1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/sysmacros.h> 34 #include <sys/systm.h> 35 #include <sys/thread.h> 36 #include <sys/proc.h> 37 #include <sys/task.h> 38 #include <sys/project.h> 39 #include <sys/signal.h> 40 #include <sys/errno.h> 41 #include <sys/vmparam.h> 42 #include <sys/stack.h> 43 #include <sys/procfs.h> 44 #include <sys/prsystm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/kmem.h> 47 #include <sys/vtrace.h> 48 #include <sys/door.h> 49 #include <vm/seg_kp.h> 50 #include <sys/debug.h> 51 #include <sys/tnf.h> 52 #include <sys/schedctl.h> 53 #include <sys/poll.h> 54 #include <sys/copyops.h> 55 #include <sys/lwp_upimutex_impl.h> 56 #include <sys/cpupart.h> 57 #include <sys/lgrp.h> 58 #include <sys/rctl.h> 59 #include <sys/contract_impl.h> 60 #include <sys/cpc_impl.h> 61 #include <sys/sdt.h> 62 #include <sys/cmn_err.h> 63 #include <sys/brand.h> 64 #include <sys/cyclic.h> 65 #include <sys/pool.h> 66 67 /* hash function for the lwpid hash table, p->p_tidhash[] */ 68 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1)) 69 70 void *segkp_lwp; /* cookie for pool of segkp resources */ 71 extern void reapq_move_lq_to_tq(kthread_t *); 72 extern void freectx_ctx(struct ctxop *); 73 74 /* 75 * Create a kernel thread associated with a particular system process. Give 76 * it an LWP so that microstate accounting will be available for it. 77 */ 78 kthread_t * 79 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri) 80 { 81 klwp_t *lwp; 82 83 VERIFY((p->p_flag & SSYS) != 0); 84 85 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0); 86 87 VERIFY(lwp != NULL); 88 89 return (lwptot(lwp)); 90 } 91 92 /* 93 * Create a thread that appears to be stopped at sys_rtt. 94 */ 95 klwp_t * 96 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 97 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 98 { 99 klwp_t *lwp = NULL; 100 kthread_t *t; 101 kthread_t *tx; 102 cpupart_t *oldpart = NULL; 103 size_t stksize; 104 caddr_t lwpdata = NULL; 105 processorid_t binding; 106 int err = 0; 107 kproject_t *oldkpj, *newkpj; 108 void *bufp = NULL; 109 klwp_t *curlwp; 110 lwpent_t *lep; 111 lwpdir_t *old_dir = NULL; 112 uint_t old_dirsz = 0; 113 tidhash_t *old_hash = NULL; 114 uint_t old_hashsz = 0; 115 ret_tidhash_t *ret_tidhash = NULL; 116 int i; 117 int rctlfail = 0; 118 boolean_t branded = 0; 119 struct ctxop *ctx = NULL; 120 121 ASSERT(cid != sysdccid); /* system threads must start in SYS */ 122 123 ASSERT(p != &p0); /* No new LWPs in p0. */ 124 125 mutex_enter(&p->p_lock); 126 mutex_enter(&p->p_zone->zone_nlwps_lock); 127 /* 128 * don't enforce rctl limits on system processes 129 */ 130 if (!CLASS_KERNEL(cid)) { 131 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 132 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 133 1, 0) & RCT_DENY) 134 rctlfail = 1; 135 if (p->p_task->tk_proj->kpj_nlwps >= 136 p->p_task->tk_proj->kpj_nlwps_ctl) 137 if (rctl_test(rc_project_nlwps, 138 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 139 & RCT_DENY) 140 rctlfail = 1; 141 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 142 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 143 1, 0) & RCT_DENY) 144 rctlfail = 1; 145 } 146 if (rctlfail) { 147 mutex_exit(&p->p_zone->zone_nlwps_lock); 148 mutex_exit(&p->p_lock); 149 atomic_inc_32(&p->p_zone->zone_ffcap); 150 return (NULL); 151 } 152 p->p_task->tk_nlwps++; 153 p->p_task->tk_proj->kpj_nlwps++; 154 p->p_zone->zone_nlwps++; 155 mutex_exit(&p->p_zone->zone_nlwps_lock); 156 mutex_exit(&p->p_lock); 157 158 curlwp = ttolwp(curthread); 159 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 160 stksize = lwp_default_stksize; 161 162 if (CLASS_KERNEL(cid)) { 163 /* 164 * Since we are creating an LWP in an SSYS process, we do not 165 * inherit anything from the current thread's LWP. We set 166 * stksize and lwpdata to 0 in order to let thread_create() 167 * allocate a regular kernel thread stack for this thread. 168 */ 169 curlwp = NULL; 170 stksize = 0; 171 lwpdata = NULL; 172 173 } else if (stksize == lwp_default_stksize) { 174 /* 175 * Try to reuse an <lwp,stack> from the LWP deathrow. 176 */ 177 if (lwp_reapcnt > 0) { 178 mutex_enter(&reaplock); 179 if ((t = lwp_deathrow) != NULL) { 180 ASSERT(t->t_swap); 181 lwp_deathrow = t->t_forw; 182 lwp_reapcnt--; 183 lwpdata = t->t_swap; 184 lwp = t->t_lwp; 185 ctx = t->t_ctx; 186 t->t_swap = NULL; 187 t->t_lwp = NULL; 188 t->t_ctx = NULL; 189 reapq_move_lq_to_tq(t); 190 } 191 mutex_exit(&reaplock); 192 if (lwp != NULL) { 193 lwp_stk_fini(lwp); 194 } 195 if (ctx != NULL) { 196 freectx_ctx(ctx); 197 } 198 } 199 if (lwpdata == NULL && 200 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 201 mutex_enter(&p->p_lock); 202 mutex_enter(&p->p_zone->zone_nlwps_lock); 203 p->p_task->tk_nlwps--; 204 p->p_task->tk_proj->kpj_nlwps--; 205 p->p_zone->zone_nlwps--; 206 mutex_exit(&p->p_zone->zone_nlwps_lock); 207 mutex_exit(&p->p_lock); 208 atomic_inc_32(&p->p_zone->zone_ffnomem); 209 return (NULL); 210 } 211 } else { 212 stksize = roundup(stksize, PAGESIZE); 213 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 214 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 215 mutex_enter(&p->p_lock); 216 mutex_enter(&p->p_zone->zone_nlwps_lock); 217 p->p_task->tk_nlwps--; 218 p->p_task->tk_proj->kpj_nlwps--; 219 p->p_zone->zone_nlwps--; 220 mutex_exit(&p->p_zone->zone_nlwps_lock); 221 mutex_exit(&p->p_lock); 222 atomic_inc_32(&p->p_zone->zone_ffnomem); 223 return (NULL); 224 } 225 } 226 227 /* 228 * Create a thread, initializing the stack pointer 229 */ 230 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 231 232 /* 233 * If a non-NULL stack base is passed in, thread_create() assumes 234 * that the stack might be statically allocated (as opposed to being 235 * allocated from segkp), and so it does not set t_swap. Since 236 * the lwpdata was allocated from segkp, we must set t_swap to point 237 * to it ourselves. 238 * 239 * This would be less confusing if t_swap had a better name; it really 240 * indicates that the stack is allocated from segkp, regardless of 241 * whether or not it is swappable. 242 */ 243 if (lwpdata != NULL) { 244 ASSERT(!CLASS_KERNEL(cid)); 245 ASSERT(t->t_swap == NULL); 246 t->t_swap = lwpdata; /* Start of page-able data */ 247 } 248 249 /* 250 * If the stack and lwp can be reused, mark the thread as such. 251 * When we get to reapq_add() from resume_from_zombie(), these 252 * threads will go onto lwp_deathrow instead of thread_deathrow. 253 */ 254 if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize) 255 t->t_flag |= T_LWPREUSE; 256 257 if (lwp == NULL) 258 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 259 bzero(lwp, sizeof (*lwp)); 260 t->t_lwp = lwp; 261 262 t->t_hold = *smask; 263 lwp->lwp_thread = t; 264 lwp->lwp_procp = p; 265 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 266 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 267 lwp->lwp_childstksz = curlwp->lwp_childstksz; 268 269 t->t_stk = lwp_stk_init(lwp, t->t_stk); 270 thread_load(t, proc, arg, len); 271 272 /* 273 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 274 */ 275 if (p->p_rprof_cyclic != CYCLIC_NONE) 276 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 277 278 if (cid != NOCLASS) 279 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 280 281 /* 282 * Allocate an lwp directory entry for the new lwp. 283 */ 284 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 285 286 mutex_enter(&p->p_lock); 287 grow: 288 /* 289 * Grow the lwp (thread) directory and lwpid hash table if necessary. 290 * A note on the growth algorithm: 291 * The new lwp directory size is computed as: 292 * new = 2 * old + 2 293 * Starting with an initial size of 2 (see exec_common()), 294 * this yields numbers that are a power of two minus 2: 295 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 296 * The size of the lwpid hash table must be a power of two 297 * and must be commensurate in size with the lwp directory 298 * so that hash bucket chains remain short. Therefore, 299 * the lwpid hash table size is computed as: 300 * hashsz = (dirsz + 2) / 2 301 * which leads to these hash table sizes corresponding to 302 * the above directory sizes: 303 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 304 * A note on growing the hash table: 305 * For performance reasons, code in lwp_unpark() does not 306 * acquire curproc->p_lock when searching the hash table. 307 * Rather, it calls lwp_hash_lookup_and_lock() which 308 * acquires only the individual hash bucket lock, taking 309 * care to deal with reallocation of the hash table 310 * during the time it takes to acquire the lock. 311 * 312 * This is sufficient to protect the integrity of the 313 * hash table, but it requires us to acquire all of the 314 * old hash bucket locks before growing the hash table 315 * and to release them afterwards. It also requires us 316 * not to free the old hash table because some thread 317 * in lwp_hash_lookup_and_lock() might still be trying 318 * to acquire the old bucket lock. 319 * 320 * So we adopt the tactic of keeping all of the retired 321 * hash tables on a linked list, so they can be safely 322 * freed when the process exits or execs. 323 * 324 * Because the hash table grows in powers of two, the 325 * total size of all of the hash tables will be slightly 326 * less than twice the size of the largest hash table. 327 */ 328 while (p->p_lwpfree == NULL) { 329 uint_t dirsz = p->p_lwpdir_sz; 330 lwpdir_t *new_dir; 331 uint_t new_dirsz; 332 lwpdir_t *ldp; 333 tidhash_t *new_hash; 334 uint_t new_hashsz; 335 336 mutex_exit(&p->p_lock); 337 338 /* 339 * Prepare to remember the old p_tidhash for later 340 * kmem_free()ing when the process exits or execs. 341 */ 342 if (ret_tidhash == NULL) 343 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t), 344 KM_SLEEP); 345 if (old_dir != NULL) 346 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 347 if (old_hash != NULL) 348 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 349 350 new_dirsz = 2 * dirsz + 2; 351 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 352 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 353 ldp->ld_next = ldp + 1; 354 new_hashsz = (new_dirsz + 2) / 2; 355 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t), 356 KM_SLEEP); 357 358 mutex_enter(&p->p_lock); 359 if (p == curproc) 360 prbarrier(p); 361 362 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 363 /* 364 * Someone else beat us to it or some lwp exited. 365 * Set up to free our memory and take a lap. 366 */ 367 old_dir = new_dir; 368 old_dirsz = new_dirsz; 369 old_hash = new_hash; 370 old_hashsz = new_hashsz; 371 } else { 372 /* 373 * For the benefit of lwp_hash_lookup_and_lock(), 374 * called from lwp_unpark(), which searches the 375 * tid hash table without acquiring p->p_lock, 376 * we must acquire all of the tid hash table 377 * locks before replacing p->p_tidhash. 378 */ 379 old_hash = p->p_tidhash; 380 old_hashsz = p->p_tidhash_sz; 381 for (i = 0; i < old_hashsz; i++) { 382 mutex_enter(&old_hash[i].th_lock); 383 mutex_enter(&new_hash[i].th_lock); 384 } 385 386 /* 387 * We simply hash in all of the old directory entries. 388 * This works because the old directory has no empty 389 * slots and the new hash table starts out empty. 390 * This reproduces the original directory ordering 391 * (required for /proc directory semantics). 392 */ 393 old_dir = p->p_lwpdir; 394 old_dirsz = p->p_lwpdir_sz; 395 p->p_lwpdir = new_dir; 396 p->p_lwpfree = new_dir; 397 p->p_lwpdir_sz = new_dirsz; 398 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++) 399 lwp_hash_in(p, ldp->ld_entry, 400 new_hash, new_hashsz, 0); 401 402 /* 403 * Remember the old hash table along with all 404 * of the previously-remembered hash tables. 405 * We will free them at process exit or exec. 406 */ 407 ret_tidhash->rth_tidhash = old_hash; 408 ret_tidhash->rth_tidhash_sz = old_hashsz; 409 ret_tidhash->rth_next = p->p_ret_tidhash; 410 p->p_ret_tidhash = ret_tidhash; 411 412 /* 413 * Now establish the new tid hash table. 414 * As soon as we assign p->p_tidhash, 415 * code in lwp_unpark() can start using it. 416 */ 417 membar_producer(); 418 p->p_tidhash = new_hash; 419 420 /* 421 * It is necessary that p_tidhash reach global 422 * visibility before p_tidhash_sz. Otherwise, 423 * code in lwp_hash_lookup_and_lock() could 424 * index into the old p_tidhash using the new 425 * p_tidhash_sz and thereby access invalid data. 426 */ 427 membar_producer(); 428 p->p_tidhash_sz = new_hashsz; 429 430 /* 431 * Release the locks; allow lwp_unpark() to carry on. 432 */ 433 for (i = 0; i < old_hashsz; i++) { 434 mutex_exit(&old_hash[i].th_lock); 435 mutex_exit(&new_hash[i].th_lock); 436 } 437 438 /* 439 * Avoid freeing these objects below. 440 */ 441 ret_tidhash = NULL; 442 old_hash = NULL; 443 old_hashsz = 0; 444 } 445 } 446 447 /* 448 * Block the process against /proc while we manipulate p->p_tlist, 449 * unless lwp_create() was called by /proc for the PCAGENT operation. 450 * We want to do this early enough so that we don't drop p->p_lock 451 * until the thread is put on the p->p_tlist. 452 */ 453 if (p == curproc) { 454 prbarrier(p); 455 /* 456 * If the current lwp has been requested to stop, do so now. 457 * Otherwise we have a race condition between /proc attempting 458 * to stop the process and this thread creating a new lwp 459 * that was not seen when the /proc PCSTOP request was issued. 460 * We rely on stop() to call prbarrier(p) before returning. 461 */ 462 while ((curthread->t_proc_flag & TP_PRSTOP) && 463 !ttolwp(curthread)->lwp_nostop) { 464 /* 465 * We called pool_barrier_enter() before calling 466 * here to lwp_create(). We have to call 467 * pool_barrier_exit() before stopping. 468 */ 469 pool_barrier_exit(); 470 prbarrier(p); 471 stop(PR_REQUESTED, 0); 472 /* 473 * And we have to repeat the call to 474 * pool_barrier_enter after stopping. 475 */ 476 pool_barrier_enter(); 477 prbarrier(p); 478 } 479 480 /* 481 * If process is exiting, there could be a race between 482 * the agent lwp creation and the new lwp currently being 483 * created. So to prevent this race lwp creation is failed 484 * if the process is exiting. 485 */ 486 if (p->p_flag & (SEXITLWPS|SKILLED)) { 487 err = 1; 488 goto error; 489 } 490 491 /* 492 * Since we might have dropped p->p_lock, the 493 * lwp directory free list might have changed. 494 */ 495 if (p->p_lwpfree == NULL) 496 goto grow; 497 } 498 499 kpreempt_disable(); /* can't grab cpu_lock here */ 500 501 /* 502 * Inherit processor and processor set bindings from curthread. 503 * 504 * For kernel LWPs, we do not inherit processor set bindings at 505 * process creation time (i.e. when p != curproc). After the 506 * kernel process is created, any subsequent LWPs must be created 507 * by threads in the kernel process, at which point we *will* 508 * inherit processor set bindings. 509 */ 510 if (CLASS_KERNEL(cid) && p != curproc) { 511 t->t_bind_cpu = binding = PBIND_NONE; 512 t->t_cpupart = oldpart = &cp_default; 513 t->t_bind_pset = PS_NONE; 514 t->t_bindflag = (uchar_t)default_binding_mode; 515 } else { 516 binding = curthread->t_bind_cpu; 517 t->t_bind_cpu = binding; 518 oldpart = t->t_cpupart; 519 t->t_cpupart = curthread->t_cpupart; 520 t->t_bind_pset = curthread->t_bind_pset; 521 t->t_bindflag = curthread->t_bindflag | 522 (uchar_t)default_binding_mode; 523 } 524 525 /* 526 * thread_create() initializes this thread's home lgroup to the root. 527 * Choose a more suitable lgroup, since this thread is associated 528 * with an lwp. 529 */ 530 ASSERT(oldpart != NULL); 531 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 532 t->t_bound_cpu = cpu[binding]; 533 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 534 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 535 } else if (CLASS_KERNEL(cid)) { 536 /* 537 * Kernel threads are always in the root lgrp. 538 */ 539 lgrp_move_thread(t, 540 &t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1); 541 } else { 542 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 543 } 544 545 kpreempt_enable(); 546 547 /* 548 * make sure lpl points to our own partition 549 */ 550 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 551 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 552 t->t_cpupart->cp_nlgrploads); 553 554 /* 555 * It is safe to point the thread to the new project without holding it 556 * since we're holding the target process' p_lock here and therefore 557 * we're guaranteed that it will not move to another project. 558 */ 559 newkpj = p->p_task->tk_proj; 560 oldkpj = ttoproj(t); 561 if (newkpj != oldkpj) { 562 t->t_proj = newkpj; 563 (void) project_hold(newkpj); 564 project_rele(oldkpj); 565 } 566 567 if (cid != NOCLASS) { 568 /* 569 * If the lwp is being created in the current process 570 * and matches the current thread's scheduling class, 571 * we should propagate the current thread's scheduling 572 * parameters by calling CL_FORK. Otherwise just use 573 * the defaults by calling CL_ENTERCLASS. 574 */ 575 if (p != curproc || curthread->t_cid != cid) { 576 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 577 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 578 /* 579 * We don't call schedctl_set_cidpri(t) here 580 * because the schedctl data is not yet set 581 * up for the newly-created lwp. 582 */ 583 } else { 584 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 585 err = CL_FORK(curthread, t, bufp); 586 t->t_cid = cid; 587 } 588 if (err) { 589 atomic_inc_32(&p->p_zone->zone_ffmisc); 590 goto error; 591 } else { 592 bufp = NULL; 593 } 594 } 595 596 /* 597 * If we were given an lwpid then use it, else allocate one. 598 */ 599 if (lwpid != 0) 600 t->t_tid = lwpid; 601 else { 602 /* 603 * lwp/thread id 0 is never valid; reserved for special checks. 604 * lwp/thread id 1 is reserved for the main thread. 605 * Start again at 2 when INT_MAX has been reached 606 * (id_t is a signed 32-bit integer). 607 */ 608 id_t prev_id = p->p_lwpid; /* last allocated tid */ 609 610 do { /* avoid lwpid duplication */ 611 if (p->p_lwpid == INT_MAX) { 612 p->p_flag |= SLWPWRAP; 613 p->p_lwpid = 1; 614 } 615 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 616 /* 617 * All lwpids are allocated; fail the request. 618 */ 619 err = 1; 620 atomic_inc_32(&p->p_zone->zone_ffnoproc); 621 goto error; 622 } 623 /* 624 * We only need to worry about colliding with an id 625 * that's already in use if this process has 626 * cycled through all available lwp ids. 627 */ 628 if ((p->p_flag & SLWPWRAP) == 0) 629 break; 630 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 631 } 632 633 /* 634 * If this is a branded process, let the brand do any necessary lwp 635 * initialization. 636 */ 637 if (PROC_IS_BRANDED(p)) { 638 if (BROP(p)->b_initlwp(lwp)) { 639 err = 1; 640 atomic_inc_32(&p->p_zone->zone_ffmisc); 641 goto error; 642 } 643 branded = 1; 644 } 645 646 if (t->t_tid == 1) { 647 kpreempt_disable(); 648 ASSERT(t->t_lpl != NULL); 649 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 650 kpreempt_enable(); 651 if (p->p_tr_lgrpid != LGRP_NONE && 652 p->p_tr_lgrpid != p->p_t1_lgrpid) { 653 lgrp_update_trthr_migrations(1); 654 } 655 } 656 657 p->p_lwpcnt++; 658 t->t_waitfor = -1; 659 660 /* 661 * Turn microstate accounting on for thread if on for process. 662 */ 663 if (p->p_flag & SMSACCT) 664 t->t_proc_flag |= TP_MSACCT; 665 666 /* 667 * If the process has watchpoints, mark the new thread as such. 668 */ 669 if (pr_watch_active(p)) 670 watch_enable(t); 671 672 /* 673 * The lwp is being created in the stopped state. 674 * We set all the necessary flags to indicate that fact here. 675 * We omit the TS_CREATE flag from t_schedflag so that the lwp 676 * cannot be set running until the caller is finished with it, 677 * even if lwp_continue() is called on it after we drop p->p_lock. 678 * When the caller is finished with the newly-created lwp, 679 * the caller must call lwp_create_done() to allow the lwp 680 * to be set running. If the TP_HOLDLWP is left set, the 681 * lwp will suspend itself after reaching system call exit. 682 */ 683 init_mstate(t, LMS_STOPPED); 684 t->t_proc_flag |= TP_HOLDLWP; 685 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 686 t->t_whystop = PR_SUSPENDED; 687 t->t_whatstop = SUSPEND_NORMAL; 688 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 689 690 /* 691 * Set system call processing flags in case tracing or profiling 692 * is set. The first system call will evaluate these and turn 693 * them off if they aren't needed. 694 */ 695 t->t_pre_sys = 1; 696 t->t_post_sys = 1; 697 698 /* 699 * Insert the new thread into the list of all threads. 700 */ 701 if ((tx = p->p_tlist) == NULL) { 702 t->t_back = t; 703 t->t_forw = t; 704 p->p_tlist = t; 705 } else { 706 t->t_forw = tx; 707 t->t_back = tx->t_back; 708 tx->t_back->t_forw = t; 709 tx->t_back = t; 710 } 711 712 /* 713 * Insert the new lwp into an lwp directory slot position 714 * and into the lwpid hash table. 715 */ 716 lep->le_thread = t; 717 lep->le_lwpid = t->t_tid; 718 lep->le_start = t->t_start; 719 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1); 720 721 lwp_fp_init(lwp); 722 723 if (state == TS_RUN) { 724 /* 725 * We set the new lwp running immediately. 726 */ 727 t->t_proc_flag &= ~TP_HOLDLWP; 728 lwp_create_done(t); 729 } 730 731 error: 732 if (err) { 733 if (CLASS_KERNEL(cid)) { 734 /* 735 * This should only happen if a system process runs 736 * out of lwpids, which shouldn't occur. 737 */ 738 panic("Failed to create a system LWP"); 739 } 740 /* 741 * We have failed to create an lwp, so decrement the number 742 * of lwps in the task and let the lgroup load averages know 743 * that this thread isn't going to show up. 744 */ 745 kpreempt_disable(); 746 lgrp_move_thread(t, NULL, 1); 747 kpreempt_enable(); 748 749 ASSERT(MUTEX_HELD(&p->p_lock)); 750 mutex_enter(&p->p_zone->zone_nlwps_lock); 751 p->p_task->tk_nlwps--; 752 p->p_task->tk_proj->kpj_nlwps--; 753 p->p_zone->zone_nlwps--; 754 mutex_exit(&p->p_zone->zone_nlwps_lock); 755 if (cid != NOCLASS && bufp != NULL) 756 CL_FREE(cid, bufp); 757 758 if (branded) 759 BROP(p)->b_freelwp(lwp); 760 761 mutex_exit(&p->p_lock); 762 t->t_state = TS_FREE; 763 thread_rele(t); 764 765 /* 766 * We need to remove t from the list of all threads 767 * because thread_exit()/lwp_exit() isn't called on t. 768 */ 769 mutex_enter(&pidlock); 770 ASSERT(t != t->t_next); /* t0 never exits */ 771 t->t_next->t_prev = t->t_prev; 772 t->t_prev->t_next = t->t_next; 773 mutex_exit(&pidlock); 774 775 thread_free(t); 776 kmem_free(lep, sizeof (*lep)); 777 lwp = NULL; 778 } else { 779 mutex_exit(&p->p_lock); 780 } 781 782 if (old_dir != NULL) 783 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 784 if (old_hash != NULL) 785 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 786 if (ret_tidhash != NULL) 787 kmem_free(ret_tidhash, sizeof (ret_tidhash_t)); 788 789 DTRACE_PROC1(lwp__create, kthread_t *, t); 790 return (lwp); 791 } 792 793 /* 794 * lwp_create_done() is called by the caller of lwp_create() to set the 795 * newly-created lwp running after the caller has finished manipulating it. 796 */ 797 void 798 lwp_create_done(kthread_t *t) 799 { 800 proc_t *p = ttoproc(t); 801 802 ASSERT(MUTEX_HELD(&p->p_lock)); 803 804 /* 805 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 806 * (The absence of the TS_CREATE flag prevents the lwp from running 807 * until we are finished with it, even if lwp_continue() is called on 808 * it by some other lwp in the process or elsewhere in the kernel.) 809 */ 810 thread_lock(t); 811 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 812 /* 813 * If TS_CSTART is set, lwp_continue(t) has been called and 814 * has already incremented p_lwprcnt; avoid doing this twice. 815 */ 816 if (!(t->t_schedflag & TS_CSTART)) 817 p->p_lwprcnt++; 818 t->t_schedflag |= (TS_CSTART | TS_CREATE); 819 setrun_locked(t); 820 thread_unlock(t); 821 } 822 823 /* 824 * Copy an LWP's active templates, and clear the latest contracts. 825 */ 826 void 827 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 828 { 829 int i; 830 831 for (i = 0; i < ct_ntypes; i++) { 832 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 833 dst->lwp_ct_latest[i] = NULL; 834 } 835 } 836 837 /* 838 * Clear an LWP's contract template state. 839 */ 840 void 841 lwp_ctmpl_clear(klwp_t *lwp) 842 { 843 ct_template_t *tmpl; 844 int i; 845 846 for (i = 0; i < ct_ntypes; i++) { 847 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 848 ctmpl_free(tmpl); 849 lwp->lwp_ct_active[i] = NULL; 850 } 851 852 if (lwp->lwp_ct_latest[i] != NULL) { 853 contract_rele(lwp->lwp_ct_latest[i]); 854 lwp->lwp_ct_latest[i] = NULL; 855 } 856 } 857 } 858 859 /* 860 * Individual lwp exit. 861 * If this is the last lwp, exit the whole process. 862 */ 863 void 864 lwp_exit(void) 865 { 866 kthread_t *t = curthread; 867 klwp_t *lwp = ttolwp(t); 868 proc_t *p = ttoproc(t); 869 870 ASSERT(MUTEX_HELD(&p->p_lock)); 871 872 mutex_exit(&p->p_lock); 873 874 #if defined(__sparc) 875 /* 876 * Ensure that the user stack is fully abandoned.. 877 */ 878 trash_user_windows(); 879 #endif 880 881 tsd_exit(); /* free thread specific data */ 882 883 kcpc_passivate(); /* Clean up performance counter state */ 884 885 pollcleanup(); 886 887 if (t->t_door) 888 door_slam(); 889 890 if (t->t_schedctl != NULL) 891 schedctl_lwp_cleanup(t); 892 893 if (t->t_upimutex != NULL) 894 upimutex_cleanup(); 895 896 /* 897 * Perform any brand specific exit processing, then release any 898 * brand data associated with the lwp 899 */ 900 if (PROC_IS_BRANDED(p)) 901 BROP(p)->b_lwpexit(lwp); 902 903 lwp_pcb_exit(); 904 905 mutex_enter(&p->p_lock); 906 lwp_cleanup(); 907 908 /* 909 * When this process is dumping core, its lwps are held here 910 * until the core dump is finished. Then exitlwps() is called 911 * again to release these lwps so that they can finish exiting. 912 */ 913 if (p->p_flag & SCOREDUMP) 914 stop(PR_SUSPENDED, SUSPEND_NORMAL); 915 916 /* 917 * Block the process against /proc now that we have really acquired 918 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 919 */ 920 prbarrier(p); 921 922 /* 923 * Call proc_exit() if this is the last non-daemon lwp in the process. 924 */ 925 if (!(t->t_proc_flag & TP_DAEMON) && 926 p->p_lwpcnt == p->p_lwpdaemon + 1) { 927 mutex_exit(&p->p_lock); 928 if (proc_exit(CLD_EXITED, 0) == 0) { 929 /* Restarting init. */ 930 return; 931 } 932 933 /* 934 * proc_exit() returns a non-zero value when some other 935 * lwp got there first. We just have to continue in 936 * lwp_exit(). 937 */ 938 mutex_enter(&p->p_lock); 939 ASSERT(curproc->p_flag & SEXITLWPS); 940 prbarrier(p); 941 } 942 943 DTRACE_PROC(lwp__exit); 944 945 /* 946 * If the lwp is a detached lwp or if the process is exiting, 947 * remove (lwp_hash_out()) the lwp from the lwp directory. 948 * Otherwise null out the lwp's le_thread pointer in the lwp 949 * directory so that other threads will see it as a zombie lwp. 950 */ 951 prlwpexit(t); /* notify /proc */ 952 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 953 lwp_hash_out(p, t->t_tid); 954 else { 955 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 956 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 957 p->p_zombcnt++; 958 cv_broadcast(&p->p_lwpexit); 959 } 960 if (t->t_proc_flag & TP_DAEMON) { 961 p->p_lwpdaemon--; 962 t->t_proc_flag &= ~TP_DAEMON; 963 } 964 t->t_proc_flag &= ~TP_TWAIT; 965 966 /* 967 * Maintain accurate lwp count for task.max-lwps resource control. 968 */ 969 mutex_enter(&p->p_zone->zone_nlwps_lock); 970 p->p_task->tk_nlwps--; 971 p->p_task->tk_proj->kpj_nlwps--; 972 p->p_zone->zone_nlwps--; 973 mutex_exit(&p->p_zone->zone_nlwps_lock); 974 975 CL_EXIT(t); /* tell the scheduler that t is exiting */ 976 ASSERT(p->p_lwpcnt != 0); 977 p->p_lwpcnt--; 978 979 /* 980 * If all remaining non-daemon lwps are waiting in lwp_wait(), 981 * wake them up so someone can return EDEADLK. 982 * (See the block comment preceeding lwp_wait().) 983 */ 984 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 985 cv_broadcast(&p->p_lwpexit); 986 987 t->t_proc_flag |= TP_LWPEXIT; 988 term_mstate(t); 989 990 #ifndef NPROBE 991 /* Kernel probe */ 992 if (t->t_tnf_tpdp) 993 tnf_thread_exit(); 994 #endif /* NPROBE */ 995 996 t->t_forw->t_back = t->t_back; 997 t->t_back->t_forw = t->t_forw; 998 if (t == p->p_tlist) 999 p->p_tlist = t->t_forw; 1000 1001 /* 1002 * Clean up the signal state. 1003 */ 1004 if (t->t_sigqueue != NULL) 1005 sigdelq(p, t, 0); 1006 if (lwp->lwp_curinfo != NULL) { 1007 siginfofree(lwp->lwp_curinfo); 1008 lwp->lwp_curinfo = NULL; 1009 } 1010 1011 /* 1012 * If we have spymaster information (that is, if we're an agent LWP), 1013 * free that now. 1014 */ 1015 if (lwp->lwp_spymaster != NULL) { 1016 kmem_free(lwp->lwp_spymaster, sizeof (psinfo_t)); 1017 lwp->lwp_spymaster = NULL; 1018 } 1019 1020 thread_rele(t); 1021 1022 /* 1023 * Terminated lwps are associated with process zero and are put onto 1024 * death-row by resume(). Avoid preemption after resetting t->t_procp. 1025 */ 1026 t->t_preempt++; 1027 1028 if (t->t_ctx != NULL) 1029 exitctx(t); 1030 if (p->p_pctx != NULL) 1031 exitpctx(p); 1032 1033 t->t_procp = &p0; 1034 1035 /* 1036 * Notify the HAT about the change of address space 1037 */ 1038 hat_thread_exit(t); 1039 /* 1040 * When this is the last running lwp in this process and some lwp is 1041 * waiting for this condition to become true, or this thread was being 1042 * suspended, then the waiting lwp is awakened. 1043 * 1044 * Also, if the process is exiting, we may have a thread waiting in 1045 * exitlwps() that needs to be notified. 1046 */ 1047 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 1048 (p->p_flag & SEXITLWPS)) 1049 cv_broadcast(&p->p_holdlwps); 1050 1051 /* 1052 * Need to drop p_lock so we can reacquire pidlock. 1053 */ 1054 mutex_exit(&p->p_lock); 1055 mutex_enter(&pidlock); 1056 1057 ASSERT(t != t->t_next); /* t0 never exits */ 1058 t->t_next->t_prev = t->t_prev; 1059 t->t_prev->t_next = t->t_next; 1060 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 1061 mutex_exit(&pidlock); 1062 1063 t->t_state = TS_ZOMB; 1064 swtch_from_zombie(); 1065 /* never returns */ 1066 } 1067 1068 1069 /* 1070 * Cleanup function for an exiting lwp. 1071 * Called both from lwp_exit() and from proc_exit(). 1072 * p->p_lock is repeatedly released and grabbed in this function. 1073 */ 1074 void 1075 lwp_cleanup(void) 1076 { 1077 kthread_t *t = curthread; 1078 proc_t *p = ttoproc(t); 1079 1080 ASSERT(MUTEX_HELD(&p->p_lock)); 1081 1082 /* untimeout any lwp-bound realtime timers */ 1083 if (p->p_itimer != NULL) 1084 timer_lwpexit(); 1085 1086 /* 1087 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 1088 * so it appears that the agent never existed, and clear p_agenttp. 1089 */ 1090 if (t == p->p_agenttp) { 1091 ASSERT(t->t_tid == p->p_lwpid); 1092 p->p_lwpid--; 1093 p->p_agenttp = NULL; 1094 } 1095 1096 /* 1097 * Do lgroup bookkeeping to account for thread exiting. 1098 */ 1099 kpreempt_disable(); 1100 lgrp_move_thread(t, NULL, 1); 1101 if (t->t_tid == 1) { 1102 p->p_t1_lgrpid = LGRP_NONE; 1103 } 1104 kpreempt_enable(); 1105 1106 lwp_ctmpl_clear(ttolwp(t)); 1107 } 1108 1109 int 1110 lwp_suspend(kthread_t *t) 1111 { 1112 int tid; 1113 proc_t *p = ttoproc(t); 1114 1115 ASSERT(MUTEX_HELD(&p->p_lock)); 1116 1117 /* 1118 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 1119 * If an lwp is stopping itself, there is no need to wait. 1120 */ 1121 top: 1122 t->t_proc_flag |= TP_HOLDLWP; 1123 if (t == curthread) { 1124 t->t_sig_check = 1; 1125 } else { 1126 /* 1127 * Make sure the lwp stops promptly. 1128 */ 1129 thread_lock(t); 1130 t->t_sig_check = 1; 1131 /* 1132 * XXX Should use virtual stop like /proc does instead of 1133 * XXX waking the thread to get it to stop. 1134 */ 1135 if (ISWAKEABLE(t) || ISWAITING(t)) { 1136 setrun_locked(t); 1137 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 1138 poke_cpu(t->t_cpu->cpu_id); 1139 } 1140 1141 tid = t->t_tid; /* remember thread ID */ 1142 /* 1143 * Wait for lwp to stop 1144 */ 1145 while (!SUSPENDED(t)) { 1146 /* 1147 * Drop the thread lock before waiting and reacquire it 1148 * afterwards, so the thread can change its t_state 1149 * field. 1150 */ 1151 thread_unlock(t); 1152 1153 /* 1154 * Check if aborted by exitlwps(). 1155 */ 1156 if (p->p_flag & SEXITLWPS) 1157 lwp_exit(); 1158 1159 /* 1160 * Cooperate with jobcontrol signals and /proc stopping 1161 * by calling cv_wait_sig() to wait for the target 1162 * lwp to stop. Just using cv_wait() can lead to 1163 * deadlock because, if some other lwp has stopped 1164 * by either of these mechanisms, then p_lwprcnt will 1165 * never become zero if we do a cv_wait(). 1166 */ 1167 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 1168 return (EINTR); 1169 1170 /* 1171 * Check to see if thread died while we were 1172 * waiting for it to suspend. 1173 */ 1174 if (idtot(p, tid) == NULL) 1175 return (ESRCH); 1176 1177 thread_lock(t); 1178 /* 1179 * If the TP_HOLDLWP flag went away, lwp_continue() 1180 * or vfork() must have been called while we were 1181 * waiting, so start over again. 1182 */ 1183 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 1184 thread_unlock(t); 1185 goto top; 1186 } 1187 } 1188 thread_unlock(t); 1189 } 1190 return (0); 1191 } 1192 1193 /* 1194 * continue a lwp that's been stopped by lwp_suspend(). 1195 */ 1196 void 1197 lwp_continue(kthread_t *t) 1198 { 1199 proc_t *p = ttoproc(t); 1200 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1201 1202 ASSERT(MUTEX_HELD(&p->p_lock)); 1203 1204 t->t_proc_flag &= ~TP_HOLDLWP; 1205 thread_lock(t); 1206 if (SUSPENDED(t) && 1207 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1208 p->p_lwprcnt++; 1209 t->t_schedflag |= TS_CSTART; 1210 setrun_locked(t); 1211 } 1212 thread_unlock(t); 1213 /* 1214 * Wakeup anyone waiting for this thread to be suspended 1215 */ 1216 if (was_suspended) 1217 cv_broadcast(&p->p_holdlwps); 1218 } 1219 1220 /* 1221 * ******************************** 1222 * Miscellaneous lwp routines * 1223 * ******************************** 1224 */ 1225 /* 1226 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1227 * This will cause the process's lwps to stop at a hold point. A hold 1228 * point is where a kernel thread has a flat stack. This is at the 1229 * return from a system call and at the return from a user level trap. 1230 * 1231 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1232 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1233 * hold point. The lwps in the process are not being cloned, so they 1234 * are held at the usual hold points and also within issig_forreal(). 1235 * This has the side-effect that their system calls do not return 1236 * showing EINTR. 1237 * 1238 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1239 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1240 * lwp is waiting for the target lwp to be stopped. 1241 */ 1242 void 1243 holdlwp(void) 1244 { 1245 proc_t *p = curproc; 1246 kthread_t *t = curthread; 1247 1248 mutex_enter(&p->p_lock); 1249 /* 1250 * Don't terminate immediately if the process is dumping core. 1251 * Once the process has dumped core, all lwps are terminated. 1252 */ 1253 if (!(p->p_flag & SCOREDUMP)) { 1254 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1255 lwp_exit(); 1256 } 1257 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1258 mutex_exit(&p->p_lock); 1259 return; 1260 } 1261 /* 1262 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1263 * when p->p_lwprcnt becomes zero. 1264 */ 1265 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1266 if (p->p_flag & SEXITLWPS) 1267 lwp_exit(); 1268 mutex_exit(&p->p_lock); 1269 } 1270 1271 /* 1272 * Have all lwps within the process hold at a point where they are 1273 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1274 */ 1275 int 1276 holdlwps(int holdflag) 1277 { 1278 proc_t *p = curproc; 1279 1280 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1281 mutex_enter(&p->p_lock); 1282 schedctl_finish_sigblock(curthread); 1283 again: 1284 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1285 /* 1286 * If another lwp is doing a forkall() or proc_exit(), bail out. 1287 */ 1288 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1289 mutex_exit(&p->p_lock); 1290 return (0); 1291 } 1292 /* 1293 * Another lwp is doing a fork1() or is undergoing 1294 * watchpoint activity. We hold here for it to complete. 1295 */ 1296 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1297 } 1298 p->p_flag |= holdflag; 1299 pokelwps(p); 1300 --p->p_lwprcnt; 1301 /* 1302 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1303 */ 1304 while (p->p_lwprcnt > 0) { 1305 /* 1306 * Check if aborted by exitlwps(). 1307 * Also check if SHOLDWATCH is set; it takes precedence. 1308 */ 1309 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1310 p->p_lwprcnt++; 1311 p->p_flag &= ~holdflag; 1312 cv_broadcast(&p->p_holdlwps); 1313 goto again; 1314 } 1315 /* 1316 * Cooperate with jobcontrol signals and /proc stopping. 1317 * If some other lwp has stopped by either of these 1318 * mechanisms, then p_lwprcnt will never become zero 1319 * and the process will appear deadlocked unless we 1320 * stop here in sympathy with the other lwp before 1321 * doing the cv_wait() below. 1322 * 1323 * If the other lwp stops after we do the cv_wait(), it 1324 * will wake us up to loop around and do the sympathy stop. 1325 * 1326 * Since stop() drops p->p_lock, we must start from 1327 * the top again on returning from stop(). 1328 */ 1329 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1330 int whystop = p->p_stopsig? PR_JOBCONTROL : 1331 PR_REQUESTED; 1332 p->p_lwprcnt++; 1333 p->p_flag &= ~holdflag; 1334 stop(whystop, p->p_stopsig); 1335 goto again; 1336 } 1337 cv_wait(&p->p_holdlwps, &p->p_lock); 1338 } 1339 p->p_lwprcnt++; 1340 p->p_flag &= ~holdflag; 1341 mutex_exit(&p->p_lock); 1342 return (1); 1343 } 1344 1345 /* 1346 * See comments for holdwatch(), below. 1347 */ 1348 static int 1349 holdcheck(int clearflags) 1350 { 1351 proc_t *p = curproc; 1352 1353 /* 1354 * If we are trying to exit, that takes precedence over anything else. 1355 */ 1356 if (p->p_flag & SEXITLWPS) { 1357 p->p_lwprcnt++; 1358 p->p_flag &= ~clearflags; 1359 lwp_exit(); 1360 } 1361 1362 /* 1363 * If another thread is calling fork1(), stop the current thread so the 1364 * other can complete. 1365 */ 1366 if (p->p_flag & SHOLDFORK1) { 1367 p->p_lwprcnt++; 1368 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1369 if (p->p_flag & SEXITLWPS) { 1370 p->p_flag &= ~clearflags; 1371 lwp_exit(); 1372 } 1373 return (-1); 1374 } 1375 1376 /* 1377 * If another thread is calling fork(), then indicate we are doing 1378 * watchpoint activity. This will cause holdlwps() above to stop the 1379 * forking thread, at which point we can continue with watchpoint 1380 * activity. 1381 */ 1382 if (p->p_flag & SHOLDFORK) { 1383 p->p_lwprcnt++; 1384 while (p->p_flag & SHOLDFORK) { 1385 p->p_flag |= SHOLDWATCH; 1386 cv_broadcast(&p->p_holdlwps); 1387 cv_wait(&p->p_holdlwps, &p->p_lock); 1388 p->p_flag &= ~SHOLDWATCH; 1389 } 1390 return (-1); 1391 } 1392 1393 return (0); 1394 } 1395 1396 /* 1397 * Stop all lwps within the process, holding themselves in the kernel while the 1398 * active lwp undergoes watchpoint activity. This is more complicated than 1399 * expected because stop() relies on calling holdwatch() in order to copyin data 1400 * from the user's address space. A double barrier is used to prevent an 1401 * infinite loop. 1402 * 1403 * o The first thread into holdwatch() is the 'master' thread and does 1404 * the following: 1405 * 1406 * - Sets SHOLDWATCH on the current process 1407 * - Sets TP_WATCHSTOP on the current thread 1408 * - Waits for all threads to be either stopped or have 1409 * TP_WATCHSTOP set. 1410 * - Sets the SWATCHOK flag on the process 1411 * - Unsets TP_WATCHSTOP 1412 * - Waits for the other threads to completely stop 1413 * - Unsets SWATCHOK 1414 * 1415 * o If SHOLDWATCH is already set when we enter this function, then another 1416 * thread is already trying to stop this thread. This 'slave' thread 1417 * does the following: 1418 * 1419 * - Sets TP_WATCHSTOP on the current thread 1420 * - Waits for SWATCHOK flag to be set 1421 * - Calls stop() 1422 * 1423 * o If SWATCHOK is set on the process, then this function immediately 1424 * returns, as we must have been called via stop(). 1425 * 1426 * In addition, there are other flags that take precedence over SHOLDWATCH: 1427 * 1428 * o If SEXITLWPS is set, exit immediately. 1429 * 1430 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1431 * 1432 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1433 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1434 * 1435 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1436 * stop the current thread. 1437 * 1438 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1439 * threads were stopped, or the list of watched pages has changed. 1440 */ 1441 int 1442 holdwatch(void) 1443 { 1444 proc_t *p = curproc; 1445 kthread_t *t = curthread; 1446 int ret = 0; 1447 1448 mutex_enter(&p->p_lock); 1449 1450 p->p_lwprcnt--; 1451 1452 /* 1453 * Check for bail-out conditions as outlined above. 1454 */ 1455 if (holdcheck(0) != 0) { 1456 mutex_exit(&p->p_lock); 1457 return (-1); 1458 } 1459 1460 if (!(p->p_flag & SHOLDWATCH)) { 1461 /* 1462 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1463 * the other threads. 1464 */ 1465 p->p_flag |= SHOLDWATCH; 1466 pokelwps(p); 1467 1468 /* 1469 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1470 */ 1471 while (pr_allstopped(p, 1) > 0) { 1472 if (holdcheck(SHOLDWATCH) != 0) { 1473 p->p_flag &= ~SHOLDWATCH; 1474 mutex_exit(&p->p_lock); 1475 return (-1); 1476 } 1477 1478 cv_wait(&p->p_holdlwps, &p->p_lock); 1479 } 1480 1481 /* 1482 * All threads are now stopped or in the process of stopping. 1483 * Set SWATCHOK and let them stop completely. 1484 */ 1485 p->p_flag |= SWATCHOK; 1486 t->t_proc_flag &= ~TP_WATCHSTOP; 1487 cv_broadcast(&p->p_holdlwps); 1488 1489 while (pr_allstopped(p, 0) > 0) { 1490 /* 1491 * At first glance, it may appear that we don't need a 1492 * call to holdcheck() here. But if the process gets a 1493 * SIGKILL signal, one of our stopped threads may have 1494 * been awakened and is waiting in exitlwps(), which 1495 * takes precedence over watchpoints. 1496 */ 1497 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1498 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1499 mutex_exit(&p->p_lock); 1500 return (-1); 1501 } 1502 1503 cv_wait(&p->p_holdlwps, &p->p_lock); 1504 } 1505 1506 /* 1507 * All threads are now completely stopped. 1508 */ 1509 p->p_flag &= ~SWATCHOK; 1510 p->p_flag &= ~SHOLDWATCH; 1511 p->p_lwprcnt++; 1512 1513 } else if (!(p->p_flag & SWATCHOK)) { 1514 1515 /* 1516 * SHOLDWATCH is set, so another thread is trying to do 1517 * watchpoint activity. Indicate this thread is stopping, and 1518 * wait for the OK from the master thread. 1519 */ 1520 t->t_proc_flag |= TP_WATCHSTOP; 1521 cv_broadcast(&p->p_holdlwps); 1522 1523 while (!(p->p_flag & SWATCHOK)) { 1524 if (holdcheck(0) != 0) { 1525 t->t_proc_flag &= ~TP_WATCHSTOP; 1526 mutex_exit(&p->p_lock); 1527 return (-1); 1528 } 1529 1530 cv_wait(&p->p_holdlwps, &p->p_lock); 1531 } 1532 1533 /* 1534 * Once the master thread has given the OK, this thread can 1535 * actually call stop(). 1536 */ 1537 t->t_proc_flag &= ~TP_WATCHSTOP; 1538 p->p_lwprcnt++; 1539 1540 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1541 1542 /* 1543 * It's not OK to do watchpoint activity, notify caller to 1544 * retry. 1545 */ 1546 ret = -1; 1547 1548 } else { 1549 1550 /* 1551 * The only way we can hit the case where SHOLDWATCH is set and 1552 * SWATCHOK is set is if we are triggering this from within a 1553 * stop() call. Assert that this is the case. 1554 */ 1555 1556 ASSERT(t->t_proc_flag & TP_STOPPING); 1557 p->p_lwprcnt++; 1558 } 1559 1560 mutex_exit(&p->p_lock); 1561 1562 return (ret); 1563 } 1564 1565 /* 1566 * force all interruptible lwps to trap into the kernel. 1567 */ 1568 void 1569 pokelwps(proc_t *p) 1570 { 1571 kthread_t *t; 1572 1573 ASSERT(MUTEX_HELD(&p->p_lock)); 1574 1575 t = p->p_tlist; 1576 do { 1577 if (t == curthread) 1578 continue; 1579 thread_lock(t); 1580 aston(t); /* make thread trap or do post_syscall */ 1581 if (ISWAKEABLE(t) || ISWAITING(t)) { 1582 setrun_locked(t); 1583 } else if (t->t_state == TS_STOPPED) { 1584 /* 1585 * Ensure that proc_exit() is not blocked by lwps 1586 * that were stopped via jobcontrol or /proc. 1587 */ 1588 if (p->p_flag & SEXITLWPS) { 1589 p->p_stopsig = 0; 1590 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1591 setrun_locked(t); 1592 } 1593 /* 1594 * If we are holding lwps for a forkall(), 1595 * force lwps that have been suspended via 1596 * lwp_suspend() and are suspended inside 1597 * of a system call to proceed to their 1598 * holdlwp() points where they are clonable. 1599 */ 1600 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1601 if ((t->t_schedflag & TS_CSTART) == 0) { 1602 p->p_lwprcnt++; 1603 t->t_schedflag |= TS_CSTART; 1604 setrun_locked(t); 1605 } 1606 } 1607 } else if (t->t_state == TS_ONPROC) { 1608 if (t->t_cpu != CPU) 1609 poke_cpu(t->t_cpu->cpu_id); 1610 } 1611 thread_unlock(t); 1612 } while ((t = t->t_forw) != p->p_tlist); 1613 } 1614 1615 /* 1616 * undo the effects of holdlwps() or holdwatch(). 1617 */ 1618 void 1619 continuelwps(proc_t *p) 1620 { 1621 kthread_t *t; 1622 1623 /* 1624 * If this flag is set, then the original holdwatch() didn't actually 1625 * stop the process. See comments for holdwatch(). 1626 */ 1627 if (p->p_flag & SWATCHOK) { 1628 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1629 return; 1630 } 1631 1632 ASSERT(MUTEX_HELD(&p->p_lock)); 1633 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1634 1635 t = p->p_tlist; 1636 do { 1637 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1638 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1639 p->p_lwprcnt++; 1640 t->t_schedflag |= TS_CSTART; 1641 setrun_locked(t); 1642 } 1643 thread_unlock(t); 1644 } while ((t = t->t_forw) != p->p_tlist); 1645 } 1646 1647 /* 1648 * Force all other LWPs in the current process other than the caller to exit, 1649 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1650 * is typically used in these situations: 1651 * 1652 * (a) prior to an exec() system call 1653 * (b) prior to dumping a core file 1654 * (c) prior to a uadmin() shutdown 1655 * 1656 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1657 * Multiple threads in the process can call this function at one time by 1658 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1659 * to declare one particular thread the winner who gets to kill the others. 1660 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1661 * appropriate errno value is returned to caller for its system call to return. 1662 */ 1663 int 1664 exitlwps(int coredump) 1665 { 1666 proc_t *p = curproc; 1667 int heldcnt; 1668 1669 if (curthread->t_door) 1670 door_slam(); 1671 if (p->p_door_list) 1672 door_revoke_all(); 1673 if (curthread->t_schedctl != NULL) 1674 schedctl_lwp_cleanup(curthread); 1675 1676 /* 1677 * Ensure that before starting to wait for other lwps to exit, 1678 * cleanup all upimutexes held by curthread. Otherwise, some other 1679 * lwp could be waiting (uninterruptibly) for a upimutex held by 1680 * curthread, and the call to pokelwps() below would deadlock. 1681 * Even if a blocked upimutex_lock is made interruptible, 1682 * curthread's upimutexes need to be unlocked: do it here. 1683 */ 1684 if (curthread->t_upimutex != NULL) 1685 upimutex_cleanup(); 1686 1687 /* 1688 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1689 * We must also block any further /proc access from this point forward. 1690 */ 1691 mutex_enter(&p->p_lock); 1692 prbarrier(p); 1693 1694 if (p->p_flag & SEXITLWPS) { 1695 mutex_exit(&p->p_lock); 1696 aston(curthread); /* force a trip through post_syscall */ 1697 return (set_errno(EINTR)); 1698 } 1699 1700 p->p_flag |= SEXITLWPS; 1701 if (coredump) /* tell other lwps to stop, not exit */ 1702 p->p_flag |= SCOREDUMP; 1703 1704 /* 1705 * Give precedence to exitlwps() if a holdlwps() is 1706 * in progress. The lwp doing the holdlwps() operation 1707 * is aborted when it is awakened. 1708 */ 1709 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1710 cv_broadcast(&p->p_holdlwps); 1711 cv_wait(&p->p_holdlwps, &p->p_lock); 1712 prbarrier(p); 1713 } 1714 p->p_flag |= SHOLDFORK; 1715 pokelwps(p); 1716 1717 /* 1718 * Wait for process to become quiescent. 1719 */ 1720 --p->p_lwprcnt; 1721 while (p->p_lwprcnt > 0) { 1722 cv_wait(&p->p_holdlwps, &p->p_lock); 1723 prbarrier(p); 1724 } 1725 p->p_lwprcnt++; 1726 ASSERT(p->p_lwprcnt == 1); 1727 1728 /* 1729 * The SCOREDUMP flag puts the process into a quiescent 1730 * state. The process's lwps remain attached to this 1731 * process until exitlwps() is called again without the 1732 * 'coredump' flag set, then the lwps are terminated 1733 * and the process can exit. 1734 */ 1735 if (coredump) { 1736 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1737 goto out; 1738 } 1739 1740 /* 1741 * Determine if there are any lwps left dangling in 1742 * the stopped state. This happens when exitlwps() 1743 * aborts a holdlwps() operation. 1744 */ 1745 p->p_flag &= ~SHOLDFORK; 1746 if ((heldcnt = p->p_lwpcnt) > 1) { 1747 kthread_t *t; 1748 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1749 t->t_proc_flag &= ~TP_TWAIT; 1750 lwp_continue(t); 1751 } 1752 } 1753 1754 /* 1755 * Wait for all other lwps to exit. 1756 */ 1757 --p->p_lwprcnt; 1758 while (p->p_lwpcnt > 1) { 1759 cv_wait(&p->p_holdlwps, &p->p_lock); 1760 prbarrier(p); 1761 } 1762 ++p->p_lwprcnt; 1763 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1764 1765 p->p_flag &= ~SEXITLWPS; 1766 curthread->t_proc_flag &= ~TP_TWAIT; 1767 1768 out: 1769 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1770 lwpdir_t *ldp; 1771 lwpent_t *lep; 1772 int i; 1773 1774 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1775 lep = ldp->ld_entry; 1776 if (lep != NULL && lep->le_thread != curthread) { 1777 ASSERT(lep->le_thread == NULL); 1778 p->p_zombcnt--; 1779 lwp_hash_out(p, lep->le_lwpid); 1780 } 1781 } 1782 ASSERT(p->p_zombcnt == 0); 1783 } 1784 1785 /* 1786 * If some other LWP in the process wanted us to suspend ourself, 1787 * then we will not do it. The other LWP is now terminated and 1788 * no one will ever continue us again if we suspend ourself. 1789 */ 1790 curthread->t_proc_flag &= ~TP_HOLDLWP; 1791 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1792 mutex_exit(&p->p_lock); 1793 return (0); 1794 } 1795 1796 /* 1797 * duplicate a lwp. 1798 */ 1799 klwp_t * 1800 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1801 { 1802 klwp_t *clwp; 1803 void *tregs, *tfpu; 1804 kthread_t *t = lwptot(lwp); 1805 kthread_t *ct; 1806 proc_t *p = lwptoproc(lwp); 1807 int cid; 1808 void *bufp; 1809 void *brand_data; 1810 int val; 1811 1812 ASSERT(p == curproc); 1813 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1814 1815 #if defined(__sparc) 1816 if (t == curthread) 1817 (void) flush_user_windows_to_stack(NULL); 1818 #endif 1819 1820 if (t == curthread) 1821 /* copy args out of registers first */ 1822 (void) save_syscall_args(); 1823 1824 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1825 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1826 if (clwp == NULL) 1827 return (NULL); 1828 1829 /* 1830 * most of the parent's lwp can be copied to its duplicate, 1831 * except for the fields that are unique to each lwp, like 1832 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1833 */ 1834 ct = clwp->lwp_thread; 1835 tregs = clwp->lwp_regs; 1836 tfpu = clwp->lwp_fpu; 1837 brand_data = clwp->lwp_brand; 1838 1839 /* 1840 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1841 * mstate_aggr_state() from reading stale mstate entries copied 1842 * from lwp to clwp. 1843 */ 1844 mutex_enter(&cp->p_lock); 1845 *clwp = *lwp; 1846 1847 /* clear microstate and resource usage data in new lwp */ 1848 init_mstate(ct, LMS_STOPPED); 1849 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1850 mutex_exit(&cp->p_lock); 1851 1852 /* fix up child's lwp */ 1853 1854 clwp->lwp_pcb.pcb_flags = 0; 1855 #if defined(__sparc) 1856 clwp->lwp_pcb.pcb_step = STEP_NONE; 1857 #endif 1858 clwp->lwp_cursig = 0; 1859 clwp->lwp_extsig = 0; 1860 clwp->lwp_curinfo = (struct sigqueue *)0; 1861 clwp->lwp_thread = ct; 1862 ct->t_sysnum = t->t_sysnum; 1863 clwp->lwp_regs = tregs; 1864 clwp->lwp_fpu = tfpu; 1865 clwp->lwp_brand = brand_data; 1866 clwp->lwp_ap = clwp->lwp_arg; 1867 clwp->lwp_procp = cp; 1868 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1869 clwp->lwp_lastfault = 0; 1870 clwp->lwp_lastfaddr = 0; 1871 1872 /* copy parent's struct regs to child. */ 1873 lwp_forkregs(lwp, clwp); 1874 1875 /* 1876 * Fork thread context ops, if any. 1877 */ 1878 if (t->t_ctx) 1879 forkctx(t, ct); 1880 1881 /* fix door state in the child */ 1882 if (t->t_door) 1883 door_fork(t, ct); 1884 1885 /* copy current contract templates, clear latest contracts */ 1886 lwp_ctmpl_copy(clwp, lwp); 1887 1888 mutex_enter(&cp->p_lock); 1889 /* lwp_create() set the TP_HOLDLWP flag */ 1890 if (!(t->t_proc_flag & TP_HOLDLWP)) 1891 ct->t_proc_flag &= ~TP_HOLDLWP; 1892 if (cp->p_flag & SMSACCT) 1893 ct->t_proc_flag |= TP_MSACCT; 1894 mutex_exit(&cp->p_lock); 1895 1896 /* Allow brand to propagate brand-specific state */ 1897 if (PROC_IS_BRANDED(p)) 1898 BROP(p)->b_forklwp(lwp, clwp); 1899 1900 retry: 1901 cid = t->t_cid; 1902 1903 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1904 ASSERT(val == 0); 1905 1906 mutex_enter(&p->p_lock); 1907 if (cid != t->t_cid) { 1908 /* 1909 * Someone just changed this thread's scheduling class, 1910 * so try pre-allocating the buffer again. Hopefully we 1911 * don't hit this often. 1912 */ 1913 mutex_exit(&p->p_lock); 1914 CL_FREE(cid, bufp); 1915 goto retry; 1916 } 1917 1918 ct->t_unpark = t->t_unpark; 1919 ct->t_clfuncs = t->t_clfuncs; 1920 CL_FORK(t, ct, bufp); 1921 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1922 mutex_exit(&p->p_lock); 1923 1924 return (clwp); 1925 } 1926 1927 /* 1928 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1929 */ 1930 void 1931 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz, 1932 int do_lock) 1933 { 1934 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)]; 1935 lwpdir_t **ldpp; 1936 lwpdir_t *ldp; 1937 kthread_t *t; 1938 1939 /* 1940 * Allocate a directory element from the free list. 1941 * Code elsewhere guarantees a free slot. 1942 */ 1943 ldp = p->p_lwpfree; 1944 p->p_lwpfree = ldp->ld_next; 1945 ASSERT(ldp->ld_entry == NULL); 1946 ldp->ld_entry = lep; 1947 1948 if (do_lock) 1949 mutex_enter(&thp->th_lock); 1950 1951 /* 1952 * Insert it into the lwpid hash table. 1953 */ 1954 ldpp = &thp->th_list; 1955 ldp->ld_next = *ldpp; 1956 *ldpp = ldp; 1957 1958 /* 1959 * Set the active thread's directory slot entry. 1960 */ 1961 if ((t = lep->le_thread) != NULL) { 1962 ASSERT(lep->le_lwpid == t->t_tid); 1963 t->t_dslot = (int)(ldp - p->p_lwpdir); 1964 } 1965 1966 if (do_lock) 1967 mutex_exit(&thp->th_lock); 1968 } 1969 1970 /* 1971 * Remove an lwp from the lwpid hash table and free its directory entry. 1972 * This is done when a detached lwp exits in lwp_exit() or 1973 * when a non-detached lwp is waited for in lwp_wait() or 1974 * when a zombie lwp is detached in lwp_detach(). 1975 */ 1976 void 1977 lwp_hash_out(proc_t *p, id_t lwpid) 1978 { 1979 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1980 lwpdir_t **ldpp; 1981 lwpdir_t *ldp; 1982 lwpent_t *lep; 1983 1984 mutex_enter(&thp->th_lock); 1985 for (ldpp = &thp->th_list; 1986 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1987 lep = ldp->ld_entry; 1988 if (lep->le_lwpid == lwpid) { 1989 prlwpfree(p, lep); /* /proc deals with le_trace */ 1990 *ldpp = ldp->ld_next; 1991 ldp->ld_entry = NULL; 1992 ldp->ld_next = p->p_lwpfree; 1993 p->p_lwpfree = ldp; 1994 kmem_free(lep, sizeof (*lep)); 1995 break; 1996 } 1997 } 1998 mutex_exit(&thp->th_lock); 1999 } 2000 2001 /* 2002 * Lookup an lwp in the lwpid hash table by lwpid. 2003 */ 2004 lwpdir_t * 2005 lwp_hash_lookup(proc_t *p, id_t lwpid) 2006 { 2007 tidhash_t *thp; 2008 lwpdir_t *ldp; 2009 2010 /* 2011 * The process may be exiting, after p_tidhash has been set to NULL in 2012 * proc_exit() but before prfee() has been called. Return failure in 2013 * this case. 2014 */ 2015 if (p->p_tidhash == NULL) 2016 return (NULL); 2017 2018 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 2019 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2020 if (ldp->ld_entry->le_lwpid == lwpid) 2021 return (ldp); 2022 } 2023 2024 return (NULL); 2025 } 2026 2027 /* 2028 * Same as lwp_hash_lookup(), but acquire and return 2029 * the tid hash table entry lock on success. 2030 */ 2031 lwpdir_t * 2032 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp) 2033 { 2034 tidhash_t *tidhash; 2035 uint_t tidhash_sz; 2036 tidhash_t *thp; 2037 lwpdir_t *ldp; 2038 2039 top: 2040 tidhash_sz = p->p_tidhash_sz; 2041 membar_consumer(); 2042 if ((tidhash = p->p_tidhash) == NULL) 2043 return (NULL); 2044 2045 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)]; 2046 mutex_enter(&thp->th_lock); 2047 2048 /* 2049 * Since we are not holding p->p_lock, the tid hash table 2050 * may have changed. If so, start over. If not, then 2051 * it cannot change until after we drop &thp->th_lock; 2052 */ 2053 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) { 2054 mutex_exit(&thp->th_lock); 2055 goto top; 2056 } 2057 2058 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2059 if (ldp->ld_entry->le_lwpid == lwpid) { 2060 *mpp = &thp->th_lock; 2061 return (ldp); 2062 } 2063 } 2064 2065 mutex_exit(&thp->th_lock); 2066 return (NULL); 2067 } 2068 2069 /* 2070 * Update the indicated LWP usage statistic for the current LWP. 2071 */ 2072 void 2073 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 2074 { 2075 klwp_t *lwp = ttolwp(curthread); 2076 2077 if (lwp == NULL) 2078 return; 2079 2080 switch (lwp_stat_id) { 2081 case LWP_STAT_INBLK: 2082 lwp->lwp_ru.inblock += inc; 2083 break; 2084 case LWP_STAT_OUBLK: 2085 lwp->lwp_ru.oublock += inc; 2086 break; 2087 case LWP_STAT_MSGRCV: 2088 lwp->lwp_ru.msgrcv += inc; 2089 break; 2090 case LWP_STAT_MSGSND: 2091 lwp->lwp_ru.msgsnd += inc; 2092 break; 2093 default: 2094 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 2095 } 2096 } 2097