1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/systm.h> 33 #include <sys/thread.h> 34 #include <sys/proc.h> 35 #include <sys/task.h> 36 #include <sys/project.h> 37 #include <sys/signal.h> 38 #include <sys/errno.h> 39 #include <sys/vmparam.h> 40 #include <sys/stack.h> 41 #include <sys/procfs.h> 42 #include <sys/prsystm.h> 43 #include <sys/cpuvar.h> 44 #include <sys/kmem.h> 45 #include <sys/vtrace.h> 46 #include <sys/door.h> 47 #include <vm/seg_kp.h> 48 #include <sys/debug.h> 49 #include <sys/tnf.h> 50 #include <sys/schedctl.h> 51 #include <sys/poll.h> 52 #include <sys/copyops.h> 53 #include <sys/lwp_upimutex_impl.h> 54 #include <sys/cpupart.h> 55 #include <sys/lgrp.h> 56 #include <sys/rctl.h> 57 #include <sys/contract_impl.h> 58 #include <sys/cpc_impl.h> 59 #include <sys/sdt.h> 60 #include <sys/cmn_err.h> 61 #include <sys/brand.h> 62 63 void *segkp_lwp; /* cookie for pool of segkp resources */ 64 extern void reapq_move_lq_to_tq(kthread_t *); 65 extern void freectx_ctx(struct ctxop *); 66 67 /* 68 * Create a thread that appears to be stopped at sys_rtt. 69 */ 70 klwp_t * 71 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 72 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 73 { 74 klwp_t *lwp = NULL; 75 kthread_t *t; 76 kthread_t *tx; 77 cpupart_t *oldpart = NULL; 78 size_t stksize; 79 caddr_t lwpdata = NULL; 80 processorid_t binding; 81 int err = 0; 82 kproject_t *oldkpj, *newkpj; 83 void *bufp = NULL; 84 klwp_t *curlwp = ttolwp(curthread); 85 lwpent_t *lep; 86 lwpdir_t *old_dir = NULL; 87 uint_t old_dirsz = 0; 88 lwpdir_t **old_hash = NULL; 89 uint_t old_hashsz = 0; 90 int i; 91 int rctlfail = 0; 92 boolean_t branded = 0; 93 struct ctxop *ctx = NULL; 94 95 mutex_enter(&p->p_lock); 96 mutex_enter(&p->p_zone->zone_nlwps_lock); 97 /* 98 * don't enforce rctl limits on system processes 99 */ 100 if (cid != syscid) { 101 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 102 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 103 1, 0) & RCT_DENY) 104 rctlfail = 1; 105 if (p->p_task->tk_proj->kpj_nlwps >= 106 p->p_task->tk_proj->kpj_nlwps_ctl) 107 if (rctl_test(rc_project_nlwps, 108 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 109 & RCT_DENY) 110 rctlfail = 1; 111 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 112 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 113 1, 0) & RCT_DENY) 114 rctlfail = 1; 115 } 116 if (rctlfail) { 117 mutex_exit(&p->p_zone->zone_nlwps_lock); 118 mutex_exit(&p->p_lock); 119 return (NULL); 120 } 121 p->p_task->tk_nlwps++; 122 p->p_task->tk_proj->kpj_nlwps++; 123 p->p_zone->zone_nlwps++; 124 mutex_exit(&p->p_zone->zone_nlwps_lock); 125 mutex_exit(&p->p_lock); 126 127 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 128 stksize = lwp_default_stksize; 129 130 /* 131 * Try to reclaim a <lwp,stack> from 'deathrow' 132 */ 133 if (stksize == lwp_default_stksize) { 134 if (lwp_reapcnt > 0) { 135 mutex_enter(&reaplock); 136 if ((t = lwp_deathrow) != NULL) { 137 ASSERT(t->t_swap); 138 lwp_deathrow = t->t_forw; 139 lwp_reapcnt--; 140 lwpdata = t->t_swap; 141 lwp = t->t_lwp; 142 ctx = t->t_ctx; 143 t->t_swap = NULL; 144 t->t_lwp = NULL; 145 t->t_ctx = NULL; 146 reapq_move_lq_to_tq(t); 147 } 148 mutex_exit(&reaplock); 149 if (lwp != NULL) { 150 lwp_stk_fini(lwp); 151 } 152 if (ctx != NULL) { 153 freectx_ctx(ctx); 154 } 155 } 156 if (lwpdata == NULL && 157 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 158 mutex_enter(&p->p_lock); 159 mutex_enter(&p->p_zone->zone_nlwps_lock); 160 p->p_task->tk_nlwps--; 161 p->p_task->tk_proj->kpj_nlwps--; 162 p->p_zone->zone_nlwps--; 163 mutex_exit(&p->p_zone->zone_nlwps_lock); 164 mutex_exit(&p->p_lock); 165 return (NULL); 166 } 167 } else { 168 stksize = roundup(stksize, PAGESIZE); 169 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 170 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 171 mutex_enter(&p->p_lock); 172 mutex_enter(&p->p_zone->zone_nlwps_lock); 173 p->p_task->tk_nlwps--; 174 p->p_task->tk_proj->kpj_nlwps--; 175 p->p_zone->zone_nlwps--; 176 mutex_exit(&p->p_zone->zone_nlwps_lock); 177 mutex_exit(&p->p_lock); 178 return (NULL); 179 } 180 } 181 182 /* 183 * Create a thread, initializing the stack pointer 184 */ 185 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 186 187 t->t_swap = lwpdata; /* Start of page-able data */ 188 if (lwp == NULL) 189 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 190 bzero(lwp, sizeof (*lwp)); 191 t->t_lwp = lwp; 192 193 t->t_hold = *smask; 194 lwp->lwp_thread = t; 195 lwp->lwp_procp = p; 196 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 197 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 198 lwp->lwp_childstksz = curlwp->lwp_childstksz; 199 200 t->t_stk = lwp_stk_init(lwp, t->t_stk); 201 thread_load(t, proc, arg, len); 202 203 /* 204 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 205 */ 206 if (timerisset(&p->p_rprof_timer.it_value)) 207 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 208 209 if (cid != NOCLASS) 210 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 211 212 /* 213 * Allocate an lwp directory entry for the new lwp. 214 */ 215 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 216 217 mutex_enter(&p->p_lock); 218 grow: 219 /* 220 * Grow the lwp (thread) directory and lwpid hash table if necessary. 221 * A note on the growth algorithm: 222 * The new lwp directory size is computed as: 223 * new = 2 * old + 2 224 * Starting with an initial size of 2 (see exec_common()), 225 * this yields numbers that are a power of two minus 2: 226 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 227 * The size of the lwpid hash table must be a power of two 228 * and must be commensurate in size with the lwp directory 229 * so that hash bucket chains remain short. Therefore, 230 * the lwpid hash table size is computed as: 231 * hashsz = (dirsz + 2) / 2 232 * which leads to these hash table sizes corresponding to 233 * the above directory sizes: 234 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 235 */ 236 while (p->p_lwpfree == NULL) { 237 uint_t dirsz = p->p_lwpdir_sz; 238 uint_t new_dirsz; 239 uint_t new_hashsz; 240 lwpdir_t *new_dir; 241 lwpdir_t *ldp; 242 lwpdir_t **new_hash; 243 244 mutex_exit(&p->p_lock); 245 246 if (old_dir != NULL) { 247 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 248 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 249 old_dir = NULL; 250 old_dirsz = 0; 251 old_hash = NULL; 252 old_hashsz = 0; 253 } 254 new_dirsz = 2 * dirsz + 2; 255 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 256 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 257 ldp->ld_next = ldp + 1; 258 new_hashsz = (new_dirsz + 2) / 2; 259 new_hash = kmem_zalloc(new_hashsz * sizeof (lwpdir_t *), 260 KM_SLEEP); 261 262 mutex_enter(&p->p_lock); 263 if (p == curproc) 264 prbarrier(p); 265 266 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 267 /* 268 * Someone else beat us to it or some lwp exited. 269 * Set up to free our memory and take a lap. 270 */ 271 old_dir = new_dir; 272 old_dirsz = new_dirsz; 273 old_hash = new_hash; 274 old_hashsz = new_hashsz; 275 } else { 276 old_dir = p->p_lwpdir; 277 old_dirsz = p->p_lwpdir_sz; 278 old_hash = p->p_tidhash; 279 old_hashsz = p->p_tidhash_sz; 280 p->p_lwpdir = new_dir; 281 p->p_lwpfree = new_dir; 282 p->p_lwpdir_sz = new_dirsz; 283 p->p_tidhash = new_hash; 284 p->p_tidhash_sz = new_hashsz; 285 /* 286 * We simply hash in all of the old directory entries. 287 * This works because the old directory has no empty 288 * slots and the new hash table starts out empty. 289 * This reproduces the original directory ordering 290 * (required for /proc directory semantics). 291 */ 292 for (ldp = old_dir, i = 0; i < dirsz; i++, ldp++) 293 lwp_hash_in(p, ldp->ld_entry); 294 /* 295 * Defer freeing memory until we drop p->p_lock, 296 */ 297 } 298 } 299 300 /* 301 * Block the process against /proc while we manipulate p->p_tlist, 302 * unless lwp_create() was called by /proc for the PCAGENT operation. 303 * We want to do this early enough so that we don't drop p->p_lock 304 * until the thread is put on the p->p_tlist. 305 */ 306 if (p == curproc) { 307 prbarrier(p); 308 /* 309 * If the current lwp has been requested to stop, do so now. 310 * Otherwise we have a race condition between /proc attempting 311 * to stop the process and this thread creating a new lwp 312 * that was not seen when the /proc PCSTOP request was issued. 313 * We rely on stop() to call prbarrier(p) before returning. 314 */ 315 while ((curthread->t_proc_flag & TP_PRSTOP) && 316 !ttolwp(curthread)->lwp_nostop) 317 stop(PR_REQUESTED, 0); 318 319 /* 320 * If process is exiting, there could be a race between 321 * the agent lwp creation and the new lwp currently being 322 * created. So to prevent this race lwp creation is failed 323 * if the process is exiting. 324 */ 325 if (p->p_flag & (SEXITLWPS|SKILLED)) { 326 err = 1; 327 goto error; 328 } 329 330 /* 331 * Since we might have dropped p->p_lock, the 332 * lwp directory free list might have changed. 333 */ 334 if (p->p_lwpfree == NULL) 335 goto grow; 336 } 337 338 kpreempt_disable(); /* can't grab cpu_lock here */ 339 340 /* 341 * Inherit processor and processor set bindings from curthread, 342 * unless we're creating a new kernel process, in which case 343 * clear all bindings. 344 */ 345 if (cid == syscid) { 346 t->t_bind_cpu = binding = PBIND_NONE; 347 t->t_cpupart = oldpart = &cp_default; 348 t->t_bind_pset = PS_NONE; 349 t->t_bindflag = (uchar_t)default_binding_mode; 350 } else { 351 binding = curthread->t_bind_cpu; 352 t->t_bind_cpu = binding; 353 oldpart = t->t_cpupart; 354 t->t_cpupart = curthread->t_cpupart; 355 t->t_bind_pset = curthread->t_bind_pset; 356 t->t_bindflag = curthread->t_bindflag | 357 (uchar_t)default_binding_mode; 358 } 359 360 /* 361 * thread_create() initializes this thread's home lgroup to the root. 362 * Choose a more suitable lgroup, since this thread is associated 363 * with an lwp. 364 */ 365 ASSERT(oldpart != NULL); 366 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 367 t->t_bound_cpu = cpu[binding]; 368 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 369 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 370 } else { 371 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 372 } 373 374 kpreempt_enable(); 375 376 /* 377 * make sure lpl points to our own partition 378 */ 379 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 380 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 381 t->t_cpupart->cp_nlgrploads); 382 383 /* 384 * If we're creating a new process, then inherit the project from our 385 * parent. If we're only creating an additional lwp then use the 386 * project pointer of the target process. 387 */ 388 if (p->p_task == NULL) 389 newkpj = ttoproj(curthread); 390 else 391 newkpj = p->p_task->tk_proj; 392 393 /* 394 * It is safe to point the thread to the new project without holding it 395 * since we're holding the target process' p_lock here and therefore 396 * we're guaranteed that it will not move to another project. 397 */ 398 oldkpj = ttoproj(t); 399 if (newkpj != oldkpj) { 400 t->t_proj = newkpj; 401 (void) project_hold(newkpj); 402 project_rele(oldkpj); 403 } 404 405 if (cid != NOCLASS) { 406 /* 407 * If the lwp is being created in the current process 408 * and matches the current thread's scheduling class, 409 * we should propagate the current thread's scheduling 410 * parameters by calling CL_FORK. Otherwise just use 411 * the defaults by calling CL_ENTERCLASS. 412 */ 413 if (p != curproc || curthread->t_cid != cid) { 414 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 415 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 416 /* 417 * We don't call schedctl_set_cidpri(t) here 418 * because the schedctl data is not yet set 419 * up for the newly-created lwp. 420 */ 421 } else { 422 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 423 err = CL_FORK(curthread, t, bufp); 424 t->t_cid = cid; 425 } 426 if (err) 427 goto error; 428 else 429 bufp = NULL; 430 } 431 432 /* 433 * If we were given an lwpid then use it, else allocate one. 434 */ 435 if (lwpid != 0) 436 t->t_tid = lwpid; 437 else { 438 /* 439 * lwp/thread id 0 is never valid; reserved for special checks. 440 * lwp/thread id 1 is reserved for the main thread. 441 * Start again at 2 when INT_MAX has been reached 442 * (id_t is a signed 32-bit integer). 443 */ 444 id_t prev_id = p->p_lwpid; /* last allocated tid */ 445 446 do { /* avoid lwpid duplication */ 447 if (p->p_lwpid == INT_MAX) { 448 p->p_flag |= SLWPWRAP; 449 p->p_lwpid = 1; 450 } 451 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 452 /* 453 * All lwpids are allocated; fail the request. 454 */ 455 err = 1; 456 goto error; 457 } 458 /* 459 * We only need to worry about colliding with an id 460 * that's already in use if this process has 461 * cycled through all available lwp ids. 462 */ 463 if ((p->p_flag & SLWPWRAP) == 0) 464 break; 465 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 466 } 467 468 /* 469 * If this is a branded process, let the brand do any necessary lwp 470 * initialization. 471 */ 472 if (PROC_IS_BRANDED(p)) { 473 if (BROP(p)->b_initlwp(lwp)) { 474 err = 1; 475 goto error; 476 } 477 branded = 1; 478 } 479 480 if (t->t_tid == 1) { 481 kpreempt_disable(); 482 ASSERT(t->t_lpl != NULL); 483 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 484 kpreempt_enable(); 485 if (p->p_tr_lgrpid != LGRP_NONE && 486 p->p_tr_lgrpid != p->p_t1_lgrpid) { 487 lgrp_update_trthr_migrations(1); 488 } 489 } 490 491 p->p_lwpcnt++; 492 t->t_waitfor = -1; 493 494 /* 495 * Turn microstate accounting on for thread if on for process. 496 */ 497 if (p->p_flag & SMSACCT) 498 t->t_proc_flag |= TP_MSACCT; 499 500 /* 501 * If the process has watchpoints, mark the new thread as such. 502 */ 503 if (pr_watch_active(p)) 504 watch_enable(t); 505 506 /* 507 * The lwp is being created in the stopped state. 508 * We set all the necessary flags to indicate that fact here. 509 * We omit the TS_CREATE flag from t_schedflag so that the lwp 510 * cannot be set running until the caller is finished with it, 511 * even if lwp_continue() is called on it after we drop p->p_lock. 512 * When the caller is finished with the newly-created lwp, 513 * the caller must call lwp_create_done() to allow the lwp 514 * to be set running. If the TP_HOLDLWP is left set, the 515 * lwp will suspend itself after reaching system call exit. 516 */ 517 init_mstate(t, LMS_STOPPED); 518 t->t_proc_flag |= TP_HOLDLWP; 519 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 520 t->t_whystop = PR_SUSPENDED; 521 t->t_whatstop = SUSPEND_NORMAL; 522 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 523 524 /* 525 * Set system call processing flags in case tracing or profiling 526 * is set. The first system call will evaluate these and turn 527 * them off if they aren't needed. 528 */ 529 t->t_pre_sys = 1; 530 t->t_post_sys = 1; 531 532 /* 533 * Insert the new thread into the list of all threads. 534 */ 535 if ((tx = p->p_tlist) == NULL) { 536 t->t_back = t; 537 t->t_forw = t; 538 p->p_tlist = t; 539 } else { 540 t->t_forw = tx; 541 t->t_back = tx->t_back; 542 tx->t_back->t_forw = t; 543 tx->t_back = t; 544 } 545 546 /* 547 * Insert the new lwp into an lwp directory slot position 548 * and into the lwpid hash table. 549 */ 550 lep->le_thread = t; 551 lep->le_lwpid = t->t_tid; 552 lep->le_start = t->t_start; 553 lwp_hash_in(p, lep); 554 555 if (state == TS_RUN) { 556 /* 557 * We set the new lwp running immediately. 558 */ 559 t->t_proc_flag &= ~TP_HOLDLWP; 560 lwp_create_done(t); 561 } 562 563 error: 564 if (err) { 565 /* 566 * We have failed to create an lwp, so decrement the number 567 * of lwps in the task and let the lgroup load averages know 568 * that this thread isn't going to show up. 569 */ 570 kpreempt_disable(); 571 lgrp_move_thread(t, NULL, 1); 572 kpreempt_enable(); 573 574 ASSERT(MUTEX_HELD(&p->p_lock)); 575 mutex_enter(&p->p_zone->zone_nlwps_lock); 576 p->p_task->tk_nlwps--; 577 p->p_task->tk_proj->kpj_nlwps--; 578 p->p_zone->zone_nlwps--; 579 mutex_exit(&p->p_zone->zone_nlwps_lock); 580 if (cid != NOCLASS && bufp != NULL) 581 CL_FREE(cid, bufp); 582 583 if (branded) 584 BROP(p)->b_freelwp(lwp); 585 586 mutex_exit(&p->p_lock); 587 t->t_state = TS_FREE; 588 thread_rele(t); 589 590 /* 591 * We need to remove t from the list of all threads 592 * because thread_exit()/lwp_exit() isn't called on t. 593 */ 594 mutex_enter(&pidlock); 595 ASSERT(t != t->t_next); /* t0 never exits */ 596 t->t_next->t_prev = t->t_prev; 597 t->t_prev->t_next = t->t_next; 598 mutex_exit(&pidlock); 599 600 thread_free(t); 601 kmem_free(lep, sizeof (*lep)); 602 lwp = NULL; 603 } else { 604 mutex_exit(&p->p_lock); 605 } 606 607 if (old_dir != NULL) { 608 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 609 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 610 } 611 612 DTRACE_PROC1(lwp__create, kthread_t *, t); 613 return (lwp); 614 } 615 616 /* 617 * lwp_create_done() is called by the caller of lwp_create() to set the 618 * newly-created lwp running after the caller has finished manipulating it. 619 */ 620 void 621 lwp_create_done(kthread_t *t) 622 { 623 proc_t *p = ttoproc(t); 624 625 ASSERT(MUTEX_HELD(&p->p_lock)); 626 627 /* 628 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 629 * (The absence of the TS_CREATE flag prevents the lwp from running 630 * until we are finished with it, even if lwp_continue() is called on 631 * it by some other lwp in the process or elsewhere in the kernel.) 632 */ 633 thread_lock(t); 634 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 635 /* 636 * If TS_CSTART is set, lwp_continue(t) has been called and 637 * has already incremented p_lwprcnt; avoid doing this twice. 638 */ 639 if (!(t->t_schedflag & TS_CSTART)) 640 p->p_lwprcnt++; 641 t->t_schedflag |= (TS_CSTART | TS_CREATE); 642 setrun_locked(t); 643 thread_unlock(t); 644 } 645 646 /* 647 * Copy an LWP's active templates, and clear the latest contracts. 648 */ 649 void 650 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 651 { 652 int i; 653 654 for (i = 0; i < ct_ntypes; i++) { 655 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 656 dst->lwp_ct_latest[i] = NULL; 657 } 658 } 659 660 /* 661 * Clear an LWP's contract template state. 662 */ 663 void 664 lwp_ctmpl_clear(klwp_t *lwp) 665 { 666 ct_template_t *tmpl; 667 int i; 668 669 for (i = 0; i < ct_ntypes; i++) { 670 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 671 ctmpl_free(tmpl); 672 lwp->lwp_ct_active[i] = NULL; 673 } 674 675 if (lwp->lwp_ct_latest[i] != NULL) { 676 contract_rele(lwp->lwp_ct_latest[i]); 677 lwp->lwp_ct_latest[i] = NULL; 678 } 679 } 680 } 681 682 /* 683 * Individual lwp exit. 684 * If this is the last lwp, exit the whole process. 685 */ 686 void 687 lwp_exit(void) 688 { 689 kthread_t *t = curthread; 690 klwp_t *lwp = ttolwp(t); 691 proc_t *p = ttoproc(t); 692 693 ASSERT(MUTEX_HELD(&p->p_lock)); 694 695 mutex_exit(&p->p_lock); 696 697 #if defined(__sparc) 698 /* 699 * Ensure that the user stack is fully abandoned.. 700 */ 701 trash_user_windows(); 702 #endif 703 704 tsd_exit(); /* free thread specific data */ 705 706 kcpc_passivate(); /* Clean up performance counter state */ 707 708 pollcleanup(); 709 710 if (t->t_door) 711 door_slam(); 712 713 if (t->t_schedctl != NULL) 714 schedctl_lwp_cleanup(t); 715 716 if (t->t_upimutex != NULL) 717 upimutex_cleanup(); 718 719 /* 720 * Perform any brand specific exit processing, then release any 721 * brand data associated with the lwp 722 */ 723 if (PROC_IS_BRANDED(p)) 724 BROP(p)->b_lwpexit(lwp); 725 726 mutex_enter(&p->p_lock); 727 lwp_cleanup(); 728 729 /* 730 * When this process is dumping core, its lwps are held here 731 * until the core dump is finished. Then exitlwps() is called 732 * again to release these lwps so that they can finish exiting. 733 */ 734 if (p->p_flag & SCOREDUMP) 735 stop(PR_SUSPENDED, SUSPEND_NORMAL); 736 737 /* 738 * Block the process against /proc now that we have really acquired 739 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 740 */ 741 prbarrier(p); 742 743 /* 744 * Call proc_exit() if this is the last non-daemon lwp in the process. 745 */ 746 if (!(t->t_proc_flag & TP_DAEMON) && 747 p->p_lwpcnt == p->p_lwpdaemon + 1) { 748 mutex_exit(&p->p_lock); 749 if (proc_exit(CLD_EXITED, 0) == 0) { 750 /* Restarting init. */ 751 return; 752 } 753 754 /* 755 * proc_exit() returns a non-zero value when some other 756 * lwp got there first. We just have to continue in 757 * lwp_exit(). 758 */ 759 mutex_enter(&p->p_lock); 760 ASSERT(curproc->p_flag & SEXITLWPS); 761 prbarrier(p); 762 } 763 764 DTRACE_PROC(lwp__exit); 765 766 /* 767 * If the lwp is a detached lwp or if the process is exiting, 768 * remove (lwp_hash_out()) the lwp from the lwp directory. 769 * Otherwise null out the lwp's le_thread pointer in the lwp 770 * directory so that other threads will see it as a zombie lwp. 771 */ 772 prlwpexit(t); /* notify /proc */ 773 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 774 lwp_hash_out(p, t->t_tid); 775 else { 776 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 777 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 778 p->p_zombcnt++; 779 cv_broadcast(&p->p_lwpexit); 780 } 781 if (t->t_proc_flag & TP_DAEMON) { 782 p->p_lwpdaemon--; 783 t->t_proc_flag &= ~TP_DAEMON; 784 } 785 t->t_proc_flag &= ~TP_TWAIT; 786 787 /* 788 * Maintain accurate lwp count for task.max-lwps resource control. 789 */ 790 mutex_enter(&p->p_zone->zone_nlwps_lock); 791 p->p_task->tk_nlwps--; 792 p->p_task->tk_proj->kpj_nlwps--; 793 p->p_zone->zone_nlwps--; 794 mutex_exit(&p->p_zone->zone_nlwps_lock); 795 796 CL_EXIT(t); /* tell the scheduler that t is exiting */ 797 ASSERT(p->p_lwpcnt != 0); 798 p->p_lwpcnt--; 799 800 /* 801 * If all remaining non-daemon lwps are waiting in lwp_wait(), 802 * wake them up so someone can return EDEADLK. 803 * (See the block comment preceeding lwp_wait().) 804 */ 805 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 806 cv_broadcast(&p->p_lwpexit); 807 808 t->t_proc_flag |= TP_LWPEXIT; 809 term_mstate(t); 810 811 #ifndef NPROBE 812 /* Kernel probe */ 813 if (t->t_tnf_tpdp) 814 tnf_thread_exit(); 815 #endif /* NPROBE */ 816 817 t->t_forw->t_back = t->t_back; 818 t->t_back->t_forw = t->t_forw; 819 if (t == p->p_tlist) 820 p->p_tlist = t->t_forw; 821 822 /* 823 * Clean up the signal state. 824 */ 825 if (t->t_sigqueue != NULL) 826 sigdelq(p, t, 0); 827 if (lwp->lwp_curinfo != NULL) { 828 siginfofree(lwp->lwp_curinfo); 829 lwp->lwp_curinfo = NULL; 830 } 831 832 thread_rele(t); 833 834 /* 835 * Terminated lwps are associated with process zero and are put onto 836 * death-row by resume(). Avoid preemption after resetting t->t_procp. 837 */ 838 t->t_preempt++; 839 840 if (t->t_ctx != NULL) 841 exitctx(t); 842 if (p->p_pctx != NULL) 843 exitpctx(p); 844 845 t->t_procp = &p0; 846 847 /* 848 * Notify the HAT about the change of address space 849 */ 850 hat_thread_exit(t); 851 /* 852 * When this is the last running lwp in this process and some lwp is 853 * waiting for this condition to become true, or this thread was being 854 * suspended, then the waiting lwp is awakened. 855 * 856 * Also, if the process is exiting, we may have a thread waiting in 857 * exitlwps() that needs to be notified. 858 */ 859 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 860 (p->p_flag & SEXITLWPS)) 861 cv_broadcast(&p->p_holdlwps); 862 863 /* 864 * Need to drop p_lock so we can reacquire pidlock. 865 */ 866 mutex_exit(&p->p_lock); 867 mutex_enter(&pidlock); 868 869 ASSERT(t != t->t_next); /* t0 never exits */ 870 t->t_next->t_prev = t->t_prev; 871 t->t_prev->t_next = t->t_next; 872 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 873 mutex_exit(&pidlock); 874 875 lwp_pcb_exit(); 876 877 t->t_state = TS_ZOMB; 878 swtch_from_zombie(); 879 /* never returns */ 880 } 881 882 883 /* 884 * Cleanup function for an exiting lwp. 885 * Called both from lwp_exit() and from proc_exit(). 886 * p->p_lock is repeatedly released and grabbed in this function. 887 */ 888 void 889 lwp_cleanup(void) 890 { 891 kthread_t *t = curthread; 892 proc_t *p = ttoproc(t); 893 894 ASSERT(MUTEX_HELD(&p->p_lock)); 895 896 /* untimeout any lwp-bound realtime timers */ 897 if (p->p_itimer != NULL) 898 timer_lwpexit(); 899 900 /* 901 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 902 * so it appears that the agent never existed, and clear p_agenttp. 903 */ 904 if (t == p->p_agenttp) { 905 ASSERT(t->t_tid == p->p_lwpid); 906 p->p_lwpid--; 907 p->p_agenttp = NULL; 908 } 909 910 /* 911 * Do lgroup bookkeeping to account for thread exiting. 912 */ 913 kpreempt_disable(); 914 lgrp_move_thread(t, NULL, 1); 915 if (t->t_tid == 1) { 916 p->p_t1_lgrpid = LGRP_NONE; 917 } 918 kpreempt_enable(); 919 920 lwp_ctmpl_clear(ttolwp(t)); 921 } 922 923 int 924 lwp_suspend(kthread_t *t) 925 { 926 int tid; 927 proc_t *p = ttoproc(t); 928 929 ASSERT(MUTEX_HELD(&p->p_lock)); 930 931 /* 932 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 933 * If an lwp is stopping itself, there is no need to wait. 934 */ 935 top: 936 t->t_proc_flag |= TP_HOLDLWP; 937 if (t == curthread) { 938 t->t_sig_check = 1; 939 } else { 940 /* 941 * Make sure the lwp stops promptly. 942 */ 943 thread_lock(t); 944 t->t_sig_check = 1; 945 /* 946 * XXX Should use virtual stop like /proc does instead of 947 * XXX waking the thread to get it to stop. 948 */ 949 if (ISWAKEABLE(t) || ISWAITING(t)) { 950 setrun_locked(t); 951 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 952 poke_cpu(t->t_cpu->cpu_id); 953 } 954 955 tid = t->t_tid; /* remember thread ID */ 956 /* 957 * Wait for lwp to stop 958 */ 959 while (!SUSPENDED(t)) { 960 /* 961 * Drop the thread lock before waiting and reacquire it 962 * afterwards, so the thread can change its t_state 963 * field. 964 */ 965 thread_unlock(t); 966 967 /* 968 * Check if aborted by exitlwps(). 969 */ 970 if (p->p_flag & SEXITLWPS) 971 lwp_exit(); 972 973 /* 974 * Cooperate with jobcontrol signals and /proc stopping 975 * by calling cv_wait_sig() to wait for the target 976 * lwp to stop. Just using cv_wait() can lead to 977 * deadlock because, if some other lwp has stopped 978 * by either of these mechanisms, then p_lwprcnt will 979 * never become zero if we do a cv_wait(). 980 */ 981 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 982 return (EINTR); 983 984 /* 985 * Check to see if thread died while we were 986 * waiting for it to suspend. 987 */ 988 if (idtot(p, tid) == NULL) 989 return (ESRCH); 990 991 thread_lock(t); 992 /* 993 * If the TP_HOLDLWP flag went away, lwp_continue() 994 * or vfork() must have been called while we were 995 * waiting, so start over again. 996 */ 997 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 998 thread_unlock(t); 999 goto top; 1000 } 1001 } 1002 thread_unlock(t); 1003 } 1004 return (0); 1005 } 1006 1007 /* 1008 * continue a lwp that's been stopped by lwp_suspend(). 1009 */ 1010 void 1011 lwp_continue(kthread_t *t) 1012 { 1013 proc_t *p = ttoproc(t); 1014 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1015 1016 ASSERT(MUTEX_HELD(&p->p_lock)); 1017 1018 t->t_proc_flag &= ~TP_HOLDLWP; 1019 thread_lock(t); 1020 if (SUSPENDED(t) && 1021 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1022 p->p_lwprcnt++; 1023 t->t_schedflag |= TS_CSTART; 1024 setrun_locked(t); 1025 } 1026 thread_unlock(t); 1027 /* 1028 * Wakeup anyone waiting for this thread to be suspended 1029 */ 1030 if (was_suspended) 1031 cv_broadcast(&p->p_holdlwps); 1032 } 1033 1034 /* 1035 * ******************************** 1036 * Miscellaneous lwp routines * 1037 * ******************************** 1038 */ 1039 /* 1040 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1041 * This will cause the process's lwps to stop at a hold point. A hold 1042 * point is where a kernel thread has a flat stack. This is at the 1043 * return from a system call and at the return from a user level trap. 1044 * 1045 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1046 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1047 * hold point. The lwps in the process are not being cloned, so they 1048 * are held at the usual hold points and also within issig_forreal(). 1049 * This has the side-effect that their system calls do not return 1050 * showing EINTR. 1051 * 1052 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1053 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1054 * lwp is waiting for the target lwp to be stopped. 1055 */ 1056 void 1057 holdlwp(void) 1058 { 1059 proc_t *p = curproc; 1060 kthread_t *t = curthread; 1061 1062 mutex_enter(&p->p_lock); 1063 /* 1064 * Don't terminate immediately if the process is dumping core. 1065 * Once the process has dumped core, all lwps are terminated. 1066 */ 1067 if (!(p->p_flag & SCOREDUMP)) { 1068 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1069 lwp_exit(); 1070 } 1071 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1072 mutex_exit(&p->p_lock); 1073 return; 1074 } 1075 /* 1076 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1077 * when p->p_lwprcnt becomes zero. 1078 */ 1079 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1080 if (p->p_flag & SEXITLWPS) 1081 lwp_exit(); 1082 mutex_exit(&p->p_lock); 1083 } 1084 1085 /* 1086 * Have all lwps within the process hold at a point where they are 1087 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1088 */ 1089 int 1090 holdlwps(int holdflag) 1091 { 1092 proc_t *p = curproc; 1093 1094 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1095 mutex_enter(&p->p_lock); 1096 schedctl_finish_sigblock(curthread); 1097 again: 1098 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1099 /* 1100 * If another lwp is doing a forkall() or proc_exit(), bail out. 1101 */ 1102 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1103 mutex_exit(&p->p_lock); 1104 return (0); 1105 } 1106 /* 1107 * Another lwp is doing a fork1() or is undergoing 1108 * watchpoint activity. We hold here for it to complete. 1109 */ 1110 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1111 } 1112 p->p_flag |= holdflag; 1113 pokelwps(p); 1114 --p->p_lwprcnt; 1115 /* 1116 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1117 */ 1118 while (p->p_lwprcnt > 0) { 1119 /* 1120 * Check if aborted by exitlwps(). 1121 * Also check if SHOLDWATCH is set; it takes precedence. 1122 */ 1123 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1124 p->p_lwprcnt++; 1125 p->p_flag &= ~holdflag; 1126 cv_broadcast(&p->p_holdlwps); 1127 goto again; 1128 } 1129 /* 1130 * Cooperate with jobcontrol signals and /proc stopping. 1131 * If some other lwp has stopped by either of these 1132 * mechanisms, then p_lwprcnt will never become zero 1133 * and the process will appear deadlocked unless we 1134 * stop here in sympathy with the other lwp before 1135 * doing the cv_wait() below. 1136 * 1137 * If the other lwp stops after we do the cv_wait(), it 1138 * will wake us up to loop around and do the sympathy stop. 1139 * 1140 * Since stop() drops p->p_lock, we must start from 1141 * the top again on returning from stop(). 1142 */ 1143 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1144 int whystop = p->p_stopsig? PR_JOBCONTROL : 1145 PR_REQUESTED; 1146 p->p_lwprcnt++; 1147 p->p_flag &= ~holdflag; 1148 stop(whystop, p->p_stopsig); 1149 goto again; 1150 } 1151 cv_wait(&p->p_holdlwps, &p->p_lock); 1152 } 1153 p->p_lwprcnt++; 1154 p->p_flag &= ~holdflag; 1155 mutex_exit(&p->p_lock); 1156 return (1); 1157 } 1158 1159 /* 1160 * See comments for holdwatch(), below. 1161 */ 1162 static int 1163 holdcheck(int clearflags) 1164 { 1165 proc_t *p = curproc; 1166 1167 /* 1168 * If we are trying to exit, that takes precedence over anything else. 1169 */ 1170 if (p->p_flag & SEXITLWPS) { 1171 p->p_lwprcnt++; 1172 p->p_flag &= ~clearflags; 1173 lwp_exit(); 1174 } 1175 1176 /* 1177 * If another thread is calling fork1(), stop the current thread so the 1178 * other can complete. 1179 */ 1180 if (p->p_flag & SHOLDFORK1) { 1181 p->p_lwprcnt++; 1182 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1183 if (p->p_flag & SEXITLWPS) { 1184 p->p_flag &= ~clearflags; 1185 lwp_exit(); 1186 } 1187 return (-1); 1188 } 1189 1190 /* 1191 * If another thread is calling fork(), then indicate we are doing 1192 * watchpoint activity. This will cause holdlwps() above to stop the 1193 * forking thread, at which point we can continue with watchpoint 1194 * activity. 1195 */ 1196 if (p->p_flag & SHOLDFORK) { 1197 p->p_lwprcnt++; 1198 while (p->p_flag & SHOLDFORK) { 1199 p->p_flag |= SHOLDWATCH; 1200 cv_broadcast(&p->p_holdlwps); 1201 cv_wait(&p->p_holdlwps, &p->p_lock); 1202 p->p_flag &= ~SHOLDWATCH; 1203 } 1204 return (-1); 1205 } 1206 1207 return (0); 1208 } 1209 1210 /* 1211 * Stop all lwps within the process, holding themselves in the kernel while the 1212 * active lwp undergoes watchpoint activity. This is more complicated than 1213 * expected because stop() relies on calling holdwatch() in order to copyin data 1214 * from the user's address space. A double barrier is used to prevent an 1215 * infinite loop. 1216 * 1217 * o The first thread into holdwatch() is the 'master' thread and does 1218 * the following: 1219 * 1220 * - Sets SHOLDWATCH on the current process 1221 * - Sets TP_WATCHSTOP on the current thread 1222 * - Waits for all threads to be either stopped or have 1223 * TP_WATCHSTOP set. 1224 * - Sets the SWATCHOK flag on the process 1225 * - Unsets TP_WATCHSTOP 1226 * - Waits for the other threads to completely stop 1227 * - Unsets SWATCHOK 1228 * 1229 * o If SHOLDWATCH is already set when we enter this function, then another 1230 * thread is already trying to stop this thread. This 'slave' thread 1231 * does the following: 1232 * 1233 * - Sets TP_WATCHSTOP on the current thread 1234 * - Waits for SWATCHOK flag to be set 1235 * - Calls stop() 1236 * 1237 * o If SWATCHOK is set on the process, then this function immediately 1238 * returns, as we must have been called via stop(). 1239 * 1240 * In addition, there are other flags that take precedence over SHOLDWATCH: 1241 * 1242 * o If SEXITLWPS is set, exit immediately. 1243 * 1244 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1245 * 1246 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1247 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1248 * 1249 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1250 * stop the current thread. 1251 * 1252 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1253 * threads were stopped, or the list of watched pages has changed. 1254 */ 1255 int 1256 holdwatch(void) 1257 { 1258 proc_t *p = curproc; 1259 kthread_t *t = curthread; 1260 int ret = 0; 1261 1262 mutex_enter(&p->p_lock); 1263 1264 p->p_lwprcnt--; 1265 1266 /* 1267 * Check for bail-out conditions as outlined above. 1268 */ 1269 if (holdcheck(0) != 0) { 1270 mutex_exit(&p->p_lock); 1271 return (-1); 1272 } 1273 1274 if (!(p->p_flag & SHOLDWATCH)) { 1275 /* 1276 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1277 * the other threads. 1278 */ 1279 p->p_flag |= SHOLDWATCH; 1280 pokelwps(p); 1281 1282 /* 1283 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1284 */ 1285 while (pr_allstopped(p, 1) > 0) { 1286 if (holdcheck(SHOLDWATCH) != 0) { 1287 p->p_flag &= ~SHOLDWATCH; 1288 mutex_exit(&p->p_lock); 1289 return (-1); 1290 } 1291 1292 cv_wait(&p->p_holdlwps, &p->p_lock); 1293 } 1294 1295 /* 1296 * All threads are now stopped or in the process of stopping. 1297 * Set SWATCHOK and let them stop completely. 1298 */ 1299 p->p_flag |= SWATCHOK; 1300 t->t_proc_flag &= ~TP_WATCHSTOP; 1301 cv_broadcast(&p->p_holdlwps); 1302 1303 while (pr_allstopped(p, 0) > 0) { 1304 /* 1305 * At first glance, it may appear that we don't need a 1306 * call to holdcheck() here. But if the process gets a 1307 * SIGKILL signal, one of our stopped threads may have 1308 * been awakened and is waiting in exitlwps(), which 1309 * takes precedence over watchpoints. 1310 */ 1311 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1312 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1313 mutex_exit(&p->p_lock); 1314 return (-1); 1315 } 1316 1317 cv_wait(&p->p_holdlwps, &p->p_lock); 1318 } 1319 1320 /* 1321 * All threads are now completely stopped. 1322 */ 1323 p->p_flag &= ~SWATCHOK; 1324 p->p_flag &= ~SHOLDWATCH; 1325 p->p_lwprcnt++; 1326 1327 } else if (!(p->p_flag & SWATCHOK)) { 1328 1329 /* 1330 * SHOLDWATCH is set, so another thread is trying to do 1331 * watchpoint activity. Indicate this thread is stopping, and 1332 * wait for the OK from the master thread. 1333 */ 1334 t->t_proc_flag |= TP_WATCHSTOP; 1335 cv_broadcast(&p->p_holdlwps); 1336 1337 while (!(p->p_flag & SWATCHOK)) { 1338 if (holdcheck(0) != 0) { 1339 t->t_proc_flag &= ~TP_WATCHSTOP; 1340 mutex_exit(&p->p_lock); 1341 return (-1); 1342 } 1343 1344 cv_wait(&p->p_holdlwps, &p->p_lock); 1345 } 1346 1347 /* 1348 * Once the master thread has given the OK, this thread can 1349 * actually call stop(). 1350 */ 1351 t->t_proc_flag &= ~TP_WATCHSTOP; 1352 p->p_lwprcnt++; 1353 1354 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1355 1356 /* 1357 * It's not OK to do watchpoint activity, notify caller to 1358 * retry. 1359 */ 1360 ret = -1; 1361 1362 } else { 1363 1364 /* 1365 * The only way we can hit the case where SHOLDWATCH is set and 1366 * SWATCHOK is set is if we are triggering this from within a 1367 * stop() call. Assert that this is the case. 1368 */ 1369 1370 ASSERT(t->t_proc_flag & TP_STOPPING); 1371 p->p_lwprcnt++; 1372 } 1373 1374 mutex_exit(&p->p_lock); 1375 1376 return (ret); 1377 } 1378 1379 /* 1380 * force all interruptible lwps to trap into the kernel. 1381 */ 1382 void 1383 pokelwps(proc_t *p) 1384 { 1385 kthread_t *t; 1386 1387 ASSERT(MUTEX_HELD(&p->p_lock)); 1388 1389 t = p->p_tlist; 1390 do { 1391 if (t == curthread) 1392 continue; 1393 thread_lock(t); 1394 aston(t); /* make thread trap or do post_syscall */ 1395 if (ISWAKEABLE(t) || ISWAITING(t)) { 1396 setrun_locked(t); 1397 } else if (t->t_state == TS_STOPPED) { 1398 /* 1399 * Ensure that proc_exit() is not blocked by lwps 1400 * that were stopped via jobcontrol or /proc. 1401 */ 1402 if (p->p_flag & SEXITLWPS) { 1403 p->p_stopsig = 0; 1404 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1405 setrun_locked(t); 1406 } 1407 /* 1408 * If we are holding lwps for a forkall(), 1409 * force lwps that have been suspended via 1410 * lwp_suspend() and are suspended inside 1411 * of a system call to proceed to their 1412 * holdlwp() points where they are clonable. 1413 */ 1414 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1415 if ((t->t_schedflag & TS_CSTART) == 0) { 1416 p->p_lwprcnt++; 1417 t->t_schedflag |= TS_CSTART; 1418 setrun_locked(t); 1419 } 1420 } 1421 } else if (t->t_state == TS_ONPROC) { 1422 if (t->t_cpu != CPU) 1423 poke_cpu(t->t_cpu->cpu_id); 1424 } 1425 thread_unlock(t); 1426 } while ((t = t->t_forw) != p->p_tlist); 1427 } 1428 1429 /* 1430 * undo the effects of holdlwps() or holdwatch(). 1431 */ 1432 void 1433 continuelwps(proc_t *p) 1434 { 1435 kthread_t *t; 1436 1437 /* 1438 * If this flag is set, then the original holdwatch() didn't actually 1439 * stop the process. See comments for holdwatch(). 1440 */ 1441 if (p->p_flag & SWATCHOK) { 1442 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1443 return; 1444 } 1445 1446 ASSERT(MUTEX_HELD(&p->p_lock)); 1447 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1448 1449 t = p->p_tlist; 1450 do { 1451 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1452 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1453 p->p_lwprcnt++; 1454 t->t_schedflag |= TS_CSTART; 1455 setrun_locked(t); 1456 } 1457 thread_unlock(t); 1458 } while ((t = t->t_forw) != p->p_tlist); 1459 } 1460 1461 /* 1462 * Force all other LWPs in the current process other than the caller to exit, 1463 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1464 * is typically used in these situations: 1465 * 1466 * (a) prior to an exec() system call 1467 * (b) prior to dumping a core file 1468 * (c) prior to a uadmin() shutdown 1469 * 1470 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1471 * Multiple threads in the process can call this function at one time by 1472 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1473 * to declare one particular thread the winner who gets to kill the others. 1474 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1475 * appropriate errno value is returned to caller for its system call to return. 1476 */ 1477 int 1478 exitlwps(int coredump) 1479 { 1480 proc_t *p = curproc; 1481 int heldcnt; 1482 1483 if (curthread->t_door) 1484 door_slam(); 1485 if (p->p_door_list) 1486 door_revoke_all(); 1487 if (curthread->t_schedctl != NULL) 1488 schedctl_lwp_cleanup(curthread); 1489 1490 /* 1491 * Ensure that before starting to wait for other lwps to exit, 1492 * cleanup all upimutexes held by curthread. Otherwise, some other 1493 * lwp could be waiting (uninterruptibly) for a upimutex held by 1494 * curthread, and the call to pokelwps() below would deadlock. 1495 * Even if a blocked upimutex_lock is made interruptible, 1496 * curthread's upimutexes need to be unlocked: do it here. 1497 */ 1498 if (curthread->t_upimutex != NULL) 1499 upimutex_cleanup(); 1500 1501 /* 1502 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1503 * We must also block any further /proc access from this point forward. 1504 */ 1505 mutex_enter(&p->p_lock); 1506 prbarrier(p); 1507 1508 if (p->p_flag & SEXITLWPS) { 1509 mutex_exit(&p->p_lock); 1510 aston(curthread); /* force a trip through post_syscall */ 1511 return (set_errno(EINTR)); 1512 } 1513 1514 p->p_flag |= SEXITLWPS; 1515 if (coredump) /* tell other lwps to stop, not exit */ 1516 p->p_flag |= SCOREDUMP; 1517 1518 /* 1519 * Give precedence to exitlwps() if a holdlwps() is 1520 * in progress. The lwp doing the holdlwps() operation 1521 * is aborted when it is awakened. 1522 */ 1523 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1524 cv_broadcast(&p->p_holdlwps); 1525 cv_wait(&p->p_holdlwps, &p->p_lock); 1526 prbarrier(p); 1527 } 1528 p->p_flag |= SHOLDFORK; 1529 pokelwps(p); 1530 1531 /* 1532 * Wait for process to become quiescent. 1533 */ 1534 --p->p_lwprcnt; 1535 while (p->p_lwprcnt > 0) { 1536 cv_wait(&p->p_holdlwps, &p->p_lock); 1537 prbarrier(p); 1538 } 1539 p->p_lwprcnt++; 1540 ASSERT(p->p_lwprcnt == 1); 1541 1542 /* 1543 * The SCOREDUMP flag puts the process into a quiescent 1544 * state. The process's lwps remain attached to this 1545 * process until exitlwps() is called again without the 1546 * 'coredump' flag set, then the lwps are terminated 1547 * and the process can exit. 1548 */ 1549 if (coredump) { 1550 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1551 goto out; 1552 } 1553 1554 /* 1555 * Determine if there are any lwps left dangling in 1556 * the stopped state. This happens when exitlwps() 1557 * aborts a holdlwps() operation. 1558 */ 1559 p->p_flag &= ~SHOLDFORK; 1560 if ((heldcnt = p->p_lwpcnt) > 1) { 1561 kthread_t *t; 1562 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1563 t->t_proc_flag &= ~TP_TWAIT; 1564 lwp_continue(t); 1565 } 1566 } 1567 1568 /* 1569 * Wait for all other lwps to exit. 1570 */ 1571 --p->p_lwprcnt; 1572 while (p->p_lwpcnt > 1) { 1573 cv_wait(&p->p_holdlwps, &p->p_lock); 1574 prbarrier(p); 1575 } 1576 ++p->p_lwprcnt; 1577 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1578 1579 p->p_flag &= ~SEXITLWPS; 1580 curthread->t_proc_flag &= ~TP_TWAIT; 1581 1582 out: 1583 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1584 lwpdir_t *ldp; 1585 lwpent_t *lep; 1586 int i; 1587 1588 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1589 lep = ldp->ld_entry; 1590 if (lep != NULL && lep->le_thread != curthread) { 1591 ASSERT(lep->le_thread == NULL); 1592 p->p_zombcnt--; 1593 lwp_hash_out(p, lep->le_lwpid); 1594 } 1595 } 1596 ASSERT(p->p_zombcnt == 0); 1597 } 1598 1599 /* 1600 * If some other LWP in the process wanted us to suspend ourself, 1601 * then we will not do it. The other LWP is now terminated and 1602 * no one will ever continue us again if we suspend ourself. 1603 */ 1604 curthread->t_proc_flag &= ~TP_HOLDLWP; 1605 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1606 mutex_exit(&p->p_lock); 1607 return (0); 1608 } 1609 1610 /* 1611 * duplicate a lwp. 1612 */ 1613 klwp_t * 1614 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1615 { 1616 klwp_t *clwp; 1617 void *tregs, *tfpu; 1618 kthread_t *t = lwptot(lwp); 1619 kthread_t *ct; 1620 proc_t *p = lwptoproc(lwp); 1621 int cid; 1622 void *bufp; 1623 void *brand_data; 1624 int val; 1625 1626 ASSERT(p == curproc); 1627 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1628 1629 #if defined(__sparc) 1630 if (t == curthread) 1631 (void) flush_user_windows_to_stack(NULL); 1632 #endif 1633 1634 if (t == curthread) 1635 /* copy args out of registers first */ 1636 (void) save_syscall_args(); 1637 1638 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1639 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1640 if (clwp == NULL) 1641 return (NULL); 1642 1643 /* 1644 * most of the parent's lwp can be copied to its duplicate, 1645 * except for the fields that are unique to each lwp, like 1646 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1647 */ 1648 ct = clwp->lwp_thread; 1649 tregs = clwp->lwp_regs; 1650 tfpu = clwp->lwp_fpu; 1651 brand_data = clwp->lwp_brand; 1652 1653 /* 1654 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1655 * mstate_aggr_state() from reading stale mstate entries copied 1656 * from lwp to clwp. 1657 */ 1658 mutex_enter(&cp->p_lock); 1659 *clwp = *lwp; 1660 1661 /* clear microstate and resource usage data in new lwp */ 1662 init_mstate(ct, LMS_STOPPED); 1663 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1664 mutex_exit(&cp->p_lock); 1665 1666 /* fix up child's lwp */ 1667 1668 clwp->lwp_pcb.pcb_flags = 0; 1669 #if defined(__sparc) 1670 clwp->lwp_pcb.pcb_step = STEP_NONE; 1671 #endif 1672 clwp->lwp_cursig = 0; 1673 clwp->lwp_extsig = 0; 1674 clwp->lwp_curinfo = (struct sigqueue *)0; 1675 clwp->lwp_thread = ct; 1676 ct->t_sysnum = t->t_sysnum; 1677 clwp->lwp_regs = tregs; 1678 clwp->lwp_fpu = tfpu; 1679 clwp->lwp_brand = brand_data; 1680 clwp->lwp_ap = clwp->lwp_arg; 1681 clwp->lwp_procp = cp; 1682 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1683 clwp->lwp_lastfault = 0; 1684 clwp->lwp_lastfaddr = 0; 1685 1686 /* copy parent's struct regs to child. */ 1687 lwp_forkregs(lwp, clwp); 1688 1689 /* 1690 * Fork thread context ops, if any. 1691 */ 1692 if (t->t_ctx) 1693 forkctx(t, ct); 1694 1695 /* fix door state in the child */ 1696 if (t->t_door) 1697 door_fork(t, ct); 1698 1699 /* copy current contract templates, clear latest contracts */ 1700 lwp_ctmpl_copy(clwp, lwp); 1701 1702 mutex_enter(&cp->p_lock); 1703 /* lwp_create() set the TP_HOLDLWP flag */ 1704 if (!(t->t_proc_flag & TP_HOLDLWP)) 1705 ct->t_proc_flag &= ~TP_HOLDLWP; 1706 if (cp->p_flag & SMSACCT) 1707 ct->t_proc_flag |= TP_MSACCT; 1708 mutex_exit(&cp->p_lock); 1709 1710 /* Allow brand to propagate brand-specific state */ 1711 if (PROC_IS_BRANDED(p)) 1712 BROP(p)->b_forklwp(lwp, clwp); 1713 1714 retry: 1715 cid = t->t_cid; 1716 1717 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1718 ASSERT(val == 0); 1719 1720 mutex_enter(&p->p_lock); 1721 if (cid != t->t_cid) { 1722 /* 1723 * Someone just changed this thread's scheduling class, 1724 * so try pre-allocating the buffer again. Hopefully we 1725 * don't hit this often. 1726 */ 1727 mutex_exit(&p->p_lock); 1728 CL_FREE(cid, bufp); 1729 goto retry; 1730 } 1731 1732 ct->t_unpark = t->t_unpark; 1733 ct->t_clfuncs = t->t_clfuncs; 1734 CL_FORK(t, ct, bufp); 1735 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1736 mutex_exit(&p->p_lock); 1737 1738 return (clwp); 1739 } 1740 1741 /* 1742 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1743 */ 1744 void 1745 lwp_hash_in(proc_t *p, lwpent_t *lep) 1746 { 1747 lwpdir_t **ldpp; 1748 lwpdir_t *ldp; 1749 kthread_t *t; 1750 1751 /* 1752 * Allocate a directory element from the free list. 1753 * Code elsewhere guarantees a free slot. 1754 */ 1755 ldp = p->p_lwpfree; 1756 p->p_lwpfree = ldp->ld_next; 1757 ASSERT(ldp->ld_entry == NULL); 1758 ldp->ld_entry = lep; 1759 1760 /* 1761 * Insert it into the lwpid hash table. 1762 */ 1763 ldpp = &p->p_tidhash[TIDHASH(p, lep->le_lwpid)]; 1764 ldp->ld_next = *ldpp; 1765 *ldpp = ldp; 1766 1767 /* 1768 * Set the active thread's directory slot entry. 1769 */ 1770 if ((t = lep->le_thread) != NULL) { 1771 ASSERT(lep->le_lwpid == t->t_tid); 1772 t->t_dslot = (int)(ldp - p->p_lwpdir); 1773 } 1774 } 1775 1776 /* 1777 * Remove an lwp from the lwpid hash table and free its directory entry. 1778 * This is done when a detached lwp exits in lwp_exit() or 1779 * when a non-detached lwp is waited for in lwp_wait() or 1780 * when a zombie lwp is detached in lwp_detach(). 1781 */ 1782 void 1783 lwp_hash_out(proc_t *p, id_t lwpid) 1784 { 1785 lwpdir_t **ldpp; 1786 lwpdir_t *ldp; 1787 lwpent_t *lep; 1788 1789 for (ldpp = &p->p_tidhash[TIDHASH(p, lwpid)]; 1790 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1791 lep = ldp->ld_entry; 1792 if (lep->le_lwpid == lwpid) { 1793 prlwpfree(p, lep); /* /proc deals with le_trace */ 1794 *ldpp = ldp->ld_next; 1795 ldp->ld_entry = NULL; 1796 ldp->ld_next = p->p_lwpfree; 1797 p->p_lwpfree = ldp; 1798 kmem_free(lep, sizeof (*lep)); 1799 break; 1800 } 1801 } 1802 } 1803 1804 /* 1805 * Lookup an lwp in the lwpid hash table by lwpid. 1806 */ 1807 lwpdir_t * 1808 lwp_hash_lookup(proc_t *p, id_t lwpid) 1809 { 1810 lwpdir_t *ldp; 1811 1812 /* 1813 * The process may be exiting, after p_tidhash has been set to NULL in 1814 * proc_exit() but before prfee() has been called. Return failure in 1815 * this case. 1816 */ 1817 if (p->p_tidhash == NULL) 1818 return (NULL); 1819 1820 for (ldp = p->p_tidhash[TIDHASH(p, lwpid)]; 1821 ldp != NULL; ldp = ldp->ld_next) { 1822 if (ldp->ld_entry->le_lwpid == lwpid) 1823 return (ldp); 1824 } 1825 1826 return (NULL); 1827 } 1828 1829 /* 1830 * Update the indicated LWP usage statistic for the current LWP. 1831 */ 1832 void 1833 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 1834 { 1835 klwp_t *lwp = ttolwp(curthread); 1836 1837 if (lwp == NULL) 1838 return; 1839 1840 switch (lwp_stat_id) { 1841 case LWP_STAT_INBLK: 1842 lwp->lwp_ru.inblock += inc; 1843 break; 1844 case LWP_STAT_OUBLK: 1845 lwp->lwp_ru.oublock += inc; 1846 break; 1847 case LWP_STAT_MSGRCV: 1848 lwp->lwp_ru.msgrcv += inc; 1849 break; 1850 case LWP_STAT_MSGSND: 1851 lwp->lwp_ru.msgsnd += inc; 1852 break; 1853 default: 1854 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 1855 } 1856 } 1857