xref: /illumos-gate/usr/src/uts/common/os/lwp.c (revision 4eaa471005973e11a6110b69fe990530b3b95a38)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/systm.h>
31 #include <sys/thread.h>
32 #include <sys/proc.h>
33 #include <sys/task.h>
34 #include <sys/project.h>
35 #include <sys/signal.h>
36 #include <sys/errno.h>
37 #include <sys/vmparam.h>
38 #include <sys/stack.h>
39 #include <sys/procfs.h>
40 #include <sys/prsystm.h>
41 #include <sys/cpuvar.h>
42 #include <sys/kmem.h>
43 #include <sys/vtrace.h>
44 #include <sys/door.h>
45 #include <vm/seg_kp.h>
46 #include <sys/debug.h>
47 #include <sys/tnf.h>
48 #include <sys/schedctl.h>
49 #include <sys/poll.h>
50 #include <sys/copyops.h>
51 #include <sys/lwp_upimutex_impl.h>
52 #include <sys/cpupart.h>
53 #include <sys/lgrp.h>
54 #include <sys/rctl.h>
55 #include <sys/contract_impl.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/sdt.h>
58 #include <sys/cmn_err.h>
59 #include <sys/brand.h>
60 #include <sys/cyclic.h>
61 
62 /* hash function for the lwpid hash table, p->p_tidhash[] */
63 #define	TIDHASH(tid, hash_sz)	((tid) & ((hash_sz) - 1))
64 
65 void *segkp_lwp;		/* cookie for pool of segkp resources */
66 extern void reapq_move_lq_to_tq(kthread_t *);
67 extern void freectx_ctx(struct ctxop *);
68 
69 /*
70  * Create a thread that appears to be stopped at sys_rtt.
71  */
72 klwp_t *
73 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p,
74     int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid)
75 {
76 	klwp_t *lwp = NULL;
77 	kthread_t *t;
78 	kthread_t *tx;
79 	cpupart_t *oldpart = NULL;
80 	size_t	stksize;
81 	caddr_t lwpdata = NULL;
82 	processorid_t	binding;
83 	int err = 0;
84 	kproject_t *oldkpj, *newkpj;
85 	void *bufp = NULL;
86 	klwp_t *curlwp = ttolwp(curthread);
87 	lwpent_t *lep;
88 	lwpdir_t *old_dir = NULL;
89 	uint_t old_dirsz = 0;
90 	tidhash_t *old_hash = NULL;
91 	uint_t old_hashsz = 0;
92 	ret_tidhash_t *ret_tidhash = NULL;
93 	int i;
94 	int rctlfail = 0;
95 	boolean_t branded = 0;
96 	struct ctxop *ctx = NULL;
97 
98 	mutex_enter(&p->p_lock);
99 	mutex_enter(&p->p_zone->zone_nlwps_lock);
100 	/*
101 	 * don't enforce rctl limits on system processes
102 	 */
103 	if (cid != syscid) {
104 		if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl)
105 			if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p,
106 			    1, 0) & RCT_DENY)
107 				rctlfail = 1;
108 		if (p->p_task->tk_proj->kpj_nlwps >=
109 		    p->p_task->tk_proj->kpj_nlwps_ctl)
110 			if (rctl_test(rc_project_nlwps,
111 			    p->p_task->tk_proj->kpj_rctls, p, 1, 0)
112 			    & RCT_DENY)
113 				rctlfail = 1;
114 		if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl)
115 			if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p,
116 			    1, 0) & RCT_DENY)
117 				rctlfail = 1;
118 	}
119 	if (rctlfail) {
120 		mutex_exit(&p->p_zone->zone_nlwps_lock);
121 		mutex_exit(&p->p_lock);
122 		return (NULL);
123 	}
124 	p->p_task->tk_nlwps++;
125 	p->p_task->tk_proj->kpj_nlwps++;
126 	p->p_zone->zone_nlwps++;
127 	mutex_exit(&p->p_zone->zone_nlwps_lock);
128 	mutex_exit(&p->p_lock);
129 
130 	if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0)
131 		stksize = lwp_default_stksize;
132 
133 	/*
134 	 * Try to reclaim a <lwp,stack> from 'deathrow'
135 	 */
136 	if (stksize == lwp_default_stksize) {
137 		if (lwp_reapcnt > 0) {
138 			mutex_enter(&reaplock);
139 			if ((t = lwp_deathrow) != NULL) {
140 				ASSERT(t->t_swap);
141 				lwp_deathrow = t->t_forw;
142 				lwp_reapcnt--;
143 				lwpdata = t->t_swap;
144 				lwp = t->t_lwp;
145 				ctx = t->t_ctx;
146 				t->t_swap = NULL;
147 				t->t_lwp = NULL;
148 				t->t_ctx = NULL;
149 				reapq_move_lq_to_tq(t);
150 			}
151 			mutex_exit(&reaplock);
152 			if (lwp != NULL) {
153 				lwp_stk_fini(lwp);
154 			}
155 			if (ctx != NULL) {
156 				freectx_ctx(ctx);
157 			}
158 		}
159 		if (lwpdata == NULL &&
160 		    (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) {
161 			mutex_enter(&p->p_lock);
162 			mutex_enter(&p->p_zone->zone_nlwps_lock);
163 			p->p_task->tk_nlwps--;
164 			p->p_task->tk_proj->kpj_nlwps--;
165 			p->p_zone->zone_nlwps--;
166 			mutex_exit(&p->p_zone->zone_nlwps_lock);
167 			mutex_exit(&p->p_lock);
168 			return (NULL);
169 		}
170 	} else {
171 		stksize = roundup(stksize, PAGESIZE);
172 		if ((lwpdata = (caddr_t)segkp_get(segkp, stksize,
173 		    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) {
174 			mutex_enter(&p->p_lock);
175 			mutex_enter(&p->p_zone->zone_nlwps_lock);
176 			p->p_task->tk_nlwps--;
177 			p->p_task->tk_proj->kpj_nlwps--;
178 			p->p_zone->zone_nlwps--;
179 			mutex_exit(&p->p_zone->zone_nlwps_lock);
180 			mutex_exit(&p->p_lock);
181 			return (NULL);
182 		}
183 	}
184 
185 	/*
186 	 * Create a thread, initializing the stack pointer
187 	 */
188 	t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri);
189 
190 	t->t_swap = lwpdata;	/* Start of page-able data */
191 	if (lwp == NULL)
192 		lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP);
193 	bzero(lwp, sizeof (*lwp));
194 	t->t_lwp = lwp;
195 
196 	t->t_hold = *smask;
197 	lwp->lwp_thread = t;
198 	lwp->lwp_procp = p;
199 	lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
200 	if (curlwp != NULL && curlwp->lwp_childstksz != 0)
201 		lwp->lwp_childstksz = curlwp->lwp_childstksz;
202 
203 	t->t_stk = lwp_stk_init(lwp, t->t_stk);
204 	thread_load(t, proc, arg, len);
205 
206 	/*
207 	 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect.
208 	 */
209 	if (p->p_rprof_cyclic != CYCLIC_NONE)
210 		t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP);
211 
212 	if (cid != NOCLASS)
213 		(void) CL_ALLOC(&bufp, cid, KM_SLEEP);
214 
215 	/*
216 	 * Allocate an lwp directory entry for the new lwp.
217 	 */
218 	lep = kmem_zalloc(sizeof (*lep), KM_SLEEP);
219 
220 	mutex_enter(&p->p_lock);
221 grow:
222 	/*
223 	 * Grow the lwp (thread) directory and lwpid hash table if necessary.
224 	 * A note on the growth algorithm:
225 	 *	The new lwp directory size is computed as:
226 	 *		new = 2 * old + 2
227 	 *	Starting with an initial size of 2 (see exec_common()),
228 	 *	this yields numbers that are a power of two minus 2:
229 	 *		2, 6, 14, 30, 62, 126, 254, 510, 1022, ...
230 	 *	The size of the lwpid hash table must be a power of two
231 	 *	and must be commensurate in size with the lwp directory
232 	 *	so that hash bucket chains remain short.  Therefore,
233 	 *	the lwpid hash table size is computed as:
234 	 *		hashsz = (dirsz + 2) / 2
235 	 *	which leads to these hash table sizes corresponding to
236 	 *	the above directory sizes:
237 	 *		2, 4, 8, 16, 32, 64, 128, 256, 512, ...
238 	 * A note on growing the hash table:
239 	 *	For performance reasons, code in lwp_unpark() does not
240 	 *	acquire curproc->p_lock when searching the hash table.
241 	 *	Rather, it calls lwp_hash_lookup_and_lock() which
242 	 *	acquires only the individual hash bucket lock, taking
243 	 *	care to deal with reallocation of the hash table
244 	 *	during the time it takes to acquire the lock.
245 	 *
246 	 *	This is sufficient to protect the integrity of the
247 	 *	hash table, but it requires us to acquire all of the
248 	 *	old hash bucket locks before growing the hash table
249 	 *	and to release them afterwards.  It also requires us
250 	 *	not to free the old hash table because some thread
251 	 *	in lwp_hash_lookup_and_lock() might still be trying
252 	 *	to acquire the old bucket lock.
253 	 *
254 	 *	So we adopt the tactic of keeping all of the retired
255 	 *	hash tables on a linked list, so they can be safely
256 	 *	freed when the process exits or execs.
257 	 *
258 	 *	Because the hash table grows in powers of two, the
259 	 *	total size of all of the hash tables will be slightly
260 	 *	less than twice the size of the largest hash table.
261 	 */
262 	while (p->p_lwpfree == NULL) {
263 		uint_t dirsz = p->p_lwpdir_sz;
264 		lwpdir_t *new_dir;
265 		uint_t new_dirsz;
266 		lwpdir_t *ldp;
267 		tidhash_t *new_hash;
268 		uint_t new_hashsz;
269 
270 		mutex_exit(&p->p_lock);
271 
272 		/*
273 		 * Prepare to remember the old p_tidhash for later
274 		 * kmem_free()ing when the process exits or execs.
275 		 */
276 		if (ret_tidhash == NULL)
277 			ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t),
278 			    KM_SLEEP);
279 		if (old_dir != NULL)
280 			kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
281 		if (old_hash != NULL)
282 			kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
283 
284 		new_dirsz = 2 * dirsz + 2;
285 		new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP);
286 		for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++)
287 			ldp->ld_next = ldp + 1;
288 		new_hashsz = (new_dirsz + 2) / 2;
289 		new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t),
290 		    KM_SLEEP);
291 
292 		mutex_enter(&p->p_lock);
293 		if (p == curproc)
294 			prbarrier(p);
295 
296 		if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) {
297 			/*
298 			 * Someone else beat us to it or some lwp exited.
299 			 * Set up to free our memory and take a lap.
300 			 */
301 			old_dir = new_dir;
302 			old_dirsz = new_dirsz;
303 			old_hash = new_hash;
304 			old_hashsz = new_hashsz;
305 		} else {
306 			/*
307 			 * For the benefit of lwp_hash_lookup_and_lock(),
308 			 * called from lwp_unpark(), which searches the
309 			 * tid hash table without acquiring p->p_lock,
310 			 * we must acquire all of the tid hash table
311 			 * locks before replacing p->p_tidhash.
312 			 */
313 			old_hash = p->p_tidhash;
314 			old_hashsz = p->p_tidhash_sz;
315 			for (i = 0; i < old_hashsz; i++) {
316 				mutex_enter(&old_hash[i].th_lock);
317 				mutex_enter(&new_hash[i].th_lock);
318 			}
319 
320 			/*
321 			 * We simply hash in all of the old directory entries.
322 			 * This works because the old directory has no empty
323 			 * slots and the new hash table starts out empty.
324 			 * This reproduces the original directory ordering
325 			 * (required for /proc directory semantics).
326 			 */
327 			old_dir = p->p_lwpdir;
328 			old_dirsz = p->p_lwpdir_sz;
329 			p->p_lwpdir = new_dir;
330 			p->p_lwpfree = new_dir;
331 			p->p_lwpdir_sz = new_dirsz;
332 			for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++)
333 				lwp_hash_in(p, ldp->ld_entry,
334 				    new_hash, new_hashsz, 0);
335 
336 			/*
337 			 * Remember the old hash table along with all
338 			 * of the previously-remembered hash tables.
339 			 * We will free them at process exit or exec.
340 			 */
341 			ret_tidhash->rth_tidhash = old_hash;
342 			ret_tidhash->rth_tidhash_sz = old_hashsz;
343 			ret_tidhash->rth_next = p->p_ret_tidhash;
344 			p->p_ret_tidhash = ret_tidhash;
345 
346 			/*
347 			 * Now establish the new tid hash table.
348 			 * As soon as we assign p->p_tidhash,
349 			 * code in lwp_unpark() can start using it.
350 			 */
351 			membar_producer();
352 			p->p_tidhash = new_hash;
353 
354 			/*
355 			 * It is necessary that p_tidhash reach global
356 			 * visibility before p_tidhash_sz.  Otherwise,
357 			 * code in lwp_hash_lookup_and_lock() could
358 			 * index into the old p_tidhash using the new
359 			 * p_tidhash_sz and thereby access invalid data.
360 			 */
361 			membar_producer();
362 			p->p_tidhash_sz = new_hashsz;
363 
364 			/*
365 			 * Release the locks; allow lwp_unpark() to carry on.
366 			 */
367 			for (i = 0; i < old_hashsz; i++) {
368 				mutex_exit(&old_hash[i].th_lock);
369 				mutex_exit(&new_hash[i].th_lock);
370 			}
371 
372 			/*
373 			 * Avoid freeing these objects below.
374 			 */
375 			ret_tidhash = NULL;
376 			old_hash = NULL;
377 			old_hashsz = 0;
378 		}
379 	}
380 
381 	/*
382 	 * Block the process against /proc while we manipulate p->p_tlist,
383 	 * unless lwp_create() was called by /proc for the PCAGENT operation.
384 	 * We want to do this early enough so that we don't drop p->p_lock
385 	 * until the thread is put on the p->p_tlist.
386 	 */
387 	if (p == curproc) {
388 		prbarrier(p);
389 		/*
390 		 * If the current lwp has been requested to stop, do so now.
391 		 * Otherwise we have a race condition between /proc attempting
392 		 * to stop the process and this thread creating a new lwp
393 		 * that was not seen when the /proc PCSTOP request was issued.
394 		 * We rely on stop() to call prbarrier(p) before returning.
395 		 */
396 		while ((curthread->t_proc_flag & TP_PRSTOP) &&
397 		    !ttolwp(curthread)->lwp_nostop)
398 			stop(PR_REQUESTED, 0);
399 
400 		/*
401 		 * If process is exiting, there could be a race between
402 		 * the agent lwp creation and the new lwp currently being
403 		 * created. So to prevent this race lwp creation is failed
404 		 * if the process is exiting.
405 		 */
406 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
407 			err = 1;
408 			goto error;
409 		}
410 
411 		/*
412 		 * Since we might have dropped p->p_lock, the
413 		 * lwp directory free list might have changed.
414 		 */
415 		if (p->p_lwpfree == NULL)
416 			goto grow;
417 	}
418 
419 	kpreempt_disable();	/* can't grab cpu_lock here */
420 
421 	/*
422 	 * Inherit processor and processor set bindings from curthread,
423 	 * unless we're creating a new kernel process, in which case
424 	 * clear all bindings.
425 	 */
426 	if (cid == syscid) {
427 		t->t_bind_cpu = binding = PBIND_NONE;
428 		t->t_cpupart = oldpart = &cp_default;
429 		t->t_bind_pset = PS_NONE;
430 		t->t_bindflag = (uchar_t)default_binding_mode;
431 	} else {
432 		binding = curthread->t_bind_cpu;
433 		t->t_bind_cpu = binding;
434 		oldpart = t->t_cpupart;
435 		t->t_cpupart = curthread->t_cpupart;
436 		t->t_bind_pset = curthread->t_bind_pset;
437 		t->t_bindflag = curthread->t_bindflag |
438 		    (uchar_t)default_binding_mode;
439 	}
440 
441 	/*
442 	 * thread_create() initializes this thread's home lgroup to the root.
443 	 * Choose a more suitable lgroup, since this thread is associated
444 	 * with an lwp.
445 	 */
446 	ASSERT(oldpart != NULL);
447 	if (binding != PBIND_NONE && t->t_affinitycnt == 0) {
448 		t->t_bound_cpu = cpu[binding];
449 		if (t->t_lpl != t->t_bound_cpu->cpu_lpl)
450 			lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1);
451 	} else {
452 		lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1);
453 	}
454 
455 	kpreempt_enable();
456 
457 	/*
458 	 * make sure lpl points to our own partition
459 	 */
460 	ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads);
461 	ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads +
462 	    t->t_cpupart->cp_nlgrploads);
463 
464 	/*
465 	 * If we're creating a new process, then inherit the project from our
466 	 * parent. If we're only creating an additional lwp then use the
467 	 * project pointer of the target process.
468 	 */
469 	if (p->p_task == NULL)
470 		newkpj = ttoproj(curthread);
471 	else
472 		newkpj = p->p_task->tk_proj;
473 
474 	/*
475 	 * It is safe to point the thread to the new project without holding it
476 	 * since we're holding the target process' p_lock here and therefore
477 	 * we're guaranteed that it will not move to another project.
478 	 */
479 	oldkpj = ttoproj(t);
480 	if (newkpj != oldkpj) {
481 		t->t_proj = newkpj;
482 		(void) project_hold(newkpj);
483 		project_rele(oldkpj);
484 	}
485 
486 	if (cid != NOCLASS) {
487 		/*
488 		 * If the lwp is being created in the current process
489 		 * and matches the current thread's scheduling class,
490 		 * we should propagate the current thread's scheduling
491 		 * parameters by calling CL_FORK.  Otherwise just use
492 		 * the defaults by calling CL_ENTERCLASS.
493 		 */
494 		if (p != curproc || curthread->t_cid != cid) {
495 			err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp);
496 			t->t_pri = pri;	/* CL_ENTERCLASS may have changed it */
497 			/*
498 			 * We don't call schedctl_set_cidpri(t) here
499 			 * because the schedctl data is not yet set
500 			 * up for the newly-created lwp.
501 			 */
502 		} else {
503 			t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
504 			err = CL_FORK(curthread, t, bufp);
505 			t->t_cid = cid;
506 		}
507 		if (err)
508 			goto error;
509 		else
510 			bufp = NULL;
511 	}
512 
513 	/*
514 	 * If we were given an lwpid then use it, else allocate one.
515 	 */
516 	if (lwpid != 0)
517 		t->t_tid = lwpid;
518 	else {
519 		/*
520 		 * lwp/thread id 0 is never valid; reserved for special checks.
521 		 * lwp/thread id 1 is reserved for the main thread.
522 		 * Start again at 2 when INT_MAX has been reached
523 		 * (id_t is a signed 32-bit integer).
524 		 */
525 		id_t prev_id = p->p_lwpid;	/* last allocated tid */
526 
527 		do {			/* avoid lwpid duplication */
528 			if (p->p_lwpid == INT_MAX) {
529 				p->p_flag |= SLWPWRAP;
530 				p->p_lwpid = 1;
531 			}
532 			if ((t->t_tid = ++p->p_lwpid) == prev_id) {
533 				/*
534 				 * All lwpids are allocated; fail the request.
535 				 */
536 				err = 1;
537 				goto error;
538 			}
539 			/*
540 			 * We only need to worry about colliding with an id
541 			 * that's already in use if this process has
542 			 * cycled through all available lwp ids.
543 			 */
544 			if ((p->p_flag & SLWPWRAP) == 0)
545 				break;
546 		} while (lwp_hash_lookup(p, t->t_tid) != NULL);
547 	}
548 
549 	/*
550 	 * If this is a branded process, let the brand do any necessary lwp
551 	 * initialization.
552 	 */
553 	if (PROC_IS_BRANDED(p)) {
554 		if (BROP(p)->b_initlwp(lwp)) {
555 			err = 1;
556 			goto error;
557 		}
558 		branded = 1;
559 	}
560 
561 	if (t->t_tid == 1) {
562 		kpreempt_disable();
563 		ASSERT(t->t_lpl != NULL);
564 		p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid;
565 		kpreempt_enable();
566 		if (p->p_tr_lgrpid != LGRP_NONE &&
567 		    p->p_tr_lgrpid != p->p_t1_lgrpid) {
568 			lgrp_update_trthr_migrations(1);
569 		}
570 	}
571 
572 	p->p_lwpcnt++;
573 	t->t_waitfor = -1;
574 
575 	/*
576 	 * Turn microstate accounting on for thread if on for process.
577 	 */
578 	if (p->p_flag & SMSACCT)
579 		t->t_proc_flag |= TP_MSACCT;
580 
581 	/*
582 	 * If the process has watchpoints, mark the new thread as such.
583 	 */
584 	if (pr_watch_active(p))
585 		watch_enable(t);
586 
587 	/*
588 	 * The lwp is being created in the stopped state.
589 	 * We set all the necessary flags to indicate that fact here.
590 	 * We omit the TS_CREATE flag from t_schedflag so that the lwp
591 	 * cannot be set running until the caller is finished with it,
592 	 * even if lwp_continue() is called on it after we drop p->p_lock.
593 	 * When the caller is finished with the newly-created lwp,
594 	 * the caller must call lwp_create_done() to allow the lwp
595 	 * to be set running.  If the TP_HOLDLWP is left set, the
596 	 * lwp will suspend itself after reaching system call exit.
597 	 */
598 	init_mstate(t, LMS_STOPPED);
599 	t->t_proc_flag |= TP_HOLDLWP;
600 	t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE));
601 	t->t_whystop = PR_SUSPENDED;
602 	t->t_whatstop = SUSPEND_NORMAL;
603 	t->t_sig_check = 1;	/* ensure that TP_HOLDLWP is honored */
604 
605 	/*
606 	 * Set system call processing flags in case tracing or profiling
607 	 * is set.  The first system call will evaluate these and turn
608 	 * them off if they aren't needed.
609 	 */
610 	t->t_pre_sys = 1;
611 	t->t_post_sys = 1;
612 
613 	/*
614 	 * Insert the new thread into the list of all threads.
615 	 */
616 	if ((tx = p->p_tlist) == NULL) {
617 		t->t_back = t;
618 		t->t_forw = t;
619 		p->p_tlist = t;
620 	} else {
621 		t->t_forw = tx;
622 		t->t_back = tx->t_back;
623 		tx->t_back->t_forw = t;
624 		tx->t_back = t;
625 	}
626 
627 	/*
628 	 * Insert the new lwp into an lwp directory slot position
629 	 * and into the lwpid hash table.
630 	 */
631 	lep->le_thread = t;
632 	lep->le_lwpid = t->t_tid;
633 	lep->le_start = t->t_start;
634 	lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1);
635 
636 	if (state == TS_RUN) {
637 		/*
638 		 * We set the new lwp running immediately.
639 		 */
640 		t->t_proc_flag &= ~TP_HOLDLWP;
641 		lwp_create_done(t);
642 	}
643 
644 error:
645 	if (err) {
646 		/*
647 		 * We have failed to create an lwp, so decrement the number
648 		 * of lwps in the task and let the lgroup load averages know
649 		 * that this thread isn't going to show up.
650 		 */
651 		kpreempt_disable();
652 		lgrp_move_thread(t, NULL, 1);
653 		kpreempt_enable();
654 
655 		ASSERT(MUTEX_HELD(&p->p_lock));
656 		mutex_enter(&p->p_zone->zone_nlwps_lock);
657 		p->p_task->tk_nlwps--;
658 		p->p_task->tk_proj->kpj_nlwps--;
659 		p->p_zone->zone_nlwps--;
660 		mutex_exit(&p->p_zone->zone_nlwps_lock);
661 		if (cid != NOCLASS && bufp != NULL)
662 			CL_FREE(cid, bufp);
663 
664 		if (branded)
665 			BROP(p)->b_freelwp(lwp);
666 
667 		mutex_exit(&p->p_lock);
668 		t->t_state = TS_FREE;
669 		thread_rele(t);
670 
671 		/*
672 		 * We need to remove t from the list of all threads
673 		 * because thread_exit()/lwp_exit() isn't called on t.
674 		 */
675 		mutex_enter(&pidlock);
676 		ASSERT(t != t->t_next);		/* t0 never exits */
677 		t->t_next->t_prev = t->t_prev;
678 		t->t_prev->t_next = t->t_next;
679 		mutex_exit(&pidlock);
680 
681 		thread_free(t);
682 		kmem_free(lep, sizeof (*lep));
683 		lwp = NULL;
684 	} else {
685 		mutex_exit(&p->p_lock);
686 	}
687 
688 	if (old_dir != NULL)
689 		kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
690 	if (old_hash != NULL)
691 		kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
692 	if (ret_tidhash != NULL)
693 		kmem_free(ret_tidhash, sizeof (ret_tidhash_t));
694 
695 	DTRACE_PROC1(lwp__create, kthread_t *, t);
696 	return (lwp);
697 }
698 
699 /*
700  * lwp_create_done() is called by the caller of lwp_create() to set the
701  * newly-created lwp running after the caller has finished manipulating it.
702  */
703 void
704 lwp_create_done(kthread_t *t)
705 {
706 	proc_t *p = ttoproc(t);
707 
708 	ASSERT(MUTEX_HELD(&p->p_lock));
709 
710 	/*
711 	 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked().
712 	 * (The absence of the TS_CREATE flag prevents the lwp from running
713 	 * until we are finished with it, even if lwp_continue() is called on
714 	 * it by some other lwp in the process or elsewhere in the kernel.)
715 	 */
716 	thread_lock(t);
717 	ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE));
718 	/*
719 	 * If TS_CSTART is set, lwp_continue(t) has been called and
720 	 * has already incremented p_lwprcnt; avoid doing this twice.
721 	 */
722 	if (!(t->t_schedflag & TS_CSTART))
723 		p->p_lwprcnt++;
724 	t->t_schedflag |= (TS_CSTART | TS_CREATE);
725 	setrun_locked(t);
726 	thread_unlock(t);
727 }
728 
729 /*
730  * Copy an LWP's active templates, and clear the latest contracts.
731  */
732 void
733 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src)
734 {
735 	int i;
736 
737 	for (i = 0; i < ct_ntypes; i++) {
738 		dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]);
739 		dst->lwp_ct_latest[i] = NULL;
740 	}
741 }
742 
743 /*
744  * Clear an LWP's contract template state.
745  */
746 void
747 lwp_ctmpl_clear(klwp_t *lwp)
748 {
749 	ct_template_t *tmpl;
750 	int i;
751 
752 	for (i = 0; i < ct_ntypes; i++) {
753 		if ((tmpl = lwp->lwp_ct_active[i]) != NULL) {
754 			ctmpl_free(tmpl);
755 			lwp->lwp_ct_active[i] = NULL;
756 		}
757 
758 		if (lwp->lwp_ct_latest[i] != NULL) {
759 			contract_rele(lwp->lwp_ct_latest[i]);
760 			lwp->lwp_ct_latest[i] = NULL;
761 		}
762 	}
763 }
764 
765 /*
766  * Individual lwp exit.
767  * If this is the last lwp, exit the whole process.
768  */
769 void
770 lwp_exit(void)
771 {
772 	kthread_t *t = curthread;
773 	klwp_t *lwp = ttolwp(t);
774 	proc_t *p = ttoproc(t);
775 
776 	ASSERT(MUTEX_HELD(&p->p_lock));
777 
778 	mutex_exit(&p->p_lock);
779 
780 #if defined(__sparc)
781 	/*
782 	 * Ensure that the user stack is fully abandoned..
783 	 */
784 	trash_user_windows();
785 #endif
786 
787 	tsd_exit();			/* free thread specific data */
788 
789 	kcpc_passivate();		/* Clean up performance counter state */
790 
791 	pollcleanup();
792 
793 	if (t->t_door)
794 		door_slam();
795 
796 	if (t->t_schedctl != NULL)
797 		schedctl_lwp_cleanup(t);
798 
799 	if (t->t_upimutex != NULL)
800 		upimutex_cleanup();
801 
802 	/*
803 	 * Perform any brand specific exit processing, then release any
804 	 * brand data associated with the lwp
805 	 */
806 	if (PROC_IS_BRANDED(p))
807 		BROP(p)->b_lwpexit(lwp);
808 
809 	mutex_enter(&p->p_lock);
810 	lwp_cleanup();
811 
812 	/*
813 	 * When this process is dumping core, its lwps are held here
814 	 * until the core dump is finished. Then exitlwps() is called
815 	 * again to release these lwps so that they can finish exiting.
816 	 */
817 	if (p->p_flag & SCOREDUMP)
818 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
819 
820 	/*
821 	 * Block the process against /proc now that we have really acquired
822 	 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least).
823 	 */
824 	prbarrier(p);
825 
826 	/*
827 	 * Call proc_exit() if this is the last non-daemon lwp in the process.
828 	 */
829 	if (!(t->t_proc_flag & TP_DAEMON) &&
830 	    p->p_lwpcnt == p->p_lwpdaemon + 1) {
831 		mutex_exit(&p->p_lock);
832 		if (proc_exit(CLD_EXITED, 0) == 0) {
833 			/* Restarting init. */
834 			return;
835 		}
836 
837 		/*
838 		 * proc_exit() returns a non-zero value when some other
839 		 * lwp got there first.  We just have to continue in
840 		 * lwp_exit().
841 		 */
842 		mutex_enter(&p->p_lock);
843 		ASSERT(curproc->p_flag & SEXITLWPS);
844 		prbarrier(p);
845 	}
846 
847 	DTRACE_PROC(lwp__exit);
848 
849 	/*
850 	 * If the lwp is a detached lwp or if the process is exiting,
851 	 * remove (lwp_hash_out()) the lwp from the lwp directory.
852 	 * Otherwise null out the lwp's le_thread pointer in the lwp
853 	 * directory so that other threads will see it as a zombie lwp.
854 	 */
855 	prlwpexit(t);		/* notify /proc */
856 	if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS))
857 		lwp_hash_out(p, t->t_tid);
858 	else {
859 		ASSERT(!(t->t_proc_flag & TP_DAEMON));
860 		p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL;
861 		p->p_zombcnt++;
862 		cv_broadcast(&p->p_lwpexit);
863 	}
864 	if (t->t_proc_flag & TP_DAEMON) {
865 		p->p_lwpdaemon--;
866 		t->t_proc_flag &= ~TP_DAEMON;
867 	}
868 	t->t_proc_flag &= ~TP_TWAIT;
869 
870 	/*
871 	 * Maintain accurate lwp count for task.max-lwps resource control.
872 	 */
873 	mutex_enter(&p->p_zone->zone_nlwps_lock);
874 	p->p_task->tk_nlwps--;
875 	p->p_task->tk_proj->kpj_nlwps--;
876 	p->p_zone->zone_nlwps--;
877 	mutex_exit(&p->p_zone->zone_nlwps_lock);
878 
879 	CL_EXIT(t);		/* tell the scheduler that t is exiting */
880 	ASSERT(p->p_lwpcnt != 0);
881 	p->p_lwpcnt--;
882 
883 	/*
884 	 * If all remaining non-daemon lwps are waiting in lwp_wait(),
885 	 * wake them up so someone can return EDEADLK.
886 	 * (See the block comment preceeding lwp_wait().)
887 	 */
888 	if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait))
889 		cv_broadcast(&p->p_lwpexit);
890 
891 	t->t_proc_flag |= TP_LWPEXIT;
892 	term_mstate(t);
893 
894 #ifndef NPROBE
895 	/* Kernel probe */
896 	if (t->t_tnf_tpdp)
897 		tnf_thread_exit();
898 #endif /* NPROBE */
899 
900 	t->t_forw->t_back = t->t_back;
901 	t->t_back->t_forw = t->t_forw;
902 	if (t == p->p_tlist)
903 		p->p_tlist = t->t_forw;
904 
905 	/*
906 	 * Clean up the signal state.
907 	 */
908 	if (t->t_sigqueue != NULL)
909 		sigdelq(p, t, 0);
910 	if (lwp->lwp_curinfo != NULL) {
911 		siginfofree(lwp->lwp_curinfo);
912 		lwp->lwp_curinfo = NULL;
913 	}
914 
915 	thread_rele(t);
916 
917 	/*
918 	 * Terminated lwps are associated with process zero and are put onto
919 	 * death-row by resume().  Avoid preemption after resetting t->t_procp.
920 	 */
921 	t->t_preempt++;
922 
923 	if (t->t_ctx != NULL)
924 		exitctx(t);
925 	if (p->p_pctx != NULL)
926 		exitpctx(p);
927 
928 	t->t_procp = &p0;
929 
930 	/*
931 	 * Notify the HAT about the change of address space
932 	 */
933 	hat_thread_exit(t);
934 	/*
935 	 * When this is the last running lwp in this process and some lwp is
936 	 * waiting for this condition to become true, or this thread was being
937 	 * suspended, then the waiting lwp is awakened.
938 	 *
939 	 * Also, if the process is exiting, we may have a thread waiting in
940 	 * exitlwps() that needs to be notified.
941 	 */
942 	if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) ||
943 	    (p->p_flag & SEXITLWPS))
944 		cv_broadcast(&p->p_holdlwps);
945 
946 	/*
947 	 * Need to drop p_lock so we can reacquire pidlock.
948 	 */
949 	mutex_exit(&p->p_lock);
950 	mutex_enter(&pidlock);
951 
952 	ASSERT(t != t->t_next);		/* t0 never exits */
953 	t->t_next->t_prev = t->t_prev;
954 	t->t_prev->t_next = t->t_next;
955 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
956 	mutex_exit(&pidlock);
957 
958 	lwp_pcb_exit();
959 
960 	t->t_state = TS_ZOMB;
961 	swtch_from_zombie();
962 	/* never returns */
963 }
964 
965 
966 /*
967  * Cleanup function for an exiting lwp.
968  * Called both from lwp_exit() and from proc_exit().
969  * p->p_lock is repeatedly released and grabbed in this function.
970  */
971 void
972 lwp_cleanup(void)
973 {
974 	kthread_t *t = curthread;
975 	proc_t *p = ttoproc(t);
976 
977 	ASSERT(MUTEX_HELD(&p->p_lock));
978 
979 	/* untimeout any lwp-bound realtime timers */
980 	if (p->p_itimer != NULL)
981 		timer_lwpexit();
982 
983 	/*
984 	 * If this is the /proc agent lwp that is exiting, readjust p_lwpid
985 	 * so it appears that the agent never existed, and clear p_agenttp.
986 	 */
987 	if (t == p->p_agenttp) {
988 		ASSERT(t->t_tid == p->p_lwpid);
989 		p->p_lwpid--;
990 		p->p_agenttp = NULL;
991 	}
992 
993 	/*
994 	 * Do lgroup bookkeeping to account for thread exiting.
995 	 */
996 	kpreempt_disable();
997 	lgrp_move_thread(t, NULL, 1);
998 	if (t->t_tid == 1) {
999 		p->p_t1_lgrpid = LGRP_NONE;
1000 	}
1001 	kpreempt_enable();
1002 
1003 	lwp_ctmpl_clear(ttolwp(t));
1004 }
1005 
1006 int
1007 lwp_suspend(kthread_t *t)
1008 {
1009 	int tid;
1010 	proc_t *p = ttoproc(t);
1011 
1012 	ASSERT(MUTEX_HELD(&p->p_lock));
1013 
1014 	/*
1015 	 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp().
1016 	 * If an lwp is stopping itself, there is no need to wait.
1017 	 */
1018 top:
1019 	t->t_proc_flag |= TP_HOLDLWP;
1020 	if (t == curthread) {
1021 		t->t_sig_check = 1;
1022 	} else {
1023 		/*
1024 		 * Make sure the lwp stops promptly.
1025 		 */
1026 		thread_lock(t);
1027 		t->t_sig_check = 1;
1028 		/*
1029 		 * XXX Should use virtual stop like /proc does instead of
1030 		 * XXX waking the thread to get it to stop.
1031 		 */
1032 		if (ISWAKEABLE(t) || ISWAITING(t)) {
1033 			setrun_locked(t);
1034 		} else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) {
1035 			poke_cpu(t->t_cpu->cpu_id);
1036 		}
1037 
1038 		tid = t->t_tid;	 /* remember thread ID */
1039 		/*
1040 		 * Wait for lwp to stop
1041 		 */
1042 		while (!SUSPENDED(t)) {
1043 			/*
1044 			 * Drop the thread lock before waiting and reacquire it
1045 			 * afterwards, so the thread can change its t_state
1046 			 * field.
1047 			 */
1048 			thread_unlock(t);
1049 
1050 			/*
1051 			 * Check if aborted by exitlwps().
1052 			 */
1053 			if (p->p_flag & SEXITLWPS)
1054 				lwp_exit();
1055 
1056 			/*
1057 			 * Cooperate with jobcontrol signals and /proc stopping
1058 			 * by calling cv_wait_sig() to wait for the target
1059 			 * lwp to stop.  Just using cv_wait() can lead to
1060 			 * deadlock because, if some other lwp has stopped
1061 			 * by either of these mechanisms, then p_lwprcnt will
1062 			 * never become zero if we do a cv_wait().
1063 			 */
1064 			if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock))
1065 				return (EINTR);
1066 
1067 			/*
1068 			 * Check to see if thread died while we were
1069 			 * waiting for it to suspend.
1070 			 */
1071 			if (idtot(p, tid) == NULL)
1072 				return (ESRCH);
1073 
1074 			thread_lock(t);
1075 			/*
1076 			 * If the TP_HOLDLWP flag went away, lwp_continue()
1077 			 * or vfork() must have been called while we were
1078 			 * waiting, so start over again.
1079 			 */
1080 			if ((t->t_proc_flag & TP_HOLDLWP) == 0) {
1081 				thread_unlock(t);
1082 				goto top;
1083 			}
1084 		}
1085 		thread_unlock(t);
1086 	}
1087 	return (0);
1088 }
1089 
1090 /*
1091  * continue a lwp that's been stopped by lwp_suspend().
1092  */
1093 void
1094 lwp_continue(kthread_t *t)
1095 {
1096 	proc_t *p = ttoproc(t);
1097 	int was_suspended = t->t_proc_flag & TP_HOLDLWP;
1098 
1099 	ASSERT(MUTEX_HELD(&p->p_lock));
1100 
1101 	t->t_proc_flag &= ~TP_HOLDLWP;
1102 	thread_lock(t);
1103 	if (SUSPENDED(t) &&
1104 	    !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) {
1105 		p->p_lwprcnt++;
1106 		t->t_schedflag |= TS_CSTART;
1107 		setrun_locked(t);
1108 	}
1109 	thread_unlock(t);
1110 	/*
1111 	 * Wakeup anyone waiting for this thread to be suspended
1112 	 */
1113 	if (was_suspended)
1114 		cv_broadcast(&p->p_holdlwps);
1115 }
1116 
1117 /*
1118  * ********************************
1119  *  Miscellaneous lwp routines	  *
1120  * ********************************
1121  */
1122 /*
1123  * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK.
1124  * This will cause the process's lwps to stop at a hold point.  A hold
1125  * point is where a kernel thread has a flat stack.  This is at the
1126  * return from a system call and at the return from a user level trap.
1127  *
1128  * When a process is undergoing a fork1() or vfork(), its p_flag is set to
1129  * SHOLDFORK1.  This will cause the process's lwps to stop at a modified
1130  * hold point.  The lwps in the process are not being cloned, so they
1131  * are held at the usual hold points and also within issig_forreal().
1132  * This has the side-effect that their system calls do not return
1133  * showing EINTR.
1134  *
1135  * An lwp can also be held.  This is identified by the TP_HOLDLWP flag on
1136  * the thread.  The TP_HOLDLWP flag is set in lwp_suspend(), where the active
1137  * lwp is waiting for the target lwp to be stopped.
1138  */
1139 void
1140 holdlwp(void)
1141 {
1142 	proc_t *p = curproc;
1143 	kthread_t *t = curthread;
1144 
1145 	mutex_enter(&p->p_lock);
1146 	/*
1147 	 * Don't terminate immediately if the process is dumping core.
1148 	 * Once the process has dumped core, all lwps are terminated.
1149 	 */
1150 	if (!(p->p_flag & SCOREDUMP)) {
1151 		if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP))
1152 			lwp_exit();
1153 	}
1154 	if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) {
1155 		mutex_exit(&p->p_lock);
1156 		return;
1157 	}
1158 	/*
1159 	 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps
1160 	 * when p->p_lwprcnt becomes zero.
1161 	 */
1162 	stop(PR_SUSPENDED, SUSPEND_NORMAL);
1163 	if (p->p_flag & SEXITLWPS)
1164 		lwp_exit();
1165 	mutex_exit(&p->p_lock);
1166 }
1167 
1168 /*
1169  * Have all lwps within the process hold at a point where they are
1170  * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1).
1171  */
1172 int
1173 holdlwps(int holdflag)
1174 {
1175 	proc_t *p = curproc;
1176 
1177 	ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1);
1178 	mutex_enter(&p->p_lock);
1179 	schedctl_finish_sigblock(curthread);
1180 again:
1181 	while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1182 		/*
1183 		 * If another lwp is doing a forkall() or proc_exit(), bail out.
1184 		 */
1185 		if (p->p_flag & (SEXITLWPS | SHOLDFORK)) {
1186 			mutex_exit(&p->p_lock);
1187 			return (0);
1188 		}
1189 		/*
1190 		 * Another lwp is doing a fork1() or is undergoing
1191 		 * watchpoint activity.  We hold here for it to complete.
1192 		 */
1193 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1194 	}
1195 	p->p_flag |= holdflag;
1196 	pokelwps(p);
1197 	--p->p_lwprcnt;
1198 	/*
1199 	 * Wait for the process to become quiescent (p->p_lwprcnt == 0).
1200 	 */
1201 	while (p->p_lwprcnt > 0) {
1202 		/*
1203 		 * Check if aborted by exitlwps().
1204 		 * Also check if SHOLDWATCH is set; it takes precedence.
1205 		 */
1206 		if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) {
1207 			p->p_lwprcnt++;
1208 			p->p_flag &= ~holdflag;
1209 			cv_broadcast(&p->p_holdlwps);
1210 			goto again;
1211 		}
1212 		/*
1213 		 * Cooperate with jobcontrol signals and /proc stopping.
1214 		 * If some other lwp has stopped by either of these
1215 		 * mechanisms, then p_lwprcnt will never become zero
1216 		 * and the process will appear deadlocked unless we
1217 		 * stop here in sympathy with the other lwp before
1218 		 * doing the cv_wait() below.
1219 		 *
1220 		 * If the other lwp stops after we do the cv_wait(), it
1221 		 * will wake us up to loop around and do the sympathy stop.
1222 		 *
1223 		 * Since stop() drops p->p_lock, we must start from
1224 		 * the top again on returning from stop().
1225 		 */
1226 		if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) {
1227 			int whystop = p->p_stopsig? PR_JOBCONTROL :
1228 			    PR_REQUESTED;
1229 			p->p_lwprcnt++;
1230 			p->p_flag &= ~holdflag;
1231 			stop(whystop, p->p_stopsig);
1232 			goto again;
1233 		}
1234 		cv_wait(&p->p_holdlwps, &p->p_lock);
1235 	}
1236 	p->p_lwprcnt++;
1237 	p->p_flag &= ~holdflag;
1238 	mutex_exit(&p->p_lock);
1239 	return (1);
1240 }
1241 
1242 /*
1243  * See comments for holdwatch(), below.
1244  */
1245 static int
1246 holdcheck(int clearflags)
1247 {
1248 	proc_t *p = curproc;
1249 
1250 	/*
1251 	 * If we are trying to exit, that takes precedence over anything else.
1252 	 */
1253 	if (p->p_flag & SEXITLWPS) {
1254 		p->p_lwprcnt++;
1255 		p->p_flag &= ~clearflags;
1256 		lwp_exit();
1257 	}
1258 
1259 	/*
1260 	 * If another thread is calling fork1(), stop the current thread so the
1261 	 * other can complete.
1262 	 */
1263 	if (p->p_flag & SHOLDFORK1) {
1264 		p->p_lwprcnt++;
1265 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1266 		if (p->p_flag & SEXITLWPS) {
1267 			p->p_flag &= ~clearflags;
1268 			lwp_exit();
1269 		}
1270 		return (-1);
1271 	}
1272 
1273 	/*
1274 	 * If another thread is calling fork(), then indicate we are doing
1275 	 * watchpoint activity.  This will cause holdlwps() above to stop the
1276 	 * forking thread, at which point we can continue with watchpoint
1277 	 * activity.
1278 	 */
1279 	if (p->p_flag & SHOLDFORK) {
1280 		p->p_lwprcnt++;
1281 		while (p->p_flag & SHOLDFORK) {
1282 			p->p_flag |= SHOLDWATCH;
1283 			cv_broadcast(&p->p_holdlwps);
1284 			cv_wait(&p->p_holdlwps, &p->p_lock);
1285 			p->p_flag &= ~SHOLDWATCH;
1286 		}
1287 		return (-1);
1288 	}
1289 
1290 	return (0);
1291 }
1292 
1293 /*
1294  * Stop all lwps within the process, holding themselves in the kernel while the
1295  * active lwp undergoes watchpoint activity.  This is more complicated than
1296  * expected because stop() relies on calling holdwatch() in order to copyin data
1297  * from the user's address space.  A double barrier is used to prevent an
1298  * infinite loop.
1299  *
1300  * 	o The first thread into holdwatch() is the 'master' thread and does
1301  *        the following:
1302  *
1303  *              - Sets SHOLDWATCH on the current process
1304  *              - Sets TP_WATCHSTOP on the current thread
1305  *              - Waits for all threads to be either stopped or have
1306  *                TP_WATCHSTOP set.
1307  *              - Sets the SWATCHOK flag on the process
1308  *              - Unsets TP_WATCHSTOP
1309  *              - Waits for the other threads to completely stop
1310  *              - Unsets SWATCHOK
1311  *
1312  * 	o If SHOLDWATCH is already set when we enter this function, then another
1313  *        thread is already trying to stop this thread.  This 'slave' thread
1314  *        does the following:
1315  *
1316  *              - Sets TP_WATCHSTOP on the current thread
1317  *              - Waits for SWATCHOK flag to be set
1318  *              - Calls stop()
1319  *
1320  * 	o If SWATCHOK is set on the process, then this function immediately
1321  *        returns, as we must have been called via stop().
1322  *
1323  * In addition, there are other flags that take precedence over SHOLDWATCH:
1324  *
1325  * 	o If SEXITLWPS is set, exit immediately.
1326  *
1327  * 	o If SHOLDFORK1 is set, wait for fork1() to complete.
1328  *
1329  * 	o If SHOLDFORK is set, then watchpoint activity takes precedence In this
1330  *        case, set SHOLDWATCH, signalling the forking thread to stop first.
1331  *
1332  * 	o If the process is being stopped via /proc (TP_PRSTOP is set), then we
1333  *        stop the current thread.
1334  *
1335  * Returns 0 if all threads have been quiesced.  Returns non-zero if not all
1336  * threads were stopped, or the list of watched pages has changed.
1337  */
1338 int
1339 holdwatch(void)
1340 {
1341 	proc_t *p = curproc;
1342 	kthread_t *t = curthread;
1343 	int ret = 0;
1344 
1345 	mutex_enter(&p->p_lock);
1346 
1347 	p->p_lwprcnt--;
1348 
1349 	/*
1350 	 * Check for bail-out conditions as outlined above.
1351 	 */
1352 	if (holdcheck(0) != 0) {
1353 		mutex_exit(&p->p_lock);
1354 		return (-1);
1355 	}
1356 
1357 	if (!(p->p_flag & SHOLDWATCH)) {
1358 		/*
1359 		 * We are the master watchpoint thread.  Set SHOLDWATCH and poke
1360 		 * the other threads.
1361 		 */
1362 		p->p_flag |= SHOLDWATCH;
1363 		pokelwps(p);
1364 
1365 		/*
1366 		 * Wait for all threads to be stopped or have TP_WATCHSTOP set.
1367 		 */
1368 		while (pr_allstopped(p, 1) > 0) {
1369 			if (holdcheck(SHOLDWATCH) != 0) {
1370 				p->p_flag &= ~SHOLDWATCH;
1371 				mutex_exit(&p->p_lock);
1372 				return (-1);
1373 			}
1374 
1375 			cv_wait(&p->p_holdlwps, &p->p_lock);
1376 		}
1377 
1378 		/*
1379 		 * All threads are now stopped or in the process of stopping.
1380 		 * Set SWATCHOK and let them stop completely.
1381 		 */
1382 		p->p_flag |= SWATCHOK;
1383 		t->t_proc_flag &= ~TP_WATCHSTOP;
1384 		cv_broadcast(&p->p_holdlwps);
1385 
1386 		while (pr_allstopped(p, 0) > 0) {
1387 			/*
1388 			 * At first glance, it may appear that we don't need a
1389 			 * call to holdcheck() here.  But if the process gets a
1390 			 * SIGKILL signal, one of our stopped threads may have
1391 			 * been awakened and is waiting in exitlwps(), which
1392 			 * takes precedence over watchpoints.
1393 			 */
1394 			if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) {
1395 				p->p_flag &= ~(SHOLDWATCH | SWATCHOK);
1396 				mutex_exit(&p->p_lock);
1397 				return (-1);
1398 			}
1399 
1400 			cv_wait(&p->p_holdlwps, &p->p_lock);
1401 		}
1402 
1403 		/*
1404 		 * All threads are now completely stopped.
1405 		 */
1406 		p->p_flag &= ~SWATCHOK;
1407 		p->p_flag &= ~SHOLDWATCH;
1408 		p->p_lwprcnt++;
1409 
1410 	} else if (!(p->p_flag & SWATCHOK)) {
1411 
1412 		/*
1413 		 * SHOLDWATCH is set, so another thread is trying to do
1414 		 * watchpoint activity.  Indicate this thread is stopping, and
1415 		 * wait for the OK from the master thread.
1416 		 */
1417 		t->t_proc_flag |= TP_WATCHSTOP;
1418 		cv_broadcast(&p->p_holdlwps);
1419 
1420 		while (!(p->p_flag & SWATCHOK)) {
1421 			if (holdcheck(0) != 0) {
1422 				t->t_proc_flag &= ~TP_WATCHSTOP;
1423 				mutex_exit(&p->p_lock);
1424 				return (-1);
1425 			}
1426 
1427 			cv_wait(&p->p_holdlwps, &p->p_lock);
1428 		}
1429 
1430 		/*
1431 		 * Once the master thread has given the OK, this thread can
1432 		 * actually call stop().
1433 		 */
1434 		t->t_proc_flag &= ~TP_WATCHSTOP;
1435 		p->p_lwprcnt++;
1436 
1437 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1438 
1439 		/*
1440 		 * It's not OK to do watchpoint activity, notify caller to
1441 		 * retry.
1442 		 */
1443 		ret = -1;
1444 
1445 	} else {
1446 
1447 		/*
1448 		 * The only way we can hit the case where SHOLDWATCH is set and
1449 		 * SWATCHOK is set is if we are triggering this from within a
1450 		 * stop() call.  Assert that this is the case.
1451 		 */
1452 
1453 		ASSERT(t->t_proc_flag & TP_STOPPING);
1454 		p->p_lwprcnt++;
1455 	}
1456 
1457 	mutex_exit(&p->p_lock);
1458 
1459 	return (ret);
1460 }
1461 
1462 /*
1463  * force all interruptible lwps to trap into the kernel.
1464  */
1465 void
1466 pokelwps(proc_t *p)
1467 {
1468 	kthread_t *t;
1469 
1470 	ASSERT(MUTEX_HELD(&p->p_lock));
1471 
1472 	t = p->p_tlist;
1473 	do {
1474 		if (t == curthread)
1475 			continue;
1476 		thread_lock(t);
1477 		aston(t);	/* make thread trap or do post_syscall */
1478 		if (ISWAKEABLE(t) || ISWAITING(t)) {
1479 			setrun_locked(t);
1480 		} else if (t->t_state == TS_STOPPED) {
1481 			/*
1482 			 * Ensure that proc_exit() is not blocked by lwps
1483 			 * that were stopped via jobcontrol or /proc.
1484 			 */
1485 			if (p->p_flag & SEXITLWPS) {
1486 				p->p_stopsig = 0;
1487 				t->t_schedflag |= (TS_XSTART | TS_PSTART);
1488 				setrun_locked(t);
1489 			}
1490 			/*
1491 			 * If we are holding lwps for a forkall(),
1492 			 * force lwps that have been suspended via
1493 			 * lwp_suspend() and are suspended inside
1494 			 * of a system call to proceed to their
1495 			 * holdlwp() points where they are clonable.
1496 			 */
1497 			if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) {
1498 				if ((t->t_schedflag & TS_CSTART) == 0) {
1499 					p->p_lwprcnt++;
1500 					t->t_schedflag |= TS_CSTART;
1501 					setrun_locked(t);
1502 				}
1503 			}
1504 		} else if (t->t_state == TS_ONPROC) {
1505 			if (t->t_cpu != CPU)
1506 				poke_cpu(t->t_cpu->cpu_id);
1507 		}
1508 		thread_unlock(t);
1509 	} while ((t = t->t_forw) != p->p_tlist);
1510 }
1511 
1512 /*
1513  * undo the effects of holdlwps() or holdwatch().
1514  */
1515 void
1516 continuelwps(proc_t *p)
1517 {
1518 	kthread_t *t;
1519 
1520 	/*
1521 	 * If this flag is set, then the original holdwatch() didn't actually
1522 	 * stop the process.  See comments for holdwatch().
1523 	 */
1524 	if (p->p_flag & SWATCHOK) {
1525 		ASSERT(curthread->t_proc_flag & TP_STOPPING);
1526 		return;
1527 	}
1528 
1529 	ASSERT(MUTEX_HELD(&p->p_lock));
1530 	ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0);
1531 
1532 	t = p->p_tlist;
1533 	do {
1534 		thread_lock(t);		/* SUSPENDED looks at t_schedflag */
1535 		if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) {
1536 			p->p_lwprcnt++;
1537 			t->t_schedflag |= TS_CSTART;
1538 			setrun_locked(t);
1539 		}
1540 		thread_unlock(t);
1541 	} while ((t = t->t_forw) != p->p_tlist);
1542 }
1543 
1544 /*
1545  * Force all other LWPs in the current process other than the caller to exit,
1546  * and then cv_wait() on p_holdlwps for them to exit.  The exitlwps() function
1547  * is typically used in these situations:
1548  *
1549  *   (a) prior to an exec() system call
1550  *   (b) prior to dumping a core file
1551  *   (c) prior to a uadmin() shutdown
1552  *
1553  * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed.
1554  * Multiple threads in the process can call this function at one time by
1555  * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used
1556  * to declare one particular thread the winner who gets to kill the others.
1557  * If a thread wins the exitlwps() dance, zero is returned; otherwise an
1558  * appropriate errno value is returned to caller for its system call to return.
1559  */
1560 int
1561 exitlwps(int coredump)
1562 {
1563 	proc_t *p = curproc;
1564 	int heldcnt;
1565 
1566 	if (curthread->t_door)
1567 		door_slam();
1568 	if (p->p_door_list)
1569 		door_revoke_all();
1570 	if (curthread->t_schedctl != NULL)
1571 		schedctl_lwp_cleanup(curthread);
1572 
1573 	/*
1574 	 * Ensure that before starting to wait for other lwps to exit,
1575 	 * cleanup all upimutexes held by curthread. Otherwise, some other
1576 	 * lwp could be waiting (uninterruptibly) for a upimutex held by
1577 	 * curthread, and the call to pokelwps() below would deadlock.
1578 	 * Even if a blocked upimutex_lock is made interruptible,
1579 	 * curthread's upimutexes need to be unlocked: do it here.
1580 	 */
1581 	if (curthread->t_upimutex != NULL)
1582 		upimutex_cleanup();
1583 
1584 	/*
1585 	 * Grab p_lock in order to check and set SEXITLWPS to declare a winner.
1586 	 * We must also block any further /proc access from this point forward.
1587 	 */
1588 	mutex_enter(&p->p_lock);
1589 	prbarrier(p);
1590 
1591 	if (p->p_flag & SEXITLWPS) {
1592 		mutex_exit(&p->p_lock);
1593 		aston(curthread);	/* force a trip through post_syscall */
1594 		return (set_errno(EINTR));
1595 	}
1596 
1597 	p->p_flag |= SEXITLWPS;
1598 	if (coredump)		/* tell other lwps to stop, not exit */
1599 		p->p_flag |= SCOREDUMP;
1600 
1601 	/*
1602 	 * Give precedence to exitlwps() if a holdlwps() is
1603 	 * in progress. The lwp doing the holdlwps() operation
1604 	 * is aborted when it is awakened.
1605 	 */
1606 	while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1607 		cv_broadcast(&p->p_holdlwps);
1608 		cv_wait(&p->p_holdlwps, &p->p_lock);
1609 		prbarrier(p);
1610 	}
1611 	p->p_flag |= SHOLDFORK;
1612 	pokelwps(p);
1613 
1614 	/*
1615 	 * Wait for process to become quiescent.
1616 	 */
1617 	--p->p_lwprcnt;
1618 	while (p->p_lwprcnt > 0) {
1619 		cv_wait(&p->p_holdlwps, &p->p_lock);
1620 		prbarrier(p);
1621 	}
1622 	p->p_lwprcnt++;
1623 	ASSERT(p->p_lwprcnt == 1);
1624 
1625 	/*
1626 	 * The SCOREDUMP flag puts the process into a quiescent
1627 	 * state.  The process's lwps remain attached to this
1628 	 * process until exitlwps() is called again without the
1629 	 * 'coredump' flag set, then the lwps are terminated
1630 	 * and the process can exit.
1631 	 */
1632 	if (coredump) {
1633 		p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS);
1634 		goto out;
1635 	}
1636 
1637 	/*
1638 	 * Determine if there are any lwps left dangling in
1639 	 * the stopped state.  This happens when exitlwps()
1640 	 * aborts a holdlwps() operation.
1641 	 */
1642 	p->p_flag &= ~SHOLDFORK;
1643 	if ((heldcnt = p->p_lwpcnt) > 1) {
1644 		kthread_t *t;
1645 		for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) {
1646 			t->t_proc_flag &= ~TP_TWAIT;
1647 			lwp_continue(t);
1648 		}
1649 	}
1650 
1651 	/*
1652 	 * Wait for all other lwps to exit.
1653 	 */
1654 	--p->p_lwprcnt;
1655 	while (p->p_lwpcnt > 1) {
1656 		cv_wait(&p->p_holdlwps, &p->p_lock);
1657 		prbarrier(p);
1658 	}
1659 	++p->p_lwprcnt;
1660 	ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1);
1661 
1662 	p->p_flag &= ~SEXITLWPS;
1663 	curthread->t_proc_flag &= ~TP_TWAIT;
1664 
1665 out:
1666 	if (!coredump && p->p_zombcnt) {	/* cleanup the zombie lwps */
1667 		lwpdir_t *ldp;
1668 		lwpent_t *lep;
1669 		int i;
1670 
1671 		for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) {
1672 			lep = ldp->ld_entry;
1673 			if (lep != NULL && lep->le_thread != curthread) {
1674 				ASSERT(lep->le_thread == NULL);
1675 				p->p_zombcnt--;
1676 				lwp_hash_out(p, lep->le_lwpid);
1677 			}
1678 		}
1679 		ASSERT(p->p_zombcnt == 0);
1680 	}
1681 
1682 	/*
1683 	 * If some other LWP in the process wanted us to suspend ourself,
1684 	 * then we will not do it.  The other LWP is now terminated and
1685 	 * no one will ever continue us again if we suspend ourself.
1686 	 */
1687 	curthread->t_proc_flag &= ~TP_HOLDLWP;
1688 	p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP);
1689 	mutex_exit(&p->p_lock);
1690 	return (0);
1691 }
1692 
1693 /*
1694  * duplicate a lwp.
1695  */
1696 klwp_t *
1697 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid)
1698 {
1699 	klwp_t *clwp;
1700 	void *tregs, *tfpu;
1701 	kthread_t *t = lwptot(lwp);
1702 	kthread_t *ct;
1703 	proc_t *p = lwptoproc(lwp);
1704 	int cid;
1705 	void *bufp;
1706 	void *brand_data;
1707 	int val;
1708 
1709 	ASSERT(p == curproc);
1710 	ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0));
1711 
1712 #if defined(__sparc)
1713 	if (t == curthread)
1714 		(void) flush_user_windows_to_stack(NULL);
1715 #endif
1716 
1717 	if (t == curthread)
1718 		/* copy args out of registers first */
1719 		(void) save_syscall_args();
1720 
1721 	clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt,
1722 	    NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid);
1723 	if (clwp == NULL)
1724 		return (NULL);
1725 
1726 	/*
1727 	 * most of the parent's lwp can be copied to its duplicate,
1728 	 * except for the fields that are unique to each lwp, like
1729 	 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap.
1730 	 */
1731 	ct = clwp->lwp_thread;
1732 	tregs = clwp->lwp_regs;
1733 	tfpu = clwp->lwp_fpu;
1734 	brand_data = clwp->lwp_brand;
1735 
1736 	/*
1737 	 * Copy parent lwp to child lwp.  Hold child's p_lock to prevent
1738 	 * mstate_aggr_state() from reading stale mstate entries copied
1739 	 * from lwp to clwp.
1740 	 */
1741 	mutex_enter(&cp->p_lock);
1742 	*clwp = *lwp;
1743 
1744 	/* clear microstate and resource usage data in new lwp */
1745 	init_mstate(ct, LMS_STOPPED);
1746 	bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru));
1747 	mutex_exit(&cp->p_lock);
1748 
1749 	/* fix up child's lwp */
1750 
1751 	clwp->lwp_pcb.pcb_flags = 0;
1752 #if defined(__sparc)
1753 	clwp->lwp_pcb.pcb_step = STEP_NONE;
1754 #endif
1755 	clwp->lwp_cursig = 0;
1756 	clwp->lwp_extsig = 0;
1757 	clwp->lwp_curinfo = (struct sigqueue *)0;
1758 	clwp->lwp_thread = ct;
1759 	ct->t_sysnum = t->t_sysnum;
1760 	clwp->lwp_regs = tregs;
1761 	clwp->lwp_fpu = tfpu;
1762 	clwp->lwp_brand = brand_data;
1763 	clwp->lwp_ap = clwp->lwp_arg;
1764 	clwp->lwp_procp = cp;
1765 	bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer));
1766 	clwp->lwp_lastfault = 0;
1767 	clwp->lwp_lastfaddr = 0;
1768 
1769 	/* copy parent's struct regs to child. */
1770 	lwp_forkregs(lwp, clwp);
1771 
1772 	/*
1773 	 * Fork thread context ops, if any.
1774 	 */
1775 	if (t->t_ctx)
1776 		forkctx(t, ct);
1777 
1778 	/* fix door state in the child */
1779 	if (t->t_door)
1780 		door_fork(t, ct);
1781 
1782 	/* copy current contract templates, clear latest contracts */
1783 	lwp_ctmpl_copy(clwp, lwp);
1784 
1785 	mutex_enter(&cp->p_lock);
1786 	/* lwp_create() set the TP_HOLDLWP flag */
1787 	if (!(t->t_proc_flag & TP_HOLDLWP))
1788 		ct->t_proc_flag &= ~TP_HOLDLWP;
1789 	if (cp->p_flag & SMSACCT)
1790 		ct->t_proc_flag |= TP_MSACCT;
1791 	mutex_exit(&cp->p_lock);
1792 
1793 	/* Allow brand to propagate brand-specific state */
1794 	if (PROC_IS_BRANDED(p))
1795 		BROP(p)->b_forklwp(lwp, clwp);
1796 
1797 retry:
1798 	cid = t->t_cid;
1799 
1800 	val = CL_ALLOC(&bufp, cid, KM_SLEEP);
1801 	ASSERT(val == 0);
1802 
1803 	mutex_enter(&p->p_lock);
1804 	if (cid != t->t_cid) {
1805 		/*
1806 		 * Someone just changed this thread's scheduling class,
1807 		 * so try pre-allocating the buffer again.  Hopefully we
1808 		 * don't hit this often.
1809 		 */
1810 		mutex_exit(&p->p_lock);
1811 		CL_FREE(cid, bufp);
1812 		goto retry;
1813 	}
1814 
1815 	ct->t_unpark = t->t_unpark;
1816 	ct->t_clfuncs = t->t_clfuncs;
1817 	CL_FORK(t, ct, bufp);
1818 	ct->t_cid = t->t_cid;	/* after data allocated so prgetpsinfo works */
1819 	mutex_exit(&p->p_lock);
1820 
1821 	return (clwp);
1822 }
1823 
1824 /*
1825  * Add a new lwp entry to the lwp directory and to the lwpid hash table.
1826  */
1827 void
1828 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz,
1829     int do_lock)
1830 {
1831 	tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)];
1832 	lwpdir_t **ldpp;
1833 	lwpdir_t *ldp;
1834 	kthread_t *t;
1835 
1836 	/*
1837 	 * Allocate a directory element from the free list.
1838 	 * Code elsewhere guarantees a free slot.
1839 	 */
1840 	ldp = p->p_lwpfree;
1841 	p->p_lwpfree = ldp->ld_next;
1842 	ASSERT(ldp->ld_entry == NULL);
1843 	ldp->ld_entry = lep;
1844 
1845 	if (do_lock)
1846 		mutex_enter(&thp->th_lock);
1847 
1848 	/*
1849 	 * Insert it into the lwpid hash table.
1850 	 */
1851 	ldpp = &thp->th_list;
1852 	ldp->ld_next = *ldpp;
1853 	*ldpp = ldp;
1854 
1855 	/*
1856 	 * Set the active thread's directory slot entry.
1857 	 */
1858 	if ((t = lep->le_thread) != NULL) {
1859 		ASSERT(lep->le_lwpid == t->t_tid);
1860 		t->t_dslot = (int)(ldp - p->p_lwpdir);
1861 	}
1862 
1863 	if (do_lock)
1864 		mutex_exit(&thp->th_lock);
1865 }
1866 
1867 /*
1868  * Remove an lwp from the lwpid hash table and free its directory entry.
1869  * This is done when a detached lwp exits in lwp_exit() or
1870  * when a non-detached lwp is waited for in lwp_wait() or
1871  * when a zombie lwp is detached in lwp_detach().
1872  */
1873 void
1874 lwp_hash_out(proc_t *p, id_t lwpid)
1875 {
1876 	tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1877 	lwpdir_t **ldpp;
1878 	lwpdir_t *ldp;
1879 	lwpent_t *lep;
1880 
1881 	mutex_enter(&thp->th_lock);
1882 	for (ldpp = &thp->th_list;
1883 	    (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) {
1884 		lep = ldp->ld_entry;
1885 		if (lep->le_lwpid == lwpid) {
1886 			prlwpfree(p, lep);	/* /proc deals with le_trace */
1887 			*ldpp = ldp->ld_next;
1888 			ldp->ld_entry = NULL;
1889 			ldp->ld_next = p->p_lwpfree;
1890 			p->p_lwpfree = ldp;
1891 			kmem_free(lep, sizeof (*lep));
1892 			break;
1893 		}
1894 	}
1895 	mutex_exit(&thp->th_lock);
1896 }
1897 
1898 /*
1899  * Lookup an lwp in the lwpid hash table by lwpid.
1900  */
1901 lwpdir_t *
1902 lwp_hash_lookup(proc_t *p, id_t lwpid)
1903 {
1904 	tidhash_t *thp;
1905 	lwpdir_t *ldp;
1906 
1907 	/*
1908 	 * The process may be exiting, after p_tidhash has been set to NULL in
1909 	 * proc_exit() but before prfee() has been called.  Return failure in
1910 	 * this case.
1911 	 */
1912 	if (p->p_tidhash == NULL)
1913 		return (NULL);
1914 
1915 	thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1916 	for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
1917 		if (ldp->ld_entry->le_lwpid == lwpid)
1918 			return (ldp);
1919 	}
1920 
1921 	return (NULL);
1922 }
1923 
1924 /*
1925  * Same as lwp_hash_lookup(), but acquire and return
1926  * the tid hash table entry lock on success.
1927  */
1928 lwpdir_t *
1929 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp)
1930 {
1931 	tidhash_t *tidhash;
1932 	uint_t tidhash_sz;
1933 	tidhash_t *thp;
1934 	lwpdir_t *ldp;
1935 
1936 top:
1937 	tidhash_sz = p->p_tidhash_sz;
1938 	membar_consumer();
1939 	if ((tidhash = p->p_tidhash) == NULL)
1940 		return (NULL);
1941 
1942 	thp = &tidhash[TIDHASH(lwpid, tidhash_sz)];
1943 	mutex_enter(&thp->th_lock);
1944 
1945 	/*
1946 	 * Since we are not holding p->p_lock, the tid hash table
1947 	 * may have changed.  If so, start over.  If not, then
1948 	 * it cannot change until after we drop &thp->th_lock;
1949 	 */
1950 	if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) {
1951 		mutex_exit(&thp->th_lock);
1952 		goto top;
1953 	}
1954 
1955 	for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
1956 		if (ldp->ld_entry->le_lwpid == lwpid) {
1957 			*mpp = &thp->th_lock;
1958 			return (ldp);
1959 		}
1960 	}
1961 
1962 	mutex_exit(&thp->th_lock);
1963 	return (NULL);
1964 }
1965 
1966 /*
1967  * Update the indicated LWP usage statistic for the current LWP.
1968  */
1969 void
1970 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc)
1971 {
1972 	klwp_t *lwp = ttolwp(curthread);
1973 
1974 	if (lwp == NULL)
1975 		return;
1976 
1977 	switch (lwp_stat_id) {
1978 	case LWP_STAT_INBLK:
1979 		lwp->lwp_ru.inblock += inc;
1980 		break;
1981 	case LWP_STAT_OUBLK:
1982 		lwp->lwp_ru.oublock += inc;
1983 		break;
1984 	case LWP_STAT_MSGRCV:
1985 		lwp->lwp_ru.msgrcv += inc;
1986 		break;
1987 	case LWP_STAT_MSGSND:
1988 		lwp->lwp_ru.msgsnd += inc;
1989 		break;
1990 	default:
1991 		panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id);
1992 	}
1993 }
1994