 145 static struct kcage_stats kcage_stats; 146 static struct kcage_stats_scan kcage_stats_scan_zero; 147 148 /* 149 * No real need for atomics here. For the most part the incs and sets are 150 * done by the kernel cage thread. There are a few that are done by any 151 * number of other threads. Those cases are noted by comments. 152 */ 153 #define KCAGE_STAT_INCR(m) kcage_stats.m++ 154 155 #define KCAGE_STAT_NINCR(m, v) kcage_stats.m += (v) 156 157 #define KCAGE_STAT_INCR_SCAN(m) \ 158 KCAGE_STAT_INCR(scans[kcage_stats.scan_index].m) 159 160 #define KCAGE_STAT_NINCR_SCAN(m, v) \ 161 KCAGE_STAT_NINCR(scans[kcage_stats.scan_index].m, v) 162 163 #define KCAGE_STAT_SET(m, v) kcage_stats.m = (v) 164 165 #define KCAGE_STAT_SETZ(m, v) \ 166 if (kcage_stats.m == 0) kcage_stats.m = (v) 167 168 #define KCAGE_STAT_SET_SCAN(m, v) \ 169 KCAGE_STAT_SET(scans[kcage_stats.scan_index].m, v) 170 171 #define KCAGE_STAT_SETZ_SCAN(m, v) \ 172 KCAGE_STAT_SETZ(scans[kcage_stats.scan_index].m, v) 173 174 #define KCAGE_STAT_INC_SCAN_INDEX \ 175 KCAGE_STAT_SET_SCAN(scan_lbolt, lbolt); \ 176 KCAGE_STAT_SET_SCAN(scan_id, kcage_stats.scan_index); \ 177 kcage_stats.scan_index = \ 178 (kcage_stats.scan_index + 1) % KCAGE_STATS_NSCANS; \ 179 kcage_stats.scans[kcage_stats.scan_index] = kcage_stats_scan_zero 180 181 #define KCAGE_STAT_INIT_SCAN_INDEX \ 182 kcage_stats.version = KCAGE_STATS_VERSION; \ 183 kcage_stats.size = sizeof (kcage_stats); \ 184 kcage_stats.scan_array_size = KCAGE_STATS_NSCANS; \ 185 kcage_stats.scan_index = 0 186 187 #else /* KCAGE_STATS */ 188 189 #define KCAGE_STAT_INCR(v) 190 #define KCAGE_STAT_NINCR(m, v) 191 #define KCAGE_STAT_INCR_SCAN(v) 192 #define KCAGE_STAT_NINCR_SCAN(m, v) 193 #define KCAGE_STAT_SET(m, v) 194 #define KCAGE_STAT_SETZ(m, v) 195 #define KCAGE_STAT_SET_SCAN(m, v) 196 #define KCAGE_STAT_SETZ_SCAN(m, v) 197 #define KCAGE_STAT_INC_SCAN_INDEX 198 #define KCAGE_STAT_INIT_SCAN_INDEX 199 200 #endif /* KCAGE_STATS */ 201 202 static kmutex_t kcage_throttle_mutex; /* protects kcage_throttle_cv */ 203 static kcondvar_t kcage_throttle_cv; 204 205 static kmutex_t kcage_cageout_mutex; /* protects cv and ready flag */ 206 static kcondvar_t kcage_cageout_cv; /* cageout thread naps here */ 207 static int kcage_cageout_ready; /* nonzero when cageout thread ready */ 208 kthread_id_t kcage_cageout_thread; /* to aid debugging */ 209 210 static krwlock_t kcage_range_rwlock; /* protects kcage_glist elements */ 211 212 /* 213 * Cage expansion happens within a range. 214 */ 215 struct kcage_glist { 216 struct kcage_glist *next; 217 pfn_t base; 218 pfn_t lim; 219 pfn_t curr; 220 int decr; 221 }; 222 223 static struct kcage_glist *kcage_glist; 224 static struct kcage_glist *kcage_current_glist; 225 226 /* 227 * The firstfree element is provided so that kmem_alloc can be avoided 228 * until that cage has somewhere to go. This is not currently a problem 229 * as early kmem_alloc's use BOP_ALLOC instead of page_create_va. 230 */ 231 static vmem_t *kcage_arena; 232 static struct kcage_glist kcage_glist_firstfree; 233 static struct kcage_glist *kcage_glist_freelist = &kcage_glist_firstfree; 234 235 /* 236 * Miscellaneous forward references 237 */ 238 static struct kcage_glist *kcage_glist_alloc(void); 239 static int kcage_glist_delete(pfn_t, pfn_t, struct kcage_glist **); 240 static void kcage_cageout(void); 241 static int kcage_invalidate_page(page_t *, pgcnt_t *); 242 static int kcage_setnoreloc_pages(page_t *, se_t); 243 static int kcage_range_add_internal(pfn_t base, pgcnt_t npgs, kcage_dir_t); 244 static void kcage_init(pgcnt_t preferred_size); 245 static int kcage_range_delete_internal(pfn_t base, pgcnt_t npgs); 246 247 /* 248 * Kernel Memory Cage counters and thresholds. 249 */ 250 int kcage_on = 0; 251 pgcnt_t kcage_freemem; 252 pgcnt_t kcage_needfree; 253 pgcnt_t kcage_lotsfree; 254 pgcnt_t kcage_desfree; 255 pgcnt_t kcage_minfree; 256 pgcnt_t kcage_throttlefree; 257 pgcnt_t kcage_reserve; 258 int kcage_maxwait = 10; /* in seconds */ 259 260 /* when we use lp for kmem we start the cage at a higher initial value */ 261 pgcnt_t kcage_kmemlp_mincage; 262 263 #ifdef DEBUG 264 pgcnt_t kcage_pagets; 265 #define KCAGEPAGETS_INC() kcage_pagets++ 266 #else 267 #define KCAGEPAGETS_INC() 268 #endif 269 270 /* kstats to export what pages are currently caged */ 271 kmutex_t kcage_kstat_lock; 272 static int kcage_kstat_update(kstat_t *ksp, int rw); 273 static int kcage_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 274 275 /* 276 * Startup and Dynamic Reconfiguration interfaces. 277 * kcage_range_add() 278 * kcage_range_del() 279 * kcage_range_delete_post_mem_del() 280 * kcage_range_init() 281 * kcage_set_thresholds() 282 */ 283 284 /* 285 * Called from page_get_contig_pages to get the approximate kcage pfn range 286 * for exclusion from search for contiguous pages. This routine is called 287 * without kcage_range lock (kcage routines can call page_get_contig_pages 288 * through page_relocate) and with the assumption, based on kcage_range_add, 289 * that kcage_current_glist always contain a valid pointer. 290 */ 291 292 int 293 kcage_current_pfn(pfn_t *pfncur) 294 { 295 struct kcage_glist *lp = kcage_current_glist; 296 297 ASSERT(kcage_on); 298 299 ASSERT(lp != NULL); 300 301 *pfncur = lp->curr; 302 303 return (lp->decr); 304 } 305 306 /* 307 * Called from vm_pagelist.c during coalesce to find kernel cage regions 308 * within an mnode. Looks for the lowest range between lo and hi. 309 * 310 * Kernel cage memory is defined between kcage_glist and kcage_current_glist. 311 * Non-cage memory is defined between kcage_current_glist and list end. 312 * 313 * If incage is set, returns the lowest kcage range. Otherwise returns lowest 314 * non-cage range. 315 * 316 * Returns zero on success and nlo, nhi: 317 * lo <= nlo < nhi <= hi 318 * Returns non-zero if no overlapping range is found. 319 */ 320 int 321 kcage_next_range(int incage, pfn_t lo, pfn_t hi, 322 pfn_t *nlo, pfn_t *nhi) 323 { 324 struct kcage_glist *lp; 325 pfn_t tlo = hi; 326 pfn_t thi = hi; 327 328 ASSERT(lo <= hi); 329 330 /* 331 * Reader lock protects the list, but kcage_get_pfn 332 * running concurrently may advance kcage_current_glist 333 * and also update kcage_current_glist->curr. Page 334 * coalesce can handle this race condition. 335 */ 336 rw_enter(&kcage_range_rwlock, RW_READER); 337 338 for (lp = incage ? kcage_glist : kcage_current_glist; 339 lp != NULL; lp = lp->next) { 340 341 pfn_t klo, khi; 342 343 /* find the range limits in this element */ 344 if ((incage && lp->decr) || (!incage && !lp->decr)) { 345 klo = lp->curr; 346 khi = lp->lim; 347 } else { 348 klo = lp->base; 349 khi = lp->curr; 350 } 351 352 /* handle overlap */ 353 if (klo < tlo && klo < khi && lo < khi && klo < hi) { 354 tlo = MAX(lo, klo); 355 thi = MIN(hi, khi); 356 if (tlo == lo) 357 break; 358 } 359 360 /* check end of kcage */ 361 if (incage && lp == kcage_current_glist) { 362 break; 363 } 364 } 365 366 rw_exit(&kcage_range_rwlock); 367 368 /* return non-zero if no overlapping range found */ 369 if (tlo == thi) 370 return (1); 371 372 ASSERT(lo <= tlo && tlo < thi && thi <= hi); 373 374 /* return overlapping range */ 375 *nlo = tlo; 376 *nhi = thi; 377 return (0); 378 } 379 380 void 381 kcage_range_init(struct memlist *ml, kcage_dir_t d, pgcnt_t preferred_size) 382 { 383 int ret = 0; 384 385 ASSERT(kcage_arena == NULL); 386 kcage_arena = vmem_create("kcage_arena", NULL, 0, sizeof (uint64_t), 387 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 388 ASSERT(kcage_arena != NULL); 389 390 if (d == KCAGE_DOWN) { 391 while (ml->next != NULL) 392 ml = ml->next; 393 } 394 395 rw_enter(&kcage_range_rwlock, RW_WRITER); 396 397 while (ml != NULL) { 398 ret = kcage_range_add_internal(btop(ml->address), 399 btop(ml->size), d); 400 if (ret) 401 panic("kcage_range_add_internal failed: " 402 "ml=%p, ret=0x%x\n", ml, ret); 403 404 ml = (d == KCAGE_DOWN ? ml->prev : ml->next); 405 } 406 407 rw_exit(&kcage_range_rwlock); 408 409 if (ret == 0) 410 kcage_init(preferred_size); 411 } 412 413 /* 414 * Third arg controls direction of growth: 0: increasing pfns, 415 * 1: decreasing. 416 */ 417 static int 418 kcage_range_add_internal(pfn_t base, pgcnt_t npgs, kcage_dir_t d) 419 { 420 struct kcage_glist *new, **lpp; 421 pfn_t lim; 422 423 ASSERT(rw_write_held(&kcage_range_rwlock)); 424 425 ASSERT(npgs != 0); 426 if (npgs == 0) 427 return (EINVAL); 428 429 lim = base + npgs; 430 431 ASSERT(lim > base); 432 if (lim <= base) 433 return (EINVAL); 434 435 new = kcage_glist_alloc(); 436 if (new == NULL) { 437 return (ENOMEM); 438 } 439 440 new->base = base; 441 new->lim = lim; 442 new->decr = (d == KCAGE_DOWN); 443 if (new->decr != 0) 444 new->curr = new->lim; 445 else 446 new->curr = new->base; 447 /* 448 * Any overlapping existing ranges are removed by deleting 449 * from the new list as we search for the tail. 450 */ 451 lpp = &kcage_glist; 452 while (*lpp != NULL) { 453 int ret; 454 ret = kcage_glist_delete((*lpp)->base, (*lpp)->lim, &new); 455 if (ret != 0) 456 return (ret); 457 lpp = &(*lpp)->next; 458 } 459 460 *lpp = new; 461 462 if (kcage_current_glist == NULL) { 463 kcage_current_glist = kcage_glist; 464 } 465 466 return (0); 467 } 468 469 int 470 kcage_range_add(pfn_t base, pgcnt_t npgs, kcage_dir_t d) 471 { 472 int ret; 473 474 rw_enter(&kcage_range_rwlock, RW_WRITER); 475 ret = kcage_range_add_internal(base, npgs, d); 476 rw_exit(&kcage_range_rwlock); 477 return (ret); 478 } 479 480 /* 481 * Calls to add and delete must be protected by kcage_range_rwlock 482 */ 483 static int 484 kcage_range_delete_internal(pfn_t base, pgcnt_t npgs) 485 { 486 struct kcage_glist *lp; 487 pfn_t lim; 488 489 ASSERT(rw_write_held(&kcage_range_rwlock)); 490 491 ASSERT(npgs != 0); 492 if (npgs == 0) 493 return (EINVAL); 494 495 lim = base + npgs; 496 497 ASSERT(lim > base); 498 if (lim <= base) 499 return (EINVAL); 500 501 /* 502 * Check if the delete is OK first as a number of elements 503 * might be involved and it will be difficult to go 504 * back and undo (can't just add the range back in). 505 */ 506 for (lp = kcage_glist; lp != NULL; lp = lp->next) { 507 /* 508 * If there have been no pages allocated from this 509 * element, we don't need to check it. 510 */ 511 if ((lp->decr == 0 && lp->curr == lp->base) || 512 (lp->decr != 0 && lp->curr == lp->lim)) 513 continue; 514 /* 515 * If the element does not overlap, its OK. 516 */ 517 if (base >= lp->lim || lim <= lp->base) 518 continue; 519 /* 520 * Overlapping element: Does the range to be deleted 521 * overlap the area already used? If so fail. 522 */ 523 if (lp->decr == 0 && base < lp->curr && lim >= lp->base) { 524 return (EBUSY); 525 } 526 if (lp->decr != 0 && base < lp->lim && lim >= lp->curr) { 527 return (EBUSY); 528 } 529 } 530 return (kcage_glist_delete(base, lim, &kcage_glist)); 531 } 532 533 int 534 kcage_range_delete(pfn_t base, pgcnt_t npgs) 535 { 536 int ret; 537 538 rw_enter(&kcage_range_rwlock, RW_WRITER); 539 ret = kcage_range_delete_internal(base, npgs); 540 rw_exit(&kcage_range_rwlock); 541 return (ret); 542 } 543 544 /* 545 * Calls to add and delete must be protected by kcage_range_rwlock. 546 * This routine gets called after successful Solaris memory 547 * delete operation from DR post memory delete routines. 548 */ 549 static int 550 kcage_range_delete_post_mem_del_internal(pfn_t base, pgcnt_t npgs) 551 { 552 pfn_t lim; 553 554 ASSERT(rw_write_held(&kcage_range_rwlock)); 555 556 ASSERT(npgs != 0); 557 if (npgs == 0) 558 return (EINVAL); 559 560 lim = base + npgs; 561 562 ASSERT(lim > base); 563 if (lim <= base) 564 return (EINVAL); 565 566 return (kcage_glist_delete(base, lim, &kcage_glist)); 567 } 568 569 int 570 kcage_range_delete_post_mem_del(pfn_t base, pgcnt_t npgs) 571 { 572 int ret; 573 574 rw_enter(&kcage_range_rwlock, RW_WRITER); 575 ret = kcage_range_delete_post_mem_del_internal(base, npgs); 576 rw_exit(&kcage_range_rwlock); 577 return (ret); 578 } 579 580 /* 581 * No locking is required here as the whole operation is covered 582 * by kcage_range_rwlock writer lock. 583 */ 584 static struct kcage_glist * 585 kcage_glist_alloc(void) 586 { 587 struct kcage_glist *new; 588 589 if ((new = kcage_glist_freelist) != NULL) { 590 kcage_glist_freelist = new->next; 591 } else { 592 new = vmem_alloc(kcage_arena, sizeof (*new), VM_NOSLEEP); 593 } 594 595 if (new != NULL) 596 bzero(new, sizeof (*new)); 597 598 return (new); 599 } 600 601 static void 602 kcage_glist_free(struct kcage_glist *lp) 603 { 604 lp->next = kcage_glist_freelist; 605 kcage_glist_freelist = lp; 606 } 607 608 static int 609 kcage_glist_delete(pfn_t base, pfn_t lim, struct kcage_glist **lpp) 610 { 611 struct kcage_glist *lp, *prev = *lpp; 612 613 while ((lp = *lpp) != NULL) { 614 if (lim > lp->base && base < lp->lim) { 615 /* The delete range overlaps this element. */ 616 if (base <= lp->base && lim >= lp->lim) { 617 /* Delete whole element. */ 618 *lpp = lp->next; 619 if (lp == kcage_current_glist) { 620 /* This can never happen. */ 621 ASSERT(kcage_current_glist != prev); 622 kcage_current_glist = prev; 623 } 624 kcage_glist_free(lp); 625 continue; 626 } 627 628 /* Partial delete. */ 629 if (base > lp->base && lim < lp->lim) { 630 struct kcage_glist *new; 631 632 /* 633 * Remove a section from the middle, 634 * need to allocate a new element. 635 */ 636 new = kcage_glist_alloc(); 637 if (new == NULL) { 638 return (ENOMEM); 639 } 640 641 /* 642 * Tranfser unused range to new. 643 * Edit lp in place to preserve 644 * kcage_current_glist. 645 */ 646 new->decr = lp->decr; 647 if (new->decr != 0) { 648 new->base = lp->base; 649 new->lim = base; 650 new->curr = base; 651 652 lp->base = lim; 653 } else { 654 new->base = lim; 655 new->lim = lp->lim; 656 new->curr = new->base; 657 658 lp->lim = base; 659 } 660 661 /* Insert new. */ 662 new->next = lp->next; 663 lp->next = new; 664 lpp = &lp->next; 665 } else { 666 /* Delete part of current block. */ 667 if (base > lp->base) { 668 ASSERT(lim >= lp->lim); 669 ASSERT(base < lp->lim); 670 if (lp->decr != 0 && 671 lp->curr == lp->lim) 672 lp->curr = base; 673 lp->lim = base; 674 } else { 675 ASSERT(base <= lp->base); 676 ASSERT(lim > lp->base); 677 if (lp->decr == 0 && 678 lp->curr == lp->base) 679 lp->curr = lim; 680 lp->base = lim; 681 } 682 } 683 } 684 prev = *lpp; 685 lpp = &(*lpp)->next; 686 } 687 688 return (0); 689 } 690 691 /* 692 * If lockit is 1, kcage_get_pfn holds the 693 * reader lock for kcage_range_rwlock. 694 * Changes to lp->curr can cause race conditions, but 695 * they are handled by higher level code (see kcage_next_range.) 696 */ 697 static pfn_t 698 kcage_get_pfn(int lockit) 699 { 700 struct kcage_glist *lp; 701 pfn_t pfn = PFN_INVALID; 702 703 if (lockit && !rw_tryenter(&kcage_range_rwlock, RW_READER)) 704 return (pfn); 705 706 lp = kcage_current_glist; 707 while (lp != NULL) { 708 if (lp->decr != 0) { 709 if (lp->curr != lp->base) { 710 pfn = --lp->curr; 711 break; 712 } 713 } else { 714 if (lp->curr != lp->lim) { 715 pfn = lp->curr++; 716 break; 717 } 718 } 719 720 lp = lp->next; 721 if (lp) 722 kcage_current_glist = lp; 723 } 724 725 if (lockit) 726 rw_exit(&kcage_range_rwlock); 727 return (pfn); 728 } 729 730 /* 731 * Walk the physical address space of the cage. 732 * This routine does not guarantee to return PFNs in the order 733 * in which they were allocated to the cage. Instead, it walks 734 * each range as they appear on the growth list returning the PFNs 735 * range in ascending order. 736 * 737 * To begin scanning at lower edge of cage, reset should be nonzero. 738 * To step through cage, reset should be zero. 739 * 740 * PFN_INVALID will be returned when the upper end of the cage is 741 * reached -- indicating a full scan of the cage has been completed since 742 * previous reset. PFN_INVALID will continue to be returned until 743 * kcage_walk_cage is reset. 744 * 745 * It is possible to receive a PFN_INVALID result on reset if a growth 746 * list is not installed or if none of the PFNs in the installed list have 747 * been allocated to the cage. In otherwords, there is no cage. 748 * 749 * Caller need not hold kcage_range_rwlock while calling this function 750 * as the front part of the list is static - pages never come out of 751 * the cage. 752 * 753 * The caller is expected to only be kcage_cageout(). 754 */ 755 static pfn_t 756 kcage_walk_cage(int reset) 757 { 758 static struct kcage_glist *lp = NULL; 759 static pfn_t pfn; 760 761 if (reset) 762 lp = NULL; 763 if (lp == NULL) { 764 lp = kcage_glist; 765 pfn = PFN_INVALID; 766 } 767 again: 768 if (pfn == PFN_INVALID) { 769 if (lp == NULL) 770 return (PFN_INVALID); 771 772 if (lp->decr != 0) { 773 /* 774 * In this range the cage grows from the highest 775 * address towards the lowest. 776 * Arrange to return pfns from curr to lim-1, 777 * inclusive, in ascending order. 778 */ 779 780 pfn = lp->curr; 781 } else { 782 /* 783 * In this range the cage grows from the lowest 784 * address towards the highest. 785 * Arrange to return pfns from base to curr, 786 * inclusive, in ascending order. 787 */ 788 789 pfn = lp->base; 790 } 791 } 792 793 if (lp->decr != 0) { /* decrementing pfn */ 794 if (pfn == lp->lim) { 795 /* Don't go beyond the static part of the glist. */ 796 if (lp == kcage_current_glist) 797 lp = NULL; 798 else 799 lp = lp->next; 800 pfn = PFN_INVALID; 801 goto again; 802 } 803 804 ASSERT(pfn >= lp->curr && pfn < lp->lim); 805 } else { /* incrementing pfn */ 806 if (pfn == lp->curr) { 807 /* Don't go beyond the static part of the glist. */ 808 if (lp == kcage_current_glist) 809 lp = NULL; 810 else 811 lp = lp->next; 812 pfn = PFN_INVALID; 813 goto again; 814 } 815 816 ASSERT(pfn >= lp->base && pfn < lp->curr); 817 } 818 819 return (pfn++); 820 } 821 822 /* 823 * Callback functions for to recalc cage thresholds after 824 * Kphysm memory add/delete operations. 825 */ 826 /*ARGSUSED*/ 827 static void 828 kcage_kphysm_postadd_cb(void *arg, pgcnt_t delta_pages) 829 { 830 kcage_recalc_thresholds(); 831 } 832 833 /*ARGSUSED*/ 834 static int 835 kcage_kphysm_predel_cb(void *arg, pgcnt_t delta_pages) 836 { 837 /* TODO: when should cage refuse memory delete requests? */ 838 return (0); 839 } 840 841 /*ARGSUSED*/ 842 static void 843 kcage_kphysm_postdel_cb(void *arg, pgcnt_t delta_pages, int cancelled) 844 { 845 kcage_recalc_thresholds(); 846 } 847 848 static kphysm_setup_vector_t kcage_kphysm_vectors = { 849 KPHYSM_SETUP_VECTOR_VERSION, 850 kcage_kphysm_postadd_cb, 851 kcage_kphysm_predel_cb, 852 kcage_kphysm_postdel_cb 853 }; 854 855 /* 856 * This is called before a CPR suspend and after a CPR resume. We have to 857 * turn off kcage_cageout_ready before a suspend, and turn it back on after a 858 * restart. 859 */ 860 /*ARGSUSED*/ 861 static boolean_t 862 kcage_cageout_cpr(void *arg, int code) 863 { 864 if (code == CB_CODE_CPR_CHKPT) { 865 ASSERT(kcage_cageout_ready); 866 kcage_cageout_ready = 0; 867 return (B_TRUE); 868 } else if (code == CB_CODE_CPR_RESUME) { 869 ASSERT(kcage_cageout_ready == 0); 870 kcage_cageout_ready = 1; 871 return (B_TRUE); 872 } 873 return (B_FALSE); 874 } 875 876 /* 877 * kcage_recalc_preferred_size() increases initial cage size to improve large 878 * page availability when lp for kmem is enabled and kpr is disabled 879 */ 880 static pgcnt_t 881 kcage_recalc_preferred_size(pgcnt_t preferred_size) 882 { 883 if (SEGKMEM_USE_LARGEPAGES && segkmem_reloc == 0) { 884 pgcnt_t lpmincage = kcage_kmemlp_mincage; 885 if (lpmincage == 0) { 886 lpmincage = MIN(P2ROUNDUP(((physmem * PAGESIZE) / 8), 887 segkmem_heaplp_quantum), 0x40000000UL) / PAGESIZE; 888 } 889 kcage_kmemlp_mincage = MIN(lpmincage, 890 (segkmem_kmemlp_max / PAGESIZE)); 891 preferred_size = MAX(kcage_kmemlp_mincage, preferred_size); 892 } 893 return (preferred_size); 894 } 895 896 /* 897 * Kcage_init() builds the cage and initializes the cage thresholds. 898 * The size of the cage is determined by the argument preferred_size. 899 * or the actual amount of memory, whichever is smaller. 900 */ 901 static void 902 kcage_init(pgcnt_t preferred_size) 903 { 904 pgcnt_t wanted; 905 pfn_t pfn; 906 page_t *pp; 907 kstat_t *ksp; 908 909 extern struct vnode kvp; 910 extern void page_list_noreloc_startup(page_t *); 911 912 ASSERT(!kcage_on); 913 914 /* increase preferred cage size for lp for kmem */ 915 preferred_size = kcage_recalc_preferred_size(preferred_size); 916 917 /* Debug note: initialize this now so early expansions can stat */ 918 KCAGE_STAT_INIT_SCAN_INDEX; 919 920 /* 921 * Initialize cage thresholds and install kphysm callback. 922 * If we can't arrange to have the thresholds track with 923 * available physical memory, then the cage thresholds may 924 * end up over time at levels that adversly effect system 925 * performance; so, bail out. 926 */ 927 kcage_recalc_thresholds(); 928 if (kphysm_setup_func_register(&kcage_kphysm_vectors, NULL)) { 929 ASSERT(0); /* Catch this in DEBUG kernels. */ 930 return; 931 } 932 933 /* 934 * Limit startup cage size within the range of kcage_minfree 935 * and availrmem, inclusively. 936 */ 937 wanted = MIN(MAX(preferred_size, kcage_minfree), availrmem); 938 939 /* 940 * Construct the cage. PFNs are allocated from the glist. It 941 * is assumed that the list has been properly ordered for the 942 * platform by the platform code. Typically, this is as simple 943 * as calling kcage_range_init(phys_avail, decr), where decr is 944 * 1 if the kernel has been loaded into upper end of physical 945 * memory, or 0 if the kernel has been loaded at the low end. 946 * 947 * Note: it is assumed that we are in the startup flow, so there 948 * is no reason to grab the page lock. 949 */ 950 kcage_freemem = 0; 951 pfn = PFN_INVALID; /* prime for alignment test */ 952 while (wanted != 0) { 953 if ((pfn = kcage_get_pfn(0)) == PFN_INVALID) 954 break; 955 956 if ((pp = page_numtopp_nolock(pfn)) != NULL) { 957 KCAGEPAGETS_INC(); 958 /* 959 * Set the noreloc state on the page. 960 * If the page is free and not already 961 * on the noreloc list then move it. 962 */ 963 if (PP_ISFREE(pp)) { 964 if (PP_ISNORELOC(pp) == 0) 965 page_list_noreloc_startup(pp); 966 } else { 967 ASSERT(pp->p_szc == 0); 968 PP_SETNORELOC(pp); 969 } 970 } 971 PLCNT_XFER_NORELOC(pp); 972 wanted -= 1; 973 } 974 975 /* 976 * Need to go through and find kernel allocated pages 977 * and capture them into the Cage. These will primarily 978 * be pages gotten through boot_alloc(). 979 */ 980 if (kvp.v_pages) { 981 982 pp = kvp.v_pages; 983 do { 984 ASSERT(!PP_ISFREE(pp)); 985 ASSERT(pp->p_szc == 0); 986 PP_SETNORELOC(pp); 987 } while ((pp = pp->p_vpnext) != kvp.v_pages); 988 989 } 990 991 kcage_on = 1; 992 993 /* 994 * CB_CL_CPR_POST_KERNEL is the class that executes from cpr_suspend() 995 * after the cageout thread is blocked, and executes from cpr_resume() 996 * before the cageout thread is restarted. By executing in this class, 997 * we are assured that the kernel cage thread won't miss wakeup calls 998 * and also CPR's larger kmem_alloc requests will not fail after 999 * CPR shuts down the cageout kernel thread. 1000 */ 1001 (void) callb_add(kcage_cageout_cpr, NULL, CB_CL_CPR_POST_KERNEL, 1002 "cageout"); 1003 1004 /* 1005 * Coalesce pages to improve large page availability. A better fix 1006 * would to coalesce pages as they are included in the cage 1007 */ 1008 if (SEGKMEM_USE_LARGEPAGES) { 1009 extern void page_freelist_coalesce_all(int mnode); 1010 page_freelist_coalesce_all(-1); /* do all mnodes */ 1011 } 1012 1013 ksp = kstat_create("kcage", 0, "kcage_page_list", "misc", 1014 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL); 1015 if (ksp != NULL) { 1016 ksp->ks_update = kcage_kstat_update; 1017 ksp->ks_snapshot = kcage_kstat_snapshot; 1018 ksp->ks_lock = &kcage_kstat_lock; /* XXX - not really needed */ 1019 kstat_install(ksp); 1020 } 1021 } 1022 1023 static int 1024 kcage_kstat_update(kstat_t *ksp, int rw) 1025 { 1026 struct kcage_glist *lp; 1027 uint_t count; 1028 1029 if (rw == KSTAT_WRITE) 1030 return (EACCES); 1031 1032 count = 0; 1033 rw_enter(&kcage_range_rwlock, RW_WRITER); 1034 for (lp = kcage_glist; lp != NULL; lp = lp->next) { 1035 if (lp->decr) { 1036 if (lp->curr != lp->lim) { 1037 count++; 1038 } 1039 } else { 1040 if (lp->curr != lp->base) { 1041 count++; 1042 } 1043 } 1044 } 1045 rw_exit(&kcage_range_rwlock); 1046 1047 ksp->ks_ndata = count; 1048 ksp->ks_data_size = count * 2 * sizeof (uint64_t); 1049 1050 return (0); 1051 } 1052 1053 static int 1054 kcage_kstat_snapshot(kstat_t *ksp, void *buf, int rw) 1055 { 1056 struct kcage_glist *lp; 1057 struct memunit { 1058 uint64_t address; 1059 uint64_t size; 1060 } *kspmem; 1061 1062 if (rw == KSTAT_WRITE) 1063 return (EACCES); 1064 1065 ksp->ks_snaptime = gethrtime(); 1066 1067 kspmem = (struct memunit *)buf; 1068 rw_enter(&kcage_range_rwlock, RW_WRITER); 1069 for (lp = kcage_glist; lp != NULL; lp = lp->next, kspmem++) { 1070 if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) 1071 break; 1072 1073 if (lp->decr) { 1074 if (lp->curr != lp->lim) { 1075 kspmem->address = ptob(lp->curr); 1076 kspmem->size = ptob(lp->lim - lp->curr); 1077 } 1078 } else { 1079 if (lp->curr != lp->base) { 1080 kspmem->address = ptob(lp->base); 1081 kspmem->size = ptob(lp->curr - lp->base); 1082 } 1083 } 1084 } 1085 rw_exit(&kcage_range_rwlock); 1086 1087 return (0); 1088 } 1089 1090 void 1091 kcage_recalc_thresholds() 1092 { 1093 static int first = 1; 1094 static pgcnt_t init_lotsfree; 1095 static pgcnt_t init_desfree; 1096 static pgcnt_t init_minfree; 1097 static pgcnt_t init_throttlefree; 1098 static pgcnt_t init_reserve; 1099 1100 /* TODO: any reason to take more care than this with live editing? */ 1101 mutex_enter(&kcage_cageout_mutex); 1102 mutex_enter(&freemem_lock); 1103 1104 if (first) { 1105 first = 0; 1106 init_lotsfree = kcage_lotsfree; 1107 init_desfree = kcage_desfree; 1108 init_minfree = kcage_minfree; 1109 init_throttlefree = kcage_throttlefree; 1110 init_reserve = kcage_reserve; 1111 } else { 1112 kcage_lotsfree = init_lotsfree; 1113 kcage_desfree = init_desfree; 1114 kcage_minfree = init_minfree; 1115 kcage_throttlefree = init_throttlefree; 1116 kcage_reserve = init_reserve; 1117 } 1118 1119 if (kcage_lotsfree == 0) 1120 kcage_lotsfree = MAX(32, total_pages / 256); 1121 1122 if (kcage_minfree == 0) 1123 kcage_minfree = MAX(32, kcage_lotsfree / 2); 1124 1125 if (kcage_desfree == 0) 1126 kcage_desfree = MAX(32, kcage_minfree); 1127 1128 if (kcage_throttlefree == 0) 1129 kcage_throttlefree = MAX(32, kcage_minfree / 2); 1130 1131 if (kcage_reserve == 0) 1132 kcage_reserve = MIN(32, kcage_throttlefree / 2); 1133 1134 mutex_exit(&freemem_lock); 1135 mutex_exit(&kcage_cageout_mutex); 1136 1137 if (kcage_cageout_ready) { 1138 if (kcage_freemem < kcage_desfree) 1139 kcage_cageout_wakeup(); 1140 1141 if (kcage_needfree) { 1142 mutex_enter(&kcage_throttle_mutex); 1143 cv_broadcast(&kcage_throttle_cv); 1144 mutex_exit(&kcage_throttle_mutex); 1145 } 1146 } 1147 } 1148 1149 /* 1150 * Pageout interface: 1151 * kcage_cageout_init() 1152 */ 1153 void 1154 kcage_cageout_init() 1155 { 1156 if (kcage_on) { 1157 1158 (void) thread_create(NULL, 0, kcage_cageout, 1159 NULL, 0, proc_pageout, TS_RUN, maxclsyspri - 1); 1160 } 1161 } 1162 1163 1164 /* 1165 * VM Interfaces: 1166 * kcage_create_throttle() 1167 * kcage_freemem_add() 1168 * kcage_freemem_sub() 1169 */ 1170 1171 /* 1172 * Wakeup cageout thread and throttle waiting for the number of pages 1173 * requested to become available. For non-critical requests, a 1174 * timeout is added, since freemem accounting is separate from cage 1175 * freemem accounting: it's possible for us to get stuck and not make 1176 * forward progress even though there was sufficient freemem before 1177 * arriving here. 1178 */ 1179 int 1180 kcage_create_throttle(pgcnt_t npages, int flags) 1181 { 1182 int niter = 0; 1183 pgcnt_t lastfree; 1184 int enough = kcage_freemem > kcage_throttlefree + npages; 1185 1186 KCAGE_STAT_INCR(kct_calls); /* unprotected incr. */ 1187 1188 kcage_cageout_wakeup(); /* just to be sure */ 1189 KCAGE_STAT_INCR(kct_cagewake); /* unprotected incr. */ 1190 1191 /* 1192 * Obviously, we can't throttle the cageout thread since 1193 * we depend on it. We also can't throttle the panic thread. 1194 */ 1195 if (curthread == kcage_cageout_thread || panicstr) { 1196 KCAGE_STAT_INCR(kct_cageout); /* unprotected incr. */ 1197 return (KCT_CRIT); 1198 } 1199 1200 /* 1201 * Don't throttle threads which are critical for proper 1202 * vm management if we're above kcage_throttlefree or 1203 * if freemem is very low. 1204 */ 1205 if (NOMEMWAIT()) { 1206 if (enough) { 1207 KCAGE_STAT_INCR(kct_exempt); /* unprotected incr. */ 1208 return (KCT_CRIT); 1209 } else if (freemem < minfree) { 1210 KCAGE_STAT_INCR(kct_critical); /* unprotected incr. */ 1211 return (KCT_CRIT); 1212 } 1213 } 1214 1215 /* 1216 * Don't throttle real-time threads if kcage_freemem > kcage_reserve. 1217 */ 1218 if (DISP_PRIO(curthread) > maxclsyspri && 1219 kcage_freemem > kcage_reserve) { 1220 KCAGE_STAT_INCR(kct_exempt); /* unprotected incr. */ 1221 return (KCT_CRIT); 1222 } 1223 1224 /* 1225 * Cause all other threads (which are assumed to not be 1226 * critical to cageout) to wait here until their request 1227 * can be satisfied. Be a little paranoid and wake the 1228 * kernel cage on each loop through this logic. 1229 */ 1230 while (kcage_freemem < kcage_throttlefree + npages) { 1231 ASSERT(kcage_on); 1232 1233 lastfree = kcage_freemem; 1234 1235 if (kcage_cageout_ready) { 1236 mutex_enter(&kcage_throttle_mutex); 1237 1238 kcage_needfree += npages; 1239 KCAGE_STAT_INCR(kct_wait); 1240 1241 kcage_cageout_wakeup(); 1242 KCAGE_STAT_INCR(kct_cagewake); 1243 1244 cv_wait(&kcage_throttle_cv, &kcage_throttle_mutex); 1245 1246 kcage_needfree -= npages; 1247 1248 mutex_exit(&kcage_throttle_mutex); 1249 } else { 1250 /* 1251 * NOTE: atomics are used just in case we enter 1252 * mp operation before the cageout thread is ready. 1253 */ 1254 atomic_add_long(&kcage_needfree, npages); 1255 1256 kcage_cageout_wakeup(); 1257 KCAGE_STAT_INCR(kct_cagewake); /* unprotected incr. */ 1258 1259 atomic_add_long(&kcage_needfree, -npages); 1260 } 1261 1262 if ((flags & PG_WAIT) == 0) { 1263 if (kcage_freemem > lastfree) { 1264 KCAGE_STAT_INCR(kct_progress); 1265 niter = 0; 1266 } else { 1267 KCAGE_STAT_INCR(kct_noprogress); 1268 if (++niter >= kcage_maxwait) { 1269 KCAGE_STAT_INCR(kct_timeout); 1270 return (KCT_FAILURE); 1271 } 1272 } 1273 } 1274 } 1275 return (KCT_NONCRIT); 1276 } 1277 1278 void 1279 kcage_freemem_add(pgcnt_t npages) 1280 { 1281 extern void wakeup_pcgs(void); 1282 1283 atomic_add_long(&kcage_freemem, npages); 1284 1285 wakeup_pcgs(); /* wakeup threads in pcgs() */ 1286 1287 if (kcage_needfree != 0 && 1288 kcage_freemem >= (kcage_throttlefree + kcage_needfree)) { 1289 1290 mutex_enter(&kcage_throttle_mutex); 1291 cv_broadcast(&kcage_throttle_cv); 1292 KCAGE_STAT_INCR(kfa_trottlewake); 1293 mutex_exit(&kcage_throttle_mutex); 1294 } 1295 } 1296 1297 void 1298 kcage_freemem_sub(pgcnt_t npages) 1299 { 1300 atomic_add_long(&kcage_freemem, -npages); 1301 1302 if (kcage_freemem < kcage_desfree) { 1303 kcage_cageout_wakeup(); 1304 KCAGE_STAT_INCR(kfs_cagewake); /* unprotected incr. */ 1305 } 1306 } 1307 1308 /* 1309 * return 0 on failure and 1 on success. 1310 */ 1311 static int 1312 kcage_setnoreloc_pages(page_t *rootpp, se_t se) 1313 { 1314 pgcnt_t npgs, i; 1315 page_t *pp; 1316 pfn_t rootpfn = page_pptonum(rootpp); 1317 uint_t szc; 1318 1319 ASSERT(!PP_ISFREE(rootpp)); 1320 ASSERT(PAGE_LOCKED_SE(rootpp, se)); 1321 if (!group_page_trylock(rootpp, se)) { 1322 return (0); 1323 } 1324 szc = rootpp->p_szc; 1325 if (szc == 0) { 1326 /* 1327 * The szc of a locked page can only change for pages that are 1328 * non-swapfs (i.e. anonymous memory) file system pages. 1329 */ 1330 ASSERT(rootpp->p_vnode != NULL && 1331 !PP_ISKAS(rootpp) && 1332 !IS_SWAPFSVP(rootpp->p_vnode)); 1333 PP_SETNORELOC(rootpp); 1334 return (1); 1335 } 1336 npgs = page_get_pagecnt(szc); 1337 ASSERT(IS_P2ALIGNED(rootpfn, npgs)); 1338 pp = rootpp; 1339 for (i = 0; i < npgs; i++, pp++) { 1340 ASSERT(PAGE_LOCKED_SE(pp, se)); 1341 ASSERT(!PP_ISFREE(pp)); 1342 ASSERT(pp->p_szc == szc); 1343 PP_SETNORELOC(pp); 1344 } 1345 group_page_unlock(rootpp); 1346 return (1); 1347 } 1348 1349 /* 1350 * Attempt to convert page to a caged page (set the P_NORELOC flag). 1351 * If successful and pages is free, move page to the tail of whichever 1352 * list it is on. 1353 * Returns: 1354 * EBUSY page already locked, assimilated but not free. 1355 * ENOMEM page assimilated, but memory too low to relocate. Page not free. 1356 * EAGAIN page not assimilated. Page not free. 1357 * ERANGE page assimilated. Page not root. 1358 * 0 page assimilated. Page free. 1359 * *nfreedp number of pages freed. 1360 * NOTE: With error codes ENOMEM, EBUSY, and 0 (zero), there is no way 1361 * to distinguish between a page that was already a NORELOC page from 1362 * those newly converted to NORELOC pages by this invocation of 1363 * kcage_assimilate_page. 1364 */ 1365 static int 1366 kcage_assimilate_page(page_t *pp, pgcnt_t *nfreedp) 1367 { 1368 if (page_trylock(pp, SE_EXCL)) { 1369 if (PP_ISNORELOC(pp)) { 1370 check_free_and_return: 1371 if (PP_ISFREE(pp)) { 1372 page_unlock(pp); 1373 *nfreedp = 0; 1374 return (0); 1375 } else { 1376 page_unlock(pp); 1377 return (EBUSY); 1378 } 1379 /*NOTREACHED*/ 1380 } 1381 } else { 1382 if (page_trylock(pp, SE_SHARED)) { 1383 if (PP_ISNORELOC(pp)) 1384 goto check_free_and_return; 1385 } else 1386 return (EAGAIN); 1387 1388 if (!PP_ISFREE(pp)) { 1389 page_unlock(pp); 1390 return (EAGAIN); 1391 } 1392 1393 /* 1394 * Need to upgrade the lock on it and set the NORELOC 1395 * bit. If it is free then remove it from the free 1396 * list so that the platform free list code can keep 1397 * NORELOC pages where they should be. 1398 */ 1399 /* 1400 * Before doing anything, get the exclusive lock. 1401 * This may fail (eg ISM pages are left shared locked). 1402 * If the page is free this will leave a hole in the 1403 * cage. There is no solution yet to this. 1404 */ 1405 if (!page_tryupgrade(pp)) { 1406 page_unlock(pp); 1407 return (EAGAIN); 1408 } 1409 } 1410 1411 ASSERT(PAGE_EXCL(pp)); 1412 1413 if (PP_ISFREE(pp)) { 1414 int which = PP_ISAGED(pp) ? PG_FREE_LIST : PG_CACHE_LIST; 1415 1416 page_list_sub(pp, which); 1417 ASSERT(pp->p_szc == 0); 1418 PP_SETNORELOC(pp); 1419 PLCNT_XFER_NORELOC(pp); 1420 page_list_add(pp, which | PG_LIST_TAIL); 1421 1422 page_unlock(pp); 1423 *nfreedp = 1; 1424 return (0); 1425 } else { 1426 if (pp->p_szc != 0) { 1427 if (!kcage_setnoreloc_pages(pp, SE_EXCL)) { 1428 page_unlock(pp); 1429 return (EAGAIN); 1430 } 1431 ASSERT(PP_ISNORELOC(pp)); 1432 } else { 1433 PP_SETNORELOC(pp); 1434 } 1435 PLCNT_XFER_NORELOC(pp); 1436 return (kcage_invalidate_page(pp, nfreedp)); 1437 } 1438 /*NOTREACHED*/ 1439 } 1440 1441 static int 1442 kcage_expand() 1443 { 1444 int did_something = 0; 1445 1446 spgcnt_t wanted; 1447 pfn_t pfn; 1448 page_t *pp; 1449 /* TODO: we don't really need n any more? */ 1450 pgcnt_t n; 1451 pgcnt_t nf, nfreed; 1452 1453 /* 1454 * Expand the cage if available cage memory is really low. Calculate 1455 * the amount required to return kcage_freemem to the level of 1456 * kcage_lotsfree, or to satisfy throttled requests, whichever is 1457 * more. It is rare for their sum to create an artificial threshold 1458 * above kcage_lotsfree, but it is possible. 1459 * 1460 * Exit early if expansion amount is equal to or less than zero. 1461 * (<0 is possible if kcage_freemem rises suddenly.) 1462 * 1463 * Exit early when the global page pool (apparently) does not 1464 * have enough free pages to page_relocate() even a single page. 1465 */ 1466 wanted = MAX(kcage_lotsfree, kcage_throttlefree + kcage_needfree) 1467 - kcage_freemem; 1468 if (wanted <= 0) 1469 return (0); 1470 else if (freemem < pageout_reserve + 1) { 1471 KCAGE_STAT_INCR(ke_lowfreemem); 1472 return (0); 1473 } 1474 1475 KCAGE_STAT_INCR(ke_calls); 1476 KCAGE_STAT_SET_SCAN(ke_wanted, (uint_t)wanted); 1477 1478 /* 1479 * Assimilate more pages from the global page pool into the cage. 1480 */ 1481 n = 0; /* number of pages PP_SETNORELOC'd */ 1482 nf = 0; /* number of those actually free */ 1483 while (kcage_on && nf < wanted) { 1484 pfn = kcage_get_pfn(1); 1485 if (pfn == PFN_INVALID) { /* eek! no where to grow */ 1486 KCAGE_STAT_INCR(ke_nopfn); 1487 goto terminate; 1488 } 1489 1490 KCAGE_STAT_INCR_SCAN(ke_examined); 1491 1492 if ((pp = page_numtopp_nolock(pfn)) == NULL) { 1493 KCAGE_STAT_INCR(ke_nopaget); 1494 continue; 1495 } 1496 KCAGEPAGETS_INC(); 1497 /* 1498 * Sanity check. Skip this pfn if it is 1499 * being deleted. 1500 */ 1501 if (pfn_is_being_deleted(pfn)) { 1502 KCAGE_STAT_INCR(ke_deleting); 1503 continue; 1504 } 1505 1506 if (PP_ISNORELOC(pp)) { 1507 KCAGE_STAT_INCR(ke_isnoreloc); 1508 continue; 1509 } 1510 1511 switch (kcage_assimilate_page(pp, &nfreed)) { 1512 case 0: /* assimilated, page is free */ 1513 KCAGE_STAT_NINCR_SCAN(ke_gotonefree, nfreed); 1514 did_something = 1; 1515 nf += nfreed; 1516 n++; 1517 break; 1518 1519 case EBUSY: /* assimilated, page not free */ 1520 case ERANGE: /* assimilated, page not root */ 1521 KCAGE_STAT_INCR_SCAN(ke_gotone); 1522 did_something = 1; 1523 n++; 1524 break; 1525 1526 case ENOMEM: /* assimilated, but no mem */ 1527 KCAGE_STAT_INCR(ke_terminate); 1528 did_something = 1; 1529 n++; 1530 goto terminate; 1531 1532 case EAGAIN: /* can't assimilate */ 1533 KCAGE_STAT_INCR_SCAN(ke_lefthole); 1534 break; 1535 1536 default: /* catch this with debug kernels */ 1537 ASSERT(0); 1538 break; 1539 } 1540 } 1541 1542 /* 1543 * Realign cage edge with the nearest physical address 1544 * boundry for big pages. This is done to give us a 1545 * better chance of actually getting usable big pages 1546 * in the cage. 1547 */ 1548 1549 terminate: 1550 1551 return (did_something); 1552 } 1553 1554 /* 1555 * Relocate page opp (Original Page Pointer) from cage pool to page rpp 1556 * (Replacement Page Pointer) in the global pool. Page opp will be freed 1557 * if relocation is successful, otherwise it is only unlocked. 1558 * On entry, page opp must be exclusively locked and not free. 1559 * *nfreedp: number of pages freed. 1560 */ 1561 static int 1562 kcage_relocate_page(page_t *pp, pgcnt_t *nfreedp) 1563 { 1564 page_t *opp = pp; 1565 page_t *rpp = NULL; 1566 spgcnt_t npgs; 1567 int result; 1568 1569 ASSERT(!PP_ISFREE(opp)); 1570 ASSERT(PAGE_EXCL(opp)); 1571 1572 result = page_relocate(&opp, &rpp, 1, 1, &npgs, NULL); 1573 *nfreedp = npgs; 1574 if (result == 0) { 1575 while (npgs-- > 0) { 1576 page_t *tpp; 1577 1578 ASSERT(rpp != NULL); 1579 tpp = rpp; 1580 page_sub(&rpp, tpp); 1581 page_unlock(tpp); 1582 } 1583 1584 ASSERT(rpp == NULL); 1585 1586 return (0); /* success */ 1587 } 1588 1589 page_unlock(opp); 1590 return (result); 1591 } 1592 1593 /* 1594 * Based on page_invalidate_pages() 1595 * 1596 * Kcage_invalidate_page() uses page_relocate() twice. Both instances 1597 * of use must be updated to match the new page_relocate() when it 1598 * becomes available. 1599 * 1600 * Return result of kcage_relocate_page or zero if page was directly freed. 1601 * *nfreedp: number of pages freed. 1602 */ 1603 static int 1604 kcage_invalidate_page(page_t *pp, pgcnt_t *nfreedp) 1605 { 1606 int result; 1607 1608 #if defined(__sparc) 1609 extern struct vnode prom_ppages; 1610 ASSERT(pp->p_vnode != &prom_ppages); 1611 #endif /* __sparc */ 1612 1613 ASSERT(!PP_ISFREE(pp)); 1614 ASSERT(PAGE_EXCL(pp)); 1615 1616 /* 1617 * Is this page involved in some I/O? shared? 1618 * The page_struct_lock need not be acquired to 1619 * examine these fields since the page has an 1620 * "exclusive" lock. 1621 */ 1622 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 1623 result = kcage_relocate_page(pp, nfreedp); 1624 #ifdef KCAGE_STATS 1625 if (result == 0) 1626 KCAGE_STAT_INCR_SCAN(kip_reloclocked); 1627 else if (result == ENOMEM) 1628 KCAGE_STAT_INCR_SCAN(kip_nomem); 1629 #endif 1630 return (result); 1631 } 1632 1633 ASSERT(pp->p_vnode->v_type != VCHR); 1634 1635 /* 1636 * Unload the mappings and check if mod bit is set. 1637 */ 1638 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1639 1640 if (hat_ismod(pp)) { 1641 result = kcage_relocate_page(pp, nfreedp); 1642 #ifdef KCAGE_STATS 1643 if (result == 0) 1644 KCAGE_STAT_INCR_SCAN(kip_relocmod); 1645 else if (result == ENOMEM) 1646 KCAGE_STAT_INCR_SCAN(kip_nomem); 1647 #endif 1648 return (result); 1649 } 1650 1651 if (!page_try_demote_pages(pp)) { 1652 KCAGE_STAT_INCR_SCAN(kip_demotefailed); 1653 page_unlock(pp); 1654 return (EAGAIN); 1655 } 1656 1657 page_destroy(pp, 0); 1658 KCAGE_STAT_INCR_SCAN(kip_destroy); 1659 *nfreedp = 1; 1660 return (0); 1661 } 1662 1663 static void 1664 kcage_cageout() 1665 { 1666 pfn_t pfn; 1667 page_t *pp; 1668 callb_cpr_t cprinfo; 1669 int did_something; 1670 int scan_again; 1671 pfn_t start_pfn; 1672 int pass; 1673 int last_pass; 1674 int pages_skipped; 1675 int shared_skipped; 1676 ulong_t shared_level = 8; 1677 pgcnt_t nfreed; 1678 #ifdef KCAGE_STATS 1679 clock_t scan_start; 1680 #endif 1681 1682 CALLB_CPR_INIT(&cprinfo, &kcage_cageout_mutex, 1683 callb_generic_cpr, "cageout"); 1684 1685 mutex_enter(&kcage_cageout_mutex); 1686 kcage_cageout_thread = curthread; 1687 1688 pfn = PFN_INVALID; /* force scan reset */ 1689 start_pfn = PFN_INVALID; /* force init with 1st cage pfn */ 1690 kcage_cageout_ready = 1; /* switch kcage_cageout_wakeup mode */ 1691 1692 loop: 1693 /* 1694 * Wait here. Sooner or later, kcage_freemem_sub() will notice 1695 * that kcage_freemem is less than kcage_desfree. When it does 1696 * notice, kcage_freemem_sub() will wake us up via call to 1697 * kcage_cageout_wakeup(). 1698 */ 1699 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1700 cv_wait(&kcage_cageout_cv, &kcage_cageout_mutex); 1701 CALLB_CPR_SAFE_END(&cprinfo, &kcage_cageout_mutex); 1702 1703 KCAGE_STAT_INCR(kt_wakeups); 1704 KCAGE_STAT_SET_SCAN(kt_freemem_start, freemem); 1705 KCAGE_STAT_SET_SCAN(kt_kcage_freemem_start, kcage_freemem); 1706 pass = 0; 1707 last_pass = 0; 1708 1709 #ifdef KCAGE_STATS 1710 scan_start = lbolt; 1711 #endif 1712 1713 again: 1714 if (!kcage_on) 1715 goto loop; 1716 1717 KCAGE_STAT_INCR(kt_scans); 1718 KCAGE_STAT_INCR_SCAN(kt_passes); 1719 1720 did_something = 0; 1721 pages_skipped = 0; 1722 shared_skipped = 0; 1723 while ((kcage_freemem < kcage_lotsfree || kcage_needfree) && 1724 (pfn = kcage_walk_cage(pfn == PFN_INVALID)) != PFN_INVALID) { 1725 1726 if (start_pfn == PFN_INVALID) 1727 start_pfn = pfn; 1728 else if (start_pfn == pfn) { 1729 last_pass = pass; 1730 pass += 1; 1731 /* 1732 * Did a complete walk of kernel cage, but didn't free 1733 * any pages. If only one cpu is active then 1734 * stop kernel cage walk and try expanding. 1735 */ 1736 if (cp_default.cp_ncpus == 1 && did_something == 0) { 1737 KCAGE_STAT_INCR(kt_cageout_break); 1738 break; 1739 } 1740 } 1741 1742 pp = page_numtopp_nolock(pfn); 1743 if (pp == NULL) { 1744 continue; 1745 } 1746 1747 KCAGE_STAT_INCR_SCAN(kt_examined); 1748 1749 /* 1750 * Do a quick PP_ISNORELOC() and PP_ISFREE test outside 1751 * of the lock. If one is missed it will be seen next 1752 * time through. 1753 * 1754 * Skip non-caged-pages. These pages can exist in the cage 1755 * because, if during cage expansion, a page is 1756 * encountered that is long-term locked the lock prevents the 1757 * expansion logic from setting the P_NORELOC flag. Hence, 1758 * non-caged-pages surrounded by caged-pages. 1759 */ 1760 if (!PP_ISNORELOC(pp)) { 1761 switch (kcage_assimilate_page(pp, &nfreed)) { 1762 case 0: 1763 did_something = 1; 1764 KCAGE_STAT_NINCR_SCAN(kt_gotonefree, 1765 nfreed); 1766 break; 1767 1768 case EBUSY: 1769 case ERANGE: 1770 did_something = 1; 1771 KCAGE_STAT_INCR_SCAN(kt_gotone); 1772 break; 1773 1774 case EAGAIN: 1775 case ENOMEM: 1776 break; 1777 1778 default: 1779 /* catch this with debug kernels */ 1780 ASSERT(0); 1781 break; 1782 } 1783 1784 continue; 1785 } else { 1786 int prm; 1787 1788 if (PP_ISFREE(pp)) { 1789 continue; 1790 } 1791 1792 if ((PP_ISKAS(pp) && pp->p_lckcnt > 0) || 1793 !page_trylock(pp, SE_EXCL)) { 1794 KCAGE_STAT_INCR_SCAN(kt_cantlock); 1795 continue; 1796 } 1797 1798 /* P_NORELOC bit should not have gone away. */ 1799 ASSERT(PP_ISNORELOC(pp)); 1800 if (PP_ISFREE(pp) || (PP_ISKAS(pp) && 1801 pp->p_lckcnt > 0)) { 1802 page_unlock(pp); 1803 continue; 1804 } 1805 1806 KCAGE_STAT_SET_SCAN(kt_skiplevel, shared_level); 1807 if (hat_page_checkshare(pp, shared_level)) { 1808 page_unlock(pp); 1809 pages_skipped = 1; 1810 shared_skipped = 1; 1811 KCAGE_STAT_INCR_SCAN(kt_skipshared); 1812 continue; 1813 } 1814 1815 /* 1816 * In pass {0, 1}, skip page if ref bit is set. 1817 * In pass {0, 1, 2}, skip page if mod bit is set. 1818 */ 1819 prm = hat_pagesync(pp, 1820 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD); 1821 1822 /* On first pass ignore ref'd pages */ 1823 if (pass <= 1 && (prm & P_REF)) { 1824 KCAGE_STAT_INCR_SCAN(kt_skiprefd); 1825 pages_skipped = 1; 1826 page_unlock(pp); 1827 continue; 1828 } 1829 1830 /* On pass 2, page_destroy if mod bit is not set */ 1831 if (pass <= 2) { 1832 if (pp->p_szc != 0 || (prm & P_MOD) || 1833 pp->p_lckcnt || pp->p_cowcnt) { 1834 pages_skipped = 1; 1835 page_unlock(pp); 1836 } else { 1837 1838 /* 1839 * unload the mappings before 1840 * checking if mod bit is set 1841 */ 1842 (void) hat_pageunload(pp, 1843 HAT_FORCE_PGUNLOAD); 1844 1845 /* 1846 * skip this page if modified 1847 */ 1848 if (hat_ismod(pp)) { 1849 pages_skipped = 1; 1850 page_unlock(pp); 1851 continue; 1852 } 1853 1854 KCAGE_STAT_INCR_SCAN(kt_destroy); 1855 page_destroy(pp, 0); 1856 did_something = 1; 1857 } 1858 continue; 1859 } 1860 1861 if (kcage_invalidate_page(pp, &nfreed) == 0) { 1862 did_something = 1; 1863 KCAGE_STAT_NINCR_SCAN(kt_gotonefree, nfreed); 1864 } 1865 1866 /* 1867 * No need to drop the page lock here. 1868 * Kcage_invalidate_page has done that for us 1869 * either explicitly or through a page_free. 1870 */ 1871 } 1872 } 1873 1874 /* 1875 * Expand the cage only if available cage memory is really low. 1876 * This test is done only after a complete scan of the cage. 1877 * The reason for not checking and expanding more often is to 1878 * avoid rapid expansion of the cage. Naturally, scanning the 1879 * cage takes time. So by scanning first, we use that work as a 1880 * delay loop in between expand decisions. 1881 */ 1882 1883 scan_again = 0; 1884 if (kcage_freemem < kcage_minfree || kcage_needfree) { 1885 /* 1886 * Kcage_expand() will return a non-zero value if it was 1887 * able to expand the cage -- whether or not the new 1888 * pages are free and immediately usable. If non-zero, 1889 * we do another scan of the cage. The pages might be 1890 * freed during that scan or by time we get back here. 1891 * If not, we will attempt another expansion. 1892 * However, if kcage_expand() returns zero, then it was 1893 * unable to expand the cage. This is the case when the 1894 * the growth list is exausted, therefore no work was done 1895 * and there is no reason to scan the cage again. 1896 * Note: Kernel cage scan is not repeated when only one 1897 * cpu is active to avoid kernel cage thread hogging cpu. 1898 */ 1899 if (pass <= 3 && pages_skipped && cp_default.cp_ncpus > 1) 1900 scan_again = 1; 1901 else 1902 (void) kcage_expand(); /* don't scan again */ 1903 } else if (kcage_freemem < kcage_lotsfree) { 1904 /* 1905 * If available cage memory is less than abundant 1906 * and a full scan of the cage has not yet been completed, 1907 * or a scan has completed and some work was performed, 1908 * or pages were skipped because of sharing, 1909 * or we simply have not yet completed two passes, 1910 * then do another scan. 1911 */ 1912 if (pass <= 2 && pages_skipped) 1913 scan_again = 1; 1914 if (pass == last_pass || did_something) 1915 scan_again = 1; 1916 else if (shared_skipped && shared_level < (8<<24)) { 1917 shared_level <<= 1; 1918 scan_again = 1; 1919 } 1920 } 1921 1922 if (scan_again && cp_default.cp_ncpus > 1) 1923 goto again; 1924 else { 1925 if (shared_level > 8) 1926 shared_level >>= 1; 1927 1928 KCAGE_STAT_SET_SCAN(kt_freemem_end, freemem); 1929 KCAGE_STAT_SET_SCAN(kt_kcage_freemem_end, kcage_freemem); 1930 KCAGE_STAT_SET_SCAN(kt_ticks, lbolt - scan_start); 1931 KCAGE_STAT_INC_SCAN_INDEX; 1932 goto loop; 1933 } 1934 1935 /*NOTREACHED*/ 1936 } 1937 1938 void 1939 kcage_cageout_wakeup() 1940 { 1941 if (mutex_tryenter(&kcage_cageout_mutex)) { 1942 if (kcage_cageout_ready) { 1943 cv_signal(&kcage_cageout_cv); 1944 } else if (kcage_freemem < kcage_minfree || kcage_needfree) { 1945 /* 1946 * Available cage memory is really low. Time to 1947 * start expanding the cage. However, the 1948 * kernel cage thread is not yet ready to 1949 * do the work. Use *this* thread, which is 1950 * most likely to be t0, to do the work. 1951 */ 1952 KCAGE_STAT_INCR(kcw_expandearly); 1953 (void) kcage_expand(); 1954 KCAGE_STAT_INC_SCAN_INDEX; 1955 } 1956 1957 mutex_exit(&kcage_cageout_mutex); 1958 } 1959 /* else, kernel cage thread is already running */ 1960 } 1961 1962 void 1963 kcage_tick() 1964 { 1965 /* 1966 * Once per second we wake up all the threads throttled 1967 * waiting for cage memory, in case we've become stuck 1968 * and haven't made forward progress expanding the cage. 1969 */ 1970 if (kcage_on && kcage_cageout_ready) 1971 cv_broadcast(&kcage_throttle_cv); 1972 } 1973