1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/systm.h> 31 #include <sys/thread.h> 32 #include <sys/proc.h> 33 #include <sys/task.h> 34 #include <sys/project.h> 35 #include <sys/signal.h> 36 #include <sys/errno.h> 37 #include <sys/vmparam.h> 38 #include <sys/stack.h> 39 #include <sys/procfs.h> 40 #include <sys/prsystm.h> 41 #include <sys/cpuvar.h> 42 #include <sys/kmem.h> 43 #include <sys/vtrace.h> 44 #include <sys/door.h> 45 #include <vm/seg_kp.h> 46 #include <sys/debug.h> 47 #include <sys/tnf.h> 48 #include <sys/schedctl.h> 49 #include <sys/poll.h> 50 #include <sys/copyops.h> 51 #include <sys/lwp_upimutex_impl.h> 52 #include <sys/cpupart.h> 53 #include <sys/lgrp.h> 54 #include <sys/rctl.h> 55 #include <sys/contract_impl.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/sdt.h> 58 #include <sys/cmn_err.h> 59 #include <sys/brand.h> 60 #include <sys/cyclic.h> 61 #include <sys/pool.h> 62 63 /* hash function for the lwpid hash table, p->p_tidhash[] */ 64 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1)) 65 66 void *segkp_lwp; /* cookie for pool of segkp resources */ 67 extern void reapq_move_lq_to_tq(kthread_t *); 68 extern void freectx_ctx(struct ctxop *); 69 70 /* 71 * Create a kernel thread associated with a particular system process. Give 72 * it an LWP so that microstate accounting will be available for it. 73 */ 74 kthread_t * 75 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri) 76 { 77 klwp_t *lwp; 78 79 VERIFY((p->p_flag & SSYS) != 0); 80 81 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0); 82 83 VERIFY(lwp != NULL); 84 85 return (lwptot(lwp)); 86 } 87 88 /* 89 * Create a thread that appears to be stopped at sys_rtt. 90 */ 91 klwp_t * 92 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 93 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 94 { 95 klwp_t *lwp = NULL; 96 kthread_t *t; 97 kthread_t *tx; 98 cpupart_t *oldpart = NULL; 99 size_t stksize; 100 caddr_t lwpdata = NULL; 101 processorid_t binding; 102 int err = 0; 103 kproject_t *oldkpj, *newkpj; 104 void *bufp = NULL; 105 klwp_t *curlwp; 106 lwpent_t *lep; 107 lwpdir_t *old_dir = NULL; 108 uint_t old_dirsz = 0; 109 tidhash_t *old_hash = NULL; 110 uint_t old_hashsz = 0; 111 ret_tidhash_t *ret_tidhash = NULL; 112 int i; 113 int rctlfail = 0; 114 boolean_t branded = 0; 115 struct ctxop *ctx = NULL; 116 117 ASSERT(cid != sysdccid); /* system threads must start in SYS */ 118 119 ASSERT(p != &p0); /* No new LWPs in p0. */ 120 121 mutex_enter(&p->p_lock); 122 mutex_enter(&p->p_zone->zone_nlwps_lock); 123 /* 124 * don't enforce rctl limits on system processes 125 */ 126 if (!CLASS_KERNEL(cid)) { 127 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 128 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 129 1, 0) & RCT_DENY) 130 rctlfail = 1; 131 if (p->p_task->tk_proj->kpj_nlwps >= 132 p->p_task->tk_proj->kpj_nlwps_ctl) 133 if (rctl_test(rc_project_nlwps, 134 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 135 & RCT_DENY) 136 rctlfail = 1; 137 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 138 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 139 1, 0) & RCT_DENY) 140 rctlfail = 1; 141 } 142 if (rctlfail) { 143 mutex_exit(&p->p_zone->zone_nlwps_lock); 144 mutex_exit(&p->p_lock); 145 return (NULL); 146 } 147 p->p_task->tk_nlwps++; 148 p->p_task->tk_proj->kpj_nlwps++; 149 p->p_zone->zone_nlwps++; 150 mutex_exit(&p->p_zone->zone_nlwps_lock); 151 mutex_exit(&p->p_lock); 152 153 if (CLASS_KERNEL(cid)) { 154 curlwp = NULL; /* don't inherit from curlwp */ 155 stksize = lwp_default_stksize; 156 } else { 157 curlwp = ttolwp(curthread); 158 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 159 stksize = lwp_default_stksize; 160 } 161 162 /* 163 * For system threads, we sleep for our swap reservation, and the 164 * thread stack can't be swapped. 165 * 166 * Otherwise, try to reclaim a <lwp,stack> from 'deathrow' 167 */ 168 if (CLASS_KERNEL(cid)) { 169 lwpdata = (caddr_t)segkp_get(segkp, stksize, 170 (KPD_NO_ANON | KPD_HASREDZONE | KPD_LOCKED)); 171 172 } else if (stksize == lwp_default_stksize) { 173 if (lwp_reapcnt > 0) { 174 mutex_enter(&reaplock); 175 if ((t = lwp_deathrow) != NULL) { 176 ASSERT(t->t_swap); 177 lwp_deathrow = t->t_forw; 178 lwp_reapcnt--; 179 lwpdata = t->t_swap; 180 lwp = t->t_lwp; 181 ctx = t->t_ctx; 182 t->t_swap = NULL; 183 t->t_lwp = NULL; 184 t->t_ctx = NULL; 185 reapq_move_lq_to_tq(t); 186 } 187 mutex_exit(&reaplock); 188 if (lwp != NULL) { 189 lwp_stk_fini(lwp); 190 } 191 if (ctx != NULL) { 192 freectx_ctx(ctx); 193 } 194 } 195 if (lwpdata == NULL && 196 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 197 mutex_enter(&p->p_lock); 198 mutex_enter(&p->p_zone->zone_nlwps_lock); 199 p->p_task->tk_nlwps--; 200 p->p_task->tk_proj->kpj_nlwps--; 201 p->p_zone->zone_nlwps--; 202 mutex_exit(&p->p_zone->zone_nlwps_lock); 203 mutex_exit(&p->p_lock); 204 return (NULL); 205 } 206 } else { 207 stksize = roundup(stksize, PAGESIZE); 208 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 209 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 210 mutex_enter(&p->p_lock); 211 mutex_enter(&p->p_zone->zone_nlwps_lock); 212 p->p_task->tk_nlwps--; 213 p->p_task->tk_proj->kpj_nlwps--; 214 p->p_zone->zone_nlwps--; 215 mutex_exit(&p->p_zone->zone_nlwps_lock); 216 mutex_exit(&p->p_lock); 217 return (NULL); 218 } 219 } 220 221 /* 222 * Create a thread, initializing the stack pointer 223 */ 224 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 225 226 t->t_swap = lwpdata; /* Start of page-able data */ 227 if (lwp == NULL) 228 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 229 bzero(lwp, sizeof (*lwp)); 230 t->t_lwp = lwp; 231 232 t->t_hold = *smask; 233 lwp->lwp_thread = t; 234 lwp->lwp_procp = p; 235 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 236 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 237 lwp->lwp_childstksz = curlwp->lwp_childstksz; 238 239 t->t_stk = lwp_stk_init(lwp, t->t_stk); 240 thread_load(t, proc, arg, len); 241 242 /* 243 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 244 */ 245 if (p->p_rprof_cyclic != CYCLIC_NONE) 246 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 247 248 if (cid != NOCLASS) 249 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 250 251 /* 252 * Allocate an lwp directory entry for the new lwp. 253 */ 254 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 255 256 mutex_enter(&p->p_lock); 257 grow: 258 /* 259 * Grow the lwp (thread) directory and lwpid hash table if necessary. 260 * A note on the growth algorithm: 261 * The new lwp directory size is computed as: 262 * new = 2 * old + 2 263 * Starting with an initial size of 2 (see exec_common()), 264 * this yields numbers that are a power of two minus 2: 265 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 266 * The size of the lwpid hash table must be a power of two 267 * and must be commensurate in size with the lwp directory 268 * so that hash bucket chains remain short. Therefore, 269 * the lwpid hash table size is computed as: 270 * hashsz = (dirsz + 2) / 2 271 * which leads to these hash table sizes corresponding to 272 * the above directory sizes: 273 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 274 * A note on growing the hash table: 275 * For performance reasons, code in lwp_unpark() does not 276 * acquire curproc->p_lock when searching the hash table. 277 * Rather, it calls lwp_hash_lookup_and_lock() which 278 * acquires only the individual hash bucket lock, taking 279 * care to deal with reallocation of the hash table 280 * during the time it takes to acquire the lock. 281 * 282 * This is sufficient to protect the integrity of the 283 * hash table, but it requires us to acquire all of the 284 * old hash bucket locks before growing the hash table 285 * and to release them afterwards. It also requires us 286 * not to free the old hash table because some thread 287 * in lwp_hash_lookup_and_lock() might still be trying 288 * to acquire the old bucket lock. 289 * 290 * So we adopt the tactic of keeping all of the retired 291 * hash tables on a linked list, so they can be safely 292 * freed when the process exits or execs. 293 * 294 * Because the hash table grows in powers of two, the 295 * total size of all of the hash tables will be slightly 296 * less than twice the size of the largest hash table. 297 */ 298 while (p->p_lwpfree == NULL) { 299 uint_t dirsz = p->p_lwpdir_sz; 300 lwpdir_t *new_dir; 301 uint_t new_dirsz; 302 lwpdir_t *ldp; 303 tidhash_t *new_hash; 304 uint_t new_hashsz; 305 306 mutex_exit(&p->p_lock); 307 308 /* 309 * Prepare to remember the old p_tidhash for later 310 * kmem_free()ing when the process exits or execs. 311 */ 312 if (ret_tidhash == NULL) 313 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t), 314 KM_SLEEP); 315 if (old_dir != NULL) 316 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 317 if (old_hash != NULL) 318 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 319 320 new_dirsz = 2 * dirsz + 2; 321 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 322 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 323 ldp->ld_next = ldp + 1; 324 new_hashsz = (new_dirsz + 2) / 2; 325 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t), 326 KM_SLEEP); 327 328 mutex_enter(&p->p_lock); 329 if (p == curproc) 330 prbarrier(p); 331 332 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 333 /* 334 * Someone else beat us to it or some lwp exited. 335 * Set up to free our memory and take a lap. 336 */ 337 old_dir = new_dir; 338 old_dirsz = new_dirsz; 339 old_hash = new_hash; 340 old_hashsz = new_hashsz; 341 } else { 342 /* 343 * For the benefit of lwp_hash_lookup_and_lock(), 344 * called from lwp_unpark(), which searches the 345 * tid hash table without acquiring p->p_lock, 346 * we must acquire all of the tid hash table 347 * locks before replacing p->p_tidhash. 348 */ 349 old_hash = p->p_tidhash; 350 old_hashsz = p->p_tidhash_sz; 351 for (i = 0; i < old_hashsz; i++) { 352 mutex_enter(&old_hash[i].th_lock); 353 mutex_enter(&new_hash[i].th_lock); 354 } 355 356 /* 357 * We simply hash in all of the old directory entries. 358 * This works because the old directory has no empty 359 * slots and the new hash table starts out empty. 360 * This reproduces the original directory ordering 361 * (required for /proc directory semantics). 362 */ 363 old_dir = p->p_lwpdir; 364 old_dirsz = p->p_lwpdir_sz; 365 p->p_lwpdir = new_dir; 366 p->p_lwpfree = new_dir; 367 p->p_lwpdir_sz = new_dirsz; 368 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++) 369 lwp_hash_in(p, ldp->ld_entry, 370 new_hash, new_hashsz, 0); 371 372 /* 373 * Remember the old hash table along with all 374 * of the previously-remembered hash tables. 375 * We will free them at process exit or exec. 376 */ 377 ret_tidhash->rth_tidhash = old_hash; 378 ret_tidhash->rth_tidhash_sz = old_hashsz; 379 ret_tidhash->rth_next = p->p_ret_tidhash; 380 p->p_ret_tidhash = ret_tidhash; 381 382 /* 383 * Now establish the new tid hash table. 384 * As soon as we assign p->p_tidhash, 385 * code in lwp_unpark() can start using it. 386 */ 387 membar_producer(); 388 p->p_tidhash = new_hash; 389 390 /* 391 * It is necessary that p_tidhash reach global 392 * visibility before p_tidhash_sz. Otherwise, 393 * code in lwp_hash_lookup_and_lock() could 394 * index into the old p_tidhash using the new 395 * p_tidhash_sz and thereby access invalid data. 396 */ 397 membar_producer(); 398 p->p_tidhash_sz = new_hashsz; 399 400 /* 401 * Release the locks; allow lwp_unpark() to carry on. 402 */ 403 for (i = 0; i < old_hashsz; i++) { 404 mutex_exit(&old_hash[i].th_lock); 405 mutex_exit(&new_hash[i].th_lock); 406 } 407 408 /* 409 * Avoid freeing these objects below. 410 */ 411 ret_tidhash = NULL; 412 old_hash = NULL; 413 old_hashsz = 0; 414 } 415 } 416 417 /* 418 * Block the process against /proc while we manipulate p->p_tlist, 419 * unless lwp_create() was called by /proc for the PCAGENT operation. 420 * We want to do this early enough so that we don't drop p->p_lock 421 * until the thread is put on the p->p_tlist. 422 */ 423 if (p == curproc) { 424 prbarrier(p); 425 /* 426 * If the current lwp has been requested to stop, do so now. 427 * Otherwise we have a race condition between /proc attempting 428 * to stop the process and this thread creating a new lwp 429 * that was not seen when the /proc PCSTOP request was issued. 430 * We rely on stop() to call prbarrier(p) before returning. 431 */ 432 while ((curthread->t_proc_flag & TP_PRSTOP) && 433 !ttolwp(curthread)->lwp_nostop) { 434 /* 435 * We called pool_barrier_enter() before calling 436 * here to lwp_create(). We have to call 437 * pool_barrier_exit() before stopping. 438 */ 439 pool_barrier_exit(); 440 prbarrier(p); 441 stop(PR_REQUESTED, 0); 442 /* 443 * And we have to repeat the call to 444 * pool_barrier_enter after stopping. 445 */ 446 pool_barrier_enter(); 447 prbarrier(p); 448 } 449 450 /* 451 * If process is exiting, there could be a race between 452 * the agent lwp creation and the new lwp currently being 453 * created. So to prevent this race lwp creation is failed 454 * if the process is exiting. 455 */ 456 if (p->p_flag & (SEXITLWPS|SKILLED)) { 457 err = 1; 458 goto error; 459 } 460 461 /* 462 * Since we might have dropped p->p_lock, the 463 * lwp directory free list might have changed. 464 */ 465 if (p->p_lwpfree == NULL) 466 goto grow; 467 } 468 469 kpreempt_disable(); /* can't grab cpu_lock here */ 470 471 /* 472 * Inherit processor and processor set bindings from curthread. 473 * 474 * For kernel LWPs, we do not inherit processor set bindings at 475 * process creation time (i.e. when p != curproc). After the 476 * kernel process is created, any subsequent LWPs must be created 477 * by threads in the kernel process, at which point we *will* 478 * inherit processor set bindings. 479 */ 480 if (CLASS_KERNEL(cid) && p != curproc) { 481 t->t_bind_cpu = binding = PBIND_NONE; 482 t->t_cpupart = oldpart = &cp_default; 483 t->t_bind_pset = PS_NONE; 484 t->t_bindflag = (uchar_t)default_binding_mode; 485 } else { 486 binding = curthread->t_bind_cpu; 487 t->t_bind_cpu = binding; 488 oldpart = t->t_cpupart; 489 t->t_cpupart = curthread->t_cpupart; 490 t->t_bind_pset = curthread->t_bind_pset; 491 t->t_bindflag = curthread->t_bindflag | 492 (uchar_t)default_binding_mode; 493 } 494 495 /* 496 * thread_create() initializes this thread's home lgroup to the root. 497 * Choose a more suitable lgroup, since this thread is associated 498 * with an lwp. 499 */ 500 ASSERT(oldpart != NULL); 501 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 502 t->t_bound_cpu = cpu[binding]; 503 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 504 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 505 } else { 506 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 507 } 508 509 kpreempt_enable(); 510 511 /* 512 * make sure lpl points to our own partition 513 */ 514 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 515 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 516 t->t_cpupart->cp_nlgrploads); 517 518 /* 519 * If we're creating a new process, then inherit the project from our 520 * parent. If we're only creating an additional lwp then use the 521 * project pointer of the target process. 522 */ 523 if (p->p_task == NULL) 524 newkpj = ttoproj(curthread); 525 else 526 newkpj = p->p_task->tk_proj; 527 528 /* 529 * It is safe to point the thread to the new project without holding it 530 * since we're holding the target process' p_lock here and therefore 531 * we're guaranteed that it will not move to another project. 532 */ 533 oldkpj = ttoproj(t); 534 if (newkpj != oldkpj) { 535 t->t_proj = newkpj; 536 (void) project_hold(newkpj); 537 project_rele(oldkpj); 538 } 539 540 if (cid != NOCLASS) { 541 /* 542 * If the lwp is being created in the current process 543 * and matches the current thread's scheduling class, 544 * we should propagate the current thread's scheduling 545 * parameters by calling CL_FORK. Otherwise just use 546 * the defaults by calling CL_ENTERCLASS. 547 */ 548 if (p != curproc || curthread->t_cid != cid) { 549 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 550 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 551 /* 552 * We don't call schedctl_set_cidpri(t) here 553 * because the schedctl data is not yet set 554 * up for the newly-created lwp. 555 */ 556 } else { 557 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 558 err = CL_FORK(curthread, t, bufp); 559 t->t_cid = cid; 560 } 561 if (err) 562 goto error; 563 else 564 bufp = NULL; 565 } 566 567 /* 568 * If we were given an lwpid then use it, else allocate one. 569 */ 570 if (lwpid != 0) 571 t->t_tid = lwpid; 572 else { 573 /* 574 * lwp/thread id 0 is never valid; reserved for special checks. 575 * lwp/thread id 1 is reserved for the main thread. 576 * Start again at 2 when INT_MAX has been reached 577 * (id_t is a signed 32-bit integer). 578 */ 579 id_t prev_id = p->p_lwpid; /* last allocated tid */ 580 581 do { /* avoid lwpid duplication */ 582 if (p->p_lwpid == INT_MAX) { 583 p->p_flag |= SLWPWRAP; 584 p->p_lwpid = 1; 585 } 586 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 587 /* 588 * All lwpids are allocated; fail the request. 589 */ 590 err = 1; 591 goto error; 592 } 593 /* 594 * We only need to worry about colliding with an id 595 * that's already in use if this process has 596 * cycled through all available lwp ids. 597 */ 598 if ((p->p_flag & SLWPWRAP) == 0) 599 break; 600 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 601 } 602 603 /* 604 * If this is a branded process, let the brand do any necessary lwp 605 * initialization. 606 */ 607 if (PROC_IS_BRANDED(p)) { 608 if (BROP(p)->b_initlwp(lwp)) { 609 err = 1; 610 goto error; 611 } 612 branded = 1; 613 } 614 615 if (t->t_tid == 1) { 616 kpreempt_disable(); 617 ASSERT(t->t_lpl != NULL); 618 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 619 kpreempt_enable(); 620 if (p->p_tr_lgrpid != LGRP_NONE && 621 p->p_tr_lgrpid != p->p_t1_lgrpid) { 622 lgrp_update_trthr_migrations(1); 623 } 624 } 625 626 p->p_lwpcnt++; 627 t->t_waitfor = -1; 628 629 /* 630 * Turn microstate accounting on for thread if on for process. 631 */ 632 if (p->p_flag & SMSACCT) 633 t->t_proc_flag |= TP_MSACCT; 634 635 /* 636 * If the process has watchpoints, mark the new thread as such. 637 */ 638 if (pr_watch_active(p)) 639 watch_enable(t); 640 641 /* 642 * The lwp is being created in the stopped state. 643 * We set all the necessary flags to indicate that fact here. 644 * We omit the TS_CREATE flag from t_schedflag so that the lwp 645 * cannot be set running until the caller is finished with it, 646 * even if lwp_continue() is called on it after we drop p->p_lock. 647 * When the caller is finished with the newly-created lwp, 648 * the caller must call lwp_create_done() to allow the lwp 649 * to be set running. If the TP_HOLDLWP is left set, the 650 * lwp will suspend itself after reaching system call exit. 651 */ 652 init_mstate(t, LMS_STOPPED); 653 t->t_proc_flag |= TP_HOLDLWP; 654 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 655 t->t_whystop = PR_SUSPENDED; 656 t->t_whatstop = SUSPEND_NORMAL; 657 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 658 659 /* 660 * Set system call processing flags in case tracing or profiling 661 * is set. The first system call will evaluate these and turn 662 * them off if they aren't needed. 663 */ 664 t->t_pre_sys = 1; 665 t->t_post_sys = 1; 666 667 /* 668 * Insert the new thread into the list of all threads. 669 */ 670 if ((tx = p->p_tlist) == NULL) { 671 t->t_back = t; 672 t->t_forw = t; 673 p->p_tlist = t; 674 } else { 675 t->t_forw = tx; 676 t->t_back = tx->t_back; 677 tx->t_back->t_forw = t; 678 tx->t_back = t; 679 } 680 681 /* 682 * Insert the new lwp into an lwp directory slot position 683 * and into the lwpid hash table. 684 */ 685 lep->le_thread = t; 686 lep->le_lwpid = t->t_tid; 687 lep->le_start = t->t_start; 688 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1); 689 690 if (state == TS_RUN) { 691 /* 692 * We set the new lwp running immediately. 693 */ 694 t->t_proc_flag &= ~TP_HOLDLWP; 695 lwp_create_done(t); 696 } 697 698 error: 699 if (err) { 700 if (CLASS_KERNEL(cid)) { 701 /* 702 * This should only happen if a system process runs 703 * out of lwpids, which shouldn't occur. 704 */ 705 panic("Failed to create a system LWP"); 706 } 707 /* 708 * We have failed to create an lwp, so decrement the number 709 * of lwps in the task and let the lgroup load averages know 710 * that this thread isn't going to show up. 711 */ 712 kpreempt_disable(); 713 lgrp_move_thread(t, NULL, 1); 714 kpreempt_enable(); 715 716 ASSERT(MUTEX_HELD(&p->p_lock)); 717 mutex_enter(&p->p_zone->zone_nlwps_lock); 718 p->p_task->tk_nlwps--; 719 p->p_task->tk_proj->kpj_nlwps--; 720 p->p_zone->zone_nlwps--; 721 mutex_exit(&p->p_zone->zone_nlwps_lock); 722 if (cid != NOCLASS && bufp != NULL) 723 CL_FREE(cid, bufp); 724 725 if (branded) 726 BROP(p)->b_freelwp(lwp); 727 728 mutex_exit(&p->p_lock); 729 t->t_state = TS_FREE; 730 thread_rele(t); 731 732 /* 733 * We need to remove t from the list of all threads 734 * because thread_exit()/lwp_exit() isn't called on t. 735 */ 736 mutex_enter(&pidlock); 737 ASSERT(t != t->t_next); /* t0 never exits */ 738 t->t_next->t_prev = t->t_prev; 739 t->t_prev->t_next = t->t_next; 740 mutex_exit(&pidlock); 741 742 thread_free(t); 743 kmem_free(lep, sizeof (*lep)); 744 lwp = NULL; 745 } else { 746 mutex_exit(&p->p_lock); 747 } 748 749 if (old_dir != NULL) 750 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 751 if (old_hash != NULL) 752 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 753 if (ret_tidhash != NULL) 754 kmem_free(ret_tidhash, sizeof (ret_tidhash_t)); 755 756 DTRACE_PROC1(lwp__create, kthread_t *, t); 757 return (lwp); 758 } 759 760 /* 761 * lwp_create_done() is called by the caller of lwp_create() to set the 762 * newly-created lwp running after the caller has finished manipulating it. 763 */ 764 void 765 lwp_create_done(kthread_t *t) 766 { 767 proc_t *p = ttoproc(t); 768 769 ASSERT(MUTEX_HELD(&p->p_lock)); 770 771 /* 772 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 773 * (The absence of the TS_CREATE flag prevents the lwp from running 774 * until we are finished with it, even if lwp_continue() is called on 775 * it by some other lwp in the process or elsewhere in the kernel.) 776 */ 777 thread_lock(t); 778 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 779 /* 780 * If TS_CSTART is set, lwp_continue(t) has been called and 781 * has already incremented p_lwprcnt; avoid doing this twice. 782 */ 783 if (!(t->t_schedflag & TS_CSTART)) 784 p->p_lwprcnt++; 785 t->t_schedflag |= (TS_CSTART | TS_CREATE); 786 setrun_locked(t); 787 thread_unlock(t); 788 } 789 790 /* 791 * Copy an LWP's active templates, and clear the latest contracts. 792 */ 793 void 794 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 795 { 796 int i; 797 798 for (i = 0; i < ct_ntypes; i++) { 799 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 800 dst->lwp_ct_latest[i] = NULL; 801 } 802 } 803 804 /* 805 * Clear an LWP's contract template state. 806 */ 807 void 808 lwp_ctmpl_clear(klwp_t *lwp) 809 { 810 ct_template_t *tmpl; 811 int i; 812 813 for (i = 0; i < ct_ntypes; i++) { 814 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 815 ctmpl_free(tmpl); 816 lwp->lwp_ct_active[i] = NULL; 817 } 818 819 if (lwp->lwp_ct_latest[i] != NULL) { 820 contract_rele(lwp->lwp_ct_latest[i]); 821 lwp->lwp_ct_latest[i] = NULL; 822 } 823 } 824 } 825 826 /* 827 * Individual lwp exit. 828 * If this is the last lwp, exit the whole process. 829 */ 830 void 831 lwp_exit(void) 832 { 833 kthread_t *t = curthread; 834 klwp_t *lwp = ttolwp(t); 835 proc_t *p = ttoproc(t); 836 837 ASSERT(MUTEX_HELD(&p->p_lock)); 838 839 mutex_exit(&p->p_lock); 840 841 #if defined(__sparc) 842 /* 843 * Ensure that the user stack is fully abandoned.. 844 */ 845 trash_user_windows(); 846 #endif 847 848 tsd_exit(); /* free thread specific data */ 849 850 kcpc_passivate(); /* Clean up performance counter state */ 851 852 pollcleanup(); 853 854 if (t->t_door) 855 door_slam(); 856 857 if (t->t_schedctl != NULL) 858 schedctl_lwp_cleanup(t); 859 860 if (t->t_upimutex != NULL) 861 upimutex_cleanup(); 862 863 /* 864 * Perform any brand specific exit processing, then release any 865 * brand data associated with the lwp 866 */ 867 if (PROC_IS_BRANDED(p)) 868 BROP(p)->b_lwpexit(lwp); 869 870 mutex_enter(&p->p_lock); 871 lwp_cleanup(); 872 873 /* 874 * When this process is dumping core, its lwps are held here 875 * until the core dump is finished. Then exitlwps() is called 876 * again to release these lwps so that they can finish exiting. 877 */ 878 if (p->p_flag & SCOREDUMP) 879 stop(PR_SUSPENDED, SUSPEND_NORMAL); 880 881 /* 882 * Block the process against /proc now that we have really acquired 883 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 884 */ 885 prbarrier(p); 886 887 /* 888 * Call proc_exit() if this is the last non-daemon lwp in the process. 889 */ 890 if (!(t->t_proc_flag & TP_DAEMON) && 891 p->p_lwpcnt == p->p_lwpdaemon + 1) { 892 mutex_exit(&p->p_lock); 893 if (proc_exit(CLD_EXITED, 0) == 0) { 894 /* Restarting init. */ 895 return; 896 } 897 898 /* 899 * proc_exit() returns a non-zero value when some other 900 * lwp got there first. We just have to continue in 901 * lwp_exit(). 902 */ 903 mutex_enter(&p->p_lock); 904 ASSERT(curproc->p_flag & SEXITLWPS); 905 prbarrier(p); 906 } 907 908 DTRACE_PROC(lwp__exit); 909 910 /* 911 * If the lwp is a detached lwp or if the process is exiting, 912 * remove (lwp_hash_out()) the lwp from the lwp directory. 913 * Otherwise null out the lwp's le_thread pointer in the lwp 914 * directory so that other threads will see it as a zombie lwp. 915 */ 916 prlwpexit(t); /* notify /proc */ 917 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 918 lwp_hash_out(p, t->t_tid); 919 else { 920 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 921 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 922 p->p_zombcnt++; 923 cv_broadcast(&p->p_lwpexit); 924 } 925 if (t->t_proc_flag & TP_DAEMON) { 926 p->p_lwpdaemon--; 927 t->t_proc_flag &= ~TP_DAEMON; 928 } 929 t->t_proc_flag &= ~TP_TWAIT; 930 931 /* 932 * Maintain accurate lwp count for task.max-lwps resource control. 933 */ 934 mutex_enter(&p->p_zone->zone_nlwps_lock); 935 p->p_task->tk_nlwps--; 936 p->p_task->tk_proj->kpj_nlwps--; 937 p->p_zone->zone_nlwps--; 938 mutex_exit(&p->p_zone->zone_nlwps_lock); 939 940 CL_EXIT(t); /* tell the scheduler that t is exiting */ 941 ASSERT(p->p_lwpcnt != 0); 942 p->p_lwpcnt--; 943 944 /* 945 * If all remaining non-daemon lwps are waiting in lwp_wait(), 946 * wake them up so someone can return EDEADLK. 947 * (See the block comment preceeding lwp_wait().) 948 */ 949 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 950 cv_broadcast(&p->p_lwpexit); 951 952 t->t_proc_flag |= TP_LWPEXIT; 953 term_mstate(t); 954 955 #ifndef NPROBE 956 /* Kernel probe */ 957 if (t->t_tnf_tpdp) 958 tnf_thread_exit(); 959 #endif /* NPROBE */ 960 961 t->t_forw->t_back = t->t_back; 962 t->t_back->t_forw = t->t_forw; 963 if (t == p->p_tlist) 964 p->p_tlist = t->t_forw; 965 966 /* 967 * Clean up the signal state. 968 */ 969 if (t->t_sigqueue != NULL) 970 sigdelq(p, t, 0); 971 if (lwp->lwp_curinfo != NULL) { 972 siginfofree(lwp->lwp_curinfo); 973 lwp->lwp_curinfo = NULL; 974 } 975 976 thread_rele(t); 977 978 /* 979 * Terminated lwps are associated with process zero and are put onto 980 * death-row by resume(). Avoid preemption after resetting t->t_procp. 981 */ 982 t->t_preempt++; 983 984 if (t->t_ctx != NULL) 985 exitctx(t); 986 if (p->p_pctx != NULL) 987 exitpctx(p); 988 989 t->t_procp = &p0; 990 991 /* 992 * Notify the HAT about the change of address space 993 */ 994 hat_thread_exit(t); 995 /* 996 * When this is the last running lwp in this process and some lwp is 997 * waiting for this condition to become true, or this thread was being 998 * suspended, then the waiting lwp is awakened. 999 * 1000 * Also, if the process is exiting, we may have a thread waiting in 1001 * exitlwps() that needs to be notified. 1002 */ 1003 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 1004 (p->p_flag & SEXITLWPS)) 1005 cv_broadcast(&p->p_holdlwps); 1006 1007 /* 1008 * Need to drop p_lock so we can reacquire pidlock. 1009 */ 1010 mutex_exit(&p->p_lock); 1011 mutex_enter(&pidlock); 1012 1013 ASSERT(t != t->t_next); /* t0 never exits */ 1014 t->t_next->t_prev = t->t_prev; 1015 t->t_prev->t_next = t->t_next; 1016 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 1017 mutex_exit(&pidlock); 1018 1019 lwp_pcb_exit(); 1020 1021 t->t_state = TS_ZOMB; 1022 swtch_from_zombie(); 1023 /* never returns */ 1024 } 1025 1026 1027 /* 1028 * Cleanup function for an exiting lwp. 1029 * Called both from lwp_exit() and from proc_exit(). 1030 * p->p_lock is repeatedly released and grabbed in this function. 1031 */ 1032 void 1033 lwp_cleanup(void) 1034 { 1035 kthread_t *t = curthread; 1036 proc_t *p = ttoproc(t); 1037 1038 ASSERT(MUTEX_HELD(&p->p_lock)); 1039 1040 /* untimeout any lwp-bound realtime timers */ 1041 if (p->p_itimer != NULL) 1042 timer_lwpexit(); 1043 1044 /* 1045 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 1046 * so it appears that the agent never existed, and clear p_agenttp. 1047 */ 1048 if (t == p->p_agenttp) { 1049 ASSERT(t->t_tid == p->p_lwpid); 1050 p->p_lwpid--; 1051 p->p_agenttp = NULL; 1052 } 1053 1054 /* 1055 * Do lgroup bookkeeping to account for thread exiting. 1056 */ 1057 kpreempt_disable(); 1058 lgrp_move_thread(t, NULL, 1); 1059 if (t->t_tid == 1) { 1060 p->p_t1_lgrpid = LGRP_NONE; 1061 } 1062 kpreempt_enable(); 1063 1064 lwp_ctmpl_clear(ttolwp(t)); 1065 } 1066 1067 int 1068 lwp_suspend(kthread_t *t) 1069 { 1070 int tid; 1071 proc_t *p = ttoproc(t); 1072 1073 ASSERT(MUTEX_HELD(&p->p_lock)); 1074 1075 /* 1076 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 1077 * If an lwp is stopping itself, there is no need to wait. 1078 */ 1079 top: 1080 t->t_proc_flag |= TP_HOLDLWP; 1081 if (t == curthread) { 1082 t->t_sig_check = 1; 1083 } else { 1084 /* 1085 * Make sure the lwp stops promptly. 1086 */ 1087 thread_lock(t); 1088 t->t_sig_check = 1; 1089 /* 1090 * XXX Should use virtual stop like /proc does instead of 1091 * XXX waking the thread to get it to stop. 1092 */ 1093 if (ISWAKEABLE(t) || ISWAITING(t)) { 1094 setrun_locked(t); 1095 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 1096 poke_cpu(t->t_cpu->cpu_id); 1097 } 1098 1099 tid = t->t_tid; /* remember thread ID */ 1100 /* 1101 * Wait for lwp to stop 1102 */ 1103 while (!SUSPENDED(t)) { 1104 /* 1105 * Drop the thread lock before waiting and reacquire it 1106 * afterwards, so the thread can change its t_state 1107 * field. 1108 */ 1109 thread_unlock(t); 1110 1111 /* 1112 * Check if aborted by exitlwps(). 1113 */ 1114 if (p->p_flag & SEXITLWPS) 1115 lwp_exit(); 1116 1117 /* 1118 * Cooperate with jobcontrol signals and /proc stopping 1119 * by calling cv_wait_sig() to wait for the target 1120 * lwp to stop. Just using cv_wait() can lead to 1121 * deadlock because, if some other lwp has stopped 1122 * by either of these mechanisms, then p_lwprcnt will 1123 * never become zero if we do a cv_wait(). 1124 */ 1125 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 1126 return (EINTR); 1127 1128 /* 1129 * Check to see if thread died while we were 1130 * waiting for it to suspend. 1131 */ 1132 if (idtot(p, tid) == NULL) 1133 return (ESRCH); 1134 1135 thread_lock(t); 1136 /* 1137 * If the TP_HOLDLWP flag went away, lwp_continue() 1138 * or vfork() must have been called while we were 1139 * waiting, so start over again. 1140 */ 1141 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 1142 thread_unlock(t); 1143 goto top; 1144 } 1145 } 1146 thread_unlock(t); 1147 } 1148 return (0); 1149 } 1150 1151 /* 1152 * continue a lwp that's been stopped by lwp_suspend(). 1153 */ 1154 void 1155 lwp_continue(kthread_t *t) 1156 { 1157 proc_t *p = ttoproc(t); 1158 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1159 1160 ASSERT(MUTEX_HELD(&p->p_lock)); 1161 1162 t->t_proc_flag &= ~TP_HOLDLWP; 1163 thread_lock(t); 1164 if (SUSPENDED(t) && 1165 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1166 p->p_lwprcnt++; 1167 t->t_schedflag |= TS_CSTART; 1168 setrun_locked(t); 1169 } 1170 thread_unlock(t); 1171 /* 1172 * Wakeup anyone waiting for this thread to be suspended 1173 */ 1174 if (was_suspended) 1175 cv_broadcast(&p->p_holdlwps); 1176 } 1177 1178 /* 1179 * ******************************** 1180 * Miscellaneous lwp routines * 1181 * ******************************** 1182 */ 1183 /* 1184 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1185 * This will cause the process's lwps to stop at a hold point. A hold 1186 * point is where a kernel thread has a flat stack. This is at the 1187 * return from a system call and at the return from a user level trap. 1188 * 1189 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1190 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1191 * hold point. The lwps in the process are not being cloned, so they 1192 * are held at the usual hold points and also within issig_forreal(). 1193 * This has the side-effect that their system calls do not return 1194 * showing EINTR. 1195 * 1196 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1197 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1198 * lwp is waiting for the target lwp to be stopped. 1199 */ 1200 void 1201 holdlwp(void) 1202 { 1203 proc_t *p = curproc; 1204 kthread_t *t = curthread; 1205 1206 mutex_enter(&p->p_lock); 1207 /* 1208 * Don't terminate immediately if the process is dumping core. 1209 * Once the process has dumped core, all lwps are terminated. 1210 */ 1211 if (!(p->p_flag & SCOREDUMP)) { 1212 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1213 lwp_exit(); 1214 } 1215 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1216 mutex_exit(&p->p_lock); 1217 return; 1218 } 1219 /* 1220 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1221 * when p->p_lwprcnt becomes zero. 1222 */ 1223 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1224 if (p->p_flag & SEXITLWPS) 1225 lwp_exit(); 1226 mutex_exit(&p->p_lock); 1227 } 1228 1229 /* 1230 * Have all lwps within the process hold at a point where they are 1231 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1232 */ 1233 int 1234 holdlwps(int holdflag) 1235 { 1236 proc_t *p = curproc; 1237 1238 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1239 mutex_enter(&p->p_lock); 1240 schedctl_finish_sigblock(curthread); 1241 again: 1242 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1243 /* 1244 * If another lwp is doing a forkall() or proc_exit(), bail out. 1245 */ 1246 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1247 mutex_exit(&p->p_lock); 1248 return (0); 1249 } 1250 /* 1251 * Another lwp is doing a fork1() or is undergoing 1252 * watchpoint activity. We hold here for it to complete. 1253 */ 1254 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1255 } 1256 p->p_flag |= holdflag; 1257 pokelwps(p); 1258 --p->p_lwprcnt; 1259 /* 1260 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1261 */ 1262 while (p->p_lwprcnt > 0) { 1263 /* 1264 * Check if aborted by exitlwps(). 1265 * Also check if SHOLDWATCH is set; it takes precedence. 1266 */ 1267 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1268 p->p_lwprcnt++; 1269 p->p_flag &= ~holdflag; 1270 cv_broadcast(&p->p_holdlwps); 1271 goto again; 1272 } 1273 /* 1274 * Cooperate with jobcontrol signals and /proc stopping. 1275 * If some other lwp has stopped by either of these 1276 * mechanisms, then p_lwprcnt will never become zero 1277 * and the process will appear deadlocked unless we 1278 * stop here in sympathy with the other lwp before 1279 * doing the cv_wait() below. 1280 * 1281 * If the other lwp stops after we do the cv_wait(), it 1282 * will wake us up to loop around and do the sympathy stop. 1283 * 1284 * Since stop() drops p->p_lock, we must start from 1285 * the top again on returning from stop(). 1286 */ 1287 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1288 int whystop = p->p_stopsig? PR_JOBCONTROL : 1289 PR_REQUESTED; 1290 p->p_lwprcnt++; 1291 p->p_flag &= ~holdflag; 1292 stop(whystop, p->p_stopsig); 1293 goto again; 1294 } 1295 cv_wait(&p->p_holdlwps, &p->p_lock); 1296 } 1297 p->p_lwprcnt++; 1298 p->p_flag &= ~holdflag; 1299 mutex_exit(&p->p_lock); 1300 return (1); 1301 } 1302 1303 /* 1304 * See comments for holdwatch(), below. 1305 */ 1306 static int 1307 holdcheck(int clearflags) 1308 { 1309 proc_t *p = curproc; 1310 1311 /* 1312 * If we are trying to exit, that takes precedence over anything else. 1313 */ 1314 if (p->p_flag & SEXITLWPS) { 1315 p->p_lwprcnt++; 1316 p->p_flag &= ~clearflags; 1317 lwp_exit(); 1318 } 1319 1320 /* 1321 * If another thread is calling fork1(), stop the current thread so the 1322 * other can complete. 1323 */ 1324 if (p->p_flag & SHOLDFORK1) { 1325 p->p_lwprcnt++; 1326 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1327 if (p->p_flag & SEXITLWPS) { 1328 p->p_flag &= ~clearflags; 1329 lwp_exit(); 1330 } 1331 return (-1); 1332 } 1333 1334 /* 1335 * If another thread is calling fork(), then indicate we are doing 1336 * watchpoint activity. This will cause holdlwps() above to stop the 1337 * forking thread, at which point we can continue with watchpoint 1338 * activity. 1339 */ 1340 if (p->p_flag & SHOLDFORK) { 1341 p->p_lwprcnt++; 1342 while (p->p_flag & SHOLDFORK) { 1343 p->p_flag |= SHOLDWATCH; 1344 cv_broadcast(&p->p_holdlwps); 1345 cv_wait(&p->p_holdlwps, &p->p_lock); 1346 p->p_flag &= ~SHOLDWATCH; 1347 } 1348 return (-1); 1349 } 1350 1351 return (0); 1352 } 1353 1354 /* 1355 * Stop all lwps within the process, holding themselves in the kernel while the 1356 * active lwp undergoes watchpoint activity. This is more complicated than 1357 * expected because stop() relies on calling holdwatch() in order to copyin data 1358 * from the user's address space. A double barrier is used to prevent an 1359 * infinite loop. 1360 * 1361 * o The first thread into holdwatch() is the 'master' thread and does 1362 * the following: 1363 * 1364 * - Sets SHOLDWATCH on the current process 1365 * - Sets TP_WATCHSTOP on the current thread 1366 * - Waits for all threads to be either stopped or have 1367 * TP_WATCHSTOP set. 1368 * - Sets the SWATCHOK flag on the process 1369 * - Unsets TP_WATCHSTOP 1370 * - Waits for the other threads to completely stop 1371 * - Unsets SWATCHOK 1372 * 1373 * o If SHOLDWATCH is already set when we enter this function, then another 1374 * thread is already trying to stop this thread. This 'slave' thread 1375 * does the following: 1376 * 1377 * - Sets TP_WATCHSTOP on the current thread 1378 * - Waits for SWATCHOK flag to be set 1379 * - Calls stop() 1380 * 1381 * o If SWATCHOK is set on the process, then this function immediately 1382 * returns, as we must have been called via stop(). 1383 * 1384 * In addition, there are other flags that take precedence over SHOLDWATCH: 1385 * 1386 * o If SEXITLWPS is set, exit immediately. 1387 * 1388 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1389 * 1390 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1391 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1392 * 1393 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1394 * stop the current thread. 1395 * 1396 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1397 * threads were stopped, or the list of watched pages has changed. 1398 */ 1399 int 1400 holdwatch(void) 1401 { 1402 proc_t *p = curproc; 1403 kthread_t *t = curthread; 1404 int ret = 0; 1405 1406 mutex_enter(&p->p_lock); 1407 1408 p->p_lwprcnt--; 1409 1410 /* 1411 * Check for bail-out conditions as outlined above. 1412 */ 1413 if (holdcheck(0) != 0) { 1414 mutex_exit(&p->p_lock); 1415 return (-1); 1416 } 1417 1418 if (!(p->p_flag & SHOLDWATCH)) { 1419 /* 1420 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1421 * the other threads. 1422 */ 1423 p->p_flag |= SHOLDWATCH; 1424 pokelwps(p); 1425 1426 /* 1427 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1428 */ 1429 while (pr_allstopped(p, 1) > 0) { 1430 if (holdcheck(SHOLDWATCH) != 0) { 1431 p->p_flag &= ~SHOLDWATCH; 1432 mutex_exit(&p->p_lock); 1433 return (-1); 1434 } 1435 1436 cv_wait(&p->p_holdlwps, &p->p_lock); 1437 } 1438 1439 /* 1440 * All threads are now stopped or in the process of stopping. 1441 * Set SWATCHOK and let them stop completely. 1442 */ 1443 p->p_flag |= SWATCHOK; 1444 t->t_proc_flag &= ~TP_WATCHSTOP; 1445 cv_broadcast(&p->p_holdlwps); 1446 1447 while (pr_allstopped(p, 0) > 0) { 1448 /* 1449 * At first glance, it may appear that we don't need a 1450 * call to holdcheck() here. But if the process gets a 1451 * SIGKILL signal, one of our stopped threads may have 1452 * been awakened and is waiting in exitlwps(), which 1453 * takes precedence over watchpoints. 1454 */ 1455 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1456 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1457 mutex_exit(&p->p_lock); 1458 return (-1); 1459 } 1460 1461 cv_wait(&p->p_holdlwps, &p->p_lock); 1462 } 1463 1464 /* 1465 * All threads are now completely stopped. 1466 */ 1467 p->p_flag &= ~SWATCHOK; 1468 p->p_flag &= ~SHOLDWATCH; 1469 p->p_lwprcnt++; 1470 1471 } else if (!(p->p_flag & SWATCHOK)) { 1472 1473 /* 1474 * SHOLDWATCH is set, so another thread is trying to do 1475 * watchpoint activity. Indicate this thread is stopping, and 1476 * wait for the OK from the master thread. 1477 */ 1478 t->t_proc_flag |= TP_WATCHSTOP; 1479 cv_broadcast(&p->p_holdlwps); 1480 1481 while (!(p->p_flag & SWATCHOK)) { 1482 if (holdcheck(0) != 0) { 1483 t->t_proc_flag &= ~TP_WATCHSTOP; 1484 mutex_exit(&p->p_lock); 1485 return (-1); 1486 } 1487 1488 cv_wait(&p->p_holdlwps, &p->p_lock); 1489 } 1490 1491 /* 1492 * Once the master thread has given the OK, this thread can 1493 * actually call stop(). 1494 */ 1495 t->t_proc_flag &= ~TP_WATCHSTOP; 1496 p->p_lwprcnt++; 1497 1498 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1499 1500 /* 1501 * It's not OK to do watchpoint activity, notify caller to 1502 * retry. 1503 */ 1504 ret = -1; 1505 1506 } else { 1507 1508 /* 1509 * The only way we can hit the case where SHOLDWATCH is set and 1510 * SWATCHOK is set is if we are triggering this from within a 1511 * stop() call. Assert that this is the case. 1512 */ 1513 1514 ASSERT(t->t_proc_flag & TP_STOPPING); 1515 p->p_lwprcnt++; 1516 } 1517 1518 mutex_exit(&p->p_lock); 1519 1520 return (ret); 1521 } 1522 1523 /* 1524 * force all interruptible lwps to trap into the kernel. 1525 */ 1526 void 1527 pokelwps(proc_t *p) 1528 { 1529 kthread_t *t; 1530 1531 ASSERT(MUTEX_HELD(&p->p_lock)); 1532 1533 t = p->p_tlist; 1534 do { 1535 if (t == curthread) 1536 continue; 1537 thread_lock(t); 1538 aston(t); /* make thread trap or do post_syscall */ 1539 if (ISWAKEABLE(t) || ISWAITING(t)) { 1540 setrun_locked(t); 1541 } else if (t->t_state == TS_STOPPED) { 1542 /* 1543 * Ensure that proc_exit() is not blocked by lwps 1544 * that were stopped via jobcontrol or /proc. 1545 */ 1546 if (p->p_flag & SEXITLWPS) { 1547 p->p_stopsig = 0; 1548 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1549 setrun_locked(t); 1550 } 1551 /* 1552 * If we are holding lwps for a forkall(), 1553 * force lwps that have been suspended via 1554 * lwp_suspend() and are suspended inside 1555 * of a system call to proceed to their 1556 * holdlwp() points where they are clonable. 1557 */ 1558 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1559 if ((t->t_schedflag & TS_CSTART) == 0) { 1560 p->p_lwprcnt++; 1561 t->t_schedflag |= TS_CSTART; 1562 setrun_locked(t); 1563 } 1564 } 1565 } else if (t->t_state == TS_ONPROC) { 1566 if (t->t_cpu != CPU) 1567 poke_cpu(t->t_cpu->cpu_id); 1568 } 1569 thread_unlock(t); 1570 } while ((t = t->t_forw) != p->p_tlist); 1571 } 1572 1573 /* 1574 * undo the effects of holdlwps() or holdwatch(). 1575 */ 1576 void 1577 continuelwps(proc_t *p) 1578 { 1579 kthread_t *t; 1580 1581 /* 1582 * If this flag is set, then the original holdwatch() didn't actually 1583 * stop the process. See comments for holdwatch(). 1584 */ 1585 if (p->p_flag & SWATCHOK) { 1586 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1587 return; 1588 } 1589 1590 ASSERT(MUTEX_HELD(&p->p_lock)); 1591 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1592 1593 t = p->p_tlist; 1594 do { 1595 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1596 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1597 p->p_lwprcnt++; 1598 t->t_schedflag |= TS_CSTART; 1599 setrun_locked(t); 1600 } 1601 thread_unlock(t); 1602 } while ((t = t->t_forw) != p->p_tlist); 1603 } 1604 1605 /* 1606 * Force all other LWPs in the current process other than the caller to exit, 1607 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1608 * is typically used in these situations: 1609 * 1610 * (a) prior to an exec() system call 1611 * (b) prior to dumping a core file 1612 * (c) prior to a uadmin() shutdown 1613 * 1614 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1615 * Multiple threads in the process can call this function at one time by 1616 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1617 * to declare one particular thread the winner who gets to kill the others. 1618 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1619 * appropriate errno value is returned to caller for its system call to return. 1620 */ 1621 int 1622 exitlwps(int coredump) 1623 { 1624 proc_t *p = curproc; 1625 int heldcnt; 1626 1627 if (curthread->t_door) 1628 door_slam(); 1629 if (p->p_door_list) 1630 door_revoke_all(); 1631 if (curthread->t_schedctl != NULL) 1632 schedctl_lwp_cleanup(curthread); 1633 1634 /* 1635 * Ensure that before starting to wait for other lwps to exit, 1636 * cleanup all upimutexes held by curthread. Otherwise, some other 1637 * lwp could be waiting (uninterruptibly) for a upimutex held by 1638 * curthread, and the call to pokelwps() below would deadlock. 1639 * Even if a blocked upimutex_lock is made interruptible, 1640 * curthread's upimutexes need to be unlocked: do it here. 1641 */ 1642 if (curthread->t_upimutex != NULL) 1643 upimutex_cleanup(); 1644 1645 /* 1646 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1647 * We must also block any further /proc access from this point forward. 1648 */ 1649 mutex_enter(&p->p_lock); 1650 prbarrier(p); 1651 1652 if (p->p_flag & SEXITLWPS) { 1653 mutex_exit(&p->p_lock); 1654 aston(curthread); /* force a trip through post_syscall */ 1655 return (set_errno(EINTR)); 1656 } 1657 1658 p->p_flag |= SEXITLWPS; 1659 if (coredump) /* tell other lwps to stop, not exit */ 1660 p->p_flag |= SCOREDUMP; 1661 1662 /* 1663 * Give precedence to exitlwps() if a holdlwps() is 1664 * in progress. The lwp doing the holdlwps() operation 1665 * is aborted when it is awakened. 1666 */ 1667 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1668 cv_broadcast(&p->p_holdlwps); 1669 cv_wait(&p->p_holdlwps, &p->p_lock); 1670 prbarrier(p); 1671 } 1672 p->p_flag |= SHOLDFORK; 1673 pokelwps(p); 1674 1675 /* 1676 * Wait for process to become quiescent. 1677 */ 1678 --p->p_lwprcnt; 1679 while (p->p_lwprcnt > 0) { 1680 cv_wait(&p->p_holdlwps, &p->p_lock); 1681 prbarrier(p); 1682 } 1683 p->p_lwprcnt++; 1684 ASSERT(p->p_lwprcnt == 1); 1685 1686 /* 1687 * The SCOREDUMP flag puts the process into a quiescent 1688 * state. The process's lwps remain attached to this 1689 * process until exitlwps() is called again without the 1690 * 'coredump' flag set, then the lwps are terminated 1691 * and the process can exit. 1692 */ 1693 if (coredump) { 1694 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1695 goto out; 1696 } 1697 1698 /* 1699 * Determine if there are any lwps left dangling in 1700 * the stopped state. This happens when exitlwps() 1701 * aborts a holdlwps() operation. 1702 */ 1703 p->p_flag &= ~SHOLDFORK; 1704 if ((heldcnt = p->p_lwpcnt) > 1) { 1705 kthread_t *t; 1706 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1707 t->t_proc_flag &= ~TP_TWAIT; 1708 lwp_continue(t); 1709 } 1710 } 1711 1712 /* 1713 * Wait for all other lwps to exit. 1714 */ 1715 --p->p_lwprcnt; 1716 while (p->p_lwpcnt > 1) { 1717 cv_wait(&p->p_holdlwps, &p->p_lock); 1718 prbarrier(p); 1719 } 1720 ++p->p_lwprcnt; 1721 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1722 1723 p->p_flag &= ~SEXITLWPS; 1724 curthread->t_proc_flag &= ~TP_TWAIT; 1725 1726 out: 1727 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1728 lwpdir_t *ldp; 1729 lwpent_t *lep; 1730 int i; 1731 1732 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1733 lep = ldp->ld_entry; 1734 if (lep != NULL && lep->le_thread != curthread) { 1735 ASSERT(lep->le_thread == NULL); 1736 p->p_zombcnt--; 1737 lwp_hash_out(p, lep->le_lwpid); 1738 } 1739 } 1740 ASSERT(p->p_zombcnt == 0); 1741 } 1742 1743 /* 1744 * If some other LWP in the process wanted us to suspend ourself, 1745 * then we will not do it. The other LWP is now terminated and 1746 * no one will ever continue us again if we suspend ourself. 1747 */ 1748 curthread->t_proc_flag &= ~TP_HOLDLWP; 1749 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1750 mutex_exit(&p->p_lock); 1751 return (0); 1752 } 1753 1754 /* 1755 * duplicate a lwp. 1756 */ 1757 klwp_t * 1758 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1759 { 1760 klwp_t *clwp; 1761 void *tregs, *tfpu; 1762 kthread_t *t = lwptot(lwp); 1763 kthread_t *ct; 1764 proc_t *p = lwptoproc(lwp); 1765 int cid; 1766 void *bufp; 1767 void *brand_data; 1768 int val; 1769 1770 ASSERT(p == curproc); 1771 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1772 1773 #if defined(__sparc) 1774 if (t == curthread) 1775 (void) flush_user_windows_to_stack(NULL); 1776 #endif 1777 1778 if (t == curthread) 1779 /* copy args out of registers first */ 1780 (void) save_syscall_args(); 1781 1782 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1783 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1784 if (clwp == NULL) 1785 return (NULL); 1786 1787 /* 1788 * most of the parent's lwp can be copied to its duplicate, 1789 * except for the fields that are unique to each lwp, like 1790 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1791 */ 1792 ct = clwp->lwp_thread; 1793 tregs = clwp->lwp_regs; 1794 tfpu = clwp->lwp_fpu; 1795 brand_data = clwp->lwp_brand; 1796 1797 /* 1798 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1799 * mstate_aggr_state() from reading stale mstate entries copied 1800 * from lwp to clwp. 1801 */ 1802 mutex_enter(&cp->p_lock); 1803 *clwp = *lwp; 1804 1805 /* clear microstate and resource usage data in new lwp */ 1806 init_mstate(ct, LMS_STOPPED); 1807 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1808 mutex_exit(&cp->p_lock); 1809 1810 /* fix up child's lwp */ 1811 1812 clwp->lwp_pcb.pcb_flags = 0; 1813 #if defined(__sparc) 1814 clwp->lwp_pcb.pcb_step = STEP_NONE; 1815 #endif 1816 clwp->lwp_cursig = 0; 1817 clwp->lwp_extsig = 0; 1818 clwp->lwp_curinfo = (struct sigqueue *)0; 1819 clwp->lwp_thread = ct; 1820 ct->t_sysnum = t->t_sysnum; 1821 clwp->lwp_regs = tregs; 1822 clwp->lwp_fpu = tfpu; 1823 clwp->lwp_brand = brand_data; 1824 clwp->lwp_ap = clwp->lwp_arg; 1825 clwp->lwp_procp = cp; 1826 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1827 clwp->lwp_lastfault = 0; 1828 clwp->lwp_lastfaddr = 0; 1829 1830 /* copy parent's struct regs to child. */ 1831 lwp_forkregs(lwp, clwp); 1832 1833 /* 1834 * Fork thread context ops, if any. 1835 */ 1836 if (t->t_ctx) 1837 forkctx(t, ct); 1838 1839 /* fix door state in the child */ 1840 if (t->t_door) 1841 door_fork(t, ct); 1842 1843 /* copy current contract templates, clear latest contracts */ 1844 lwp_ctmpl_copy(clwp, lwp); 1845 1846 mutex_enter(&cp->p_lock); 1847 /* lwp_create() set the TP_HOLDLWP flag */ 1848 if (!(t->t_proc_flag & TP_HOLDLWP)) 1849 ct->t_proc_flag &= ~TP_HOLDLWP; 1850 if (cp->p_flag & SMSACCT) 1851 ct->t_proc_flag |= TP_MSACCT; 1852 mutex_exit(&cp->p_lock); 1853 1854 /* Allow brand to propagate brand-specific state */ 1855 if (PROC_IS_BRANDED(p)) 1856 BROP(p)->b_forklwp(lwp, clwp); 1857 1858 retry: 1859 cid = t->t_cid; 1860 1861 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1862 ASSERT(val == 0); 1863 1864 mutex_enter(&p->p_lock); 1865 if (cid != t->t_cid) { 1866 /* 1867 * Someone just changed this thread's scheduling class, 1868 * so try pre-allocating the buffer again. Hopefully we 1869 * don't hit this often. 1870 */ 1871 mutex_exit(&p->p_lock); 1872 CL_FREE(cid, bufp); 1873 goto retry; 1874 } 1875 1876 ct->t_unpark = t->t_unpark; 1877 ct->t_clfuncs = t->t_clfuncs; 1878 CL_FORK(t, ct, bufp); 1879 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1880 mutex_exit(&p->p_lock); 1881 1882 return (clwp); 1883 } 1884 1885 /* 1886 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1887 */ 1888 void 1889 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz, 1890 int do_lock) 1891 { 1892 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)]; 1893 lwpdir_t **ldpp; 1894 lwpdir_t *ldp; 1895 kthread_t *t; 1896 1897 /* 1898 * Allocate a directory element from the free list. 1899 * Code elsewhere guarantees a free slot. 1900 */ 1901 ldp = p->p_lwpfree; 1902 p->p_lwpfree = ldp->ld_next; 1903 ASSERT(ldp->ld_entry == NULL); 1904 ldp->ld_entry = lep; 1905 1906 if (do_lock) 1907 mutex_enter(&thp->th_lock); 1908 1909 /* 1910 * Insert it into the lwpid hash table. 1911 */ 1912 ldpp = &thp->th_list; 1913 ldp->ld_next = *ldpp; 1914 *ldpp = ldp; 1915 1916 /* 1917 * Set the active thread's directory slot entry. 1918 */ 1919 if ((t = lep->le_thread) != NULL) { 1920 ASSERT(lep->le_lwpid == t->t_tid); 1921 t->t_dslot = (int)(ldp - p->p_lwpdir); 1922 } 1923 1924 if (do_lock) 1925 mutex_exit(&thp->th_lock); 1926 } 1927 1928 /* 1929 * Remove an lwp from the lwpid hash table and free its directory entry. 1930 * This is done when a detached lwp exits in lwp_exit() or 1931 * when a non-detached lwp is waited for in lwp_wait() or 1932 * when a zombie lwp is detached in lwp_detach(). 1933 */ 1934 void 1935 lwp_hash_out(proc_t *p, id_t lwpid) 1936 { 1937 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1938 lwpdir_t **ldpp; 1939 lwpdir_t *ldp; 1940 lwpent_t *lep; 1941 1942 mutex_enter(&thp->th_lock); 1943 for (ldpp = &thp->th_list; 1944 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 1945 lep = ldp->ld_entry; 1946 if (lep->le_lwpid == lwpid) { 1947 prlwpfree(p, lep); /* /proc deals with le_trace */ 1948 *ldpp = ldp->ld_next; 1949 ldp->ld_entry = NULL; 1950 ldp->ld_next = p->p_lwpfree; 1951 p->p_lwpfree = ldp; 1952 kmem_free(lep, sizeof (*lep)); 1953 break; 1954 } 1955 } 1956 mutex_exit(&thp->th_lock); 1957 } 1958 1959 /* 1960 * Lookup an lwp in the lwpid hash table by lwpid. 1961 */ 1962 lwpdir_t * 1963 lwp_hash_lookup(proc_t *p, id_t lwpid) 1964 { 1965 tidhash_t *thp; 1966 lwpdir_t *ldp; 1967 1968 /* 1969 * The process may be exiting, after p_tidhash has been set to NULL in 1970 * proc_exit() but before prfee() has been called. Return failure in 1971 * this case. 1972 */ 1973 if (p->p_tidhash == NULL) 1974 return (NULL); 1975 1976 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 1977 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 1978 if (ldp->ld_entry->le_lwpid == lwpid) 1979 return (ldp); 1980 } 1981 1982 return (NULL); 1983 } 1984 1985 /* 1986 * Same as lwp_hash_lookup(), but acquire and return 1987 * the tid hash table entry lock on success. 1988 */ 1989 lwpdir_t * 1990 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp) 1991 { 1992 tidhash_t *tidhash; 1993 uint_t tidhash_sz; 1994 tidhash_t *thp; 1995 lwpdir_t *ldp; 1996 1997 top: 1998 tidhash_sz = p->p_tidhash_sz; 1999 membar_consumer(); 2000 if ((tidhash = p->p_tidhash) == NULL) 2001 return (NULL); 2002 2003 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)]; 2004 mutex_enter(&thp->th_lock); 2005 2006 /* 2007 * Since we are not holding p->p_lock, the tid hash table 2008 * may have changed. If so, start over. If not, then 2009 * it cannot change until after we drop &thp->th_lock; 2010 */ 2011 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) { 2012 mutex_exit(&thp->th_lock); 2013 goto top; 2014 } 2015 2016 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2017 if (ldp->ld_entry->le_lwpid == lwpid) { 2018 *mpp = &thp->th_lock; 2019 return (ldp); 2020 } 2021 } 2022 2023 mutex_exit(&thp->th_lock); 2024 return (NULL); 2025 } 2026 2027 /* 2028 * Update the indicated LWP usage statistic for the current LWP. 2029 */ 2030 void 2031 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 2032 { 2033 klwp_t *lwp = ttolwp(curthread); 2034 2035 if (lwp == NULL) 2036 return; 2037 2038 switch (lwp_stat_id) { 2039 case LWP_STAT_INBLK: 2040 lwp->lwp_ru.inblock += inc; 2041 break; 2042 case LWP_STAT_OUBLK: 2043 lwp->lwp_ru.oublock += inc; 2044 break; 2045 case LWP_STAT_MSGRCV: 2046 lwp->lwp_ru.msgrcv += inc; 2047 break; 2048 case LWP_STAT_MSGSND: 2049 lwp->lwp_ru.msgsnd += inc; 2050 break; 2051 default: 2052 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 2053 } 2054 } 2055