1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 * Copyright 2025 Oxide Computer Company 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/sysmacros.h> 35 #include <sys/systm.h> 36 #include <sys/thread.h> 37 #include <sys/proc.h> 38 #include <sys/task.h> 39 #include <sys/project.h> 40 #include <sys/signal.h> 41 #include <sys/errno.h> 42 #include <sys/vmparam.h> 43 #include <sys/stack.h> 44 #include <sys/procfs.h> 45 #include <sys/prsystm.h> 46 #include <sys/cpuvar.h> 47 #include <sys/kmem.h> 48 #include <sys/vtrace.h> 49 #include <sys/door.h> 50 #include <vm/seg_kp.h> 51 #include <sys/debug.h> 52 #include <sys/schedctl.h> 53 #include <sys/poll.h> 54 #include <sys/copyops.h> 55 #include <sys/lwp_upimutex_impl.h> 56 #include <sys/cpupart.h> 57 #include <sys/lgrp.h> 58 #include <sys/rctl.h> 59 #include <sys/contract_impl.h> 60 #include <sys/cpc_impl.h> 61 #include <sys/sdt.h> 62 #include <sys/cmn_err.h> 63 #include <sys/brand.h> 64 #include <sys/cyclic.h> 65 #include <sys/pool.h> 66 67 /* hash function for the lwpid hash table, p->p_tidhash[] */ 68 #define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1)) 69 70 void *segkp_lwp; /* cookie for pool of segkp resources */ 71 extern void reapq_move_lq_to_tq(kthread_t *); 72 extern void freectx_ctx(struct ctxop *); 73 74 /* 75 * Create a kernel thread associated with a particular system process. Give 76 * it an LWP so that microstate accounting will be available for it. 77 */ 78 kthread_t * 79 lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri) 80 { 81 klwp_t *lwp; 82 83 VERIFY((p->p_flag & SSYS) != 0); 84 85 lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0); 86 87 VERIFY(lwp != NULL); 88 89 return (lwptot(lwp)); 90 } 91 92 /* 93 * Create a thread that appears to be stopped at sys_rtt. 94 */ 95 klwp_t * 96 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p, 97 int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid) 98 { 99 klwp_t *lwp = NULL; 100 kthread_t *t; 101 kthread_t *tx; 102 cpupart_t *oldpart = NULL; 103 size_t stksize; 104 caddr_t lwpdata = NULL; 105 processorid_t binding; 106 int err = 0; 107 kproject_t *oldkpj, *newkpj; 108 void *bufp = NULL; 109 klwp_t *curlwp; 110 lwpent_t *lep; 111 lwpdir_t *old_dir = NULL; 112 uint_t old_dirsz = 0; 113 tidhash_t *old_hash = NULL; 114 uint_t old_hashsz = 0; 115 ret_tidhash_t *ret_tidhash = NULL; 116 int i; 117 int rctlfail = 0; 118 boolean_t branded = 0; 119 struct ctxop *ctx = NULL; 120 121 ASSERT(cid != sysdccid); /* system threads must start in SYS */ 122 123 ASSERT(p != &p0); /* No new LWPs in p0. */ 124 125 mutex_enter(&p->p_lock); 126 mutex_enter(&p->p_zone->zone_nlwps_lock); 127 /* 128 * don't enforce rctl limits on system processes 129 */ 130 if (!CLASS_KERNEL(cid)) { 131 if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl) 132 if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p, 133 1, 0) & RCT_DENY) 134 rctlfail = 1; 135 if (p->p_task->tk_proj->kpj_nlwps >= 136 p->p_task->tk_proj->kpj_nlwps_ctl) 137 if (rctl_test(rc_project_nlwps, 138 p->p_task->tk_proj->kpj_rctls, p, 1, 0) 139 & RCT_DENY) 140 rctlfail = 1; 141 if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl) 142 if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p, 143 1, 0) & RCT_DENY) 144 rctlfail = 1; 145 } 146 if (rctlfail) { 147 mutex_exit(&p->p_zone->zone_nlwps_lock); 148 mutex_exit(&p->p_lock); 149 atomic_inc_32(&p->p_zone->zone_ffcap); 150 return (NULL); 151 } 152 p->p_task->tk_nlwps++; 153 p->p_task->tk_proj->kpj_nlwps++; 154 p->p_zone->zone_nlwps++; 155 mutex_exit(&p->p_zone->zone_nlwps_lock); 156 mutex_exit(&p->p_lock); 157 158 curlwp = ttolwp(curthread); 159 if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0) 160 stksize = lwp_default_stksize; 161 162 if (CLASS_KERNEL(cid)) { 163 /* 164 * Since we are creating an LWP in an SSYS process, we do not 165 * inherit anything from the current thread's LWP. We set 166 * stksize and lwpdata to 0 in order to let thread_create() 167 * allocate a regular kernel thread stack for this thread. 168 */ 169 curlwp = NULL; 170 stksize = 0; 171 lwpdata = NULL; 172 173 } else if (stksize == lwp_default_stksize) { 174 /* 175 * Try to reuse an <lwp,stack> from the LWP deathrow. 176 */ 177 if (lwp_reapcnt > 0) { 178 mutex_enter(&reaplock); 179 if ((t = lwp_deathrow) != NULL) { 180 ASSERT(t->t_swap); 181 lwp_deathrow = t->t_forw; 182 lwp_reapcnt--; 183 lwpdata = t->t_swap; 184 lwp = t->t_lwp; 185 ctx = t->t_ctx; 186 t->t_swap = NULL; 187 t->t_lwp = NULL; 188 t->t_ctx = NULL; 189 reapq_move_lq_to_tq(t); 190 } 191 mutex_exit(&reaplock); 192 if (lwp != NULL) { 193 lwp_stk_fini(lwp); 194 } 195 if (ctx != NULL) { 196 freectx_ctx(ctx); 197 } 198 } 199 if (lwpdata == NULL && 200 (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) { 201 mutex_enter(&p->p_lock); 202 mutex_enter(&p->p_zone->zone_nlwps_lock); 203 p->p_task->tk_nlwps--; 204 p->p_task->tk_proj->kpj_nlwps--; 205 p->p_zone->zone_nlwps--; 206 mutex_exit(&p->p_zone->zone_nlwps_lock); 207 mutex_exit(&p->p_lock); 208 atomic_inc_32(&p->p_zone->zone_ffnomem); 209 return (NULL); 210 } 211 } else { 212 stksize = roundup(stksize, PAGESIZE); 213 if ((lwpdata = (caddr_t)segkp_get(segkp, stksize, 214 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) { 215 mutex_enter(&p->p_lock); 216 mutex_enter(&p->p_zone->zone_nlwps_lock); 217 p->p_task->tk_nlwps--; 218 p->p_task->tk_proj->kpj_nlwps--; 219 p->p_zone->zone_nlwps--; 220 mutex_exit(&p->p_zone->zone_nlwps_lock); 221 mutex_exit(&p->p_lock); 222 atomic_inc_32(&p->p_zone->zone_ffnomem); 223 return (NULL); 224 } 225 } 226 227 /* 228 * Create a thread, initializing the stack pointer 229 */ 230 t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri); 231 232 /* 233 * If a non-NULL stack base is passed in, thread_create() assumes 234 * that the stack might be statically allocated (as opposed to being 235 * allocated from segkp), and so it does not set t_swap. Since 236 * the lwpdata was allocated from segkp, we must set t_swap to point 237 * to it ourselves. 238 * 239 * This would be less confusing if t_swap had a better name; it really 240 * indicates that the stack is allocated from segkp, regardless of 241 * whether or not it is swappable. 242 */ 243 if (lwpdata != NULL) { 244 ASSERT(!CLASS_KERNEL(cid)); 245 ASSERT(t->t_swap == NULL); 246 t->t_swap = lwpdata; /* Start of page-able data */ 247 } 248 249 /* 250 * If the stack and lwp can be reused, mark the thread as such. 251 * When we get to reapq_add() from resume_from_zombie(), these 252 * threads will go onto lwp_deathrow instead of thread_deathrow. 253 */ 254 if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize) 255 t->t_flag |= T_LWPREUSE; 256 257 if (lwp == NULL) 258 lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP); 259 bzero(lwp, sizeof (*lwp)); 260 t->t_lwp = lwp; 261 262 t->t_hold = *smask; 263 lwp->lwp_thread = t; 264 lwp->lwp_procp = p; 265 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 266 if (curlwp != NULL && curlwp->lwp_childstksz != 0) 267 lwp->lwp_childstksz = curlwp->lwp_childstksz; 268 269 t->t_stk = lwp_stk_init(lwp, t->t_stk); 270 thread_load(t, proc, arg, len); 271 272 /* 273 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect. 274 */ 275 if (p->p_rprof_cyclic != CYCLIC_NONE) 276 t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP); 277 278 if (cid != NOCLASS) 279 (void) CL_ALLOC(&bufp, cid, KM_SLEEP); 280 281 /* 282 * Allocate an lwp directory entry for the new lwp. 283 */ 284 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 285 286 mutex_enter(&p->p_lock); 287 grow: 288 /* 289 * Grow the lwp (thread) directory and lwpid hash table if necessary. 290 * A note on the growth algorithm: 291 * The new lwp directory size is computed as: 292 * new = 2 * old + 2 293 * Starting with an initial size of 2 (see exec_common()), 294 * this yields numbers that are a power of two minus 2: 295 * 2, 6, 14, 30, 62, 126, 254, 510, 1022, ... 296 * The size of the lwpid hash table must be a power of two 297 * and must be commensurate in size with the lwp directory 298 * so that hash bucket chains remain short. Therefore, 299 * the lwpid hash table size is computed as: 300 * hashsz = (dirsz + 2) / 2 301 * which leads to these hash table sizes corresponding to 302 * the above directory sizes: 303 * 2, 4, 8, 16, 32, 64, 128, 256, 512, ... 304 * A note on growing the hash table: 305 * For performance reasons, code in lwp_unpark() does not 306 * acquire curproc->p_lock when searching the hash table. 307 * Rather, it calls lwp_hash_lookup_and_lock() which 308 * acquires only the individual hash bucket lock, taking 309 * care to deal with reallocation of the hash table 310 * during the time it takes to acquire the lock. 311 * 312 * This is sufficient to protect the integrity of the 313 * hash table, but it requires us to acquire all of the 314 * old hash bucket locks before growing the hash table 315 * and to release them afterwards. It also requires us 316 * not to free the old hash table because some thread 317 * in lwp_hash_lookup_and_lock() might still be trying 318 * to acquire the old bucket lock. 319 * 320 * So we adopt the tactic of keeping all of the retired 321 * hash tables on a linked list, so they can be safely 322 * freed when the process exits or execs. 323 * 324 * Because the hash table grows in powers of two, the 325 * total size of all of the hash tables will be slightly 326 * less than twice the size of the largest hash table. 327 */ 328 while (p->p_lwpfree == NULL) { 329 uint_t dirsz = p->p_lwpdir_sz; 330 lwpdir_t *new_dir; 331 uint_t new_dirsz; 332 lwpdir_t *ldp; 333 tidhash_t *new_hash; 334 uint_t new_hashsz; 335 336 mutex_exit(&p->p_lock); 337 338 /* 339 * Prepare to remember the old p_tidhash for later 340 * kmem_free()ing when the process exits or execs. 341 */ 342 if (ret_tidhash == NULL) 343 ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t), 344 KM_SLEEP); 345 if (old_dir != NULL) 346 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 347 if (old_hash != NULL) 348 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 349 350 new_dirsz = 2 * dirsz + 2; 351 new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP); 352 for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++) 353 ldp->ld_next = ldp + 1; 354 new_hashsz = (new_dirsz + 2) / 2; 355 new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t), 356 KM_SLEEP); 357 358 mutex_enter(&p->p_lock); 359 if (p == curproc) 360 prbarrier(p); 361 362 if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) { 363 /* 364 * Someone else beat us to it or some lwp exited. 365 * Set up to free our memory and take a lap. 366 */ 367 old_dir = new_dir; 368 old_dirsz = new_dirsz; 369 old_hash = new_hash; 370 old_hashsz = new_hashsz; 371 } else { 372 /* 373 * For the benefit of lwp_hash_lookup_and_lock(), 374 * called from lwp_unpark(), which searches the 375 * tid hash table without acquiring p->p_lock, 376 * we must acquire all of the tid hash table 377 * locks before replacing p->p_tidhash. 378 */ 379 old_hash = p->p_tidhash; 380 old_hashsz = p->p_tidhash_sz; 381 for (i = 0; i < old_hashsz; i++) { 382 mutex_enter(&old_hash[i].th_lock); 383 mutex_enter(&new_hash[i].th_lock); 384 } 385 386 /* 387 * We simply hash in all of the old directory entries. 388 * This works because the old directory has no empty 389 * slots and the new hash table starts out empty. 390 * This reproduces the original directory ordering 391 * (required for /proc directory semantics). 392 */ 393 old_dir = p->p_lwpdir; 394 old_dirsz = p->p_lwpdir_sz; 395 p->p_lwpdir = new_dir; 396 p->p_lwpfree = new_dir; 397 p->p_lwpdir_sz = new_dirsz; 398 for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++) 399 lwp_hash_in(p, ldp->ld_entry, 400 new_hash, new_hashsz, 0); 401 402 /* 403 * Remember the old hash table along with all 404 * of the previously-remembered hash tables. 405 * We will free them at process exit or exec. 406 */ 407 ret_tidhash->rth_tidhash = old_hash; 408 ret_tidhash->rth_tidhash_sz = old_hashsz; 409 ret_tidhash->rth_next = p->p_ret_tidhash; 410 p->p_ret_tidhash = ret_tidhash; 411 412 /* 413 * Now establish the new tid hash table. 414 * As soon as we assign p->p_tidhash, 415 * code in lwp_unpark() can start using it. 416 */ 417 membar_producer(); 418 p->p_tidhash = new_hash; 419 420 /* 421 * It is necessary that p_tidhash reach global 422 * visibility before p_tidhash_sz. Otherwise, 423 * code in lwp_hash_lookup_and_lock() could 424 * index into the old p_tidhash using the new 425 * p_tidhash_sz and thereby access invalid data. 426 */ 427 membar_producer(); 428 p->p_tidhash_sz = new_hashsz; 429 430 /* 431 * Release the locks; allow lwp_unpark() to carry on. 432 */ 433 for (i = 0; i < old_hashsz; i++) { 434 mutex_exit(&old_hash[i].th_lock); 435 mutex_exit(&new_hash[i].th_lock); 436 } 437 438 /* 439 * Avoid freeing these objects below. 440 */ 441 ret_tidhash = NULL; 442 old_hash = NULL; 443 old_hashsz = 0; 444 } 445 } 446 447 /* 448 * Block the process against /proc while we manipulate p->p_tlist, 449 * unless lwp_create() was called by /proc for the PCAGENT operation. 450 * We want to do this early enough so that we don't drop p->p_lock 451 * until the thread is put on the p->p_tlist. 452 */ 453 if (p == curproc) { 454 prbarrier(p); 455 /* 456 * If the current lwp has been requested to stop, do so now. 457 * Otherwise we have a race condition between /proc attempting 458 * to stop the process and this thread creating a new lwp 459 * that was not seen when the /proc PCSTOP request was issued. 460 * We rely on stop() to call prbarrier(p) before returning. 461 */ 462 while ((curthread->t_proc_flag & TP_PRSTOP) && 463 !ttolwp(curthread)->lwp_nostop) { 464 /* 465 * We called pool_barrier_enter() before calling 466 * here to lwp_create(). We have to call 467 * pool_barrier_exit() before stopping. 468 */ 469 pool_barrier_exit(); 470 prbarrier(p); 471 stop(PR_REQUESTED, 0); 472 /* 473 * And we have to repeat the call to 474 * pool_barrier_enter after stopping. 475 */ 476 pool_barrier_enter(); 477 prbarrier(p); 478 } 479 480 /* 481 * If process is exiting, there could be a race between 482 * the agent lwp creation and the new lwp currently being 483 * created. So to prevent this race lwp creation is failed 484 * if the process is exiting. 485 */ 486 if (p->p_flag & (SEXITLWPS|SKILLED)) { 487 err = 1; 488 goto error; 489 } 490 491 /* 492 * Since we might have dropped p->p_lock, the 493 * lwp directory free list might have changed. 494 */ 495 if (p->p_lwpfree == NULL) 496 goto grow; 497 } 498 499 kpreempt_disable(); /* can't grab cpu_lock here */ 500 501 /* 502 * Inherit processor and processor set bindings from curthread. 503 * 504 * For kernel LWPs, we do not inherit processor set bindings at 505 * process creation time (i.e. when p != curproc). After the 506 * kernel process is created, any subsequent LWPs must be created 507 * by threads in the kernel process, at which point we *will* 508 * inherit processor set bindings. 509 */ 510 if (CLASS_KERNEL(cid) && p != curproc) { 511 t->t_bind_cpu = binding = PBIND_NONE; 512 t->t_cpupart = oldpart = &cp_default; 513 t->t_bind_pset = PS_NONE; 514 t->t_bindflag = (uchar_t)default_binding_mode; 515 } else { 516 binding = curthread->t_bind_cpu; 517 t->t_bind_cpu = binding; 518 oldpart = t->t_cpupart; 519 t->t_cpupart = curthread->t_cpupart; 520 t->t_bind_pset = curthread->t_bind_pset; 521 t->t_bindflag = curthread->t_bindflag | 522 (uchar_t)default_binding_mode; 523 } 524 525 /* 526 * thread_create() initializes this thread's home lgroup to the root. 527 * Choose a more suitable lgroup, since this thread is associated 528 * with an lwp. 529 */ 530 ASSERT(oldpart != NULL); 531 if (binding != PBIND_NONE && t->t_affinitycnt == 0) { 532 t->t_bound_cpu = cpu[binding]; 533 if (t->t_lpl != t->t_bound_cpu->cpu_lpl) 534 lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1); 535 } else if (CLASS_KERNEL(cid)) { 536 /* 537 * Kernel threads are always in the root lgrp. 538 */ 539 lgrp_move_thread(t, 540 &t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1); 541 } else { 542 lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1); 543 } 544 545 kpreempt_enable(); 546 547 /* 548 * make sure lpl points to our own partition 549 */ 550 ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads); 551 ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads + 552 t->t_cpupart->cp_nlgrploads); 553 554 /* 555 * It is safe to point the thread to the new project without holding it 556 * since we're holding the target process' p_lock here and therefore 557 * we're guaranteed that it will not move to another project. 558 */ 559 newkpj = p->p_task->tk_proj; 560 oldkpj = ttoproj(t); 561 if (newkpj != oldkpj) { 562 t->t_proj = newkpj; 563 (void) project_hold(newkpj); 564 project_rele(oldkpj); 565 } 566 567 if (cid != NOCLASS) { 568 /* 569 * If the lwp is being created in the current process 570 * and matches the current thread's scheduling class, 571 * we should propagate the current thread's scheduling 572 * parameters by calling CL_FORK. Otherwise just use 573 * the defaults by calling CL_ENTERCLASS. 574 */ 575 if (p != curproc || curthread->t_cid != cid) { 576 err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp); 577 t->t_pri = pri; /* CL_ENTERCLASS may have changed it */ 578 /* 579 * We don't call schedctl_set_cidpri(t) here 580 * because the schedctl data is not yet set 581 * up for the newly-created lwp. 582 */ 583 } else { 584 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 585 err = CL_FORK(curthread, t, bufp); 586 t->t_cid = cid; 587 } 588 if (err) { 589 atomic_inc_32(&p->p_zone->zone_ffmisc); 590 goto error; 591 } else { 592 bufp = NULL; 593 } 594 } 595 596 /* 597 * If we were given an lwpid then use it, else allocate one. 598 */ 599 if (lwpid != 0) 600 t->t_tid = lwpid; 601 else { 602 /* 603 * lwp/thread id 0 is never valid; reserved for special checks. 604 * lwp/thread id 1 is reserved for the main thread. 605 * Start again at 2 when INT_MAX has been reached 606 * (id_t is a signed 32-bit integer). 607 */ 608 id_t prev_id = p->p_lwpid; /* last allocated tid */ 609 610 do { /* avoid lwpid duplication */ 611 if (p->p_lwpid == INT_MAX) { 612 p->p_flag |= SLWPWRAP; 613 p->p_lwpid = 1; 614 } 615 if ((t->t_tid = ++p->p_lwpid) == prev_id) { 616 /* 617 * All lwpids are allocated; fail the request. 618 */ 619 err = 1; 620 atomic_inc_32(&p->p_zone->zone_ffnoproc); 621 goto error; 622 } 623 /* 624 * We only need to worry about colliding with an id 625 * that's already in use if this process has 626 * cycled through all available lwp ids. 627 */ 628 if ((p->p_flag & SLWPWRAP) == 0) 629 break; 630 } while (lwp_hash_lookup(p, t->t_tid) != NULL); 631 } 632 633 /* 634 * If this is a branded process, let the brand do any necessary lwp 635 * initialization. 636 */ 637 if (PROC_IS_BRANDED(p)) { 638 if (BROP(p)->b_initlwp(lwp)) { 639 err = 1; 640 atomic_inc_32(&p->p_zone->zone_ffmisc); 641 goto error; 642 } 643 branded = 1; 644 } 645 646 if (t->t_tid == 1) { 647 kpreempt_disable(); 648 ASSERT(t->t_lpl != NULL); 649 p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid; 650 kpreempt_enable(); 651 if (p->p_tr_lgrpid != LGRP_NONE && 652 p->p_tr_lgrpid != p->p_t1_lgrpid) { 653 lgrp_update_trthr_migrations(1); 654 } 655 } 656 657 p->p_lwpcnt++; 658 t->t_waitfor = -1; 659 660 /* 661 * Turn microstate accounting on for thread if on for process. 662 */ 663 if (p->p_flag & SMSACCT) 664 t->t_proc_flag |= TP_MSACCT; 665 666 /* 667 * If the process has watchpoints, mark the new thread as such. 668 */ 669 if (pr_watch_active(p)) 670 watch_enable(t); 671 672 /* 673 * The lwp is being created in the stopped state. 674 * We set all the necessary flags to indicate that fact here. 675 * We omit the TS_CREATE flag from t_schedflag so that the lwp 676 * cannot be set running until the caller is finished with it, 677 * even if lwp_continue() is called on it after we drop p->p_lock. 678 * When the caller is finished with the newly-created lwp, 679 * the caller must call lwp_create_done() to allow the lwp 680 * to be set running. If the TP_HOLDLWP is left set, the 681 * lwp will suspend itself after reaching system call exit. 682 */ 683 init_mstate(t, LMS_STOPPED); 684 t->t_proc_flag |= TP_HOLDLWP; 685 t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE)); 686 t->t_whystop = PR_SUSPENDED; 687 t->t_whatstop = SUSPEND_NORMAL; 688 t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */ 689 690 /* 691 * Set system call processing flags in case tracing or profiling 692 * is set. The first system call will evaluate these and turn 693 * them off if they aren't needed. 694 */ 695 t->t_pre_sys = 1; 696 t->t_post_sys = 1; 697 698 /* 699 * Insert the new thread into the list of all threads. 700 */ 701 if ((tx = p->p_tlist) == NULL) { 702 t->t_back = t; 703 t->t_forw = t; 704 p->p_tlist = t; 705 } else { 706 t->t_forw = tx; 707 t->t_back = tx->t_back; 708 tx->t_back->t_forw = t; 709 tx->t_back = t; 710 } 711 712 /* 713 * Insert the new lwp into an lwp directory slot position 714 * and into the lwpid hash table. 715 */ 716 lep->le_thread = t; 717 lep->le_lwpid = t->t_tid; 718 lep->le_start = t->t_start; 719 lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1); 720 721 lwp_fp_init(lwp); 722 723 if (state == TS_RUN) { 724 /* 725 * We set the new lwp running immediately. 726 */ 727 t->t_proc_flag &= ~TP_HOLDLWP; 728 lwp_create_done(t); 729 } 730 731 error: 732 if (err) { 733 if (CLASS_KERNEL(cid)) { 734 /* 735 * This should only happen if a system process runs 736 * out of lwpids, which shouldn't occur. 737 */ 738 panic("Failed to create a system LWP"); 739 } 740 /* 741 * We have failed to create an lwp, so decrement the number 742 * of lwps in the task and let the lgroup load averages know 743 * that this thread isn't going to show up. 744 */ 745 kpreempt_disable(); 746 lgrp_move_thread(t, NULL, 1); 747 kpreempt_enable(); 748 749 ASSERT(MUTEX_HELD(&p->p_lock)); 750 mutex_enter(&p->p_zone->zone_nlwps_lock); 751 p->p_task->tk_nlwps--; 752 p->p_task->tk_proj->kpj_nlwps--; 753 p->p_zone->zone_nlwps--; 754 mutex_exit(&p->p_zone->zone_nlwps_lock); 755 if (cid != NOCLASS && bufp != NULL) 756 CL_FREE(cid, bufp); 757 758 if (branded) 759 BROP(p)->b_freelwp(lwp); 760 761 mutex_exit(&p->p_lock); 762 t->t_state = TS_FREE; 763 thread_rele(t); 764 765 /* 766 * We need to remove t from the list of all threads 767 * because thread_exit()/lwp_exit() isn't called on t. 768 */ 769 mutex_enter(&pidlock); 770 ASSERT(t != t->t_next); /* t0 never exits */ 771 t->t_next->t_prev = t->t_prev; 772 t->t_prev->t_next = t->t_next; 773 mutex_exit(&pidlock); 774 775 thread_free(t); 776 kmem_free(lep, sizeof (*lep)); 777 lwp = NULL; 778 } else { 779 mutex_exit(&p->p_lock); 780 } 781 782 if (old_dir != NULL) 783 kmem_free(old_dir, old_dirsz * sizeof (*old_dir)); 784 if (old_hash != NULL) 785 kmem_free(old_hash, old_hashsz * sizeof (*old_hash)); 786 if (ret_tidhash != NULL) 787 kmem_free(ret_tidhash, sizeof (ret_tidhash_t)); 788 789 DTRACE_PROC1(lwp__create, kthread_t *, t); 790 return (lwp); 791 } 792 793 /* 794 * lwp_create_done() is called by the caller of lwp_create() to set the 795 * newly-created lwp running after the caller has finished manipulating it. 796 */ 797 void 798 lwp_create_done(kthread_t *t) 799 { 800 proc_t *p = ttoproc(t); 801 802 ASSERT(MUTEX_HELD(&p->p_lock)); 803 804 /* 805 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked(). 806 * (The absence of the TS_CREATE flag prevents the lwp from running 807 * until we are finished with it, even if lwp_continue() is called on 808 * it by some other lwp in the process or elsewhere in the kernel.) 809 */ 810 thread_lock(t); 811 ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE)); 812 /* 813 * If TS_CSTART is set, lwp_continue(t) has been called and 814 * has already incremented p_lwprcnt; avoid doing this twice. 815 */ 816 if (!(t->t_schedflag & TS_CSTART)) 817 p->p_lwprcnt++; 818 t->t_schedflag |= (TS_CSTART | TS_CREATE); 819 setrun_locked(t); 820 thread_unlock(t); 821 } 822 823 /* 824 * Copy an LWP's active templates, and clear the latest contracts. 825 */ 826 void 827 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src) 828 { 829 int i; 830 831 for (i = 0; i < ct_ntypes; i++) { 832 dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]); 833 dst->lwp_ct_latest[i] = NULL; 834 } 835 } 836 837 /* 838 * Clear an LWP's contract template state. 839 */ 840 void 841 lwp_ctmpl_clear(klwp_t *lwp) 842 { 843 ct_template_t *tmpl; 844 int i; 845 846 for (i = 0; i < ct_ntypes; i++) { 847 if ((tmpl = lwp->lwp_ct_active[i]) != NULL) { 848 ctmpl_free(tmpl); 849 lwp->lwp_ct_active[i] = NULL; 850 } 851 852 if (lwp->lwp_ct_latest[i] != NULL) { 853 contract_rele(lwp->lwp_ct_latest[i]); 854 lwp->lwp_ct_latest[i] = NULL; 855 } 856 } 857 } 858 859 /* 860 * Individual lwp exit. 861 * If this is the last lwp, exit the whole process. 862 */ 863 void 864 lwp_exit(void) 865 { 866 kthread_t *t = curthread; 867 klwp_t *lwp = ttolwp(t); 868 proc_t *p = ttoproc(t); 869 870 ASSERT(MUTEX_HELD(&p->p_lock)); 871 872 mutex_exit(&p->p_lock); 873 874 #if defined(__sparc) 875 /* 876 * Ensure that the user stack is fully abandoned.. 877 */ 878 trash_user_windows(); 879 #endif 880 881 tsd_exit(); /* free thread specific data */ 882 883 kcpc_passivate(); /* Clean up performance counter state */ 884 885 pollcleanup(); 886 887 if (t->t_door) 888 door_slam(); 889 890 if (t->t_schedctl != NULL) 891 schedctl_lwp_cleanup(t); 892 893 if (t->t_upimutex != NULL) 894 upimutex_cleanup(); 895 896 /* 897 * Perform any brand specific exit processing, then release any 898 * brand data associated with the lwp 899 */ 900 if (PROC_IS_BRANDED(p)) 901 BROP(p)->b_lwpexit(lwp); 902 903 lwp_pcb_exit(); 904 905 mutex_enter(&p->p_lock); 906 lwp_cleanup(); 907 908 /* 909 * When this process is dumping core, its lwps are held here 910 * until the core dump is finished. Then exitlwps() is called 911 * again to release these lwps so that they can finish exiting. 912 */ 913 if (p->p_flag & SCOREDUMP) 914 stop(PR_SUSPENDED, SUSPEND_NORMAL); 915 916 /* 917 * Block the process against /proc now that we have really acquired 918 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least). 919 */ 920 prbarrier(p); 921 922 /* 923 * Call proc_exit() if this is the last non-daemon lwp in the process. 924 */ 925 if (!(t->t_proc_flag & TP_DAEMON) && 926 p->p_lwpcnt == p->p_lwpdaemon + 1) { 927 mutex_exit(&p->p_lock); 928 if (proc_exit(CLD_EXITED, 0) == 0) { 929 /* Restarting init. */ 930 return; 931 } 932 933 /* 934 * proc_exit() returns a non-zero value when some other 935 * lwp got there first. We just have to continue in 936 * lwp_exit(). 937 */ 938 mutex_enter(&p->p_lock); 939 ASSERT(curproc->p_flag & SEXITLWPS); 940 prbarrier(p); 941 } 942 943 DTRACE_PROC(lwp__exit); 944 945 /* 946 * If the lwp is a detached lwp or if the process is exiting, 947 * remove (lwp_hash_out()) the lwp from the lwp directory. 948 * Otherwise null out the lwp's le_thread pointer in the lwp 949 * directory so that other threads will see it as a zombie lwp. 950 */ 951 prlwpexit(t); /* notify /proc */ 952 if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS)) 953 lwp_hash_out(p, t->t_tid); 954 else { 955 ASSERT(!(t->t_proc_flag & TP_DAEMON)); 956 p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL; 957 p->p_zombcnt++; 958 cv_broadcast(&p->p_lwpexit); 959 } 960 if (t->t_proc_flag & TP_DAEMON) { 961 p->p_lwpdaemon--; 962 t->t_proc_flag &= ~TP_DAEMON; 963 } 964 t->t_proc_flag &= ~TP_TWAIT; 965 966 /* 967 * Maintain accurate lwp count for task.max-lwps resource control. 968 */ 969 mutex_enter(&p->p_zone->zone_nlwps_lock); 970 p->p_task->tk_nlwps--; 971 p->p_task->tk_proj->kpj_nlwps--; 972 p->p_zone->zone_nlwps--; 973 mutex_exit(&p->p_zone->zone_nlwps_lock); 974 975 CL_EXIT(t); /* tell the scheduler that t is exiting */ 976 ASSERT(p->p_lwpcnt != 0); 977 p->p_lwpcnt--; 978 979 /* 980 * If all remaining non-daemon lwps are waiting in lwp_wait(), 981 * wake them up so someone can return EDEADLK. 982 * (See the block comment preceeding lwp_wait().) 983 */ 984 if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait)) 985 cv_broadcast(&p->p_lwpexit); 986 987 t->t_proc_flag |= TP_LWPEXIT; 988 term_mstate(t); 989 990 t->t_forw->t_back = t->t_back; 991 t->t_back->t_forw = t->t_forw; 992 if (t == p->p_tlist) 993 p->p_tlist = t->t_forw; 994 995 /* 996 * Clean up the signal state. 997 */ 998 if (t->t_sigqueue != NULL) 999 sigdelq(p, t, 0); 1000 if (lwp->lwp_curinfo != NULL) { 1001 siginfofree(lwp->lwp_curinfo); 1002 lwp->lwp_curinfo = NULL; 1003 } 1004 1005 /* 1006 * If we have spymaster information (that is, if we're an agent LWP), 1007 * free that now. 1008 */ 1009 if (lwp->lwp_spymaster != NULL) { 1010 kmem_free(lwp->lwp_spymaster, sizeof (psinfo_t)); 1011 lwp->lwp_spymaster = NULL; 1012 } 1013 1014 thread_rele(t); 1015 1016 /* 1017 * Terminated lwps are associated with process zero and are put onto 1018 * death-row by resume(). Avoid preemption after resetting t->t_procp. 1019 */ 1020 t->t_preempt++; 1021 1022 if (t->t_ctx != NULL) 1023 exitctx(t); 1024 if (p->p_pctx != NULL) 1025 exitpctx(p); 1026 1027 t->t_procp = &p0; 1028 1029 /* 1030 * Notify the HAT about the change of address space 1031 */ 1032 hat_thread_exit(t); 1033 /* 1034 * When this is the last running lwp in this process and some lwp is 1035 * waiting for this condition to become true, or this thread was being 1036 * suspended, then the waiting lwp is awakened. 1037 * 1038 * Also, if the process is exiting, we may have a thread waiting in 1039 * exitlwps() that needs to be notified. 1040 */ 1041 if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) || 1042 (p->p_flag & SEXITLWPS)) 1043 cv_broadcast(&p->p_holdlwps); 1044 1045 /* 1046 * Need to drop p_lock so we can reacquire pidlock. 1047 */ 1048 mutex_exit(&p->p_lock); 1049 mutex_enter(&pidlock); 1050 1051 ASSERT(t != t->t_next); /* t0 never exits */ 1052 t->t_next->t_prev = t->t_prev; 1053 t->t_prev->t_next = t->t_next; 1054 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 1055 mutex_exit(&pidlock); 1056 1057 t->t_state = TS_ZOMB; 1058 swtch_from_zombie(); 1059 /* never returns */ 1060 } 1061 1062 1063 /* 1064 * Cleanup function for an exiting lwp. 1065 * Called both from lwp_exit() and from proc_exit(). 1066 * p->p_lock is repeatedly released and grabbed in this function. 1067 */ 1068 void 1069 lwp_cleanup(void) 1070 { 1071 kthread_t *t = curthread; 1072 proc_t *p = ttoproc(t); 1073 1074 ASSERT(MUTEX_HELD(&p->p_lock)); 1075 1076 /* untimeout any lwp-bound realtime timers */ 1077 if (p->p_itimer != NULL) 1078 timer_lwpexit(); 1079 1080 /* 1081 * If this is the /proc agent lwp that is exiting, readjust p_lwpid 1082 * so it appears that the agent never existed, and clear p_agenttp. 1083 */ 1084 if (t == p->p_agenttp) { 1085 ASSERT(t->t_tid == p->p_lwpid); 1086 p->p_lwpid--; 1087 p->p_agenttp = NULL; 1088 } 1089 1090 /* 1091 * Do lgroup bookkeeping to account for thread exiting. 1092 */ 1093 kpreempt_disable(); 1094 lgrp_move_thread(t, NULL, 1); 1095 if (t->t_tid == 1) { 1096 p->p_t1_lgrpid = LGRP_NONE; 1097 } 1098 kpreempt_enable(); 1099 1100 lwp_ctmpl_clear(ttolwp(t)); 1101 } 1102 1103 int 1104 lwp_suspend(kthread_t *t) 1105 { 1106 int tid; 1107 proc_t *p = ttoproc(t); 1108 1109 ASSERT(MUTEX_HELD(&p->p_lock)); 1110 1111 /* 1112 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp(). 1113 * If an lwp is stopping itself, there is no need to wait. 1114 */ 1115 top: 1116 t->t_proc_flag |= TP_HOLDLWP; 1117 if (t == curthread) { 1118 t->t_sig_check = 1; 1119 } else { 1120 /* 1121 * Make sure the lwp stops promptly. 1122 */ 1123 thread_lock(t); 1124 t->t_sig_check = 1; 1125 /* 1126 * XXX Should use virtual stop like /proc does instead of 1127 * XXX waking the thread to get it to stop. 1128 */ 1129 if (ISWAKEABLE(t) || ISWAITING(t)) { 1130 setrun_locked(t); 1131 } else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) { 1132 poke_cpu(t->t_cpu->cpu_id); 1133 } 1134 1135 tid = t->t_tid; /* remember thread ID */ 1136 /* 1137 * Wait for lwp to stop 1138 */ 1139 while (!SUSPENDED(t)) { 1140 /* 1141 * Drop the thread lock before waiting and reacquire it 1142 * afterwards, so the thread can change its t_state 1143 * field. 1144 */ 1145 thread_unlock(t); 1146 1147 /* 1148 * Check if aborted by exitlwps(). 1149 */ 1150 if (p->p_flag & SEXITLWPS) 1151 lwp_exit(); 1152 1153 /* 1154 * Cooperate with jobcontrol signals and /proc stopping 1155 * by calling cv_wait_sig() to wait for the target 1156 * lwp to stop. Just using cv_wait() can lead to 1157 * deadlock because, if some other lwp has stopped 1158 * by either of these mechanisms, then p_lwprcnt will 1159 * never become zero if we do a cv_wait(). 1160 */ 1161 if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock)) 1162 return (EINTR); 1163 1164 /* 1165 * Check to see if thread died while we were 1166 * waiting for it to suspend. 1167 */ 1168 if (idtot(p, tid) == NULL) 1169 return (ESRCH); 1170 1171 thread_lock(t); 1172 /* 1173 * If the TP_HOLDLWP flag went away, lwp_continue() 1174 * or vfork() must have been called while we were 1175 * waiting, so start over again. 1176 */ 1177 if ((t->t_proc_flag & TP_HOLDLWP) == 0) { 1178 thread_unlock(t); 1179 goto top; 1180 } 1181 } 1182 thread_unlock(t); 1183 } 1184 return (0); 1185 } 1186 1187 /* 1188 * continue a lwp that's been stopped by lwp_suspend(). 1189 */ 1190 void 1191 lwp_continue(kthread_t *t) 1192 { 1193 proc_t *p = ttoproc(t); 1194 int was_suspended = t->t_proc_flag & TP_HOLDLWP; 1195 1196 ASSERT(MUTEX_HELD(&p->p_lock)); 1197 1198 t->t_proc_flag &= ~TP_HOLDLWP; 1199 thread_lock(t); 1200 if (SUSPENDED(t) && 1201 !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) { 1202 p->p_lwprcnt++; 1203 t->t_schedflag |= TS_CSTART; 1204 setrun_locked(t); 1205 } 1206 thread_unlock(t); 1207 /* 1208 * Wakeup anyone waiting for this thread to be suspended 1209 */ 1210 if (was_suspended) 1211 cv_broadcast(&p->p_holdlwps); 1212 } 1213 1214 /* 1215 * ******************************** 1216 * Miscellaneous lwp routines * 1217 * ******************************** 1218 */ 1219 /* 1220 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK. 1221 * This will cause the process's lwps to stop at a hold point. A hold 1222 * point is where a kernel thread has a flat stack. This is at the 1223 * return from a system call and at the return from a user level trap. 1224 * 1225 * When a process is undergoing a fork1() or vfork(), its p_flag is set to 1226 * SHOLDFORK1. This will cause the process's lwps to stop at a modified 1227 * hold point. The lwps in the process are not being cloned, so they 1228 * are held at the usual hold points and also within issig_forreal(). 1229 * This has the side-effect that their system calls do not return 1230 * showing EINTR. 1231 * 1232 * An lwp can also be held. This is identified by the TP_HOLDLWP flag on 1233 * the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active 1234 * lwp is waiting for the target lwp to be stopped. 1235 */ 1236 void 1237 holdlwp(void) 1238 { 1239 proc_t *p = curproc; 1240 kthread_t *t = curthread; 1241 1242 mutex_enter(&p->p_lock); 1243 /* 1244 * Don't terminate immediately if the process is dumping core. 1245 * Once the process has dumped core, all lwps are terminated. 1246 */ 1247 if (!(p->p_flag & SCOREDUMP)) { 1248 if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP)) 1249 lwp_exit(); 1250 } 1251 if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) { 1252 mutex_exit(&p->p_lock); 1253 return; 1254 } 1255 /* 1256 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps 1257 * when p->p_lwprcnt becomes zero. 1258 */ 1259 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1260 if (p->p_flag & SEXITLWPS) 1261 lwp_exit(); 1262 mutex_exit(&p->p_lock); 1263 } 1264 1265 /* 1266 * Have all lwps within the process hold at a point where they are 1267 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1). 1268 */ 1269 int 1270 holdlwps(int holdflag) 1271 { 1272 proc_t *p = curproc; 1273 1274 ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1); 1275 mutex_enter(&p->p_lock); 1276 schedctl_finish_sigblock(curthread); 1277 again: 1278 while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1279 /* 1280 * If another lwp is doing a forkall() or proc_exit(), bail out. 1281 */ 1282 if (p->p_flag & (SEXITLWPS | SHOLDFORK)) { 1283 mutex_exit(&p->p_lock); 1284 return (0); 1285 } 1286 /* 1287 * Another lwp is doing a fork1() or is undergoing 1288 * watchpoint activity. We hold here for it to complete. 1289 */ 1290 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1291 } 1292 p->p_flag |= holdflag; 1293 pokelwps(p); 1294 --p->p_lwprcnt; 1295 /* 1296 * Wait for the process to become quiescent (p->p_lwprcnt == 0). 1297 */ 1298 while (p->p_lwprcnt > 0) { 1299 /* 1300 * Check if aborted by exitlwps(). 1301 * Also check if SHOLDWATCH is set; it takes precedence. 1302 */ 1303 if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) { 1304 p->p_lwprcnt++; 1305 p->p_flag &= ~holdflag; 1306 cv_broadcast(&p->p_holdlwps); 1307 goto again; 1308 } 1309 /* 1310 * Cooperate with jobcontrol signals and /proc stopping. 1311 * If some other lwp has stopped by either of these 1312 * mechanisms, then p_lwprcnt will never become zero 1313 * and the process will appear deadlocked unless we 1314 * stop here in sympathy with the other lwp before 1315 * doing the cv_wait() below. 1316 * 1317 * If the other lwp stops after we do the cv_wait(), it 1318 * will wake us up to loop around and do the sympathy stop. 1319 * 1320 * Since stop() drops p->p_lock, we must start from 1321 * the top again on returning from stop(). 1322 */ 1323 if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) { 1324 int whystop = p->p_stopsig? PR_JOBCONTROL : 1325 PR_REQUESTED; 1326 p->p_lwprcnt++; 1327 p->p_flag &= ~holdflag; 1328 stop(whystop, p->p_stopsig); 1329 goto again; 1330 } 1331 cv_wait(&p->p_holdlwps, &p->p_lock); 1332 } 1333 p->p_lwprcnt++; 1334 p->p_flag &= ~holdflag; 1335 mutex_exit(&p->p_lock); 1336 return (1); 1337 } 1338 1339 /* 1340 * See comments for holdwatch(), below. 1341 */ 1342 static int 1343 holdcheck(int clearflags) 1344 { 1345 proc_t *p = curproc; 1346 1347 /* 1348 * If we are trying to exit, that takes precedence over anything else. 1349 */ 1350 if (p->p_flag & SEXITLWPS) { 1351 p->p_lwprcnt++; 1352 p->p_flag &= ~clearflags; 1353 lwp_exit(); 1354 } 1355 1356 /* 1357 * If another thread is calling fork1(), stop the current thread so the 1358 * other can complete. 1359 */ 1360 if (p->p_flag & SHOLDFORK1) { 1361 p->p_lwprcnt++; 1362 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1363 if (p->p_flag & SEXITLWPS) { 1364 p->p_flag &= ~clearflags; 1365 lwp_exit(); 1366 } 1367 return (-1); 1368 } 1369 1370 /* 1371 * If another thread is calling fork(), then indicate we are doing 1372 * watchpoint activity. This will cause holdlwps() above to stop the 1373 * forking thread, at which point we can continue with watchpoint 1374 * activity. 1375 */ 1376 if (p->p_flag & SHOLDFORK) { 1377 p->p_lwprcnt++; 1378 while (p->p_flag & SHOLDFORK) { 1379 p->p_flag |= SHOLDWATCH; 1380 cv_broadcast(&p->p_holdlwps); 1381 cv_wait(&p->p_holdlwps, &p->p_lock); 1382 p->p_flag &= ~SHOLDWATCH; 1383 } 1384 return (-1); 1385 } 1386 1387 return (0); 1388 } 1389 1390 /* 1391 * Stop all lwps within the process, holding themselves in the kernel while the 1392 * active lwp undergoes watchpoint activity. This is more complicated than 1393 * expected because stop() relies on calling holdwatch() in order to copyin data 1394 * from the user's address space. A double barrier is used to prevent an 1395 * infinite loop. 1396 * 1397 * o The first thread into holdwatch() is the 'master' thread and does 1398 * the following: 1399 * 1400 * - Sets SHOLDWATCH on the current process 1401 * - Sets TP_WATCHSTOP on the current thread 1402 * - Waits for all threads to be either stopped or have 1403 * TP_WATCHSTOP set. 1404 * - Sets the SWATCHOK flag on the process 1405 * - Unsets TP_WATCHSTOP 1406 * - Waits for the other threads to completely stop 1407 * - Unsets SWATCHOK 1408 * 1409 * o If SHOLDWATCH is already set when we enter this function, then another 1410 * thread is already trying to stop this thread. This 'slave' thread 1411 * does the following: 1412 * 1413 * - Sets TP_WATCHSTOP on the current thread 1414 * - Waits for SWATCHOK flag to be set 1415 * - Calls stop() 1416 * 1417 * o If SWATCHOK is set on the process, then this function immediately 1418 * returns, as we must have been called via stop(). 1419 * 1420 * In addition, there are other flags that take precedence over SHOLDWATCH: 1421 * 1422 * o If SEXITLWPS is set, exit immediately. 1423 * 1424 * o If SHOLDFORK1 is set, wait for fork1() to complete. 1425 * 1426 * o If SHOLDFORK is set, then watchpoint activity takes precedence In this 1427 * case, set SHOLDWATCH, signalling the forking thread to stop first. 1428 * 1429 * o If the process is being stopped via /proc (TP_PRSTOP is set), then we 1430 * stop the current thread. 1431 * 1432 * Returns 0 if all threads have been quiesced. Returns non-zero if not all 1433 * threads were stopped, or the list of watched pages has changed. 1434 */ 1435 int 1436 holdwatch(void) 1437 { 1438 proc_t *p = curproc; 1439 kthread_t *t = curthread; 1440 int ret = 0; 1441 1442 mutex_enter(&p->p_lock); 1443 1444 p->p_lwprcnt--; 1445 1446 /* 1447 * Check for bail-out conditions as outlined above. 1448 */ 1449 if (holdcheck(0) != 0) { 1450 mutex_exit(&p->p_lock); 1451 return (-1); 1452 } 1453 1454 if (!(p->p_flag & SHOLDWATCH)) { 1455 /* 1456 * We are the master watchpoint thread. Set SHOLDWATCH and poke 1457 * the other threads. 1458 */ 1459 p->p_flag |= SHOLDWATCH; 1460 pokelwps(p); 1461 1462 /* 1463 * Wait for all threads to be stopped or have TP_WATCHSTOP set. 1464 */ 1465 while (pr_allstopped(p, 1) > 0) { 1466 if (holdcheck(SHOLDWATCH) != 0) { 1467 p->p_flag &= ~SHOLDWATCH; 1468 mutex_exit(&p->p_lock); 1469 return (-1); 1470 } 1471 1472 cv_wait(&p->p_holdlwps, &p->p_lock); 1473 } 1474 1475 /* 1476 * All threads are now stopped or in the process of stopping. 1477 * Set SWATCHOK and let them stop completely. 1478 */ 1479 p->p_flag |= SWATCHOK; 1480 t->t_proc_flag &= ~TP_WATCHSTOP; 1481 cv_broadcast(&p->p_holdlwps); 1482 1483 while (pr_allstopped(p, 0) > 0) { 1484 /* 1485 * At first glance, it may appear that we don't need a 1486 * call to holdcheck() here. But if the process gets a 1487 * SIGKILL signal, one of our stopped threads may have 1488 * been awakened and is waiting in exitlwps(), which 1489 * takes precedence over watchpoints. 1490 */ 1491 if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) { 1492 p->p_flag &= ~(SHOLDWATCH | SWATCHOK); 1493 mutex_exit(&p->p_lock); 1494 return (-1); 1495 } 1496 1497 cv_wait(&p->p_holdlwps, &p->p_lock); 1498 } 1499 1500 /* 1501 * All threads are now completely stopped. 1502 */ 1503 p->p_flag &= ~SWATCHOK; 1504 p->p_flag &= ~SHOLDWATCH; 1505 p->p_lwprcnt++; 1506 1507 } else if (!(p->p_flag & SWATCHOK)) { 1508 1509 /* 1510 * SHOLDWATCH is set, so another thread is trying to do 1511 * watchpoint activity. Indicate this thread is stopping, and 1512 * wait for the OK from the master thread. 1513 */ 1514 t->t_proc_flag |= TP_WATCHSTOP; 1515 cv_broadcast(&p->p_holdlwps); 1516 1517 while (!(p->p_flag & SWATCHOK)) { 1518 if (holdcheck(0) != 0) { 1519 t->t_proc_flag &= ~TP_WATCHSTOP; 1520 mutex_exit(&p->p_lock); 1521 return (-1); 1522 } 1523 1524 cv_wait(&p->p_holdlwps, &p->p_lock); 1525 } 1526 1527 /* 1528 * Once the master thread has given the OK, this thread can 1529 * actually call stop(). 1530 */ 1531 t->t_proc_flag &= ~TP_WATCHSTOP; 1532 p->p_lwprcnt++; 1533 1534 stop(PR_SUSPENDED, SUSPEND_NORMAL); 1535 1536 /* 1537 * It's not OK to do watchpoint activity, notify caller to 1538 * retry. 1539 */ 1540 ret = -1; 1541 1542 } else { 1543 1544 /* 1545 * The only way we can hit the case where SHOLDWATCH is set and 1546 * SWATCHOK is set is if we are triggering this from within a 1547 * stop() call. Assert that this is the case. 1548 */ 1549 1550 ASSERT(t->t_proc_flag & TP_STOPPING); 1551 p->p_lwprcnt++; 1552 } 1553 1554 mutex_exit(&p->p_lock); 1555 1556 return (ret); 1557 } 1558 1559 /* 1560 * force all interruptible lwps to trap into the kernel. 1561 */ 1562 void 1563 pokelwps(proc_t *p) 1564 { 1565 kthread_t *t; 1566 1567 ASSERT(MUTEX_HELD(&p->p_lock)); 1568 1569 t = p->p_tlist; 1570 do { 1571 if (t == curthread) 1572 continue; 1573 thread_lock(t); 1574 aston(t); /* make thread trap or do post_syscall */ 1575 if (ISWAKEABLE(t) || ISWAITING(t)) { 1576 setrun_locked(t); 1577 } else if (t->t_state == TS_STOPPED) { 1578 /* 1579 * Ensure that proc_exit() is not blocked by lwps 1580 * that were stopped via jobcontrol or /proc. 1581 */ 1582 if (p->p_flag & SEXITLWPS) { 1583 p->p_stopsig = 0; 1584 t->t_schedflag |= (TS_XSTART | TS_PSTART); 1585 setrun_locked(t); 1586 } 1587 /* 1588 * If we are holding lwps for a forkall(), 1589 * force lwps that have been suspended via 1590 * lwp_suspend() and are suspended inside 1591 * of a system call to proceed to their 1592 * holdlwp() points where they are clonable. 1593 */ 1594 if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) { 1595 if ((t->t_schedflag & TS_CSTART) == 0) { 1596 p->p_lwprcnt++; 1597 t->t_schedflag |= TS_CSTART; 1598 setrun_locked(t); 1599 } 1600 } 1601 } else if (t->t_state == TS_ONPROC) { 1602 if (t->t_cpu != CPU) 1603 poke_cpu(t->t_cpu->cpu_id); 1604 } 1605 thread_unlock(t); 1606 } while ((t = t->t_forw) != p->p_tlist); 1607 } 1608 1609 /* 1610 * Set the schedbits on the process' stopped threads and try running them. 1611 * 1612 * runlwps() is mainly useful to get a stopped process running in order to 1613 * witness an event such as SIGKILL. It operates on stopped threads without 1614 * regard to t_whystop or p_flag; callers must ensure that this is acceptable in 1615 * combination with the schedbits to be set on those threads. 1616 */ 1617 void 1618 runlwps(proc_t *p, ushort_t schedbits) 1619 { 1620 kthread_t *t; 1621 1622 ASSERT(MUTEX_HELD(&p->p_lock)); 1623 1624 p->p_stopsig = 0; 1625 t = p->p_tlist; 1626 1627 do { 1628 thread_lock(t); 1629 if (t->t_state == TS_STOPPED) { 1630 t->t_dtrace_stop = 0; 1631 t->t_schedflag |= schedbits; 1632 setrun_locked(t); 1633 } 1634 thread_unlock(t); 1635 } while ((t = t->t_forw) != p->p_tlist); 1636 } 1637 1638 /* 1639 * undo the effects of holdlwps() or holdwatch(). 1640 */ 1641 void 1642 continuelwps(proc_t *p) 1643 { 1644 kthread_t *t; 1645 1646 /* 1647 * If this flag is set, then the original holdwatch() didn't actually 1648 * stop the process. See comments for holdwatch(). 1649 */ 1650 if (p->p_flag & SWATCHOK) { 1651 ASSERT(curthread->t_proc_flag & TP_STOPPING); 1652 return; 1653 } 1654 1655 ASSERT(MUTEX_HELD(&p->p_lock)); 1656 ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0); 1657 1658 t = p->p_tlist; 1659 do { 1660 thread_lock(t); /* SUSPENDED looks at t_schedflag */ 1661 if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) { 1662 p->p_lwprcnt++; 1663 t->t_schedflag |= TS_CSTART; 1664 setrun_locked(t); 1665 } 1666 thread_unlock(t); 1667 } while ((t = t->t_forw) != p->p_tlist); 1668 } 1669 1670 /* 1671 * Force all other LWPs in the current process other than the caller to exit, 1672 * and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function 1673 * is typically used in these situations: 1674 * 1675 * (a) prior to an exec() system call 1676 * (b) prior to dumping a core file 1677 * (c) prior to a uadmin() shutdown 1678 * 1679 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed. 1680 * Multiple threads in the process can call this function at one time by 1681 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used 1682 * to declare one particular thread the winner who gets to kill the others. 1683 * If a thread wins the exitlwps() dance, zero is returned; otherwise an 1684 * appropriate errno value is returned to caller for its system call to return. 1685 */ 1686 int 1687 exitlwps(int coredump) 1688 { 1689 proc_t *p = curproc; 1690 int heldcnt; 1691 1692 if (curthread->t_door) 1693 door_slam(); 1694 if (p->p_door_list) 1695 door_revoke_all(); 1696 if (curthread->t_schedctl != NULL) 1697 schedctl_lwp_cleanup(curthread); 1698 1699 /* 1700 * Ensure that before starting to wait for other lwps to exit, 1701 * cleanup all upimutexes held by curthread. Otherwise, some other 1702 * lwp could be waiting (uninterruptibly) for a upimutex held by 1703 * curthread, and the call to pokelwps() below would deadlock. 1704 * Even if a blocked upimutex_lock is made interruptible, 1705 * curthread's upimutexes need to be unlocked: do it here. 1706 */ 1707 if (curthread->t_upimutex != NULL) 1708 upimutex_cleanup(); 1709 1710 /* 1711 * Grab p_lock in order to check and set SEXITLWPS to declare a winner. 1712 * We must also block any further /proc access from this point forward. 1713 */ 1714 mutex_enter(&p->p_lock); 1715 prbarrier(p); 1716 1717 if (p->p_flag & SEXITLWPS) { 1718 mutex_exit(&p->p_lock); 1719 aston(curthread); /* force a trip through post_syscall */ 1720 return (set_errno(EINTR)); 1721 } 1722 1723 p->p_flag |= SEXITLWPS; 1724 if (coredump) /* tell other lwps to stop, not exit */ 1725 p->p_flag |= SCOREDUMP; 1726 1727 /* 1728 * Give precedence to exitlwps() if a holdlwps() is 1729 * in progress. The lwp doing the holdlwps() operation 1730 * is aborted when it is awakened. 1731 */ 1732 while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) { 1733 cv_broadcast(&p->p_holdlwps); 1734 cv_wait(&p->p_holdlwps, &p->p_lock); 1735 prbarrier(p); 1736 } 1737 p->p_flag |= SHOLDFORK; 1738 pokelwps(p); 1739 1740 /* 1741 * Wait for process to become quiescent. 1742 */ 1743 --p->p_lwprcnt; 1744 while (p->p_lwprcnt > 0) { 1745 cv_wait(&p->p_holdlwps, &p->p_lock); 1746 prbarrier(p); 1747 } 1748 p->p_lwprcnt++; 1749 ASSERT(p->p_lwprcnt == 1); 1750 1751 /* 1752 * The SCOREDUMP flag puts the process into a quiescent 1753 * state. The process's lwps remain attached to this 1754 * process until exitlwps() is called again without the 1755 * 'coredump' flag set, then the lwps are terminated 1756 * and the process can exit. 1757 */ 1758 if (coredump) { 1759 p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS); 1760 goto out; 1761 } 1762 1763 /* 1764 * Determine if there are any lwps left dangling in 1765 * the stopped state. This happens when exitlwps() 1766 * aborts a holdlwps() operation. 1767 */ 1768 p->p_flag &= ~SHOLDFORK; 1769 if ((heldcnt = p->p_lwpcnt) > 1) { 1770 kthread_t *t; 1771 for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) { 1772 t->t_proc_flag &= ~TP_TWAIT; 1773 lwp_continue(t); 1774 } 1775 } 1776 1777 /* 1778 * Wait for all other lwps to exit. 1779 */ 1780 --p->p_lwprcnt; 1781 while (p->p_lwpcnt > 1) { 1782 cv_wait(&p->p_holdlwps, &p->p_lock); 1783 prbarrier(p); 1784 } 1785 ++p->p_lwprcnt; 1786 ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1); 1787 1788 p->p_flag &= ~SEXITLWPS; 1789 curthread->t_proc_flag &= ~TP_TWAIT; 1790 1791 out: 1792 if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */ 1793 lwpdir_t *ldp; 1794 lwpent_t *lep; 1795 int i; 1796 1797 for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) { 1798 lep = ldp->ld_entry; 1799 if (lep != NULL && lep->le_thread != curthread) { 1800 ASSERT(lep->le_thread == NULL); 1801 p->p_zombcnt--; 1802 lwp_hash_out(p, lep->le_lwpid); 1803 } 1804 } 1805 ASSERT(p->p_zombcnt == 0); 1806 } 1807 1808 /* 1809 * If some other LWP in the process wanted us to suspend ourself, 1810 * then we will not do it. The other LWP is now terminated and 1811 * no one will ever continue us again if we suspend ourself. 1812 */ 1813 curthread->t_proc_flag &= ~TP_HOLDLWP; 1814 p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP); 1815 mutex_exit(&p->p_lock); 1816 return (0); 1817 } 1818 1819 /* 1820 * duplicate a lwp. 1821 */ 1822 klwp_t * 1823 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid) 1824 { 1825 klwp_t *clwp; 1826 void *tregs, *tfpu; 1827 kthread_t *t = lwptot(lwp); 1828 kthread_t *ct; 1829 proc_t *p = lwptoproc(lwp); 1830 int cid; 1831 void *bufp; 1832 void *brand_data; 1833 int val; 1834 1835 ASSERT(p == curproc); 1836 ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0)); 1837 1838 #if defined(__sparc) 1839 if (t == curthread) 1840 (void) flush_user_windows_to_stack(NULL); 1841 #endif 1842 1843 if (t == curthread) 1844 /* copy args out of registers first */ 1845 (void) save_syscall_args(); 1846 1847 clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt, 1848 NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid); 1849 if (clwp == NULL) 1850 return (NULL); 1851 1852 /* 1853 * most of the parent's lwp can be copied to its duplicate, 1854 * except for the fields that are unique to each lwp, like 1855 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap. 1856 */ 1857 ct = clwp->lwp_thread; 1858 tregs = clwp->lwp_regs; 1859 tfpu = clwp->lwp_fpu; 1860 brand_data = clwp->lwp_brand; 1861 1862 /* 1863 * Copy parent lwp to child lwp. Hold child's p_lock to prevent 1864 * mstate_aggr_state() from reading stale mstate entries copied 1865 * from lwp to clwp. 1866 */ 1867 mutex_enter(&cp->p_lock); 1868 *clwp = *lwp; 1869 1870 /* clear microstate and resource usage data in new lwp */ 1871 init_mstate(ct, LMS_STOPPED); 1872 bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru)); 1873 mutex_exit(&cp->p_lock); 1874 1875 /* fix up child's lwp */ 1876 1877 clwp->lwp_pcb.pcb_flags = 0; 1878 #if defined(__sparc) 1879 clwp->lwp_pcb.pcb_step = STEP_NONE; 1880 #endif 1881 clwp->lwp_cursig = 0; 1882 clwp->lwp_extsig = 0; 1883 clwp->lwp_curinfo = (struct sigqueue *)0; 1884 clwp->lwp_thread = ct; 1885 ct->t_sysnum = t->t_sysnum; 1886 clwp->lwp_regs = tregs; 1887 clwp->lwp_fpu = tfpu; 1888 clwp->lwp_brand = brand_data; 1889 clwp->lwp_ap = clwp->lwp_arg; 1890 clwp->lwp_procp = cp; 1891 bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer)); 1892 clwp->lwp_lastfault = 0; 1893 clwp->lwp_lastfaddr = 0; 1894 1895 /* copy parent's struct regs to child. */ 1896 lwp_forkregs(lwp, clwp); 1897 1898 /* 1899 * Fork thread context ops, if any. 1900 */ 1901 if (t->t_ctx) 1902 forkctx(t, ct); 1903 1904 /* fix door state in the child */ 1905 if (t->t_door) 1906 door_fork(t, ct); 1907 1908 /* copy current contract templates, clear latest contracts */ 1909 lwp_ctmpl_copy(clwp, lwp); 1910 1911 mutex_enter(&cp->p_lock); 1912 /* lwp_create() set the TP_HOLDLWP flag */ 1913 if (!(t->t_proc_flag & TP_HOLDLWP)) 1914 ct->t_proc_flag &= ~TP_HOLDLWP; 1915 if (cp->p_flag & SMSACCT) 1916 ct->t_proc_flag |= TP_MSACCT; 1917 mutex_exit(&cp->p_lock); 1918 1919 /* Allow brand to propagate brand-specific state */ 1920 if (PROC_IS_BRANDED(p)) 1921 BROP(p)->b_forklwp(lwp, clwp); 1922 1923 retry: 1924 cid = t->t_cid; 1925 1926 val = CL_ALLOC(&bufp, cid, KM_SLEEP); 1927 ASSERT(val == 0); 1928 1929 mutex_enter(&p->p_lock); 1930 if (cid != t->t_cid) { 1931 /* 1932 * Someone just changed this thread's scheduling class, 1933 * so try pre-allocating the buffer again. Hopefully we 1934 * don't hit this often. 1935 */ 1936 mutex_exit(&p->p_lock); 1937 CL_FREE(cid, bufp); 1938 goto retry; 1939 } 1940 1941 ct->t_unpark = t->t_unpark; 1942 ct->t_clfuncs = t->t_clfuncs; 1943 CL_FORK(t, ct, bufp); 1944 ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */ 1945 mutex_exit(&p->p_lock); 1946 1947 return (clwp); 1948 } 1949 1950 /* 1951 * Add a new lwp entry to the lwp directory and to the lwpid hash table. 1952 */ 1953 void 1954 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz, 1955 int do_lock) 1956 { 1957 tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)]; 1958 lwpdir_t **ldpp; 1959 lwpdir_t *ldp; 1960 kthread_t *t; 1961 1962 /* 1963 * Allocate a directory element from the free list. 1964 * Code elsewhere guarantees a free slot. 1965 */ 1966 ldp = p->p_lwpfree; 1967 p->p_lwpfree = ldp->ld_next; 1968 ASSERT(ldp->ld_entry == NULL); 1969 ldp->ld_entry = lep; 1970 1971 if (do_lock) 1972 mutex_enter(&thp->th_lock); 1973 1974 /* 1975 * Insert it into the lwpid hash table. 1976 */ 1977 ldpp = &thp->th_list; 1978 ldp->ld_next = *ldpp; 1979 *ldpp = ldp; 1980 1981 /* 1982 * Set the active thread's directory slot entry. 1983 */ 1984 if ((t = lep->le_thread) != NULL) { 1985 ASSERT(lep->le_lwpid == t->t_tid); 1986 t->t_dslot = (int)(ldp - p->p_lwpdir); 1987 } 1988 1989 if (do_lock) 1990 mutex_exit(&thp->th_lock); 1991 } 1992 1993 /* 1994 * Remove an lwp from the lwpid hash table and free its directory entry. 1995 * This is done when a detached lwp exits in lwp_exit() or 1996 * when a non-detached lwp is waited for in lwp_wait() or 1997 * when a zombie lwp is detached in lwp_detach(). 1998 */ 1999 void 2000 lwp_hash_out(proc_t *p, id_t lwpid) 2001 { 2002 tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 2003 lwpdir_t **ldpp; 2004 lwpdir_t *ldp; 2005 lwpent_t *lep; 2006 2007 mutex_enter(&thp->th_lock); 2008 for (ldpp = &thp->th_list; 2009 (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) { 2010 lep = ldp->ld_entry; 2011 if (lep->le_lwpid == lwpid) { 2012 prlwpfree(p, lep); /* /proc deals with le_trace */ 2013 *ldpp = ldp->ld_next; 2014 ldp->ld_entry = NULL; 2015 ldp->ld_next = p->p_lwpfree; 2016 p->p_lwpfree = ldp; 2017 kmem_free(lep, sizeof (*lep)); 2018 break; 2019 } 2020 } 2021 mutex_exit(&thp->th_lock); 2022 } 2023 2024 /* 2025 * Lookup an lwp in the lwpid hash table by lwpid. 2026 */ 2027 lwpdir_t * 2028 lwp_hash_lookup(proc_t *p, id_t lwpid) 2029 { 2030 tidhash_t *thp; 2031 lwpdir_t *ldp; 2032 2033 /* 2034 * The process may be exiting, after p_tidhash has been set to NULL in 2035 * proc_exit() but before prfee() has been called. Return failure in 2036 * this case. 2037 */ 2038 if (p->p_tidhash == NULL) 2039 return (NULL); 2040 2041 thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)]; 2042 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2043 if (ldp->ld_entry->le_lwpid == lwpid) 2044 return (ldp); 2045 } 2046 2047 return (NULL); 2048 } 2049 2050 /* 2051 * Same as lwp_hash_lookup(), but acquire and return 2052 * the tid hash table entry lock on success. 2053 */ 2054 lwpdir_t * 2055 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp) 2056 { 2057 tidhash_t *tidhash; 2058 uint_t tidhash_sz; 2059 tidhash_t *thp; 2060 lwpdir_t *ldp; 2061 2062 top: 2063 tidhash_sz = p->p_tidhash_sz; 2064 membar_consumer(); 2065 if ((tidhash = p->p_tidhash) == NULL) 2066 return (NULL); 2067 2068 thp = &tidhash[TIDHASH(lwpid, tidhash_sz)]; 2069 mutex_enter(&thp->th_lock); 2070 2071 /* 2072 * Since we are not holding p->p_lock, the tid hash table 2073 * may have changed. If so, start over. If not, then 2074 * it cannot change until after we drop &thp->th_lock; 2075 */ 2076 if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) { 2077 mutex_exit(&thp->th_lock); 2078 goto top; 2079 } 2080 2081 for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) { 2082 if (ldp->ld_entry->le_lwpid == lwpid) { 2083 *mpp = &thp->th_lock; 2084 return (ldp); 2085 } 2086 } 2087 2088 mutex_exit(&thp->th_lock); 2089 return (NULL); 2090 } 2091 2092 /* 2093 * Update the indicated LWP usage statistic for the current LWP. 2094 */ 2095 void 2096 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc) 2097 { 2098 klwp_t *lwp = ttolwp(curthread); 2099 2100 if (lwp == NULL) 2101 return; 2102 2103 switch (lwp_stat_id) { 2104 case LWP_STAT_INBLK: 2105 lwp->lwp_ru.inblock += inc; 2106 break; 2107 case LWP_STAT_OUBLK: 2108 lwp->lwp_ru.oublock += inc; 2109 break; 2110 case LWP_STAT_MSGRCV: 2111 lwp->lwp_ru.msgrcv += inc; 2112 break; 2113 case LWP_STAT_MSGSND: 2114 lwp->lwp_ru.msgsnd += inc; 2115 break; 2116 default: 2117 panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id); 2118 } 2119 } 2120