xref: /illumos-gate/usr/src/uts/common/os/lwp.c (revision 46b592853d0f4f11781b6b0a7533f267c6aee132)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/systm.h>
31 #include <sys/thread.h>
32 #include <sys/proc.h>
33 #include <sys/task.h>
34 #include <sys/project.h>
35 #include <sys/signal.h>
36 #include <sys/errno.h>
37 #include <sys/vmparam.h>
38 #include <sys/stack.h>
39 #include <sys/procfs.h>
40 #include <sys/prsystm.h>
41 #include <sys/cpuvar.h>
42 #include <sys/kmem.h>
43 #include <sys/vtrace.h>
44 #include <sys/door.h>
45 #include <vm/seg_kp.h>
46 #include <sys/debug.h>
47 #include <sys/tnf.h>
48 #include <sys/schedctl.h>
49 #include <sys/poll.h>
50 #include <sys/copyops.h>
51 #include <sys/lwp_upimutex_impl.h>
52 #include <sys/cpupart.h>
53 #include <sys/lgrp.h>
54 #include <sys/rctl.h>
55 #include <sys/contract_impl.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/sdt.h>
58 #include <sys/cmn_err.h>
59 #include <sys/brand.h>
60 #include <sys/cyclic.h>
61 #include <sys/pool.h>
62 
63 /* hash function for the lwpid hash table, p->p_tidhash[] */
64 #define	TIDHASH(tid, hash_sz)	((tid) & ((hash_sz) - 1))
65 
66 void *segkp_lwp;		/* cookie for pool of segkp resources */
67 extern void reapq_move_lq_to_tq(kthread_t *);
68 extern void freectx_ctx(struct ctxop *);
69 
70 /*
71  * Create a thread that appears to be stopped at sys_rtt.
72  */
73 klwp_t *
74 lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p,
75     int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid)
76 {
77 	klwp_t *lwp = NULL;
78 	kthread_t *t;
79 	kthread_t *tx;
80 	cpupart_t *oldpart = NULL;
81 	size_t	stksize;
82 	caddr_t lwpdata = NULL;
83 	processorid_t	binding;
84 	int err = 0;
85 	kproject_t *oldkpj, *newkpj;
86 	void *bufp = NULL;
87 	klwp_t *curlwp = ttolwp(curthread);
88 	lwpent_t *lep;
89 	lwpdir_t *old_dir = NULL;
90 	uint_t old_dirsz = 0;
91 	tidhash_t *old_hash = NULL;
92 	uint_t old_hashsz = 0;
93 	ret_tidhash_t *ret_tidhash = NULL;
94 	int i;
95 	int rctlfail = 0;
96 	boolean_t branded = 0;
97 	struct ctxop *ctx = NULL;
98 
99 	mutex_enter(&p->p_lock);
100 	mutex_enter(&p->p_zone->zone_nlwps_lock);
101 	/*
102 	 * don't enforce rctl limits on system processes
103 	 */
104 	if (cid != syscid) {
105 		if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl)
106 			if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p,
107 			    1, 0) & RCT_DENY)
108 				rctlfail = 1;
109 		if (p->p_task->tk_proj->kpj_nlwps >=
110 		    p->p_task->tk_proj->kpj_nlwps_ctl)
111 			if (rctl_test(rc_project_nlwps,
112 			    p->p_task->tk_proj->kpj_rctls, p, 1, 0)
113 			    & RCT_DENY)
114 				rctlfail = 1;
115 		if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl)
116 			if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p,
117 			    1, 0) & RCT_DENY)
118 				rctlfail = 1;
119 	}
120 	if (rctlfail) {
121 		mutex_exit(&p->p_zone->zone_nlwps_lock);
122 		mutex_exit(&p->p_lock);
123 		return (NULL);
124 	}
125 	p->p_task->tk_nlwps++;
126 	p->p_task->tk_proj->kpj_nlwps++;
127 	p->p_zone->zone_nlwps++;
128 	mutex_exit(&p->p_zone->zone_nlwps_lock);
129 	mutex_exit(&p->p_lock);
130 
131 	if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0)
132 		stksize = lwp_default_stksize;
133 
134 	/*
135 	 * Try to reclaim a <lwp,stack> from 'deathrow'
136 	 */
137 	if (stksize == lwp_default_stksize) {
138 		if (lwp_reapcnt > 0) {
139 			mutex_enter(&reaplock);
140 			if ((t = lwp_deathrow) != NULL) {
141 				ASSERT(t->t_swap);
142 				lwp_deathrow = t->t_forw;
143 				lwp_reapcnt--;
144 				lwpdata = t->t_swap;
145 				lwp = t->t_lwp;
146 				ctx = t->t_ctx;
147 				t->t_swap = NULL;
148 				t->t_lwp = NULL;
149 				t->t_ctx = NULL;
150 				reapq_move_lq_to_tq(t);
151 			}
152 			mutex_exit(&reaplock);
153 			if (lwp != NULL) {
154 				lwp_stk_fini(lwp);
155 			}
156 			if (ctx != NULL) {
157 				freectx_ctx(ctx);
158 			}
159 		}
160 		if (lwpdata == NULL &&
161 		    (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) {
162 			mutex_enter(&p->p_lock);
163 			mutex_enter(&p->p_zone->zone_nlwps_lock);
164 			p->p_task->tk_nlwps--;
165 			p->p_task->tk_proj->kpj_nlwps--;
166 			p->p_zone->zone_nlwps--;
167 			mutex_exit(&p->p_zone->zone_nlwps_lock);
168 			mutex_exit(&p->p_lock);
169 			return (NULL);
170 		}
171 	} else {
172 		stksize = roundup(stksize, PAGESIZE);
173 		if ((lwpdata = (caddr_t)segkp_get(segkp, stksize,
174 		    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) {
175 			mutex_enter(&p->p_lock);
176 			mutex_enter(&p->p_zone->zone_nlwps_lock);
177 			p->p_task->tk_nlwps--;
178 			p->p_task->tk_proj->kpj_nlwps--;
179 			p->p_zone->zone_nlwps--;
180 			mutex_exit(&p->p_zone->zone_nlwps_lock);
181 			mutex_exit(&p->p_lock);
182 			return (NULL);
183 		}
184 	}
185 
186 	/*
187 	 * Create a thread, initializing the stack pointer
188 	 */
189 	t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri);
190 
191 	t->t_swap = lwpdata;	/* Start of page-able data */
192 	if (lwp == NULL)
193 		lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP);
194 	bzero(lwp, sizeof (*lwp));
195 	t->t_lwp = lwp;
196 
197 	t->t_hold = *smask;
198 	lwp->lwp_thread = t;
199 	lwp->lwp_procp = p;
200 	lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
201 	if (curlwp != NULL && curlwp->lwp_childstksz != 0)
202 		lwp->lwp_childstksz = curlwp->lwp_childstksz;
203 
204 	t->t_stk = lwp_stk_init(lwp, t->t_stk);
205 	thread_load(t, proc, arg, len);
206 
207 	/*
208 	 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect.
209 	 */
210 	if (p->p_rprof_cyclic != CYCLIC_NONE)
211 		t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP);
212 
213 	if (cid != NOCLASS)
214 		(void) CL_ALLOC(&bufp, cid, KM_SLEEP);
215 
216 	/*
217 	 * Allocate an lwp directory entry for the new lwp.
218 	 */
219 	lep = kmem_zalloc(sizeof (*lep), KM_SLEEP);
220 
221 	mutex_enter(&p->p_lock);
222 grow:
223 	/*
224 	 * Grow the lwp (thread) directory and lwpid hash table if necessary.
225 	 * A note on the growth algorithm:
226 	 *	The new lwp directory size is computed as:
227 	 *		new = 2 * old + 2
228 	 *	Starting with an initial size of 2 (see exec_common()),
229 	 *	this yields numbers that are a power of two minus 2:
230 	 *		2, 6, 14, 30, 62, 126, 254, 510, 1022, ...
231 	 *	The size of the lwpid hash table must be a power of two
232 	 *	and must be commensurate in size with the lwp directory
233 	 *	so that hash bucket chains remain short.  Therefore,
234 	 *	the lwpid hash table size is computed as:
235 	 *		hashsz = (dirsz + 2) / 2
236 	 *	which leads to these hash table sizes corresponding to
237 	 *	the above directory sizes:
238 	 *		2, 4, 8, 16, 32, 64, 128, 256, 512, ...
239 	 * A note on growing the hash table:
240 	 *	For performance reasons, code in lwp_unpark() does not
241 	 *	acquire curproc->p_lock when searching the hash table.
242 	 *	Rather, it calls lwp_hash_lookup_and_lock() which
243 	 *	acquires only the individual hash bucket lock, taking
244 	 *	care to deal with reallocation of the hash table
245 	 *	during the time it takes to acquire the lock.
246 	 *
247 	 *	This is sufficient to protect the integrity of the
248 	 *	hash table, but it requires us to acquire all of the
249 	 *	old hash bucket locks before growing the hash table
250 	 *	and to release them afterwards.  It also requires us
251 	 *	not to free the old hash table because some thread
252 	 *	in lwp_hash_lookup_and_lock() might still be trying
253 	 *	to acquire the old bucket lock.
254 	 *
255 	 *	So we adopt the tactic of keeping all of the retired
256 	 *	hash tables on a linked list, so they can be safely
257 	 *	freed when the process exits or execs.
258 	 *
259 	 *	Because the hash table grows in powers of two, the
260 	 *	total size of all of the hash tables will be slightly
261 	 *	less than twice the size of the largest hash table.
262 	 */
263 	while (p->p_lwpfree == NULL) {
264 		uint_t dirsz = p->p_lwpdir_sz;
265 		lwpdir_t *new_dir;
266 		uint_t new_dirsz;
267 		lwpdir_t *ldp;
268 		tidhash_t *new_hash;
269 		uint_t new_hashsz;
270 
271 		mutex_exit(&p->p_lock);
272 
273 		/*
274 		 * Prepare to remember the old p_tidhash for later
275 		 * kmem_free()ing when the process exits or execs.
276 		 */
277 		if (ret_tidhash == NULL)
278 			ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t),
279 			    KM_SLEEP);
280 		if (old_dir != NULL)
281 			kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
282 		if (old_hash != NULL)
283 			kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
284 
285 		new_dirsz = 2 * dirsz + 2;
286 		new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP);
287 		for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++)
288 			ldp->ld_next = ldp + 1;
289 		new_hashsz = (new_dirsz + 2) / 2;
290 		new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t),
291 		    KM_SLEEP);
292 
293 		mutex_enter(&p->p_lock);
294 		if (p == curproc)
295 			prbarrier(p);
296 
297 		if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) {
298 			/*
299 			 * Someone else beat us to it or some lwp exited.
300 			 * Set up to free our memory and take a lap.
301 			 */
302 			old_dir = new_dir;
303 			old_dirsz = new_dirsz;
304 			old_hash = new_hash;
305 			old_hashsz = new_hashsz;
306 		} else {
307 			/*
308 			 * For the benefit of lwp_hash_lookup_and_lock(),
309 			 * called from lwp_unpark(), which searches the
310 			 * tid hash table without acquiring p->p_lock,
311 			 * we must acquire all of the tid hash table
312 			 * locks before replacing p->p_tidhash.
313 			 */
314 			old_hash = p->p_tidhash;
315 			old_hashsz = p->p_tidhash_sz;
316 			for (i = 0; i < old_hashsz; i++) {
317 				mutex_enter(&old_hash[i].th_lock);
318 				mutex_enter(&new_hash[i].th_lock);
319 			}
320 
321 			/*
322 			 * We simply hash in all of the old directory entries.
323 			 * This works because the old directory has no empty
324 			 * slots and the new hash table starts out empty.
325 			 * This reproduces the original directory ordering
326 			 * (required for /proc directory semantics).
327 			 */
328 			old_dir = p->p_lwpdir;
329 			old_dirsz = p->p_lwpdir_sz;
330 			p->p_lwpdir = new_dir;
331 			p->p_lwpfree = new_dir;
332 			p->p_lwpdir_sz = new_dirsz;
333 			for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++)
334 				lwp_hash_in(p, ldp->ld_entry,
335 				    new_hash, new_hashsz, 0);
336 
337 			/*
338 			 * Remember the old hash table along with all
339 			 * of the previously-remembered hash tables.
340 			 * We will free them at process exit or exec.
341 			 */
342 			ret_tidhash->rth_tidhash = old_hash;
343 			ret_tidhash->rth_tidhash_sz = old_hashsz;
344 			ret_tidhash->rth_next = p->p_ret_tidhash;
345 			p->p_ret_tidhash = ret_tidhash;
346 
347 			/*
348 			 * Now establish the new tid hash table.
349 			 * As soon as we assign p->p_tidhash,
350 			 * code in lwp_unpark() can start using it.
351 			 */
352 			membar_producer();
353 			p->p_tidhash = new_hash;
354 
355 			/*
356 			 * It is necessary that p_tidhash reach global
357 			 * visibility before p_tidhash_sz.  Otherwise,
358 			 * code in lwp_hash_lookup_and_lock() could
359 			 * index into the old p_tidhash using the new
360 			 * p_tidhash_sz and thereby access invalid data.
361 			 */
362 			membar_producer();
363 			p->p_tidhash_sz = new_hashsz;
364 
365 			/*
366 			 * Release the locks; allow lwp_unpark() to carry on.
367 			 */
368 			for (i = 0; i < old_hashsz; i++) {
369 				mutex_exit(&old_hash[i].th_lock);
370 				mutex_exit(&new_hash[i].th_lock);
371 			}
372 
373 			/*
374 			 * Avoid freeing these objects below.
375 			 */
376 			ret_tidhash = NULL;
377 			old_hash = NULL;
378 			old_hashsz = 0;
379 		}
380 	}
381 
382 	/*
383 	 * Block the process against /proc while we manipulate p->p_tlist,
384 	 * unless lwp_create() was called by /proc for the PCAGENT operation.
385 	 * We want to do this early enough so that we don't drop p->p_lock
386 	 * until the thread is put on the p->p_tlist.
387 	 */
388 	if (p == curproc) {
389 		prbarrier(p);
390 		/*
391 		 * If the current lwp has been requested to stop, do so now.
392 		 * Otherwise we have a race condition between /proc attempting
393 		 * to stop the process and this thread creating a new lwp
394 		 * that was not seen when the /proc PCSTOP request was issued.
395 		 * We rely on stop() to call prbarrier(p) before returning.
396 		 */
397 		while ((curthread->t_proc_flag & TP_PRSTOP) &&
398 		    !ttolwp(curthread)->lwp_nostop) {
399 			/*
400 			 * We called pool_barrier_enter() before calling
401 			 * here to lwp_create(). We have to call
402 			 * pool_barrier_exit() before stopping.
403 			 */
404 			pool_barrier_exit();
405 			prbarrier(p);
406 			stop(PR_REQUESTED, 0);
407 			/*
408 			 * And we have to repeat the call to
409 			 * pool_barrier_enter after stopping.
410 			 */
411 			pool_barrier_enter();
412 			prbarrier(p);
413 		}
414 
415 		/*
416 		 * If process is exiting, there could be a race between
417 		 * the agent lwp creation and the new lwp currently being
418 		 * created. So to prevent this race lwp creation is failed
419 		 * if the process is exiting.
420 		 */
421 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
422 			err = 1;
423 			goto error;
424 		}
425 
426 		/*
427 		 * Since we might have dropped p->p_lock, the
428 		 * lwp directory free list might have changed.
429 		 */
430 		if (p->p_lwpfree == NULL)
431 			goto grow;
432 	}
433 
434 	kpreempt_disable();	/* can't grab cpu_lock here */
435 
436 	/*
437 	 * Inherit processor and processor set bindings from curthread,
438 	 * unless we're creating a new kernel process, in which case
439 	 * clear all bindings.
440 	 */
441 	if (cid == syscid) {
442 		t->t_bind_cpu = binding = PBIND_NONE;
443 		t->t_cpupart = oldpart = &cp_default;
444 		t->t_bind_pset = PS_NONE;
445 		t->t_bindflag = (uchar_t)default_binding_mode;
446 	} else {
447 		binding = curthread->t_bind_cpu;
448 		t->t_bind_cpu = binding;
449 		oldpart = t->t_cpupart;
450 		t->t_cpupart = curthread->t_cpupart;
451 		t->t_bind_pset = curthread->t_bind_pset;
452 		t->t_bindflag = curthread->t_bindflag |
453 		    (uchar_t)default_binding_mode;
454 	}
455 
456 	/*
457 	 * thread_create() initializes this thread's home lgroup to the root.
458 	 * Choose a more suitable lgroup, since this thread is associated
459 	 * with an lwp.
460 	 */
461 	ASSERT(oldpart != NULL);
462 	if (binding != PBIND_NONE && t->t_affinitycnt == 0) {
463 		t->t_bound_cpu = cpu[binding];
464 		if (t->t_lpl != t->t_bound_cpu->cpu_lpl)
465 			lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1);
466 	} else {
467 		lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1);
468 	}
469 
470 	kpreempt_enable();
471 
472 	/*
473 	 * make sure lpl points to our own partition
474 	 */
475 	ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads);
476 	ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads +
477 	    t->t_cpupart->cp_nlgrploads);
478 
479 	/*
480 	 * If we're creating a new process, then inherit the project from our
481 	 * parent. If we're only creating an additional lwp then use the
482 	 * project pointer of the target process.
483 	 */
484 	if (p->p_task == NULL)
485 		newkpj = ttoproj(curthread);
486 	else
487 		newkpj = p->p_task->tk_proj;
488 
489 	/*
490 	 * It is safe to point the thread to the new project without holding it
491 	 * since we're holding the target process' p_lock here and therefore
492 	 * we're guaranteed that it will not move to another project.
493 	 */
494 	oldkpj = ttoproj(t);
495 	if (newkpj != oldkpj) {
496 		t->t_proj = newkpj;
497 		(void) project_hold(newkpj);
498 		project_rele(oldkpj);
499 	}
500 
501 	if (cid != NOCLASS) {
502 		/*
503 		 * If the lwp is being created in the current process
504 		 * and matches the current thread's scheduling class,
505 		 * we should propagate the current thread's scheduling
506 		 * parameters by calling CL_FORK.  Otherwise just use
507 		 * the defaults by calling CL_ENTERCLASS.
508 		 */
509 		if (p != curproc || curthread->t_cid != cid) {
510 			err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp);
511 			t->t_pri = pri;	/* CL_ENTERCLASS may have changed it */
512 			/*
513 			 * We don't call schedctl_set_cidpri(t) here
514 			 * because the schedctl data is not yet set
515 			 * up for the newly-created lwp.
516 			 */
517 		} else {
518 			t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
519 			err = CL_FORK(curthread, t, bufp);
520 			t->t_cid = cid;
521 		}
522 		if (err)
523 			goto error;
524 		else
525 			bufp = NULL;
526 	}
527 
528 	/*
529 	 * If we were given an lwpid then use it, else allocate one.
530 	 */
531 	if (lwpid != 0)
532 		t->t_tid = lwpid;
533 	else {
534 		/*
535 		 * lwp/thread id 0 is never valid; reserved for special checks.
536 		 * lwp/thread id 1 is reserved for the main thread.
537 		 * Start again at 2 when INT_MAX has been reached
538 		 * (id_t is a signed 32-bit integer).
539 		 */
540 		id_t prev_id = p->p_lwpid;	/* last allocated tid */
541 
542 		do {			/* avoid lwpid duplication */
543 			if (p->p_lwpid == INT_MAX) {
544 				p->p_flag |= SLWPWRAP;
545 				p->p_lwpid = 1;
546 			}
547 			if ((t->t_tid = ++p->p_lwpid) == prev_id) {
548 				/*
549 				 * All lwpids are allocated; fail the request.
550 				 */
551 				err = 1;
552 				goto error;
553 			}
554 			/*
555 			 * We only need to worry about colliding with an id
556 			 * that's already in use if this process has
557 			 * cycled through all available lwp ids.
558 			 */
559 			if ((p->p_flag & SLWPWRAP) == 0)
560 				break;
561 		} while (lwp_hash_lookup(p, t->t_tid) != NULL);
562 	}
563 
564 	/*
565 	 * If this is a branded process, let the brand do any necessary lwp
566 	 * initialization.
567 	 */
568 	if (PROC_IS_BRANDED(p)) {
569 		if (BROP(p)->b_initlwp(lwp)) {
570 			err = 1;
571 			goto error;
572 		}
573 		branded = 1;
574 	}
575 
576 	if (t->t_tid == 1) {
577 		kpreempt_disable();
578 		ASSERT(t->t_lpl != NULL);
579 		p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid;
580 		kpreempt_enable();
581 		if (p->p_tr_lgrpid != LGRP_NONE &&
582 		    p->p_tr_lgrpid != p->p_t1_lgrpid) {
583 			lgrp_update_trthr_migrations(1);
584 		}
585 	}
586 
587 	p->p_lwpcnt++;
588 	t->t_waitfor = -1;
589 
590 	/*
591 	 * Turn microstate accounting on for thread if on for process.
592 	 */
593 	if (p->p_flag & SMSACCT)
594 		t->t_proc_flag |= TP_MSACCT;
595 
596 	/*
597 	 * If the process has watchpoints, mark the new thread as such.
598 	 */
599 	if (pr_watch_active(p))
600 		watch_enable(t);
601 
602 	/*
603 	 * The lwp is being created in the stopped state.
604 	 * We set all the necessary flags to indicate that fact here.
605 	 * We omit the TS_CREATE flag from t_schedflag so that the lwp
606 	 * cannot be set running until the caller is finished with it,
607 	 * even if lwp_continue() is called on it after we drop p->p_lock.
608 	 * When the caller is finished with the newly-created lwp,
609 	 * the caller must call lwp_create_done() to allow the lwp
610 	 * to be set running.  If the TP_HOLDLWP is left set, the
611 	 * lwp will suspend itself after reaching system call exit.
612 	 */
613 	init_mstate(t, LMS_STOPPED);
614 	t->t_proc_flag |= TP_HOLDLWP;
615 	t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE));
616 	t->t_whystop = PR_SUSPENDED;
617 	t->t_whatstop = SUSPEND_NORMAL;
618 	t->t_sig_check = 1;	/* ensure that TP_HOLDLWP is honored */
619 
620 	/*
621 	 * Set system call processing flags in case tracing or profiling
622 	 * is set.  The first system call will evaluate these and turn
623 	 * them off if they aren't needed.
624 	 */
625 	t->t_pre_sys = 1;
626 	t->t_post_sys = 1;
627 
628 	/*
629 	 * Insert the new thread into the list of all threads.
630 	 */
631 	if ((tx = p->p_tlist) == NULL) {
632 		t->t_back = t;
633 		t->t_forw = t;
634 		p->p_tlist = t;
635 	} else {
636 		t->t_forw = tx;
637 		t->t_back = tx->t_back;
638 		tx->t_back->t_forw = t;
639 		tx->t_back = t;
640 	}
641 
642 	/*
643 	 * Insert the new lwp into an lwp directory slot position
644 	 * and into the lwpid hash table.
645 	 */
646 	lep->le_thread = t;
647 	lep->le_lwpid = t->t_tid;
648 	lep->le_start = t->t_start;
649 	lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1);
650 
651 	if (state == TS_RUN) {
652 		/*
653 		 * We set the new lwp running immediately.
654 		 */
655 		t->t_proc_flag &= ~TP_HOLDLWP;
656 		lwp_create_done(t);
657 	}
658 
659 error:
660 	if (err) {
661 		/*
662 		 * We have failed to create an lwp, so decrement the number
663 		 * of lwps in the task and let the lgroup load averages know
664 		 * that this thread isn't going to show up.
665 		 */
666 		kpreempt_disable();
667 		lgrp_move_thread(t, NULL, 1);
668 		kpreempt_enable();
669 
670 		ASSERT(MUTEX_HELD(&p->p_lock));
671 		mutex_enter(&p->p_zone->zone_nlwps_lock);
672 		p->p_task->tk_nlwps--;
673 		p->p_task->tk_proj->kpj_nlwps--;
674 		p->p_zone->zone_nlwps--;
675 		mutex_exit(&p->p_zone->zone_nlwps_lock);
676 		if (cid != NOCLASS && bufp != NULL)
677 			CL_FREE(cid, bufp);
678 
679 		if (branded)
680 			BROP(p)->b_freelwp(lwp);
681 
682 		mutex_exit(&p->p_lock);
683 		t->t_state = TS_FREE;
684 		thread_rele(t);
685 
686 		/*
687 		 * We need to remove t from the list of all threads
688 		 * because thread_exit()/lwp_exit() isn't called on t.
689 		 */
690 		mutex_enter(&pidlock);
691 		ASSERT(t != t->t_next);		/* t0 never exits */
692 		t->t_next->t_prev = t->t_prev;
693 		t->t_prev->t_next = t->t_next;
694 		mutex_exit(&pidlock);
695 
696 		thread_free(t);
697 		kmem_free(lep, sizeof (*lep));
698 		lwp = NULL;
699 	} else {
700 		mutex_exit(&p->p_lock);
701 	}
702 
703 	if (old_dir != NULL)
704 		kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
705 	if (old_hash != NULL)
706 		kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
707 	if (ret_tidhash != NULL)
708 		kmem_free(ret_tidhash, sizeof (ret_tidhash_t));
709 
710 	DTRACE_PROC1(lwp__create, kthread_t *, t);
711 	return (lwp);
712 }
713 
714 /*
715  * lwp_create_done() is called by the caller of lwp_create() to set the
716  * newly-created lwp running after the caller has finished manipulating it.
717  */
718 void
719 lwp_create_done(kthread_t *t)
720 {
721 	proc_t *p = ttoproc(t);
722 
723 	ASSERT(MUTEX_HELD(&p->p_lock));
724 
725 	/*
726 	 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked().
727 	 * (The absence of the TS_CREATE flag prevents the lwp from running
728 	 * until we are finished with it, even if lwp_continue() is called on
729 	 * it by some other lwp in the process or elsewhere in the kernel.)
730 	 */
731 	thread_lock(t);
732 	ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE));
733 	/*
734 	 * If TS_CSTART is set, lwp_continue(t) has been called and
735 	 * has already incremented p_lwprcnt; avoid doing this twice.
736 	 */
737 	if (!(t->t_schedflag & TS_CSTART))
738 		p->p_lwprcnt++;
739 	t->t_schedflag |= (TS_CSTART | TS_CREATE);
740 	setrun_locked(t);
741 	thread_unlock(t);
742 }
743 
744 /*
745  * Copy an LWP's active templates, and clear the latest contracts.
746  */
747 void
748 lwp_ctmpl_copy(klwp_t *dst, klwp_t *src)
749 {
750 	int i;
751 
752 	for (i = 0; i < ct_ntypes; i++) {
753 		dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]);
754 		dst->lwp_ct_latest[i] = NULL;
755 	}
756 }
757 
758 /*
759  * Clear an LWP's contract template state.
760  */
761 void
762 lwp_ctmpl_clear(klwp_t *lwp)
763 {
764 	ct_template_t *tmpl;
765 	int i;
766 
767 	for (i = 0; i < ct_ntypes; i++) {
768 		if ((tmpl = lwp->lwp_ct_active[i]) != NULL) {
769 			ctmpl_free(tmpl);
770 			lwp->lwp_ct_active[i] = NULL;
771 		}
772 
773 		if (lwp->lwp_ct_latest[i] != NULL) {
774 			contract_rele(lwp->lwp_ct_latest[i]);
775 			lwp->lwp_ct_latest[i] = NULL;
776 		}
777 	}
778 }
779 
780 /*
781  * Individual lwp exit.
782  * If this is the last lwp, exit the whole process.
783  */
784 void
785 lwp_exit(void)
786 {
787 	kthread_t *t = curthread;
788 	klwp_t *lwp = ttolwp(t);
789 	proc_t *p = ttoproc(t);
790 
791 	ASSERT(MUTEX_HELD(&p->p_lock));
792 
793 	mutex_exit(&p->p_lock);
794 
795 #if defined(__sparc)
796 	/*
797 	 * Ensure that the user stack is fully abandoned..
798 	 */
799 	trash_user_windows();
800 #endif
801 
802 	tsd_exit();			/* free thread specific data */
803 
804 	kcpc_passivate();		/* Clean up performance counter state */
805 
806 	pollcleanup();
807 
808 	if (t->t_door)
809 		door_slam();
810 
811 	if (t->t_schedctl != NULL)
812 		schedctl_lwp_cleanup(t);
813 
814 	if (t->t_upimutex != NULL)
815 		upimutex_cleanup();
816 
817 	/*
818 	 * Perform any brand specific exit processing, then release any
819 	 * brand data associated with the lwp
820 	 */
821 	if (PROC_IS_BRANDED(p))
822 		BROP(p)->b_lwpexit(lwp);
823 
824 	mutex_enter(&p->p_lock);
825 	lwp_cleanup();
826 
827 	/*
828 	 * When this process is dumping core, its lwps are held here
829 	 * until the core dump is finished. Then exitlwps() is called
830 	 * again to release these lwps so that they can finish exiting.
831 	 */
832 	if (p->p_flag & SCOREDUMP)
833 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
834 
835 	/*
836 	 * Block the process against /proc now that we have really acquired
837 	 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least).
838 	 */
839 	prbarrier(p);
840 
841 	/*
842 	 * Call proc_exit() if this is the last non-daemon lwp in the process.
843 	 */
844 	if (!(t->t_proc_flag & TP_DAEMON) &&
845 	    p->p_lwpcnt == p->p_lwpdaemon + 1) {
846 		mutex_exit(&p->p_lock);
847 		if (proc_exit(CLD_EXITED, 0) == 0) {
848 			/* Restarting init. */
849 			return;
850 		}
851 
852 		/*
853 		 * proc_exit() returns a non-zero value when some other
854 		 * lwp got there first.  We just have to continue in
855 		 * lwp_exit().
856 		 */
857 		mutex_enter(&p->p_lock);
858 		ASSERT(curproc->p_flag & SEXITLWPS);
859 		prbarrier(p);
860 	}
861 
862 	DTRACE_PROC(lwp__exit);
863 
864 	/*
865 	 * If the lwp is a detached lwp or if the process is exiting,
866 	 * remove (lwp_hash_out()) the lwp from the lwp directory.
867 	 * Otherwise null out the lwp's le_thread pointer in the lwp
868 	 * directory so that other threads will see it as a zombie lwp.
869 	 */
870 	prlwpexit(t);		/* notify /proc */
871 	if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS))
872 		lwp_hash_out(p, t->t_tid);
873 	else {
874 		ASSERT(!(t->t_proc_flag & TP_DAEMON));
875 		p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL;
876 		p->p_zombcnt++;
877 		cv_broadcast(&p->p_lwpexit);
878 	}
879 	if (t->t_proc_flag & TP_DAEMON) {
880 		p->p_lwpdaemon--;
881 		t->t_proc_flag &= ~TP_DAEMON;
882 	}
883 	t->t_proc_flag &= ~TP_TWAIT;
884 
885 	/*
886 	 * Maintain accurate lwp count for task.max-lwps resource control.
887 	 */
888 	mutex_enter(&p->p_zone->zone_nlwps_lock);
889 	p->p_task->tk_nlwps--;
890 	p->p_task->tk_proj->kpj_nlwps--;
891 	p->p_zone->zone_nlwps--;
892 	mutex_exit(&p->p_zone->zone_nlwps_lock);
893 
894 	CL_EXIT(t);		/* tell the scheduler that t is exiting */
895 	ASSERT(p->p_lwpcnt != 0);
896 	p->p_lwpcnt--;
897 
898 	/*
899 	 * If all remaining non-daemon lwps are waiting in lwp_wait(),
900 	 * wake them up so someone can return EDEADLK.
901 	 * (See the block comment preceeding lwp_wait().)
902 	 */
903 	if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait))
904 		cv_broadcast(&p->p_lwpexit);
905 
906 	t->t_proc_flag |= TP_LWPEXIT;
907 	term_mstate(t);
908 
909 #ifndef NPROBE
910 	/* Kernel probe */
911 	if (t->t_tnf_tpdp)
912 		tnf_thread_exit();
913 #endif /* NPROBE */
914 
915 	t->t_forw->t_back = t->t_back;
916 	t->t_back->t_forw = t->t_forw;
917 	if (t == p->p_tlist)
918 		p->p_tlist = t->t_forw;
919 
920 	/*
921 	 * Clean up the signal state.
922 	 */
923 	if (t->t_sigqueue != NULL)
924 		sigdelq(p, t, 0);
925 	if (lwp->lwp_curinfo != NULL) {
926 		siginfofree(lwp->lwp_curinfo);
927 		lwp->lwp_curinfo = NULL;
928 	}
929 
930 	thread_rele(t);
931 
932 	/*
933 	 * Terminated lwps are associated with process zero and are put onto
934 	 * death-row by resume().  Avoid preemption after resetting t->t_procp.
935 	 */
936 	t->t_preempt++;
937 
938 	if (t->t_ctx != NULL)
939 		exitctx(t);
940 	if (p->p_pctx != NULL)
941 		exitpctx(p);
942 
943 	t->t_procp = &p0;
944 
945 	/*
946 	 * Notify the HAT about the change of address space
947 	 */
948 	hat_thread_exit(t);
949 	/*
950 	 * When this is the last running lwp in this process and some lwp is
951 	 * waiting for this condition to become true, or this thread was being
952 	 * suspended, then the waiting lwp is awakened.
953 	 *
954 	 * Also, if the process is exiting, we may have a thread waiting in
955 	 * exitlwps() that needs to be notified.
956 	 */
957 	if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) ||
958 	    (p->p_flag & SEXITLWPS))
959 		cv_broadcast(&p->p_holdlwps);
960 
961 	/*
962 	 * Need to drop p_lock so we can reacquire pidlock.
963 	 */
964 	mutex_exit(&p->p_lock);
965 	mutex_enter(&pidlock);
966 
967 	ASSERT(t != t->t_next);		/* t0 never exits */
968 	t->t_next->t_prev = t->t_prev;
969 	t->t_prev->t_next = t->t_next;
970 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
971 	mutex_exit(&pidlock);
972 
973 	lwp_pcb_exit();
974 
975 	t->t_state = TS_ZOMB;
976 	swtch_from_zombie();
977 	/* never returns */
978 }
979 
980 
981 /*
982  * Cleanup function for an exiting lwp.
983  * Called both from lwp_exit() and from proc_exit().
984  * p->p_lock is repeatedly released and grabbed in this function.
985  */
986 void
987 lwp_cleanup(void)
988 {
989 	kthread_t *t = curthread;
990 	proc_t *p = ttoproc(t);
991 
992 	ASSERT(MUTEX_HELD(&p->p_lock));
993 
994 	/* untimeout any lwp-bound realtime timers */
995 	if (p->p_itimer != NULL)
996 		timer_lwpexit();
997 
998 	/*
999 	 * If this is the /proc agent lwp that is exiting, readjust p_lwpid
1000 	 * so it appears that the agent never existed, and clear p_agenttp.
1001 	 */
1002 	if (t == p->p_agenttp) {
1003 		ASSERT(t->t_tid == p->p_lwpid);
1004 		p->p_lwpid--;
1005 		p->p_agenttp = NULL;
1006 	}
1007 
1008 	/*
1009 	 * Do lgroup bookkeeping to account for thread exiting.
1010 	 */
1011 	kpreempt_disable();
1012 	lgrp_move_thread(t, NULL, 1);
1013 	if (t->t_tid == 1) {
1014 		p->p_t1_lgrpid = LGRP_NONE;
1015 	}
1016 	kpreempt_enable();
1017 
1018 	lwp_ctmpl_clear(ttolwp(t));
1019 }
1020 
1021 int
1022 lwp_suspend(kthread_t *t)
1023 {
1024 	int tid;
1025 	proc_t *p = ttoproc(t);
1026 
1027 	ASSERT(MUTEX_HELD(&p->p_lock));
1028 
1029 	/*
1030 	 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp().
1031 	 * If an lwp is stopping itself, there is no need to wait.
1032 	 */
1033 top:
1034 	t->t_proc_flag |= TP_HOLDLWP;
1035 	if (t == curthread) {
1036 		t->t_sig_check = 1;
1037 	} else {
1038 		/*
1039 		 * Make sure the lwp stops promptly.
1040 		 */
1041 		thread_lock(t);
1042 		t->t_sig_check = 1;
1043 		/*
1044 		 * XXX Should use virtual stop like /proc does instead of
1045 		 * XXX waking the thread to get it to stop.
1046 		 */
1047 		if (ISWAKEABLE(t) || ISWAITING(t)) {
1048 			setrun_locked(t);
1049 		} else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) {
1050 			poke_cpu(t->t_cpu->cpu_id);
1051 		}
1052 
1053 		tid = t->t_tid;	 /* remember thread ID */
1054 		/*
1055 		 * Wait for lwp to stop
1056 		 */
1057 		while (!SUSPENDED(t)) {
1058 			/*
1059 			 * Drop the thread lock before waiting and reacquire it
1060 			 * afterwards, so the thread can change its t_state
1061 			 * field.
1062 			 */
1063 			thread_unlock(t);
1064 
1065 			/*
1066 			 * Check if aborted by exitlwps().
1067 			 */
1068 			if (p->p_flag & SEXITLWPS)
1069 				lwp_exit();
1070 
1071 			/*
1072 			 * Cooperate with jobcontrol signals and /proc stopping
1073 			 * by calling cv_wait_sig() to wait for the target
1074 			 * lwp to stop.  Just using cv_wait() can lead to
1075 			 * deadlock because, if some other lwp has stopped
1076 			 * by either of these mechanisms, then p_lwprcnt will
1077 			 * never become zero if we do a cv_wait().
1078 			 */
1079 			if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock))
1080 				return (EINTR);
1081 
1082 			/*
1083 			 * Check to see if thread died while we were
1084 			 * waiting for it to suspend.
1085 			 */
1086 			if (idtot(p, tid) == NULL)
1087 				return (ESRCH);
1088 
1089 			thread_lock(t);
1090 			/*
1091 			 * If the TP_HOLDLWP flag went away, lwp_continue()
1092 			 * or vfork() must have been called while we were
1093 			 * waiting, so start over again.
1094 			 */
1095 			if ((t->t_proc_flag & TP_HOLDLWP) == 0) {
1096 				thread_unlock(t);
1097 				goto top;
1098 			}
1099 		}
1100 		thread_unlock(t);
1101 	}
1102 	return (0);
1103 }
1104 
1105 /*
1106  * continue a lwp that's been stopped by lwp_suspend().
1107  */
1108 void
1109 lwp_continue(kthread_t *t)
1110 {
1111 	proc_t *p = ttoproc(t);
1112 	int was_suspended = t->t_proc_flag & TP_HOLDLWP;
1113 
1114 	ASSERT(MUTEX_HELD(&p->p_lock));
1115 
1116 	t->t_proc_flag &= ~TP_HOLDLWP;
1117 	thread_lock(t);
1118 	if (SUSPENDED(t) &&
1119 	    !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) {
1120 		p->p_lwprcnt++;
1121 		t->t_schedflag |= TS_CSTART;
1122 		setrun_locked(t);
1123 	}
1124 	thread_unlock(t);
1125 	/*
1126 	 * Wakeup anyone waiting for this thread to be suspended
1127 	 */
1128 	if (was_suspended)
1129 		cv_broadcast(&p->p_holdlwps);
1130 }
1131 
1132 /*
1133  * ********************************
1134  *  Miscellaneous lwp routines	  *
1135  * ********************************
1136  */
1137 /*
1138  * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK.
1139  * This will cause the process's lwps to stop at a hold point.  A hold
1140  * point is where a kernel thread has a flat stack.  This is at the
1141  * return from a system call and at the return from a user level trap.
1142  *
1143  * When a process is undergoing a fork1() or vfork(), its p_flag is set to
1144  * SHOLDFORK1.  This will cause the process's lwps to stop at a modified
1145  * hold point.  The lwps in the process are not being cloned, so they
1146  * are held at the usual hold points and also within issig_forreal().
1147  * This has the side-effect that their system calls do not return
1148  * showing EINTR.
1149  *
1150  * An lwp can also be held.  This is identified by the TP_HOLDLWP flag on
1151  * the thread.  The TP_HOLDLWP flag is set in lwp_suspend(), where the active
1152  * lwp is waiting for the target lwp to be stopped.
1153  */
1154 void
1155 holdlwp(void)
1156 {
1157 	proc_t *p = curproc;
1158 	kthread_t *t = curthread;
1159 
1160 	mutex_enter(&p->p_lock);
1161 	/*
1162 	 * Don't terminate immediately if the process is dumping core.
1163 	 * Once the process has dumped core, all lwps are terminated.
1164 	 */
1165 	if (!(p->p_flag & SCOREDUMP)) {
1166 		if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP))
1167 			lwp_exit();
1168 	}
1169 	if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) {
1170 		mutex_exit(&p->p_lock);
1171 		return;
1172 	}
1173 	/*
1174 	 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps
1175 	 * when p->p_lwprcnt becomes zero.
1176 	 */
1177 	stop(PR_SUSPENDED, SUSPEND_NORMAL);
1178 	if (p->p_flag & SEXITLWPS)
1179 		lwp_exit();
1180 	mutex_exit(&p->p_lock);
1181 }
1182 
1183 /*
1184  * Have all lwps within the process hold at a point where they are
1185  * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1).
1186  */
1187 int
1188 holdlwps(int holdflag)
1189 {
1190 	proc_t *p = curproc;
1191 
1192 	ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1);
1193 	mutex_enter(&p->p_lock);
1194 	schedctl_finish_sigblock(curthread);
1195 again:
1196 	while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1197 		/*
1198 		 * If another lwp is doing a forkall() or proc_exit(), bail out.
1199 		 */
1200 		if (p->p_flag & (SEXITLWPS | SHOLDFORK)) {
1201 			mutex_exit(&p->p_lock);
1202 			return (0);
1203 		}
1204 		/*
1205 		 * Another lwp is doing a fork1() or is undergoing
1206 		 * watchpoint activity.  We hold here for it to complete.
1207 		 */
1208 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1209 	}
1210 	p->p_flag |= holdflag;
1211 	pokelwps(p);
1212 	--p->p_lwprcnt;
1213 	/*
1214 	 * Wait for the process to become quiescent (p->p_lwprcnt == 0).
1215 	 */
1216 	while (p->p_lwprcnt > 0) {
1217 		/*
1218 		 * Check if aborted by exitlwps().
1219 		 * Also check if SHOLDWATCH is set; it takes precedence.
1220 		 */
1221 		if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) {
1222 			p->p_lwprcnt++;
1223 			p->p_flag &= ~holdflag;
1224 			cv_broadcast(&p->p_holdlwps);
1225 			goto again;
1226 		}
1227 		/*
1228 		 * Cooperate with jobcontrol signals and /proc stopping.
1229 		 * If some other lwp has stopped by either of these
1230 		 * mechanisms, then p_lwprcnt will never become zero
1231 		 * and the process will appear deadlocked unless we
1232 		 * stop here in sympathy with the other lwp before
1233 		 * doing the cv_wait() below.
1234 		 *
1235 		 * If the other lwp stops after we do the cv_wait(), it
1236 		 * will wake us up to loop around and do the sympathy stop.
1237 		 *
1238 		 * Since stop() drops p->p_lock, we must start from
1239 		 * the top again on returning from stop().
1240 		 */
1241 		if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) {
1242 			int whystop = p->p_stopsig? PR_JOBCONTROL :
1243 			    PR_REQUESTED;
1244 			p->p_lwprcnt++;
1245 			p->p_flag &= ~holdflag;
1246 			stop(whystop, p->p_stopsig);
1247 			goto again;
1248 		}
1249 		cv_wait(&p->p_holdlwps, &p->p_lock);
1250 	}
1251 	p->p_lwprcnt++;
1252 	p->p_flag &= ~holdflag;
1253 	mutex_exit(&p->p_lock);
1254 	return (1);
1255 }
1256 
1257 /*
1258  * See comments for holdwatch(), below.
1259  */
1260 static int
1261 holdcheck(int clearflags)
1262 {
1263 	proc_t *p = curproc;
1264 
1265 	/*
1266 	 * If we are trying to exit, that takes precedence over anything else.
1267 	 */
1268 	if (p->p_flag & SEXITLWPS) {
1269 		p->p_lwprcnt++;
1270 		p->p_flag &= ~clearflags;
1271 		lwp_exit();
1272 	}
1273 
1274 	/*
1275 	 * If another thread is calling fork1(), stop the current thread so the
1276 	 * other can complete.
1277 	 */
1278 	if (p->p_flag & SHOLDFORK1) {
1279 		p->p_lwprcnt++;
1280 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1281 		if (p->p_flag & SEXITLWPS) {
1282 			p->p_flag &= ~clearflags;
1283 			lwp_exit();
1284 		}
1285 		return (-1);
1286 	}
1287 
1288 	/*
1289 	 * If another thread is calling fork(), then indicate we are doing
1290 	 * watchpoint activity.  This will cause holdlwps() above to stop the
1291 	 * forking thread, at which point we can continue with watchpoint
1292 	 * activity.
1293 	 */
1294 	if (p->p_flag & SHOLDFORK) {
1295 		p->p_lwprcnt++;
1296 		while (p->p_flag & SHOLDFORK) {
1297 			p->p_flag |= SHOLDWATCH;
1298 			cv_broadcast(&p->p_holdlwps);
1299 			cv_wait(&p->p_holdlwps, &p->p_lock);
1300 			p->p_flag &= ~SHOLDWATCH;
1301 		}
1302 		return (-1);
1303 	}
1304 
1305 	return (0);
1306 }
1307 
1308 /*
1309  * Stop all lwps within the process, holding themselves in the kernel while the
1310  * active lwp undergoes watchpoint activity.  This is more complicated than
1311  * expected because stop() relies on calling holdwatch() in order to copyin data
1312  * from the user's address space.  A double barrier is used to prevent an
1313  * infinite loop.
1314  *
1315  * 	o The first thread into holdwatch() is the 'master' thread and does
1316  *        the following:
1317  *
1318  *              - Sets SHOLDWATCH on the current process
1319  *              - Sets TP_WATCHSTOP on the current thread
1320  *              - Waits for all threads to be either stopped or have
1321  *                TP_WATCHSTOP set.
1322  *              - Sets the SWATCHOK flag on the process
1323  *              - Unsets TP_WATCHSTOP
1324  *              - Waits for the other threads to completely stop
1325  *              - Unsets SWATCHOK
1326  *
1327  * 	o If SHOLDWATCH is already set when we enter this function, then another
1328  *        thread is already trying to stop this thread.  This 'slave' thread
1329  *        does the following:
1330  *
1331  *              - Sets TP_WATCHSTOP on the current thread
1332  *              - Waits for SWATCHOK flag to be set
1333  *              - Calls stop()
1334  *
1335  * 	o If SWATCHOK is set on the process, then this function immediately
1336  *        returns, as we must have been called via stop().
1337  *
1338  * In addition, there are other flags that take precedence over SHOLDWATCH:
1339  *
1340  * 	o If SEXITLWPS is set, exit immediately.
1341  *
1342  * 	o If SHOLDFORK1 is set, wait for fork1() to complete.
1343  *
1344  * 	o If SHOLDFORK is set, then watchpoint activity takes precedence In this
1345  *        case, set SHOLDWATCH, signalling the forking thread to stop first.
1346  *
1347  * 	o If the process is being stopped via /proc (TP_PRSTOP is set), then we
1348  *        stop the current thread.
1349  *
1350  * Returns 0 if all threads have been quiesced.  Returns non-zero if not all
1351  * threads were stopped, or the list of watched pages has changed.
1352  */
1353 int
1354 holdwatch(void)
1355 {
1356 	proc_t *p = curproc;
1357 	kthread_t *t = curthread;
1358 	int ret = 0;
1359 
1360 	mutex_enter(&p->p_lock);
1361 
1362 	p->p_lwprcnt--;
1363 
1364 	/*
1365 	 * Check for bail-out conditions as outlined above.
1366 	 */
1367 	if (holdcheck(0) != 0) {
1368 		mutex_exit(&p->p_lock);
1369 		return (-1);
1370 	}
1371 
1372 	if (!(p->p_flag & SHOLDWATCH)) {
1373 		/*
1374 		 * We are the master watchpoint thread.  Set SHOLDWATCH and poke
1375 		 * the other threads.
1376 		 */
1377 		p->p_flag |= SHOLDWATCH;
1378 		pokelwps(p);
1379 
1380 		/*
1381 		 * Wait for all threads to be stopped or have TP_WATCHSTOP set.
1382 		 */
1383 		while (pr_allstopped(p, 1) > 0) {
1384 			if (holdcheck(SHOLDWATCH) != 0) {
1385 				p->p_flag &= ~SHOLDWATCH;
1386 				mutex_exit(&p->p_lock);
1387 				return (-1);
1388 			}
1389 
1390 			cv_wait(&p->p_holdlwps, &p->p_lock);
1391 		}
1392 
1393 		/*
1394 		 * All threads are now stopped or in the process of stopping.
1395 		 * Set SWATCHOK and let them stop completely.
1396 		 */
1397 		p->p_flag |= SWATCHOK;
1398 		t->t_proc_flag &= ~TP_WATCHSTOP;
1399 		cv_broadcast(&p->p_holdlwps);
1400 
1401 		while (pr_allstopped(p, 0) > 0) {
1402 			/*
1403 			 * At first glance, it may appear that we don't need a
1404 			 * call to holdcheck() here.  But if the process gets a
1405 			 * SIGKILL signal, one of our stopped threads may have
1406 			 * been awakened and is waiting in exitlwps(), which
1407 			 * takes precedence over watchpoints.
1408 			 */
1409 			if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) {
1410 				p->p_flag &= ~(SHOLDWATCH | SWATCHOK);
1411 				mutex_exit(&p->p_lock);
1412 				return (-1);
1413 			}
1414 
1415 			cv_wait(&p->p_holdlwps, &p->p_lock);
1416 		}
1417 
1418 		/*
1419 		 * All threads are now completely stopped.
1420 		 */
1421 		p->p_flag &= ~SWATCHOK;
1422 		p->p_flag &= ~SHOLDWATCH;
1423 		p->p_lwprcnt++;
1424 
1425 	} else if (!(p->p_flag & SWATCHOK)) {
1426 
1427 		/*
1428 		 * SHOLDWATCH is set, so another thread is trying to do
1429 		 * watchpoint activity.  Indicate this thread is stopping, and
1430 		 * wait for the OK from the master thread.
1431 		 */
1432 		t->t_proc_flag |= TP_WATCHSTOP;
1433 		cv_broadcast(&p->p_holdlwps);
1434 
1435 		while (!(p->p_flag & SWATCHOK)) {
1436 			if (holdcheck(0) != 0) {
1437 				t->t_proc_flag &= ~TP_WATCHSTOP;
1438 				mutex_exit(&p->p_lock);
1439 				return (-1);
1440 			}
1441 
1442 			cv_wait(&p->p_holdlwps, &p->p_lock);
1443 		}
1444 
1445 		/*
1446 		 * Once the master thread has given the OK, this thread can
1447 		 * actually call stop().
1448 		 */
1449 		t->t_proc_flag &= ~TP_WATCHSTOP;
1450 		p->p_lwprcnt++;
1451 
1452 		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1453 
1454 		/*
1455 		 * It's not OK to do watchpoint activity, notify caller to
1456 		 * retry.
1457 		 */
1458 		ret = -1;
1459 
1460 	} else {
1461 
1462 		/*
1463 		 * The only way we can hit the case where SHOLDWATCH is set and
1464 		 * SWATCHOK is set is if we are triggering this from within a
1465 		 * stop() call.  Assert that this is the case.
1466 		 */
1467 
1468 		ASSERT(t->t_proc_flag & TP_STOPPING);
1469 		p->p_lwprcnt++;
1470 	}
1471 
1472 	mutex_exit(&p->p_lock);
1473 
1474 	return (ret);
1475 }
1476 
1477 /*
1478  * force all interruptible lwps to trap into the kernel.
1479  */
1480 void
1481 pokelwps(proc_t *p)
1482 {
1483 	kthread_t *t;
1484 
1485 	ASSERT(MUTEX_HELD(&p->p_lock));
1486 
1487 	t = p->p_tlist;
1488 	do {
1489 		if (t == curthread)
1490 			continue;
1491 		thread_lock(t);
1492 		aston(t);	/* make thread trap or do post_syscall */
1493 		if (ISWAKEABLE(t) || ISWAITING(t)) {
1494 			setrun_locked(t);
1495 		} else if (t->t_state == TS_STOPPED) {
1496 			/*
1497 			 * Ensure that proc_exit() is not blocked by lwps
1498 			 * that were stopped via jobcontrol or /proc.
1499 			 */
1500 			if (p->p_flag & SEXITLWPS) {
1501 				p->p_stopsig = 0;
1502 				t->t_schedflag |= (TS_XSTART | TS_PSTART);
1503 				setrun_locked(t);
1504 			}
1505 			/*
1506 			 * If we are holding lwps for a forkall(),
1507 			 * force lwps that have been suspended via
1508 			 * lwp_suspend() and are suspended inside
1509 			 * of a system call to proceed to their
1510 			 * holdlwp() points where they are clonable.
1511 			 */
1512 			if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) {
1513 				if ((t->t_schedflag & TS_CSTART) == 0) {
1514 					p->p_lwprcnt++;
1515 					t->t_schedflag |= TS_CSTART;
1516 					setrun_locked(t);
1517 				}
1518 			}
1519 		} else if (t->t_state == TS_ONPROC) {
1520 			if (t->t_cpu != CPU)
1521 				poke_cpu(t->t_cpu->cpu_id);
1522 		}
1523 		thread_unlock(t);
1524 	} while ((t = t->t_forw) != p->p_tlist);
1525 }
1526 
1527 /*
1528  * undo the effects of holdlwps() or holdwatch().
1529  */
1530 void
1531 continuelwps(proc_t *p)
1532 {
1533 	kthread_t *t;
1534 
1535 	/*
1536 	 * If this flag is set, then the original holdwatch() didn't actually
1537 	 * stop the process.  See comments for holdwatch().
1538 	 */
1539 	if (p->p_flag & SWATCHOK) {
1540 		ASSERT(curthread->t_proc_flag & TP_STOPPING);
1541 		return;
1542 	}
1543 
1544 	ASSERT(MUTEX_HELD(&p->p_lock));
1545 	ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0);
1546 
1547 	t = p->p_tlist;
1548 	do {
1549 		thread_lock(t);		/* SUSPENDED looks at t_schedflag */
1550 		if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) {
1551 			p->p_lwprcnt++;
1552 			t->t_schedflag |= TS_CSTART;
1553 			setrun_locked(t);
1554 		}
1555 		thread_unlock(t);
1556 	} while ((t = t->t_forw) != p->p_tlist);
1557 }
1558 
1559 /*
1560  * Force all other LWPs in the current process other than the caller to exit,
1561  * and then cv_wait() on p_holdlwps for them to exit.  The exitlwps() function
1562  * is typically used in these situations:
1563  *
1564  *   (a) prior to an exec() system call
1565  *   (b) prior to dumping a core file
1566  *   (c) prior to a uadmin() shutdown
1567  *
1568  * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed.
1569  * Multiple threads in the process can call this function at one time by
1570  * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used
1571  * to declare one particular thread the winner who gets to kill the others.
1572  * If a thread wins the exitlwps() dance, zero is returned; otherwise an
1573  * appropriate errno value is returned to caller for its system call to return.
1574  */
1575 int
1576 exitlwps(int coredump)
1577 {
1578 	proc_t *p = curproc;
1579 	int heldcnt;
1580 
1581 	if (curthread->t_door)
1582 		door_slam();
1583 	if (p->p_door_list)
1584 		door_revoke_all();
1585 	if (curthread->t_schedctl != NULL)
1586 		schedctl_lwp_cleanup(curthread);
1587 
1588 	/*
1589 	 * Ensure that before starting to wait for other lwps to exit,
1590 	 * cleanup all upimutexes held by curthread. Otherwise, some other
1591 	 * lwp could be waiting (uninterruptibly) for a upimutex held by
1592 	 * curthread, and the call to pokelwps() below would deadlock.
1593 	 * Even if a blocked upimutex_lock is made interruptible,
1594 	 * curthread's upimutexes need to be unlocked: do it here.
1595 	 */
1596 	if (curthread->t_upimutex != NULL)
1597 		upimutex_cleanup();
1598 
1599 	/*
1600 	 * Grab p_lock in order to check and set SEXITLWPS to declare a winner.
1601 	 * We must also block any further /proc access from this point forward.
1602 	 */
1603 	mutex_enter(&p->p_lock);
1604 	prbarrier(p);
1605 
1606 	if (p->p_flag & SEXITLWPS) {
1607 		mutex_exit(&p->p_lock);
1608 		aston(curthread);	/* force a trip through post_syscall */
1609 		return (set_errno(EINTR));
1610 	}
1611 
1612 	p->p_flag |= SEXITLWPS;
1613 	if (coredump)		/* tell other lwps to stop, not exit */
1614 		p->p_flag |= SCOREDUMP;
1615 
1616 	/*
1617 	 * Give precedence to exitlwps() if a holdlwps() is
1618 	 * in progress. The lwp doing the holdlwps() operation
1619 	 * is aborted when it is awakened.
1620 	 */
1621 	while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1622 		cv_broadcast(&p->p_holdlwps);
1623 		cv_wait(&p->p_holdlwps, &p->p_lock);
1624 		prbarrier(p);
1625 	}
1626 	p->p_flag |= SHOLDFORK;
1627 	pokelwps(p);
1628 
1629 	/*
1630 	 * Wait for process to become quiescent.
1631 	 */
1632 	--p->p_lwprcnt;
1633 	while (p->p_lwprcnt > 0) {
1634 		cv_wait(&p->p_holdlwps, &p->p_lock);
1635 		prbarrier(p);
1636 	}
1637 	p->p_lwprcnt++;
1638 	ASSERT(p->p_lwprcnt == 1);
1639 
1640 	/*
1641 	 * The SCOREDUMP flag puts the process into a quiescent
1642 	 * state.  The process's lwps remain attached to this
1643 	 * process until exitlwps() is called again without the
1644 	 * 'coredump' flag set, then the lwps are terminated
1645 	 * and the process can exit.
1646 	 */
1647 	if (coredump) {
1648 		p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS);
1649 		goto out;
1650 	}
1651 
1652 	/*
1653 	 * Determine if there are any lwps left dangling in
1654 	 * the stopped state.  This happens when exitlwps()
1655 	 * aborts a holdlwps() operation.
1656 	 */
1657 	p->p_flag &= ~SHOLDFORK;
1658 	if ((heldcnt = p->p_lwpcnt) > 1) {
1659 		kthread_t *t;
1660 		for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) {
1661 			t->t_proc_flag &= ~TP_TWAIT;
1662 			lwp_continue(t);
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * Wait for all other lwps to exit.
1668 	 */
1669 	--p->p_lwprcnt;
1670 	while (p->p_lwpcnt > 1) {
1671 		cv_wait(&p->p_holdlwps, &p->p_lock);
1672 		prbarrier(p);
1673 	}
1674 	++p->p_lwprcnt;
1675 	ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1);
1676 
1677 	p->p_flag &= ~SEXITLWPS;
1678 	curthread->t_proc_flag &= ~TP_TWAIT;
1679 
1680 out:
1681 	if (!coredump && p->p_zombcnt) {	/* cleanup the zombie lwps */
1682 		lwpdir_t *ldp;
1683 		lwpent_t *lep;
1684 		int i;
1685 
1686 		for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) {
1687 			lep = ldp->ld_entry;
1688 			if (lep != NULL && lep->le_thread != curthread) {
1689 				ASSERT(lep->le_thread == NULL);
1690 				p->p_zombcnt--;
1691 				lwp_hash_out(p, lep->le_lwpid);
1692 			}
1693 		}
1694 		ASSERT(p->p_zombcnt == 0);
1695 	}
1696 
1697 	/*
1698 	 * If some other LWP in the process wanted us to suspend ourself,
1699 	 * then we will not do it.  The other LWP is now terminated and
1700 	 * no one will ever continue us again if we suspend ourself.
1701 	 */
1702 	curthread->t_proc_flag &= ~TP_HOLDLWP;
1703 	p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP);
1704 	mutex_exit(&p->p_lock);
1705 	return (0);
1706 }
1707 
1708 /*
1709  * duplicate a lwp.
1710  */
1711 klwp_t *
1712 forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid)
1713 {
1714 	klwp_t *clwp;
1715 	void *tregs, *tfpu;
1716 	kthread_t *t = lwptot(lwp);
1717 	kthread_t *ct;
1718 	proc_t *p = lwptoproc(lwp);
1719 	int cid;
1720 	void *bufp;
1721 	void *brand_data;
1722 	int val;
1723 
1724 	ASSERT(p == curproc);
1725 	ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0));
1726 
1727 #if defined(__sparc)
1728 	if (t == curthread)
1729 		(void) flush_user_windows_to_stack(NULL);
1730 #endif
1731 
1732 	if (t == curthread)
1733 		/* copy args out of registers first */
1734 		(void) save_syscall_args();
1735 
1736 	clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt,
1737 	    NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid);
1738 	if (clwp == NULL)
1739 		return (NULL);
1740 
1741 	/*
1742 	 * most of the parent's lwp can be copied to its duplicate,
1743 	 * except for the fields that are unique to each lwp, like
1744 	 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap.
1745 	 */
1746 	ct = clwp->lwp_thread;
1747 	tregs = clwp->lwp_regs;
1748 	tfpu = clwp->lwp_fpu;
1749 	brand_data = clwp->lwp_brand;
1750 
1751 	/*
1752 	 * Copy parent lwp to child lwp.  Hold child's p_lock to prevent
1753 	 * mstate_aggr_state() from reading stale mstate entries copied
1754 	 * from lwp to clwp.
1755 	 */
1756 	mutex_enter(&cp->p_lock);
1757 	*clwp = *lwp;
1758 
1759 	/* clear microstate and resource usage data in new lwp */
1760 	init_mstate(ct, LMS_STOPPED);
1761 	bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru));
1762 	mutex_exit(&cp->p_lock);
1763 
1764 	/* fix up child's lwp */
1765 
1766 	clwp->lwp_pcb.pcb_flags = 0;
1767 #if defined(__sparc)
1768 	clwp->lwp_pcb.pcb_step = STEP_NONE;
1769 #endif
1770 	clwp->lwp_cursig = 0;
1771 	clwp->lwp_extsig = 0;
1772 	clwp->lwp_curinfo = (struct sigqueue *)0;
1773 	clwp->lwp_thread = ct;
1774 	ct->t_sysnum = t->t_sysnum;
1775 	clwp->lwp_regs = tregs;
1776 	clwp->lwp_fpu = tfpu;
1777 	clwp->lwp_brand = brand_data;
1778 	clwp->lwp_ap = clwp->lwp_arg;
1779 	clwp->lwp_procp = cp;
1780 	bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer));
1781 	clwp->lwp_lastfault = 0;
1782 	clwp->lwp_lastfaddr = 0;
1783 
1784 	/* copy parent's struct regs to child. */
1785 	lwp_forkregs(lwp, clwp);
1786 
1787 	/*
1788 	 * Fork thread context ops, if any.
1789 	 */
1790 	if (t->t_ctx)
1791 		forkctx(t, ct);
1792 
1793 	/* fix door state in the child */
1794 	if (t->t_door)
1795 		door_fork(t, ct);
1796 
1797 	/* copy current contract templates, clear latest contracts */
1798 	lwp_ctmpl_copy(clwp, lwp);
1799 
1800 	mutex_enter(&cp->p_lock);
1801 	/* lwp_create() set the TP_HOLDLWP flag */
1802 	if (!(t->t_proc_flag & TP_HOLDLWP))
1803 		ct->t_proc_flag &= ~TP_HOLDLWP;
1804 	if (cp->p_flag & SMSACCT)
1805 		ct->t_proc_flag |= TP_MSACCT;
1806 	mutex_exit(&cp->p_lock);
1807 
1808 	/* Allow brand to propagate brand-specific state */
1809 	if (PROC_IS_BRANDED(p))
1810 		BROP(p)->b_forklwp(lwp, clwp);
1811 
1812 retry:
1813 	cid = t->t_cid;
1814 
1815 	val = CL_ALLOC(&bufp, cid, KM_SLEEP);
1816 	ASSERT(val == 0);
1817 
1818 	mutex_enter(&p->p_lock);
1819 	if (cid != t->t_cid) {
1820 		/*
1821 		 * Someone just changed this thread's scheduling class,
1822 		 * so try pre-allocating the buffer again.  Hopefully we
1823 		 * don't hit this often.
1824 		 */
1825 		mutex_exit(&p->p_lock);
1826 		CL_FREE(cid, bufp);
1827 		goto retry;
1828 	}
1829 
1830 	ct->t_unpark = t->t_unpark;
1831 	ct->t_clfuncs = t->t_clfuncs;
1832 	CL_FORK(t, ct, bufp);
1833 	ct->t_cid = t->t_cid;	/* after data allocated so prgetpsinfo works */
1834 	mutex_exit(&p->p_lock);
1835 
1836 	return (clwp);
1837 }
1838 
1839 /*
1840  * Add a new lwp entry to the lwp directory and to the lwpid hash table.
1841  */
1842 void
1843 lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz,
1844     int do_lock)
1845 {
1846 	tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)];
1847 	lwpdir_t **ldpp;
1848 	lwpdir_t *ldp;
1849 	kthread_t *t;
1850 
1851 	/*
1852 	 * Allocate a directory element from the free list.
1853 	 * Code elsewhere guarantees a free slot.
1854 	 */
1855 	ldp = p->p_lwpfree;
1856 	p->p_lwpfree = ldp->ld_next;
1857 	ASSERT(ldp->ld_entry == NULL);
1858 	ldp->ld_entry = lep;
1859 
1860 	if (do_lock)
1861 		mutex_enter(&thp->th_lock);
1862 
1863 	/*
1864 	 * Insert it into the lwpid hash table.
1865 	 */
1866 	ldpp = &thp->th_list;
1867 	ldp->ld_next = *ldpp;
1868 	*ldpp = ldp;
1869 
1870 	/*
1871 	 * Set the active thread's directory slot entry.
1872 	 */
1873 	if ((t = lep->le_thread) != NULL) {
1874 		ASSERT(lep->le_lwpid == t->t_tid);
1875 		t->t_dslot = (int)(ldp - p->p_lwpdir);
1876 	}
1877 
1878 	if (do_lock)
1879 		mutex_exit(&thp->th_lock);
1880 }
1881 
1882 /*
1883  * Remove an lwp from the lwpid hash table and free its directory entry.
1884  * This is done when a detached lwp exits in lwp_exit() or
1885  * when a non-detached lwp is waited for in lwp_wait() or
1886  * when a zombie lwp is detached in lwp_detach().
1887  */
1888 void
1889 lwp_hash_out(proc_t *p, id_t lwpid)
1890 {
1891 	tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1892 	lwpdir_t **ldpp;
1893 	lwpdir_t *ldp;
1894 	lwpent_t *lep;
1895 
1896 	mutex_enter(&thp->th_lock);
1897 	for (ldpp = &thp->th_list;
1898 	    (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) {
1899 		lep = ldp->ld_entry;
1900 		if (lep->le_lwpid == lwpid) {
1901 			prlwpfree(p, lep);	/* /proc deals with le_trace */
1902 			*ldpp = ldp->ld_next;
1903 			ldp->ld_entry = NULL;
1904 			ldp->ld_next = p->p_lwpfree;
1905 			p->p_lwpfree = ldp;
1906 			kmem_free(lep, sizeof (*lep));
1907 			break;
1908 		}
1909 	}
1910 	mutex_exit(&thp->th_lock);
1911 }
1912 
1913 /*
1914  * Lookup an lwp in the lwpid hash table by lwpid.
1915  */
1916 lwpdir_t *
1917 lwp_hash_lookup(proc_t *p, id_t lwpid)
1918 {
1919 	tidhash_t *thp;
1920 	lwpdir_t *ldp;
1921 
1922 	/*
1923 	 * The process may be exiting, after p_tidhash has been set to NULL in
1924 	 * proc_exit() but before prfee() has been called.  Return failure in
1925 	 * this case.
1926 	 */
1927 	if (p->p_tidhash == NULL)
1928 		return (NULL);
1929 
1930 	thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1931 	for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
1932 		if (ldp->ld_entry->le_lwpid == lwpid)
1933 			return (ldp);
1934 	}
1935 
1936 	return (NULL);
1937 }
1938 
1939 /*
1940  * Same as lwp_hash_lookup(), but acquire and return
1941  * the tid hash table entry lock on success.
1942  */
1943 lwpdir_t *
1944 lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp)
1945 {
1946 	tidhash_t *tidhash;
1947 	uint_t tidhash_sz;
1948 	tidhash_t *thp;
1949 	lwpdir_t *ldp;
1950 
1951 top:
1952 	tidhash_sz = p->p_tidhash_sz;
1953 	membar_consumer();
1954 	if ((tidhash = p->p_tidhash) == NULL)
1955 		return (NULL);
1956 
1957 	thp = &tidhash[TIDHASH(lwpid, tidhash_sz)];
1958 	mutex_enter(&thp->th_lock);
1959 
1960 	/*
1961 	 * Since we are not holding p->p_lock, the tid hash table
1962 	 * may have changed.  If so, start over.  If not, then
1963 	 * it cannot change until after we drop &thp->th_lock;
1964 	 */
1965 	if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) {
1966 		mutex_exit(&thp->th_lock);
1967 		goto top;
1968 	}
1969 
1970 	for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
1971 		if (ldp->ld_entry->le_lwpid == lwpid) {
1972 			*mpp = &thp->th_lock;
1973 			return (ldp);
1974 		}
1975 	}
1976 
1977 	mutex_exit(&thp->th_lock);
1978 	return (NULL);
1979 }
1980 
1981 /*
1982  * Update the indicated LWP usage statistic for the current LWP.
1983  */
1984 void
1985 lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc)
1986 {
1987 	klwp_t *lwp = ttolwp(curthread);
1988 
1989 	if (lwp == NULL)
1990 		return;
1991 
1992 	switch (lwp_stat_id) {
1993 	case LWP_STAT_INBLK:
1994 		lwp->lwp_ru.inblock += inc;
1995 		break;
1996 	case LWP_STAT_OUBLK:
1997 		lwp->lwp_ru.oublock += inc;
1998 		break;
1999 	case LWP_STAT_MSGRCV:
2000 		lwp->lwp_ru.msgrcv += inc;
2001 		break;
2002 	case LWP_STAT_MSGSND:
2003 		lwp->lwp_ru.msgsnd += inc;
2004 		break;
2005 	default:
2006 		panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id);
2007 	}
2008 }
2009