xref: /illumos-gate/usr/src/uts/common/os/kmem.c (revision b04056ece904a6664d34ccc4015b5373e959983e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2018, Joyent, Inc.
26  */
27 
28 /*
29  * Kernel memory allocator, as described in the following two papers and a
30  * statement about the consolidator:
31  *
32  * Jeff Bonwick,
33  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
34  * Proceedings of the Summer 1994 Usenix Conference.
35  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
36  *
37  * Jeff Bonwick and Jonathan Adams,
38  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
39  * Arbitrary Resources.
40  * Proceedings of the 2001 Usenix Conference.
41  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
42  *
43  * kmem Slab Consolidator Big Theory Statement:
44  *
45  * 1. Motivation
46  *
47  * As stated in Bonwick94, slabs provide the following advantages over other
48  * allocation structures in terms of memory fragmentation:
49  *
50  *  - Internal fragmentation (per-buffer wasted space) is minimal.
51  *  - Severe external fragmentation (unused buffers on the free list) is
52  *    unlikely.
53  *
54  * Segregating objects by size eliminates one source of external fragmentation,
55  * and according to Bonwick:
56  *
57  *   The other reason that slabs reduce external fragmentation is that all
58  *   objects in a slab are of the same type, so they have the same lifetime
59  *   distribution. The resulting segregation of short-lived and long-lived
60  *   objects at slab granularity reduces the likelihood of an entire page being
61  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
62  *
63  * While unlikely, severe external fragmentation remains possible. Clients that
64  * allocate both short- and long-lived objects from the same cache cannot
65  * anticipate the distribution of long-lived objects within the allocator's slab
66  * implementation. Even a small percentage of long-lived objects distributed
67  * randomly across many slabs can lead to a worst case scenario where the client
68  * frees the majority of its objects and the system gets back almost none of the
69  * slabs. Despite the client doing what it reasonably can to help the system
70  * reclaim memory, the allocator cannot shake free enough slabs because of
71  * lonely allocations stubbornly hanging on. Although the allocator is in a
72  * position to diagnose the fragmentation, there is nothing that the allocator
73  * by itself can do about it. It only takes a single allocated object to prevent
74  * an entire slab from being reclaimed, and any object handed out by
75  * kmem_cache_alloc() is by definition in the client's control. Conversely,
76  * although the client is in a position to move a long-lived object, it has no
77  * way of knowing if the object is causing fragmentation, and if so, where to
78  * move it. A solution necessarily requires further cooperation between the
79  * allocator and the client.
80  *
81  * 2. Move Callback
82  *
83  * The kmem slab consolidator therefore adds a move callback to the
84  * allocator/client interface, improving worst-case external fragmentation in
85  * kmem caches that supply a function to move objects from one memory location
86  * to another. In a situation of low memory kmem attempts to consolidate all of
87  * a cache's slabs at once; otherwise it works slowly to bring external
88  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
89  * thereby helping to avoid a low memory situation in the future.
90  *
91  * The callback has the following signature:
92  *
93  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
94  *
95  * It supplies the kmem client with two addresses: the allocated object that
96  * kmem wants to move and a buffer selected by kmem for the client to use as the
97  * copy destination. The callback is kmem's way of saying "Please get off of
98  * this buffer and use this one instead." kmem knows where it wants to move the
99  * object in order to best reduce fragmentation. All the client needs to know
100  * about the second argument (void *new) is that it is an allocated, constructed
101  * object ready to take the contents of the old object. When the move function
102  * is called, the system is likely to be low on memory, and the new object
103  * spares the client from having to worry about allocating memory for the
104  * requested move. The third argument supplies the size of the object, in case a
105  * single move function handles multiple caches whose objects differ only in
106  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
107  * user argument passed to the constructor, destructor, and reclaim functions is
108  * also passed to the move callback.
109  *
110  * 2.1 Setting the Move Callback
111  *
112  * The client sets the move callback after creating the cache and before
113  * allocating from it:
114  *
115  *	object_cache = kmem_cache_create(...);
116  *      kmem_cache_set_move(object_cache, object_move);
117  *
118  * 2.2 Move Callback Return Values
119  *
120  * Only the client knows about its own data and when is a good time to move it.
121  * The client is cooperating with kmem to return unused memory to the system,
122  * and kmem respectfully accepts this help at the client's convenience. When
123  * asked to move an object, the client can respond with any of the following:
124  *
125  *   typedef enum kmem_cbrc {
126  *           KMEM_CBRC_YES,
127  *           KMEM_CBRC_NO,
128  *           KMEM_CBRC_LATER,
129  *           KMEM_CBRC_DONT_NEED,
130  *           KMEM_CBRC_DONT_KNOW
131  *   } kmem_cbrc_t;
132  *
133  * The client must not explicitly kmem_cache_free() either of the objects passed
134  * to the callback, since kmem wants to free them directly to the slab layer
135  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
136  * objects to free:
137  *
138  *       YES: (Did it) The client moved the object, so kmem frees the old one.
139  *        NO: (Never) The client refused, so kmem frees the new object (the
140  *            unused copy destination). kmem also marks the slab of the old
141  *            object so as not to bother the client with further callbacks for
142  *            that object as long as the slab remains on the partial slab list.
143  *            (The system won't be getting the slab back as long as the
144  *            immovable object holds it hostage, so there's no point in moving
145  *            any of its objects.)
146  *     LATER: The client is using the object and cannot move it now, so kmem
147  *            frees the new object (the unused copy destination). kmem still
148  *            attempts to move other objects off the slab, since it expects to
149  *            succeed in clearing the slab in a later callback. The client
150  *            should use LATER instead of NO if the object is likely to become
151  *            movable very soon.
152  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
153  *            with the new object (the unused copy destination). This response
154  *            is the client's opportunity to be a model citizen and give back as
155  *            much as it can.
156  * DONT_KNOW: The client does not know about the object because
157  *            a) the client has just allocated the object and not yet put it
158  *               wherever it expects to find known objects
159  *            b) the client has removed the object from wherever it expects to
160  *               find known objects and is about to free it, or
161  *            c) the client has freed the object.
162  *            In all these cases (a, b, and c) kmem frees the new object (the
163  *            unused copy destination).  In the first case, the object is in
164  *            use and the correct action is that for LATER; in the latter two
165  *            cases, we know that the object is either freed or about to be
166  *            freed, in which case it is either already in a magazine or about
167  *            to be in one.  In these cases, we know that the object will either
168  *            be reallocated and reused, or it will end up in a full magazine
169  *            that will be reaped (thereby liberating the slab).  Because it
170  *            is prohibitively expensive to differentiate these cases, and
171  *            because the defrag code is executed when we're low on memory
172  *            (thereby biasing the system to reclaim full magazines) we treat
173  *            all DONT_KNOW cases as LATER and rely on cache reaping to
174  *            generally clean up full magazines.  While we take the same action
175  *            for these cases, we maintain their semantic distinction:  if
176  *            defragmentation is not occurring, it is useful to know if this
177  *            is due to objects in use (LATER) or objects in an unknown state
178  *            of transition (DONT_KNOW).
179  *
180  * 2.3 Object States
181  *
182  * Neither kmem nor the client can be assumed to know the object's whereabouts
183  * at the time of the callback. An object belonging to a kmem cache may be in
184  * any of the following states:
185  *
186  * 1. Uninitialized on the slab
187  * 2. Allocated from the slab but not constructed (still uninitialized)
188  * 3. Allocated from the slab, constructed, but not yet ready for business
189  *    (not in a valid state for the move callback)
190  * 4. In use (valid and known to the client)
191  * 5. About to be freed (no longer in a valid state for the move callback)
192  * 6. Freed to a magazine (still constructed)
193  * 7. Allocated from a magazine, not yet ready for business (not in a valid
194  *    state for the move callback), and about to return to state #4
195  * 8. Deconstructed on a magazine that is about to be freed
196  * 9. Freed to the slab
197  *
198  * Since the move callback may be called at any time while the object is in any
199  * of the above states (except state #1), the client needs a safe way to
200  * determine whether or not it knows about the object. Specifically, the client
201  * needs to know whether or not the object is in state #4, the only state in
202  * which a move is valid. If the object is in any other state, the client should
203  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
204  * the object's fields.
205  *
206  * Note that although an object may be in state #4 when kmem initiates the move
207  * request, the object may no longer be in that state by the time kmem actually
208  * calls the move function. Not only does the client free objects
209  * asynchronously, kmem itself puts move requests on a queue where thay are
210  * pending until kmem processes them from another context. Also, objects freed
211  * to a magazine appear allocated from the point of view of the slab layer, so
212  * kmem may even initiate requests for objects in a state other than state #4.
213  *
214  * 2.3.1 Magazine Layer
215  *
216  * An important insight revealed by the states listed above is that the magazine
217  * layer is populated only by kmem_cache_free(). Magazines of constructed
218  * objects are never populated directly from the slab layer (which contains raw,
219  * unconstructed objects). Whenever an allocation request cannot be satisfied
220  * from the magazine layer, the magazines are bypassed and the request is
221  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
222  * the object constructor only when allocating from the slab layer, and only in
223  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
224  * the move callback. kmem does not preconstruct objects in anticipation of
225  * kmem_cache_alloc().
226  *
227  * 2.3.2 Object Constructor and Destructor
228  *
229  * If the client supplies a destructor, it must be valid to call the destructor
230  * on a newly created object (immediately after the constructor).
231  *
232  * 2.4 Recognizing Known Objects
233  *
234  * There is a simple test to determine safely whether or not the client knows
235  * about a given object in the move callback. It relies on the fact that kmem
236  * guarantees that the object of the move callback has only been touched by the
237  * client itself or else by kmem. kmem does this by ensuring that none of the
238  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
239  * callback is pending. When the last object on a slab is freed, if there is a
240  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
241  * slabs on that list until all pending callbacks are completed. That way,
242  * clients can be certain that the object of a move callback is in one of the
243  * states listed above, making it possible to distinguish known objects (in
244  * state #4) using the two low order bits of any pointer member (with the
245  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
246  * platforms).
247  *
248  * The test works as long as the client always transitions objects from state #4
249  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
250  * order bit of the client-designated pointer member. Since kmem only writes
251  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
252  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
253  * guaranteed to set at least one of the two low order bits. Therefore, given an
254  * object with a back pointer to a 'container_t *o_container', the client can
255  * test
256  *
257  *      container_t *container = object->o_container;
258  *      if ((uintptr_t)container & 0x3) {
259  *              return (KMEM_CBRC_DONT_KNOW);
260  *      }
261  *
262  * Typically, an object will have a pointer to some structure with a list or
263  * hash where objects from the cache are kept while in use. Assuming that the
264  * client has some way of knowing that the container structure is valid and will
265  * not go away during the move, and assuming that the structure includes a lock
266  * to protect whatever collection is used, then the client would continue as
267  * follows:
268  *
269  *	// Ensure that the container structure does not go away.
270  *      if (container_hold(container) == 0) {
271  *              return (KMEM_CBRC_DONT_KNOW);
272  *      }
273  *      mutex_enter(&container->c_objects_lock);
274  *      if (container != object->o_container) {
275  *              mutex_exit(&container->c_objects_lock);
276  *              container_rele(container);
277  *              return (KMEM_CBRC_DONT_KNOW);
278  *      }
279  *
280  * At this point the client knows that the object cannot be freed as long as
281  * c_objects_lock is held. Note that after acquiring the lock, the client must
282  * recheck the o_container pointer in case the object was removed just before
283  * acquiring the lock.
284  *
285  * When the client is about to free an object, it must first remove that object
286  * from the list, hash, or other structure where it is kept. At that time, to
287  * mark the object so it can be distinguished from the remaining, known objects,
288  * the client sets the designated low order bit:
289  *
290  *      mutex_enter(&container->c_objects_lock);
291  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
292  *      list_remove(&container->c_objects, object);
293  *      mutex_exit(&container->c_objects_lock);
294  *
295  * In the common case, the object is freed to the magazine layer, where it may
296  * be reused on a subsequent allocation without the overhead of calling the
297  * constructor. While in the magazine it appears allocated from the point of
298  * view of the slab layer, making it a candidate for the move callback. Most
299  * objects unrecognized by the client in the move callback fall into this
300  * category and are cheaply distinguished from known objects by the test
301  * described earlier. Because searching magazines is prohibitively expensive
302  * for kmem, clients that do not mark freed objects (and therefore return
303  * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
304  * efficacy reduced.
305  *
306  * Invalidating the designated pointer member before freeing the object marks
307  * the object to be avoided in the callback, and conversely, assigning a valid
308  * value to the designated pointer member after allocating the object makes the
309  * object fair game for the callback:
310  *
311  *      ... allocate object ...
312  *      ... set any initial state not set by the constructor ...
313  *
314  *      mutex_enter(&container->c_objects_lock);
315  *      list_insert_tail(&container->c_objects, object);
316  *      membar_producer();
317  *      object->o_container = container;
318  *      mutex_exit(&container->c_objects_lock);
319  *
320  * Note that everything else must be valid before setting o_container makes the
321  * object fair game for the move callback. The membar_producer() call ensures
322  * that all the object's state is written to memory before setting the pointer
323  * that transitions the object from state #3 or #7 (allocated, constructed, not
324  * yet in use) to state #4 (in use, valid). That's important because the move
325  * function has to check the validity of the pointer before it can safely
326  * acquire the lock protecting the collection where it expects to find known
327  * objects.
328  *
329  * This method of distinguishing known objects observes the usual symmetry:
330  * invalidating the designated pointer is the first thing the client does before
331  * freeing the object, and setting the designated pointer is the last thing the
332  * client does after allocating the object. Of course, the client is not
333  * required to use this method. Fundamentally, how the client recognizes known
334  * objects is completely up to the client, but this method is recommended as an
335  * efficient and safe way to take advantage of the guarantees made by kmem. If
336  * the entire object is arbitrary data without any markable bits from a suitable
337  * pointer member, then the client must find some other method, such as
338  * searching a hash table of known objects.
339  *
340  * 2.5 Preventing Objects From Moving
341  *
342  * Besides a way to distinguish known objects, the other thing that the client
343  * needs is a strategy to ensure that an object will not move while the client
344  * is actively using it. The details of satisfying this requirement tend to be
345  * highly cache-specific. It might seem that the same rules that let a client
346  * remove an object safely should also decide when an object can be moved
347  * safely. However, any object state that makes a removal attempt invalid is
348  * likely to be long-lasting for objects that the client does not expect to
349  * remove. kmem knows nothing about the object state and is equally likely (from
350  * the client's point of view) to request a move for any object in the cache,
351  * whether prepared for removal or not. Even a low percentage of objects stuck
352  * in place by unremovability will defeat the consolidator if the stuck objects
353  * are the same long-lived allocations likely to hold slabs hostage.
354  * Fundamentally, the consolidator is not aimed at common cases. Severe external
355  * fragmentation is a worst case scenario manifested as sparsely allocated
356  * slabs, by definition a low percentage of the cache's objects. When deciding
357  * what makes an object movable, keep in mind the goal of the consolidator: to
358  * bring worst-case external fragmentation within the limits guaranteed for
359  * internal fragmentation. Removability is a poor criterion if it is likely to
360  * exclude more than an insignificant percentage of objects for long periods of
361  * time.
362  *
363  * A tricky general solution exists, and it has the advantage of letting you
364  * move any object at almost any moment, practically eliminating the likelihood
365  * that an object can hold a slab hostage. However, if there is a cache-specific
366  * way to ensure that an object is not actively in use in the vast majority of
367  * cases, a simpler solution that leverages this cache-specific knowledge is
368  * preferred.
369  *
370  * 2.5.1 Cache-Specific Solution
371  *
372  * As an example of a cache-specific solution, the ZFS znode cache takes
373  * advantage of the fact that the vast majority of znodes are only being
374  * referenced from the DNLC. (A typical case might be a few hundred in active
375  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
376  * client has established that it recognizes the znode and can access its fields
377  * safely (using the method described earlier), it then tests whether the znode
378  * is referenced by anything other than the DNLC. If so, it assumes that the
379  * znode may be in active use and is unsafe to move, so it drops its locks and
380  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
381  * else znodes are used, no change is needed to protect against the possibility
382  * of the znode moving. The disadvantage is that it remains possible for an
383  * application to hold a znode slab hostage with an open file descriptor.
384  * However, this case ought to be rare and the consolidator has a way to deal
385  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
386  * object, kmem eventually stops believing it and treats the slab as if the
387  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
388  * then focus on getting it off of the partial slab list by allocating rather
389  * than freeing all of its objects. (Either way of getting a slab off the
390  * free list reduces fragmentation.)
391  *
392  * 2.5.2 General Solution
393  *
394  * The general solution, on the other hand, requires an explicit hold everywhere
395  * the object is used to prevent it from moving. To keep the client locking
396  * strategy as uncomplicated as possible, kmem guarantees the simplifying
397  * assumption that move callbacks are sequential, even across multiple caches.
398  * Internally, a global queue processed by a single thread supports all caches
399  * implementing the callback function. No matter how many caches supply a move
400  * function, the consolidator never moves more than one object at a time, so the
401  * client does not have to worry about tricky lock ordering involving several
402  * related objects from different kmem caches.
403  *
404  * The general solution implements the explicit hold as a read-write lock, which
405  * allows multiple readers to access an object from the cache simultaneously
406  * while a single writer is excluded from moving it. A single rwlock for the
407  * entire cache would lock out all threads from using any of the cache's objects
408  * even though only a single object is being moved, so to reduce contention,
409  * the client can fan out the single rwlock into an array of rwlocks hashed by
410  * the object address, making it probable that moving one object will not
411  * prevent other threads from using a different object. The rwlock cannot be a
412  * member of the object itself, because the possibility of the object moving
413  * makes it unsafe to access any of the object's fields until the lock is
414  * acquired.
415  *
416  * Assuming a small, fixed number of locks, it's possible that multiple objects
417  * will hash to the same lock. A thread that needs to use multiple objects in
418  * the same function may acquire the same lock multiple times. Since rwlocks are
419  * reentrant for readers, and since there is never more than a single writer at
420  * a time (assuming that the client acquires the lock as a writer only when
421  * moving an object inside the callback), there would seem to be no problem.
422  * However, a client locking multiple objects in the same function must handle
423  * one case of potential deadlock: Assume that thread A needs to prevent both
424  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
425  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
426  * same lock, that thread A will acquire the lock for object 1 as a reader
427  * before thread B sets the lock's write-wanted bit, preventing thread A from
428  * reacquiring the lock for object 2 as a reader. Unable to make forward
429  * progress, thread A will never release the lock for object 1, resulting in
430  * deadlock.
431  *
432  * There are two ways of avoiding the deadlock just described. The first is to
433  * use rw_tryenter() rather than rw_enter() in the callback function when
434  * attempting to acquire the lock as a writer. If tryenter discovers that the
435  * same object (or another object hashed to the same lock) is already in use, it
436  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
437  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
438  * since it allows a thread to acquire the lock as a reader in spite of a
439  * waiting writer. This second approach insists on moving the object now, no
440  * matter how many readers the move function must wait for in order to do so,
441  * and could delay the completion of the callback indefinitely (blocking
442  * callbacks to other clients). In practice, a less insistent callback using
443  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
444  * little reason to use anything else.
445  *
446  * Avoiding deadlock is not the only problem that an implementation using an
447  * explicit hold needs to solve. Locking the object in the first place (to
448  * prevent it from moving) remains a problem, since the object could move
449  * between the time you obtain a pointer to the object and the time you acquire
450  * the rwlock hashed to that pointer value. Therefore the client needs to
451  * recheck the value of the pointer after acquiring the lock, drop the lock if
452  * the value has changed, and try again. This requires a level of indirection:
453  * something that points to the object rather than the object itself, that the
454  * client can access safely while attempting to acquire the lock. (The object
455  * itself cannot be referenced safely because it can move at any time.)
456  * The following lock-acquisition function takes whatever is safe to reference
457  * (arg), follows its pointer to the object (using function f), and tries as
458  * often as necessary to acquire the hashed lock and verify that the object
459  * still has not moved:
460  *
461  *      object_t *
462  *      object_hold(object_f f, void *arg)
463  *      {
464  *              object_t *op;
465  *
466  *              op = f(arg);
467  *              if (op == NULL) {
468  *                      return (NULL);
469  *              }
470  *
471  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
472  *              while (op != f(arg)) {
473  *                      rw_exit(OBJECT_RWLOCK(op));
474  *                      op = f(arg);
475  *                      if (op == NULL) {
476  *                              break;
477  *                      }
478  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
479  *              }
480  *
481  *              return (op);
482  *      }
483  *
484  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
485  * lock reacquisition loop, while necessary, almost never executes. The function
486  * pointer f (used to obtain the object pointer from arg) has the following type
487  * definition:
488  *
489  *      typedef object_t *(*object_f)(void *arg);
490  *
491  * An object_f implementation is likely to be as simple as accessing a structure
492  * member:
493  *
494  *      object_t *
495  *      s_object(void *arg)
496  *      {
497  *              something_t *sp = arg;
498  *              return (sp->s_object);
499  *      }
500  *
501  * The flexibility of a function pointer allows the path to the object to be
502  * arbitrarily complex and also supports the notion that depending on where you
503  * are using the object, you may need to get it from someplace different.
504  *
505  * The function that releases the explicit hold is simpler because it does not
506  * have to worry about the object moving:
507  *
508  *      void
509  *      object_rele(object_t *op)
510  *      {
511  *              rw_exit(OBJECT_RWLOCK(op));
512  *      }
513  *
514  * The caller is spared these details so that obtaining and releasing an
515  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
516  * of object_hold() only needs to know that the returned object pointer is valid
517  * if not NULL and that the object will not move until released.
518  *
519  * Although object_hold() prevents an object from moving, it does not prevent it
520  * from being freed. The caller must take measures before calling object_hold()
521  * (afterwards is too late) to ensure that the held object cannot be freed. The
522  * caller must do so without accessing the unsafe object reference, so any lock
523  * or reference count used to ensure the continued existence of the object must
524  * live outside the object itself.
525  *
526  * Obtaining a new object is a special case where an explicit hold is impossible
527  * for the caller. Any function that returns a newly allocated object (either as
528  * a return value, or as an in-out paramter) must return it already held; after
529  * the caller gets it is too late, since the object cannot be safely accessed
530  * without the level of indirection described earlier. The following
531  * object_alloc() example uses the same code shown earlier to transition a new
532  * object into the state of being recognized (by the client) as a known object.
533  * The function must acquire the hold (rw_enter) before that state transition
534  * makes the object movable:
535  *
536  *      static object_t *
537  *      object_alloc(container_t *container)
538  *      {
539  *              object_t *object = kmem_cache_alloc(object_cache, 0);
540  *              ... set any initial state not set by the constructor ...
541  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
542  *              mutex_enter(&container->c_objects_lock);
543  *              list_insert_tail(&container->c_objects, object);
544  *              membar_producer();
545  *              object->o_container = container;
546  *              mutex_exit(&container->c_objects_lock);
547  *              return (object);
548  *      }
549  *
550  * Functions that implicitly acquire an object hold (any function that calls
551  * object_alloc() to supply an object for the caller) need to be carefully noted
552  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
553  * prevent all objects hashed to the affected rwlocks from ever being moved.
554  *
555  * The pointer to a held object can be hashed to the holding rwlock even after
556  * the object has been freed. Although it is possible to release the hold
557  * after freeing the object, you may decide to release the hold implicitly in
558  * whatever function frees the object, so as to release the hold as soon as
559  * possible, and for the sake of symmetry with the function that implicitly
560  * acquires the hold when it allocates the object. Here, object_free() releases
561  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
562  * matching pair with object_hold():
563  *
564  *      void
565  *      object_free(object_t *object)
566  *      {
567  *              container_t *container;
568  *
569  *              ASSERT(object_held(object));
570  *              container = object->o_container;
571  *              mutex_enter(&container->c_objects_lock);
572  *              object->o_container =
573  *                  (void *)((uintptr_t)object->o_container | 0x1);
574  *              list_remove(&container->c_objects, object);
575  *              mutex_exit(&container->c_objects_lock);
576  *              object_rele(object);
577  *              kmem_cache_free(object_cache, object);
578  *      }
579  *
580  * Note that object_free() cannot safely accept an object pointer as an argument
581  * unless the object is already held. Any function that calls object_free()
582  * needs to be carefully noted since it similarly forms a matching pair with
583  * object_hold().
584  *
585  * To complete the picture, the following callback function implements the
586  * general solution by moving objects only if they are currently unheld:
587  *
588  *      static kmem_cbrc_t
589  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
590  *      {
591  *              object_t *op = buf, *np = newbuf;
592  *              container_t *container;
593  *
594  *              container = op->o_container;
595  *              if ((uintptr_t)container & 0x3) {
596  *                      return (KMEM_CBRC_DONT_KNOW);
597  *              }
598  *
599  *	        // Ensure that the container structure does not go away.
600  *              if (container_hold(container) == 0) {
601  *                      return (KMEM_CBRC_DONT_KNOW);
602  *              }
603  *
604  *              mutex_enter(&container->c_objects_lock);
605  *              if (container != op->o_container) {
606  *                      mutex_exit(&container->c_objects_lock);
607  *                      container_rele(container);
608  *                      return (KMEM_CBRC_DONT_KNOW);
609  *              }
610  *
611  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
612  *                      mutex_exit(&container->c_objects_lock);
613  *                      container_rele(container);
614  *                      return (KMEM_CBRC_LATER);
615  *              }
616  *
617  *              object_move_impl(op, np); // critical section
618  *              rw_exit(OBJECT_RWLOCK(op));
619  *
620  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
621  *              list_link_replace(&op->o_link_node, &np->o_link_node);
622  *              mutex_exit(&container->c_objects_lock);
623  *              container_rele(container);
624  *              return (KMEM_CBRC_YES);
625  *      }
626  *
627  * Note that object_move() must invalidate the designated o_container pointer of
628  * the old object in the same way that object_free() does, since kmem will free
629  * the object in response to the KMEM_CBRC_YES return value.
630  *
631  * The lock order in object_move() differs from object_alloc(), which locks
632  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
633  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
634  * not a problem. Holding the lock on the object list in the example above
635  * through the entire callback not only prevents the object from going away, it
636  * also allows you to lock the list elsewhere and know that none of its elements
637  * will move during iteration.
638  *
639  * Adding an explicit hold everywhere an object from the cache is used is tricky
640  * and involves much more change to client code than a cache-specific solution
641  * that leverages existing state to decide whether or not an object is
642  * movable. However, this approach has the advantage that no object remains
643  * immovable for any significant length of time, making it extremely unlikely
644  * that long-lived allocations can continue holding slabs hostage; and it works
645  * for any cache.
646  *
647  * 3. Consolidator Implementation
648  *
649  * Once the client supplies a move function that a) recognizes known objects and
650  * b) avoids moving objects that are actively in use, the remaining work is up
651  * to the consolidator to decide which objects to move and when to issue
652  * callbacks.
653  *
654  * The consolidator relies on the fact that a cache's slabs are ordered by
655  * usage. Each slab has a fixed number of objects. Depending on the slab's
656  * "color" (the offset of the first object from the beginning of the slab;
657  * offsets are staggered to mitigate false sharing of cache lines) it is either
658  * the maximum number of objects per slab determined at cache creation time or
659  * else the number closest to the maximum that fits within the space remaining
660  * after the initial offset. A completely allocated slab may contribute some
661  * internal fragmentation (per-slab overhead) but no external fragmentation, so
662  * it is of no interest to the consolidator. At the other extreme, slabs whose
663  * objects have all been freed to the slab are released to the virtual memory
664  * (VM) subsystem (objects freed to magazines are still allocated as far as the
665  * slab is concerned). External fragmentation exists when there are slabs
666  * somewhere between these extremes. A partial slab has at least one but not all
667  * of its objects allocated. The more partial slabs, and the fewer allocated
668  * objects on each of them, the higher the fragmentation. Hence the
669  * consolidator's overall strategy is to reduce the number of partial slabs by
670  * moving allocated objects from the least allocated slabs to the most allocated
671  * slabs.
672  *
673  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
674  * slabs are kept separately in an unordered list. Since the majority of slabs
675  * tend to be completely allocated (a typical unfragmented cache may have
676  * thousands of complete slabs and only a single partial slab), separating
677  * complete slabs improves the efficiency of partial slab ordering, since the
678  * complete slabs do not affect the depth or balance of the AVL tree. This
679  * ordered sequence of partial slabs acts as a "free list" supplying objects for
680  * allocation requests.
681  *
682  * Objects are always allocated from the first partial slab in the free list,
683  * where the allocation is most likely to eliminate a partial slab (by
684  * completely allocating it). Conversely, when a single object from a completely
685  * allocated slab is freed to the slab, that slab is added to the front of the
686  * free list. Since most free list activity involves highly allocated slabs
687  * coming and going at the front of the list, slabs tend naturally toward the
688  * ideal order: highly allocated at the front, sparsely allocated at the back.
689  * Slabs with few allocated objects are likely to become completely free if they
690  * keep a safe distance away from the front of the free list. Slab misorders
691  * interfere with the natural tendency of slabs to become completely free or
692  * completely allocated. For example, a slab with a single allocated object
693  * needs only a single free to escape the cache; its natural desire is
694  * frustrated when it finds itself at the front of the list where a second
695  * allocation happens just before the free could have released it. Another slab
696  * with all but one object allocated might have supplied the buffer instead, so
697  * that both (as opposed to neither) of the slabs would have been taken off the
698  * free list.
699  *
700  * Although slabs tend naturally toward the ideal order, misorders allowed by a
701  * simple list implementation defeat the consolidator's strategy of merging
702  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
703  * needs another way to fix misorders to optimize its callback strategy. One
704  * approach is to periodically scan a limited number of slabs, advancing a
705  * marker to hold the current scan position, and to move extreme misorders to
706  * the front or back of the free list and to the front or back of the current
707  * scan range. By making consecutive scan ranges overlap by one slab, the least
708  * allocated slab in the current range can be carried along from the end of one
709  * scan to the start of the next.
710  *
711  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
712  * task, however. Since most of the cache's activity is in the magazine layer,
713  * and allocations from the slab layer represent only a startup cost, the
714  * overhead of maintaining a balanced tree is not a significant concern compared
715  * to the opportunity of reducing complexity by eliminating the partial slab
716  * scanner just described. The overhead of an AVL tree is minimized by
717  * maintaining only partial slabs in the tree and keeping completely allocated
718  * slabs separately in a list. To avoid increasing the size of the slab
719  * structure the AVL linkage pointers are reused for the slab's list linkage,
720  * since the slab will always be either partial or complete, never stored both
721  * ways at the same time. To further minimize the overhead of the AVL tree the
722  * compare function that orders partial slabs by usage divides the range of
723  * allocated object counts into bins such that counts within the same bin are
724  * considered equal. Binning partial slabs makes it less likely that allocating
725  * or freeing a single object will change the slab's order, requiring a tree
726  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
727  * requiring some rebalancing of the tree). Allocation counts closest to
728  * completely free and completely allocated are left unbinned (finely sorted) to
729  * better support the consolidator's strategy of merging slabs at either
730  * extreme.
731  *
732  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
733  *
734  * The consolidator piggybacks on the kmem maintenance thread and is called on
735  * the same interval as kmem_cache_update(), once per cache every fifteen
736  * seconds. kmem maintains a running count of unallocated objects in the slab
737  * layer (cache_bufslab). The consolidator checks whether that number exceeds
738  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
739  * there is a significant number of slabs in the cache (arbitrarily a minimum
740  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
741  * working set are included in the assessment, and magazines in the depot are
742  * reaped if those objects would lift cache_bufslab above the fragmentation
743  * threshold. Once the consolidator decides that a cache is fragmented, it looks
744  * for a candidate slab to reclaim, starting at the end of the partial slab free
745  * list and scanning backwards. At first the consolidator is choosy: only a slab
746  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
747  * single allocated object, regardless of percentage). If there is difficulty
748  * finding a candidate slab, kmem raises the allocation threshold incrementally,
749  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
750  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
751  * even in the worst case of every slab in the cache being almost 7/8 allocated.
752  * The threshold can also be lowered incrementally when candidate slabs are easy
753  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
754  * is no longer fragmented.
755  *
756  * 3.2 Generating Callbacks
757  *
758  * Once an eligible slab is chosen, a callback is generated for every allocated
759  * object on the slab, in the hope that the client will move everything off the
760  * slab and make it reclaimable. Objects selected as move destinations are
761  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
762  * order (most allocated at the front, least allocated at the back) and a
763  * cooperative client, the consolidator will succeed in removing slabs from both
764  * ends of the free list, completely allocating on the one hand and completely
765  * freeing on the other. Objects selected as move destinations are allocated in
766  * the kmem maintenance thread where move requests are enqueued. A separate
767  * callback thread removes pending callbacks from the queue and calls the
768  * client. The separate thread ensures that client code (the move function) does
769  * not interfere with internal kmem maintenance tasks. A map of pending
770  * callbacks keyed by object address (the object to be moved) is checked to
771  * ensure that duplicate callbacks are not generated for the same object.
772  * Allocating the move destination (the object to move to) prevents subsequent
773  * callbacks from selecting the same destination as an earlier pending callback.
774  *
775  * Move requests can also be generated by kmem_cache_reap() when the system is
776  * desperate for memory and by kmem_cache_move_notify(), called by the client to
777  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
778  * The map of pending callbacks is protected by the same lock that protects the
779  * slab layer.
780  *
781  * When the system is desperate for memory, kmem does not bother to determine
782  * whether or not the cache exceeds the fragmentation threshold, but tries to
783  * consolidate as many slabs as possible. Normally, the consolidator chews
784  * slowly, one sparsely allocated slab at a time during each maintenance
785  * interval that the cache is fragmented. When desperate, the consolidator
786  * starts at the last partial slab and enqueues callbacks for every allocated
787  * object on every partial slab, working backwards until it reaches the first
788  * partial slab. The first partial slab, meanwhile, advances in pace with the
789  * consolidator as allocations to supply move destinations for the enqueued
790  * callbacks use up the highly allocated slabs at the front of the free list.
791  * Ideally, the overgrown free list collapses like an accordion, starting at
792  * both ends and ending at the center with a single partial slab.
793  *
794  * 3.3 Client Responses
795  *
796  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
797  * marks the slab that supplied the stuck object non-reclaimable and moves it to
798  * front of the free list. The slab remains marked as long as it remains on the
799  * free list, and it appears more allocated to the partial slab compare function
800  * than any unmarked slab, no matter how many of its objects are allocated.
801  * Since even one immovable object ties up the entire slab, the goal is to
802  * completely allocate any slab that cannot be completely freed. kmem does not
803  * bother generating callbacks to move objects from a marked slab unless the
804  * system is desperate.
805  *
806  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
807  * slab. If the client responds LATER too many times, kmem disbelieves and
808  * treats the response as a NO. The count is cleared when the slab is taken off
809  * the partial slab list or when the client moves one of the slab's objects.
810  *
811  * 4. Observability
812  *
813  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
814  * the ::kmem_slabs dcmd. For a complete description of the command, enter
815  * '::help kmem_slabs' at the mdb prompt.
816  */
817 
818 #include <sys/kmem_impl.h>
819 #include <sys/vmem_impl.h>
820 #include <sys/param.h>
821 #include <sys/sysmacros.h>
822 #include <sys/vm.h>
823 #include <sys/proc.h>
824 #include <sys/tuneable.h>
825 #include <sys/systm.h>
826 #include <sys/cmn_err.h>
827 #include <sys/debug.h>
828 #include <sys/sdt.h>
829 #include <sys/mutex.h>
830 #include <sys/bitmap.h>
831 #include <sys/atomic.h>
832 #include <sys/kobj.h>
833 #include <sys/disp.h>
834 #include <vm/seg_kmem.h>
835 #include <sys/log.h>
836 #include <sys/callb.h>
837 #include <sys/taskq.h>
838 #include <sys/modctl.h>
839 #include <sys/reboot.h>
840 #include <sys/id32.h>
841 #include <sys/zone.h>
842 #include <sys/netstack.h>
843 #ifdef	DEBUG
844 #include <sys/random.h>
845 #endif
846 
847 extern void streams_msg_init(void);
848 extern int segkp_fromheap;
849 extern void segkp_cache_free(void);
850 extern int callout_init_done;
851 
852 struct kmem_cache_kstat {
853 	kstat_named_t	kmc_buf_size;
854 	kstat_named_t	kmc_align;
855 	kstat_named_t	kmc_chunk_size;
856 	kstat_named_t	kmc_slab_size;
857 	kstat_named_t	kmc_alloc;
858 	kstat_named_t	kmc_alloc_fail;
859 	kstat_named_t	kmc_free;
860 	kstat_named_t	kmc_depot_alloc;
861 	kstat_named_t	kmc_depot_free;
862 	kstat_named_t	kmc_depot_contention;
863 	kstat_named_t	kmc_slab_alloc;
864 	kstat_named_t	kmc_slab_free;
865 	kstat_named_t	kmc_buf_constructed;
866 	kstat_named_t	kmc_buf_avail;
867 	kstat_named_t	kmc_buf_inuse;
868 	kstat_named_t	kmc_buf_total;
869 	kstat_named_t	kmc_buf_max;
870 	kstat_named_t	kmc_slab_create;
871 	kstat_named_t	kmc_slab_destroy;
872 	kstat_named_t	kmc_vmem_source;
873 	kstat_named_t	kmc_hash_size;
874 	kstat_named_t	kmc_hash_lookup_depth;
875 	kstat_named_t	kmc_hash_rescale;
876 	kstat_named_t	kmc_full_magazines;
877 	kstat_named_t	kmc_empty_magazines;
878 	kstat_named_t	kmc_magazine_size;
879 	kstat_named_t	kmc_reap; /* number of kmem_cache_reap() calls */
880 	kstat_named_t	kmc_defrag; /* attempts to defrag all partial slabs */
881 	kstat_named_t	kmc_scan; /* attempts to defrag one partial slab */
882 	kstat_named_t	kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
883 	kstat_named_t	kmc_move_yes;
884 	kstat_named_t	kmc_move_no;
885 	kstat_named_t	kmc_move_later;
886 	kstat_named_t	kmc_move_dont_need;
887 	kstat_named_t	kmc_move_dont_know; /* obj unrecognized by client ... */
888 	kstat_named_t	kmc_move_hunt_found; /* ... but found in mag layer */
889 	kstat_named_t	kmc_move_slabs_freed; /* slabs freed by consolidator */
890 	kstat_named_t	kmc_move_reclaimable; /* buffers, if consolidator ran */
891 } kmem_cache_kstat = {
892 	{ "buf_size",		KSTAT_DATA_UINT64 },
893 	{ "align",		KSTAT_DATA_UINT64 },
894 	{ "chunk_size",		KSTAT_DATA_UINT64 },
895 	{ "slab_size",		KSTAT_DATA_UINT64 },
896 	{ "alloc",		KSTAT_DATA_UINT64 },
897 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
898 	{ "free",		KSTAT_DATA_UINT64 },
899 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
900 	{ "depot_free",		KSTAT_DATA_UINT64 },
901 	{ "depot_contention",	KSTAT_DATA_UINT64 },
902 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
903 	{ "slab_free",		KSTAT_DATA_UINT64 },
904 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
905 	{ "buf_avail",		KSTAT_DATA_UINT64 },
906 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
907 	{ "buf_total",		KSTAT_DATA_UINT64 },
908 	{ "buf_max",		KSTAT_DATA_UINT64 },
909 	{ "slab_create",	KSTAT_DATA_UINT64 },
910 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
911 	{ "vmem_source",	KSTAT_DATA_UINT64 },
912 	{ "hash_size",		KSTAT_DATA_UINT64 },
913 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
914 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
915 	{ "full_magazines",	KSTAT_DATA_UINT64 },
916 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
917 	{ "magazine_size",	KSTAT_DATA_UINT64 },
918 	{ "reap",		KSTAT_DATA_UINT64 },
919 	{ "defrag",		KSTAT_DATA_UINT64 },
920 	{ "scan",		KSTAT_DATA_UINT64 },
921 	{ "move_callbacks",	KSTAT_DATA_UINT64 },
922 	{ "move_yes",		KSTAT_DATA_UINT64 },
923 	{ "move_no",		KSTAT_DATA_UINT64 },
924 	{ "move_later",		KSTAT_DATA_UINT64 },
925 	{ "move_dont_need",	KSTAT_DATA_UINT64 },
926 	{ "move_dont_know",	KSTAT_DATA_UINT64 },
927 	{ "move_hunt_found",	KSTAT_DATA_UINT64 },
928 	{ "move_slabs_freed",	KSTAT_DATA_UINT64 },
929 	{ "move_reclaimable",	KSTAT_DATA_UINT64 },
930 };
931 
932 static kmutex_t kmem_cache_kstat_lock;
933 
934 /*
935  * The default set of caches to back kmem_alloc().
936  * These sizes should be reevaluated periodically.
937  *
938  * We want allocations that are multiples of the coherency granularity
939  * (64 bytes) to be satisfied from a cache which is a multiple of 64
940  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
941  * the next kmem_cache_size greater than or equal to it must be a
942  * multiple of 64.
943  *
944  * We split the table into two sections:  size <= 4k and size > 4k.  This
945  * saves a lot of space and cache footprint in our cache tables.
946  */
947 static const int kmem_alloc_sizes[] = {
948 	1 * 8,
949 	2 * 8,
950 	3 * 8,
951 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
952 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
953 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
954 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
955 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
956 	P2ALIGN(8192 / 7, 64),
957 	P2ALIGN(8192 / 6, 64),
958 	P2ALIGN(8192 / 5, 64),
959 	P2ALIGN(8192 / 4, 64),
960 	P2ALIGN(8192 / 3, 64),
961 	P2ALIGN(8192 / 2, 64),
962 };
963 
964 static const int kmem_big_alloc_sizes[] = {
965 	2 * 4096,	3 * 4096,
966 	2 * 8192,	3 * 8192,
967 	4 * 8192,	5 * 8192,	6 * 8192,	7 * 8192,
968 	8 * 8192,	9 * 8192,	10 * 8192,	11 * 8192,
969 	12 * 8192,	13 * 8192,	14 * 8192,	15 * 8192,
970 	16 * 8192
971 };
972 
973 #define	KMEM_MAXBUF		4096
974 #define	KMEM_BIG_MAXBUF_32BIT	32768
975 #define	KMEM_BIG_MAXBUF		131072
976 
977 #define	KMEM_BIG_MULTIPLE	4096	/* big_alloc_sizes must be a multiple */
978 #define	KMEM_BIG_SHIFT		12	/* lg(KMEM_BIG_MULTIPLE) */
979 
980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
982 
983 #define	KMEM_ALLOC_TABLE_MAX	(KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
984 static size_t kmem_big_alloc_table_max = 0;	/* # of filled elements */
985 
986 static kmem_magtype_t kmem_magtype[] = {
987 	{ 1,	8,	3200,	65536	},
988 	{ 3,	16,	256,	32768	},
989 	{ 7,	32,	64,	16384	},
990 	{ 15,	64,	0,	8192	},
991 	{ 31,	64,	0,	4096	},
992 	{ 47,	64,	0,	2048	},
993 	{ 63,	64,	0,	1024	},
994 	{ 95,	64,	0,	512	},
995 	{ 143,	64,	0,	0	},
996 };
997 
998 static uint32_t kmem_reaping;
999 static uint32_t kmem_reaping_idspace;
1000 
1001 /*
1002  * kmem tunables
1003  */
1004 clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
1005 int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
1006 pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
1007 int kmem_panic = 1;		/* whether to panic on error */
1008 int kmem_logging = 1;		/* kmem_log_enter() override */
1009 uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011 size_t kmem_content_log_size;	/* content log size [2% of memory] */
1012 size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
1013 size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
1014 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1015 size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
1016 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1017 int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
1018 size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
1019 size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
1020 
1021 #ifdef _LP64
1022 size_t	kmem_max_cached = KMEM_BIG_MAXBUF;	/* maximum kmem_alloc cache */
1023 #else
1024 size_t	kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1025 #endif
1026 
1027 #ifdef DEBUG
1028 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1029 #else
1030 int kmem_flags = 0;
1031 #endif
1032 int kmem_ready;
1033 
1034 static kmem_cache_t	*kmem_slab_cache;
1035 static kmem_cache_t	*kmem_bufctl_cache;
1036 static kmem_cache_t	*kmem_bufctl_audit_cache;
1037 
1038 static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
1039 static list_t		kmem_caches;
1040 
1041 static taskq_t		*kmem_taskq;
1042 static kmutex_t		kmem_flags_lock;
1043 static vmem_t		*kmem_metadata_arena;
1044 static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
1045 static vmem_t		*kmem_cache_arena;
1046 static vmem_t		*kmem_hash_arena;
1047 static vmem_t		*kmem_log_arena;
1048 static vmem_t		*kmem_oversize_arena;
1049 static vmem_t		*kmem_va_arena;
1050 static vmem_t		*kmem_default_arena;
1051 static vmem_t		*kmem_firewall_va_arena;
1052 static vmem_t		*kmem_firewall_arena;
1053 
1054 /*
1055  * kmem slab consolidator thresholds (tunables)
1056  */
1057 size_t kmem_frag_minslabs = 101;	/* minimum total slabs */
1058 size_t kmem_frag_numer = 1;		/* free buffers (numerator) */
1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1060 /*
1061  * Maximum number of slabs from which to move buffers during a single
1062  * maintenance interval while the system is not low on memory.
1063  */
1064 size_t kmem_reclaim_max_slabs = 1;
1065 /*
1066  * Number of slabs to scan backwards from the end of the partial slab list
1067  * when searching for buffers to relocate.
1068  */
1069 size_t kmem_reclaim_scan_range = 12;
1070 
1071 /* consolidator knobs */
1072 boolean_t kmem_move_noreap;
1073 boolean_t kmem_move_blocked;
1074 boolean_t kmem_move_fulltilt;
1075 boolean_t kmem_move_any_partial;
1076 
1077 #ifdef	DEBUG
1078 /*
1079  * kmem consolidator debug tunables:
1080  * Ensure code coverage by occasionally running the consolidator even when the
1081  * caches are not fragmented (they may never be). These intervals are mean time
1082  * in cache maintenance intervals (kmem_cache_update).
1083  */
1084 uint32_t kmem_mtb_move = 60;	/* defrag 1 slab (~15min) */
1085 uint32_t kmem_mtb_reap = 1800;	/* defrag all slabs (~7.5hrs) */
1086 #endif	/* DEBUG */
1087 
1088 static kmem_cache_t	*kmem_defrag_cache;
1089 static kmem_cache_t	*kmem_move_cache;
1090 static taskq_t		*kmem_move_taskq;
1091 
1092 static void kmem_cache_scan(kmem_cache_t *);
1093 static void kmem_cache_defrag(kmem_cache_t *);
1094 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1095 
1096 
1097 kmem_log_header_t	*kmem_transaction_log;
1098 kmem_log_header_t	*kmem_content_log;
1099 kmem_log_header_t	*kmem_failure_log;
1100 kmem_log_header_t	*kmem_slab_log;
1101 
1102 static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1103 
1104 #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
1105 	if ((count) > 0) {						\
1106 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
1107 		pc_t *_e;						\
1108 		/* memmove() the old entries down one notch */		\
1109 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
1110 			*_e = *(_e - 1);				\
1111 		*_s = (uintptr_t)(caller);				\
1112 	}
1113 
1114 #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
1115 #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
1116 #define	KMERR_DUPFREE	2	/* freed a buffer twice */
1117 #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
1118 #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
1119 #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
1120 #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
1121 #define	KMERR_BADSIZE	7	/* alloc size != free size */
1122 #define	KMERR_BADBASE	8	/* buffer base address wrong */
1123 
1124 struct {
1125 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
1126 	int		kmp_error;	/* type of kmem error */
1127 	void		*kmp_buffer;	/* buffer that induced panic */
1128 	void		*kmp_realbuf;	/* real start address for buffer */
1129 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
1130 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
1131 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
1132 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
1133 } kmem_panic_info;
1134 
1135 
1136 static void
1137 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1138 {
1139 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1140 	uint64_t *buf = buf_arg;
1141 
1142 	while (buf < bufend)
1143 		*buf++ = pattern;
1144 }
1145 
1146 static void *
1147 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1148 {
1149 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1150 	uint64_t *buf;
1151 
1152 	for (buf = buf_arg; buf < bufend; buf++)
1153 		if (*buf != pattern)
1154 			return (buf);
1155 	return (NULL);
1156 }
1157 
1158 static void *
1159 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1160 {
1161 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162 	uint64_t *buf;
1163 
1164 	for (buf = buf_arg; buf < bufend; buf++) {
1165 		if (*buf != old) {
1166 			copy_pattern(old, buf_arg,
1167 			    (char *)buf - (char *)buf_arg);
1168 			return (buf);
1169 		}
1170 		*buf = new;
1171 	}
1172 
1173 	return (NULL);
1174 }
1175 
1176 static void
1177 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1178 {
1179 	kmem_cache_t *cp;
1180 
1181 	mutex_enter(&kmem_cache_lock);
1182 	for (cp = list_head(&kmem_caches); cp != NULL;
1183 	    cp = list_next(&kmem_caches, cp))
1184 		if (tq != NULL)
1185 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1186 			    tqflag);
1187 		else
1188 			func(cp);
1189 	mutex_exit(&kmem_cache_lock);
1190 }
1191 
1192 static void
1193 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1194 {
1195 	kmem_cache_t *cp;
1196 
1197 	mutex_enter(&kmem_cache_lock);
1198 	for (cp = list_head(&kmem_caches); cp != NULL;
1199 	    cp = list_next(&kmem_caches, cp)) {
1200 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
1201 			continue;
1202 		if (tq != NULL)
1203 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1204 			    tqflag);
1205 		else
1206 			func(cp);
1207 	}
1208 	mutex_exit(&kmem_cache_lock);
1209 }
1210 
1211 /*
1212  * Debugging support.  Given a buffer address, find its slab.
1213  */
1214 static kmem_slab_t *
1215 kmem_findslab(kmem_cache_t *cp, void *buf)
1216 {
1217 	kmem_slab_t *sp;
1218 
1219 	mutex_enter(&cp->cache_lock);
1220 	for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1221 	    sp = list_next(&cp->cache_complete_slabs, sp)) {
1222 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1223 			mutex_exit(&cp->cache_lock);
1224 			return (sp);
1225 		}
1226 	}
1227 	for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1228 	    sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1229 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1230 			mutex_exit(&cp->cache_lock);
1231 			return (sp);
1232 		}
1233 	}
1234 	mutex_exit(&cp->cache_lock);
1235 
1236 	return (NULL);
1237 }
1238 
1239 static void
1240 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1241 {
1242 	kmem_buftag_t *btp = NULL;
1243 	kmem_bufctl_t *bcp = NULL;
1244 	kmem_cache_t *cp = cparg;
1245 	kmem_slab_t *sp;
1246 	uint64_t *off;
1247 	void *buf = bufarg;
1248 
1249 	kmem_logging = 0;	/* stop logging when a bad thing happens */
1250 
1251 	kmem_panic_info.kmp_timestamp = gethrtime();
1252 
1253 	sp = kmem_findslab(cp, buf);
1254 	if (sp == NULL) {
1255 		for (cp = list_tail(&kmem_caches); cp != NULL;
1256 		    cp = list_prev(&kmem_caches, cp)) {
1257 			if ((sp = kmem_findslab(cp, buf)) != NULL)
1258 				break;
1259 		}
1260 	}
1261 
1262 	if (sp == NULL) {
1263 		cp = NULL;
1264 		error = KMERR_BADADDR;
1265 	} else {
1266 		if (cp != cparg)
1267 			error = KMERR_BADCACHE;
1268 		else
1269 			buf = (char *)bufarg - ((uintptr_t)bufarg -
1270 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1271 		if (buf != bufarg)
1272 			error = KMERR_BADBASE;
1273 		if (cp->cache_flags & KMF_BUFTAG)
1274 			btp = KMEM_BUFTAG(cp, buf);
1275 		if (cp->cache_flags & KMF_HASH) {
1276 			mutex_enter(&cp->cache_lock);
1277 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1278 				if (bcp->bc_addr == buf)
1279 					break;
1280 			mutex_exit(&cp->cache_lock);
1281 			if (bcp == NULL && btp != NULL)
1282 				bcp = btp->bt_bufctl;
1283 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1284 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1285 			    bcp->bc_addr != buf) {
1286 				error = KMERR_BADBUFCTL;
1287 				bcp = NULL;
1288 			}
1289 		}
1290 	}
1291 
1292 	kmem_panic_info.kmp_error = error;
1293 	kmem_panic_info.kmp_buffer = bufarg;
1294 	kmem_panic_info.kmp_realbuf = buf;
1295 	kmem_panic_info.kmp_cache = cparg;
1296 	kmem_panic_info.kmp_realcache = cp;
1297 	kmem_panic_info.kmp_slab = sp;
1298 	kmem_panic_info.kmp_bufctl = bcp;
1299 
1300 	printf("kernel memory allocator: ");
1301 
1302 	switch (error) {
1303 
1304 	case KMERR_MODIFIED:
1305 		printf("buffer modified after being freed\n");
1306 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1307 		if (off == NULL)	/* shouldn't happen */
1308 			off = buf;
1309 		printf("modification occurred at offset 0x%lx "
1310 		    "(0x%llx replaced by 0x%llx)\n",
1311 		    (uintptr_t)off - (uintptr_t)buf,
1312 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1313 		break;
1314 
1315 	case KMERR_REDZONE:
1316 		printf("redzone violation: write past end of buffer\n");
1317 		break;
1318 
1319 	case KMERR_BADADDR:
1320 		printf("invalid free: buffer not in cache\n");
1321 		break;
1322 
1323 	case KMERR_DUPFREE:
1324 		printf("duplicate free: buffer freed twice\n");
1325 		break;
1326 
1327 	case KMERR_BADBUFTAG:
1328 		printf("boundary tag corrupted\n");
1329 		printf("bcp ^ bxstat = %lx, should be %lx\n",
1330 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1331 		    KMEM_BUFTAG_FREE);
1332 		break;
1333 
1334 	case KMERR_BADBUFCTL:
1335 		printf("bufctl corrupted\n");
1336 		break;
1337 
1338 	case KMERR_BADCACHE:
1339 		printf("buffer freed to wrong cache\n");
1340 		printf("buffer was allocated from %s,\n", cp->cache_name);
1341 		printf("caller attempting free to %s.\n", cparg->cache_name);
1342 		break;
1343 
1344 	case KMERR_BADSIZE:
1345 		printf("bad free: free size (%u) != alloc size (%u)\n",
1346 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1347 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1348 		break;
1349 
1350 	case KMERR_BADBASE:
1351 		printf("bad free: free address (%p) != alloc address (%p)\n",
1352 		    bufarg, buf);
1353 		break;
1354 	}
1355 
1356 	printf("buffer=%p  bufctl=%p  cache: %s\n",
1357 	    bufarg, (void *)bcp, cparg->cache_name);
1358 
1359 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1360 	    error != KMERR_BADBUFCTL) {
1361 		int d;
1362 		timestruc_t ts;
1363 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1364 
1365 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1366 		printf("previous transaction on buffer %p:\n", buf);
1367 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1368 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1369 		    (void *)sp, cp->cache_name);
1370 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1371 			ulong_t off;
1372 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1373 			printf("%s+%lx\n", sym ? sym : "?", off);
1374 		}
1375 	}
1376 	if (kmem_panic > 0)
1377 		panic("kernel heap corruption detected");
1378 	if (kmem_panic == 0)
1379 		debug_enter(NULL);
1380 	kmem_logging = 1;	/* resume logging */
1381 }
1382 
1383 static kmem_log_header_t *
1384 kmem_log_init(size_t logsize)
1385 {
1386 	kmem_log_header_t *lhp;
1387 	int nchunks = 4 * max_ncpus;
1388 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1389 	int i;
1390 
1391 	/*
1392 	 * Make sure that lhp->lh_cpu[] is nicely aligned
1393 	 * to prevent false sharing of cache lines.
1394 	 */
1395 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1396 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1397 	    NULL, NULL, VM_SLEEP);
1398 	bzero(lhp, lhsize);
1399 
1400 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1401 	lhp->lh_nchunks = nchunks;
1402 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1403 	lhp->lh_base = vmem_alloc(kmem_log_arena,
1404 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
1405 	lhp->lh_free = vmem_alloc(kmem_log_arena,
1406 	    nchunks * sizeof (int), VM_SLEEP);
1407 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1408 
1409 	for (i = 0; i < max_ncpus; i++) {
1410 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1411 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1412 		clhp->clh_chunk = i;
1413 	}
1414 
1415 	for (i = max_ncpus; i < nchunks; i++)
1416 		lhp->lh_free[i] = i;
1417 
1418 	lhp->lh_head = max_ncpus;
1419 	lhp->lh_tail = 0;
1420 
1421 	return (lhp);
1422 }
1423 
1424 static void *
1425 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1426 {
1427 	void *logspace;
1428 	kmem_cpu_log_header_t *clhp;
1429 
1430 	if (lhp == NULL || kmem_logging == 0 || panicstr)
1431 		return (NULL);
1432 
1433 	clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1434 
1435 	mutex_enter(&clhp->clh_lock);
1436 	clhp->clh_hits++;
1437 	if (size > clhp->clh_avail) {
1438 		mutex_enter(&lhp->lh_lock);
1439 		lhp->lh_hits++;
1440 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1441 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1442 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1443 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1444 		clhp->clh_current = lhp->lh_base +
1445 		    clhp->clh_chunk * lhp->lh_chunksize;
1446 		clhp->clh_avail = lhp->lh_chunksize;
1447 		if (size > lhp->lh_chunksize)
1448 			size = lhp->lh_chunksize;
1449 		mutex_exit(&lhp->lh_lock);
1450 	}
1451 	logspace = clhp->clh_current;
1452 	clhp->clh_current += size;
1453 	clhp->clh_avail -= size;
1454 	bcopy(data, logspace, size);
1455 	mutex_exit(&clhp->clh_lock);
1456 	return (logspace);
1457 }
1458 
1459 #define	KMEM_AUDIT(lp, cp, bcp)						\
1460 {									\
1461 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
1462 	_bcp->bc_timestamp = gethrtime();				\
1463 	_bcp->bc_thread = curthread;					\
1464 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
1465 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
1466 }
1467 
1468 static void
1469 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1470     kmem_slab_t *sp, void *addr)
1471 {
1472 	kmem_bufctl_audit_t bca;
1473 
1474 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
1475 	bca.bc_addr = addr;
1476 	bca.bc_slab = sp;
1477 	bca.bc_cache = cp;
1478 	KMEM_AUDIT(lp, cp, &bca);
1479 }
1480 
1481 /*
1482  * Create a new slab for cache cp.
1483  */
1484 static kmem_slab_t *
1485 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1486 {
1487 	size_t slabsize = cp->cache_slabsize;
1488 	size_t chunksize = cp->cache_chunksize;
1489 	int cache_flags = cp->cache_flags;
1490 	size_t color, chunks;
1491 	char *buf, *slab;
1492 	kmem_slab_t *sp;
1493 	kmem_bufctl_t *bcp;
1494 	vmem_t *vmp = cp->cache_arena;
1495 
1496 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1497 
1498 	color = cp->cache_color + cp->cache_align;
1499 	if (color > cp->cache_maxcolor)
1500 		color = cp->cache_mincolor;
1501 	cp->cache_color = color;
1502 
1503 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1504 
1505 	if (slab == NULL)
1506 		goto vmem_alloc_failure;
1507 
1508 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1509 
1510 	/*
1511 	 * Reverify what was already checked in kmem_cache_set_move(), since the
1512 	 * consolidator depends (for correctness) on slabs being initialized
1513 	 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1514 	 * clients to distinguish uninitialized memory from known objects).
1515 	 */
1516 	ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1517 	if (!(cp->cache_cflags & KMC_NOTOUCH))
1518 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1519 
1520 	if (cache_flags & KMF_HASH) {
1521 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1522 			goto slab_alloc_failure;
1523 		chunks = (slabsize - color) / chunksize;
1524 	} else {
1525 		sp = KMEM_SLAB(cp, slab);
1526 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1527 	}
1528 
1529 	sp->slab_cache	= cp;
1530 	sp->slab_head	= NULL;
1531 	sp->slab_refcnt	= 0;
1532 	sp->slab_base	= buf = slab + color;
1533 	sp->slab_chunks	= chunks;
1534 	sp->slab_stuck_offset = (uint32_t)-1;
1535 	sp->slab_later_count = 0;
1536 	sp->slab_flags = 0;
1537 
1538 	ASSERT(chunks > 0);
1539 	while (chunks-- != 0) {
1540 		if (cache_flags & KMF_HASH) {
1541 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1542 			if (bcp == NULL)
1543 				goto bufctl_alloc_failure;
1544 			if (cache_flags & KMF_AUDIT) {
1545 				kmem_bufctl_audit_t *bcap =
1546 				    (kmem_bufctl_audit_t *)bcp;
1547 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
1548 				bcap->bc_cache = cp;
1549 			}
1550 			bcp->bc_addr = buf;
1551 			bcp->bc_slab = sp;
1552 		} else {
1553 			bcp = KMEM_BUFCTL(cp, buf);
1554 		}
1555 		if (cache_flags & KMF_BUFTAG) {
1556 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1557 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
1558 			btp->bt_bufctl = bcp;
1559 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1560 			if (cache_flags & KMF_DEADBEEF) {
1561 				copy_pattern(KMEM_FREE_PATTERN, buf,
1562 				    cp->cache_verify);
1563 			}
1564 		}
1565 		bcp->bc_next = sp->slab_head;
1566 		sp->slab_head = bcp;
1567 		buf += chunksize;
1568 	}
1569 
1570 	kmem_log_event(kmem_slab_log, cp, sp, slab);
1571 
1572 	return (sp);
1573 
1574 bufctl_alloc_failure:
1575 
1576 	while ((bcp = sp->slab_head) != NULL) {
1577 		sp->slab_head = bcp->bc_next;
1578 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
1579 	}
1580 	kmem_cache_free(kmem_slab_cache, sp);
1581 
1582 slab_alloc_failure:
1583 
1584 	vmem_free(vmp, slab, slabsize);
1585 
1586 vmem_alloc_failure:
1587 
1588 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1589 	atomic_inc_64(&cp->cache_alloc_fail);
1590 
1591 	return (NULL);
1592 }
1593 
1594 /*
1595  * Destroy a slab.
1596  */
1597 static void
1598 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1599 {
1600 	vmem_t *vmp = cp->cache_arena;
1601 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1602 
1603 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1604 	ASSERT(sp->slab_refcnt == 0);
1605 
1606 	if (cp->cache_flags & KMF_HASH) {
1607 		kmem_bufctl_t *bcp;
1608 		while ((bcp = sp->slab_head) != NULL) {
1609 			sp->slab_head = bcp->bc_next;
1610 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
1611 		}
1612 		kmem_cache_free(kmem_slab_cache, sp);
1613 	}
1614 	vmem_free(vmp, slab, cp->cache_slabsize);
1615 }
1616 
1617 static void *
1618 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1619 {
1620 	kmem_bufctl_t *bcp, **hash_bucket;
1621 	void *buf;
1622 	boolean_t new_slab = (sp->slab_refcnt == 0);
1623 
1624 	ASSERT(MUTEX_HELD(&cp->cache_lock));
1625 	/*
1626 	 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1627 	 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1628 	 * slab is newly created.
1629 	 */
1630 	ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1631 	    (sp == avl_first(&cp->cache_partial_slabs))));
1632 	ASSERT(sp->slab_cache == cp);
1633 
1634 	cp->cache_slab_alloc++;
1635 	cp->cache_bufslab--;
1636 	sp->slab_refcnt++;
1637 
1638 	bcp = sp->slab_head;
1639 	sp->slab_head = bcp->bc_next;
1640 
1641 	if (cp->cache_flags & KMF_HASH) {
1642 		/*
1643 		 * Add buffer to allocated-address hash table.
1644 		 */
1645 		buf = bcp->bc_addr;
1646 		hash_bucket = KMEM_HASH(cp, buf);
1647 		bcp->bc_next = *hash_bucket;
1648 		*hash_bucket = bcp;
1649 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1650 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1651 		}
1652 	} else {
1653 		buf = KMEM_BUF(cp, bcp);
1654 	}
1655 
1656 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1657 
1658 	if (sp->slab_head == NULL) {
1659 		ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1660 		if (new_slab) {
1661 			ASSERT(sp->slab_chunks == 1);
1662 		} else {
1663 			ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1664 			avl_remove(&cp->cache_partial_slabs, sp);
1665 			sp->slab_later_count = 0; /* clear history */
1666 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1667 			sp->slab_stuck_offset = (uint32_t)-1;
1668 		}
1669 		list_insert_head(&cp->cache_complete_slabs, sp);
1670 		cp->cache_complete_slab_count++;
1671 		return (buf);
1672 	}
1673 
1674 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1675 	/*
1676 	 * Peek to see if the magazine layer is enabled before
1677 	 * we prefill.  We're not holding the cpu cache lock,
1678 	 * so the peek could be wrong, but there's no harm in it.
1679 	 */
1680 	if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1681 	    (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1682 		kmem_slab_prefill(cp, sp);
1683 		return (buf);
1684 	}
1685 
1686 	if (new_slab) {
1687 		avl_add(&cp->cache_partial_slabs, sp);
1688 		return (buf);
1689 	}
1690 
1691 	/*
1692 	 * The slab is now more allocated than it was, so the
1693 	 * order remains unchanged.
1694 	 */
1695 	ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1696 	return (buf);
1697 }
1698 
1699 /*
1700  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1701  */
1702 static void *
1703 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1704 {
1705 	kmem_slab_t *sp;
1706 	void *buf;
1707 	boolean_t test_destructor;
1708 
1709 	mutex_enter(&cp->cache_lock);
1710 	test_destructor = (cp->cache_slab_alloc == 0);
1711 	sp = avl_first(&cp->cache_partial_slabs);
1712 	if (sp == NULL) {
1713 		ASSERT(cp->cache_bufslab == 0);
1714 
1715 		/*
1716 		 * The freelist is empty.  Create a new slab.
1717 		 */
1718 		mutex_exit(&cp->cache_lock);
1719 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1720 			return (NULL);
1721 		}
1722 		mutex_enter(&cp->cache_lock);
1723 		cp->cache_slab_create++;
1724 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1725 			cp->cache_bufmax = cp->cache_buftotal;
1726 		cp->cache_bufslab += sp->slab_chunks;
1727 	}
1728 
1729 	buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1730 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1731 	    (cp->cache_complete_slab_count +
1732 	    avl_numnodes(&cp->cache_partial_slabs) +
1733 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1734 	mutex_exit(&cp->cache_lock);
1735 
1736 	if (test_destructor && cp->cache_destructor != NULL) {
1737 		/*
1738 		 * On the first kmem_slab_alloc(), assert that it is valid to
1739 		 * call the destructor on a newly constructed object without any
1740 		 * client involvement.
1741 		 */
1742 		if ((cp->cache_constructor == NULL) ||
1743 		    cp->cache_constructor(buf, cp->cache_private,
1744 		    kmflag) == 0) {
1745 			cp->cache_destructor(buf, cp->cache_private);
1746 		}
1747 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1748 		    cp->cache_bufsize);
1749 		if (cp->cache_flags & KMF_DEADBEEF) {
1750 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1751 		}
1752 	}
1753 
1754 	return (buf);
1755 }
1756 
1757 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1758 
1759 /*
1760  * Free a raw (unconstructed) buffer to cp's slab layer.
1761  */
1762 static void
1763 kmem_slab_free(kmem_cache_t *cp, void *buf)
1764 {
1765 	kmem_slab_t *sp;
1766 	kmem_bufctl_t *bcp, **prev_bcpp;
1767 
1768 	ASSERT(buf != NULL);
1769 
1770 	mutex_enter(&cp->cache_lock);
1771 	cp->cache_slab_free++;
1772 
1773 	if (cp->cache_flags & KMF_HASH) {
1774 		/*
1775 		 * Look up buffer in allocated-address hash table.
1776 		 */
1777 		prev_bcpp = KMEM_HASH(cp, buf);
1778 		while ((bcp = *prev_bcpp) != NULL) {
1779 			if (bcp->bc_addr == buf) {
1780 				*prev_bcpp = bcp->bc_next;
1781 				sp = bcp->bc_slab;
1782 				break;
1783 			}
1784 			cp->cache_lookup_depth++;
1785 			prev_bcpp = &bcp->bc_next;
1786 		}
1787 	} else {
1788 		bcp = KMEM_BUFCTL(cp, buf);
1789 		sp = KMEM_SLAB(cp, buf);
1790 	}
1791 
1792 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1793 		mutex_exit(&cp->cache_lock);
1794 		kmem_error(KMERR_BADADDR, cp, buf);
1795 		return;
1796 	}
1797 
1798 	if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1799 		/*
1800 		 * If this is the buffer that prevented the consolidator from
1801 		 * clearing the slab, we can reset the slab flags now that the
1802 		 * buffer is freed. (It makes sense to do this in
1803 		 * kmem_cache_free(), where the client gives up ownership of the
1804 		 * buffer, but on the hot path the test is too expensive.)
1805 		 */
1806 		kmem_slab_move_yes(cp, sp, buf);
1807 	}
1808 
1809 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1810 		if (cp->cache_flags & KMF_CONTENTS)
1811 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
1812 			    kmem_log_enter(kmem_content_log, buf,
1813 			    cp->cache_contents);
1814 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1815 	}
1816 
1817 	bcp->bc_next = sp->slab_head;
1818 	sp->slab_head = bcp;
1819 
1820 	cp->cache_bufslab++;
1821 	ASSERT(sp->slab_refcnt >= 1);
1822 
1823 	if (--sp->slab_refcnt == 0) {
1824 		/*
1825 		 * There are no outstanding allocations from this slab,
1826 		 * so we can reclaim the memory.
1827 		 */
1828 		if (sp->slab_chunks == 1) {
1829 			list_remove(&cp->cache_complete_slabs, sp);
1830 			cp->cache_complete_slab_count--;
1831 		} else {
1832 			avl_remove(&cp->cache_partial_slabs, sp);
1833 		}
1834 
1835 		cp->cache_buftotal -= sp->slab_chunks;
1836 		cp->cache_bufslab -= sp->slab_chunks;
1837 		/*
1838 		 * Defer releasing the slab to the virtual memory subsystem
1839 		 * while there is a pending move callback, since we guarantee
1840 		 * that buffers passed to the move callback have only been
1841 		 * touched by kmem or by the client itself. Since the memory
1842 		 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1843 		 * set at least one of the two lowest order bits, the client can
1844 		 * test those bits in the move callback to determine whether or
1845 		 * not it knows about the buffer (assuming that the client also
1846 		 * sets one of those low order bits whenever it frees a buffer).
1847 		 */
1848 		if (cp->cache_defrag == NULL ||
1849 		    (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1850 		    !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1851 			cp->cache_slab_destroy++;
1852 			mutex_exit(&cp->cache_lock);
1853 			kmem_slab_destroy(cp, sp);
1854 		} else {
1855 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1856 			/*
1857 			 * Slabs are inserted at both ends of the deadlist to
1858 			 * distinguish between slabs freed while move callbacks
1859 			 * are pending (list head) and a slab freed while the
1860 			 * lock is dropped in kmem_move_buffers() (list tail) so
1861 			 * that in both cases slab_destroy() is called from the
1862 			 * right context.
1863 			 */
1864 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1865 				list_insert_tail(deadlist, sp);
1866 			} else {
1867 				list_insert_head(deadlist, sp);
1868 			}
1869 			cp->cache_defrag->kmd_deadcount++;
1870 			mutex_exit(&cp->cache_lock);
1871 		}
1872 		return;
1873 	}
1874 
1875 	if (bcp->bc_next == NULL) {
1876 		/* Transition the slab from completely allocated to partial. */
1877 		ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1878 		ASSERT(sp->slab_chunks > 1);
1879 		list_remove(&cp->cache_complete_slabs, sp);
1880 		cp->cache_complete_slab_count--;
1881 		avl_add(&cp->cache_partial_slabs, sp);
1882 	} else {
1883 		(void) avl_update_gt(&cp->cache_partial_slabs, sp);
1884 	}
1885 
1886 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1887 	    (cp->cache_complete_slab_count +
1888 	    avl_numnodes(&cp->cache_partial_slabs) +
1889 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1890 	mutex_exit(&cp->cache_lock);
1891 }
1892 
1893 /*
1894  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1895  */
1896 static int
1897 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1898     caddr_t caller)
1899 {
1900 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1901 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1902 	uint32_t mtbf;
1903 
1904 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1905 		kmem_error(KMERR_BADBUFTAG, cp, buf);
1906 		return (-1);
1907 	}
1908 
1909 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1910 
1911 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1912 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1913 		return (-1);
1914 	}
1915 
1916 	if (cp->cache_flags & KMF_DEADBEEF) {
1917 		if (!construct && (cp->cache_flags & KMF_LITE)) {
1918 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1919 				kmem_error(KMERR_MODIFIED, cp, buf);
1920 				return (-1);
1921 			}
1922 			if (cp->cache_constructor != NULL)
1923 				*(uint64_t *)buf = btp->bt_redzone;
1924 			else
1925 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1926 		} else {
1927 			construct = 1;
1928 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1929 			    KMEM_UNINITIALIZED_PATTERN, buf,
1930 			    cp->cache_verify)) {
1931 				kmem_error(KMERR_MODIFIED, cp, buf);
1932 				return (-1);
1933 			}
1934 		}
1935 	}
1936 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
1937 
1938 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1939 	    gethrtime() % mtbf == 0 &&
1940 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1941 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1942 		if (!construct && cp->cache_destructor != NULL)
1943 			cp->cache_destructor(buf, cp->cache_private);
1944 	} else {
1945 		mtbf = 0;
1946 	}
1947 
1948 	if (mtbf || (construct && cp->cache_constructor != NULL &&
1949 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1950 		atomic_inc_64(&cp->cache_alloc_fail);
1951 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1952 		if (cp->cache_flags & KMF_DEADBEEF)
1953 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1954 		kmem_slab_free(cp, buf);
1955 		return (1);
1956 	}
1957 
1958 	if (cp->cache_flags & KMF_AUDIT) {
1959 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1960 	}
1961 
1962 	if ((cp->cache_flags & KMF_LITE) &&
1963 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1964 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1965 	}
1966 
1967 	return (0);
1968 }
1969 
1970 static int
1971 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1972 {
1973 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1974 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1975 	kmem_slab_t *sp;
1976 
1977 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1978 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1979 			kmem_error(KMERR_DUPFREE, cp, buf);
1980 			return (-1);
1981 		}
1982 		sp = kmem_findslab(cp, buf);
1983 		if (sp == NULL || sp->slab_cache != cp)
1984 			kmem_error(KMERR_BADADDR, cp, buf);
1985 		else
1986 			kmem_error(KMERR_REDZONE, cp, buf);
1987 		return (-1);
1988 	}
1989 
1990 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1991 
1992 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1993 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1994 		return (-1);
1995 	}
1996 
1997 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1998 		kmem_error(KMERR_REDZONE, cp, buf);
1999 		return (-1);
2000 	}
2001 
2002 	if (cp->cache_flags & KMF_AUDIT) {
2003 		if (cp->cache_flags & KMF_CONTENTS)
2004 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
2005 			    buf, cp->cache_contents);
2006 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2007 	}
2008 
2009 	if ((cp->cache_flags & KMF_LITE) &&
2010 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2011 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2012 	}
2013 
2014 	if (cp->cache_flags & KMF_DEADBEEF) {
2015 		if (cp->cache_flags & KMF_LITE)
2016 			btp->bt_redzone = *(uint64_t *)buf;
2017 		else if (cp->cache_destructor != NULL)
2018 			cp->cache_destructor(buf, cp->cache_private);
2019 
2020 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2021 	}
2022 
2023 	return (0);
2024 }
2025 
2026 /*
2027  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2028  */
2029 static void
2030 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2031 {
2032 	int round;
2033 
2034 	ASSERT(!list_link_active(&cp->cache_link) ||
2035 	    taskq_member(kmem_taskq, curthread));
2036 
2037 	for (round = 0; round < nrounds; round++) {
2038 		void *buf = mp->mag_round[round];
2039 
2040 		if (cp->cache_flags & KMF_DEADBEEF) {
2041 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
2042 			    cp->cache_verify) != NULL) {
2043 				kmem_error(KMERR_MODIFIED, cp, buf);
2044 				continue;
2045 			}
2046 			if ((cp->cache_flags & KMF_LITE) &&
2047 			    cp->cache_destructor != NULL) {
2048 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2049 				*(uint64_t *)buf = btp->bt_redzone;
2050 				cp->cache_destructor(buf, cp->cache_private);
2051 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
2052 			}
2053 		} else if (cp->cache_destructor != NULL) {
2054 			cp->cache_destructor(buf, cp->cache_private);
2055 		}
2056 
2057 		kmem_slab_free(cp, buf);
2058 	}
2059 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2060 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2061 }
2062 
2063 /*
2064  * Allocate a magazine from the depot.
2065  */
2066 static kmem_magazine_t *
2067 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2068 {
2069 	kmem_magazine_t *mp;
2070 
2071 	/*
2072 	 * If we can't get the depot lock without contention,
2073 	 * update our contention count.  We use the depot
2074 	 * contention rate to determine whether we need to
2075 	 * increase the magazine size for better scalability.
2076 	 */
2077 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
2078 		mutex_enter(&cp->cache_depot_lock);
2079 		cp->cache_depot_contention++;
2080 	}
2081 
2082 	if ((mp = mlp->ml_list) != NULL) {
2083 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2084 		mlp->ml_list = mp->mag_next;
2085 		if (--mlp->ml_total < mlp->ml_min)
2086 			mlp->ml_min = mlp->ml_total;
2087 		mlp->ml_alloc++;
2088 	}
2089 
2090 	mutex_exit(&cp->cache_depot_lock);
2091 
2092 	return (mp);
2093 }
2094 
2095 /*
2096  * Free a magazine to the depot.
2097  */
2098 static void
2099 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2100 {
2101 	mutex_enter(&cp->cache_depot_lock);
2102 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2103 	mp->mag_next = mlp->ml_list;
2104 	mlp->ml_list = mp;
2105 	mlp->ml_total++;
2106 	mutex_exit(&cp->cache_depot_lock);
2107 }
2108 
2109 /*
2110  * Update the working set statistics for cp's depot.
2111  */
2112 static void
2113 kmem_depot_ws_update(kmem_cache_t *cp)
2114 {
2115 	mutex_enter(&cp->cache_depot_lock);
2116 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2117 	cp->cache_full.ml_min = cp->cache_full.ml_total;
2118 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2119 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2120 	mutex_exit(&cp->cache_depot_lock);
2121 }
2122 
2123 /*
2124  * Set the working set statistics for cp's depot to zero.  (Everything is
2125  * eligible for reaping.)
2126  */
2127 static void
2128 kmem_depot_ws_zero(kmem_cache_t *cp)
2129 {
2130 	mutex_enter(&cp->cache_depot_lock);
2131 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2132 	cp->cache_full.ml_min = cp->cache_full.ml_total;
2133 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2134 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2135 	mutex_exit(&cp->cache_depot_lock);
2136 }
2137 
2138 /*
2139  * The number of bytes to reap before we call kpreempt(). The default (1MB)
2140  * causes us to preempt reaping up to hundreds of times per second. Using a
2141  * larger value (1GB) causes this to have virtually no effect.
2142  */
2143 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2144 
2145 /*
2146  * Reap all magazines that have fallen out of the depot's working set.
2147  */
2148 static void
2149 kmem_depot_ws_reap(kmem_cache_t *cp)
2150 {
2151 	size_t bytes = 0;
2152 	long reap;
2153 	kmem_magazine_t *mp;
2154 
2155 	ASSERT(!list_link_active(&cp->cache_link) ||
2156 	    taskq_member(kmem_taskq, curthread));
2157 
2158 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2159 	while (reap-- &&
2160 	    (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2161 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2162 		bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2163 		if (bytes > kmem_reap_preempt_bytes) {
2164 			kpreempt(KPREEMPT_SYNC);
2165 			bytes = 0;
2166 		}
2167 	}
2168 
2169 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2170 	while (reap-- &&
2171 	    (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2172 		kmem_magazine_destroy(cp, mp, 0);
2173 		bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2174 		if (bytes > kmem_reap_preempt_bytes) {
2175 			kpreempt(KPREEMPT_SYNC);
2176 			bytes = 0;
2177 		}
2178 	}
2179 }
2180 
2181 static void
2182 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2183 {
2184 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2185 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2186 	ASSERT(ccp->cc_magsize > 0);
2187 
2188 	ccp->cc_ploaded = ccp->cc_loaded;
2189 	ccp->cc_prounds = ccp->cc_rounds;
2190 	ccp->cc_loaded = mp;
2191 	ccp->cc_rounds = rounds;
2192 }
2193 
2194 /*
2195  * Intercept kmem alloc/free calls during crash dump in order to avoid
2196  * changing kmem state while memory is being saved to the dump device.
2197  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2198  * there are no locks because only one CPU calls kmem during a crash
2199  * dump. To enable this feature, first create the associated vmem
2200  * arena with VMC_DUMPSAFE.
2201  */
2202 static void *kmem_dump_start;	/* start of pre-reserved heap */
2203 static void *kmem_dump_end;	/* end of heap area */
2204 static void *kmem_dump_curr;	/* current free heap pointer */
2205 static size_t kmem_dump_size;	/* size of heap area */
2206 
2207 /* append to each buf created in the pre-reserved heap */
2208 typedef struct kmem_dumpctl {
2209 	void	*kdc_next;	/* cache dump free list linkage */
2210 } kmem_dumpctl_t;
2211 
2212 #define	KMEM_DUMPCTL(cp, buf)	\
2213 	((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2214 	    sizeof (void *)))
2215 
2216 /* set non zero for full report */
2217 uint_t kmem_dump_verbose = 0;
2218 
2219 /* stats for overize heap */
2220 uint_t kmem_dump_oversize_allocs = 0;
2221 uint_t kmem_dump_oversize_max = 0;
2222 
2223 static void
2224 kmem_dumppr(char **pp, char *e, const char *format, ...)
2225 {
2226 	char *p = *pp;
2227 
2228 	if (p < e) {
2229 		int n;
2230 		va_list ap;
2231 
2232 		va_start(ap, format);
2233 		n = vsnprintf(p, e - p, format, ap);
2234 		va_end(ap);
2235 		*pp = p + n;
2236 	}
2237 }
2238 
2239 /*
2240  * Called when dumpadm(1M) configures dump parameters.
2241  */
2242 void
2243 kmem_dump_init(size_t size)
2244 {
2245 	/* Our caller ensures size is always set. */
2246 	ASSERT3U(size, >, 0);
2247 
2248 	if (kmem_dump_start != NULL)
2249 		kmem_free(kmem_dump_start, kmem_dump_size);
2250 
2251 	kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2252 	kmem_dump_size = size;
2253 	kmem_dump_curr = kmem_dump_start;
2254 	kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2255 	copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2256 }
2257 
2258 /*
2259  * Set flag for each kmem_cache_t if is safe to use alternate dump
2260  * memory. Called just before panic crash dump starts. Set the flag
2261  * for the calling CPU.
2262  */
2263 void
2264 kmem_dump_begin(void)
2265 {
2266 	kmem_cache_t *cp;
2267 
2268 	ASSERT(panicstr != NULL);
2269 
2270 	for (cp = list_head(&kmem_caches); cp != NULL;
2271 	    cp = list_next(&kmem_caches, cp)) {
2272 		kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2273 
2274 		if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2275 			cp->cache_flags |= KMF_DUMPDIVERT;
2276 			ccp->cc_flags |= KMF_DUMPDIVERT;
2277 			ccp->cc_dump_rounds = ccp->cc_rounds;
2278 			ccp->cc_dump_prounds = ccp->cc_prounds;
2279 			ccp->cc_rounds = ccp->cc_prounds = -1;
2280 		} else {
2281 			cp->cache_flags |= KMF_DUMPUNSAFE;
2282 			ccp->cc_flags |= KMF_DUMPUNSAFE;
2283 		}
2284 	}
2285 }
2286 
2287 /*
2288  * finished dump intercept
2289  * print any warnings on the console
2290  * return verbose information to dumpsys() in the given buffer
2291  */
2292 size_t
2293 kmem_dump_finish(char *buf, size_t size)
2294 {
2295 	int percent = 0;
2296 	size_t used;
2297 	char *e = buf + size;
2298 	char *p = buf;
2299 
2300 	if (kmem_dump_curr == kmem_dump_end) {
2301 		cmn_err(CE_WARN, "exceeded kmem_dump space of %lu "
2302 		    "bytes: kmem state in dump may be inconsistent",
2303 		    kmem_dump_size);
2304 	}
2305 
2306 	if (kmem_dump_verbose == 0)
2307 		return (0);
2308 
2309 	used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2310 	percent = (used * 100) / kmem_dump_size;
2311 
2312 	kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2313 	kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2314 	kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2315 	kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2316 	    kmem_dump_oversize_allocs);
2317 	kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2318 	    kmem_dump_oversize_max);
2319 
2320 	/* return buffer size used */
2321 	if (p < e)
2322 		bzero(p, e - p);
2323 	return (p - buf);
2324 }
2325 
2326 /*
2327  * Allocate a constructed object from alternate dump memory.
2328  */
2329 void *
2330 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2331 {
2332 	void *buf;
2333 	void *curr;
2334 	char *bufend;
2335 
2336 	/* return a constructed object */
2337 	if ((buf = cp->cache_dump.kd_freelist) != NULL) {
2338 		cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2339 		return (buf);
2340 	}
2341 
2342 	/* create a new constructed object */
2343 	curr = kmem_dump_curr;
2344 	buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2345 	bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2346 
2347 	/* hat layer objects cannot cross a page boundary */
2348 	if (cp->cache_align < PAGESIZE) {
2349 		char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2350 		if (bufend > page) {
2351 			bufend += page - (char *)buf;
2352 			buf = (void *)page;
2353 		}
2354 	}
2355 
2356 	/* fall back to normal alloc if reserved area is used up */
2357 	if (bufend > (char *)kmem_dump_end) {
2358 		kmem_dump_curr = kmem_dump_end;
2359 		cp->cache_dump.kd_alloc_fails++;
2360 		return (NULL);
2361 	}
2362 
2363 	/*
2364 	 * Must advance curr pointer before calling a constructor that
2365 	 * may also allocate memory.
2366 	 */
2367 	kmem_dump_curr = bufend;
2368 
2369 	/* run constructor */
2370 	if (cp->cache_constructor != NULL &&
2371 	    cp->cache_constructor(buf, cp->cache_private, kmflag)
2372 	    != 0) {
2373 #ifdef DEBUG
2374 		printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2375 		    cp->cache_name, (void *)cp);
2376 #endif
2377 		/* reset curr pointer iff no allocs were done */
2378 		if (kmem_dump_curr == bufend)
2379 			kmem_dump_curr = curr;
2380 
2381 		cp->cache_dump.kd_alloc_fails++;
2382 		/* fall back to normal alloc if the constructor fails */
2383 		return (NULL);
2384 	}
2385 
2386 	return (buf);
2387 }
2388 
2389 /*
2390  * Free a constructed object in alternate dump memory.
2391  */
2392 int
2393 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2394 {
2395 	/* save constructed buffers for next time */
2396 	if ((char *)buf >= (char *)kmem_dump_start &&
2397 	    (char *)buf < (char *)kmem_dump_end) {
2398 		KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist;
2399 		cp->cache_dump.kd_freelist = buf;
2400 		return (0);
2401 	}
2402 
2403 	/* just drop buffers that were allocated before dump started */
2404 	if (kmem_dump_curr < kmem_dump_end)
2405 		return (0);
2406 
2407 	/* fall back to normal free if reserved area is used up */
2408 	return (1);
2409 }
2410 
2411 /*
2412  * Allocate a constructed object from cache cp.
2413  */
2414 void *
2415 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2416 {
2417 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2418 	kmem_magazine_t *fmp;
2419 	void *buf;
2420 
2421 	mutex_enter(&ccp->cc_lock);
2422 	for (;;) {
2423 		/*
2424 		 * If there's an object available in the current CPU's
2425 		 * loaded magazine, just take it and return.
2426 		 */
2427 		if (ccp->cc_rounds > 0) {
2428 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2429 			ccp->cc_alloc++;
2430 			mutex_exit(&ccp->cc_lock);
2431 			if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2432 				if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2433 					ASSERT(!(ccp->cc_flags &
2434 					    KMF_DUMPDIVERT));
2435 					cp->cache_dump.kd_unsafe++;
2436 				}
2437 				if ((ccp->cc_flags & KMF_BUFTAG) &&
2438 				    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2439 				    caller()) != 0) {
2440 					if (kmflag & KM_NOSLEEP)
2441 						return (NULL);
2442 					mutex_enter(&ccp->cc_lock);
2443 					continue;
2444 				}
2445 			}
2446 			return (buf);
2447 		}
2448 
2449 		/*
2450 		 * The loaded magazine is empty.  If the previously loaded
2451 		 * magazine was full, exchange them and try again.
2452 		 */
2453 		if (ccp->cc_prounds > 0) {
2454 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2455 			continue;
2456 		}
2457 
2458 		/*
2459 		 * Return an alternate buffer at dump time to preserve
2460 		 * the heap.
2461 		 */
2462 		if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2463 			if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2464 				ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2465 				/* log it so that we can warn about it */
2466 				cp->cache_dump.kd_unsafe++;
2467 			} else {
2468 				if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2469 				    NULL) {
2470 					mutex_exit(&ccp->cc_lock);
2471 					return (buf);
2472 				}
2473 				break;		/* fall back to slab layer */
2474 			}
2475 		}
2476 
2477 		/*
2478 		 * If the magazine layer is disabled, break out now.
2479 		 */
2480 		if (ccp->cc_magsize == 0)
2481 			break;
2482 
2483 		/*
2484 		 * Try to get a full magazine from the depot.
2485 		 */
2486 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
2487 		if (fmp != NULL) {
2488 			if (ccp->cc_ploaded != NULL)
2489 				kmem_depot_free(cp, &cp->cache_empty,
2490 				    ccp->cc_ploaded);
2491 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2492 			continue;
2493 		}
2494 
2495 		/*
2496 		 * There are no full magazines in the depot,
2497 		 * so fall through to the slab layer.
2498 		 */
2499 		break;
2500 	}
2501 	mutex_exit(&ccp->cc_lock);
2502 
2503 	/*
2504 	 * We couldn't allocate a constructed object from the magazine layer,
2505 	 * so get a raw buffer from the slab layer and apply its constructor.
2506 	 */
2507 	buf = kmem_slab_alloc(cp, kmflag);
2508 
2509 	if (buf == NULL)
2510 		return (NULL);
2511 
2512 	if (cp->cache_flags & KMF_BUFTAG) {
2513 		/*
2514 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
2515 		 */
2516 		int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2517 		if (rc != 0) {
2518 			if (kmflag & KM_NOSLEEP)
2519 				return (NULL);
2520 			/*
2521 			 * kmem_cache_alloc_debug() detected corruption
2522 			 * but didn't panic (kmem_panic <= 0). We should not be
2523 			 * here because the constructor failed (indicated by a
2524 			 * return code of 1). Try again.
2525 			 */
2526 			ASSERT(rc == -1);
2527 			return (kmem_cache_alloc(cp, kmflag));
2528 		}
2529 		return (buf);
2530 	}
2531 
2532 	if (cp->cache_constructor != NULL &&
2533 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2534 		atomic_inc_64(&cp->cache_alloc_fail);
2535 		kmem_slab_free(cp, buf);
2536 		return (NULL);
2537 	}
2538 
2539 	return (buf);
2540 }
2541 
2542 /*
2543  * The freed argument tells whether or not kmem_cache_free_debug() has already
2544  * been called so that we can avoid the duplicate free error. For example, a
2545  * buffer on a magazine has already been freed by the client but is still
2546  * constructed.
2547  */
2548 static void
2549 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2550 {
2551 	if (!freed && (cp->cache_flags & KMF_BUFTAG))
2552 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2553 			return;
2554 
2555 	/*
2556 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2557 	 * kmem_cache_free_debug() will have already applied the destructor.
2558 	 */
2559 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2560 	    cp->cache_destructor != NULL) {
2561 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
2562 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2563 			*(uint64_t *)buf = btp->bt_redzone;
2564 			cp->cache_destructor(buf, cp->cache_private);
2565 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
2566 		} else {
2567 			cp->cache_destructor(buf, cp->cache_private);
2568 		}
2569 	}
2570 
2571 	kmem_slab_free(cp, buf);
2572 }
2573 
2574 /*
2575  * Used when there's no room to free a buffer to the per-CPU cache.
2576  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2577  * caller should try freeing to the per-CPU cache again.
2578  * Note that we don't directly install the magazine in the cpu cache,
2579  * since its state may have changed wildly while the lock was dropped.
2580  */
2581 static int
2582 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2583 {
2584 	kmem_magazine_t *emp;
2585 	kmem_magtype_t *mtp;
2586 
2587 	ASSERT(MUTEX_HELD(&ccp->cc_lock));
2588 	ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2589 	    ((uint_t)ccp->cc_rounds == -1)) &&
2590 	    ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2591 	    ((uint_t)ccp->cc_prounds == -1)));
2592 
2593 	emp = kmem_depot_alloc(cp, &cp->cache_empty);
2594 	if (emp != NULL) {
2595 		if (ccp->cc_ploaded != NULL)
2596 			kmem_depot_free(cp, &cp->cache_full,
2597 			    ccp->cc_ploaded);
2598 		kmem_cpu_reload(ccp, emp, 0);
2599 		return (1);
2600 	}
2601 	/*
2602 	 * There are no empty magazines in the depot,
2603 	 * so try to allocate a new one.  We must drop all locks
2604 	 * across kmem_cache_alloc() because lower layers may
2605 	 * attempt to allocate from this cache.
2606 	 */
2607 	mtp = cp->cache_magtype;
2608 	mutex_exit(&ccp->cc_lock);
2609 	emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2610 	mutex_enter(&ccp->cc_lock);
2611 
2612 	if (emp != NULL) {
2613 		/*
2614 		 * We successfully allocated an empty magazine.
2615 		 * However, we had to drop ccp->cc_lock to do it,
2616 		 * so the cache's magazine size may have changed.
2617 		 * If so, free the magazine and try again.
2618 		 */
2619 		if (ccp->cc_magsize != mtp->mt_magsize) {
2620 			mutex_exit(&ccp->cc_lock);
2621 			kmem_cache_free(mtp->mt_cache, emp);
2622 			mutex_enter(&ccp->cc_lock);
2623 			return (1);
2624 		}
2625 
2626 		/*
2627 		 * We got a magazine of the right size.  Add it to
2628 		 * the depot and try the whole dance again.
2629 		 */
2630 		kmem_depot_free(cp, &cp->cache_empty, emp);
2631 		return (1);
2632 	}
2633 
2634 	/*
2635 	 * We couldn't allocate an empty magazine,
2636 	 * so fall through to the slab layer.
2637 	 */
2638 	return (0);
2639 }
2640 
2641 /*
2642  * Free a constructed object to cache cp.
2643  */
2644 void
2645 kmem_cache_free(kmem_cache_t *cp, void *buf)
2646 {
2647 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2648 
2649 	/*
2650 	 * The client must not free either of the buffers passed to the move
2651 	 * callback function.
2652 	 */
2653 	ASSERT(cp->cache_defrag == NULL ||
2654 	    cp->cache_defrag->kmd_thread != curthread ||
2655 	    (buf != cp->cache_defrag->kmd_from_buf &&
2656 	    buf != cp->cache_defrag->kmd_to_buf));
2657 
2658 	if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2659 		if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2660 			ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2661 			/* log it so that we can warn about it */
2662 			cp->cache_dump.kd_unsafe++;
2663 		} else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2664 			return;
2665 		}
2666 		if (ccp->cc_flags & KMF_BUFTAG) {
2667 			if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2668 				return;
2669 		}
2670 	}
2671 
2672 	mutex_enter(&ccp->cc_lock);
2673 	/*
2674 	 * Any changes to this logic should be reflected in kmem_slab_prefill()
2675 	 */
2676 	for (;;) {
2677 		/*
2678 		 * If there's a slot available in the current CPU's
2679 		 * loaded magazine, just put the object there and return.
2680 		 */
2681 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2682 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2683 			ccp->cc_free++;
2684 			mutex_exit(&ccp->cc_lock);
2685 			return;
2686 		}
2687 
2688 		/*
2689 		 * The loaded magazine is full.  If the previously loaded
2690 		 * magazine was empty, exchange them and try again.
2691 		 */
2692 		if (ccp->cc_prounds == 0) {
2693 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2694 			continue;
2695 		}
2696 
2697 		/*
2698 		 * If the magazine layer is disabled, break out now.
2699 		 */
2700 		if (ccp->cc_magsize == 0)
2701 			break;
2702 
2703 		if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2704 			/*
2705 			 * We couldn't free our constructed object to the
2706 			 * magazine layer, so apply its destructor and free it
2707 			 * to the slab layer.
2708 			 */
2709 			break;
2710 		}
2711 	}
2712 	mutex_exit(&ccp->cc_lock);
2713 	kmem_slab_free_constructed(cp, buf, B_TRUE);
2714 }
2715 
2716 static void
2717 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2718 {
2719 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2720 	int cache_flags = cp->cache_flags;
2721 
2722 	kmem_bufctl_t *next, *head;
2723 	size_t nbufs;
2724 
2725 	/*
2726 	 * Completely allocate the newly created slab and put the pre-allocated
2727 	 * buffers in magazines. Any of the buffers that cannot be put in
2728 	 * magazines must be returned to the slab.
2729 	 */
2730 	ASSERT(MUTEX_HELD(&cp->cache_lock));
2731 	ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2732 	ASSERT(cp->cache_constructor == NULL);
2733 	ASSERT(sp->slab_cache == cp);
2734 	ASSERT(sp->slab_refcnt == 1);
2735 	ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2736 	ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2737 
2738 	head = sp->slab_head;
2739 	nbufs = (sp->slab_chunks - sp->slab_refcnt);
2740 	sp->slab_head = NULL;
2741 	sp->slab_refcnt += nbufs;
2742 	cp->cache_bufslab -= nbufs;
2743 	cp->cache_slab_alloc += nbufs;
2744 	list_insert_head(&cp->cache_complete_slabs, sp);
2745 	cp->cache_complete_slab_count++;
2746 	mutex_exit(&cp->cache_lock);
2747 	mutex_enter(&ccp->cc_lock);
2748 
2749 	while (head != NULL) {
2750 		void *buf = KMEM_BUF(cp, head);
2751 		/*
2752 		 * If there's a slot available in the current CPU's
2753 		 * loaded magazine, just put the object there and
2754 		 * continue.
2755 		 */
2756 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2757 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2758 			    buf;
2759 			ccp->cc_free++;
2760 			nbufs--;
2761 			head = head->bc_next;
2762 			continue;
2763 		}
2764 
2765 		/*
2766 		 * The loaded magazine is full.  If the previously
2767 		 * loaded magazine was empty, exchange them and try
2768 		 * again.
2769 		 */
2770 		if (ccp->cc_prounds == 0) {
2771 			kmem_cpu_reload(ccp, ccp->cc_ploaded,
2772 			    ccp->cc_prounds);
2773 			continue;
2774 		}
2775 
2776 		/*
2777 		 * If the magazine layer is disabled, break out now.
2778 		 */
2779 
2780 		if (ccp->cc_magsize == 0) {
2781 			break;
2782 		}
2783 
2784 		if (!kmem_cpucache_magazine_alloc(ccp, cp))
2785 			break;
2786 	}
2787 	mutex_exit(&ccp->cc_lock);
2788 	if (nbufs != 0) {
2789 		ASSERT(head != NULL);
2790 
2791 		/*
2792 		 * If there was a failure, return remaining objects to
2793 		 * the slab
2794 		 */
2795 		while (head != NULL) {
2796 			ASSERT(nbufs != 0);
2797 			next = head->bc_next;
2798 			head->bc_next = NULL;
2799 			kmem_slab_free(cp, KMEM_BUF(cp, head));
2800 			head = next;
2801 			nbufs--;
2802 		}
2803 	}
2804 	ASSERT(head == NULL);
2805 	ASSERT(nbufs == 0);
2806 	mutex_enter(&cp->cache_lock);
2807 }
2808 
2809 void *
2810 kmem_zalloc(size_t size, int kmflag)
2811 {
2812 	size_t index;
2813 	void *buf;
2814 
2815 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2816 		kmem_cache_t *cp = kmem_alloc_table[index];
2817 		buf = kmem_cache_alloc(cp, kmflag);
2818 		if (buf != NULL) {
2819 			if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2820 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2821 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2822 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2823 
2824 				if (cp->cache_flags & KMF_LITE) {
2825 					KMEM_BUFTAG_LITE_ENTER(btp,
2826 					    kmem_lite_count, caller());
2827 				}
2828 			}
2829 			bzero(buf, size);
2830 		}
2831 	} else {
2832 		buf = kmem_alloc(size, kmflag);
2833 		if (buf != NULL)
2834 			bzero(buf, size);
2835 	}
2836 	return (buf);
2837 }
2838 
2839 void *
2840 kmem_alloc(size_t size, int kmflag)
2841 {
2842 	size_t index;
2843 	kmem_cache_t *cp;
2844 	void *buf;
2845 
2846 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2847 		cp = kmem_alloc_table[index];
2848 		/* fall through to kmem_cache_alloc() */
2849 
2850 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2851 	    kmem_big_alloc_table_max) {
2852 		cp = kmem_big_alloc_table[index];
2853 		/* fall through to kmem_cache_alloc() */
2854 
2855 	} else {
2856 		if (size == 0)
2857 			return (NULL);
2858 
2859 		buf = vmem_alloc(kmem_oversize_arena, size,
2860 		    kmflag & KM_VMFLAGS);
2861 		if (buf == NULL)
2862 			kmem_log_event(kmem_failure_log, NULL, NULL,
2863 			    (void *)size);
2864 		else if (KMEM_DUMP(kmem_slab_cache)) {
2865 			/* stats for dump intercept */
2866 			kmem_dump_oversize_allocs++;
2867 			if (size > kmem_dump_oversize_max)
2868 				kmem_dump_oversize_max = size;
2869 		}
2870 		return (buf);
2871 	}
2872 
2873 	buf = kmem_cache_alloc(cp, kmflag);
2874 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2875 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2876 		((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2877 		((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2878 
2879 		if (cp->cache_flags & KMF_LITE) {
2880 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2881 		}
2882 	}
2883 	return (buf);
2884 }
2885 
2886 void
2887 kmem_free(void *buf, size_t size)
2888 {
2889 	size_t index;
2890 	kmem_cache_t *cp;
2891 
2892 	if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2893 		cp = kmem_alloc_table[index];
2894 		/* fall through to kmem_cache_free() */
2895 
2896 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2897 	    kmem_big_alloc_table_max) {
2898 		cp = kmem_big_alloc_table[index];
2899 		/* fall through to kmem_cache_free() */
2900 
2901 	} else {
2902 		EQUIV(buf == NULL, size == 0);
2903 		if (buf == NULL && size == 0)
2904 			return;
2905 		vmem_free(kmem_oversize_arena, buf, size);
2906 		return;
2907 	}
2908 
2909 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2910 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2911 		uint32_t *ip = (uint32_t *)btp;
2912 		if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2913 			if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2914 				kmem_error(KMERR_DUPFREE, cp, buf);
2915 				return;
2916 			}
2917 			if (KMEM_SIZE_VALID(ip[1])) {
2918 				ip[0] = KMEM_SIZE_ENCODE(size);
2919 				kmem_error(KMERR_BADSIZE, cp, buf);
2920 			} else {
2921 				kmem_error(KMERR_REDZONE, cp, buf);
2922 			}
2923 			return;
2924 		}
2925 		if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2926 			kmem_error(KMERR_REDZONE, cp, buf);
2927 			return;
2928 		}
2929 		btp->bt_redzone = KMEM_REDZONE_PATTERN;
2930 		if (cp->cache_flags & KMF_LITE) {
2931 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2932 			    caller());
2933 		}
2934 	}
2935 	kmem_cache_free(cp, buf);
2936 }
2937 
2938 void *
2939 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2940 {
2941 	size_t realsize = size + vmp->vm_quantum;
2942 	void *addr;
2943 
2944 	/*
2945 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2946 	 * vm_quantum will cause integer wraparound.  Check for this, and
2947 	 * blow off the firewall page in this case.  Note that such a
2948 	 * giant allocation (the entire kernel address space) can never
2949 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2950 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2951 	 * corresponding check in kmem_firewall_va_free().
2952 	 */
2953 	if (realsize < size)
2954 		realsize = size;
2955 
2956 	/*
2957 	 * While boot still owns resource management, make sure that this
2958 	 * redzone virtual address allocation is properly accounted for in
2959 	 * OBPs "virtual-memory" "available" lists because we're
2960 	 * effectively claiming them for a red zone.  If we don't do this,
2961 	 * the available lists become too fragmented and too large for the
2962 	 * current boot/kernel memory list interface.
2963 	 */
2964 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
2965 
2966 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
2967 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
2968 
2969 	return (addr);
2970 }
2971 
2972 void
2973 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2974 {
2975 	ASSERT((kvseg.s_base == NULL ?
2976 	    va_to_pfn((char *)addr + size) :
2977 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
2978 
2979 	vmem_free(vmp, addr, size + vmp->vm_quantum);
2980 }
2981 
2982 /*
2983  * Try to allocate at least `size' bytes of memory without sleeping or
2984  * panicking. Return actual allocated size in `asize'. If allocation failed,
2985  * try final allocation with sleep or panic allowed.
2986  */
2987 void *
2988 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
2989 {
2990 	void *p;
2991 
2992 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
2993 	do {
2994 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
2995 		if (p != NULL)
2996 			return (p);
2997 		*asize += KMEM_ALIGN;
2998 	} while (*asize <= PAGESIZE);
2999 
3000 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
3001 	return (kmem_alloc(*asize, kmflag));
3002 }
3003 
3004 /*
3005  * Reclaim all unused memory from a cache.
3006  */
3007 static void
3008 kmem_cache_reap(kmem_cache_t *cp)
3009 {
3010 	ASSERT(taskq_member(kmem_taskq, curthread));
3011 	cp->cache_reap++;
3012 
3013 	/*
3014 	 * Ask the cache's owner to free some memory if possible.
3015 	 * The idea is to handle things like the inode cache, which
3016 	 * typically sits on a bunch of memory that it doesn't truly
3017 	 * *need*.  Reclaim policy is entirely up to the owner; this
3018 	 * callback is just an advisory plea for help.
3019 	 */
3020 	if (cp->cache_reclaim != NULL) {
3021 		long delta;
3022 
3023 		/*
3024 		 * Reclaimed memory should be reapable (not included in the
3025 		 * depot's working set).
3026 		 */
3027 		delta = cp->cache_full.ml_total;
3028 		cp->cache_reclaim(cp->cache_private);
3029 		delta = cp->cache_full.ml_total - delta;
3030 		if (delta > 0) {
3031 			mutex_enter(&cp->cache_depot_lock);
3032 			cp->cache_full.ml_reaplimit += delta;
3033 			cp->cache_full.ml_min += delta;
3034 			mutex_exit(&cp->cache_depot_lock);
3035 		}
3036 	}
3037 
3038 	kmem_depot_ws_reap(cp);
3039 
3040 	if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3041 		kmem_cache_defrag(cp);
3042 	}
3043 }
3044 
3045 static void
3046 kmem_reap_timeout(void *flag_arg)
3047 {
3048 	uint32_t *flag = (uint32_t *)flag_arg;
3049 
3050 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3051 	*flag = 0;
3052 }
3053 
3054 static void
3055 kmem_reap_done(void *flag)
3056 {
3057 	if (!callout_init_done) {
3058 		/* can't schedule a timeout at this point */
3059 		kmem_reap_timeout(flag);
3060 	} else {
3061 		(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3062 	}
3063 }
3064 
3065 static void
3066 kmem_reap_start(void *flag)
3067 {
3068 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3069 
3070 	if (flag == &kmem_reaping) {
3071 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3072 		/*
3073 		 * if we have segkp under heap, reap segkp cache.
3074 		 */
3075 		if (segkp_fromheap)
3076 			segkp_cache_free();
3077 	}
3078 	else
3079 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3080 
3081 	/*
3082 	 * We use taskq_dispatch() to schedule a timeout to clear
3083 	 * the flag so that kmem_reap() becomes self-throttling:
3084 	 * we won't reap again until the current reap completes *and*
3085 	 * at least kmem_reap_interval ticks have elapsed.
3086 	 */
3087 	if (taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP) ==
3088 	    TASKQID_INVALID)
3089 		kmem_reap_done(flag);
3090 }
3091 
3092 static void
3093 kmem_reap_common(void *flag_arg)
3094 {
3095 	uint32_t *flag = (uint32_t *)flag_arg;
3096 
3097 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3098 	    atomic_cas_32(flag, 0, 1) != 0)
3099 		return;
3100 
3101 	/*
3102 	 * It may not be kosher to do memory allocation when a reap is called
3103 	 * (for example, if vmem_populate() is in the call chain).  So we
3104 	 * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3105 	 * fails, we reset the flag, and the next reap will try again.
3106 	 */
3107 	if (taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC) ==
3108 	    TASKQID_INVALID)
3109 		*flag = 0;
3110 }
3111 
3112 /*
3113  * Reclaim all unused memory from all caches.  Called from the VM system
3114  * when memory gets tight.
3115  */
3116 void
3117 kmem_reap(void)
3118 {
3119 	kmem_reap_common(&kmem_reaping);
3120 }
3121 
3122 /*
3123  * Reclaim all unused memory from identifier arenas, called when a vmem
3124  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3125  * cannot help with identifier exhaustion, we avoid both a large amount of
3126  * work and unwanted side-effects from reclaim callbacks.
3127  */
3128 void
3129 kmem_reap_idspace(void)
3130 {
3131 	kmem_reap_common(&kmem_reaping_idspace);
3132 }
3133 
3134 /*
3135  * Purge all magazines from a cache and set its magazine limit to zero.
3136  * All calls are serialized by the kmem_taskq lock, except for the final
3137  * call from kmem_cache_destroy().
3138  */
3139 static void
3140 kmem_cache_magazine_purge(kmem_cache_t *cp)
3141 {
3142 	kmem_cpu_cache_t *ccp;
3143 	kmem_magazine_t *mp, *pmp;
3144 	int rounds, prounds, cpu_seqid;
3145 
3146 	ASSERT(!list_link_active(&cp->cache_link) ||
3147 	    taskq_member(kmem_taskq, curthread));
3148 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3149 
3150 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3151 		ccp = &cp->cache_cpu[cpu_seqid];
3152 
3153 		mutex_enter(&ccp->cc_lock);
3154 		mp = ccp->cc_loaded;
3155 		pmp = ccp->cc_ploaded;
3156 		rounds = ccp->cc_rounds;
3157 		prounds = ccp->cc_prounds;
3158 		ccp->cc_loaded = NULL;
3159 		ccp->cc_ploaded = NULL;
3160 		ccp->cc_rounds = -1;
3161 		ccp->cc_prounds = -1;
3162 		ccp->cc_magsize = 0;
3163 		mutex_exit(&ccp->cc_lock);
3164 
3165 		if (mp)
3166 			kmem_magazine_destroy(cp, mp, rounds);
3167 		if (pmp)
3168 			kmem_magazine_destroy(cp, pmp, prounds);
3169 	}
3170 
3171 	kmem_depot_ws_zero(cp);
3172 	kmem_depot_ws_reap(cp);
3173 }
3174 
3175 /*
3176  * Enable per-cpu magazines on a cache.
3177  */
3178 static void
3179 kmem_cache_magazine_enable(kmem_cache_t *cp)
3180 {
3181 	int cpu_seqid;
3182 
3183 	if (cp->cache_flags & KMF_NOMAGAZINE)
3184 		return;
3185 
3186 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3187 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3188 		mutex_enter(&ccp->cc_lock);
3189 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3190 		mutex_exit(&ccp->cc_lock);
3191 	}
3192 
3193 }
3194 
3195 /*
3196  * Allow our caller to determine if there are running reaps.
3197  *
3198  * This call is very conservative and may return B_TRUE even when
3199  * reaping activity isn't active. If it returns B_FALSE, then reaping
3200  * activity is definitely inactive.
3201  */
3202 boolean_t
3203 kmem_cache_reap_active(void)
3204 {
3205 	return (!taskq_empty(kmem_taskq));
3206 }
3207 
3208 /*
3209  * Reap (almost) everything soon.
3210  *
3211  * Note: this does not wait for the reap-tasks to complete. Caller
3212  * should use kmem_cache_reap_active() (above) and/or moderation to
3213  * avoid scheduling too many reap-tasks.
3214  */
3215 void
3216 kmem_cache_reap_soon(kmem_cache_t *cp)
3217 {
3218 	ASSERT(list_link_active(&cp->cache_link));
3219 
3220 	kmem_depot_ws_zero(cp);
3221 
3222 	(void) taskq_dispatch(kmem_taskq,
3223 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3224 }
3225 
3226 /*
3227  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3228  * provide a higher transfer rate with the depot, while smaller magazines
3229  * reduce memory consumption.  Magazine resizing is an expensive operation;
3230  * it should not be done frequently.
3231  *
3232  * Changes to the magazine size are serialized by the kmem_taskq lock.
3233  *
3234  * Note: at present this only grows the magazine size.  It might be useful
3235  * to allow shrinkage too.
3236  */
3237 static void
3238 kmem_cache_magazine_resize(kmem_cache_t *cp)
3239 {
3240 	kmem_magtype_t *mtp = cp->cache_magtype;
3241 
3242 	ASSERT(taskq_member(kmem_taskq, curthread));
3243 
3244 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
3245 		kmem_cache_magazine_purge(cp);
3246 		mutex_enter(&cp->cache_depot_lock);
3247 		cp->cache_magtype = ++mtp;
3248 		cp->cache_depot_contention_prev =
3249 		    cp->cache_depot_contention + INT_MAX;
3250 		mutex_exit(&cp->cache_depot_lock);
3251 		kmem_cache_magazine_enable(cp);
3252 	}
3253 }
3254 
3255 /*
3256  * Rescale a cache's hash table, so that the table size is roughly the
3257  * cache size.  We want the average lookup time to be extremely small.
3258  */
3259 static void
3260 kmem_hash_rescale(kmem_cache_t *cp)
3261 {
3262 	kmem_bufctl_t **old_table, **new_table, *bcp;
3263 	size_t old_size, new_size, h;
3264 
3265 	ASSERT(taskq_member(kmem_taskq, curthread));
3266 
3267 	new_size = MAX(KMEM_HASH_INITIAL,
3268 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3269 	old_size = cp->cache_hash_mask + 1;
3270 
3271 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3272 		return;
3273 
3274 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3275 	    VM_NOSLEEP);
3276 	if (new_table == NULL)
3277 		return;
3278 	bzero(new_table, new_size * sizeof (void *));
3279 
3280 	mutex_enter(&cp->cache_lock);
3281 
3282 	old_size = cp->cache_hash_mask + 1;
3283 	old_table = cp->cache_hash_table;
3284 
3285 	cp->cache_hash_mask = new_size - 1;
3286 	cp->cache_hash_table = new_table;
3287 	cp->cache_rescale++;
3288 
3289 	for (h = 0; h < old_size; h++) {
3290 		bcp = old_table[h];
3291 		while (bcp != NULL) {
3292 			void *addr = bcp->bc_addr;
3293 			kmem_bufctl_t *next_bcp = bcp->bc_next;
3294 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3295 			bcp->bc_next = *hash_bucket;
3296 			*hash_bucket = bcp;
3297 			bcp = next_bcp;
3298 		}
3299 	}
3300 
3301 	mutex_exit(&cp->cache_lock);
3302 
3303 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3304 }
3305 
3306 /*
3307  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3308  * update, magazine resizing, and slab consolidation.
3309  */
3310 static void
3311 kmem_cache_update(kmem_cache_t *cp)
3312 {
3313 	int need_hash_rescale = 0;
3314 	int need_magazine_resize = 0;
3315 
3316 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
3317 
3318 	/*
3319 	 * If the cache has become much larger or smaller than its hash table,
3320 	 * fire off a request to rescale the hash table.
3321 	 */
3322 	mutex_enter(&cp->cache_lock);
3323 
3324 	if ((cp->cache_flags & KMF_HASH) &&
3325 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3326 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3327 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3328 		need_hash_rescale = 1;
3329 
3330 	mutex_exit(&cp->cache_lock);
3331 
3332 	/*
3333 	 * Update the depot working set statistics.
3334 	 */
3335 	kmem_depot_ws_update(cp);
3336 
3337 	/*
3338 	 * If there's a lot of contention in the depot,
3339 	 * increase the magazine size.
3340 	 */
3341 	mutex_enter(&cp->cache_depot_lock);
3342 
3343 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3344 	    (int)(cp->cache_depot_contention -
3345 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
3346 		need_magazine_resize = 1;
3347 
3348 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
3349 
3350 	mutex_exit(&cp->cache_depot_lock);
3351 
3352 	if (need_hash_rescale)
3353 		(void) taskq_dispatch(kmem_taskq,
3354 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3355 
3356 	if (need_magazine_resize)
3357 		(void) taskq_dispatch(kmem_taskq,
3358 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3359 
3360 	if (cp->cache_defrag != NULL)
3361 		(void) taskq_dispatch(kmem_taskq,
3362 		    (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3363 }
3364 
3365 static void kmem_update(void *);
3366 
3367 static void
3368 kmem_update_timeout(void *dummy)
3369 {
3370 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
3371 }
3372 
3373 static void
3374 kmem_update(void *dummy)
3375 {
3376 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3377 
3378 	/*
3379 	 * We use taskq_dispatch() to reschedule the timeout so that
3380 	 * kmem_update() becomes self-throttling: it won't schedule
3381 	 * new tasks until all previous tasks have completed.
3382 	 */
3383 	if (taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)
3384 	    == TASKQID_INVALID)
3385 		kmem_update_timeout(NULL);
3386 }
3387 
3388 static int
3389 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3390 {
3391 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3392 	kmem_cache_t *cp = ksp->ks_private;
3393 	uint64_t cpu_buf_avail;
3394 	uint64_t buf_avail = 0;
3395 	int cpu_seqid;
3396 	long reap;
3397 
3398 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3399 
3400 	if (rw == KSTAT_WRITE)
3401 		return (EACCES);
3402 
3403 	mutex_enter(&cp->cache_lock);
3404 
3405 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
3406 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
3407 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
3408 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
3409 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
3410 
3411 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3412 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3413 
3414 		mutex_enter(&ccp->cc_lock);
3415 
3416 		cpu_buf_avail = 0;
3417 		if (ccp->cc_rounds > 0)
3418 			cpu_buf_avail += ccp->cc_rounds;
3419 		if (ccp->cc_prounds > 0)
3420 			cpu_buf_avail += ccp->cc_prounds;
3421 
3422 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
3423 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
3424 		buf_avail			+= cpu_buf_avail;
3425 
3426 		mutex_exit(&ccp->cc_lock);
3427 	}
3428 
3429 	mutex_enter(&cp->cache_depot_lock);
3430 
3431 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
3432 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
3433 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
3434 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
3435 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
3436 	kmcp->kmc_magazine_size.value.ui64	=
3437 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
3438 	    0 : cp->cache_magtype->mt_magsize;
3439 
3440 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
3441 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
3442 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3443 
3444 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3445 	reap = MIN(reap, cp->cache_full.ml_total);
3446 
3447 	mutex_exit(&cp->cache_depot_lock);
3448 
3449 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
3450 	kmcp->kmc_align.value.ui64	= cp->cache_align;
3451 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
3452 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
3453 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3454 	buf_avail += cp->cache_bufslab;
3455 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
3456 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
3457 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
3458 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
3459 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
3460 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
3461 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
3462 	    cp->cache_hash_mask + 1 : 0;
3463 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
3464 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
3465 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
3466 	kmcp->kmc_reap.value.ui64	= cp->cache_reap;
3467 
3468 	if (cp->cache_defrag == NULL) {
3469 		kmcp->kmc_move_callbacks.value.ui64	= 0;
3470 		kmcp->kmc_move_yes.value.ui64		= 0;
3471 		kmcp->kmc_move_no.value.ui64		= 0;
3472 		kmcp->kmc_move_later.value.ui64		= 0;
3473 		kmcp->kmc_move_dont_need.value.ui64	= 0;
3474 		kmcp->kmc_move_dont_know.value.ui64	= 0;
3475 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3476 		kmcp->kmc_move_slabs_freed.value.ui64	= 0;
3477 		kmcp->kmc_defrag.value.ui64		= 0;
3478 		kmcp->kmc_scan.value.ui64		= 0;
3479 		kmcp->kmc_move_reclaimable.value.ui64	= 0;
3480 	} else {
3481 		int64_t reclaimable;
3482 
3483 		kmem_defrag_t *kd = cp->cache_defrag;
3484 		kmcp->kmc_move_callbacks.value.ui64	= kd->kmd_callbacks;
3485 		kmcp->kmc_move_yes.value.ui64		= kd->kmd_yes;
3486 		kmcp->kmc_move_no.value.ui64		= kd->kmd_no;
3487 		kmcp->kmc_move_later.value.ui64		= kd->kmd_later;
3488 		kmcp->kmc_move_dont_need.value.ui64	= kd->kmd_dont_need;
3489 		kmcp->kmc_move_dont_know.value.ui64	= kd->kmd_dont_know;
3490 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3491 		kmcp->kmc_move_slabs_freed.value.ui64	= kd->kmd_slabs_freed;
3492 		kmcp->kmc_defrag.value.ui64		= kd->kmd_defrags;
3493 		kmcp->kmc_scan.value.ui64		= kd->kmd_scans;
3494 
3495 		reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3496 		reclaimable = MAX(reclaimable, 0);
3497 		reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3498 		kmcp->kmc_move_reclaimable.value.ui64	= reclaimable;
3499 	}
3500 
3501 	mutex_exit(&cp->cache_lock);
3502 	return (0);
3503 }
3504 
3505 /*
3506  * Return a named statistic about a particular cache.
3507  * This shouldn't be called very often, so it's currently designed for
3508  * simplicity (leverages existing kstat support) rather than efficiency.
3509  */
3510 uint64_t
3511 kmem_cache_stat(kmem_cache_t *cp, char *name)
3512 {
3513 	int i;
3514 	kstat_t *ksp = cp->cache_kstat;
3515 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3516 	uint64_t value = 0;
3517 
3518 	if (ksp != NULL) {
3519 		mutex_enter(&kmem_cache_kstat_lock);
3520 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3521 		for (i = 0; i < ksp->ks_ndata; i++) {
3522 			if (strcmp(knp[i].name, name) == 0) {
3523 				value = knp[i].value.ui64;
3524 				break;
3525 			}
3526 		}
3527 		mutex_exit(&kmem_cache_kstat_lock);
3528 	}
3529 	return (value);
3530 }
3531 
3532 /*
3533  * Return an estimate of currently available kernel heap memory.
3534  * On 32-bit systems, physical memory may exceed virtual memory,
3535  * we just truncate the result at 1GB.
3536  */
3537 size_t
3538 kmem_avail(void)
3539 {
3540 	spgcnt_t rmem = availrmem - tune.t_minarmem;
3541 	spgcnt_t fmem = freemem - minfree;
3542 
3543 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3544 	    1 << (30 - PAGESHIFT))));
3545 }
3546 
3547 /*
3548  * Return the maximum amount of memory that is (in theory) allocatable
3549  * from the heap. This may be used as an estimate only since there
3550  * is no guarentee this space will still be available when an allocation
3551  * request is made, nor that the space may be allocated in one big request
3552  * due to kernel heap fragmentation.
3553  */
3554 size_t
3555 kmem_maxavail(void)
3556 {
3557 	spgcnt_t pmem = availrmem - tune.t_minarmem;
3558 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3559 
3560 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3561 }
3562 
3563 /*
3564  * Indicate whether memory-intensive kmem debugging is enabled.
3565  */
3566 int
3567 kmem_debugging(void)
3568 {
3569 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3570 }
3571 
3572 /* binning function, sorts finely at the two extremes */
3573 #define	KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)				\
3574 	((((sp)->slab_refcnt <= (binshift)) ||				\
3575 	    (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))	\
3576 	    ? -(sp)->slab_refcnt					\
3577 	    : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3578 
3579 /*
3580  * Minimizing the number of partial slabs on the freelist minimizes
3581  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3582  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3583  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3584  * the most-used slabs at the front of the list where they have the best chance
3585  * of being completely allocated, and the least-used slabs at a safe distance
3586  * from the front to improve the odds that the few remaining buffers will all be
3587  * freed before another allocation can tie up the slab. For that reason a slab
3588  * with a higher slab_refcnt sorts less than than a slab with a lower
3589  * slab_refcnt.
3590  *
3591  * However, if a slab has at least one buffer that is deemed unfreeable, we
3592  * would rather have that slab at the front of the list regardless of
3593  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3594  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3595  * callback, the slab is marked unfreeable for as long as it remains on the
3596  * freelist.
3597  */
3598 static int
3599 kmem_partial_slab_cmp(const void *p0, const void *p1)
3600 {
3601 	const kmem_cache_t *cp;
3602 	const kmem_slab_t *s0 = p0;
3603 	const kmem_slab_t *s1 = p1;
3604 	int w0, w1;
3605 	size_t binshift;
3606 
3607 	ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3608 	ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3609 	ASSERT(s0->slab_cache == s1->slab_cache);
3610 	cp = s1->slab_cache;
3611 	ASSERT(MUTEX_HELD(&cp->cache_lock));
3612 	binshift = cp->cache_partial_binshift;
3613 
3614 	/* weight of first slab */
3615 	w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3616 	if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3617 		w0 -= cp->cache_maxchunks;
3618 	}
3619 
3620 	/* weight of second slab */
3621 	w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3622 	if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3623 		w1 -= cp->cache_maxchunks;
3624 	}
3625 
3626 	if (w0 < w1)
3627 		return (-1);
3628 	if (w0 > w1)
3629 		return (1);
3630 
3631 	/* compare pointer values */
3632 	if ((uintptr_t)s0 < (uintptr_t)s1)
3633 		return (-1);
3634 	if ((uintptr_t)s0 > (uintptr_t)s1)
3635 		return (1);
3636 
3637 	return (0);
3638 }
3639 
3640 /*
3641  * It must be valid to call the destructor (if any) on a newly created object.
3642  * That is, the constructor (if any) must leave the object in a valid state for
3643  * the destructor.
3644  */
3645 kmem_cache_t *
3646 kmem_cache_create(
3647 	char *name,		/* descriptive name for this cache */
3648 	size_t bufsize,		/* size of the objects it manages */
3649 	size_t align,		/* required object alignment */
3650 	int (*constructor)(void *, void *, int), /* object constructor */
3651 	void (*destructor)(void *, void *),	/* object destructor */
3652 	void (*reclaim)(void *), /* memory reclaim callback */
3653 	void *private,		/* pass-thru arg for constr/destr/reclaim */
3654 	vmem_t *vmp,		/* vmem source for slab allocation */
3655 	int cflags)		/* cache creation flags */
3656 {
3657 	int cpu_seqid;
3658 	size_t chunksize;
3659 	kmem_cache_t *cp;
3660 	kmem_magtype_t *mtp;
3661 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3662 
3663 #ifdef	DEBUG
3664 	/*
3665 	 * Cache names should conform to the rules for valid C identifiers
3666 	 */
3667 	if (!strident_valid(name)) {
3668 		cmn_err(CE_CONT,
3669 		    "kmem_cache_create: '%s' is an invalid cache name\n"
3670 		    "cache names must conform to the rules for "
3671 		    "C identifiers\n", name);
3672 	}
3673 #endif	/* DEBUG */
3674 
3675 	if (vmp == NULL)
3676 		vmp = kmem_default_arena;
3677 
3678 	/*
3679 	 * If this kmem cache has an identifier vmem arena as its source, mark
3680 	 * it such to allow kmem_reap_idspace().
3681 	 */
3682 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3683 	if (vmp->vm_cflags & VMC_IDENTIFIER)
3684 		cflags |= KMC_IDENTIFIER;
3685 
3686 	/*
3687 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3688 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3689 	 * false sharing of per-CPU data.
3690 	 */
3691 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3692 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3693 	bzero(cp, csize);
3694 	list_link_init(&cp->cache_link);
3695 
3696 	if (align == 0)
3697 		align = KMEM_ALIGN;
3698 
3699 	/*
3700 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
3701 	 * memory to hold bufctl information (because we can't safely
3702 	 * perform word loads and stores on it).
3703 	 */
3704 	if (align < KMEM_ALIGN)
3705 		cflags |= KMC_NOTOUCH;
3706 
3707 	if (!ISP2(align) || align > vmp->vm_quantum)
3708 		panic("kmem_cache_create: bad alignment %lu", align);
3709 
3710 	mutex_enter(&kmem_flags_lock);
3711 	if (kmem_flags & KMF_RANDOMIZE)
3712 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3713 		    KMF_RANDOMIZE;
3714 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3715 	mutex_exit(&kmem_flags_lock);
3716 
3717 	/*
3718 	 * Make sure all the various flags are reasonable.
3719 	 */
3720 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3721 
3722 	if (cp->cache_flags & KMF_LITE) {
3723 		if (bufsize >= kmem_lite_minsize &&
3724 		    align <= kmem_lite_maxalign &&
3725 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3726 			cp->cache_flags |= KMF_BUFTAG;
3727 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3728 		} else {
3729 			cp->cache_flags &= ~KMF_DEBUG;
3730 		}
3731 	}
3732 
3733 	if (cp->cache_flags & KMF_DEADBEEF)
3734 		cp->cache_flags |= KMF_REDZONE;
3735 
3736 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3737 		cp->cache_flags |= KMF_NOMAGAZINE;
3738 
3739 	if (cflags & KMC_NODEBUG)
3740 		cp->cache_flags &= ~KMF_DEBUG;
3741 
3742 	if (cflags & KMC_NOTOUCH)
3743 		cp->cache_flags &= ~KMF_TOUCH;
3744 
3745 	if (cflags & KMC_PREFILL)
3746 		cp->cache_flags |= KMF_PREFILL;
3747 
3748 	if (cflags & KMC_NOHASH)
3749 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3750 
3751 	if (cflags & KMC_NOMAGAZINE)
3752 		cp->cache_flags |= KMF_NOMAGAZINE;
3753 
3754 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3755 		cp->cache_flags |= KMF_REDZONE;
3756 
3757 	if (!(cp->cache_flags & KMF_AUDIT))
3758 		cp->cache_flags &= ~KMF_CONTENTS;
3759 
3760 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3761 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3762 		cp->cache_flags |= KMF_FIREWALL;
3763 
3764 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3765 		cp->cache_flags &= ~KMF_FIREWALL;
3766 
3767 	if (cp->cache_flags & KMF_FIREWALL) {
3768 		cp->cache_flags &= ~KMF_BUFTAG;
3769 		cp->cache_flags |= KMF_NOMAGAZINE;
3770 		ASSERT(vmp == kmem_default_arena);
3771 		vmp = kmem_firewall_arena;
3772 	}
3773 
3774 	/*
3775 	 * Set cache properties.
3776 	 */
3777 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3778 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3779 	cp->cache_bufsize = bufsize;
3780 	cp->cache_align = align;
3781 	cp->cache_constructor = constructor;
3782 	cp->cache_destructor = destructor;
3783 	cp->cache_reclaim = reclaim;
3784 	cp->cache_private = private;
3785 	cp->cache_arena = vmp;
3786 	cp->cache_cflags = cflags;
3787 
3788 	/*
3789 	 * Determine the chunk size.
3790 	 */
3791 	chunksize = bufsize;
3792 
3793 	if (align >= KMEM_ALIGN) {
3794 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3795 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
3796 	}
3797 
3798 	if (cp->cache_flags & KMF_BUFTAG) {
3799 		cp->cache_bufctl = chunksize;
3800 		cp->cache_buftag = chunksize;
3801 		if (cp->cache_flags & KMF_LITE)
3802 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3803 		else
3804 			chunksize += sizeof (kmem_buftag_t);
3805 	}
3806 
3807 	if (cp->cache_flags & KMF_DEADBEEF) {
3808 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3809 		if (cp->cache_flags & KMF_LITE)
3810 			cp->cache_verify = sizeof (uint64_t);
3811 	}
3812 
3813 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3814 
3815 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3816 
3817 	/*
3818 	 * Now that we know the chunk size, determine the optimal slab size.
3819 	 */
3820 	if (vmp == kmem_firewall_arena) {
3821 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3822 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
3823 		cp->cache_maxcolor = cp->cache_mincolor;
3824 		cp->cache_flags |= KMF_HASH;
3825 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3826 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3827 	    !(cp->cache_flags & KMF_AUDIT) &&
3828 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3829 		cp->cache_slabsize = vmp->vm_quantum;
3830 		cp->cache_mincolor = 0;
3831 		cp->cache_maxcolor =
3832 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3833 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3834 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
3835 	} else {
3836 		size_t chunks, bestfit, waste, slabsize;
3837 		size_t minwaste = LONG_MAX;
3838 
3839 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3840 			slabsize = P2ROUNDUP(chunksize * chunks,
3841 			    vmp->vm_quantum);
3842 			chunks = slabsize / chunksize;
3843 			waste = (slabsize % chunksize) / chunks;
3844 			if (waste < minwaste) {
3845 				minwaste = waste;
3846 				bestfit = slabsize;
3847 			}
3848 		}
3849 		if (cflags & KMC_QCACHE)
3850 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3851 		cp->cache_slabsize = bestfit;
3852 		cp->cache_mincolor = 0;
3853 		cp->cache_maxcolor = bestfit % chunksize;
3854 		cp->cache_flags |= KMF_HASH;
3855 	}
3856 
3857 	cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3858 	cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3859 
3860 	/*
3861 	 * Disallowing prefill when either the DEBUG or HASH flag is set or when
3862 	 * there is a constructor avoids some tricky issues with debug setup
3863 	 * that may be revisited later. We cannot allow prefill in a
3864 	 * metadata cache because of potential recursion.
3865 	 */
3866 	if (vmp == kmem_msb_arena ||
3867 	    cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3868 	    cp->cache_constructor != NULL)
3869 		cp->cache_flags &= ~KMF_PREFILL;
3870 
3871 	if (cp->cache_flags & KMF_HASH) {
3872 		ASSERT(!(cflags & KMC_NOHASH));
3873 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3874 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
3875 	}
3876 
3877 	if (cp->cache_maxcolor >= vmp->vm_quantum)
3878 		cp->cache_maxcolor = vmp->vm_quantum - 1;
3879 
3880 	cp->cache_color = cp->cache_mincolor;
3881 
3882 	/*
3883 	 * Initialize the rest of the slab layer.
3884 	 */
3885 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3886 
3887 	avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3888 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3889 	/* LINTED: E_TRUE_LOGICAL_EXPR */
3890 	ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3891 	/* reuse partial slab AVL linkage for complete slab list linkage */
3892 	list_create(&cp->cache_complete_slabs,
3893 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3894 
3895 	if (cp->cache_flags & KMF_HASH) {
3896 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3897 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3898 		bzero(cp->cache_hash_table,
3899 		    KMEM_HASH_INITIAL * sizeof (void *));
3900 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3901 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3902 	}
3903 
3904 	/*
3905 	 * Initialize the depot.
3906 	 */
3907 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3908 
3909 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3910 		continue;
3911 
3912 	cp->cache_magtype = mtp;
3913 
3914 	/*
3915 	 * Initialize the CPU layer.
3916 	 */
3917 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3918 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3919 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3920 		ccp->cc_flags = cp->cache_flags;
3921 		ccp->cc_rounds = -1;
3922 		ccp->cc_prounds = -1;
3923 	}
3924 
3925 	/*
3926 	 * Create the cache's kstats.
3927 	 */
3928 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3929 	    "kmem_cache", KSTAT_TYPE_NAMED,
3930 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3931 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
3932 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
3933 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3934 		cp->cache_kstat->ks_private = cp;
3935 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3936 		kstat_install(cp->cache_kstat);
3937 	}
3938 
3939 	/*
3940 	 * Add the cache to the global list.  This makes it visible
3941 	 * to kmem_update(), so the cache must be ready for business.
3942 	 */
3943 	mutex_enter(&kmem_cache_lock);
3944 	list_insert_tail(&kmem_caches, cp);
3945 	mutex_exit(&kmem_cache_lock);
3946 
3947 	if (kmem_ready)
3948 		kmem_cache_magazine_enable(cp);
3949 
3950 	return (cp);
3951 }
3952 
3953 static int
3954 kmem_move_cmp(const void *buf, const void *p)
3955 {
3956 	const kmem_move_t *kmm = p;
3957 	uintptr_t v1 = (uintptr_t)buf;
3958 	uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3959 	return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3960 }
3961 
3962 static void
3963 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3964 {
3965 	kmd->kmd_reclaim_numer = 1;
3966 }
3967 
3968 /*
3969  * Initially, when choosing candidate slabs for buffers to move, we want to be
3970  * very selective and take only slabs that are less than
3971  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3972  * slabs, then we raise the allocation ceiling incrementally. The reclaim
3973  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3974  * longer fragmented.
3975  */
3976 static void
3977 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3978 {
3979 	if (direction > 0) {
3980 		/* make it easier to find a candidate slab */
3981 		if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3982 			kmd->kmd_reclaim_numer++;
3983 		}
3984 	} else {
3985 		/* be more selective */
3986 		if (kmd->kmd_reclaim_numer > 1) {
3987 			kmd->kmd_reclaim_numer--;
3988 		}
3989 	}
3990 }
3991 
3992 void
3993 kmem_cache_set_move(kmem_cache_t *cp,
3994     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3995 {
3996 	kmem_defrag_t *defrag;
3997 
3998 	ASSERT(move != NULL);
3999 	/*
4000 	 * The consolidator does not support NOTOUCH caches because kmem cannot
4001 	 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4002 	 * a low order bit usable by clients to distinguish uninitialized memory
4003 	 * from known objects (see kmem_slab_create).
4004 	 */
4005 	ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4006 	ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4007 
4008 	/*
4009 	 * We should not be holding anyone's cache lock when calling
4010 	 * kmem_cache_alloc(), so allocate in all cases before acquiring the
4011 	 * lock.
4012 	 */
4013 	defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4014 
4015 	mutex_enter(&cp->cache_lock);
4016 
4017 	if (KMEM_IS_MOVABLE(cp)) {
4018 		if (cp->cache_move == NULL) {
4019 			ASSERT(cp->cache_slab_alloc == 0);
4020 
4021 			cp->cache_defrag = defrag;
4022 			defrag = NULL; /* nothing to free */
4023 			bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4024 			avl_create(&cp->cache_defrag->kmd_moves_pending,
4025 			    kmem_move_cmp, sizeof (kmem_move_t),
4026 			    offsetof(kmem_move_t, kmm_entry));
4027 			/* LINTED: E_TRUE_LOGICAL_EXPR */
4028 			ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4029 			/* reuse the slab's AVL linkage for deadlist linkage */
4030 			list_create(&cp->cache_defrag->kmd_deadlist,
4031 			    sizeof (kmem_slab_t),
4032 			    offsetof(kmem_slab_t, slab_link));
4033 			kmem_reset_reclaim_threshold(cp->cache_defrag);
4034 		}
4035 		cp->cache_move = move;
4036 	}
4037 
4038 	mutex_exit(&cp->cache_lock);
4039 
4040 	if (defrag != NULL) {
4041 		kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4042 	}
4043 }
4044 
4045 void
4046 kmem_cache_destroy(kmem_cache_t *cp)
4047 {
4048 	int cpu_seqid;
4049 
4050 	/*
4051 	 * Remove the cache from the global cache list so that no one else
4052 	 * can schedule tasks on its behalf, wait for any pending tasks to
4053 	 * complete, purge the cache, and then destroy it.
4054 	 */
4055 	mutex_enter(&kmem_cache_lock);
4056 	list_remove(&kmem_caches, cp);
4057 	mutex_exit(&kmem_cache_lock);
4058 
4059 	if (kmem_taskq != NULL)
4060 		taskq_wait(kmem_taskq);
4061 
4062 	if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4063 		taskq_wait(kmem_move_taskq);
4064 
4065 	kmem_cache_magazine_purge(cp);
4066 
4067 	mutex_enter(&cp->cache_lock);
4068 	if (cp->cache_buftotal != 0)
4069 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4070 		    cp->cache_name, (void *)cp);
4071 	if (cp->cache_defrag != NULL) {
4072 		avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4073 		list_destroy(&cp->cache_defrag->kmd_deadlist);
4074 		kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4075 		cp->cache_defrag = NULL;
4076 	}
4077 	/*
4078 	 * The cache is now dead.  There should be no further activity.  We
4079 	 * enforce this by setting land mines in the constructor, destructor,
4080 	 * reclaim, and move routines that induce a kernel text fault if
4081 	 * invoked.
4082 	 */
4083 	cp->cache_constructor = (int (*)(void *, void *, int))1;
4084 	cp->cache_destructor = (void (*)(void *, void *))2;
4085 	cp->cache_reclaim = (void (*)(void *))3;
4086 	cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4087 	mutex_exit(&cp->cache_lock);
4088 
4089 	kstat_delete(cp->cache_kstat);
4090 
4091 	if (cp->cache_hash_table != NULL)
4092 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
4093 		    (cp->cache_hash_mask + 1) * sizeof (void *));
4094 
4095 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4096 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4097 
4098 	mutex_destroy(&cp->cache_depot_lock);
4099 	mutex_destroy(&cp->cache_lock);
4100 
4101 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4102 }
4103 
4104 /*ARGSUSED*/
4105 static int
4106 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4107 {
4108 	ASSERT(MUTEX_HELD(&cpu_lock));
4109 	if (what == CPU_UNCONFIG) {
4110 		kmem_cache_applyall(kmem_cache_magazine_purge,
4111 		    kmem_taskq, TQ_SLEEP);
4112 		kmem_cache_applyall(kmem_cache_magazine_enable,
4113 		    kmem_taskq, TQ_SLEEP);
4114 	}
4115 	return (0);
4116 }
4117 
4118 static void
4119 kmem_alloc_caches_create(const int *array, size_t count,
4120     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4121 {
4122 	char name[KMEM_CACHE_NAMELEN + 1];
4123 	size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4124 	size_t size = table_unit;
4125 	int i;
4126 
4127 	for (i = 0; i < count; i++) {
4128 		size_t cache_size = array[i];
4129 		size_t align = KMEM_ALIGN;
4130 		kmem_cache_t *cp;
4131 
4132 		/* if the table has an entry for maxbuf, we're done */
4133 		if (size > maxbuf)
4134 			break;
4135 
4136 		/* cache size must be a multiple of the table unit */
4137 		ASSERT(P2PHASE(cache_size, table_unit) == 0);
4138 
4139 		/*
4140 		 * If they allocate a multiple of the coherency granularity,
4141 		 * they get a coherency-granularity-aligned address.
4142 		 */
4143 		if (IS_P2ALIGNED(cache_size, 64))
4144 			align = 64;
4145 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
4146 			align = PAGESIZE;
4147 		(void) snprintf(name, sizeof (name),
4148 		    "kmem_alloc_%lu", cache_size);
4149 		cp = kmem_cache_create(name, cache_size, align,
4150 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4151 
4152 		while (size <= cache_size) {
4153 			alloc_table[(size - 1) >> shift] = cp;
4154 			size += table_unit;
4155 		}
4156 	}
4157 
4158 	ASSERT(size > maxbuf);		/* i.e. maxbuf <= max(cache_size) */
4159 }
4160 
4161 static void
4162 kmem_cache_init(int pass, int use_large_pages)
4163 {
4164 	int i;
4165 	size_t maxbuf;
4166 	kmem_magtype_t *mtp;
4167 
4168 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4169 		char name[KMEM_CACHE_NAMELEN + 1];
4170 
4171 		mtp = &kmem_magtype[i];
4172 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4173 		mtp->mt_cache = kmem_cache_create(name,
4174 		    (mtp->mt_magsize + 1) * sizeof (void *),
4175 		    mtp->mt_align, NULL, NULL, NULL, NULL,
4176 		    kmem_msb_arena, KMC_NOHASH);
4177 	}
4178 
4179 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4180 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4181 	    kmem_msb_arena, KMC_NOHASH);
4182 
4183 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4184 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4185 	    kmem_msb_arena, KMC_NOHASH);
4186 
4187 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4188 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4189 	    kmem_msb_arena, KMC_NOHASH);
4190 
4191 	if (pass == 2) {
4192 		kmem_va_arena = vmem_create("kmem_va",
4193 		    NULL, 0, PAGESIZE,
4194 		    vmem_alloc, vmem_free, heap_arena,
4195 		    8 * PAGESIZE, VM_SLEEP);
4196 
4197 		if (use_large_pages) {
4198 			kmem_default_arena = vmem_xcreate("kmem_default",
4199 			    NULL, 0, PAGESIZE,
4200 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4201 			    0, VMC_DUMPSAFE | VM_SLEEP);
4202 		} else {
4203 			kmem_default_arena = vmem_create("kmem_default",
4204 			    NULL, 0, PAGESIZE,
4205 			    segkmem_alloc, segkmem_free, kmem_va_arena,
4206 			    0, VMC_DUMPSAFE | VM_SLEEP);
4207 		}
4208 
4209 		/* Figure out what our maximum cache size is */
4210 		maxbuf = kmem_max_cached;
4211 		if (maxbuf <= KMEM_MAXBUF) {
4212 			maxbuf = 0;
4213 			kmem_max_cached = KMEM_MAXBUF;
4214 		} else {
4215 			size_t size = 0;
4216 			size_t max =
4217 			    sizeof (kmem_big_alloc_sizes) / sizeof (int);
4218 			/*
4219 			 * Round maxbuf up to an existing cache size.  If maxbuf
4220 			 * is larger than the largest cache, we truncate it to
4221 			 * the largest cache's size.
4222 			 */
4223 			for (i = 0; i < max; i++) {
4224 				size = kmem_big_alloc_sizes[i];
4225 				if (maxbuf <= size)
4226 					break;
4227 			}
4228 			kmem_max_cached = maxbuf = size;
4229 		}
4230 
4231 		/*
4232 		 * The big alloc table may not be completely overwritten, so
4233 		 * we clear out any stale cache pointers from the first pass.
4234 		 */
4235 		bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4236 	} else {
4237 		/*
4238 		 * During the first pass, the kmem_alloc_* caches
4239 		 * are treated as metadata.
4240 		 */
4241 		kmem_default_arena = kmem_msb_arena;
4242 		maxbuf = KMEM_BIG_MAXBUF_32BIT;
4243 	}
4244 
4245 	/*
4246 	 * Set up the default caches to back kmem_alloc()
4247 	 */
4248 	kmem_alloc_caches_create(
4249 	    kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4250 	    kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4251 
4252 	kmem_alloc_caches_create(
4253 	    kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4254 	    kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4255 
4256 	kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4257 }
4258 
4259 void
4260 kmem_init(void)
4261 {
4262 	kmem_cache_t *cp;
4263 	int old_kmem_flags = kmem_flags;
4264 	int use_large_pages = 0;
4265 	size_t maxverify, minfirewall;
4266 
4267 	kstat_init();
4268 
4269 	/*
4270 	 * Don't do firewalled allocations if the heap is less than 1TB
4271 	 * (i.e. on a 32-bit kernel)
4272 	 * The resulting VM_NEXTFIT allocations would create too much
4273 	 * fragmentation in a small heap.
4274 	 */
4275 #if defined(_LP64)
4276 	maxverify = minfirewall = PAGESIZE / 2;
4277 #else
4278 	maxverify = minfirewall = ULONG_MAX;
4279 #endif
4280 
4281 	/* LINTED */
4282 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4283 
4284 	list_create(&kmem_caches, sizeof (kmem_cache_t),
4285 	    offsetof(kmem_cache_t, cache_link));
4286 
4287 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4288 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4289 	    VM_SLEEP | VMC_NO_QCACHE);
4290 
4291 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4292 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4293 	    VMC_DUMPSAFE | VM_SLEEP);
4294 
4295 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4296 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4297 
4298 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4299 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4300 
4301 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4302 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4303 
4304 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4305 	    NULL, 0, PAGESIZE,
4306 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4307 	    0, VM_SLEEP);
4308 
4309 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4310 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4311 	    VMC_DUMPSAFE | VM_SLEEP);
4312 
4313 	/* temporary oversize arena for mod_read_system_file */
4314 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4315 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4316 
4317 	kmem_reap_interval = 15 * hz;
4318 
4319 	/*
4320 	 * Read /etc/system.  This is a chicken-and-egg problem because
4321 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
4322 	 * needs to use the allocator.  The simplest solution is to create
4323 	 * all the standard kmem caches, read /etc/system, destroy all the
4324 	 * caches we just created, and then create them all again in light
4325 	 * of the (possibly) new kmem_flags and other kmem tunables.
4326 	 */
4327 	kmem_cache_init(1, 0);
4328 
4329 	mod_read_system_file(boothowto & RB_ASKNAME);
4330 
4331 	while ((cp = list_tail(&kmem_caches)) != NULL)
4332 		kmem_cache_destroy(cp);
4333 
4334 	vmem_destroy(kmem_oversize_arena);
4335 
4336 	if (old_kmem_flags & KMF_STICKY)
4337 		kmem_flags = old_kmem_flags;
4338 
4339 	if (!(kmem_flags & KMF_AUDIT))
4340 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4341 
4342 	if (kmem_maxverify == 0)
4343 		kmem_maxverify = maxverify;
4344 
4345 	if (kmem_minfirewall == 0)
4346 		kmem_minfirewall = minfirewall;
4347 
4348 	/*
4349 	 * give segkmem a chance to figure out if we are using large pages
4350 	 * for the kernel heap
4351 	 */
4352 	use_large_pages = segkmem_lpsetup();
4353 
4354 	/*
4355 	 * To protect against corruption, we keep the actual number of callers
4356 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4357 	 * to 16, since the overhead for small buffers quickly gets out of
4358 	 * hand.
4359 	 *
4360 	 * The real limit would depend on the needs of the largest KMC_NOHASH
4361 	 * cache.
4362 	 */
4363 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4364 	kmem_lite_pcs = kmem_lite_count;
4365 
4366 	/*
4367 	 * Normally, we firewall oversized allocations when possible, but
4368 	 * if we are using large pages for kernel memory, and we don't have
4369 	 * any non-LITE debugging flags set, we want to allocate oversized
4370 	 * buffers from large pages, and so skip the firewalling.
4371 	 */
4372 	if (use_large_pages &&
4373 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4374 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4375 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4376 		    0, VMC_DUMPSAFE | VM_SLEEP);
4377 	} else {
4378 		kmem_oversize_arena = vmem_create("kmem_oversize",
4379 		    NULL, 0, PAGESIZE,
4380 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4381 		    kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4382 		    VM_SLEEP);
4383 	}
4384 
4385 	kmem_cache_init(2, use_large_pages);
4386 
4387 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4388 		if (kmem_transaction_log_size == 0)
4389 			kmem_transaction_log_size = kmem_maxavail() / 50;
4390 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4391 	}
4392 
4393 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4394 		if (kmem_content_log_size == 0)
4395 			kmem_content_log_size = kmem_maxavail() / 50;
4396 		kmem_content_log = kmem_log_init(kmem_content_log_size);
4397 	}
4398 
4399 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4400 
4401 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4402 
4403 	/*
4404 	 * Initialize STREAMS message caches so allocb() is available.
4405 	 * This allows us to initialize the logging framework (cmn_err(9F),
4406 	 * strlog(9F), etc) so we can start recording messages.
4407 	 */
4408 	streams_msg_init();
4409 
4410 	/*
4411 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
4412 	 * can register their callbacks.
4413 	 */
4414 	zone_zsd_init();
4415 
4416 	log_init();
4417 	taskq_init();
4418 
4419 	/*
4420 	 * Warn about invalid or dangerous values of kmem_flags.
4421 	 * Always warn about unsupported values.
4422 	 */
4423 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4424 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
4425 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4426 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4427 		    "See the Solaris Tunable Parameters Reference Manual.",
4428 		    kmem_flags);
4429 
4430 #ifdef DEBUG
4431 	if ((kmem_flags & KMF_DEBUG) == 0)
4432 		cmn_err(CE_NOTE, "kmem debugging disabled.");
4433 #else
4434 	/*
4435 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4436 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4437 	 * if KMF_AUDIT is set). We should warn the user about the performance
4438 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4439 	 * isn't set (since that disables AUDIT).
4440 	 */
4441 	if (!(kmem_flags & KMF_LITE) &&
4442 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4443 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
4444 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
4445 		    "and large memory overhead possible. See the Solaris "
4446 		    "Tunable Parameters Reference Manual.", kmem_flags);
4447 #endif /* not DEBUG */
4448 
4449 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4450 
4451 	kmem_ready = 1;
4452 
4453 	/*
4454 	 * Initialize the platform-specific aligned/DMA memory allocator.
4455 	 */
4456 	ka_init();
4457 
4458 	/*
4459 	 * Initialize 32-bit ID cache.
4460 	 */
4461 	id32_init();
4462 
4463 	/*
4464 	 * Initialize the networking stack so modules loaded can
4465 	 * register their callbacks.
4466 	 */
4467 	netstack_init();
4468 }
4469 
4470 static void
4471 kmem_move_init(void)
4472 {
4473 	kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4474 	    sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4475 	    kmem_msb_arena, KMC_NOHASH);
4476 	kmem_move_cache = kmem_cache_create("kmem_move_cache",
4477 	    sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4478 	    kmem_msb_arena, KMC_NOHASH);
4479 
4480 	/*
4481 	 * kmem guarantees that move callbacks are sequential and that even
4482 	 * across multiple caches no two moves ever execute simultaneously.
4483 	 * Move callbacks are processed on a separate taskq so that client code
4484 	 * does not interfere with internal maintenance tasks.
4485 	 */
4486 	kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4487 	    minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4488 }
4489 
4490 void
4491 kmem_thread_init(void)
4492 {
4493 	kmem_move_init();
4494 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4495 	    300, INT_MAX, TASKQ_PREPOPULATE);
4496 }
4497 
4498 void
4499 kmem_mp_init(void)
4500 {
4501 	mutex_enter(&cpu_lock);
4502 	register_cpu_setup_func(kmem_cpu_setup, NULL);
4503 	mutex_exit(&cpu_lock);
4504 
4505 	kmem_update_timeout(NULL);
4506 
4507 	taskq_mp_init();
4508 }
4509 
4510 /*
4511  * Return the slab of the allocated buffer, or NULL if the buffer is not
4512  * allocated. This function may be called with a known slab address to determine
4513  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4514  * an allocated buffer's slab.
4515  */
4516 static kmem_slab_t *
4517 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4518 {
4519 	kmem_bufctl_t *bcp, *bufbcp;
4520 
4521 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4522 	ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4523 
4524 	if (cp->cache_flags & KMF_HASH) {
4525 		for (bcp = *KMEM_HASH(cp, buf);
4526 		    (bcp != NULL) && (bcp->bc_addr != buf);
4527 		    bcp = bcp->bc_next) {
4528 			continue;
4529 		}
4530 		ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4531 		return (bcp == NULL ? NULL : bcp->bc_slab);
4532 	}
4533 
4534 	if (sp == NULL) {
4535 		sp = KMEM_SLAB(cp, buf);
4536 	}
4537 	bufbcp = KMEM_BUFCTL(cp, buf);
4538 	for (bcp = sp->slab_head;
4539 	    (bcp != NULL) && (bcp != bufbcp);
4540 	    bcp = bcp->bc_next) {
4541 		continue;
4542 	}
4543 	return (bcp == NULL ? sp : NULL);
4544 }
4545 
4546 static boolean_t
4547 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4548 {
4549 	long refcnt = sp->slab_refcnt;
4550 
4551 	ASSERT(cp->cache_defrag != NULL);
4552 
4553 	/*
4554 	 * For code coverage we want to be able to move an object within the
4555 	 * same slab (the only partial slab) even if allocating the destination
4556 	 * buffer resulted in a completely allocated slab.
4557 	 */
4558 	if (flags & KMM_DEBUG) {
4559 		return ((flags & KMM_DESPERATE) ||
4560 		    ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4561 	}
4562 
4563 	/* If we're desperate, we don't care if the client said NO. */
4564 	if (flags & KMM_DESPERATE) {
4565 		return (refcnt < sp->slab_chunks); /* any partial */
4566 	}
4567 
4568 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4569 		return (B_FALSE);
4570 	}
4571 
4572 	if ((refcnt == 1) || kmem_move_any_partial) {
4573 		return (refcnt < sp->slab_chunks);
4574 	}
4575 
4576 	/*
4577 	 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4578 	 * slabs with a progressively higher percentage of used buffers can be
4579 	 * reclaimed until the cache as a whole is no longer fragmented.
4580 	 *
4581 	 *	sp->slab_refcnt   kmd_reclaim_numer
4582 	 *	--------------- < ------------------
4583 	 *	sp->slab_chunks   KMEM_VOID_FRACTION
4584 	 */
4585 	return ((refcnt * KMEM_VOID_FRACTION) <
4586 	    (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4587 }
4588 
4589 /*
4590  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4591  * or when the buffer is freed.
4592  */
4593 static void
4594 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4595 {
4596 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4597 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4598 
4599 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4600 		return;
4601 	}
4602 
4603 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4604 		if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4605 			avl_remove(&cp->cache_partial_slabs, sp);
4606 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4607 			sp->slab_stuck_offset = (uint32_t)-1;
4608 			avl_add(&cp->cache_partial_slabs, sp);
4609 		}
4610 	} else {
4611 		sp->slab_later_count = 0;
4612 		sp->slab_stuck_offset = (uint32_t)-1;
4613 	}
4614 }
4615 
4616 static void
4617 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4618 {
4619 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4620 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4621 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4622 
4623 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4624 		return;
4625 	}
4626 
4627 	avl_remove(&cp->cache_partial_slabs, sp);
4628 	sp->slab_later_count = 0;
4629 	sp->slab_flags |= KMEM_SLAB_NOMOVE;
4630 	sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4631 	avl_add(&cp->cache_partial_slabs, sp);
4632 }
4633 
4634 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4635 
4636 /*
4637  * The move callback takes two buffer addresses, the buffer to be moved, and a
4638  * newly allocated and constructed buffer selected by kmem as the destination.
4639  * It also takes the size of the buffer and an optional user argument specified
4640  * at cache creation time. kmem guarantees that the buffer to be moved has not
4641  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4642  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4643  * the client to safely determine whether or not it is still using the buffer.
4644  * The client must not free either of the buffers passed to the move callback,
4645  * since kmem wants to free them directly to the slab layer. The client response
4646  * tells kmem which of the two buffers to free:
4647  *
4648  * YES		kmem frees the old buffer (the move was successful)
4649  * NO		kmem frees the new buffer, marks the slab of the old buffer
4650  *              non-reclaimable to avoid bothering the client again
4651  * LATER	kmem frees the new buffer, increments slab_later_count
4652  * DONT_KNOW	kmem frees the new buffer
4653  * DONT_NEED	kmem frees both the old buffer and the new buffer
4654  *
4655  * The pending callback argument now being processed contains both of the
4656  * buffers (old and new) passed to the move callback function, the slab of the
4657  * old buffer, and flags related to the move request, such as whether or not the
4658  * system was desperate for memory.
4659  *
4660  * Slabs are not freed while there is a pending callback, but instead are kept
4661  * on a deadlist, which is drained after the last callback completes. This means
4662  * that slabs are safe to access until kmem_move_end(), no matter how many of
4663  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4664  * zero for as long as the slab remains on the deadlist and until the slab is
4665  * freed.
4666  */
4667 static void
4668 kmem_move_buffer(kmem_move_t *callback)
4669 {
4670 	kmem_cbrc_t response;
4671 	kmem_slab_t *sp = callback->kmm_from_slab;
4672 	kmem_cache_t *cp = sp->slab_cache;
4673 	boolean_t free_on_slab;
4674 
4675 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4676 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4677 	ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4678 
4679 	/*
4680 	 * The number of allocated buffers on the slab may have changed since we
4681 	 * last checked the slab's reclaimability (when the pending move was
4682 	 * enqueued), or the client may have responded NO when asked to move
4683 	 * another buffer on the same slab.
4684 	 */
4685 	if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4686 		kmem_slab_free(cp, callback->kmm_to_buf);
4687 		kmem_move_end(cp, callback);
4688 		return;
4689 	}
4690 
4691 	/*
4692 	 * Checking the slab layer is easy, so we might as well do that here
4693 	 * in case we can avoid bothering the client.
4694 	 */
4695 	mutex_enter(&cp->cache_lock);
4696 	free_on_slab = (kmem_slab_allocated(cp, sp,
4697 	    callback->kmm_from_buf) == NULL);
4698 	mutex_exit(&cp->cache_lock);
4699 
4700 	if (free_on_slab) {
4701 		kmem_slab_free(cp, callback->kmm_to_buf);
4702 		kmem_move_end(cp, callback);
4703 		return;
4704 	}
4705 
4706 	if (cp->cache_flags & KMF_BUFTAG) {
4707 		/*
4708 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
4709 		 */
4710 		if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4711 		    KM_NOSLEEP, 1, caller()) != 0) {
4712 			kmem_move_end(cp, callback);
4713 			return;
4714 		}
4715 	} else if (cp->cache_constructor != NULL &&
4716 	    cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4717 	    KM_NOSLEEP) != 0) {
4718 		atomic_inc_64(&cp->cache_alloc_fail);
4719 		kmem_slab_free(cp, callback->kmm_to_buf);
4720 		kmem_move_end(cp, callback);
4721 		return;
4722 	}
4723 
4724 	cp->cache_defrag->kmd_callbacks++;
4725 	cp->cache_defrag->kmd_thread = curthread;
4726 	cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4727 	cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4728 	DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4729 	    callback);
4730 
4731 	response = cp->cache_move(callback->kmm_from_buf,
4732 	    callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4733 
4734 	DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4735 	    callback, kmem_cbrc_t, response);
4736 	cp->cache_defrag->kmd_thread = NULL;
4737 	cp->cache_defrag->kmd_from_buf = NULL;
4738 	cp->cache_defrag->kmd_to_buf = NULL;
4739 
4740 	if (response == KMEM_CBRC_YES) {
4741 		cp->cache_defrag->kmd_yes++;
4742 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4743 		/* slab safe to access until kmem_move_end() */
4744 		if (sp->slab_refcnt == 0)
4745 			cp->cache_defrag->kmd_slabs_freed++;
4746 		mutex_enter(&cp->cache_lock);
4747 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4748 		mutex_exit(&cp->cache_lock);
4749 		kmem_move_end(cp, callback);
4750 		return;
4751 	}
4752 
4753 	switch (response) {
4754 	case KMEM_CBRC_NO:
4755 		cp->cache_defrag->kmd_no++;
4756 		mutex_enter(&cp->cache_lock);
4757 		kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4758 		mutex_exit(&cp->cache_lock);
4759 		break;
4760 	case KMEM_CBRC_LATER:
4761 		cp->cache_defrag->kmd_later++;
4762 		mutex_enter(&cp->cache_lock);
4763 		if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4764 			mutex_exit(&cp->cache_lock);
4765 			break;
4766 		}
4767 
4768 		if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4769 			kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4770 		} else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4771 			sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4772 			    callback->kmm_from_buf);
4773 		}
4774 		mutex_exit(&cp->cache_lock);
4775 		break;
4776 	case KMEM_CBRC_DONT_NEED:
4777 		cp->cache_defrag->kmd_dont_need++;
4778 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4779 		if (sp->slab_refcnt == 0)
4780 			cp->cache_defrag->kmd_slabs_freed++;
4781 		mutex_enter(&cp->cache_lock);
4782 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4783 		mutex_exit(&cp->cache_lock);
4784 		break;
4785 	case KMEM_CBRC_DONT_KNOW:
4786 		/*
4787 		 * If we don't know if we can move this buffer or not, we'll
4788 		 * just assume that we can't:  if the buffer is in fact free,
4789 		 * then it is sitting in one of the per-CPU magazines or in
4790 		 * a full magazine in the depot layer.  Either way, because
4791 		 * defrag is induced in the same logic that reaps a cache,
4792 		 * it's likely that full magazines will be returned to the
4793 		 * system soon (thereby accomplishing what we're trying to
4794 		 * accomplish here: return those magazines to their slabs).
4795 		 * Given this, any work that we might do now to locate a buffer
4796 		 * in a magazine is wasted (and expensive!) work; we bump
4797 		 * a counter in this case and otherwise assume that we can't
4798 		 * move it.
4799 		 */
4800 		cp->cache_defrag->kmd_dont_know++;
4801 		break;
4802 	default:
4803 		panic("'%s' (%p) unexpected move callback response %d\n",
4804 		    cp->cache_name, (void *)cp, response);
4805 	}
4806 
4807 	kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4808 	kmem_move_end(cp, callback);
4809 }
4810 
4811 /* Return B_FALSE if there is insufficient memory for the move request. */
4812 static boolean_t
4813 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4814 {
4815 	void *to_buf;
4816 	avl_index_t index;
4817 	kmem_move_t *callback, *pending;
4818 	ulong_t n;
4819 
4820 	ASSERT(taskq_member(kmem_taskq, curthread));
4821 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4822 	ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4823 
4824 	callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4825 
4826 	if (callback == NULL)
4827 		return (B_FALSE);
4828 
4829 	callback->kmm_from_slab = sp;
4830 	callback->kmm_from_buf = buf;
4831 	callback->kmm_flags = flags;
4832 
4833 	mutex_enter(&cp->cache_lock);
4834 
4835 	n = avl_numnodes(&cp->cache_partial_slabs);
4836 	if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4837 		mutex_exit(&cp->cache_lock);
4838 		kmem_cache_free(kmem_move_cache, callback);
4839 		return (B_TRUE); /* there is no need for the move request */
4840 	}
4841 
4842 	pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4843 	if (pending != NULL) {
4844 		/*
4845 		 * If the move is already pending and we're desperate now,
4846 		 * update the move flags.
4847 		 */
4848 		if (flags & KMM_DESPERATE) {
4849 			pending->kmm_flags |= KMM_DESPERATE;
4850 		}
4851 		mutex_exit(&cp->cache_lock);
4852 		kmem_cache_free(kmem_move_cache, callback);
4853 		return (B_TRUE);
4854 	}
4855 
4856 	to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4857 	    B_FALSE);
4858 	callback->kmm_to_buf = to_buf;
4859 	avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4860 
4861 	mutex_exit(&cp->cache_lock);
4862 
4863 	if (taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4864 	    callback, TQ_NOSLEEP) == TASKQID_INVALID) {
4865 		mutex_enter(&cp->cache_lock);
4866 		avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4867 		mutex_exit(&cp->cache_lock);
4868 		kmem_slab_free(cp, to_buf);
4869 		kmem_cache_free(kmem_move_cache, callback);
4870 		return (B_FALSE);
4871 	}
4872 
4873 	return (B_TRUE);
4874 }
4875 
4876 static void
4877 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4878 {
4879 	avl_index_t index;
4880 
4881 	ASSERT(cp->cache_defrag != NULL);
4882 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4883 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4884 
4885 	mutex_enter(&cp->cache_lock);
4886 	VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4887 	    callback->kmm_from_buf, &index) != NULL);
4888 	avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4889 	if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4890 		list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4891 		kmem_slab_t *sp;
4892 
4893 		/*
4894 		 * The last pending move completed. Release all slabs from the
4895 		 * front of the dead list except for any slab at the tail that
4896 		 * needs to be released from the context of kmem_move_buffers().
4897 		 * kmem deferred unmapping the buffers on these slabs in order
4898 		 * to guarantee that buffers passed to the move callback have
4899 		 * been touched only by kmem or by the client itself.
4900 		 */
4901 		while ((sp = list_remove_head(deadlist)) != NULL) {
4902 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4903 				list_insert_tail(deadlist, sp);
4904 				break;
4905 			}
4906 			cp->cache_defrag->kmd_deadcount--;
4907 			cp->cache_slab_destroy++;
4908 			mutex_exit(&cp->cache_lock);
4909 			kmem_slab_destroy(cp, sp);
4910 			mutex_enter(&cp->cache_lock);
4911 		}
4912 	}
4913 	mutex_exit(&cp->cache_lock);
4914 	kmem_cache_free(kmem_move_cache, callback);
4915 }
4916 
4917 /*
4918  * Move buffers from least used slabs first by scanning backwards from the end
4919  * of the partial slab list. Scan at most max_scan candidate slabs and move
4920  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4921  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4922  * skip slabs with a ratio of allocated buffers at or above the current
4923  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4924  * scan is aborted) so that the caller can adjust the reclaimability threshold
4925  * depending on how many reclaimable slabs it finds.
4926  *
4927  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4928  * move request, since it is not valid for kmem_move_begin() to call
4929  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4930  */
4931 static int
4932 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4933     int flags)
4934 {
4935 	kmem_slab_t *sp;
4936 	void *buf;
4937 	int i, j; /* slab index, buffer index */
4938 	int s; /* reclaimable slabs */
4939 	int b; /* allocated (movable) buffers on reclaimable slab */
4940 	boolean_t success;
4941 	int refcnt;
4942 	int nomove;
4943 
4944 	ASSERT(taskq_member(kmem_taskq, curthread));
4945 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4946 	ASSERT(kmem_move_cache != NULL);
4947 	ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4948 	ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4949 	    avl_numnodes(&cp->cache_partial_slabs) > 1);
4950 
4951 	if (kmem_move_blocked) {
4952 		return (0);
4953 	}
4954 
4955 	if (kmem_move_fulltilt) {
4956 		flags |= KMM_DESPERATE;
4957 	}
4958 
4959 	if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4960 		/*
4961 		 * Scan as many slabs as needed to find the desired number of
4962 		 * candidate slabs.
4963 		 */
4964 		max_scan = (size_t)-1;
4965 	}
4966 
4967 	if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4968 		/* Find as many candidate slabs as possible. */
4969 		max_slabs = (size_t)-1;
4970 	}
4971 
4972 	sp = avl_last(&cp->cache_partial_slabs);
4973 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
4974 	for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
4975 	    ((sp != avl_first(&cp->cache_partial_slabs)) ||
4976 	    (flags & KMM_DEBUG));
4977 	    sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4978 
4979 		if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4980 			continue;
4981 		}
4982 		s++;
4983 
4984 		/* Look for allocated buffers to move. */
4985 		for (j = 0, b = 0, buf = sp->slab_base;
4986 		    (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4987 		    buf = (((char *)buf) + cp->cache_chunksize), j++) {
4988 
4989 			if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4990 				continue;
4991 			}
4992 
4993 			b++;
4994 
4995 			/*
4996 			 * Prevent the slab from being destroyed while we drop
4997 			 * cache_lock and while the pending move is not yet
4998 			 * registered. Flag the pending move while
4999 			 * kmd_moves_pending may still be empty, since we can't
5000 			 * yet rely on a non-zero pending move count to prevent
5001 			 * the slab from being destroyed.
5002 			 */
5003 			ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5004 			sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5005 			/*
5006 			 * Recheck refcnt and nomove after reacquiring the lock,
5007 			 * since these control the order of partial slabs, and
5008 			 * we want to know if we can pick up the scan where we
5009 			 * left off.
5010 			 */
5011 			refcnt = sp->slab_refcnt;
5012 			nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5013 			mutex_exit(&cp->cache_lock);
5014 
5015 			success = kmem_move_begin(cp, sp, buf, flags);
5016 
5017 			/*
5018 			 * Now, before the lock is reacquired, kmem could
5019 			 * process all pending move requests and purge the
5020 			 * deadlist, so that upon reacquiring the lock, sp has
5021 			 * been remapped. Or, the client may free all the
5022 			 * objects on the slab while the pending moves are still
5023 			 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5024 			 * flag causes the slab to be put at the end of the
5025 			 * deadlist and prevents it from being destroyed, since
5026 			 * we plan to destroy it here after reacquiring the
5027 			 * lock.
5028 			 */
5029 			mutex_enter(&cp->cache_lock);
5030 			ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5031 			sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5032 
5033 			if (sp->slab_refcnt == 0) {
5034 				list_t *deadlist =
5035 				    &cp->cache_defrag->kmd_deadlist;
5036 				list_remove(deadlist, sp);
5037 
5038 				if (!avl_is_empty(
5039 				    &cp->cache_defrag->kmd_moves_pending)) {
5040 					/*
5041 					 * A pending move makes it unsafe to
5042 					 * destroy the slab, because even though
5043 					 * the move is no longer needed, the
5044 					 * context where that is determined
5045 					 * requires the slab to exist.
5046 					 * Fortunately, a pending move also
5047 					 * means we don't need to destroy the
5048 					 * slab here, since it will get
5049 					 * destroyed along with any other slabs
5050 					 * on the deadlist after the last
5051 					 * pending move completes.
5052 					 */
5053 					list_insert_head(deadlist, sp);
5054 					return (-1);
5055 				}
5056 
5057 				/*
5058 				 * Destroy the slab now if it was completely
5059 				 * freed while we dropped cache_lock and there
5060 				 * are no pending moves. Since slab_refcnt
5061 				 * cannot change once it reaches zero, no new
5062 				 * pending moves from that slab are possible.
5063 				 */
5064 				cp->cache_defrag->kmd_deadcount--;
5065 				cp->cache_slab_destroy++;
5066 				mutex_exit(&cp->cache_lock);
5067 				kmem_slab_destroy(cp, sp);
5068 				mutex_enter(&cp->cache_lock);
5069 				/*
5070 				 * Since we can't pick up the scan where we left
5071 				 * off, abort the scan and say nothing about the
5072 				 * number of reclaimable slabs.
5073 				 */
5074 				return (-1);
5075 			}
5076 
5077 			if (!success) {
5078 				/*
5079 				 * Abort the scan if there is not enough memory
5080 				 * for the request and say nothing about the
5081 				 * number of reclaimable slabs.
5082 				 */
5083 				return (-1);
5084 			}
5085 
5086 			/*
5087 			 * The slab's position changed while the lock was
5088 			 * dropped, so we don't know where we are in the
5089 			 * sequence any more.
5090 			 */
5091 			if (sp->slab_refcnt != refcnt) {
5092 				/*
5093 				 * If this is a KMM_DEBUG move, the slab_refcnt
5094 				 * may have changed because we allocated a
5095 				 * destination buffer on the same slab. In that
5096 				 * case, we're not interested in counting it.
5097 				 */
5098 				return (-1);
5099 			}
5100 			if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5101 				return (-1);
5102 
5103 			/*
5104 			 * Generating a move request allocates a destination
5105 			 * buffer from the slab layer, bumping the first partial
5106 			 * slab if it is completely allocated. If the current
5107 			 * slab becomes the first partial slab as a result, we
5108 			 * can't continue to scan backwards.
5109 			 *
5110 			 * If this is a KMM_DEBUG move and we allocated the
5111 			 * destination buffer from the last partial slab, then
5112 			 * the buffer we're moving is on the same slab and our
5113 			 * slab_refcnt has changed, causing us to return before
5114 			 * reaching here if there are no partial slabs left.
5115 			 */
5116 			ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5117 			if (sp == avl_first(&cp->cache_partial_slabs)) {
5118 				/*
5119 				 * We're not interested in a second KMM_DEBUG
5120 				 * move.
5121 				 */
5122 				goto end_scan;
5123 			}
5124 		}
5125 	}
5126 end_scan:
5127 
5128 	return (s);
5129 }
5130 
5131 typedef struct kmem_move_notify_args {
5132 	kmem_cache_t *kmna_cache;
5133 	void *kmna_buf;
5134 } kmem_move_notify_args_t;
5135 
5136 static void
5137 kmem_cache_move_notify_task(void *arg)
5138 {
5139 	kmem_move_notify_args_t *args = arg;
5140 	kmem_cache_t *cp = args->kmna_cache;
5141 	void *buf = args->kmna_buf;
5142 	kmem_slab_t *sp;
5143 
5144 	ASSERT(taskq_member(kmem_taskq, curthread));
5145 	ASSERT(list_link_active(&cp->cache_link));
5146 
5147 	kmem_free(args, sizeof (kmem_move_notify_args_t));
5148 	mutex_enter(&cp->cache_lock);
5149 	sp = kmem_slab_allocated(cp, NULL, buf);
5150 
5151 	/* Ignore the notification if the buffer is no longer allocated. */
5152 	if (sp == NULL) {
5153 		mutex_exit(&cp->cache_lock);
5154 		return;
5155 	}
5156 
5157 	/* Ignore the notification if there's no reason to move the buffer. */
5158 	if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5159 		/*
5160 		 * So far the notification is not ignored. Ignore the
5161 		 * notification if the slab is not marked by an earlier refusal
5162 		 * to move a buffer.
5163 		 */
5164 		if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5165 		    (sp->slab_later_count == 0)) {
5166 			mutex_exit(&cp->cache_lock);
5167 			return;
5168 		}
5169 
5170 		kmem_slab_move_yes(cp, sp, buf);
5171 		ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5172 		sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5173 		mutex_exit(&cp->cache_lock);
5174 		/* see kmem_move_buffers() about dropping the lock */
5175 		(void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5176 		mutex_enter(&cp->cache_lock);
5177 		ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5178 		sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5179 		if (sp->slab_refcnt == 0) {
5180 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5181 			list_remove(deadlist, sp);
5182 
5183 			if (!avl_is_empty(
5184 			    &cp->cache_defrag->kmd_moves_pending)) {
5185 				list_insert_head(deadlist, sp);
5186 				mutex_exit(&cp->cache_lock);
5187 				return;
5188 			}
5189 
5190 			cp->cache_defrag->kmd_deadcount--;
5191 			cp->cache_slab_destroy++;
5192 			mutex_exit(&cp->cache_lock);
5193 			kmem_slab_destroy(cp, sp);
5194 			return;
5195 		}
5196 	} else {
5197 		kmem_slab_move_yes(cp, sp, buf);
5198 	}
5199 	mutex_exit(&cp->cache_lock);
5200 }
5201 
5202 void
5203 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5204 {
5205 	kmem_move_notify_args_t *args;
5206 
5207 	args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5208 	if (args != NULL) {
5209 		args->kmna_cache = cp;
5210 		args->kmna_buf = buf;
5211 		if (taskq_dispatch(kmem_taskq,
5212 		    (task_func_t *)kmem_cache_move_notify_task, args,
5213 		    TQ_NOSLEEP) == TASKQID_INVALID)
5214 			kmem_free(args, sizeof (kmem_move_notify_args_t));
5215 	}
5216 }
5217 
5218 static void
5219 kmem_cache_defrag(kmem_cache_t *cp)
5220 {
5221 	size_t n;
5222 
5223 	ASSERT(cp->cache_defrag != NULL);
5224 
5225 	mutex_enter(&cp->cache_lock);
5226 	n = avl_numnodes(&cp->cache_partial_slabs);
5227 	if (n > 1) {
5228 		/* kmem_move_buffers() drops and reacquires cache_lock */
5229 		cp->cache_defrag->kmd_defrags++;
5230 		(void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5231 	}
5232 	mutex_exit(&cp->cache_lock);
5233 }
5234 
5235 /* Is this cache above the fragmentation threshold? */
5236 static boolean_t
5237 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5238 {
5239 	/*
5240 	 *	nfree		kmem_frag_numer
5241 	 * ------------------ > ---------------
5242 	 * cp->cache_buftotal	kmem_frag_denom
5243 	 */
5244 	return ((nfree * kmem_frag_denom) >
5245 	    (cp->cache_buftotal * kmem_frag_numer));
5246 }
5247 
5248 static boolean_t
5249 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5250 {
5251 	boolean_t fragmented;
5252 	uint64_t nfree;
5253 
5254 	ASSERT(MUTEX_HELD(&cp->cache_lock));
5255 	*doreap = B_FALSE;
5256 
5257 	if (kmem_move_fulltilt) {
5258 		if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5259 			return (B_TRUE);
5260 		}
5261 	} else {
5262 		if ((cp->cache_complete_slab_count + avl_numnodes(
5263 		    &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5264 			return (B_FALSE);
5265 		}
5266 	}
5267 
5268 	nfree = cp->cache_bufslab;
5269 	fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5270 	    kmem_cache_frag_threshold(cp, nfree));
5271 
5272 	/*
5273 	 * Free buffers in the magazine layer appear allocated from the point of
5274 	 * view of the slab layer. We want to know if the slab layer would
5275 	 * appear fragmented if we included free buffers from magazines that
5276 	 * have fallen out of the working set.
5277 	 */
5278 	if (!fragmented) {
5279 		long reap;
5280 
5281 		mutex_enter(&cp->cache_depot_lock);
5282 		reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5283 		reap = MIN(reap, cp->cache_full.ml_total);
5284 		mutex_exit(&cp->cache_depot_lock);
5285 
5286 		nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5287 		if (kmem_cache_frag_threshold(cp, nfree)) {
5288 			*doreap = B_TRUE;
5289 		}
5290 	}
5291 
5292 	return (fragmented);
5293 }
5294 
5295 /* Called periodically from kmem_taskq */
5296 static void
5297 kmem_cache_scan(kmem_cache_t *cp)
5298 {
5299 	boolean_t reap = B_FALSE;
5300 	kmem_defrag_t *kmd;
5301 
5302 	ASSERT(taskq_member(kmem_taskq, curthread));
5303 
5304 	mutex_enter(&cp->cache_lock);
5305 
5306 	kmd = cp->cache_defrag;
5307 	if (kmd->kmd_consolidate > 0) {
5308 		kmd->kmd_consolidate--;
5309 		mutex_exit(&cp->cache_lock);
5310 		kmem_cache_reap(cp);
5311 		return;
5312 	}
5313 
5314 	if (kmem_cache_is_fragmented(cp, &reap)) {
5315 		size_t slabs_found;
5316 
5317 		/*
5318 		 * Consolidate reclaimable slabs from the end of the partial
5319 		 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5320 		 * reclaimable slabs). Keep track of how many candidate slabs we
5321 		 * looked for and how many we actually found so we can adjust
5322 		 * the definition of a candidate slab if we're having trouble
5323 		 * finding them.
5324 		 *
5325 		 * kmem_move_buffers() drops and reacquires cache_lock.
5326 		 */
5327 		kmd->kmd_scans++;
5328 		slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5329 		    kmem_reclaim_max_slabs, 0);
5330 		if (slabs_found >= 0) {
5331 			kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5332 			kmd->kmd_slabs_found += slabs_found;
5333 		}
5334 
5335 		if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5336 			kmd->kmd_tries = 0;
5337 
5338 			/*
5339 			 * If we had difficulty finding candidate slabs in
5340 			 * previous scans, adjust the threshold so that
5341 			 * candidates are easier to find.
5342 			 */
5343 			if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5344 				kmem_adjust_reclaim_threshold(kmd, -1);
5345 			} else if ((kmd->kmd_slabs_found * 2) <
5346 			    kmd->kmd_slabs_sought) {
5347 				kmem_adjust_reclaim_threshold(kmd, 1);
5348 			}
5349 			kmd->kmd_slabs_sought = 0;
5350 			kmd->kmd_slabs_found = 0;
5351 		}
5352 	} else {
5353 		kmem_reset_reclaim_threshold(cp->cache_defrag);
5354 #ifdef	DEBUG
5355 		if (!avl_is_empty(&cp->cache_partial_slabs)) {
5356 			/*
5357 			 * In a debug kernel we want the consolidator to
5358 			 * run occasionally even when there is plenty of
5359 			 * memory.
5360 			 */
5361 			uint16_t debug_rand;
5362 
5363 			(void) random_get_bytes((uint8_t *)&debug_rand, 2);
5364 			if (!kmem_move_noreap &&
5365 			    ((debug_rand % kmem_mtb_reap) == 0)) {
5366 				mutex_exit(&cp->cache_lock);
5367 				kmem_cache_reap(cp);
5368 				return;
5369 			} else if ((debug_rand % kmem_mtb_move) == 0) {
5370 				kmd->kmd_scans++;
5371 				(void) kmem_move_buffers(cp,
5372 				    kmem_reclaim_scan_range, 1, KMM_DEBUG);
5373 			}
5374 		}
5375 #endif	/* DEBUG */
5376 	}
5377 
5378 	mutex_exit(&cp->cache_lock);
5379 
5380 	if (reap)
5381 		kmem_depot_ws_reap(cp);
5382 }
5383