xref: /illumos-gate/usr/src/uts/common/os/lgrp.c (revision fb79d5292b21ee64c248cf81a28a07cb84b18ba1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2019 Joyent, Inc.
25  */
26 
27 /*
28  * Basic NUMA support in terms of locality groups
29  *
30  * Solaris needs to know which CPUs, memory, etc. are near each other to
31  * provide good performance on NUMA machines by optimizing for locality.
32  * In order to do this, a new abstraction called a "locality group (lgroup)"
33  * has been introduced to keep track of which CPU-like and memory-like hardware
34  * resources are close to each other.  Currently, latency is the only measure
35  * used to determine how to group hardware resources into lgroups, but this
36  * does not limit the groupings to be based solely on latency.  Other factors
37  * may be used to determine the groupings in the future.
38  *
39  * Lgroups are organized into a hieararchy or topology that represents the
40  * latency topology of the machine.  There is always at least a root lgroup in
41  * the system.  It represents all the hardware resources in the machine at a
42  * latency big enough that any hardware resource can at least access any other
43  * hardware resource within that latency.  A Uniform Memory Access (UMA)
44  * machine is represented with one lgroup (the root).  In contrast, a NUMA
45  * machine is represented at least by the root lgroup and some number of leaf
46  * lgroups where the leaf lgroups contain the hardware resources within the
47  * least latency of each other and the root lgroup still contains all the
48  * resources in the machine.  Some number of intermediate lgroups may exist
49  * which represent more levels of locality than just the local latency of the
50  * leaf lgroups and the system latency of the root lgroup.  Non-leaf lgroups
51  * (eg. root and intermediate lgroups) contain the next nearest resources to
52  * its children lgroups.  Thus, the lgroup hierarchy from a given leaf lgroup
53  * to the root lgroup shows the hardware resources from closest to farthest
54  * from the leaf lgroup such that each successive ancestor lgroup contains
55  * the next nearest resources at the next level of locality from the previous.
56  *
57  * The kernel uses the lgroup abstraction to know how to allocate resources
58  * near a given process/thread.  At fork() and lwp/thread_create() time, a
59  * "home" lgroup is chosen for a thread.  This is done by picking the lgroup
60  * with the lowest load average.  Binding to a processor or processor set will
61  * change the home lgroup for a thread.  The scheduler has been modified to try
62  * to dispatch a thread on a CPU in its home lgroup.  Physical memory
63  * allocation is lgroup aware too, so memory will be allocated from the current
64  * thread's home lgroup if possible.  If the desired resources are not
65  * available, the kernel traverses the lgroup hierarchy going to the parent
66  * lgroup to find resources at the next level of locality until it reaches the
67  * root lgroup.
68  */
69 
70 #include <sys/lgrp.h>
71 #include <sys/lgrp_user.h>
72 #include <sys/types.h>
73 #include <sys/mman.h>
74 #include <sys/param.h>
75 #include <sys/var.h>
76 #include <sys/thread.h>
77 #include <sys/cpuvar.h>
78 #include <sys/cpupart.h>
79 #include <sys/kmem.h>
80 #include <vm/seg.h>
81 #include <vm/seg_kmem.h>
82 #include <vm/seg_spt.h>
83 #include <vm/seg_vn.h>
84 #include <vm/as.h>
85 #include <sys/atomic.h>
86 #include <sys/systm.h>
87 #include <sys/errno.h>
88 #include <sys/cmn_err.h>
89 #include <sys/kstat.h>
90 #include <sys/sysmacros.h>
91 #include <sys/pg.h>
92 #include <sys/promif.h>
93 #include <sys/sdt.h>
94 #include <sys/smt.h>
95 
96 lgrp_gen_t	lgrp_gen = 0;		/* generation of lgroup hierarchy */
97 lgrp_t *lgrp_table[NLGRPS_MAX]; /* table of all initialized lgrp_t structs */
98 				/* indexed by lgrp_id */
99 int	nlgrps;			/* number of lgroups in machine */
100 int	lgrp_alloc_hint = -1;	/* hint for where to try to allocate next */
101 int	lgrp_alloc_max = 0;	/* max lgroup ID allocated so far */
102 
103 /*
104  * Kstat data for lgroups.
105  *
106  * Actual kstat data is collected in lgrp_stats array.
107  * The lgrp_kstat_data array of named kstats is used to extract data from
108  * lgrp_stats and present it to kstat framework. It is protected from partallel
109  * modifications by lgrp_kstat_mutex. This may cause some contention when
110  * several kstat commands run in parallel but this is not the
111  * performance-critical path.
112  */
113 extern struct lgrp_stats lgrp_stats[];	/* table of per-lgrp stats */
114 
115 /*
116  * Declare kstat names statically for enums as defined in the header file.
117  */
118 LGRP_KSTAT_NAMES;
119 
120 static void	lgrp_kstat_init(void);
121 static int	lgrp_kstat_extract(kstat_t *, int);
122 static void	lgrp_kstat_reset(lgrp_id_t);
123 
124 static struct kstat_named lgrp_kstat_data[LGRP_NUM_STATS];
125 static kmutex_t lgrp_kstat_mutex;
126 
127 
128 /*
129  * max number of lgroups supported by the platform
130  */
131 int	nlgrpsmax = 0;
132 
133 /*
134  * The root lgroup. Represents the set of resources at the system wide
135  * level of locality.
136  */
137 lgrp_t		*lgrp_root = NULL;
138 
139 /*
140  * During system bootstrap cp_default does not contain the list of lgrp load
141  * averages (cp_lgrploads). The list is allocated after the first CPU is brought
142  * on-line when cp_default is initialized by cpupart_initialize_default().
143  * Configuring CPU0 may create a two-level topology with root and one leaf node
144  * containing CPU0. This topology is initially constructed in a special
145  * statically allocated 2-element lpl list lpl_bootstrap_list and later cloned
146  * to cp_default when cp_default is initialized. The lpl_bootstrap_list is used
147  * for all lpl operations until cp_default is fully constructed.
148  *
149  * The lpl_bootstrap_list is maintained by the code in lgrp.c. Every other
150  * consumer who needs default lpl should use lpl_bootstrap which is a pointer to
151  * the first element of lpl_bootstrap_list.
152  *
153  * CPUs that are added to the system, but have not yet been assigned to an
154  * lgrp will use lpl_bootstrap as a default lpl. This is necessary because
155  * on some architectures (x86) it's possible for the slave CPU startup thread
156  * to enter the dispatcher or allocate memory before calling lgrp_cpu_init().
157  */
158 #define	LPL_BOOTSTRAP_SIZE 2
159 static lpl_t	lpl_bootstrap_list[LPL_BOOTSTRAP_SIZE];
160 lpl_t		*lpl_bootstrap;
161 static lpl_t	*lpl_bootstrap_rset[LPL_BOOTSTRAP_SIZE];
162 static int	lpl_bootstrap_id2rset[LPL_BOOTSTRAP_SIZE];
163 
164 /*
165  * If cp still references the bootstrap lpl, it has not yet been added to
166  * an lgrp. lgrp_mem_choose() uses this macro to detect the case where
167  * a thread is trying to allocate memory close to a CPU that has no lgrp.
168  */
169 #define	LGRP_CPU_HAS_NO_LGRP(cp)	((cp)->cpu_lpl == lpl_bootstrap)
170 
171 static lgrp_t	lroot;
172 
173 /*
174  * Size, in bytes, beyond which random memory allocation policy is applied
175  * to non-shared memory.  Default is the maximum size, so random memory
176  * allocation won't be used for non-shared memory by default.
177  */
178 size_t	lgrp_privm_random_thresh = (size_t)(-1);
179 
180 /* the maximum effect that a single thread can have on it's lgroup's load */
181 #define	LGRP_LOADAVG_MAX_EFFECT(ncpu) \
182 	((lgrp_loadavg_max_effect) / (ncpu))
183 uint32_t	lgrp_loadavg_max_effect = LGRP_LOADAVG_THREAD_MAX;
184 
185 
186 /*
187  * Size, in bytes, beyond which random memory allocation policy is applied to
188  * shared memory.  Default is 8MB (2 ISM pages).
189  */
190 size_t	lgrp_shm_random_thresh = 8*1024*1024;
191 
192 /*
193  * Whether to do processor set aware memory allocation by default
194  */
195 int	lgrp_mem_pset_aware = 0;
196 
197 /*
198  * Set the default memory allocation policy for root lgroup
199  */
200 lgrp_mem_policy_t	lgrp_mem_policy_root = LGRP_MEM_POLICY_RANDOM;
201 
202 /*
203  * Set the default memory allocation policy.  For most platforms,
204  * next touch is sufficient, but some platforms may wish to override
205  * this.
206  */
207 lgrp_mem_policy_t	lgrp_mem_default_policy = LGRP_MEM_POLICY_NEXT;
208 
209 
210 /*
211  * lgroup CPU event handlers
212  */
213 static void	lgrp_cpu_init(struct cpu *);
214 static void	lgrp_cpu_fini(struct cpu *, lgrp_id_t);
215 static lgrp_t	*lgrp_cpu_to_lgrp(struct cpu *);
216 
217 /*
218  * lgroup memory event handlers
219  */
220 static void	lgrp_mem_init(int, lgrp_handle_t, boolean_t);
221 static void	lgrp_mem_fini(int, lgrp_handle_t, boolean_t);
222 static void	lgrp_mem_rename(int, lgrp_handle_t, lgrp_handle_t);
223 
224 /*
225  * lgroup CPU partition event handlers
226  */
227 static void	lgrp_part_add_cpu(struct cpu *, lgrp_id_t);
228 static void	lgrp_part_del_cpu(struct cpu *);
229 
230 /*
231  * lgroup framework initialization
232  */
233 static void	lgrp_main_init(void);
234 static void	lgrp_main_mp_init(void);
235 static void	lgrp_root_init(void);
236 static void	lgrp_setup(void);
237 
238 /*
239  * lpl topology
240  */
241 static void	lpl_init(lpl_t *, lpl_t *, lgrp_t *);
242 static void	lpl_clear(lpl_t *);
243 static void	lpl_leaf_insert(lpl_t *, struct cpupart *);
244 static void	lpl_leaf_remove(lpl_t *, struct cpupart *);
245 static void	lpl_rset_add(lpl_t *, lpl_t *);
246 static void	lpl_rset_del(lpl_t *, lpl_t *);
247 static int	lpl_rset_contains(lpl_t *, lpl_t *);
248 static void	lpl_cpu_adjcnt(lpl_act_t, struct cpu *);
249 static void	lpl_child_update(lpl_t *, struct cpupart *);
250 static int	lpl_pick(lpl_t *, lpl_t *);
251 static void	lpl_verify_wrapper(struct cpupart *);
252 
253 /*
254  * defines for lpl topology verifier return codes
255  */
256 
257 #define	LPL_TOPO_CORRECT			0
258 #define	LPL_TOPO_PART_HAS_NO_LPL		-1
259 #define	LPL_TOPO_CPUS_NOT_EMPTY			-2
260 #define	LPL_TOPO_LGRP_MISMATCH			-3
261 #define	LPL_TOPO_MISSING_PARENT			-4
262 #define	LPL_TOPO_PARENT_MISMATCH		-5
263 #define	LPL_TOPO_BAD_CPUCNT			-6
264 #define	LPL_TOPO_RSET_MISMATCH			-7
265 #define	LPL_TOPO_LPL_ORPHANED			-8
266 #define	LPL_TOPO_LPL_BAD_NCPU			-9
267 #define	LPL_TOPO_RSET_MSSNG_LF			-10
268 #define	LPL_TOPO_CPU_HAS_BAD_LPL		-11
269 #define	LPL_TOPO_NONLEAF_HAS_CPUS		-12
270 #define	LPL_TOPO_LGRP_NOT_LEAF			-13
271 #define	LPL_TOPO_BAD_RSETCNT			-14
272 
273 /*
274  * Return whether lgroup optimizations should be enabled on this system
275  */
276 int
277 lgrp_optimizations(void)
278 {
279 	/*
280 	 * System must have more than 2 lgroups to enable lgroup optimizations
281 	 *
282 	 * XXX This assumes that a 2 lgroup system has an empty root lgroup
283 	 * with one child lgroup containing all the resources. A 2 lgroup
284 	 * system with a root lgroup directly containing CPUs or memory might
285 	 * need lgroup optimizations with its child lgroup, but there
286 	 * isn't such a machine for now....
287 	 */
288 	if (nlgrps > 2)
289 		return (1);
290 
291 	return (0);
292 }
293 
294 /*
295  * Setup root lgroup
296  */
297 static void
298 lgrp_root_init(void)
299 {
300 	lgrp_handle_t	hand;
301 	int		i;
302 	lgrp_id_t	id;
303 
304 	/*
305 	 * Create the "root" lgroup
306 	 */
307 	ASSERT(nlgrps == 0);
308 	id = nlgrps++;
309 
310 	lgrp_root = &lroot;
311 
312 	lgrp_root->lgrp_cpu = NULL;
313 	lgrp_root->lgrp_mnodes = 0;
314 	lgrp_root->lgrp_nmnodes = 0;
315 	hand = lgrp_plat_root_hand();
316 	lgrp_root->lgrp_plathand = hand;
317 
318 	lgrp_root->lgrp_id = id;
319 	lgrp_root->lgrp_cpucnt = 0;
320 	lgrp_root->lgrp_childcnt = 0;
321 	klgrpset_clear(lgrp_root->lgrp_children);
322 	klgrpset_clear(lgrp_root->lgrp_leaves);
323 	lgrp_root->lgrp_parent = NULL;
324 	lgrp_root->lgrp_latency = lgrp_plat_latency(hand, hand);
325 
326 	for (i = 0; i < LGRP_RSRC_COUNT; i++)
327 		klgrpset_clear(lgrp_root->lgrp_set[i]);
328 
329 	lgrp_root->lgrp_kstat = NULL;
330 
331 	lgrp_table[id] = lgrp_root;
332 
333 	/*
334 	 * Setup initial lpl list for CPU0 and initial t0 home.
335 	 * The only lpl space we have so far is lpl_bootstrap. It is used for
336 	 * all topology operations until cp_default is initialized at which
337 	 * point t0.t_lpl will be updated.
338 	 */
339 	lpl_bootstrap = lpl_bootstrap_list;
340 	t0.t_lpl = lpl_bootstrap;
341 	cp_default.cp_nlgrploads = LPL_BOOTSTRAP_SIZE;
342 	lpl_bootstrap_list[1].lpl_lgrpid = 1;
343 
344 	/*
345 	 * Set up the bootstrap rset
346 	 * Since the bootstrap toplogy has just the root, and a leaf,
347 	 * the rset contains just the leaf, and both lpls can use the same rset
348 	 */
349 	lpl_bootstrap_rset[0] = &lpl_bootstrap_list[1];
350 	lpl_bootstrap_list[0].lpl_rset_sz = 1;
351 	lpl_bootstrap_list[0].lpl_rset = lpl_bootstrap_rset;
352 	lpl_bootstrap_list[0].lpl_id2rset = lpl_bootstrap_id2rset;
353 
354 	lpl_bootstrap_list[1].lpl_rset_sz = 1;
355 	lpl_bootstrap_list[1].lpl_rset = lpl_bootstrap_rset;
356 	lpl_bootstrap_list[1].lpl_id2rset = lpl_bootstrap_id2rset;
357 
358 	cp_default.cp_lgrploads = lpl_bootstrap;
359 }
360 
361 /*
362  * Initialize the lgroup framework and allow the platform to do the same
363  *
364  * This happens in stages during boot and is all funnelled through this routine
365  * (see definition of lgrp_init_stages_t to see what happens at each stage and
366  * when)
367  */
368 void
369 lgrp_init(lgrp_init_stages_t stage)
370 {
371 	/*
372 	 * Initialize the platform
373 	 */
374 	lgrp_plat_init(stage);
375 
376 	switch (stage) {
377 	case LGRP_INIT_STAGE1:
378 		/*
379 		 * Set max number of lgroups supported on this platform which
380 		 * must be less than the max number of lgroups supported by the
381 		 * common lgroup framework (eg. NLGRPS_MAX is max elements in
382 		 * lgrp_table[], etc.)
383 		 */
384 		nlgrpsmax = lgrp_plat_max_lgrps();
385 		ASSERT(nlgrpsmax <= NLGRPS_MAX);
386 		break;
387 
388 	case LGRP_INIT_STAGE2:
389 		lgrp_setup();
390 		break;
391 
392 	case LGRP_INIT_STAGE4:
393 		lgrp_main_init();
394 		break;
395 
396 	case LGRP_INIT_STAGE5:
397 		lgrp_main_mp_init();
398 		break;
399 
400 	default:
401 		break;
402 	}
403 }
404 
405 /*
406  * Create the root and cpu0's lgroup, and set t0's home.
407  */
408 static void
409 lgrp_setup(void)
410 {
411 	/*
412 	 * Setup the root lgroup
413 	 */
414 	lgrp_root_init();
415 
416 	/*
417 	 * Add cpu0 to an lgroup
418 	 */
419 	lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)CPU, 0);
420 	lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)CPU, 0);
421 }
422 
423 /*
424  * true when lgrp initialization has been completed.
425  */
426 int	lgrp_initialized = 0;
427 
428 /*
429  * True when lgrp topology is constructed.
430  */
431 int	lgrp_topo_initialized = 0;
432 
433 /*
434  * Init routine called after startup(), /etc/system has been processed,
435  * and cpu0 has been added to an lgroup.
436  */
437 static void
438 lgrp_main_init(void)
439 {
440 	cpu_t		*cp = CPU;
441 	lgrp_id_t	lgrpid;
442 	int		i;
443 	extern void	pg_cpu0_reinit();
444 
445 	/*
446 	 * Enforce a valid lgrp_mem_default_policy
447 	 */
448 	if ((lgrp_mem_default_policy <= LGRP_MEM_POLICY_DEFAULT) ||
449 	    (lgrp_mem_default_policy >= LGRP_NUM_MEM_POLICIES) ||
450 	    (lgrp_mem_default_policy == LGRP_MEM_POLICY_NEXT_SEG))
451 		lgrp_mem_default_policy = LGRP_MEM_POLICY_NEXT;
452 
453 	/*
454 	 * See if mpo should be disabled.
455 	 * This may happen in the case of null proc LPA on Starcat.
456 	 * The platform won't be able to detect null proc LPA until after
457 	 * cpu0 and memory have already been added to lgroups.
458 	 * When and if it is detected, the Starcat platform will return
459 	 * a different platform handle for cpu0 which is what we check for
460 	 * here. If mpo should be disabled move cpu0 to it's rightful place
461 	 * (the root), and destroy the remaining lgroups. This effectively
462 	 * provides an UMA lgroup topology.
463 	 */
464 	lgrpid = cp->cpu_lpl->lpl_lgrpid;
465 	if (lgrp_table[lgrpid]->lgrp_plathand !=
466 	    lgrp_plat_cpu_to_hand(cp->cpu_id)) {
467 		lgrp_part_del_cpu(cp);
468 		lgrp_cpu_fini(cp, lgrpid);
469 
470 		lgrp_cpu_init(cp);
471 		lgrp_part_add_cpu(cp, cp->cpu_lpl->lpl_lgrpid);
472 
473 		ASSERT(cp->cpu_lpl->lpl_lgrpid == LGRP_ROOTID);
474 
475 		/*
476 		 * Notify the PG subsystem that the CPU's lgrp
477 		 * association has changed
478 		 */
479 		pg_cpu0_reinit();
480 
481 		/*
482 		 * Destroy all lgroups except for root
483 		 */
484 		for (i = 0; i <= lgrp_alloc_max; i++) {
485 			if (LGRP_EXISTS(lgrp_table[i]) &&
486 			    lgrp_table[i] != lgrp_root)
487 				lgrp_destroy(lgrp_table[i]);
488 		}
489 
490 		/*
491 		 * Fix up root to point at itself for leaves and resources
492 		 * and not have any children
493 		 */
494 		lgrp_root->lgrp_childcnt = 0;
495 		klgrpset_clear(lgrp_root->lgrp_children);
496 		klgrpset_clear(lgrp_root->lgrp_leaves);
497 		klgrpset_add(lgrp_root->lgrp_leaves, LGRP_ROOTID);
498 		klgrpset_clear(lgrp_root->lgrp_set[LGRP_RSRC_MEM]);
499 		klgrpset_add(lgrp_root->lgrp_set[LGRP_RSRC_MEM], LGRP_ROOTID);
500 	}
501 
502 	/*
503 	 * Initialize kstats framework.
504 	 */
505 	lgrp_kstat_init();
506 	/*
507 	 * cpu0 is finally where it should be, so create it's lgroup's kstats
508 	 */
509 	mutex_enter(&cpu_lock);
510 	lgrp_kstat_create(cp);
511 	mutex_exit(&cpu_lock);
512 
513 	lgrp_initialized = 1;
514 }
515 
516 /*
517  * Finish lgrp initialization after all CPUS are brought on-line.
518  * This routine is called after start_other_cpus().
519  */
520 static void
521 lgrp_main_mp_init(void)
522 {
523 	klgrpset_t changed;
524 
525 	smt_init();
526 
527 	/*
528 	 * Update lgroup topology (if necessary)
529 	 */
530 	klgrpset_clear(changed);
531 	(void) lgrp_topo_update(lgrp_table, lgrp_alloc_max + 1, &changed);
532 	lgrp_topo_initialized = 1;
533 }
534 
535 /*
536  * Change latency of lgroup with specified lgroup platform handle (if one is
537  * given) or change all lgroups with old latency to new latency
538  */
539 void
540 lgrp_latency_change(lgrp_handle_t hand, u_longlong_t oldtime,
541     u_longlong_t newtime)
542 {
543 	lgrp_t		*lgrp;
544 	int		i;
545 
546 	for (i = 0; i <= lgrp_alloc_max; i++) {
547 		lgrp = lgrp_table[i];
548 
549 		if (!LGRP_EXISTS(lgrp))
550 			continue;
551 
552 		if ((hand == LGRP_NULL_HANDLE &&
553 		    lgrp->lgrp_latency == oldtime) ||
554 		    (hand != LGRP_NULL_HANDLE && lgrp->lgrp_plathand == hand))
555 			lgrp->lgrp_latency = (int)newtime;
556 	}
557 }
558 
559 /*
560  * Handle lgroup (re)configuration events (eg. addition of CPU, etc.)
561  */
562 void
563 lgrp_config(lgrp_config_flag_t event, uintptr_t resource, uintptr_t where)
564 {
565 	klgrpset_t	changed;
566 	cpu_t		*cp;
567 	lgrp_id_t	id;
568 	int		rc;
569 
570 	switch (event) {
571 	/*
572 	 * The following (re)configuration events are common code
573 	 * initiated. lgrp_plat_config() is called here to inform the
574 	 * platform of the reconfiguration event.
575 	 */
576 	case LGRP_CONFIG_CPU_ADD:
577 		cp = (cpu_t *)resource;
578 
579 		/*
580 		 * Initialize the new CPU's lgrp related next/prev
581 		 * links, and give it a bootstrap lpl so that it can
582 		 * survive should it need to enter the dispatcher.
583 		 */
584 		cp->cpu_next_lpl = cp;
585 		cp->cpu_prev_lpl = cp;
586 		cp->cpu_next_lgrp = cp;
587 		cp->cpu_prev_lgrp = cp;
588 		cp->cpu_lpl = lpl_bootstrap;
589 
590 		lgrp_plat_config(event, resource);
591 		atomic_inc_32(&lgrp_gen);
592 
593 		break;
594 	case LGRP_CONFIG_CPU_DEL:
595 		lgrp_plat_config(event, resource);
596 		atomic_inc_32(&lgrp_gen);
597 
598 		break;
599 	case LGRP_CONFIG_CPU_ONLINE:
600 		cp = (cpu_t *)resource;
601 		lgrp_cpu_init(cp);
602 		lgrp_part_add_cpu(cp, cp->cpu_lpl->lpl_lgrpid);
603 		rc = lpl_topo_verify(cp->cpu_part);
604 		if (rc != LPL_TOPO_CORRECT) {
605 			panic("lpl_topo_verify failed: %d", rc);
606 		}
607 		lgrp_plat_config(event, resource);
608 		atomic_inc_32(&lgrp_gen);
609 
610 		break;
611 	case LGRP_CONFIG_CPU_OFFLINE:
612 		cp = (cpu_t *)resource;
613 		id = cp->cpu_lpl->lpl_lgrpid;
614 		lgrp_part_del_cpu(cp);
615 		lgrp_cpu_fini(cp, id);
616 		rc = lpl_topo_verify(cp->cpu_part);
617 		if (rc != LPL_TOPO_CORRECT) {
618 			panic("lpl_topo_verify failed: %d", rc);
619 		}
620 		lgrp_plat_config(event, resource);
621 		atomic_inc_32(&lgrp_gen);
622 
623 		break;
624 	case LGRP_CONFIG_CPUPART_ADD:
625 		cp = (cpu_t *)resource;
626 		lgrp_part_add_cpu((cpu_t *)resource, (lgrp_id_t)where);
627 		rc = lpl_topo_verify(cp->cpu_part);
628 		if (rc != LPL_TOPO_CORRECT) {
629 			panic("lpl_topo_verify failed: %d", rc);
630 		}
631 		lgrp_plat_config(event, resource);
632 
633 		break;
634 	case LGRP_CONFIG_CPUPART_DEL:
635 		cp = (cpu_t *)resource;
636 		lgrp_part_del_cpu((cpu_t *)resource);
637 		rc = lpl_topo_verify(cp->cpu_part);
638 		if (rc != LPL_TOPO_CORRECT) {
639 			panic("lpl_topo_verify failed: %d", rc);
640 		}
641 		lgrp_plat_config(event, resource);
642 
643 		break;
644 	/*
645 	 * The following events are initiated by the memnode
646 	 * subsystem.
647 	 */
648 	case LGRP_CONFIG_MEM_ADD:
649 		lgrp_mem_init((int)resource, where, B_FALSE);
650 		atomic_inc_32(&lgrp_gen);
651 
652 		break;
653 	case LGRP_CONFIG_MEM_DEL:
654 		lgrp_mem_fini((int)resource, where, B_FALSE);
655 		atomic_inc_32(&lgrp_gen);
656 
657 		break;
658 	case LGRP_CONFIG_MEM_RENAME: {
659 		lgrp_config_mem_rename_t *ren_arg =
660 		    (lgrp_config_mem_rename_t *)where;
661 
662 		lgrp_mem_rename((int)resource,
663 		    ren_arg->lmem_rename_from,
664 		    ren_arg->lmem_rename_to);
665 		atomic_inc_32(&lgrp_gen);
666 
667 		break;
668 	}
669 	case LGRP_CONFIG_GEN_UPDATE:
670 		atomic_inc_32(&lgrp_gen);
671 
672 		break;
673 	case LGRP_CONFIG_FLATTEN:
674 		if (where == 0)
675 			lgrp_topo_levels = (int)resource;
676 		else
677 			(void) lgrp_topo_flatten(resource,
678 			    lgrp_table, lgrp_alloc_max, &changed);
679 
680 		break;
681 	/*
682 	 * Update any lgroups with old latency to new latency
683 	 */
684 	case LGRP_CONFIG_LAT_CHANGE_ALL:
685 		lgrp_latency_change(LGRP_NULL_HANDLE, (u_longlong_t)resource,
686 		    (u_longlong_t)where);
687 
688 		break;
689 	/*
690 	 * Update lgroup with specified lgroup platform handle to have
691 	 * new latency
692 	 */
693 	case LGRP_CONFIG_LAT_CHANGE:
694 		lgrp_latency_change((lgrp_handle_t)resource, 0,
695 		    (u_longlong_t)where);
696 
697 		break;
698 	case LGRP_CONFIG_NOP:
699 
700 		break;
701 	default:
702 		break;
703 	}
704 
705 }
706 
707 /*
708  * Called to add lgrp info into cpu structure from cpu_add_unit;
709  * do not assume cpu is in cpu[] yet!
710  *
711  * CPUs are brought online with all other CPUs paused so we can't
712  * allocate memory or we could deadlock the system, so we rely on
713  * the platform to statically allocate as much space as we need
714  * for the lgrp structs and stats.
715  */
716 static void
717 lgrp_cpu_init(struct cpu *cp)
718 {
719 	klgrpset_t	changed;
720 	int		count;
721 	lgrp_handle_t	hand;
722 	int		first_cpu;
723 	lgrp_t		*my_lgrp;
724 	lgrp_id_t	lgrpid;
725 	struct cpu	*cptr;
726 
727 	/*
728 	 * This is the first time through if the resource set
729 	 * for the root lgroup is empty. After cpu0 has been
730 	 * initially added to an lgroup, the root's CPU resource
731 	 * set can never be empty, since the system's last CPU
732 	 * cannot be offlined.
733 	 */
734 	if (klgrpset_isempty(lgrp_root->lgrp_set[LGRP_RSRC_CPU])) {
735 		/*
736 		 * First time through.
737 		 */
738 		first_cpu = 1;
739 	} else {
740 		/*
741 		 * If cpu0 needs to move lgroups, we may come
742 		 * through here again, at which time cpu_lock won't
743 		 * be held, and lgrp_initialized will be false.
744 		 */
745 		ASSERT(MUTEX_HELD(&cpu_lock) || !lgrp_initialized);
746 		ASSERT(cp->cpu_part != NULL);
747 		first_cpu = 0;
748 	}
749 
750 	hand = lgrp_plat_cpu_to_hand(cp->cpu_id);
751 	my_lgrp = lgrp_hand_to_lgrp(hand);
752 
753 	if (my_lgrp == NULL) {
754 		/*
755 		 * Create new lgrp and add it to lgroup topology
756 		 */
757 		my_lgrp = lgrp_create();
758 		my_lgrp->lgrp_plathand = hand;
759 		my_lgrp->lgrp_latency = lgrp_plat_latency(hand, hand);
760 		lgrpid = my_lgrp->lgrp_id;
761 		klgrpset_add(my_lgrp->lgrp_leaves, lgrpid);
762 		klgrpset_add(my_lgrp->lgrp_set[LGRP_RSRC_CPU], lgrpid);
763 
764 		count = 0;
765 		klgrpset_clear(changed);
766 		count += lgrp_leaf_add(my_lgrp, lgrp_table, lgrp_alloc_max + 1,
767 		    &changed);
768 		/*
769 		 * May have added new intermediate lgroups, so need to add
770 		 * resources other than CPUs which are added below
771 		 */
772 		(void) lgrp_mnode_update(changed, NULL);
773 	} else if (my_lgrp->lgrp_latency == 0 && lgrp_plat_latency(hand, hand)
774 	    > 0) {
775 		/*
776 		 * Leaf lgroup was created, but latency wasn't available
777 		 * then.  So, set latency for it and fill in rest of lgroup
778 		 * topology  now that we know how far it is from other leaf
779 		 * lgroups.
780 		 */
781 		lgrpid = my_lgrp->lgrp_id;
782 		klgrpset_clear(changed);
783 		if (!klgrpset_ismember(my_lgrp->lgrp_set[LGRP_RSRC_CPU],
784 		    lgrpid))
785 			klgrpset_add(my_lgrp->lgrp_set[LGRP_RSRC_CPU], lgrpid);
786 		count = lgrp_leaf_add(my_lgrp, lgrp_table, lgrp_alloc_max + 1,
787 		    &changed);
788 
789 		/*
790 		 * May have added new intermediate lgroups, so need to add
791 		 * resources other than CPUs which are added below
792 		 */
793 		(void) lgrp_mnode_update(changed, NULL);
794 	} else if (!klgrpset_ismember(my_lgrp->lgrp_set[LGRP_RSRC_CPU],
795 	    my_lgrp->lgrp_id)) {
796 		int	i;
797 
798 		/*
799 		 * Update existing lgroup and lgroups containing it with CPU
800 		 * resource
801 		 */
802 		lgrpid = my_lgrp->lgrp_id;
803 		klgrpset_add(my_lgrp->lgrp_set[LGRP_RSRC_CPU], lgrpid);
804 		for (i = 0; i <= lgrp_alloc_max; i++) {
805 			lgrp_t		*lgrp;
806 
807 			lgrp = lgrp_table[i];
808 			if (!LGRP_EXISTS(lgrp) ||
809 			    !lgrp_rsets_member(lgrp->lgrp_set, lgrpid))
810 				continue;
811 
812 			klgrpset_add(lgrp->lgrp_set[LGRP_RSRC_CPU], lgrpid);
813 		}
814 	}
815 
816 	lgrpid = my_lgrp->lgrp_id;
817 	cp->cpu_lpl = &cp->cpu_part->cp_lgrploads[lgrpid];
818 
819 	/*
820 	 * For multi-lgroup systems, need to setup lpl for CPU0 or CPU0 will
821 	 * end up in lpl for lgroup 0 whether it is supposed to be in there or
822 	 * not since none of lgroup IDs in the lpl's have been set yet.
823 	 */
824 	if (first_cpu && nlgrpsmax > 1 && lgrpid != cp->cpu_lpl->lpl_lgrpid)
825 		cp->cpu_lpl->lpl_lgrpid = lgrpid;
826 
827 	/*
828 	 * link the CPU into the lgrp's CPU list
829 	 */
830 	if (my_lgrp->lgrp_cpucnt == 0) {
831 		my_lgrp->lgrp_cpu = cp;
832 		cp->cpu_next_lgrp = cp->cpu_prev_lgrp = cp;
833 	} else {
834 		cptr = my_lgrp->lgrp_cpu;
835 		cp->cpu_next_lgrp = cptr;
836 		cp->cpu_prev_lgrp = cptr->cpu_prev_lgrp;
837 		cptr->cpu_prev_lgrp->cpu_next_lgrp = cp;
838 		cptr->cpu_prev_lgrp = cp;
839 	}
840 	my_lgrp->lgrp_cpucnt++;
841 }
842 
843 lgrp_t *
844 lgrp_create(void)
845 {
846 	lgrp_t		*my_lgrp;
847 	lgrp_id_t	lgrpid;
848 	int		i;
849 
850 	ASSERT(!lgrp_initialized || MUTEX_HELD(&cpu_lock));
851 
852 	/*
853 	 * Find an open slot in the lgroup table and recycle unused lgroup
854 	 * left there if any
855 	 */
856 	my_lgrp = NULL;
857 	if (lgrp_alloc_hint == -1)
858 		/*
859 		 * Allocate from end when hint not set yet because no lgroups
860 		 * have been deleted yet
861 		 */
862 		lgrpid = nlgrps++;
863 	else {
864 		/*
865 		 * Start looking for next open slot from hint and leave hint
866 		 * at slot allocated
867 		 */
868 		for (i = lgrp_alloc_hint; i < nlgrpsmax; i++) {
869 			my_lgrp = lgrp_table[i];
870 			if (!LGRP_EXISTS(my_lgrp)) {
871 				lgrpid = i;
872 				nlgrps++;
873 				break;
874 			}
875 		}
876 		lgrp_alloc_hint = lgrpid;
877 	}
878 
879 	/*
880 	 * Keep track of max lgroup ID allocated so far to cut down on searches
881 	 */
882 	if (lgrpid > lgrp_alloc_max)
883 		lgrp_alloc_max = lgrpid;
884 
885 	/*
886 	 * Need to allocate new lgroup if next open slot didn't have one
887 	 * for recycling
888 	 */
889 	if (my_lgrp == NULL)
890 		my_lgrp = lgrp_plat_alloc(lgrpid);
891 
892 	if (nlgrps > nlgrpsmax || my_lgrp == NULL)
893 		panic("Too many lgrps for platform (%d)", nlgrps);
894 
895 	my_lgrp->lgrp_id = lgrpid;
896 	my_lgrp->lgrp_latency = 0;
897 	my_lgrp->lgrp_plathand = LGRP_NULL_HANDLE;
898 	my_lgrp->lgrp_parent = NULL;
899 	my_lgrp->lgrp_childcnt = 0;
900 	my_lgrp->lgrp_mnodes = (mnodeset_t)0;
901 	my_lgrp->lgrp_nmnodes = 0;
902 	klgrpset_clear(my_lgrp->lgrp_children);
903 	klgrpset_clear(my_lgrp->lgrp_leaves);
904 	for (i = 0; i < LGRP_RSRC_COUNT; i++)
905 		klgrpset_clear(my_lgrp->lgrp_set[i]);
906 
907 	my_lgrp->lgrp_cpu = NULL;
908 	my_lgrp->lgrp_cpucnt = 0;
909 
910 	if (my_lgrp->lgrp_kstat != NULL)
911 		lgrp_kstat_reset(lgrpid);
912 
913 	lgrp_table[my_lgrp->lgrp_id] = my_lgrp;
914 
915 	return (my_lgrp);
916 }
917 
918 void
919 lgrp_destroy(lgrp_t *lgrp)
920 {
921 	int		i;
922 
923 	/*
924 	 * Unless this lgroup is being destroyed on behalf of
925 	 * the boot CPU, cpu_lock must be held
926 	 */
927 	ASSERT(!lgrp_initialized || MUTEX_HELD(&cpu_lock));
928 
929 	if (nlgrps == 1)
930 		cmn_err(CE_PANIC, "Can't destroy only lgroup!");
931 
932 	if (!LGRP_EXISTS(lgrp))
933 		return;
934 
935 	/*
936 	 * Set hint to lgroup being deleted and try to keep lower numbered
937 	 * hints to facilitate finding empty slots
938 	 */
939 	if (lgrp_alloc_hint == -1 || lgrp->lgrp_id < lgrp_alloc_hint)
940 		lgrp_alloc_hint = lgrp->lgrp_id;
941 
942 	/*
943 	 * Mark this lgroup to be recycled by setting its lgroup ID to
944 	 * LGRP_NONE and clear relevant fields
945 	 */
946 	lgrp->lgrp_id = LGRP_NONE;
947 	lgrp->lgrp_latency = 0;
948 	lgrp->lgrp_plathand = LGRP_NULL_HANDLE;
949 	lgrp->lgrp_parent = NULL;
950 	lgrp->lgrp_childcnt = 0;
951 
952 	klgrpset_clear(lgrp->lgrp_children);
953 	klgrpset_clear(lgrp->lgrp_leaves);
954 	for (i = 0; i < LGRP_RSRC_COUNT; i++)
955 		klgrpset_clear(lgrp->lgrp_set[i]);
956 
957 	lgrp->lgrp_mnodes = (mnodeset_t)0;
958 	lgrp->lgrp_nmnodes = 0;
959 
960 	lgrp->lgrp_cpu = NULL;
961 	lgrp->lgrp_cpucnt = 0;
962 
963 	nlgrps--;
964 }
965 
966 /*
967  * Initialize kstat data. Called from lgrp intialization code.
968  */
969 static void
970 lgrp_kstat_init(void)
971 {
972 	lgrp_stat_t	stat;
973 
974 	mutex_init(&lgrp_kstat_mutex, NULL, MUTEX_DEFAULT, NULL);
975 
976 	for (stat = 0; stat < LGRP_NUM_STATS; stat++)
977 		kstat_named_init(&lgrp_kstat_data[stat],
978 		    lgrp_kstat_names[stat], KSTAT_DATA_INT64);
979 }
980 
981 /*
982  * initialize an lgrp's kstats if needed
983  * called with cpu_lock held but not with cpus paused.
984  * we don't tear these down now because we don't know about
985  * memory leaving the lgrp yet...
986  */
987 
988 void
989 lgrp_kstat_create(cpu_t *cp)
990 {
991 	kstat_t		*lgrp_kstat;
992 	lgrp_id_t	lgrpid;
993 	lgrp_t		*my_lgrp;
994 
995 	ASSERT(MUTEX_HELD(&cpu_lock));
996 
997 	lgrpid = cp->cpu_lpl->lpl_lgrpid;
998 	my_lgrp = lgrp_table[lgrpid];
999 
1000 	if (my_lgrp->lgrp_kstat != NULL)
1001 		return; /* already initialized */
1002 
1003 	lgrp_kstat = kstat_create("lgrp", lgrpid, NULL, "misc",
1004 	    KSTAT_TYPE_NAMED, LGRP_NUM_STATS,
1005 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE);
1006 
1007 	if (lgrp_kstat != NULL) {
1008 		lgrp_kstat->ks_lock = &lgrp_kstat_mutex;
1009 		lgrp_kstat->ks_private = my_lgrp;
1010 		lgrp_kstat->ks_data = &lgrp_kstat_data;
1011 		lgrp_kstat->ks_update = lgrp_kstat_extract;
1012 		my_lgrp->lgrp_kstat = lgrp_kstat;
1013 		kstat_install(lgrp_kstat);
1014 	}
1015 }
1016 
1017 /*
1018  * this will do something when we manage to remove now unused lgrps
1019  */
1020 
1021 /* ARGSUSED */
1022 void
1023 lgrp_kstat_destroy(cpu_t *cp)
1024 {
1025 	ASSERT(MUTEX_HELD(&cpu_lock));
1026 }
1027 
1028 /*
1029  * Called when a CPU is off-lined.
1030  */
1031 static void
1032 lgrp_cpu_fini(struct cpu *cp, lgrp_id_t lgrpid)
1033 {
1034 	lgrp_t *my_lgrp;
1035 	struct cpu *prev;
1036 	struct cpu *next;
1037 
1038 	ASSERT(MUTEX_HELD(&cpu_lock) || !lgrp_initialized);
1039 
1040 	prev = cp->cpu_prev_lgrp;
1041 	next = cp->cpu_next_lgrp;
1042 
1043 	prev->cpu_next_lgrp = next;
1044 	next->cpu_prev_lgrp = prev;
1045 
1046 	/*
1047 	 * just because I'm paranoid doesn't mean...
1048 	 */
1049 
1050 	cp->cpu_next_lgrp = cp->cpu_prev_lgrp = NULL;
1051 
1052 	my_lgrp = lgrp_table[lgrpid];
1053 	my_lgrp->lgrp_cpucnt--;
1054 
1055 	/*
1056 	 * Removing last CPU in lgroup, so update lgroup topology
1057 	 */
1058 	if (my_lgrp->lgrp_cpucnt == 0) {
1059 		klgrpset_t	changed;
1060 		int		count;
1061 		int		i;
1062 
1063 		my_lgrp->lgrp_cpu = NULL;
1064 
1065 		/*
1066 		 * Remove this lgroup from its lgroup CPU resources and remove
1067 		 * lgroup from lgroup topology if it doesn't have any more
1068 		 * resources in it now
1069 		 */
1070 		klgrpset_del(my_lgrp->lgrp_set[LGRP_RSRC_CPU], lgrpid);
1071 		if (lgrp_rsets_empty(my_lgrp->lgrp_set)) {
1072 			count = 0;
1073 			klgrpset_clear(changed);
1074 			count += lgrp_leaf_delete(my_lgrp, lgrp_table,
1075 			    lgrp_alloc_max + 1, &changed);
1076 			return;
1077 		}
1078 
1079 		/*
1080 		 * This lgroup isn't empty, so just remove it from CPU
1081 		 * resources of any lgroups that contain it as such
1082 		 */
1083 		for (i = 0; i <= lgrp_alloc_max; i++) {
1084 			lgrp_t		*lgrp;
1085 
1086 			lgrp = lgrp_table[i];
1087 			if (!LGRP_EXISTS(lgrp) ||
1088 			    !klgrpset_ismember(lgrp->lgrp_set[LGRP_RSRC_CPU],
1089 			    lgrpid))
1090 				continue;
1091 
1092 			klgrpset_del(lgrp->lgrp_set[LGRP_RSRC_CPU], lgrpid);
1093 		}
1094 		return;
1095 	}
1096 
1097 	if (my_lgrp->lgrp_cpu == cp)
1098 		my_lgrp->lgrp_cpu = next;
1099 
1100 }
1101 
1102 /*
1103  * Update memory nodes in target lgroups and return ones that get changed
1104  */
1105 int
1106 lgrp_mnode_update(klgrpset_t target, klgrpset_t *changed)
1107 {
1108 	int	count;
1109 	int	i;
1110 	int	j;
1111 	lgrp_t	*lgrp;
1112 	lgrp_t	*lgrp_rsrc;
1113 
1114 	count = 0;
1115 	if (changed)
1116 		klgrpset_clear(*changed);
1117 
1118 	if (klgrpset_isempty(target))
1119 		return (0);
1120 
1121 	/*
1122 	 * Find each lgroup in target lgroups
1123 	 */
1124 	for (i = 0; i <= lgrp_alloc_max; i++) {
1125 		/*
1126 		 * Skip any lgroups that don't exist or aren't in target group
1127 		 */
1128 		lgrp = lgrp_table[i];
1129 		if (!klgrpset_ismember(target, i) || !LGRP_EXISTS(lgrp)) {
1130 			continue;
1131 		}
1132 
1133 		/*
1134 		 * Initialize memnodes for intermediate lgroups to 0
1135 		 * and update them from scratch since they may have completely
1136 		 * changed
1137 		 */
1138 		if (lgrp->lgrp_childcnt && lgrp != lgrp_root) {
1139 			lgrp->lgrp_mnodes = (mnodeset_t)0;
1140 			lgrp->lgrp_nmnodes = 0;
1141 		}
1142 
1143 		/*
1144 		 * Update memory nodes of of target lgroup with memory nodes
1145 		 * from each lgroup in its lgroup memory resource set
1146 		 */
1147 		for (j = 0; j <= lgrp_alloc_max; j++) {
1148 			int	k;
1149 
1150 			/*
1151 			 * Skip any lgroups that don't exist or aren't in
1152 			 * memory resources of target lgroup
1153 			 */
1154 			lgrp_rsrc = lgrp_table[j];
1155 			if (!LGRP_EXISTS(lgrp_rsrc) ||
1156 			    !klgrpset_ismember(lgrp->lgrp_set[LGRP_RSRC_MEM],
1157 			    j))
1158 				continue;
1159 
1160 			/*
1161 			 * Update target lgroup's memnodes to include memnodes
1162 			 * of this lgroup
1163 			 */
1164 			for (k = 0; k < sizeof (mnodeset_t) * NBBY; k++) {
1165 				mnodeset_t	mnode_mask;
1166 
1167 				mnode_mask = (mnodeset_t)1 << k;
1168 				if ((lgrp_rsrc->lgrp_mnodes & mnode_mask) &&
1169 				    !(lgrp->lgrp_mnodes & mnode_mask)) {
1170 					lgrp->lgrp_mnodes |= mnode_mask;
1171 					lgrp->lgrp_nmnodes++;
1172 				}
1173 			}
1174 			count++;
1175 			if (changed)
1176 				klgrpset_add(*changed, lgrp->lgrp_id);
1177 		}
1178 	}
1179 
1180 	return (count);
1181 }
1182 
1183 /*
1184  * Memory copy-rename. Called when the "mnode" containing the kernel cage memory
1185  * is moved from one board to another. The "from" and "to" arguments specify the
1186  * source and the destination of the move.
1187  *
1188  * See plat_lgrp_config() for a detailed description of the copy-rename
1189  * semantics.
1190  *
1191  * The lgrp_mem_rename() is called by the platform copy-rename code to update
1192  * the lgroup topology which is changing as memory moves from one lgroup to
1193  * another. It removes the mnode from the source lgroup and re-inserts it in the
1194  * target lgroup.
1195  *
1196  * The lgrp_mem_rename() function passes a flag to lgrp_mem_init() and
1197  * lgrp_mem_fini() telling that the insertion and deleteion are part of a DR
1198  * copy-rename operation.
1199  *
1200  * There is one case which requires special handling. If the system contains
1201  * only two boards (mnodes), the lgrp_mem_fini() removes the only mnode from the
1202  * lgroup hierarchy. This mnode is soon re-inserted back in the hierarchy by
1203  * lgrp_mem_init), but there is a window when the system has no memory in the
1204  * lgroup hierarchy. If another thread tries to allocate memory during this
1205  * window, the allocation will fail, although the system has physical memory.
1206  * This may cause a system panic or a deadlock (some sleeping memory allocations
1207  * happen with cpu_lock held which prevents lgrp_mem_init() from re-inserting
1208  * the mnode back).
1209  *
1210  * The lgrp_memnode_choose() function walks the lgroup hierarchy looking for the
1211  * lgrp with non-empty lgrp_mnodes. To deal with the special case above,
1212  * lgrp_mem_fini() does not remove the last mnode from the lroot->lgrp_mnodes,
1213  * but it updates the rest of the lgroup topology as if the mnode was actually
1214  * removed. The lgrp_mem_init() function recognizes that the mnode being
1215  * inserted represents such a special case and updates the topology
1216  * appropriately.
1217  */
1218 void
1219 lgrp_mem_rename(int mnode, lgrp_handle_t from, lgrp_handle_t to)
1220 {
1221 	/*
1222 	 * Remove the memory from the source node and add it to the destination
1223 	 * node.
1224 	 */
1225 	lgrp_mem_fini(mnode, from, B_TRUE);
1226 	lgrp_mem_init(mnode, to, B_TRUE);
1227 }
1228 
1229 /*
1230  * Called to indicate that the lgrp with platform handle "hand" now
1231  * contains the memory identified by "mnode".
1232  *
1233  * LOCKING for this routine is a bit tricky. Usually it is called without
1234  * cpu_lock and it must must grab cpu_lock here to prevent racing with other
1235  * callers. During DR of the board containing the caged memory it may be called
1236  * with cpu_lock already held and CPUs paused.
1237  *
1238  * If the insertion is part of the DR copy-rename and the inserted mnode (and
1239  * only this mnode) is already present in the lgrp_root->lgrp_mnodes set, we are
1240  * dealing with the special case of DR copy-rename described in
1241  * lgrp_mem_rename().
1242  */
1243 void
1244 lgrp_mem_init(int mnode, lgrp_handle_t hand, boolean_t is_copy_rename)
1245 {
1246 	klgrpset_t	changed;
1247 	int		count;
1248 	int		i;
1249 	lgrp_t		*my_lgrp;
1250 	lgrp_id_t	lgrpid;
1251 	mnodeset_t	mnodes_mask = ((mnodeset_t)1 << mnode);
1252 	boolean_t	drop_lock = B_FALSE;
1253 	boolean_t	need_synch = B_FALSE;
1254 
1255 	/*
1256 	 * Grab CPU lock (if we haven't already)
1257 	 */
1258 	if (!MUTEX_HELD(&cpu_lock)) {
1259 		mutex_enter(&cpu_lock);
1260 		drop_lock = B_TRUE;
1261 	}
1262 
1263 	/*
1264 	 * This routine may be called from a context where we already
1265 	 * hold cpu_lock, and have already paused cpus.
1266 	 */
1267 	if (!cpus_paused())
1268 		need_synch = B_TRUE;
1269 
1270 	/*
1271 	 * Check if this mnode is already configured and return immediately if
1272 	 * it is.
1273 	 *
1274 	 * NOTE: in special case of copy-rename of the only remaining mnode,
1275 	 * lgrp_mem_fini() refuses to remove the last mnode from the root, so we
1276 	 * recognize this case and continue as usual, but skip the update to
1277 	 * the lgrp_mnodes and the lgrp_nmnodes. This restores the inconsistency
1278 	 * in topology, temporarily introduced by lgrp_mem_fini().
1279 	 */
1280 	if (! (is_copy_rename && (lgrp_root->lgrp_mnodes == mnodes_mask)) &&
1281 	    lgrp_root->lgrp_mnodes & mnodes_mask) {
1282 		if (drop_lock)
1283 			mutex_exit(&cpu_lock);
1284 		return;
1285 	}
1286 
1287 	/*
1288 	 * Update lgroup topology with new memory resources, keeping track of
1289 	 * which lgroups change
1290 	 */
1291 	count = 0;
1292 	klgrpset_clear(changed);
1293 	my_lgrp = lgrp_hand_to_lgrp(hand);
1294 	if (my_lgrp == NULL) {
1295 		/* new lgrp */
1296 		my_lgrp = lgrp_create();
1297 		lgrpid = my_lgrp->lgrp_id;
1298 		my_lgrp->lgrp_plathand = hand;
1299 		my_lgrp->lgrp_latency = lgrp_plat_latency(hand, hand);
1300 		klgrpset_add(my_lgrp->lgrp_leaves, lgrpid);
1301 		klgrpset_add(my_lgrp->lgrp_set[LGRP_RSRC_MEM], lgrpid);
1302 
1303 		if (need_synch)
1304 			pause_cpus(NULL, NULL);
1305 		count = lgrp_leaf_add(my_lgrp, lgrp_table, lgrp_alloc_max + 1,
1306 		    &changed);
1307 		if (need_synch)
1308 			start_cpus();
1309 	} else if (my_lgrp->lgrp_latency == 0 && lgrp_plat_latency(hand, hand)
1310 	    > 0) {
1311 		/*
1312 		 * Leaf lgroup was created, but latency wasn't available
1313 		 * then.  So, set latency for it and fill in rest of lgroup
1314 		 * topology  now that we know how far it is from other leaf
1315 		 * lgroups.
1316 		 */
1317 		klgrpset_clear(changed);
1318 		lgrpid = my_lgrp->lgrp_id;
1319 		if (!klgrpset_ismember(my_lgrp->lgrp_set[LGRP_RSRC_MEM],
1320 		    lgrpid))
1321 			klgrpset_add(my_lgrp->lgrp_set[LGRP_RSRC_MEM], lgrpid);
1322 		if (need_synch)
1323 			pause_cpus(NULL, NULL);
1324 		count = lgrp_leaf_add(my_lgrp, lgrp_table, lgrp_alloc_max + 1,
1325 		    &changed);
1326 		if (need_synch)
1327 			start_cpus();
1328 	} else if (!klgrpset_ismember(my_lgrp->lgrp_set[LGRP_RSRC_MEM],
1329 	    my_lgrp->lgrp_id)) {
1330 		/*
1331 		 * Add new lgroup memory resource to existing lgroup
1332 		 */
1333 		lgrpid = my_lgrp->lgrp_id;
1334 		klgrpset_add(my_lgrp->lgrp_set[LGRP_RSRC_MEM], lgrpid);
1335 		klgrpset_add(changed, lgrpid);
1336 		count++;
1337 		for (i = 0; i <= lgrp_alloc_max; i++) {
1338 			lgrp_t		*lgrp;
1339 
1340 			lgrp = lgrp_table[i];
1341 			if (!LGRP_EXISTS(lgrp) ||
1342 			    !lgrp_rsets_member(lgrp->lgrp_set, lgrpid))
1343 				continue;
1344 
1345 			klgrpset_add(lgrp->lgrp_set[LGRP_RSRC_MEM], lgrpid);
1346 			klgrpset_add(changed, lgrp->lgrp_id);
1347 			count++;
1348 		}
1349 	}
1350 
1351 	/*
1352 	 * Add memory node to lgroup and remove lgroup from ones that need
1353 	 * to be updated
1354 	 */
1355 	if (!(my_lgrp->lgrp_mnodes & mnodes_mask)) {
1356 		my_lgrp->lgrp_mnodes |= mnodes_mask;
1357 		my_lgrp->lgrp_nmnodes++;
1358 	}
1359 	klgrpset_del(changed, lgrpid);
1360 
1361 	/*
1362 	 * Update memory node information for all lgroups that changed and
1363 	 * contain new memory node as a resource
1364 	 */
1365 	if (count)
1366 		(void) lgrp_mnode_update(changed, NULL);
1367 
1368 	if (drop_lock)
1369 		mutex_exit(&cpu_lock);
1370 }
1371 
1372 /*
1373  * Called to indicate that the lgroup associated with the platform
1374  * handle "hand" no longer contains given memory node
1375  *
1376  * LOCKING for this routine is a bit tricky. Usually it is called without
1377  * cpu_lock and it must must grab cpu_lock here to prevent racing with other
1378  * callers. During DR of the board containing the caged memory it may be called
1379  * with cpu_lock already held and CPUs paused.
1380  *
1381  * If the deletion is part of the DR copy-rename and the deleted mnode is the
1382  * only one present in the lgrp_root->lgrp_mnodes, all the topology is updated,
1383  * but lgrp_root->lgrp_mnodes is left intact. Later, lgrp_mem_init() will insert
1384  * the same mnode back into the topology. See lgrp_mem_rename() and
1385  * lgrp_mem_init() for additional details.
1386  */
1387 void
1388 lgrp_mem_fini(int mnode, lgrp_handle_t hand, boolean_t is_copy_rename)
1389 {
1390 	klgrpset_t	changed;
1391 	int		count;
1392 	int		i;
1393 	lgrp_t		*my_lgrp;
1394 	lgrp_id_t	lgrpid;
1395 	mnodeset_t	mnodes_mask;
1396 	boolean_t	drop_lock = B_FALSE;
1397 	boolean_t	need_synch = B_FALSE;
1398 
1399 	/*
1400 	 * Grab CPU lock (if we haven't already)
1401 	 */
1402 	if (!MUTEX_HELD(&cpu_lock)) {
1403 		mutex_enter(&cpu_lock);
1404 		drop_lock = B_TRUE;
1405 	}
1406 
1407 	/*
1408 	 * This routine may be called from a context where we already
1409 	 * hold cpu_lock and have already paused cpus.
1410 	 */
1411 	if (!cpus_paused())
1412 		need_synch = B_TRUE;
1413 
1414 	my_lgrp = lgrp_hand_to_lgrp(hand);
1415 
1416 	/*
1417 	 * The lgrp *must* be pre-existing
1418 	 */
1419 	ASSERT(my_lgrp != NULL);
1420 
1421 	/*
1422 	 * Delete memory node from lgroups which contain it
1423 	 */
1424 	mnodes_mask = ((mnodeset_t)1 << mnode);
1425 	for (i = 0; i <= lgrp_alloc_max; i++) {
1426 		lgrp_t *lgrp = lgrp_table[i];
1427 		/*
1428 		 * Skip any non-existent lgroups and any lgroups that don't
1429 		 * contain leaf lgroup of memory as a memory resource
1430 		 */
1431 		if (!LGRP_EXISTS(lgrp) ||
1432 		    !(lgrp->lgrp_mnodes & mnodes_mask))
1433 			continue;
1434 
1435 		/*
1436 		 * Avoid removing the last mnode from the root in the DR
1437 		 * copy-rename case. See lgrp_mem_rename() for details.
1438 		 */
1439 		if (is_copy_rename &&
1440 		    (lgrp == lgrp_root) && (lgrp->lgrp_mnodes == mnodes_mask))
1441 			continue;
1442 
1443 		/*
1444 		 * Remove memory node from lgroup.
1445 		 */
1446 		lgrp->lgrp_mnodes &= ~mnodes_mask;
1447 		lgrp->lgrp_nmnodes--;
1448 		ASSERT(lgrp->lgrp_nmnodes >= 0);
1449 	}
1450 	ASSERT(lgrp_root->lgrp_nmnodes > 0);
1451 
1452 	/*
1453 	 * Don't need to update lgroup topology if this lgroup still has memory.
1454 	 *
1455 	 * In the special case of DR copy-rename with the only mnode being
1456 	 * removed, the lgrp_mnodes for the root is always non-zero, but we
1457 	 * still need to update the lgroup topology.
1458 	 */
1459 	if ((my_lgrp->lgrp_nmnodes > 0) &&
1460 	    !(is_copy_rename && (my_lgrp == lgrp_root) &&
1461 	    (my_lgrp->lgrp_mnodes == mnodes_mask))) {
1462 		if (drop_lock)
1463 			mutex_exit(&cpu_lock);
1464 		return;
1465 	}
1466 
1467 	/*
1468 	 * This lgroup does not contain any memory now
1469 	 */
1470 	klgrpset_clear(my_lgrp->lgrp_set[LGRP_RSRC_MEM]);
1471 
1472 	/*
1473 	 * Remove this lgroup from lgroup topology if it does not contain any
1474 	 * resources now
1475 	 */
1476 	lgrpid = my_lgrp->lgrp_id;
1477 	count = 0;
1478 	klgrpset_clear(changed);
1479 	if (lgrp_rsets_empty(my_lgrp->lgrp_set)) {
1480 		/*
1481 		 * Delete lgroup when no more resources
1482 		 */
1483 		if (need_synch)
1484 			pause_cpus(NULL, NULL);
1485 		count = lgrp_leaf_delete(my_lgrp, lgrp_table,
1486 		    lgrp_alloc_max + 1, &changed);
1487 		ASSERT(count > 0);
1488 		if (need_synch)
1489 			start_cpus();
1490 	} else {
1491 		/*
1492 		 * Remove lgroup from memory resources of any lgroups that
1493 		 * contain it as such
1494 		 */
1495 		for (i = 0; i <= lgrp_alloc_max; i++) {
1496 			lgrp_t		*lgrp;
1497 
1498 			lgrp = lgrp_table[i];
1499 			if (!LGRP_EXISTS(lgrp) ||
1500 			    !klgrpset_ismember(lgrp->lgrp_set[LGRP_RSRC_MEM],
1501 			    lgrpid))
1502 				continue;
1503 
1504 			klgrpset_del(lgrp->lgrp_set[LGRP_RSRC_MEM], lgrpid);
1505 		}
1506 	}
1507 	if (drop_lock)
1508 		mutex_exit(&cpu_lock);
1509 }
1510 
1511 /*
1512  * Return lgroup with given platform handle
1513  */
1514 lgrp_t *
1515 lgrp_hand_to_lgrp(lgrp_handle_t hand)
1516 {
1517 	int	i;
1518 	lgrp_t	*lgrp;
1519 
1520 	if (hand == LGRP_NULL_HANDLE)
1521 		return (NULL);
1522 
1523 	for (i = 0; i <= lgrp_alloc_max; i++) {
1524 		lgrp = lgrp_table[i];
1525 		if (LGRP_EXISTS(lgrp) && lgrp->lgrp_plathand == hand)
1526 			return (lgrp);
1527 	}
1528 	return (NULL);
1529 }
1530 
1531 /*
1532  * Return the home lgroup of the current thread.
1533  * We must do this with kernel preemption disabled, since we don't want our
1534  * thread to be re-homed while we're poking around with its lpl, and the lpl
1535  * should never be NULL.
1536  *
1537  * NOTE: Can't guarantee that lgroup will be valid once kernel preemption
1538  * is enabled because of DR.  Callers can use disable kernel preemption
1539  * around this call to guarantee that the lgroup will be valid beyond this
1540  * routine, since kernel preemption can be recursive.
1541  */
1542 lgrp_t *
1543 lgrp_home_lgrp(void)
1544 {
1545 	lgrp_t	*lgrp;
1546 	lpl_t	*lpl;
1547 
1548 	kpreempt_disable();
1549 
1550 	lpl = curthread->t_lpl;
1551 	ASSERT(lpl != NULL);
1552 	ASSERT(lpl->lpl_lgrpid >= 0 && lpl->lpl_lgrpid <= lgrp_alloc_max);
1553 	ASSERT(LGRP_EXISTS(lgrp_table[lpl->lpl_lgrpid]));
1554 	lgrp = lgrp_table[lpl->lpl_lgrpid];
1555 
1556 	kpreempt_enable();
1557 
1558 	return (lgrp);
1559 }
1560 
1561 /*
1562  * Return ID of home lgroup for given thread
1563  * (See comments for lgrp_home_lgrp() for special care and handling
1564  * instructions)
1565  */
1566 lgrp_id_t
1567 lgrp_home_id(kthread_t *t)
1568 {
1569 	lgrp_id_t	lgrp;
1570 	lpl_t		*lpl;
1571 
1572 	ASSERT(t != NULL);
1573 	/*
1574 	 * We'd like to ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)), but we
1575 	 * cannot since the HAT layer can call into this routine to
1576 	 * determine the locality for its data structures in the context
1577 	 * of a page fault.
1578 	 */
1579 
1580 	kpreempt_disable();
1581 
1582 	lpl = t->t_lpl;
1583 	ASSERT(lpl != NULL);
1584 	ASSERT(lpl->lpl_lgrpid >= 0 && lpl->lpl_lgrpid <= lgrp_alloc_max);
1585 	lgrp = lpl->lpl_lgrpid;
1586 
1587 	kpreempt_enable();
1588 
1589 	return (lgrp);
1590 }
1591 
1592 /*
1593  * Return lgroup containing the physical memory for the given page frame number
1594  */
1595 lgrp_t *
1596 lgrp_pfn_to_lgrp(pfn_t pfn)
1597 {
1598 	lgrp_handle_t	hand;
1599 	int		i;
1600 	lgrp_t		*lgrp;
1601 
1602 	hand = lgrp_plat_pfn_to_hand(pfn);
1603 	if (hand != LGRP_NULL_HANDLE)
1604 		for (i = 0; i <= lgrp_alloc_max; i++) {
1605 			lgrp = lgrp_table[i];
1606 			if (LGRP_EXISTS(lgrp) && lgrp->lgrp_plathand == hand)
1607 				return (lgrp);
1608 		}
1609 	return (NULL);
1610 }
1611 
1612 /*
1613  * Return lgroup containing the physical memory for the given page frame number
1614  */
1615 lgrp_t *
1616 lgrp_phys_to_lgrp(u_longlong_t physaddr)
1617 {
1618 	lgrp_handle_t	hand;
1619 	int		i;
1620 	lgrp_t		*lgrp;
1621 	pfn_t		pfn;
1622 
1623 	pfn = btop(physaddr);
1624 	hand = lgrp_plat_pfn_to_hand(pfn);
1625 	if (hand != LGRP_NULL_HANDLE)
1626 		for (i = 0; i <= lgrp_alloc_max; i++) {
1627 			lgrp = lgrp_table[i];
1628 			if (LGRP_EXISTS(lgrp) && lgrp->lgrp_plathand == hand)
1629 				return (lgrp);
1630 		}
1631 	return (NULL);
1632 }
1633 
1634 /*
1635  * Return the leaf lgroup containing the given CPU
1636  *
1637  * The caller needs to take precautions necessary to prevent
1638  * "cpu", and it's lpl from going away across a call to this function.
1639  * hint: kpreempt_disable()/kpreempt_enable()
1640  */
1641 static lgrp_t *
1642 lgrp_cpu_to_lgrp(cpu_t *cpu)
1643 {
1644 	return (cpu->cpu_lpl->lpl_lgrp);
1645 }
1646 
1647 /*
1648  * Return the sum of the partition loads in an lgrp divided by
1649  * the number of CPUs in the lgrp.  This is our best approximation
1650  * of an 'lgroup load average' for a useful per-lgroup kstat.
1651  */
1652 static uint64_t
1653 lgrp_sum_loadavgs(lgrp_t *lgrp)
1654 {
1655 	cpu_t *cpu;
1656 	int ncpu;
1657 	uint64_t loads = 0;
1658 
1659 	mutex_enter(&cpu_lock);
1660 
1661 	cpu = lgrp->lgrp_cpu;
1662 	ncpu = lgrp->lgrp_cpucnt;
1663 
1664 	if (cpu == NULL || ncpu == 0) {
1665 		mutex_exit(&cpu_lock);
1666 		return (0ull);
1667 	}
1668 
1669 	do {
1670 		loads += cpu->cpu_lpl->lpl_loadavg;
1671 		cpu = cpu->cpu_next_lgrp;
1672 	} while (cpu != lgrp->lgrp_cpu);
1673 
1674 	mutex_exit(&cpu_lock);
1675 
1676 	return (loads / ncpu);
1677 }
1678 
1679 void
1680 lgrp_stat_add(lgrp_id_t lgrpid, lgrp_stat_t stat, int64_t val)
1681 {
1682 	struct lgrp_stats *pstats;
1683 
1684 	/*
1685 	 * Verify that the caller isn't trying to add to
1686 	 * a statistic for an lgroup that has gone away
1687 	 */
1688 	if (lgrpid < 0 || lgrpid > lgrp_alloc_max)
1689 		return;
1690 
1691 	pstats = &lgrp_stats[lgrpid];
1692 	atomic_add_64((uint64_t *)LGRP_STAT_WRITE_PTR(pstats, stat), val);
1693 }
1694 
1695 int64_t
1696 lgrp_stat_read(lgrp_id_t lgrpid, lgrp_stat_t stat)
1697 {
1698 	uint64_t val;
1699 	struct lgrp_stats *pstats;
1700 
1701 	if (lgrpid < 0 || lgrpid > lgrp_alloc_max)
1702 		return ((int64_t)0);
1703 
1704 	pstats = &lgrp_stats[lgrpid];
1705 	LGRP_STAT_READ(pstats, stat, val);
1706 	return (val);
1707 }
1708 
1709 /*
1710  * Reset all kstats for lgrp specified by its lgrpid.
1711  */
1712 static void
1713 lgrp_kstat_reset(lgrp_id_t lgrpid)
1714 {
1715 	lgrp_stat_t stat;
1716 
1717 	if (lgrpid < 0 || lgrpid > lgrp_alloc_max)
1718 		return;
1719 
1720 	for (stat = 0; stat < LGRP_NUM_COUNTER_STATS; stat++) {
1721 		LGRP_STAT_RESET(&lgrp_stats[lgrpid], stat);
1722 	}
1723 }
1724 
1725 /*
1726  * Collect all per-lgrp statistics for the lgrp associated with this
1727  * kstat, and store them in the ks_data array.
1728  *
1729  * The superuser can reset all the running counter statistics for an
1730  * lgrp by writing to any of the lgrp's stats.
1731  */
1732 static int
1733 lgrp_kstat_extract(kstat_t *ksp, int rw)
1734 {
1735 	lgrp_stat_t		stat;
1736 	struct kstat_named	*ksd;
1737 	lgrp_t			*lgrp;
1738 	lgrp_id_t		lgrpid;
1739 
1740 	lgrp = (lgrp_t *)ksp->ks_private;
1741 
1742 	ksd = (struct kstat_named *)ksp->ks_data;
1743 	ASSERT(ksd == (struct kstat_named *)&lgrp_kstat_data);
1744 
1745 	lgrpid = lgrp->lgrp_id;
1746 
1747 	if (lgrpid == LGRP_NONE) {
1748 		/*
1749 		 * Return all zeroes as stats for freed lgrp.
1750 		 */
1751 		for (stat = 0; stat < LGRP_NUM_COUNTER_STATS; stat++) {
1752 			ksd[stat].value.i64 = 0;
1753 		}
1754 		ksd[stat + LGRP_NUM_CPUS].value.i64 = 0;
1755 		ksd[stat + LGRP_NUM_PG_INSTALL].value.i64 = 0;
1756 		ksd[stat + LGRP_NUM_PG_AVAIL].value.i64 = 0;
1757 		ksd[stat + LGRP_NUM_PG_FREE].value.i64 = 0;
1758 		ksd[stat + LGRP_LOADAVG].value.i64 = 0;
1759 	} else if (rw != KSTAT_WRITE) {
1760 		/*
1761 		 * Handle counter stats
1762 		 */
1763 		for (stat = 0; stat < LGRP_NUM_COUNTER_STATS; stat++) {
1764 			ksd[stat].value.i64 = lgrp_stat_read(lgrpid, stat);
1765 		}
1766 
1767 		/*
1768 		 * Handle kernel data snapshot stats
1769 		 */
1770 		ksd[stat + LGRP_NUM_CPUS].value.i64 = lgrp->lgrp_cpucnt;
1771 		ksd[stat + LGRP_NUM_PG_INSTALL].value.i64 =
1772 		    lgrp_mem_size(lgrpid, LGRP_MEM_SIZE_INSTALL);
1773 		ksd[stat + LGRP_NUM_PG_AVAIL].value.i64 =
1774 		    lgrp_mem_size(lgrpid, LGRP_MEM_SIZE_AVAIL);
1775 		ksd[stat + LGRP_NUM_PG_FREE].value.i64 =
1776 		    lgrp_mem_size(lgrpid, LGRP_MEM_SIZE_FREE);
1777 		ksd[stat + LGRP_LOADAVG].value.i64 = lgrp_sum_loadavgs(lgrp);
1778 		ksd[stat + LGRP_LOADAVG_SCALE].value.i64 =
1779 		    lgrp_loadavg_max_effect;
1780 	} else {
1781 		lgrp_kstat_reset(lgrpid);
1782 	}
1783 
1784 	return (0);
1785 }
1786 
1787 int
1788 lgrp_query_cpu(processorid_t id, lgrp_id_t *lp)
1789 {
1790 	cpu_t	*cp;
1791 
1792 	mutex_enter(&cpu_lock);
1793 
1794 	if ((cp = cpu_get(id)) == NULL) {
1795 		mutex_exit(&cpu_lock);
1796 		return (EINVAL);
1797 	}
1798 
1799 	if (cpu_is_offline(cp) || cpu_is_poweredoff(cp)) {
1800 		mutex_exit(&cpu_lock);
1801 		return (EINVAL);
1802 	}
1803 
1804 	ASSERT(cp->cpu_lpl != NULL);
1805 
1806 	*lp = cp->cpu_lpl->lpl_lgrpid;
1807 
1808 	mutex_exit(&cpu_lock);
1809 
1810 	return (0);
1811 }
1812 
1813 int
1814 lgrp_query_load(processorid_t id, lgrp_load_t *lp)
1815 {
1816 	cpu_t *cp;
1817 
1818 	mutex_enter(&cpu_lock);
1819 
1820 	if ((cp = cpu_get(id)) == NULL) {
1821 		mutex_exit(&cpu_lock);
1822 		return (EINVAL);
1823 	}
1824 
1825 	ASSERT(cp->cpu_lpl != NULL);
1826 
1827 	*lp = cp->cpu_lpl->lpl_loadavg;
1828 
1829 	mutex_exit(&cpu_lock);
1830 
1831 	return (0);
1832 }
1833 
1834 /*
1835  * Add a resource named by lpl_leaf to rset of lpl_target
1836  *
1837  * This routine also adjusts ncpu and nrset if the call succeeds in adding a
1838  * resource. It is adjusted here, as this is presently the only place that we
1839  * can be certain a resource addition has succeeded.
1840  *
1841  * We keep the list of rsets sorted so that the dispatcher can quickly walk the
1842  * list in order until it reaches a NULL.  (This list is required to be NULL
1843  * terminated, too).  This is done so that we can mark start pos + 1, so that
1844  * each lpl is traversed sequentially, but in a different order.  We hope this
1845  * will improve performance a bit.  (Hopefully, less read-to-own traffic...)
1846  */
1847 
1848 void
1849 lpl_rset_add(lpl_t *lpl_target, lpl_t *lpl_leaf)
1850 {
1851 	int		i;
1852 	int		entry_slot = 0;
1853 
1854 	/* return if leaf is already present */
1855 	for (i = 0; i < lpl_target->lpl_nrset; i++) {
1856 		if (lpl_target->lpl_rset[i] == lpl_leaf) {
1857 			return;
1858 		}
1859 
1860 		if (lpl_target->lpl_rset[i]->lpl_lgrpid >
1861 		    lpl_leaf->lpl_lgrpid) {
1862 			break;
1863 		}
1864 	}
1865 
1866 	/* insert leaf, update counts */
1867 	entry_slot = i;
1868 	i = lpl_target->lpl_nrset++;
1869 
1870 	/*
1871 	 * Start at the end of the rset array and work backwards towards the
1872 	 * slot into which the new lpl will be inserted. This effectively
1873 	 * preserves the current ordering by scooting everybody over one entry,
1874 	 * and placing the new entry into the space created.
1875 	 */
1876 	while (i-- > entry_slot) {
1877 		lpl_target->lpl_rset[i + 1] = lpl_target->lpl_rset[i];
1878 		lpl_target->lpl_id2rset[lpl_target->lpl_rset[i]->lpl_lgrpid] =
1879 		    i + 1;
1880 	}
1881 
1882 	lpl_target->lpl_rset[entry_slot] = lpl_leaf;
1883 	lpl_target->lpl_id2rset[lpl_leaf->lpl_lgrpid] = entry_slot;
1884 
1885 	lpl_target->lpl_ncpu += lpl_leaf->lpl_ncpu;
1886 }
1887 
1888 /*
1889  * Update each of lpl_parent's children with a reference to their parent.
1890  * The lgrp topology is used as the reference since it is fully
1891  * consistent and correct at this point.
1892  * This should be called after any potential change in lpl_parent's
1893  * rset.
1894  */
1895 static void
1896 lpl_child_update(lpl_t *lpl_parent, struct cpupart *cp)
1897 {
1898 	klgrpset_t	children;
1899 	int		i;
1900 
1901 	children = lgrp_table[lpl_parent->lpl_lgrpid]->lgrp_children;
1902 	if (klgrpset_isempty(children))
1903 		return; /* nothing to do */
1904 
1905 	for (i = 0; i <= lgrp_alloc_max; i++) {
1906 		if (klgrpset_ismember(children, i)) {
1907 			/*
1908 			 * (Re)set the parent. It may be incorrect if
1909 			 * lpl_parent is new in the topology.
1910 			 */
1911 			cp->cp_lgrploads[i].lpl_parent = lpl_parent;
1912 		}
1913 	}
1914 }
1915 
1916 /*
1917  * Delete resource lpl_leaf from rset of lpl_target, assuming it's there.
1918  *
1919  * This routine also adjusts ncpu and nrset if the call succeeds in deleting a
1920  * resource. The values are adjusted here, as this is the only place that we can
1921  * be certain a resource was successfully deleted.
1922  */
1923 void
1924 lpl_rset_del(lpl_t *lpl_target, lpl_t *lpl_leaf)
1925 {
1926 	int i;
1927 	lpl_t *leaf;
1928 
1929 	if (lpl_target->lpl_nrset == 0)
1930 		return;
1931 
1932 	/* find leaf in intermediate node */
1933 	for (i = 0; i < lpl_target->lpl_nrset; i++) {
1934 		if (lpl_target->lpl_rset[i] == lpl_leaf)
1935 			break;
1936 	}
1937 
1938 	/* return if leaf not found */
1939 	if (lpl_target->lpl_rset[i] != lpl_leaf)
1940 		return;
1941 
1942 	/* prune leaf, compress array */
1943 	lpl_target->lpl_rset[lpl_target->lpl_nrset--] = NULL;
1944 	lpl_target->lpl_id2rset[lpl_leaf->lpl_lgrpid] = -1;
1945 	lpl_target->lpl_ncpu--;
1946 	do {
1947 		lpl_target->lpl_rset[i] = lpl_target->lpl_rset[i + 1];
1948 		/*
1949 		 * Update the lgrp id <=> rset mapping
1950 		 */
1951 		if ((leaf = lpl_target->lpl_rset[i]) != NULL) {
1952 			lpl_target->lpl_id2rset[leaf->lpl_lgrpid] = i;
1953 		}
1954 	} while (i++ < lpl_target->lpl_nrset);
1955 }
1956 
1957 /*
1958  * Check to see if the resource set of the target lpl contains the
1959  * supplied leaf lpl.  This returns 1 if the lpl is found, 0 if it is not.
1960  */
1961 
1962 int
1963 lpl_rset_contains(lpl_t *lpl_target, lpl_t *lpl_leaf)
1964 {
1965 	int i;
1966 
1967 	for (i = 0; i < lpl_target->lpl_nrset; i++) {
1968 		if (lpl_target->lpl_rset[i] == lpl_leaf)
1969 			return (1);
1970 	}
1971 
1972 	return (0);
1973 }
1974 
1975 /*
1976  * Called when we change cpu lpl membership.  This increments or decrements the
1977  * per-cpu counter in every lpl in which our leaf appears.
1978  */
1979 void
1980 lpl_cpu_adjcnt(lpl_act_t act, cpu_t *cp)
1981 {
1982 	cpupart_t	*cpupart;
1983 	lgrp_t		*lgrp_leaf;
1984 	lgrp_t		*lgrp_cur;
1985 	lpl_t		*lpl_leaf;
1986 	lpl_t		*lpl_cur;
1987 	int		i;
1988 
1989 	ASSERT(act == LPL_DECREMENT || act == LPL_INCREMENT);
1990 
1991 	cpupart = cp->cpu_part;
1992 	lpl_leaf = cp->cpu_lpl;
1993 	lgrp_leaf = lgrp_table[lpl_leaf->lpl_lgrpid];
1994 
1995 	for (i = 0; i <= lgrp_alloc_max; i++) {
1996 		lgrp_cur = lgrp_table[i];
1997 
1998 		/*
1999 		 * Don't adjust if the lgrp isn't there, if we're the leaf lpl
2000 		 * for the cpu in question, or if the current lgrp and leaf
2001 		 * don't share the same resources.
2002 		 */
2003 
2004 		if (!LGRP_EXISTS(lgrp_cur) || (lgrp_cur == lgrp_leaf) ||
2005 		    !klgrpset_intersects(lgrp_leaf->lgrp_set[LGRP_RSRC_CPU],
2006 		    lgrp_cur->lgrp_set[LGRP_RSRC_CPU]))
2007 			continue;
2008 
2009 
2010 		lpl_cur = &cpupart->cp_lgrploads[lgrp_cur->lgrp_id];
2011 
2012 		if (lpl_cur->lpl_nrset > 0) {
2013 			if (act == LPL_INCREMENT) {
2014 				lpl_cur->lpl_ncpu++;
2015 			} else if (act == LPL_DECREMENT) {
2016 				lpl_cur->lpl_ncpu--;
2017 			}
2018 		}
2019 	}
2020 }
2021 
2022 /*
2023  * Initialize lpl with given resources and specified lgrp
2024  */
2025 void
2026 lpl_init(lpl_t *lpl, lpl_t *lpl_leaf, lgrp_t *lgrp)
2027 {
2028 	lpl->lpl_lgrpid = lgrp->lgrp_id;
2029 	lpl->lpl_loadavg = 0;
2030 	if (lpl == lpl_leaf)
2031 		lpl->lpl_ncpu = 1;
2032 	else
2033 		lpl->lpl_ncpu = lpl_leaf->lpl_ncpu;
2034 	lpl->lpl_nrset = 1;
2035 	lpl->lpl_rset[0] = lpl_leaf;
2036 	lpl->lpl_id2rset[lpl_leaf->lpl_lgrpid] = 0;
2037 	lpl->lpl_lgrp = lgrp;
2038 	lpl->lpl_parent = NULL; /* set by lpl_leaf_insert() */
2039 	lpl->lpl_cpus = NULL; /* set by lgrp_part_add_cpu() */
2040 }
2041 
2042 /*
2043  * Clear an unused lpl
2044  */
2045 void
2046 lpl_clear(lpl_t *lpl)
2047 {
2048 	/*
2049 	 * Clear out all fields in the lpl except:
2050 	 *    lpl_lgrpid - to facilitate debugging
2051 	 *    lpl_rset, lpl_rset_sz, lpl_id2rset - rset array references / size
2052 	 *
2053 	 * Note that the lpl's rset and id2rset mapping are cleared as well.
2054 	 */
2055 	lpl->lpl_loadavg = 0;
2056 	lpl->lpl_ncpu = 0;
2057 	lpl->lpl_lgrp = NULL;
2058 	lpl->lpl_parent = NULL;
2059 	lpl->lpl_cpus = NULL;
2060 	lpl->lpl_nrset = 0;
2061 	lpl->lpl_homed_time = 0;
2062 	bzero(lpl->lpl_rset, sizeof (lpl->lpl_rset[0]) * lpl->lpl_rset_sz);
2063 	bzero(lpl->lpl_id2rset,
2064 	    sizeof (lpl->lpl_id2rset[0]) * lpl->lpl_rset_sz);
2065 }
2066 
2067 /*
2068  * Given a CPU-partition, verify that the lpl topology in the CPU-partition
2069  * is in sync with the lgroup toplogy in the system.  The lpl topology may not
2070  * make full use of all of the lgroup topology, but this checks to make sure
2071  * that for the parts that it does use, it has correctly understood the
2072  * relationships that exist. This function returns
2073  * 0 if the topology is correct, and a non-zero error code, for non-debug
2074  * kernels if incorrect.  Asserts are spread throughout the code to aid in
2075  * debugging on a DEBUG kernel.
2076  */
2077 int
2078 lpl_topo_verify(cpupart_t *cpupart)
2079 {
2080 	lgrp_t		*lgrp;
2081 	lpl_t		*lpl;
2082 	klgrpset_t	rset;
2083 	klgrpset_t	cset;
2084 	cpu_t		*cpu;
2085 	cpu_t		*cp_start;
2086 	int		i;
2087 	int		j;
2088 	int		sum;
2089 
2090 	/* topology can't be incorrect if it doesn't exist */
2091 	if (!lgrp_topo_initialized || !lgrp_initialized)
2092 		return (LPL_TOPO_CORRECT);
2093 
2094 	ASSERT(cpupart != NULL);
2095 
2096 	for (i = 0; i <= lgrp_alloc_max; i++) {
2097 		lgrp = lgrp_table[i];
2098 		lpl = NULL;
2099 		/* make sure lpls are allocated */
2100 		ASSERT(cpupart->cp_lgrploads);
2101 		if (!cpupart->cp_lgrploads)
2102 			return (LPL_TOPO_PART_HAS_NO_LPL);
2103 
2104 		lpl = &cpupart->cp_lgrploads[i];
2105 		/* make sure our index is good */
2106 		ASSERT(i < cpupart->cp_nlgrploads);
2107 
2108 		/* if lgroup doesn't exist, make sure lpl is empty */
2109 		if (!LGRP_EXISTS(lgrp)) {
2110 			ASSERT(lpl->lpl_ncpu == 0);
2111 			if (lpl->lpl_ncpu > 0) {
2112 				return (LPL_TOPO_CPUS_NOT_EMPTY);
2113 			} else {
2114 				continue;
2115 			}
2116 		}
2117 
2118 		/* verify that lgroup and lpl are identically numbered */
2119 		ASSERT(lgrp->lgrp_id == lpl->lpl_lgrpid);
2120 
2121 		/* if lgroup isn't in our partition, make sure lpl is empty */
2122 		if (!klgrpset_intersects(lgrp->lgrp_leaves,
2123 		    cpupart->cp_lgrpset)) {
2124 			ASSERT(lpl->lpl_ncpu == 0);
2125 			if (lpl->lpl_ncpu > 0) {
2126 				return (LPL_TOPO_CPUS_NOT_EMPTY);
2127 			}
2128 			/*
2129 			 * lpl is empty, and lgroup isn't in partition.  verify
2130 			 * that lpl doesn't show up in anyone else's rsets (in
2131 			 * this partition, anyway)
2132 			 */
2133 			for (j = 0; j < cpupart->cp_nlgrploads; j++) {
2134 				lpl_t *i_lpl; /* lpl we're iterating over */
2135 
2136 				i_lpl = &cpupart->cp_lgrploads[j];
2137 
2138 				ASSERT(!lpl_rset_contains(i_lpl, lpl));
2139 				if (lpl_rset_contains(i_lpl, lpl)) {
2140 					return (LPL_TOPO_LPL_ORPHANED);
2141 				}
2142 			}
2143 			/* lgroup is empty, and everything is ok. continue */
2144 			continue;
2145 		}
2146 
2147 
2148 		/* lgroup is in this partition, now check it against lpl */
2149 
2150 		/* do both have matching lgrps? */
2151 		ASSERT(lgrp == lpl->lpl_lgrp);
2152 		if (lgrp != lpl->lpl_lgrp) {
2153 			return (LPL_TOPO_LGRP_MISMATCH);
2154 		}
2155 
2156 		/* do the parent lgroups exist and do they match? */
2157 		if (lgrp->lgrp_parent) {
2158 			ASSERT(lpl->lpl_parent);
2159 			ASSERT(lgrp->lgrp_parent->lgrp_id ==
2160 			    lpl->lpl_parent->lpl_lgrpid);
2161 
2162 			if (!lpl->lpl_parent) {
2163 				return (LPL_TOPO_MISSING_PARENT);
2164 			} else if (lgrp->lgrp_parent->lgrp_id !=
2165 			    lpl->lpl_parent->lpl_lgrpid) {
2166 				return (LPL_TOPO_PARENT_MISMATCH);
2167 			}
2168 		}
2169 
2170 		/* only leaf lgroups keep a cpucnt, only check leaves */
2171 		if ((lpl->lpl_nrset == 1) && (lpl == lpl->lpl_rset[0])) {
2172 
2173 			/* verify that lgrp is also a leaf */
2174 			ASSERT((lgrp->lgrp_childcnt == 0) &&
2175 			    (klgrpset_ismember(lgrp->lgrp_leaves,
2176 			    lpl->lpl_lgrpid)));
2177 
2178 			if ((lgrp->lgrp_childcnt > 0) ||
2179 			    (!klgrpset_ismember(lgrp->lgrp_leaves,
2180 			    lpl->lpl_lgrpid))) {
2181 				return (LPL_TOPO_LGRP_NOT_LEAF);
2182 			}
2183 
2184 			ASSERT((lgrp->lgrp_cpucnt >= lpl->lpl_ncpu) &&
2185 			    (lpl->lpl_ncpu > 0));
2186 			if ((lgrp->lgrp_cpucnt < lpl->lpl_ncpu) ||
2187 			    (lpl->lpl_ncpu <= 0)) {
2188 				return (LPL_TOPO_BAD_CPUCNT);
2189 			}
2190 
2191 			/*
2192 			 * Check that lpl_ncpu also matches the number of
2193 			 * cpus in the lpl's linked list.  This only exists in
2194 			 * leaves, but they should always match.
2195 			 */
2196 			j = 0;
2197 			cpu = cp_start = lpl->lpl_cpus;
2198 			while (cpu != NULL) {
2199 				j++;
2200 
2201 				/* check to make sure cpu's lpl is leaf lpl */
2202 				ASSERT(cpu->cpu_lpl == lpl);
2203 				if (cpu->cpu_lpl != lpl) {
2204 					return (LPL_TOPO_CPU_HAS_BAD_LPL);
2205 				}
2206 
2207 				/* check next cpu */
2208 				if ((cpu = cpu->cpu_next_lpl) != cp_start) {
2209 					continue;
2210 				} else {
2211 					cpu = NULL;
2212 				}
2213 			}
2214 
2215 			ASSERT(j == lpl->lpl_ncpu);
2216 			if (j != lpl->lpl_ncpu) {
2217 				return (LPL_TOPO_LPL_BAD_NCPU);
2218 			}
2219 
2220 			/*
2221 			 * Also, check that leaf lpl is contained in all
2222 			 * intermediate lpls that name the leaf as a descendant
2223 			 */
2224 			for (j = 0; j <= lgrp_alloc_max; j++) {
2225 				klgrpset_t intersect;
2226 				lgrp_t *lgrp_cand;
2227 				lpl_t *lpl_cand;
2228 
2229 				lgrp_cand = lgrp_table[j];
2230 				intersect = klgrpset_intersects(
2231 				    lgrp_cand->lgrp_set[LGRP_RSRC_CPU],
2232 				    cpupart->cp_lgrpset);
2233 
2234 				if (!LGRP_EXISTS(lgrp_cand) ||
2235 				    !klgrpset_intersects(lgrp_cand->lgrp_leaves,
2236 				    cpupart->cp_lgrpset) ||
2237 				    (intersect == 0))
2238 					continue;
2239 
2240 				lpl_cand =
2241 				    &cpupart->cp_lgrploads[lgrp_cand->lgrp_id];
2242 
2243 				if (klgrpset_ismember(intersect,
2244 				    lgrp->lgrp_id)) {
2245 					ASSERT(lpl_rset_contains(lpl_cand,
2246 					    lpl));
2247 
2248 					if (!lpl_rset_contains(lpl_cand, lpl)) {
2249 						return (LPL_TOPO_RSET_MSSNG_LF);
2250 					}
2251 				}
2252 			}
2253 
2254 		} else { /* non-leaf specific checks */
2255 
2256 			/*
2257 			 * Non-leaf lpls should have lpl_cpus == NULL
2258 			 * verify that this is so
2259 			 */
2260 			ASSERT(lpl->lpl_cpus == NULL);
2261 			if (lpl->lpl_cpus != NULL) {
2262 				return (LPL_TOPO_NONLEAF_HAS_CPUS);
2263 			}
2264 
2265 			/*
2266 			 * verify that the sum of the cpus in the leaf resources
2267 			 * is equal to the total ncpu in the intermediate
2268 			 */
2269 			for (j = sum = 0; j < lpl->lpl_nrset; j++) {
2270 				sum += lpl->lpl_rset[j]->lpl_ncpu;
2271 			}
2272 
2273 			ASSERT(sum == lpl->lpl_ncpu);
2274 			if (sum != lpl->lpl_ncpu) {
2275 				return (LPL_TOPO_LPL_BAD_NCPU);
2276 			}
2277 		}
2278 
2279 		/*
2280 		 * Check the rset of the lpl in question.  Make sure that each
2281 		 * rset contains a subset of the resources in
2282 		 * lgrp_set[LGRP_RSRC_CPU] and in cp_lgrpset.  This also makes
2283 		 * sure that each rset doesn't include resources that are
2284 		 * outside of that set.  (Which would be resources somehow not
2285 		 * accounted for).
2286 		 */
2287 		klgrpset_clear(rset);
2288 		for (j = 0; j < lpl->lpl_nrset; j++) {
2289 			klgrpset_add(rset, lpl->lpl_rset[j]->lpl_lgrpid);
2290 		}
2291 		klgrpset_copy(cset, rset);
2292 		/* make sure lpl rset matches lgrp rset */
2293 		klgrpset_diff(rset, lgrp->lgrp_set[LGRP_RSRC_CPU]);
2294 		/* make sure rset is contained with in partition, too */
2295 		klgrpset_diff(cset, cpupart->cp_lgrpset);
2296 
2297 		ASSERT(klgrpset_isempty(rset) && klgrpset_isempty(cset));
2298 		if (!klgrpset_isempty(rset) || !klgrpset_isempty(cset)) {
2299 			return (LPL_TOPO_RSET_MISMATCH);
2300 		}
2301 
2302 		/*
2303 		 * check to make sure lpl_nrset matches the number of rsets
2304 		 * contained in the lpl
2305 		 */
2306 		for (j = 0; j < lpl->lpl_nrset; j++) {
2307 			if (lpl->lpl_rset[j] == NULL)
2308 				break;
2309 		}
2310 
2311 		ASSERT(j == lpl->lpl_nrset);
2312 		if (j != lpl->lpl_nrset) {
2313 			return (LPL_TOPO_BAD_RSETCNT);
2314 		}
2315 
2316 	}
2317 	return (LPL_TOPO_CORRECT);
2318 }
2319 
2320 /*
2321  * Flatten lpl topology to given number of levels.  This is presently only
2322  * implemented for a flatten to 2 levels, which will prune out the intermediates
2323  * and home the leaf lpls to the root lpl.
2324  */
2325 int
2326 lpl_topo_flatten(int levels)
2327 {
2328 	int		i;
2329 	uint_t		sum;
2330 	lgrp_t		*lgrp_cur;
2331 	lpl_t		*lpl_cur;
2332 	lpl_t		*lpl_root;
2333 	cpupart_t	*cp;
2334 
2335 	if (levels != 2)
2336 		return (0);
2337 
2338 	/* called w/ cpus paused - grab no locks! */
2339 	ASSERT(MUTEX_HELD(&cpu_lock) || curthread->t_preempt > 0 ||
2340 	    !lgrp_initialized);
2341 
2342 	cp = cp_list_head;
2343 	do {
2344 		lpl_root = &cp->cp_lgrploads[lgrp_root->lgrp_id];
2345 		ASSERT(LGRP_EXISTS(lgrp_root) && (lpl_root->lpl_ncpu > 0));
2346 
2347 		for (i = 0; i <= lgrp_alloc_max; i++) {
2348 			lgrp_cur = lgrp_table[i];
2349 			lpl_cur = &cp->cp_lgrploads[i];
2350 
2351 			if ((lgrp_cur == lgrp_root) ||
2352 			    (!LGRP_EXISTS(lgrp_cur) &&
2353 			    (lpl_cur->lpl_ncpu == 0)))
2354 				continue;
2355 
2356 			if (!LGRP_EXISTS(lgrp_cur) && (lpl_cur->lpl_ncpu > 0)) {
2357 				/*
2358 				 * this should be a deleted intermediate, so
2359 				 * clear it
2360 				 */
2361 				lpl_clear(lpl_cur);
2362 			} else if ((lpl_cur->lpl_nrset == 1) &&
2363 			    (lpl_cur->lpl_rset[0] == lpl_cur) &&
2364 			    ((lpl_cur->lpl_parent->lpl_ncpu == 0) ||
2365 			    (!LGRP_EXISTS(lpl_cur->lpl_parent->lpl_lgrp)))) {
2366 				/*
2367 				 * this is a leaf whose parent was deleted, or
2368 				 * whose parent had their lgrp deleted.  (And
2369 				 * whose parent will soon be deleted).  Point
2370 				 * this guy back to the root lpl.
2371 				 */
2372 				lpl_cur->lpl_parent = lpl_root;
2373 				lpl_rset_add(lpl_root, lpl_cur);
2374 			}
2375 
2376 		}
2377 
2378 		/*
2379 		 * Now that we're done, make sure the count on the root lpl is
2380 		 * correct, and update the hints of the children for the sake of
2381 		 * thoroughness
2382 		 */
2383 		for (i = sum = 0; i < lpl_root->lpl_nrset; i++) {
2384 			sum += lpl_root->lpl_rset[i]->lpl_ncpu;
2385 		}
2386 		lpl_root->lpl_ncpu = sum;
2387 		lpl_child_update(lpl_root, cp);
2388 
2389 		cp = cp->cp_next;
2390 	} while (cp != cp_list_head);
2391 
2392 	return (levels);
2393 }
2394 
2395 /*
2396  * Insert a lpl into the resource hierarchy and create any additional lpls that
2397  * are necessary to represent the varying states of locality for the cpu
2398  * resoruces newly added to the partition.
2399  *
2400  * This routine is clever enough that it can correctly add resources from the
2401  * new leaf into both direct and indirect resource sets in the hierarchy.  (Ie,
2402  * those for which the lpl is a leaf as opposed to simply a named equally local
2403  * resource).  The one special case that needs additional processing is when a
2404  * new intermediate lpl is introduced.  Since the main loop only traverses
2405  * looking to add the leaf resource where it does not yet exist, additional work
2406  * is necessary to add other leaf resources that may need to exist in the newly
2407  * created intermediate.  This is performed by the second inner loop, and is
2408  * only done when the check for more than one overlapping resource succeeds.
2409  */
2410 
2411 void
2412 lpl_leaf_insert(lpl_t *lpl_leaf, cpupart_t *cpupart)
2413 {
2414 	int		i;
2415 	int		j;
2416 	int		rset_num_intersect;
2417 	lgrp_t		*lgrp_cur;
2418 	lpl_t		*lpl_cur;
2419 	lpl_t		*lpl_parent;
2420 	lgrp_id_t	parent_id;
2421 	klgrpset_t	rset_intersect; /* resources in cpupart and lgrp */
2422 
2423 	for (i = 0; i <= lgrp_alloc_max; i++) {
2424 		lgrp_cur = lgrp_table[i];
2425 
2426 		/*
2427 		 * Don't insert if the lgrp isn't there, if the leaf isn't
2428 		 * contained within the current lgrp, or if the current lgrp has
2429 		 * no leaves in this partition
2430 		 */
2431 
2432 		if (!LGRP_EXISTS(lgrp_cur) ||
2433 		    !klgrpset_ismember(lgrp_cur->lgrp_set[LGRP_RSRC_CPU],
2434 		    lpl_leaf->lpl_lgrpid) ||
2435 		    !klgrpset_intersects(lgrp_cur->lgrp_leaves,
2436 		    cpupart->cp_lgrpset))
2437 			continue;
2438 
2439 		lpl_cur = &cpupart->cp_lgrploads[lgrp_cur->lgrp_id];
2440 		if (lgrp_cur->lgrp_parent != NULL) {
2441 			/* if lgrp has a parent, assign it properly */
2442 			parent_id = lgrp_cur->lgrp_parent->lgrp_id;
2443 			lpl_parent = &cpupart->cp_lgrploads[parent_id];
2444 		} else {
2445 			/* if not, make sure parent ptr gets set to null */
2446 			lpl_parent = NULL;
2447 		}
2448 
2449 		if (lpl_cur == lpl_leaf) {
2450 			/*
2451 			 * Almost all leaf state was initialized elsewhere.  The
2452 			 * only thing left to do is to set the parent.
2453 			 */
2454 			lpl_cur->lpl_parent = lpl_parent;
2455 			continue;
2456 		}
2457 
2458 		lpl_clear(lpl_cur);
2459 		lpl_init(lpl_cur, lpl_leaf, lgrp_cur);
2460 
2461 		lpl_cur->lpl_parent = lpl_parent;
2462 
2463 		/* does new lpl need to be populated with other resources? */
2464 		rset_intersect =
2465 		    klgrpset_intersects(lgrp_cur->lgrp_set[LGRP_RSRC_CPU],
2466 		    cpupart->cp_lgrpset);
2467 		klgrpset_nlgrps(rset_intersect, rset_num_intersect);
2468 
2469 		if (rset_num_intersect > 1) {
2470 			/*
2471 			 * If so, figure out what lpls have resources that
2472 			 * intersect this one, and add them.
2473 			 */
2474 			for (j = 0; j <= lgrp_alloc_max; j++) {
2475 				lgrp_t	*lgrp_cand;	/* candidate lgrp */
2476 				lpl_t	*lpl_cand;	/* candidate lpl */
2477 
2478 				lgrp_cand = lgrp_table[j];
2479 				if (!LGRP_EXISTS(lgrp_cand) ||
2480 				    !klgrpset_ismember(rset_intersect,
2481 				    lgrp_cand->lgrp_id))
2482 					continue;
2483 				lpl_cand =
2484 				    &cpupart->cp_lgrploads[lgrp_cand->lgrp_id];
2485 				lpl_rset_add(lpl_cur, lpl_cand);
2486 			}
2487 		}
2488 		/*
2489 		 * This lpl's rset has changed. Update the hint in it's
2490 		 * children.
2491 		 */
2492 		lpl_child_update(lpl_cur, cpupart);
2493 	}
2494 }
2495 
2496 /*
2497  * remove a lpl from the hierarchy of resources, clearing its state when
2498  * finished.  If the lpls at the intermediate levels of the hierarchy have no
2499  * remaining resources, or no longer name a leaf resource in the cpu-partition,
2500  * delete them as well.
2501  */
2502 
2503 void
2504 lpl_leaf_remove(lpl_t *lpl_leaf, cpupart_t *cpupart)
2505 {
2506 	int		i;
2507 	lgrp_t		*lgrp_cur;
2508 	lpl_t		*lpl_cur;
2509 	klgrpset_t	leaf_intersect;	/* intersection of leaves */
2510 
2511 	for (i = 0; i <= lgrp_alloc_max; i++) {
2512 		lgrp_cur = lgrp_table[i];
2513 
2514 		/*
2515 		 * Don't attempt to remove from lgrps that aren't there, that
2516 		 * don't contain our leaf, or from the leaf itself. (We do that
2517 		 * later)
2518 		 */
2519 
2520 		if (!LGRP_EXISTS(lgrp_cur))
2521 			continue;
2522 
2523 		lpl_cur = &cpupart->cp_lgrploads[lgrp_cur->lgrp_id];
2524 
2525 		if (!klgrpset_ismember(lgrp_cur->lgrp_set[LGRP_RSRC_CPU],
2526 		    lpl_leaf->lpl_lgrpid) ||
2527 		    (lpl_cur == lpl_leaf)) {
2528 			continue;
2529 		}
2530 
2531 		/*
2532 		 * This is a slightly sleazy simplification in that we have
2533 		 * already marked the cp_lgrpset as no longer containing the
2534 		 * leaf we've deleted.  Any lpls that pass the above checks
2535 		 * based upon lgrp membership but not necessarily cpu-part
2536 		 * membership also get cleared by the checks below.  Currently
2537 		 * this is harmless, as the lpls should be empty anyway.
2538 		 *
2539 		 * In particular, we want to preserve lpls that have additional
2540 		 * leaf resources, even though we don't yet have a processor
2541 		 * architecture that represents resources this way.
2542 		 */
2543 
2544 		leaf_intersect = klgrpset_intersects(lgrp_cur->lgrp_leaves,
2545 		    cpupart->cp_lgrpset);
2546 
2547 		lpl_rset_del(lpl_cur, lpl_leaf);
2548 		if ((lpl_cur->lpl_nrset == 0) || (!leaf_intersect)) {
2549 			lpl_clear(lpl_cur);
2550 		} else {
2551 			/*
2552 			 * Update this lpl's children
2553 			 */
2554 			lpl_child_update(lpl_cur, cpupart);
2555 		}
2556 	}
2557 	lpl_clear(lpl_leaf);
2558 }
2559 
2560 /*
2561  * add a cpu to a partition in terms of lgrp load avg bookeeping
2562  *
2563  * The lpl (cpu partition load average information) is now arranged in a
2564  * hierarchical fashion whereby resources that are closest, ie. most local, to
2565  * the cpu in question are considered to be leaves in a tree of resources.
2566  * There are two general cases for cpu additon:
2567  *
2568  * 1. A lpl structure that contains resources already in the hierarchy tree.
2569  * In this case, all of the associated lpl relationships have been defined, and
2570  * all that is necessary is that we link the new cpu into the per-lpl list of
2571  * cpus, and increment the ncpu count of all places where this cpu resource will
2572  * be accounted for.  lpl_cpu_adjcnt updates the cpu count, and the cpu pointer
2573  * pushing is accomplished by this routine.
2574  *
2575  * 2. The lpl to contain the resources in this cpu-partition for this lgrp does
2576  * not exist yet.  In this case, it is necessary to build the leaf lpl, and
2577  * construct the hierarchy of state necessary to name it's more distant
2578  * resources, if they should exist.  The leaf structure is initialized by this
2579  * routine, as is the cpu-partition state for the lgrp membership.  This routine
2580  * also calls lpl_leaf_insert() which inserts the named lpl into the hierarchy
2581  * and builds all of the "ancestoral" state necessary to identify resources at
2582  * differing levels of locality.
2583  */
2584 void
2585 lgrp_part_add_cpu(cpu_t *cp, lgrp_id_t lgrpid)
2586 {
2587 	cpupart_t	*cpupart;
2588 	lgrp_t		*lgrp_leaf;
2589 	lpl_t		*lpl_leaf;
2590 
2591 	/* called sometimes w/ cpus paused - grab no locks */
2592 	ASSERT(MUTEX_HELD(&cpu_lock) || !lgrp_initialized);
2593 
2594 	cpupart = cp->cpu_part;
2595 	lgrp_leaf = lgrp_table[lgrpid];
2596 
2597 	/* don't add non-existent lgrp */
2598 	ASSERT(LGRP_EXISTS(lgrp_leaf));
2599 	lpl_leaf = &cpupart->cp_lgrploads[lgrpid];
2600 	cp->cpu_lpl = lpl_leaf;
2601 
2602 	/* only leaf lpls contain cpus */
2603 
2604 	if (lpl_leaf->lpl_ncpu++ == 0) {
2605 		lpl_init(lpl_leaf, lpl_leaf, lgrp_leaf);
2606 		klgrpset_add(cpupart->cp_lgrpset, lgrpid);
2607 		lpl_leaf_insert(lpl_leaf, cpupart);
2608 	} else {
2609 		/*
2610 		 * the lpl should already exist in the parent, so just update
2611 		 * the count of available CPUs
2612 		 */
2613 		lpl_cpu_adjcnt(LPL_INCREMENT, cp);
2614 	}
2615 
2616 	/* link cpu into list of cpus in lpl */
2617 
2618 	if (lpl_leaf->lpl_cpus) {
2619 		cp->cpu_next_lpl = lpl_leaf->lpl_cpus;
2620 		cp->cpu_prev_lpl = lpl_leaf->lpl_cpus->cpu_prev_lpl;
2621 		lpl_leaf->lpl_cpus->cpu_prev_lpl->cpu_next_lpl = cp;
2622 		lpl_leaf->lpl_cpus->cpu_prev_lpl = cp;
2623 	} else {
2624 		/*
2625 		 * We increment ncpu immediately after we create a new leaf
2626 		 * lpl, so assert that ncpu == 1 for the case where we don't
2627 		 * have any cpu pointers yet.
2628 		 */
2629 		ASSERT(lpl_leaf->lpl_ncpu == 1);
2630 		lpl_leaf->lpl_cpus = cp->cpu_next_lpl = cp->cpu_prev_lpl = cp;
2631 	}
2632 
2633 }
2634 
2635 
2636 /*
2637  * remove a cpu from a partition in terms of lgrp load avg bookeeping
2638  *
2639  * The lpl (cpu partition load average information) is now arranged in a
2640  * hierarchical fashion whereby resources that are closest, ie. most local, to
2641  * the cpu in question are considered to be leaves in a tree of resources.
2642  * There are two removal cases in question:
2643  *
2644  * 1. Removal of the resource in the leaf leaves other resources remaining in
2645  * that leaf.  (Another cpu still exists at this level of locality).  In this
2646  * case, the count of available cpus is decremented in all assocated lpls by
2647  * calling lpl_adj_cpucnt(), and the pointer to the removed cpu is pruned
2648  * from the per-cpu lpl list.
2649  *
2650  * 2. Removal of the resource results in the lpl containing no resources.  (It's
2651  * empty)  In this case, all of what has occurred for the first step must take
2652  * place; however, additionally we must remove the lpl structure itself, prune
2653  * out any stranded lpls that do not directly name a leaf resource, and mark the
2654  * cpu partition in question as no longer containing resources from the lgrp of
2655  * the lpl that has been delted.  Cpu-partition changes are handled by this
2656  * method, but the lpl_leaf_remove function deals with the details of pruning
2657  * out the empty lpl and any of its orphaned direct ancestors.
2658  */
2659 void
2660 lgrp_part_del_cpu(cpu_t *cp)
2661 {
2662 	lpl_t		*lpl;
2663 	lpl_t		*leaf_lpl;
2664 	lgrp_t		*lgrp_leaf;
2665 
2666 	/* called sometimes w/ cpus paused - grab no locks */
2667 
2668 	ASSERT(MUTEX_HELD(&cpu_lock) || !lgrp_initialized);
2669 
2670 	lpl = leaf_lpl = cp->cpu_lpl;
2671 	lgrp_leaf = leaf_lpl->lpl_lgrp;
2672 
2673 	/* don't delete a leaf that isn't there */
2674 	ASSERT(LGRP_EXISTS(lgrp_leaf));
2675 
2676 	/* no double-deletes */
2677 	ASSERT(lpl->lpl_ncpu);
2678 	if (--lpl->lpl_ncpu == 0) {
2679 		/*
2680 		 * This was the last cpu in this lgroup for this partition,
2681 		 * clear its bit in the partition's lgroup bitmask
2682 		 */
2683 		klgrpset_del(cp->cpu_part->cp_lgrpset, lpl->lpl_lgrpid);
2684 
2685 		/* eliminate remaning lpl link pointers in cpu, lpl */
2686 		lpl->lpl_cpus = cp->cpu_next_lpl = cp->cpu_prev_lpl = NULL;
2687 
2688 		lpl_leaf_remove(leaf_lpl, cp->cpu_part);
2689 	} else {
2690 
2691 		/* unlink cpu from lists of cpus in lpl */
2692 		cp->cpu_prev_lpl->cpu_next_lpl = cp->cpu_next_lpl;
2693 		cp->cpu_next_lpl->cpu_prev_lpl = cp->cpu_prev_lpl;
2694 		if (lpl->lpl_cpus == cp) {
2695 			lpl->lpl_cpus = cp->cpu_next_lpl;
2696 		}
2697 
2698 		/*
2699 		 * Update the cpu count in the lpls associated with parent
2700 		 * lgroups.
2701 		 */
2702 		lpl_cpu_adjcnt(LPL_DECREMENT, cp);
2703 
2704 	}
2705 	/* clear cpu's lpl ptr when we're all done */
2706 	cp->cpu_lpl = NULL;
2707 }
2708 
2709 /*
2710  * Recompute load average for the specified partition/lgrp fragment.
2711  *
2712  * We rely on the fact that this routine is called from the clock thread
2713  * at a point before the clock thread can block (i.e. before its first
2714  * lock request).  Since the clock thread can not be preempted (since it
2715  * runs at highest priority), we know that cpu partitions can not change
2716  * (since doing so would require either the repartition requester or the
2717  * cpu_pause thread to run on this cpu), so we can update the cpu's load
2718  * without grabbing cpu_lock.
2719  */
2720 void
2721 lgrp_loadavg(lpl_t *lpl, uint_t nrcpus, int ageflag)
2722 {
2723 	uint_t		ncpu;
2724 	int64_t		old, new, f;
2725 
2726 	/*
2727 	 * 1 - exp(-1/(20 * ncpu)) << 13 = 400 for 1 cpu...
2728 	 */
2729 	static short expval[] = {
2730 	    0, 3196, 1618, 1083,
2731 	    814, 652, 543, 466,
2732 	    408, 363, 326, 297,
2733 	    272, 251, 233, 218,
2734 	    204, 192, 181, 172,
2735 	    163, 155, 148, 142,
2736 	    136, 130, 125, 121,
2737 	    116, 112, 109, 105
2738 	};
2739 
2740 	/* ASSERT (called from clock level) */
2741 
2742 	if ((lpl == NULL) ||	/* we're booting - this is easiest for now */
2743 	    ((ncpu = lpl->lpl_ncpu) == 0)) {
2744 		return;
2745 	}
2746 
2747 	for (;;) {
2748 
2749 		if (ncpu >= sizeof (expval) / sizeof (expval[0]))
2750 			f = expval[1]/ncpu; /* good approx. for large ncpu */
2751 		else
2752 			f = expval[ncpu];
2753 
2754 		/*
2755 		 * Modify the load average atomically to avoid losing
2756 		 * anticipatory load updates (see lgrp_move_thread()).
2757 		 */
2758 		if (ageflag) {
2759 			/*
2760 			 * We're supposed to both update and age the load.
2761 			 * This happens 10 times/sec. per cpu.  We do a
2762 			 * little hoop-jumping to avoid integer overflow.
2763 			 */
2764 			int64_t		q, r;
2765 
2766 			do {
2767 				old = new = lpl->lpl_loadavg;
2768 				q = (old  >> 16) << 7;
2769 				r = (old  & 0xffff) << 7;
2770 				new += ((long long)(nrcpus - q) * f -
2771 				    ((r * f) >> 16)) >> 7;
2772 
2773 				/*
2774 				 * Check for overflow
2775 				 */
2776 				if (new > LGRP_LOADAVG_MAX)
2777 					new = LGRP_LOADAVG_MAX;
2778 				else if (new < 0)
2779 					new = 0;
2780 			} while (atomic_cas_32((lgrp_load_t *)&lpl->lpl_loadavg,
2781 			    old, new) != old);
2782 		} else {
2783 			/*
2784 			 * We're supposed to update the load, but not age it.
2785 			 * This option is used to update the load (which either
2786 			 * has already been aged in this 1/10 sec. interval or
2787 			 * soon will be) to account for a remotely executing
2788 			 * thread.
2789 			 */
2790 			do {
2791 				old = new = lpl->lpl_loadavg;
2792 				new += f;
2793 				/*
2794 				 * Check for overflow
2795 				 * Underflow not possible here
2796 				 */
2797 				if (new < old)
2798 					new = LGRP_LOADAVG_MAX;
2799 			} while (atomic_cas_32((lgrp_load_t *)&lpl->lpl_loadavg,
2800 			    old, new) != old);
2801 		}
2802 
2803 		/*
2804 		 * Do the same for this lpl's parent
2805 		 */
2806 		if ((lpl = lpl->lpl_parent) == NULL)
2807 			break;
2808 		ncpu = lpl->lpl_ncpu;
2809 	}
2810 }
2811 
2812 /*
2813  * Initialize lpl topology in the target based on topology currently present in
2814  * lpl_bootstrap.
2815  *
2816  * lpl_topo_bootstrap is only called once from cpupart_initialize_default() to
2817  * initialize cp_default list of lpls. Up to this point all topology operations
2818  * were performed using lpl_bootstrap. Now cp_default has its own list of lpls
2819  * and all subsequent lpl operations should use it instead of lpl_bootstrap. The
2820  * `target' points to the list of lpls in cp_default and `size' is the size of
2821  * this list.
2822  *
2823  * This function walks the lpl topology in lpl_bootstrap and does for things:
2824  *
2825  * 1) Copies all fields from lpl_bootstrap to the target.
2826  *
2827  * 2) Sets CPU0 lpl pointer to the correct element of the target list.
2828  *
2829  * 3) Updates lpl_parent pointers to point to the lpls in the target list
2830  *    instead of lpl_bootstrap.
2831  *
2832  * 4) Updates pointers in the resource list of the target to point to the lpls
2833  *    in the target list instead of lpl_bootstrap.
2834  *
2835  * After lpl_topo_bootstrap() completes, target contains the same information
2836  * that would be present there if it were used during boot instead of
2837  * lpl_bootstrap. There is no need in information in lpl_bootstrap after this
2838  * and it is bzeroed.
2839  */
2840 void
2841 lpl_topo_bootstrap(lpl_t *target, int size)
2842 {
2843 	lpl_t	*lpl = lpl_bootstrap;
2844 	lpl_t	*target_lpl = target;
2845 	lpl_t	**rset;
2846 	int	*id2rset;
2847 	int	sz;
2848 	int	howmany;
2849 	int	id;
2850 	int	i;
2851 
2852 	/*
2853 	 * The only target that should be passed here is cp_default lpl list.
2854 	 */
2855 	ASSERT(target == cp_default.cp_lgrploads);
2856 	ASSERT(size == cp_default.cp_nlgrploads);
2857 	ASSERT(!lgrp_topo_initialized);
2858 	ASSERT(ncpus == 1);
2859 
2860 	howmany = MIN(LPL_BOOTSTRAP_SIZE, size);
2861 	for (i = 0; i < howmany; i++, lpl++, target_lpl++) {
2862 		/*
2863 		 * Copy all fields from lpl, except for the rset,
2864 		 * lgrp id <=> rset mapping storage,
2865 		 * and amount of storage
2866 		 */
2867 		rset = target_lpl->lpl_rset;
2868 		id2rset = target_lpl->lpl_id2rset;
2869 		sz = target_lpl->lpl_rset_sz;
2870 
2871 		*target_lpl = *lpl;
2872 
2873 		target_lpl->lpl_rset_sz = sz;
2874 		target_lpl->lpl_rset = rset;
2875 		target_lpl->lpl_id2rset = id2rset;
2876 
2877 		/*
2878 		 * Substitute CPU0 lpl pointer with one relative to target.
2879 		 */
2880 		if (lpl->lpl_cpus == CPU) {
2881 			ASSERT(CPU->cpu_lpl == lpl);
2882 			CPU->cpu_lpl = target_lpl;
2883 		}
2884 
2885 		/*
2886 		 * Substitute parent information with parent relative to target.
2887 		 */
2888 		if (lpl->lpl_parent != NULL)
2889 			target_lpl->lpl_parent = (lpl_t *)
2890 			    (((uintptr_t)lpl->lpl_parent -
2891 			    (uintptr_t)lpl_bootstrap) +
2892 			    (uintptr_t)target);
2893 
2894 		/*
2895 		 * Walk over resource set substituting pointers relative to
2896 		 * lpl_bootstrap's rset to pointers relative to target's
2897 		 */
2898 		ASSERT(lpl->lpl_nrset <= 1);
2899 
2900 		for (id = 0; id < lpl->lpl_nrset; id++) {
2901 			if (lpl->lpl_rset[id] != NULL) {
2902 				target_lpl->lpl_rset[id] = (lpl_t *)
2903 				    (((uintptr_t)lpl->lpl_rset[id] -
2904 				    (uintptr_t)lpl_bootstrap) +
2905 				    (uintptr_t)target);
2906 			}
2907 			target_lpl->lpl_id2rset[id] =
2908 			    lpl->lpl_id2rset[id];
2909 		}
2910 	}
2911 
2912 	/*
2913 	 * Clean up the bootstrap lpls since we have switched over to the
2914 	 * actual lpl array in the default cpu partition.
2915 	 *
2916 	 * We still need to keep one empty lpl around for newly starting
2917 	 * slave CPUs to reference should they need to make it through the
2918 	 * dispatcher prior to their lgrp/lpl initialization.
2919 	 *
2920 	 * The lpl related dispatcher code has been designed to work properly
2921 	 * (and without extra checks) for this special case of a zero'ed
2922 	 * bootstrap lpl. Such an lpl appears to the dispatcher as an lpl
2923 	 * with lgrpid 0 and an empty resource set. Iteration over the rset
2924 	 * array by the dispatcher is also NULL terminated for this reason.
2925 	 *
2926 	 * This provides the desired behaviour for an uninitialized CPU.
2927 	 * It shouldn't see any other CPU to either dispatch to or steal
2928 	 * from until it is properly initialized.
2929 	 */
2930 	bzero(lpl_bootstrap_list, sizeof (lpl_bootstrap_list));
2931 	bzero(lpl_bootstrap_id2rset, sizeof (lpl_bootstrap_id2rset));
2932 	bzero(lpl_bootstrap_rset, sizeof (lpl_bootstrap_rset));
2933 
2934 	lpl_bootstrap_list[0].lpl_rset = lpl_bootstrap_rset;
2935 	lpl_bootstrap_list[0].lpl_id2rset = lpl_bootstrap_id2rset;
2936 }
2937 
2938 /*
2939  * If the lowest load among the lgroups a process' threads are currently
2940  * spread across is greater than lgrp_expand_proc_thresh, we'll consider
2941  * expanding the process to a new lgroup.
2942  */
2943 #define	LGRP_EXPAND_PROC_THRESH_DEFAULT 62250
2944 lgrp_load_t	lgrp_expand_proc_thresh = LGRP_EXPAND_PROC_THRESH_DEFAULT;
2945 
2946 #define	LGRP_EXPAND_PROC_THRESH(ncpu) \
2947 	((lgrp_expand_proc_thresh) / (ncpu))
2948 
2949 /*
2950  * A process will be expanded to a new lgroup only if the difference between
2951  * the lowest load on the lgroups the process' thread's are currently spread
2952  * across and the lowest load on the other lgroups in the process' partition
2953  * is greater than lgrp_expand_proc_diff.
2954  */
2955 #define	LGRP_EXPAND_PROC_DIFF_DEFAULT 60000
2956 lgrp_load_t	lgrp_expand_proc_diff = LGRP_EXPAND_PROC_DIFF_DEFAULT;
2957 
2958 #define	LGRP_EXPAND_PROC_DIFF(ncpu) \
2959 	((lgrp_expand_proc_diff) / (ncpu))
2960 
2961 /*
2962  * The loadavg tolerance accounts for "noise" inherent in the load, which may
2963  * be present due to impreciseness of the load average decay algorithm.
2964  *
2965  * The default tolerance is lgrp_loadavg_max_effect. Note that the tunable
2966  * tolerance is scaled by the number of cpus in the lgroup just like
2967  * lgrp_loadavg_max_effect. For example, if lgrp_loadavg_tolerance = 0x10000,
2968  * and ncpu = 4, then lgrp_choose will consider differences in lgroup loads
2969  * of: 0x10000 / 4 => 0x4000 or greater to be significant.
2970  */
2971 uint32_t	lgrp_loadavg_tolerance = LGRP_LOADAVG_THREAD_MAX;
2972 #define	LGRP_LOADAVG_TOLERANCE(ncpu)	\
2973 	((lgrp_loadavg_tolerance) / ncpu)
2974 
2975 /*
2976  * lgrp_choose() will choose root lgroup as home when lowest lgroup load
2977  * average is above this threshold
2978  */
2979 uint32_t	lgrp_load_thresh = UINT32_MAX;
2980 
2981 /*
2982  * lgrp_choose() will try to skip any lgroups with less memory
2983  * than this free when choosing a home lgroup
2984  */
2985 pgcnt_t	lgrp_mem_free_thresh = 0;
2986 
2987 /*
2988  * When choosing between similarly loaded lgroups, lgrp_choose() will pick
2989  * one based on one of the following policies:
2990  * - Random selection
2991  * - Pseudo round robin placement
2992  * - Longest time since a thread was last placed
2993  */
2994 #define	LGRP_CHOOSE_RANDOM	1
2995 #define	LGRP_CHOOSE_RR		2
2996 #define	LGRP_CHOOSE_TIME	3
2997 
2998 int	lgrp_choose_policy = LGRP_CHOOSE_TIME;
2999 
3000 /*
3001  * Choose a suitable leaf lgroup for a kthread.  The kthread is assumed not to
3002  * be bound to a CPU or processor set.
3003  *
3004  * Arguments:
3005  *	t		The thread
3006  *	cpupart		The partition the thread belongs to.
3007  *
3008  * NOTE: Should at least be called with the cpu_lock held, kernel preemption
3009  *	 disabled, or thread_lock held (at splhigh) to protect against the CPU
3010  *	 partitions changing out from under us and assumes that given thread is
3011  *	 protected.  Also, called sometimes w/ cpus paused or kernel preemption
3012  *	 disabled, so don't grab any locks because we should never block under
3013  *	 those conditions.
3014  */
3015 lpl_t *
3016 lgrp_choose(kthread_t *t, cpupart_t *cpupart)
3017 {
3018 	lgrp_load_t	bestload, bestrload;
3019 	int		lgrpid_offset, lgrp_count;
3020 	lgrp_id_t	lgrpid, lgrpid_start;
3021 	lpl_t		*lpl, *bestlpl, *bestrlpl;
3022 	klgrpset_t	lgrpset;
3023 	proc_t		*p;
3024 
3025 	ASSERT(t != NULL);
3026 	ASSERT(MUTEX_HELD(&cpu_lock) || curthread->t_preempt > 0 ||
3027 	    THREAD_LOCK_HELD(t));
3028 	ASSERT(cpupart != NULL);
3029 
3030 	p = t->t_procp;
3031 
3032 	/* A process should always be in an active partition */
3033 	ASSERT(!klgrpset_isempty(cpupart->cp_lgrpset));
3034 
3035 	bestlpl = bestrlpl = NULL;
3036 	bestload = bestrload = LGRP_LOADAVG_MAX;
3037 	lgrpset = cpupart->cp_lgrpset;
3038 
3039 	switch (lgrp_choose_policy) {
3040 	case LGRP_CHOOSE_RR:
3041 		lgrpid = cpupart->cp_lgrp_hint;
3042 		do {
3043 			if (++lgrpid > lgrp_alloc_max)
3044 				lgrpid = 0;
3045 		} while (!klgrpset_ismember(lgrpset, lgrpid));
3046 
3047 		break;
3048 	default:
3049 	case LGRP_CHOOSE_TIME:
3050 	case LGRP_CHOOSE_RANDOM:
3051 		klgrpset_nlgrps(lgrpset, lgrp_count);
3052 		lgrpid_offset =
3053 		    (((ushort_t)(gethrtime() >> 4)) % lgrp_count) + 1;
3054 		for (lgrpid = 0; ; lgrpid++) {
3055 			if (klgrpset_ismember(lgrpset, lgrpid)) {
3056 				if (--lgrpid_offset == 0)
3057 					break;
3058 			}
3059 		}
3060 		break;
3061 	}
3062 
3063 	lgrpid_start = lgrpid;
3064 
3065 	DTRACE_PROBE2(lgrp_choose_start, lgrp_id_t, lgrpid_start,
3066 	    lgrp_id_t, cpupart->cp_lgrp_hint);
3067 
3068 	/*
3069 	 * Use lgroup affinities (if any) to choose best lgroup
3070 	 *
3071 	 * NOTE: Assumes that thread is protected from going away and its
3072 	 *	 lgroup affinities won't change (ie. p_lock, or
3073 	 *	 thread_lock() being held and/or CPUs paused)
3074 	 */
3075 	if (t->t_lgrp_affinity) {
3076 		lpl = lgrp_affinity_best(t, cpupart, lgrpid_start, B_FALSE);
3077 		if (lpl != NULL)
3078 			return (lpl);
3079 	}
3080 
3081 	ASSERT(klgrpset_ismember(lgrpset, lgrpid_start));
3082 
3083 	do {
3084 		pgcnt_t	npgs;
3085 
3086 		/*
3087 		 * Skip any lgroups outside of thread's pset
3088 		 */
3089 		if (!klgrpset_ismember(lgrpset, lgrpid)) {
3090 			if (++lgrpid > lgrp_alloc_max)
3091 				lgrpid = 0;	/* wrap the search */
3092 			continue;
3093 		}
3094 
3095 		/*
3096 		 * Skip any non-leaf lgroups
3097 		 */
3098 		if (lgrp_table[lgrpid]->lgrp_childcnt != 0)
3099 			continue;
3100 
3101 		/*
3102 		 * Skip any lgroups without enough free memory
3103 		 * (when threshold set to nonzero positive value)
3104 		 */
3105 		if (lgrp_mem_free_thresh > 0) {
3106 			npgs = lgrp_mem_size(lgrpid, LGRP_MEM_SIZE_FREE);
3107 			if (npgs < lgrp_mem_free_thresh) {
3108 				if (++lgrpid > lgrp_alloc_max)
3109 					lgrpid = 0;	/* wrap the search */
3110 				continue;
3111 			}
3112 		}
3113 
3114 		lpl = &cpupart->cp_lgrploads[lgrpid];
3115 		if (klgrpset_isempty(p->p_lgrpset) ||
3116 		    klgrpset_ismember(p->p_lgrpset, lgrpid)) {
3117 			/*
3118 			 * Either this is a new process or the process already
3119 			 * has threads on this lgrp, so this is a preferred
3120 			 * lgroup for the thread.
3121 			 */
3122 			if (bestlpl == NULL ||
3123 			    lpl_pick(lpl, bestlpl)) {
3124 				bestload = lpl->lpl_loadavg;
3125 				bestlpl = lpl;
3126 			}
3127 		} else {
3128 			/*
3129 			 * The process doesn't have any threads on this lgrp,
3130 			 * but we're willing to consider this lgrp if the load
3131 			 * difference is big enough to justify splitting up
3132 			 * the process' threads.
3133 			 */
3134 			if (bestrlpl == NULL ||
3135 			    lpl_pick(lpl, bestrlpl)) {
3136 				bestrload = lpl->lpl_loadavg;
3137 				bestrlpl = lpl;
3138 			}
3139 		}
3140 		if (++lgrpid > lgrp_alloc_max)
3141 			lgrpid = 0;	/* wrap the search */
3142 	} while (lgrpid != lgrpid_start);
3143 
3144 	/*
3145 	 * Return root lgroup if threshold isn't set to maximum value and
3146 	 * lowest lgroup load average more than a certain threshold
3147 	 */
3148 	if (lgrp_load_thresh != UINT32_MAX &&
3149 	    bestload >= lgrp_load_thresh && bestrload >= lgrp_load_thresh)
3150 		return (&cpupart->cp_lgrploads[lgrp_root->lgrp_id]);
3151 
3152 	/*
3153 	 * If all the lgroups over which the thread's process is spread are
3154 	 * heavily loaded, or otherwise undesirable, we'll consider placing
3155 	 * the thread on one of the other leaf lgroups in the thread's
3156 	 * partition.
3157 	 */
3158 	if ((bestlpl == NULL) ||
3159 	    ((bestload > LGRP_EXPAND_PROC_THRESH(bestlpl->lpl_ncpu)) &&
3160 	    (bestrload < bestload) &&	/* paranoid about wraparound */
3161 	    (bestrload + LGRP_EXPAND_PROC_DIFF(bestrlpl->lpl_ncpu) <
3162 	    bestload))) {
3163 		bestlpl = bestrlpl;
3164 	}
3165 
3166 	if (bestlpl == NULL) {
3167 		/*
3168 		 * No lgroup looked particularly good, but we still
3169 		 * have to pick something. Go with the randomly selected
3170 		 * legal lgroup we started with above.
3171 		 */
3172 		bestlpl = &cpupart->cp_lgrploads[lgrpid_start];
3173 	}
3174 
3175 	cpupart->cp_lgrp_hint = bestlpl->lpl_lgrpid;
3176 	bestlpl->lpl_homed_time = gethrtime_unscaled();
3177 
3178 	ASSERT(bestlpl->lpl_ncpu > 0);
3179 	return (bestlpl);
3180 }
3181 
3182 /*
3183  * Decide if lpl1 is a better candidate than lpl2 for lgrp homing.
3184  * Returns non-zero if lpl1 is a better candidate, and 0 otherwise.
3185  */
3186 static int
3187 lpl_pick(lpl_t *lpl1, lpl_t *lpl2)
3188 {
3189 	lgrp_load_t	l1, l2;
3190 	lgrp_load_t	tolerance = LGRP_LOADAVG_TOLERANCE(lpl1->lpl_ncpu);
3191 
3192 	l1 = lpl1->lpl_loadavg;
3193 	l2 = lpl2->lpl_loadavg;
3194 
3195 	if ((l1 + tolerance < l2) && (l1 < l2)) {
3196 		/* lpl1 is significantly less loaded than lpl2 */
3197 		return (1);
3198 	}
3199 
3200 	if (lgrp_choose_policy == LGRP_CHOOSE_TIME &&
3201 	    l1 + tolerance >= l2 && l1 < l2 &&
3202 	    lpl1->lpl_homed_time < lpl2->lpl_homed_time) {
3203 		/*
3204 		 * lpl1's load is within the tolerance of lpl2. We're
3205 		 * willing to consider it be to better however if
3206 		 * it has been longer since we last homed a thread there
3207 		 */
3208 		return (1);
3209 	}
3210 
3211 	return (0);
3212 }
3213 
3214 /*
3215  * lgrp_trthr_moves counts the number of times main thread (t_tid = 1) of a
3216  * process that uses text replication changed home lgrp. This info is used by
3217  * segvn asyncronous thread to detect if it needs to recheck what lgrps
3218  * should be used for text replication.
3219  */
3220 static uint64_t lgrp_trthr_moves = 0;
3221 
3222 uint64_t
3223 lgrp_get_trthr_migrations(void)
3224 {
3225 	return (lgrp_trthr_moves);
3226 }
3227 
3228 void
3229 lgrp_update_trthr_migrations(uint64_t incr)
3230 {
3231 	atomic_add_64(&lgrp_trthr_moves, incr);
3232 }
3233 
3234 /*
3235  * An LWP is expected to be assigned to an lgroup for at least this long
3236  * for its anticipatory load to be justified.  NOTE that this value should
3237  * not be set extremely huge (say, larger than 100 years), to avoid problems
3238  * with overflow in the calculation that uses it.
3239  */
3240 #define	LGRP_MIN_NSEC	(NANOSEC / 10)		/* 1/10 of a second */
3241 hrtime_t lgrp_min_nsec = LGRP_MIN_NSEC;
3242 
3243 /*
3244  * Routine to change a thread's lgroup affiliation.  This routine updates
3245  * the thread's kthread_t struct and its process' proc_t struct to note the
3246  * thread's new lgroup affiliation, and its lgroup affinities.
3247  *
3248  * Note that this is the only routine that modifies a thread's t_lpl field,
3249  * and that adds in or removes anticipatory load.
3250  *
3251  * If the thread is exiting, newlpl is NULL.
3252  *
3253  * Locking:
3254  * The following lock must be held on entry:
3255  *	cpu_lock, kpreempt_disable(), or thread_lock -- to assure t's new lgrp
3256  *		doesn't get removed from t's partition
3257  *
3258  * This routine is not allowed to grab any locks, since it may be called
3259  * with cpus paused (such as from cpu_offline).
3260  */
3261 void
3262 lgrp_move_thread(kthread_t *t, lpl_t *newlpl, int do_lgrpset_delete)
3263 {
3264 	proc_t		*p;
3265 	lpl_t		*lpl, *oldlpl;
3266 	lgrp_id_t	oldid;
3267 	kthread_t	*tp;
3268 	uint_t		ncpu;
3269 	lgrp_load_t	old, new;
3270 
3271 	ASSERT(t);
3272 	ASSERT(MUTEX_HELD(&cpu_lock) || curthread->t_preempt > 0 ||
3273 	    THREAD_LOCK_HELD(t));
3274 
3275 	/*
3276 	 * If not changing lpls, just return
3277 	 */
3278 	if ((oldlpl = t->t_lpl) == newlpl)
3279 		return;
3280 
3281 	/*
3282 	 * Make sure the thread's lwp hasn't exited (if so, this thread is now
3283 	 * associated with process 0 rather than with its original process).
3284 	 */
3285 	if (t->t_proc_flag & TP_LWPEXIT) {
3286 		if (newlpl != NULL) {
3287 			t->t_lpl = newlpl;
3288 		}
3289 		return;
3290 	}
3291 
3292 	p = ttoproc(t);
3293 
3294 	/*
3295 	 * If the thread had a previous lgroup, update its process' p_lgrpset
3296 	 * to account for it being moved from its old lgroup.
3297 	 */
3298 	if ((oldlpl != NULL) &&	/* thread had a previous lgroup */
3299 	    (p->p_tlist != NULL)) {
3300 		oldid = oldlpl->lpl_lgrpid;
3301 
3302 		if (newlpl != NULL)
3303 			lgrp_stat_add(oldid, LGRP_NUM_MIGR, 1);
3304 
3305 		if ((do_lgrpset_delete) &&
3306 		    (klgrpset_ismember(p->p_lgrpset, oldid))) {
3307 			for (tp = p->p_tlist->t_forw; ; tp = tp->t_forw) {
3308 				/*
3309 				 * Check if a thread other than the thread
3310 				 * that's moving is assigned to the same
3311 				 * lgroup as the thread that's moving.  Note
3312 				 * that we have to compare lgroup IDs, rather
3313 				 * than simply comparing t_lpl's, since the
3314 				 * threads may belong to different partitions
3315 				 * but be assigned to the same lgroup.
3316 				 */
3317 				ASSERT(tp->t_lpl != NULL);
3318 
3319 				if ((tp != t) &&
3320 				    (tp->t_lpl->lpl_lgrpid == oldid)) {
3321 					/*
3322 					 * Another thread is assigned to the
3323 					 * same lgroup as the thread that's
3324 					 * moving, p_lgrpset doesn't change.
3325 					 */
3326 					break;
3327 				} else if (tp == p->p_tlist) {
3328 					/*
3329 					 * No other thread is assigned to the
3330 					 * same lgroup as the exiting thread,
3331 					 * clear the lgroup's bit in p_lgrpset.
3332 					 */
3333 					klgrpset_del(p->p_lgrpset, oldid);
3334 					break;
3335 				}
3336 			}
3337 		}
3338 
3339 		/*
3340 		 * If this thread was assigned to its old lgroup for such a
3341 		 * short amount of time that the anticipatory load that was
3342 		 * added on its behalf has aged very little, remove that
3343 		 * anticipatory load.
3344 		 */
3345 		if ((t->t_anttime + lgrp_min_nsec > gethrtime()) &&
3346 		    ((ncpu = oldlpl->lpl_ncpu) > 0)) {
3347 			lpl = oldlpl;
3348 			for (;;) {
3349 				do {
3350 					old = new = lpl->lpl_loadavg;
3351 					new -= LGRP_LOADAVG_MAX_EFFECT(ncpu);
3352 					if (new > old) {
3353 						/*
3354 						 * this can happen if the load
3355 						 * average was aged since we
3356 						 * added in the anticipatory
3357 						 * load
3358 						 */
3359 						new = 0;
3360 					}
3361 				} while (atomic_cas_32(
3362 				    (lgrp_load_t *)&lpl->lpl_loadavg, old,
3363 				    new) != old);
3364 
3365 				lpl = lpl->lpl_parent;
3366 				if (lpl == NULL)
3367 					break;
3368 
3369 				ncpu = lpl->lpl_ncpu;
3370 				ASSERT(ncpu > 0);
3371 			}
3372 		}
3373 	}
3374 	/*
3375 	 * If the thread has a new lgroup (i.e. it's not exiting), update its
3376 	 * t_lpl and its process' p_lgrpset, and apply an anticipatory load
3377 	 * to its new lgroup to account for its move to its new lgroup.
3378 	 */
3379 	if (newlpl != NULL) {
3380 		/*
3381 		 * This thread is moving to a new lgroup
3382 		 */
3383 		t->t_lpl = newlpl;
3384 		if (t->t_tid == 1 && p->p_t1_lgrpid != newlpl->lpl_lgrpid) {
3385 			p->p_t1_lgrpid = newlpl->lpl_lgrpid;
3386 			membar_producer();
3387 			if (p->p_tr_lgrpid != LGRP_NONE &&
3388 			    p->p_tr_lgrpid != p->p_t1_lgrpid) {
3389 				lgrp_update_trthr_migrations(1);
3390 			}
3391 		}
3392 
3393 		/*
3394 		 * Reflect move in load average of new lgroup
3395 		 * unless it is root lgroup
3396 		 */
3397 		if (lgrp_table[newlpl->lpl_lgrpid] == lgrp_root)
3398 			return;
3399 
3400 		if (!klgrpset_ismember(p->p_lgrpset, newlpl->lpl_lgrpid)) {
3401 			klgrpset_add(p->p_lgrpset, newlpl->lpl_lgrpid);
3402 		}
3403 
3404 		/*
3405 		 * It'll take some time for the load on the new lgroup
3406 		 * to reflect this thread's placement on it.  We'd
3407 		 * like not, however, to have all threads between now
3408 		 * and then also piling on to this lgroup.  To avoid
3409 		 * this pileup, we anticipate the load this thread
3410 		 * will generate on its new lgroup.  The goal is to
3411 		 * make the lgroup's load appear as though the thread
3412 		 * had been there all along.  We're very conservative
3413 		 * in calculating this anticipatory load, we assume
3414 		 * the worst case case (100% CPU-bound thread).  This
3415 		 * may be modified in the future to be more accurate.
3416 		 */
3417 		lpl = newlpl;
3418 		for (;;) {
3419 			ncpu = lpl->lpl_ncpu;
3420 			ASSERT(ncpu > 0);
3421 			do {
3422 				old = new = lpl->lpl_loadavg;
3423 				new += LGRP_LOADAVG_MAX_EFFECT(ncpu);
3424 				/*
3425 				 * Check for overflow
3426 				 * Underflow not possible here
3427 				 */
3428 				if (new < old)
3429 					new = UINT32_MAX;
3430 			} while (atomic_cas_32((lgrp_load_t *)&lpl->lpl_loadavg,
3431 			    old, new) != old);
3432 
3433 			lpl = lpl->lpl_parent;
3434 			if (lpl == NULL)
3435 				break;
3436 		}
3437 		t->t_anttime = gethrtime();
3438 	}
3439 }
3440 
3441 /*
3442  * Return lgroup memory allocation policy given advice from madvise(3C)
3443  */
3444 lgrp_mem_policy_t
3445 lgrp_madv_to_policy(uchar_t advice, size_t size, int type)
3446 {
3447 	switch (advice) {
3448 	case MADV_ACCESS_LWP:
3449 		return (LGRP_MEM_POLICY_NEXT);
3450 	case MADV_ACCESS_MANY:
3451 		return (LGRP_MEM_POLICY_RANDOM);
3452 	default:
3453 		return (lgrp_mem_policy_default(size, type));
3454 	}
3455 }
3456 
3457 /*
3458  * Figure out default policy
3459  */
3460 lgrp_mem_policy_t
3461 lgrp_mem_policy_default(size_t size, int type)
3462 {
3463 	cpupart_t		*cp;
3464 	lgrp_mem_policy_t	policy;
3465 	size_t			pset_mem_size;
3466 
3467 	/*
3468 	 * Randomly allocate memory across lgroups for shared memory
3469 	 * beyond a certain threshold
3470 	 */
3471 	if ((type != MAP_SHARED && size > lgrp_privm_random_thresh) ||
3472 	    (type == MAP_SHARED && size > lgrp_shm_random_thresh)) {
3473 		/*
3474 		 * Get total memory size of current thread's pset
3475 		 */
3476 		kpreempt_disable();
3477 		cp = curthread->t_cpupart;
3478 		klgrpset_totalsize(cp->cp_lgrpset, pset_mem_size);
3479 		kpreempt_enable();
3480 
3481 		/*
3482 		 * Choose policy to randomly allocate memory across
3483 		 * lgroups in pset if it will fit and is not default
3484 		 * partition.  Otherwise, allocate memory randomly
3485 		 * across machine.
3486 		 */
3487 		if (lgrp_mem_pset_aware && size < pset_mem_size)
3488 			policy = LGRP_MEM_POLICY_RANDOM_PSET;
3489 		else
3490 			policy = LGRP_MEM_POLICY_RANDOM;
3491 	} else
3492 		/*
3493 		 * Apply default policy for private memory and
3494 		 * shared memory under the respective random
3495 		 * threshold.
3496 		 */
3497 		policy = lgrp_mem_default_policy;
3498 
3499 	return (policy);
3500 }
3501 
3502 /*
3503  * Get memory allocation policy for this segment
3504  */
3505 lgrp_mem_policy_info_t *
3506 lgrp_mem_policy_get(struct seg *seg, caddr_t vaddr)
3507 {
3508 	lgrp_mem_policy_info_t	*policy_info;
3509 	extern struct seg_ops	segspt_ops;
3510 	extern struct seg_ops	segspt_shmops;
3511 
3512 	/*
3513 	 * This is for binary compatibility to protect against third party
3514 	 * segment drivers which haven't recompiled to allow for
3515 	 * SEGOP_GETPOLICY()
3516 	 */
3517 	if (seg->s_ops != &segvn_ops && seg->s_ops != &segspt_ops &&
3518 	    seg->s_ops != &segspt_shmops)
3519 		return (NULL);
3520 
3521 	policy_info = NULL;
3522 	if (seg->s_ops->getpolicy != NULL)
3523 		policy_info = SEGOP_GETPOLICY(seg, vaddr);
3524 
3525 	return (policy_info);
3526 }
3527 
3528 /*
3529  * Set policy for allocating private memory given desired policy, policy info,
3530  * size in bytes of memory that policy is being applied.
3531  * Return 0 if policy wasn't set already and 1 if policy was set already
3532  */
3533 int
3534 lgrp_privm_policy_set(lgrp_mem_policy_t policy,
3535     lgrp_mem_policy_info_t *policy_info, size_t size)
3536 {
3537 
3538 	ASSERT(policy_info != NULL);
3539 
3540 	if (policy == LGRP_MEM_POLICY_DEFAULT)
3541 		policy = lgrp_mem_policy_default(size, MAP_PRIVATE);
3542 
3543 	/*
3544 	 * Policy set already?
3545 	 */
3546 	if (policy == policy_info->mem_policy)
3547 		return (1);
3548 
3549 	/*
3550 	 * Set policy
3551 	 */
3552 	policy_info->mem_policy = policy;
3553 	policy_info->mem_lgrpid = LGRP_NONE;
3554 
3555 	return (0);
3556 }
3557 
3558 
3559 /*
3560  * Get shared memory allocation policy with given tree and offset
3561  */
3562 lgrp_mem_policy_info_t *
3563 lgrp_shm_policy_get(struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
3564     u_offset_t vn_off)
3565 {
3566 	u_offset_t		off;
3567 	lgrp_mem_policy_info_t	*policy_info;
3568 	lgrp_shm_policy_seg_t	*policy_seg;
3569 	lgrp_shm_locality_t	*shm_locality;
3570 	avl_tree_t		*tree;
3571 	avl_index_t		where;
3572 
3573 	/*
3574 	 * Get policy segment tree from anon_map or vnode and use specified
3575 	 * anon index or vnode offset as offset
3576 	 *
3577 	 * Assume that no lock needs to be held on anon_map or vnode, since
3578 	 * they should be protected by their reference count which must be
3579 	 * nonzero for an existing segment
3580 	 */
3581 	if (amp) {
3582 		ASSERT(amp->refcnt != 0);
3583 		shm_locality = amp->locality;
3584 		if (shm_locality == NULL)
3585 			return (NULL);
3586 		tree = shm_locality->loc_tree;
3587 		off = ptob(anon_index);
3588 	} else if (vp) {
3589 		shm_locality = vp->v_locality;
3590 		if (shm_locality == NULL)
3591 			return (NULL);
3592 		ASSERT(shm_locality->loc_count != 0);
3593 		tree = shm_locality->loc_tree;
3594 		off = vn_off;
3595 	}
3596 
3597 	if (tree == NULL)
3598 		return (NULL);
3599 
3600 	/*
3601 	 * Lookup policy segment for offset into shared object and return
3602 	 * policy info
3603 	 */
3604 	rw_enter(&shm_locality->loc_lock, RW_READER);
3605 	policy_info = NULL;
3606 	policy_seg = avl_find(tree, &off, &where);
3607 	if (policy_seg)
3608 		policy_info = &policy_seg->shm_policy;
3609 	rw_exit(&shm_locality->loc_lock);
3610 
3611 	return (policy_info);
3612 }
3613 
3614 /*
3615  * Default memory allocation policy for kernel segmap pages
3616  */
3617 lgrp_mem_policy_t	lgrp_segmap_default_policy = LGRP_MEM_POLICY_RANDOM;
3618 
3619 /*
3620  * Return lgroup to use for allocating memory
3621  * given the segment and address
3622  *
3623  * There isn't any mutual exclusion that exists between calls
3624  * to this routine and DR, so this routine and whomever calls it
3625  * should be mindful of the possibility that the lgrp returned
3626  * may be deleted. If this happens, dereferences of the lgrp
3627  * pointer will still be safe, but the resources in the lgrp will
3628  * be gone, and LGRP_EXISTS() will no longer be true.
3629  */
3630 lgrp_t *
3631 lgrp_mem_choose(struct seg *seg, caddr_t vaddr, size_t pgsz)
3632 {
3633 	int			i;
3634 	lgrp_t			*lgrp;
3635 	klgrpset_t		lgrpset;
3636 	int			lgrps_spanned;
3637 	unsigned long		off;
3638 	lgrp_mem_policy_t	policy;
3639 	lgrp_mem_policy_info_t	*policy_info;
3640 	ushort_t		random;
3641 	int			stat = 0;
3642 	extern struct seg	*segkmap;
3643 
3644 	/*
3645 	 * Just return null if the lgrp framework hasn't finished
3646 	 * initializing or if this is a UMA machine.
3647 	 */
3648 	if (nlgrps == 1 || !lgrp_initialized)
3649 		return (lgrp_root);
3650 
3651 	/*
3652 	 * Get memory allocation policy for this segment
3653 	 */
3654 	policy = lgrp_mem_default_policy;
3655 	if (seg != NULL) {
3656 		if (seg->s_as == &kas) {
3657 			if (seg == segkmap)
3658 				policy = lgrp_segmap_default_policy;
3659 			if (policy == LGRP_MEM_POLICY_RANDOM_PROC ||
3660 			    policy == LGRP_MEM_POLICY_RANDOM_PSET)
3661 				policy = LGRP_MEM_POLICY_RANDOM;
3662 		} else {
3663 			policy_info = lgrp_mem_policy_get(seg, vaddr);
3664 			if (policy_info != NULL) {
3665 				policy = policy_info->mem_policy;
3666 				if (policy == LGRP_MEM_POLICY_NEXT_SEG) {
3667 					lgrp_id_t id = policy_info->mem_lgrpid;
3668 					ASSERT(id != LGRP_NONE);
3669 					ASSERT(id < NLGRPS_MAX);
3670 					lgrp = lgrp_table[id];
3671 					if (!LGRP_EXISTS(lgrp)) {
3672 						policy = LGRP_MEM_POLICY_NEXT;
3673 					} else {
3674 						lgrp_stat_add(id,
3675 						    LGRP_NUM_NEXT_SEG, 1);
3676 						return (lgrp);
3677 					}
3678 				}
3679 			}
3680 		}
3681 	}
3682 	lgrpset = 0;
3683 
3684 	/*
3685 	 * Initialize lgroup to home by default
3686 	 */
3687 	lgrp = lgrp_home_lgrp();
3688 
3689 	/*
3690 	 * When homing threads on root lgrp, override default memory
3691 	 * allocation policies with root lgroup memory allocation policy
3692 	 */
3693 	if (lgrp == lgrp_root)
3694 		policy = lgrp_mem_policy_root;
3695 
3696 	/*
3697 	 * Implement policy
3698 	 */
3699 	switch (policy) {
3700 	case LGRP_MEM_POLICY_NEXT_CPU:
3701 
3702 		/*
3703 		 * Return lgroup of current CPU which faulted on memory
3704 		 * If the CPU isn't currently in an lgrp, then opt to
3705 		 * allocate from the root.
3706 		 *
3707 		 * Kernel preemption needs to be disabled here to prevent
3708 		 * the current CPU from going away before lgrp is found.
3709 		 */
3710 		if (LGRP_CPU_HAS_NO_LGRP(CPU)) {
3711 			lgrp = lgrp_root;
3712 		} else {
3713 			kpreempt_disable();
3714 			lgrp = lgrp_cpu_to_lgrp(CPU);
3715 			kpreempt_enable();
3716 		}
3717 		break;
3718 
3719 	case LGRP_MEM_POLICY_NEXT:
3720 	case LGRP_MEM_POLICY_DEFAULT:
3721 	default:
3722 
3723 		/*
3724 		 * Just return current thread's home lgroup
3725 		 * for default policy (next touch)
3726 		 * If the thread is homed to the root,
3727 		 * then the default policy is random across lgroups.
3728 		 * Fallthrough to the random case.
3729 		 */
3730 		if (lgrp != lgrp_root) {
3731 			if (policy == LGRP_MEM_POLICY_NEXT)
3732 				lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_NEXT, 1);
3733 			else
3734 				lgrp_stat_add(lgrp->lgrp_id,
3735 				    LGRP_NUM_DEFAULT, 1);
3736 			break;
3737 		}
3738 		/* FALLTHROUGH */
3739 	case LGRP_MEM_POLICY_RANDOM:
3740 
3741 		/*
3742 		 * Return a random leaf lgroup with memory
3743 		 */
3744 		lgrpset = lgrp_root->lgrp_set[LGRP_RSRC_MEM];
3745 		/*
3746 		 * Count how many lgroups are spanned
3747 		 */
3748 		klgrpset_nlgrps(lgrpset, lgrps_spanned);
3749 
3750 		/*
3751 		 * There may be no memnodes in the root lgroup during DR copy
3752 		 * rename on a system with only two boards (memnodes)
3753 		 * configured. In this case just return the root lgrp.
3754 		 */
3755 		if (lgrps_spanned == 0) {
3756 			lgrp = lgrp_root;
3757 			break;
3758 		}
3759 
3760 		/*
3761 		 * Pick a random offset within lgroups spanned
3762 		 * and return lgroup at that offset
3763 		 */
3764 		random = (ushort_t)gethrtime() >> 4;
3765 		off = random % lgrps_spanned;
3766 		ASSERT(off <= lgrp_alloc_max);
3767 
3768 		for (i = 0; i <= lgrp_alloc_max; i++) {
3769 			if (!klgrpset_ismember(lgrpset, i))
3770 				continue;
3771 			if (off)
3772 				off--;
3773 			else {
3774 				lgrp = lgrp_table[i];
3775 				lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_RANDOM,
3776 				    1);
3777 				break;
3778 			}
3779 		}
3780 		break;
3781 
3782 	case LGRP_MEM_POLICY_RANDOM_PROC:
3783 
3784 		/*
3785 		 * Grab copy of bitmask of lgroups spanned by
3786 		 * this process
3787 		 */
3788 		klgrpset_copy(lgrpset, curproc->p_lgrpset);
3789 		stat = LGRP_NUM_RANDOM_PROC;
3790 
3791 		/* FALLTHROUGH */
3792 	case LGRP_MEM_POLICY_RANDOM_PSET:
3793 
3794 		if (!stat)
3795 			stat = LGRP_NUM_RANDOM_PSET;
3796 
3797 		if (klgrpset_isempty(lgrpset)) {
3798 			/*
3799 			 * Grab copy of bitmask of lgroups spanned by
3800 			 * this processor set
3801 			 */
3802 			kpreempt_disable();
3803 			klgrpset_copy(lgrpset,
3804 			    curthread->t_cpupart->cp_lgrpset);
3805 			kpreempt_enable();
3806 		}
3807 
3808 		/*
3809 		 * Count how many lgroups are spanned
3810 		 */
3811 		klgrpset_nlgrps(lgrpset, lgrps_spanned);
3812 		ASSERT(lgrps_spanned <= nlgrps);
3813 
3814 		/*
3815 		 * Probably lgrps_spanned should be always non-zero, but to be
3816 		 * on the safe side we return lgrp_root if it is empty.
3817 		 */
3818 		if (lgrps_spanned == 0) {
3819 			lgrp = lgrp_root;
3820 			break;
3821 		}
3822 
3823 		/*
3824 		 * Pick a random offset within lgroups spanned
3825 		 * and return lgroup at that offset
3826 		 */
3827 		random = (ushort_t)gethrtime() >> 4;
3828 		off = random % lgrps_spanned;
3829 		ASSERT(off <= lgrp_alloc_max);
3830 
3831 		for (i = 0; i <= lgrp_alloc_max; i++) {
3832 			if (!klgrpset_ismember(lgrpset, i))
3833 				continue;
3834 			if (off)
3835 				off--;
3836 			else {
3837 				lgrp = lgrp_table[i];
3838 				lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_RANDOM,
3839 				    1);
3840 				break;
3841 			}
3842 		}
3843 		break;
3844 
3845 	case LGRP_MEM_POLICY_ROUNDROBIN:
3846 
3847 		/*
3848 		 * Use offset within segment to determine
3849 		 * offset from home lgroup to choose for
3850 		 * next lgroup to allocate memory from
3851 		 */
3852 		off = ((unsigned long)(vaddr - seg->s_base) / pgsz) %
3853 		    (lgrp_alloc_max + 1);
3854 
3855 		kpreempt_disable();
3856 		lgrpset = lgrp_root->lgrp_set[LGRP_RSRC_MEM];
3857 		i = lgrp->lgrp_id;
3858 		kpreempt_enable();
3859 
3860 		while (off > 0) {
3861 			i = (i + 1) % (lgrp_alloc_max + 1);
3862 			lgrp = lgrp_table[i];
3863 			if (klgrpset_ismember(lgrpset, i))
3864 				off--;
3865 		}
3866 		lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ROUNDROBIN, 1);
3867 
3868 		break;
3869 	}
3870 
3871 	ASSERT(lgrp != NULL);
3872 	return (lgrp);
3873 }
3874 
3875 /*
3876  * Return the number of pages in an lgroup
3877  *
3878  * NOTE: NUMA test (numat) driver uses this, so changing arguments or semantics
3879  *	 could cause tests that rely on the numat driver to fail....
3880  */
3881 pgcnt_t
3882 lgrp_mem_size(lgrp_id_t lgrpid, lgrp_mem_query_t query)
3883 {
3884 	lgrp_t *lgrp;
3885 
3886 	lgrp = lgrp_table[lgrpid];
3887 	if (!LGRP_EXISTS(lgrp) ||
3888 	    klgrpset_isempty(lgrp->lgrp_set[LGRP_RSRC_MEM]) ||
3889 	    !klgrpset_ismember(lgrp->lgrp_set[LGRP_RSRC_MEM], lgrpid))
3890 		return (0);
3891 
3892 	return (lgrp_plat_mem_size(lgrp->lgrp_plathand, query));
3893 }
3894 
3895 /*
3896  * Initialize lgroup shared memory allocation policy support
3897  */
3898 void
3899 lgrp_shm_policy_init(struct anon_map *amp, vnode_t *vp)
3900 {
3901 	lgrp_shm_locality_t	*shm_locality;
3902 
3903 	/*
3904 	 * Initialize locality field in anon_map
3905 	 * Don't need any locks because this is called when anon_map is
3906 	 * allocated, but not used anywhere yet.
3907 	 */
3908 	if (amp) {
3909 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
3910 		if (amp->locality == NULL) {
3911 			/*
3912 			 * Allocate and initialize shared memory locality info
3913 			 * and set anon_map locality pointer to it
3914 			 * Drop lock across kmem_alloc(KM_SLEEP)
3915 			 */
3916 			ANON_LOCK_EXIT(&amp->a_rwlock);
3917 			shm_locality = kmem_alloc(sizeof (*shm_locality),
3918 			    KM_SLEEP);
3919 			rw_init(&shm_locality->loc_lock, NULL, RW_DEFAULT,
3920 			    NULL);
3921 			shm_locality->loc_count = 1;	/* not used for amp */
3922 			shm_locality->loc_tree = NULL;
3923 
3924 			/*
3925 			 * Reacquire lock and check to see whether anyone beat
3926 			 * us to initializing the locality info
3927 			 */
3928 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
3929 			if (amp->locality != NULL) {
3930 				rw_destroy(&shm_locality->loc_lock);
3931 				kmem_free(shm_locality,
3932 				    sizeof (*shm_locality));
3933 			} else
3934 				amp->locality = shm_locality;
3935 		}
3936 		ANON_LOCK_EXIT(&amp->a_rwlock);
3937 		return;
3938 	}
3939 
3940 	/*
3941 	 * Allocate shared vnode policy info if vnode is not locality aware yet
3942 	 */
3943 	mutex_enter(&vp->v_lock);
3944 	if ((vp->v_flag & V_LOCALITY) == 0) {
3945 		/*
3946 		 * Allocate and initialize shared memory locality info
3947 		 */
3948 		mutex_exit(&vp->v_lock);
3949 		shm_locality = kmem_alloc(sizeof (*shm_locality), KM_SLEEP);
3950 		rw_init(&shm_locality->loc_lock, NULL, RW_DEFAULT, NULL);
3951 		shm_locality->loc_count = 1;
3952 		shm_locality->loc_tree = NULL;
3953 
3954 		/*
3955 		 * Point vnode locality field at shared vnode policy info
3956 		 * and set locality aware flag in vnode
3957 		 */
3958 		mutex_enter(&vp->v_lock);
3959 		if ((vp->v_flag & V_LOCALITY) == 0) {
3960 			vp->v_locality = shm_locality;
3961 			vp->v_flag |= V_LOCALITY;
3962 		} else {
3963 			/*
3964 			 * Lost race so free locality info and increment count.
3965 			 */
3966 			rw_destroy(&shm_locality->loc_lock);
3967 			kmem_free(shm_locality, sizeof (*shm_locality));
3968 			shm_locality = vp->v_locality;
3969 			shm_locality->loc_count++;
3970 		}
3971 		mutex_exit(&vp->v_lock);
3972 
3973 		return;
3974 	}
3975 
3976 	/*
3977 	 * Increment reference count of number of segments mapping this vnode
3978 	 * shared
3979 	 */
3980 	shm_locality = vp->v_locality;
3981 	shm_locality->loc_count++;
3982 	mutex_exit(&vp->v_lock);
3983 }
3984 
3985 /*
3986  * Destroy the given shared memory policy segment tree
3987  */
3988 void
3989 lgrp_shm_policy_tree_destroy(avl_tree_t *tree)
3990 {
3991 	lgrp_shm_policy_seg_t	*cur;
3992 	lgrp_shm_policy_seg_t	*next;
3993 
3994 	if (tree == NULL)
3995 		return;
3996 
3997 	cur = (lgrp_shm_policy_seg_t *)avl_first(tree);
3998 	while (cur != NULL) {
3999 		next = AVL_NEXT(tree, cur);
4000 		avl_remove(tree, cur);
4001 		kmem_free(cur, sizeof (*cur));
4002 		cur = next;
4003 	}
4004 	kmem_free(tree, sizeof (avl_tree_t));
4005 }
4006 
4007 /*
4008  * Uninitialize lgroup shared memory allocation policy support
4009  */
4010 void
4011 lgrp_shm_policy_fini(struct anon_map *amp, vnode_t *vp)
4012 {
4013 	lgrp_shm_locality_t	*shm_locality;
4014 
4015 	/*
4016 	 * For anon_map, deallocate shared memory policy tree and
4017 	 * zero locality field
4018 	 * Don't need any locks because anon_map is being freed
4019 	 */
4020 	if (amp) {
4021 		if (amp->locality == NULL)
4022 			return;
4023 		shm_locality = amp->locality;
4024 		shm_locality->loc_count = 0;	/* not really used for amp */
4025 		rw_destroy(&shm_locality->loc_lock);
4026 		lgrp_shm_policy_tree_destroy(shm_locality->loc_tree);
4027 		kmem_free(shm_locality, sizeof (*shm_locality));
4028 		amp->locality = 0;
4029 		return;
4030 	}
4031 
4032 	/*
4033 	 * For vnode, decrement reference count of segments mapping this vnode
4034 	 * shared and delete locality info if reference count drops to 0
4035 	 */
4036 	mutex_enter(&vp->v_lock);
4037 	shm_locality = vp->v_locality;
4038 	shm_locality->loc_count--;
4039 
4040 	if (shm_locality->loc_count == 0) {
4041 		rw_destroy(&shm_locality->loc_lock);
4042 		lgrp_shm_policy_tree_destroy(shm_locality->loc_tree);
4043 		kmem_free(shm_locality, sizeof (*shm_locality));
4044 		vp->v_locality = 0;
4045 		vp->v_flag &= ~V_LOCALITY;
4046 	}
4047 	mutex_exit(&vp->v_lock);
4048 }
4049 
4050 /*
4051  * Compare two shared memory policy segments
4052  * Used by AVL tree code for searching
4053  */
4054 int
4055 lgrp_shm_policy_compar(const void *x, const void *y)
4056 {
4057 	lgrp_shm_policy_seg_t *a = (lgrp_shm_policy_seg_t *)x;
4058 	lgrp_shm_policy_seg_t *b = (lgrp_shm_policy_seg_t *)y;
4059 
4060 	if (a->shm_off < b->shm_off)
4061 		return (-1);
4062 	if (a->shm_off >= b->shm_off + b->shm_size)
4063 		return (1);
4064 	return (0);
4065 }
4066 
4067 /*
4068  * Concatenate seg1 with seg2 and remove seg2
4069  */
4070 static int
4071 lgrp_shm_policy_concat(avl_tree_t *tree, lgrp_shm_policy_seg_t *seg1,
4072     lgrp_shm_policy_seg_t *seg2)
4073 {
4074 	if (!seg1 || !seg2 ||
4075 	    seg1->shm_off + seg1->shm_size != seg2->shm_off ||
4076 	    seg1->shm_policy.mem_policy != seg2->shm_policy.mem_policy)
4077 		return (-1);
4078 
4079 	seg1->shm_size += seg2->shm_size;
4080 	avl_remove(tree, seg2);
4081 	kmem_free(seg2, sizeof (*seg2));
4082 	return (0);
4083 }
4084 
4085 /*
4086  * Split segment at given offset and return rightmost (uppermost) segment
4087  * Assumes that there are no overlapping segments
4088  */
4089 static lgrp_shm_policy_seg_t *
4090 lgrp_shm_policy_split(avl_tree_t *tree, lgrp_shm_policy_seg_t *seg,
4091     u_offset_t off)
4092 {
4093 	lgrp_shm_policy_seg_t	*newseg;
4094 	avl_index_t		where;
4095 
4096 	ASSERT(seg != NULL);
4097 	ASSERT(off >= seg->shm_off && off <= seg->shm_off + seg->shm_size);
4098 
4099 	if (!seg || off < seg->shm_off || off > seg->shm_off +
4100 	    seg->shm_size)
4101 		return (NULL);
4102 
4103 	if (off == seg->shm_off || off == seg->shm_off + seg->shm_size)
4104 		return (seg);
4105 
4106 	/*
4107 	 * Adjust size of left segment and allocate new (right) segment
4108 	 */
4109 	newseg = kmem_alloc(sizeof (lgrp_shm_policy_seg_t), KM_SLEEP);
4110 	newseg->shm_policy = seg->shm_policy;
4111 	newseg->shm_off = off;
4112 	newseg->shm_size = seg->shm_size - (off - seg->shm_off);
4113 	seg->shm_size = off - seg->shm_off;
4114 
4115 	/*
4116 	 * Find where to insert new segment in AVL tree and insert it
4117 	 */
4118 	(void) avl_find(tree, &off, &where);
4119 	avl_insert(tree, newseg, where);
4120 
4121 	return (newseg);
4122 }
4123 
4124 /*
4125  * Set shared memory allocation policy on specified shared object at given
4126  * offset and length
4127  *
4128  * Return 0 if policy wasn't set already, 1 if policy was set already, and
4129  * -1 if can't set policy.
4130  */
4131 int
4132 lgrp_shm_policy_set(lgrp_mem_policy_t policy, struct anon_map *amp,
4133     ulong_t anon_index, vnode_t *vp, u_offset_t vn_off, size_t len)
4134 {
4135 	u_offset_t		eoff;
4136 	lgrp_shm_policy_seg_t	*next;
4137 	lgrp_shm_policy_seg_t	*newseg;
4138 	u_offset_t		off;
4139 	u_offset_t		oldeoff;
4140 	lgrp_shm_policy_seg_t	*prev;
4141 	int			retval;
4142 	lgrp_shm_policy_seg_t	*seg;
4143 	lgrp_shm_locality_t	*shm_locality;
4144 	avl_tree_t		*tree;
4145 	avl_index_t		where;
4146 
4147 	ASSERT(amp || vp);
4148 	ASSERT((len & PAGEOFFSET) == 0);
4149 
4150 	if (len == 0)
4151 		return (-1);
4152 
4153 	retval = 0;
4154 
4155 	/*
4156 	 * Get locality info and starting offset into shared object
4157 	 * Try anon map first and then vnode
4158 	 * Assume that no locks need to be held on anon_map or vnode, since
4159 	 * it should be protected by its reference count which must be nonzero
4160 	 * for an existing segment.
4161 	 */
4162 	if (amp) {
4163 		/*
4164 		 * Get policy info from anon_map
4165 		 *
4166 		 */
4167 		ASSERT(amp->refcnt != 0);
4168 		if (amp->locality == NULL)
4169 			lgrp_shm_policy_init(amp, NULL);
4170 		shm_locality = amp->locality;
4171 		off = ptob(anon_index);
4172 	} else if (vp) {
4173 		/*
4174 		 * Get policy info from vnode
4175 		 */
4176 		if ((vp->v_flag & V_LOCALITY) == 0 || vp->v_locality == NULL)
4177 			lgrp_shm_policy_init(NULL, vp);
4178 		shm_locality = vp->v_locality;
4179 		ASSERT(shm_locality->loc_count != 0);
4180 		off = vn_off;
4181 	} else
4182 		return (-1);
4183 
4184 	ASSERT((off & PAGEOFFSET) == 0);
4185 
4186 	/*
4187 	 * Figure out default policy
4188 	 */
4189 	if (policy == LGRP_MEM_POLICY_DEFAULT)
4190 		policy = lgrp_mem_policy_default(len, MAP_SHARED);
4191 
4192 	/*
4193 	 * Create AVL tree if there isn't one yet
4194 	 * and set locality field to point at it
4195 	 */
4196 	rw_enter(&shm_locality->loc_lock, RW_WRITER);
4197 	tree = shm_locality->loc_tree;
4198 	if (!tree) {
4199 		rw_exit(&shm_locality->loc_lock);
4200 
4201 		tree = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
4202 
4203 		rw_enter(&shm_locality->loc_lock, RW_WRITER);
4204 		if (shm_locality->loc_tree == NULL) {
4205 			avl_create(tree, lgrp_shm_policy_compar,
4206 			    sizeof (lgrp_shm_policy_seg_t),
4207 			    offsetof(lgrp_shm_policy_seg_t, shm_tree));
4208 			shm_locality->loc_tree = tree;
4209 		} else {
4210 			/*
4211 			 * Another thread managed to set up the tree
4212 			 * before we could. Free the tree we allocated
4213 			 * and use the one that's already there.
4214 			 */
4215 			kmem_free(tree, sizeof (*tree));
4216 			tree = shm_locality->loc_tree;
4217 		}
4218 	}
4219 
4220 	/*
4221 	 * Set policy
4222 	 *
4223 	 * Need to maintain hold on writer's lock to keep tree from
4224 	 * changing out from under us
4225 	 */
4226 	while (len != 0) {
4227 		/*
4228 		 * Find policy segment for specified offset into shared object
4229 		 */
4230 		seg = avl_find(tree, &off, &where);
4231 
4232 		/*
4233 		 * Didn't find any existing segment that contains specified
4234 		 * offset, so allocate new segment, insert it, and concatenate
4235 		 * with adjacent segments if possible
4236 		 */
4237 		if (seg == NULL) {
4238 			newseg = kmem_alloc(sizeof (lgrp_shm_policy_seg_t),
4239 			    KM_SLEEP);
4240 			newseg->shm_policy.mem_policy = policy;
4241 			newseg->shm_policy.mem_lgrpid = LGRP_NONE;
4242 			newseg->shm_off = off;
4243 			avl_insert(tree, newseg, where);
4244 
4245 			/*
4246 			 * Check to see whether new segment overlaps with next
4247 			 * one, set length of new segment accordingly, and
4248 			 * calculate remaining length and next offset
4249 			 */
4250 			seg = AVL_NEXT(tree, newseg);
4251 			if (seg == NULL || off + len <= seg->shm_off) {
4252 				newseg->shm_size = len;
4253 				len = 0;
4254 			} else {
4255 				newseg->shm_size = seg->shm_off - off;
4256 				off = seg->shm_off;
4257 				len -= newseg->shm_size;
4258 			}
4259 
4260 			/*
4261 			 * Try to concatenate new segment with next and
4262 			 * previous ones, since they might have the same policy
4263 			 * now.  Grab previous and next segments first because
4264 			 * they will change on concatenation.
4265 			 */
4266 			prev =  AVL_PREV(tree, newseg);
4267 			next = AVL_NEXT(tree, newseg);
4268 			(void) lgrp_shm_policy_concat(tree, newseg, next);
4269 			(void) lgrp_shm_policy_concat(tree, prev, newseg);
4270 
4271 			continue;
4272 		}
4273 
4274 		eoff = off + len;
4275 		oldeoff = seg->shm_off + seg->shm_size;
4276 
4277 		/*
4278 		 * Policy set already?
4279 		 */
4280 		if (policy == seg->shm_policy.mem_policy) {
4281 			/*
4282 			 * Nothing left to do if offset and length
4283 			 * fall within this segment
4284 			 */
4285 			if (eoff <= oldeoff) {
4286 				retval = 1;
4287 				break;
4288 			} else {
4289 				len = eoff - oldeoff;
4290 				off = oldeoff;
4291 				continue;
4292 			}
4293 		}
4294 
4295 		/*
4296 		 * Specified offset and length match existing segment exactly
4297 		 */
4298 		if (off == seg->shm_off && len == seg->shm_size) {
4299 			/*
4300 			 * Set policy and update current length
4301 			 */
4302 			seg->shm_policy.mem_policy = policy;
4303 			seg->shm_policy.mem_lgrpid = LGRP_NONE;
4304 			len = 0;
4305 
4306 			/*
4307 			 * Try concatenating new segment with previous and next
4308 			 * segments, since they might have the same policy now.
4309 			 * Grab previous and next segments first because they
4310 			 * will change on concatenation.
4311 			 */
4312 			prev =  AVL_PREV(tree, seg);
4313 			next = AVL_NEXT(tree, seg);
4314 			(void) lgrp_shm_policy_concat(tree, seg, next);
4315 			(void) lgrp_shm_policy_concat(tree, prev, seg);
4316 		} else {
4317 			/*
4318 			 * Specified offset and length only apply to part of
4319 			 * existing segment
4320 			 */
4321 
4322 			/*
4323 			 * New segment starts in middle of old one, so split
4324 			 * new one off near beginning of old one
4325 			 */
4326 			newseg = NULL;
4327 			if (off > seg->shm_off) {
4328 				newseg = lgrp_shm_policy_split(tree, seg, off);
4329 
4330 				/*
4331 				 * New segment ends where old one did, so try
4332 				 * to concatenate with next segment
4333 				 */
4334 				if (eoff == oldeoff) {
4335 					newseg->shm_policy.mem_policy = policy;
4336 					newseg->shm_policy.mem_lgrpid =
4337 					    LGRP_NONE;
4338 					(void) lgrp_shm_policy_concat(tree,
4339 					    newseg, AVL_NEXT(tree, newseg));
4340 					break;
4341 				}
4342 			}
4343 
4344 			/*
4345 			 * New segment ends before old one, so split off end of
4346 			 * old one
4347 			 */
4348 			if (eoff < oldeoff) {
4349 				if (newseg) {
4350 					(void) lgrp_shm_policy_split(tree,
4351 					    newseg, eoff);
4352 					newseg->shm_policy.mem_policy = policy;
4353 					newseg->shm_policy.mem_lgrpid =
4354 					    LGRP_NONE;
4355 				} else {
4356 					(void) lgrp_shm_policy_split(tree, seg,
4357 					    eoff);
4358 					seg->shm_policy.mem_policy = policy;
4359 					seg->shm_policy.mem_lgrpid = LGRP_NONE;
4360 				}
4361 
4362 				if (off == seg->shm_off)
4363 					(void) lgrp_shm_policy_concat(tree,
4364 					    AVL_PREV(tree, seg), seg);
4365 				break;
4366 			}
4367 
4368 			/*
4369 			 * Calculate remaining length and next offset
4370 			 */
4371 			len = eoff - oldeoff;
4372 			off = oldeoff;
4373 		}
4374 	}
4375 
4376 	rw_exit(&shm_locality->loc_lock);
4377 	return (retval);
4378 }
4379 
4380 /*
4381  * Return the best memnode from which to allocate memory given
4382  * an lgroup.
4383  *
4384  * "c" is for cookie, which is good enough for me.
4385  * It references a cookie struct that should be zero'ed to initialize.
4386  * The cookie should live on the caller's stack.
4387  *
4388  * The routine returns -1 when:
4389  *	- traverse is 0, and all the memnodes in "lgrp" have been returned.
4390  *	- traverse is 1, and all the memnodes in the system have been
4391  *	  returned.
4392  */
4393 int
4394 lgrp_memnode_choose(lgrp_mnode_cookie_t *c)
4395 {
4396 	lgrp_t		*lp = c->lmc_lgrp;
4397 	mnodeset_t	nodes = c->lmc_nodes;
4398 	int		cnt = c->lmc_cnt;
4399 	int		offset, mnode;
4400 
4401 	extern int	max_mem_nodes;
4402 
4403 	/*
4404 	 * If the set is empty, and the caller is willing, traverse
4405 	 * up the hierarchy until we find a non-empty set.
4406 	 */
4407 	while (nodes == (mnodeset_t)0 || cnt <= 0) {
4408 		if (c->lmc_scope == LGRP_SRCH_LOCAL ||
4409 		    ((lp = lp->lgrp_parent) == NULL))
4410 			return (-1);
4411 
4412 		nodes = lp->lgrp_mnodes & ~(c->lmc_tried);
4413 		cnt = lp->lgrp_nmnodes - c->lmc_ntried;
4414 	}
4415 
4416 	/*
4417 	 * Select a memnode by picking one at a "random" offset.
4418 	 * Because of DR, memnodes can come and go at any time.
4419 	 * This code must be able to cope with the possibility
4420 	 * that the nodes count "cnt" is inconsistent with respect
4421 	 * to the number of elements actually in "nodes", and
4422 	 * therefore that the offset chosen could be greater than
4423 	 * the number of elements in the set (some memnodes may
4424 	 * have dissapeared just before cnt was read).
4425 	 * If this happens, the search simply wraps back to the
4426 	 * beginning of the set.
4427 	 */
4428 	ASSERT(nodes != (mnodeset_t)0 && cnt > 0);
4429 	offset = c->lmc_rand % cnt;
4430 	do {
4431 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
4432 			if (nodes & ((mnodeset_t)1 << mnode))
4433 				if (!offset--)
4434 					break;
4435 	} while (mnode >= max_mem_nodes);
4436 
4437 	/* Found a node. Store state before returning. */
4438 	c->lmc_lgrp = lp;
4439 	c->lmc_nodes = (nodes & ~((mnodeset_t)1 << mnode));
4440 	c->lmc_cnt = cnt - 1;
4441 	c->lmc_tried = (c->lmc_tried | ((mnodeset_t)1 << mnode));
4442 	c->lmc_ntried++;
4443 
4444 	return (mnode);
4445 }
4446