1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2018, Joyent, Inc. 26 */ 27 28 /* 29 * Kernel memory allocator, as described in the following two papers and a 30 * statement about the consolidator: 31 * 32 * Jeff Bonwick, 33 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 34 * Proceedings of the Summer 1994 Usenix Conference. 35 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 36 * 37 * Jeff Bonwick and Jonathan Adams, 38 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 39 * Arbitrary Resources. 40 * Proceedings of the 2001 Usenix Conference. 41 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 42 * 43 * kmem Slab Consolidator Big Theory Statement: 44 * 45 * 1. Motivation 46 * 47 * As stated in Bonwick94, slabs provide the following advantages over other 48 * allocation structures in terms of memory fragmentation: 49 * 50 * - Internal fragmentation (per-buffer wasted space) is minimal. 51 * - Severe external fragmentation (unused buffers on the free list) is 52 * unlikely. 53 * 54 * Segregating objects by size eliminates one source of external fragmentation, 55 * and according to Bonwick: 56 * 57 * The other reason that slabs reduce external fragmentation is that all 58 * objects in a slab are of the same type, so they have the same lifetime 59 * distribution. The resulting segregation of short-lived and long-lived 60 * objects at slab granularity reduces the likelihood of an entire page being 61 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 62 * 63 * While unlikely, severe external fragmentation remains possible. Clients that 64 * allocate both short- and long-lived objects from the same cache cannot 65 * anticipate the distribution of long-lived objects within the allocator's slab 66 * implementation. Even a small percentage of long-lived objects distributed 67 * randomly across many slabs can lead to a worst case scenario where the client 68 * frees the majority of its objects and the system gets back almost none of the 69 * slabs. Despite the client doing what it reasonably can to help the system 70 * reclaim memory, the allocator cannot shake free enough slabs because of 71 * lonely allocations stubbornly hanging on. Although the allocator is in a 72 * position to diagnose the fragmentation, there is nothing that the allocator 73 * by itself can do about it. It only takes a single allocated object to prevent 74 * an entire slab from being reclaimed, and any object handed out by 75 * kmem_cache_alloc() is by definition in the client's control. Conversely, 76 * although the client is in a position to move a long-lived object, it has no 77 * way of knowing if the object is causing fragmentation, and if so, where to 78 * move it. A solution necessarily requires further cooperation between the 79 * allocator and the client. 80 * 81 * 2. Move Callback 82 * 83 * The kmem slab consolidator therefore adds a move callback to the 84 * allocator/client interface, improving worst-case external fragmentation in 85 * kmem caches that supply a function to move objects from one memory location 86 * to another. In a situation of low memory kmem attempts to consolidate all of 87 * a cache's slabs at once; otherwise it works slowly to bring external 88 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 89 * thereby helping to avoid a low memory situation in the future. 90 * 91 * The callback has the following signature: 92 * 93 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 94 * 95 * It supplies the kmem client with two addresses: the allocated object that 96 * kmem wants to move and a buffer selected by kmem for the client to use as the 97 * copy destination. The callback is kmem's way of saying "Please get off of 98 * this buffer and use this one instead." kmem knows where it wants to move the 99 * object in order to best reduce fragmentation. All the client needs to know 100 * about the second argument (void *new) is that it is an allocated, constructed 101 * object ready to take the contents of the old object. When the move function 102 * is called, the system is likely to be low on memory, and the new object 103 * spares the client from having to worry about allocating memory for the 104 * requested move. The third argument supplies the size of the object, in case a 105 * single move function handles multiple caches whose objects differ only in 106 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 107 * user argument passed to the constructor, destructor, and reclaim functions is 108 * also passed to the move callback. 109 * 110 * 2.1 Setting the Move Callback 111 * 112 * The client sets the move callback after creating the cache and before 113 * allocating from it: 114 * 115 * object_cache = kmem_cache_create(...); 116 * kmem_cache_set_move(object_cache, object_move); 117 * 118 * 2.2 Move Callback Return Values 119 * 120 * Only the client knows about its own data and when is a good time to move it. 121 * The client is cooperating with kmem to return unused memory to the system, 122 * and kmem respectfully accepts this help at the client's convenience. When 123 * asked to move an object, the client can respond with any of the following: 124 * 125 * typedef enum kmem_cbrc { 126 * KMEM_CBRC_YES, 127 * KMEM_CBRC_NO, 128 * KMEM_CBRC_LATER, 129 * KMEM_CBRC_DONT_NEED, 130 * KMEM_CBRC_DONT_KNOW 131 * } kmem_cbrc_t; 132 * 133 * The client must not explicitly kmem_cache_free() either of the objects passed 134 * to the callback, since kmem wants to free them directly to the slab layer 135 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 136 * objects to free: 137 * 138 * YES: (Did it) The client moved the object, so kmem frees the old one. 139 * NO: (Never) The client refused, so kmem frees the new object (the 140 * unused copy destination). kmem also marks the slab of the old 141 * object so as not to bother the client with further callbacks for 142 * that object as long as the slab remains on the partial slab list. 143 * (The system won't be getting the slab back as long as the 144 * immovable object holds it hostage, so there's no point in moving 145 * any of its objects.) 146 * LATER: The client is using the object and cannot move it now, so kmem 147 * frees the new object (the unused copy destination). kmem still 148 * attempts to move other objects off the slab, since it expects to 149 * succeed in clearing the slab in a later callback. The client 150 * should use LATER instead of NO if the object is likely to become 151 * movable very soon. 152 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 153 * with the new object (the unused copy destination). This response 154 * is the client's opportunity to be a model citizen and give back as 155 * much as it can. 156 * DONT_KNOW: The client does not know about the object because 157 * a) the client has just allocated the object and not yet put it 158 * wherever it expects to find known objects 159 * b) the client has removed the object from wherever it expects to 160 * find known objects and is about to free it, or 161 * c) the client has freed the object. 162 * In all these cases (a, b, and c) kmem frees the new object (the 163 * unused copy destination). In the first case, the object is in 164 * use and the correct action is that for LATER; in the latter two 165 * cases, we know that the object is either freed or about to be 166 * freed, in which case it is either already in a magazine or about 167 * to be in one. In these cases, we know that the object will either 168 * be reallocated and reused, or it will end up in a full magazine 169 * that will be reaped (thereby liberating the slab). Because it 170 * is prohibitively expensive to differentiate these cases, and 171 * because the defrag code is executed when we're low on memory 172 * (thereby biasing the system to reclaim full magazines) we treat 173 * all DONT_KNOW cases as LATER and rely on cache reaping to 174 * generally clean up full magazines. While we take the same action 175 * for these cases, we maintain their semantic distinction: if 176 * defragmentation is not occurring, it is useful to know if this 177 * is due to objects in use (LATER) or objects in an unknown state 178 * of transition (DONT_KNOW). 179 * 180 * 2.3 Object States 181 * 182 * Neither kmem nor the client can be assumed to know the object's whereabouts 183 * at the time of the callback. An object belonging to a kmem cache may be in 184 * any of the following states: 185 * 186 * 1. Uninitialized on the slab 187 * 2. Allocated from the slab but not constructed (still uninitialized) 188 * 3. Allocated from the slab, constructed, but not yet ready for business 189 * (not in a valid state for the move callback) 190 * 4. In use (valid and known to the client) 191 * 5. About to be freed (no longer in a valid state for the move callback) 192 * 6. Freed to a magazine (still constructed) 193 * 7. Allocated from a magazine, not yet ready for business (not in a valid 194 * state for the move callback), and about to return to state #4 195 * 8. Deconstructed on a magazine that is about to be freed 196 * 9. Freed to the slab 197 * 198 * Since the move callback may be called at any time while the object is in any 199 * of the above states (except state #1), the client needs a safe way to 200 * determine whether or not it knows about the object. Specifically, the client 201 * needs to know whether or not the object is in state #4, the only state in 202 * which a move is valid. If the object is in any other state, the client should 203 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 204 * the object's fields. 205 * 206 * Note that although an object may be in state #4 when kmem initiates the move 207 * request, the object may no longer be in that state by the time kmem actually 208 * calls the move function. Not only does the client free objects 209 * asynchronously, kmem itself puts move requests on a queue where thay are 210 * pending until kmem processes them from another context. Also, objects freed 211 * to a magazine appear allocated from the point of view of the slab layer, so 212 * kmem may even initiate requests for objects in a state other than state #4. 213 * 214 * 2.3.1 Magazine Layer 215 * 216 * An important insight revealed by the states listed above is that the magazine 217 * layer is populated only by kmem_cache_free(). Magazines of constructed 218 * objects are never populated directly from the slab layer (which contains raw, 219 * unconstructed objects). Whenever an allocation request cannot be satisfied 220 * from the magazine layer, the magazines are bypassed and the request is 221 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 222 * the object constructor only when allocating from the slab layer, and only in 223 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 224 * the move callback. kmem does not preconstruct objects in anticipation of 225 * kmem_cache_alloc(). 226 * 227 * 2.3.2 Object Constructor and Destructor 228 * 229 * If the client supplies a destructor, it must be valid to call the destructor 230 * on a newly created object (immediately after the constructor). 231 * 232 * 2.4 Recognizing Known Objects 233 * 234 * There is a simple test to determine safely whether or not the client knows 235 * about a given object in the move callback. It relies on the fact that kmem 236 * guarantees that the object of the move callback has only been touched by the 237 * client itself or else by kmem. kmem does this by ensuring that none of the 238 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 239 * callback is pending. When the last object on a slab is freed, if there is a 240 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 241 * slabs on that list until all pending callbacks are completed. That way, 242 * clients can be certain that the object of a move callback is in one of the 243 * states listed above, making it possible to distinguish known objects (in 244 * state #4) using the two low order bits of any pointer member (with the 245 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 246 * platforms). 247 * 248 * The test works as long as the client always transitions objects from state #4 249 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 250 * order bit of the client-designated pointer member. Since kmem only writes 251 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 252 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 253 * guaranteed to set at least one of the two low order bits. Therefore, given an 254 * object with a back pointer to a 'container_t *o_container', the client can 255 * test 256 * 257 * container_t *container = object->o_container; 258 * if ((uintptr_t)container & 0x3) { 259 * return (KMEM_CBRC_DONT_KNOW); 260 * } 261 * 262 * Typically, an object will have a pointer to some structure with a list or 263 * hash where objects from the cache are kept while in use. Assuming that the 264 * client has some way of knowing that the container structure is valid and will 265 * not go away during the move, and assuming that the structure includes a lock 266 * to protect whatever collection is used, then the client would continue as 267 * follows: 268 * 269 * // Ensure that the container structure does not go away. 270 * if (container_hold(container) == 0) { 271 * return (KMEM_CBRC_DONT_KNOW); 272 * } 273 * mutex_enter(&container->c_objects_lock); 274 * if (container != object->o_container) { 275 * mutex_exit(&container->c_objects_lock); 276 * container_rele(container); 277 * return (KMEM_CBRC_DONT_KNOW); 278 * } 279 * 280 * At this point the client knows that the object cannot be freed as long as 281 * c_objects_lock is held. Note that after acquiring the lock, the client must 282 * recheck the o_container pointer in case the object was removed just before 283 * acquiring the lock. 284 * 285 * When the client is about to free an object, it must first remove that object 286 * from the list, hash, or other structure where it is kept. At that time, to 287 * mark the object so it can be distinguished from the remaining, known objects, 288 * the client sets the designated low order bit: 289 * 290 * mutex_enter(&container->c_objects_lock); 291 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 292 * list_remove(&container->c_objects, object); 293 * mutex_exit(&container->c_objects_lock); 294 * 295 * In the common case, the object is freed to the magazine layer, where it may 296 * be reused on a subsequent allocation without the overhead of calling the 297 * constructor. While in the magazine it appears allocated from the point of 298 * view of the slab layer, making it a candidate for the move callback. Most 299 * objects unrecognized by the client in the move callback fall into this 300 * category and are cheaply distinguished from known objects by the test 301 * described earlier. Because searching magazines is prohibitively expensive 302 * for kmem, clients that do not mark freed objects (and therefore return 303 * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation 304 * efficacy reduced. 305 * 306 * Invalidating the designated pointer member before freeing the object marks 307 * the object to be avoided in the callback, and conversely, assigning a valid 308 * value to the designated pointer member after allocating the object makes the 309 * object fair game for the callback: 310 * 311 * ... allocate object ... 312 * ... set any initial state not set by the constructor ... 313 * 314 * mutex_enter(&container->c_objects_lock); 315 * list_insert_tail(&container->c_objects, object); 316 * membar_producer(); 317 * object->o_container = container; 318 * mutex_exit(&container->c_objects_lock); 319 * 320 * Note that everything else must be valid before setting o_container makes the 321 * object fair game for the move callback. The membar_producer() call ensures 322 * that all the object's state is written to memory before setting the pointer 323 * that transitions the object from state #3 or #7 (allocated, constructed, not 324 * yet in use) to state #4 (in use, valid). That's important because the move 325 * function has to check the validity of the pointer before it can safely 326 * acquire the lock protecting the collection where it expects to find known 327 * objects. 328 * 329 * This method of distinguishing known objects observes the usual symmetry: 330 * invalidating the designated pointer is the first thing the client does before 331 * freeing the object, and setting the designated pointer is the last thing the 332 * client does after allocating the object. Of course, the client is not 333 * required to use this method. Fundamentally, how the client recognizes known 334 * objects is completely up to the client, but this method is recommended as an 335 * efficient and safe way to take advantage of the guarantees made by kmem. If 336 * the entire object is arbitrary data without any markable bits from a suitable 337 * pointer member, then the client must find some other method, such as 338 * searching a hash table of known objects. 339 * 340 * 2.5 Preventing Objects From Moving 341 * 342 * Besides a way to distinguish known objects, the other thing that the client 343 * needs is a strategy to ensure that an object will not move while the client 344 * is actively using it. The details of satisfying this requirement tend to be 345 * highly cache-specific. It might seem that the same rules that let a client 346 * remove an object safely should also decide when an object can be moved 347 * safely. However, any object state that makes a removal attempt invalid is 348 * likely to be long-lasting for objects that the client does not expect to 349 * remove. kmem knows nothing about the object state and is equally likely (from 350 * the client's point of view) to request a move for any object in the cache, 351 * whether prepared for removal or not. Even a low percentage of objects stuck 352 * in place by unremovability will defeat the consolidator if the stuck objects 353 * are the same long-lived allocations likely to hold slabs hostage. 354 * Fundamentally, the consolidator is not aimed at common cases. Severe external 355 * fragmentation is a worst case scenario manifested as sparsely allocated 356 * slabs, by definition a low percentage of the cache's objects. When deciding 357 * what makes an object movable, keep in mind the goal of the consolidator: to 358 * bring worst-case external fragmentation within the limits guaranteed for 359 * internal fragmentation. Removability is a poor criterion if it is likely to 360 * exclude more than an insignificant percentage of objects for long periods of 361 * time. 362 * 363 * A tricky general solution exists, and it has the advantage of letting you 364 * move any object at almost any moment, practically eliminating the likelihood 365 * that an object can hold a slab hostage. However, if there is a cache-specific 366 * way to ensure that an object is not actively in use in the vast majority of 367 * cases, a simpler solution that leverages this cache-specific knowledge is 368 * preferred. 369 * 370 * 2.5.1 Cache-Specific Solution 371 * 372 * As an example of a cache-specific solution, the ZFS znode cache takes 373 * advantage of the fact that the vast majority of znodes are only being 374 * referenced from the DNLC. (A typical case might be a few hundred in active 375 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 376 * client has established that it recognizes the znode and can access its fields 377 * safely (using the method described earlier), it then tests whether the znode 378 * is referenced by anything other than the DNLC. If so, it assumes that the 379 * znode may be in active use and is unsafe to move, so it drops its locks and 380 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 381 * else znodes are used, no change is needed to protect against the possibility 382 * of the znode moving. The disadvantage is that it remains possible for an 383 * application to hold a znode slab hostage with an open file descriptor. 384 * However, this case ought to be rare and the consolidator has a way to deal 385 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 386 * object, kmem eventually stops believing it and treats the slab as if the 387 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 388 * then focus on getting it off of the partial slab list by allocating rather 389 * than freeing all of its objects. (Either way of getting a slab off the 390 * free list reduces fragmentation.) 391 * 392 * 2.5.2 General Solution 393 * 394 * The general solution, on the other hand, requires an explicit hold everywhere 395 * the object is used to prevent it from moving. To keep the client locking 396 * strategy as uncomplicated as possible, kmem guarantees the simplifying 397 * assumption that move callbacks are sequential, even across multiple caches. 398 * Internally, a global queue processed by a single thread supports all caches 399 * implementing the callback function. No matter how many caches supply a move 400 * function, the consolidator never moves more than one object at a time, so the 401 * client does not have to worry about tricky lock ordering involving several 402 * related objects from different kmem caches. 403 * 404 * The general solution implements the explicit hold as a read-write lock, which 405 * allows multiple readers to access an object from the cache simultaneously 406 * while a single writer is excluded from moving it. A single rwlock for the 407 * entire cache would lock out all threads from using any of the cache's objects 408 * even though only a single object is being moved, so to reduce contention, 409 * the client can fan out the single rwlock into an array of rwlocks hashed by 410 * the object address, making it probable that moving one object will not 411 * prevent other threads from using a different object. The rwlock cannot be a 412 * member of the object itself, because the possibility of the object moving 413 * makes it unsafe to access any of the object's fields until the lock is 414 * acquired. 415 * 416 * Assuming a small, fixed number of locks, it's possible that multiple objects 417 * will hash to the same lock. A thread that needs to use multiple objects in 418 * the same function may acquire the same lock multiple times. Since rwlocks are 419 * reentrant for readers, and since there is never more than a single writer at 420 * a time (assuming that the client acquires the lock as a writer only when 421 * moving an object inside the callback), there would seem to be no problem. 422 * However, a client locking multiple objects in the same function must handle 423 * one case of potential deadlock: Assume that thread A needs to prevent both 424 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 425 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 426 * same lock, that thread A will acquire the lock for object 1 as a reader 427 * before thread B sets the lock's write-wanted bit, preventing thread A from 428 * reacquiring the lock for object 2 as a reader. Unable to make forward 429 * progress, thread A will never release the lock for object 1, resulting in 430 * deadlock. 431 * 432 * There are two ways of avoiding the deadlock just described. The first is to 433 * use rw_tryenter() rather than rw_enter() in the callback function when 434 * attempting to acquire the lock as a writer. If tryenter discovers that the 435 * same object (or another object hashed to the same lock) is already in use, it 436 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 437 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 438 * since it allows a thread to acquire the lock as a reader in spite of a 439 * waiting writer. This second approach insists on moving the object now, no 440 * matter how many readers the move function must wait for in order to do so, 441 * and could delay the completion of the callback indefinitely (blocking 442 * callbacks to other clients). In practice, a less insistent callback using 443 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 444 * little reason to use anything else. 445 * 446 * Avoiding deadlock is not the only problem that an implementation using an 447 * explicit hold needs to solve. Locking the object in the first place (to 448 * prevent it from moving) remains a problem, since the object could move 449 * between the time you obtain a pointer to the object and the time you acquire 450 * the rwlock hashed to that pointer value. Therefore the client needs to 451 * recheck the value of the pointer after acquiring the lock, drop the lock if 452 * the value has changed, and try again. This requires a level of indirection: 453 * something that points to the object rather than the object itself, that the 454 * client can access safely while attempting to acquire the lock. (The object 455 * itself cannot be referenced safely because it can move at any time.) 456 * The following lock-acquisition function takes whatever is safe to reference 457 * (arg), follows its pointer to the object (using function f), and tries as 458 * often as necessary to acquire the hashed lock and verify that the object 459 * still has not moved: 460 * 461 * object_t * 462 * object_hold(object_f f, void *arg) 463 * { 464 * object_t *op; 465 * 466 * op = f(arg); 467 * if (op == NULL) { 468 * return (NULL); 469 * } 470 * 471 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 472 * while (op != f(arg)) { 473 * rw_exit(OBJECT_RWLOCK(op)); 474 * op = f(arg); 475 * if (op == NULL) { 476 * break; 477 * } 478 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 479 * } 480 * 481 * return (op); 482 * } 483 * 484 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 485 * lock reacquisition loop, while necessary, almost never executes. The function 486 * pointer f (used to obtain the object pointer from arg) has the following type 487 * definition: 488 * 489 * typedef object_t *(*object_f)(void *arg); 490 * 491 * An object_f implementation is likely to be as simple as accessing a structure 492 * member: 493 * 494 * object_t * 495 * s_object(void *arg) 496 * { 497 * something_t *sp = arg; 498 * return (sp->s_object); 499 * } 500 * 501 * The flexibility of a function pointer allows the path to the object to be 502 * arbitrarily complex and also supports the notion that depending on where you 503 * are using the object, you may need to get it from someplace different. 504 * 505 * The function that releases the explicit hold is simpler because it does not 506 * have to worry about the object moving: 507 * 508 * void 509 * object_rele(object_t *op) 510 * { 511 * rw_exit(OBJECT_RWLOCK(op)); 512 * } 513 * 514 * The caller is spared these details so that obtaining and releasing an 515 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 516 * of object_hold() only needs to know that the returned object pointer is valid 517 * if not NULL and that the object will not move until released. 518 * 519 * Although object_hold() prevents an object from moving, it does not prevent it 520 * from being freed. The caller must take measures before calling object_hold() 521 * (afterwards is too late) to ensure that the held object cannot be freed. The 522 * caller must do so without accessing the unsafe object reference, so any lock 523 * or reference count used to ensure the continued existence of the object must 524 * live outside the object itself. 525 * 526 * Obtaining a new object is a special case where an explicit hold is impossible 527 * for the caller. Any function that returns a newly allocated object (either as 528 * a return value, or as an in-out paramter) must return it already held; after 529 * the caller gets it is too late, since the object cannot be safely accessed 530 * without the level of indirection described earlier. The following 531 * object_alloc() example uses the same code shown earlier to transition a new 532 * object into the state of being recognized (by the client) as a known object. 533 * The function must acquire the hold (rw_enter) before that state transition 534 * makes the object movable: 535 * 536 * static object_t * 537 * object_alloc(container_t *container) 538 * { 539 * object_t *object = kmem_cache_alloc(object_cache, 0); 540 * ... set any initial state not set by the constructor ... 541 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 542 * mutex_enter(&container->c_objects_lock); 543 * list_insert_tail(&container->c_objects, object); 544 * membar_producer(); 545 * object->o_container = container; 546 * mutex_exit(&container->c_objects_lock); 547 * return (object); 548 * } 549 * 550 * Functions that implicitly acquire an object hold (any function that calls 551 * object_alloc() to supply an object for the caller) need to be carefully noted 552 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 553 * prevent all objects hashed to the affected rwlocks from ever being moved. 554 * 555 * The pointer to a held object can be hashed to the holding rwlock even after 556 * the object has been freed. Although it is possible to release the hold 557 * after freeing the object, you may decide to release the hold implicitly in 558 * whatever function frees the object, so as to release the hold as soon as 559 * possible, and for the sake of symmetry with the function that implicitly 560 * acquires the hold when it allocates the object. Here, object_free() releases 561 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 562 * matching pair with object_hold(): 563 * 564 * void 565 * object_free(object_t *object) 566 * { 567 * container_t *container; 568 * 569 * ASSERT(object_held(object)); 570 * container = object->o_container; 571 * mutex_enter(&container->c_objects_lock); 572 * object->o_container = 573 * (void *)((uintptr_t)object->o_container | 0x1); 574 * list_remove(&container->c_objects, object); 575 * mutex_exit(&container->c_objects_lock); 576 * object_rele(object); 577 * kmem_cache_free(object_cache, object); 578 * } 579 * 580 * Note that object_free() cannot safely accept an object pointer as an argument 581 * unless the object is already held. Any function that calls object_free() 582 * needs to be carefully noted since it similarly forms a matching pair with 583 * object_hold(). 584 * 585 * To complete the picture, the following callback function implements the 586 * general solution by moving objects only if they are currently unheld: 587 * 588 * static kmem_cbrc_t 589 * object_move(void *buf, void *newbuf, size_t size, void *arg) 590 * { 591 * object_t *op = buf, *np = newbuf; 592 * container_t *container; 593 * 594 * container = op->o_container; 595 * if ((uintptr_t)container & 0x3) { 596 * return (KMEM_CBRC_DONT_KNOW); 597 * } 598 * 599 * // Ensure that the container structure does not go away. 600 * if (container_hold(container) == 0) { 601 * return (KMEM_CBRC_DONT_KNOW); 602 * } 603 * 604 * mutex_enter(&container->c_objects_lock); 605 * if (container != op->o_container) { 606 * mutex_exit(&container->c_objects_lock); 607 * container_rele(container); 608 * return (KMEM_CBRC_DONT_KNOW); 609 * } 610 * 611 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 612 * mutex_exit(&container->c_objects_lock); 613 * container_rele(container); 614 * return (KMEM_CBRC_LATER); 615 * } 616 * 617 * object_move_impl(op, np); // critical section 618 * rw_exit(OBJECT_RWLOCK(op)); 619 * 620 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 621 * list_link_replace(&op->o_link_node, &np->o_link_node); 622 * mutex_exit(&container->c_objects_lock); 623 * container_rele(container); 624 * return (KMEM_CBRC_YES); 625 * } 626 * 627 * Note that object_move() must invalidate the designated o_container pointer of 628 * the old object in the same way that object_free() does, since kmem will free 629 * the object in response to the KMEM_CBRC_YES return value. 630 * 631 * The lock order in object_move() differs from object_alloc(), which locks 632 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 633 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 634 * not a problem. Holding the lock on the object list in the example above 635 * through the entire callback not only prevents the object from going away, it 636 * also allows you to lock the list elsewhere and know that none of its elements 637 * will move during iteration. 638 * 639 * Adding an explicit hold everywhere an object from the cache is used is tricky 640 * and involves much more change to client code than a cache-specific solution 641 * that leverages existing state to decide whether or not an object is 642 * movable. However, this approach has the advantage that no object remains 643 * immovable for any significant length of time, making it extremely unlikely 644 * that long-lived allocations can continue holding slabs hostage; and it works 645 * for any cache. 646 * 647 * 3. Consolidator Implementation 648 * 649 * Once the client supplies a move function that a) recognizes known objects and 650 * b) avoids moving objects that are actively in use, the remaining work is up 651 * to the consolidator to decide which objects to move and when to issue 652 * callbacks. 653 * 654 * The consolidator relies on the fact that a cache's slabs are ordered by 655 * usage. Each slab has a fixed number of objects. Depending on the slab's 656 * "color" (the offset of the first object from the beginning of the slab; 657 * offsets are staggered to mitigate false sharing of cache lines) it is either 658 * the maximum number of objects per slab determined at cache creation time or 659 * else the number closest to the maximum that fits within the space remaining 660 * after the initial offset. A completely allocated slab may contribute some 661 * internal fragmentation (per-slab overhead) but no external fragmentation, so 662 * it is of no interest to the consolidator. At the other extreme, slabs whose 663 * objects have all been freed to the slab are released to the virtual memory 664 * (VM) subsystem (objects freed to magazines are still allocated as far as the 665 * slab is concerned). External fragmentation exists when there are slabs 666 * somewhere between these extremes. A partial slab has at least one but not all 667 * of its objects allocated. The more partial slabs, and the fewer allocated 668 * objects on each of them, the higher the fragmentation. Hence the 669 * consolidator's overall strategy is to reduce the number of partial slabs by 670 * moving allocated objects from the least allocated slabs to the most allocated 671 * slabs. 672 * 673 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 674 * slabs are kept separately in an unordered list. Since the majority of slabs 675 * tend to be completely allocated (a typical unfragmented cache may have 676 * thousands of complete slabs and only a single partial slab), separating 677 * complete slabs improves the efficiency of partial slab ordering, since the 678 * complete slabs do not affect the depth or balance of the AVL tree. This 679 * ordered sequence of partial slabs acts as a "free list" supplying objects for 680 * allocation requests. 681 * 682 * Objects are always allocated from the first partial slab in the free list, 683 * where the allocation is most likely to eliminate a partial slab (by 684 * completely allocating it). Conversely, when a single object from a completely 685 * allocated slab is freed to the slab, that slab is added to the front of the 686 * free list. Since most free list activity involves highly allocated slabs 687 * coming and going at the front of the list, slabs tend naturally toward the 688 * ideal order: highly allocated at the front, sparsely allocated at the back. 689 * Slabs with few allocated objects are likely to become completely free if they 690 * keep a safe distance away from the front of the free list. Slab misorders 691 * interfere with the natural tendency of slabs to become completely free or 692 * completely allocated. For example, a slab with a single allocated object 693 * needs only a single free to escape the cache; its natural desire is 694 * frustrated when it finds itself at the front of the list where a second 695 * allocation happens just before the free could have released it. Another slab 696 * with all but one object allocated might have supplied the buffer instead, so 697 * that both (as opposed to neither) of the slabs would have been taken off the 698 * free list. 699 * 700 * Although slabs tend naturally toward the ideal order, misorders allowed by a 701 * simple list implementation defeat the consolidator's strategy of merging 702 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 703 * needs another way to fix misorders to optimize its callback strategy. One 704 * approach is to periodically scan a limited number of slabs, advancing a 705 * marker to hold the current scan position, and to move extreme misorders to 706 * the front or back of the free list and to the front or back of the current 707 * scan range. By making consecutive scan ranges overlap by one slab, the least 708 * allocated slab in the current range can be carried along from the end of one 709 * scan to the start of the next. 710 * 711 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 712 * task, however. Since most of the cache's activity is in the magazine layer, 713 * and allocations from the slab layer represent only a startup cost, the 714 * overhead of maintaining a balanced tree is not a significant concern compared 715 * to the opportunity of reducing complexity by eliminating the partial slab 716 * scanner just described. The overhead of an AVL tree is minimized by 717 * maintaining only partial slabs in the tree and keeping completely allocated 718 * slabs separately in a list. To avoid increasing the size of the slab 719 * structure the AVL linkage pointers are reused for the slab's list linkage, 720 * since the slab will always be either partial or complete, never stored both 721 * ways at the same time. To further minimize the overhead of the AVL tree the 722 * compare function that orders partial slabs by usage divides the range of 723 * allocated object counts into bins such that counts within the same bin are 724 * considered equal. Binning partial slabs makes it less likely that allocating 725 * or freeing a single object will change the slab's order, requiring a tree 726 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 727 * requiring some rebalancing of the tree). Allocation counts closest to 728 * completely free and completely allocated are left unbinned (finely sorted) to 729 * better support the consolidator's strategy of merging slabs at either 730 * extreme. 731 * 732 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 733 * 734 * The consolidator piggybacks on the kmem maintenance thread and is called on 735 * the same interval as kmem_cache_update(), once per cache every fifteen 736 * seconds. kmem maintains a running count of unallocated objects in the slab 737 * layer (cache_bufslab). The consolidator checks whether that number exceeds 738 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 739 * there is a significant number of slabs in the cache (arbitrarily a minimum 740 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 741 * working set are included in the assessment, and magazines in the depot are 742 * reaped if those objects would lift cache_bufslab above the fragmentation 743 * threshold. Once the consolidator decides that a cache is fragmented, it looks 744 * for a candidate slab to reclaim, starting at the end of the partial slab free 745 * list and scanning backwards. At first the consolidator is choosy: only a slab 746 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 747 * single allocated object, regardless of percentage). If there is difficulty 748 * finding a candidate slab, kmem raises the allocation threshold incrementally, 749 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 750 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 751 * even in the worst case of every slab in the cache being almost 7/8 allocated. 752 * The threshold can also be lowered incrementally when candidate slabs are easy 753 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 754 * is no longer fragmented. 755 * 756 * 3.2 Generating Callbacks 757 * 758 * Once an eligible slab is chosen, a callback is generated for every allocated 759 * object on the slab, in the hope that the client will move everything off the 760 * slab and make it reclaimable. Objects selected as move destinations are 761 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 762 * order (most allocated at the front, least allocated at the back) and a 763 * cooperative client, the consolidator will succeed in removing slabs from both 764 * ends of the free list, completely allocating on the one hand and completely 765 * freeing on the other. Objects selected as move destinations are allocated in 766 * the kmem maintenance thread where move requests are enqueued. A separate 767 * callback thread removes pending callbacks from the queue and calls the 768 * client. The separate thread ensures that client code (the move function) does 769 * not interfere with internal kmem maintenance tasks. A map of pending 770 * callbacks keyed by object address (the object to be moved) is checked to 771 * ensure that duplicate callbacks are not generated for the same object. 772 * Allocating the move destination (the object to move to) prevents subsequent 773 * callbacks from selecting the same destination as an earlier pending callback. 774 * 775 * Move requests can also be generated by kmem_cache_reap() when the system is 776 * desperate for memory and by kmem_cache_move_notify(), called by the client to 777 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 778 * The map of pending callbacks is protected by the same lock that protects the 779 * slab layer. 780 * 781 * When the system is desperate for memory, kmem does not bother to determine 782 * whether or not the cache exceeds the fragmentation threshold, but tries to 783 * consolidate as many slabs as possible. Normally, the consolidator chews 784 * slowly, one sparsely allocated slab at a time during each maintenance 785 * interval that the cache is fragmented. When desperate, the consolidator 786 * starts at the last partial slab and enqueues callbacks for every allocated 787 * object on every partial slab, working backwards until it reaches the first 788 * partial slab. The first partial slab, meanwhile, advances in pace with the 789 * consolidator as allocations to supply move destinations for the enqueued 790 * callbacks use up the highly allocated slabs at the front of the free list. 791 * Ideally, the overgrown free list collapses like an accordion, starting at 792 * both ends and ending at the center with a single partial slab. 793 * 794 * 3.3 Client Responses 795 * 796 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 797 * marks the slab that supplied the stuck object non-reclaimable and moves it to 798 * front of the free list. The slab remains marked as long as it remains on the 799 * free list, and it appears more allocated to the partial slab compare function 800 * than any unmarked slab, no matter how many of its objects are allocated. 801 * Since even one immovable object ties up the entire slab, the goal is to 802 * completely allocate any slab that cannot be completely freed. kmem does not 803 * bother generating callbacks to move objects from a marked slab unless the 804 * system is desperate. 805 * 806 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 807 * slab. If the client responds LATER too many times, kmem disbelieves and 808 * treats the response as a NO. The count is cleared when the slab is taken off 809 * the partial slab list or when the client moves one of the slab's objects. 810 * 811 * 4. Observability 812 * 813 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 814 * the ::kmem_slabs dcmd. For a complete description of the command, enter 815 * '::help kmem_slabs' at the mdb prompt. 816 */ 817 818 #include <sys/kmem_impl.h> 819 #include <sys/vmem_impl.h> 820 #include <sys/param.h> 821 #include <sys/sysmacros.h> 822 #include <sys/vm.h> 823 #include <sys/proc.h> 824 #include <sys/tuneable.h> 825 #include <sys/systm.h> 826 #include <sys/cmn_err.h> 827 #include <sys/debug.h> 828 #include <sys/sdt.h> 829 #include <sys/mutex.h> 830 #include <sys/bitmap.h> 831 #include <sys/atomic.h> 832 #include <sys/kobj.h> 833 #include <sys/disp.h> 834 #include <vm/seg_kmem.h> 835 #include <sys/log.h> 836 #include <sys/callb.h> 837 #include <sys/taskq.h> 838 #include <sys/modctl.h> 839 #include <sys/reboot.h> 840 #include <sys/id32.h> 841 #include <sys/zone.h> 842 #include <sys/netstack.h> 843 #ifdef DEBUG 844 #include <sys/random.h> 845 #endif 846 847 extern void streams_msg_init(void); 848 extern int segkp_fromheap; 849 extern void segkp_cache_free(void); 850 extern int callout_init_done; 851 852 struct kmem_cache_kstat { 853 kstat_named_t kmc_buf_size; 854 kstat_named_t kmc_align; 855 kstat_named_t kmc_chunk_size; 856 kstat_named_t kmc_slab_size; 857 kstat_named_t kmc_alloc; 858 kstat_named_t kmc_alloc_fail; 859 kstat_named_t kmc_free; 860 kstat_named_t kmc_depot_alloc; 861 kstat_named_t kmc_depot_free; 862 kstat_named_t kmc_depot_contention; 863 kstat_named_t kmc_slab_alloc; 864 kstat_named_t kmc_slab_free; 865 kstat_named_t kmc_buf_constructed; 866 kstat_named_t kmc_buf_avail; 867 kstat_named_t kmc_buf_inuse; 868 kstat_named_t kmc_buf_total; 869 kstat_named_t kmc_buf_max; 870 kstat_named_t kmc_slab_create; 871 kstat_named_t kmc_slab_destroy; 872 kstat_named_t kmc_vmem_source; 873 kstat_named_t kmc_hash_size; 874 kstat_named_t kmc_hash_lookup_depth; 875 kstat_named_t kmc_hash_rescale; 876 kstat_named_t kmc_full_magazines; 877 kstat_named_t kmc_empty_magazines; 878 kstat_named_t kmc_magazine_size; 879 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 880 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 881 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 882 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 883 kstat_named_t kmc_move_yes; 884 kstat_named_t kmc_move_no; 885 kstat_named_t kmc_move_later; 886 kstat_named_t kmc_move_dont_need; 887 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 888 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 889 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 890 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 891 } kmem_cache_kstat = { 892 { "buf_size", KSTAT_DATA_UINT64 }, 893 { "align", KSTAT_DATA_UINT64 }, 894 { "chunk_size", KSTAT_DATA_UINT64 }, 895 { "slab_size", KSTAT_DATA_UINT64 }, 896 { "alloc", KSTAT_DATA_UINT64 }, 897 { "alloc_fail", KSTAT_DATA_UINT64 }, 898 { "free", KSTAT_DATA_UINT64 }, 899 { "depot_alloc", KSTAT_DATA_UINT64 }, 900 { "depot_free", KSTAT_DATA_UINT64 }, 901 { "depot_contention", KSTAT_DATA_UINT64 }, 902 { "slab_alloc", KSTAT_DATA_UINT64 }, 903 { "slab_free", KSTAT_DATA_UINT64 }, 904 { "buf_constructed", KSTAT_DATA_UINT64 }, 905 { "buf_avail", KSTAT_DATA_UINT64 }, 906 { "buf_inuse", KSTAT_DATA_UINT64 }, 907 { "buf_total", KSTAT_DATA_UINT64 }, 908 { "buf_max", KSTAT_DATA_UINT64 }, 909 { "slab_create", KSTAT_DATA_UINT64 }, 910 { "slab_destroy", KSTAT_DATA_UINT64 }, 911 { "vmem_source", KSTAT_DATA_UINT64 }, 912 { "hash_size", KSTAT_DATA_UINT64 }, 913 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 914 { "hash_rescale", KSTAT_DATA_UINT64 }, 915 { "full_magazines", KSTAT_DATA_UINT64 }, 916 { "empty_magazines", KSTAT_DATA_UINT64 }, 917 { "magazine_size", KSTAT_DATA_UINT64 }, 918 { "reap", KSTAT_DATA_UINT64 }, 919 { "defrag", KSTAT_DATA_UINT64 }, 920 { "scan", KSTAT_DATA_UINT64 }, 921 { "move_callbacks", KSTAT_DATA_UINT64 }, 922 { "move_yes", KSTAT_DATA_UINT64 }, 923 { "move_no", KSTAT_DATA_UINT64 }, 924 { "move_later", KSTAT_DATA_UINT64 }, 925 { "move_dont_need", KSTAT_DATA_UINT64 }, 926 { "move_dont_know", KSTAT_DATA_UINT64 }, 927 { "move_hunt_found", KSTAT_DATA_UINT64 }, 928 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 929 { "move_reclaimable", KSTAT_DATA_UINT64 }, 930 }; 931 932 static kmutex_t kmem_cache_kstat_lock; 933 934 /* 935 * The default set of caches to back kmem_alloc(). 936 * These sizes should be reevaluated periodically. 937 * 938 * We want allocations that are multiples of the coherency granularity 939 * (64 bytes) to be satisfied from a cache which is a multiple of 64 940 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 941 * the next kmem_cache_size greater than or equal to it must be a 942 * multiple of 64. 943 * 944 * We split the table into two sections: size <= 4k and size > 4k. This 945 * saves a lot of space and cache footprint in our cache tables. 946 */ 947 static const int kmem_alloc_sizes[] = { 948 1 * 8, 949 2 * 8, 950 3 * 8, 951 4 * 8, 5 * 8, 6 * 8, 7 * 8, 952 4 * 16, 5 * 16, 6 * 16, 7 * 16, 953 4 * 32, 5 * 32, 6 * 32, 7 * 32, 954 4 * 64, 5 * 64, 6 * 64, 7 * 64, 955 4 * 128, 5 * 128, 6 * 128, 7 * 128, 956 P2ALIGN(8192 / 7, 64), 957 P2ALIGN(8192 / 6, 64), 958 P2ALIGN(8192 / 5, 64), 959 P2ALIGN(8192 / 4, 64), 960 P2ALIGN(8192 / 3, 64), 961 P2ALIGN(8192 / 2, 64), 962 }; 963 964 static const int kmem_big_alloc_sizes[] = { 965 2 * 4096, 3 * 4096, 966 2 * 8192, 3 * 8192, 967 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 968 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 969 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 970 16 * 8192 971 }; 972 973 #define KMEM_MAXBUF 4096 974 #define KMEM_BIG_MAXBUF_32BIT 32768 975 #define KMEM_BIG_MAXBUF 131072 976 977 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 978 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 979 980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 982 983 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 984 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 985 986 static kmem_magtype_t kmem_magtype[] = { 987 { 1, 8, 3200, 65536 }, 988 { 3, 16, 256, 32768 }, 989 { 7, 32, 64, 16384 }, 990 { 15, 64, 0, 8192 }, 991 { 31, 64, 0, 4096 }, 992 { 47, 64, 0, 2048 }, 993 { 63, 64, 0, 1024 }, 994 { 95, 64, 0, 512 }, 995 { 143, 64, 0, 0 }, 996 }; 997 998 static uint32_t kmem_reaping; 999 static uint32_t kmem_reaping_idspace; 1000 1001 /* 1002 * kmem tunables 1003 */ 1004 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 1005 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 1006 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 1007 int kmem_panic = 1; /* whether to panic on error */ 1008 int kmem_logging = 1; /* kmem_log_enter() override */ 1009 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 1011 size_t kmem_content_log_size; /* content log size [2% of memory] */ 1012 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 1013 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 1014 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1015 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1016 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1017 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1018 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1019 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1020 1021 #ifdef _LP64 1022 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1023 #else 1024 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1025 #endif 1026 1027 #ifdef DEBUG 1028 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1029 #else 1030 int kmem_flags = 0; 1031 #endif 1032 int kmem_ready; 1033 1034 static kmem_cache_t *kmem_slab_cache; 1035 static kmem_cache_t *kmem_bufctl_cache; 1036 static kmem_cache_t *kmem_bufctl_audit_cache; 1037 1038 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1039 static list_t kmem_caches; 1040 1041 static taskq_t *kmem_taskq; 1042 static kmutex_t kmem_flags_lock; 1043 static vmem_t *kmem_metadata_arena; 1044 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1045 static vmem_t *kmem_cache_arena; 1046 static vmem_t *kmem_hash_arena; 1047 static vmem_t *kmem_log_arena; 1048 static vmem_t *kmem_oversize_arena; 1049 static vmem_t *kmem_va_arena; 1050 static vmem_t *kmem_default_arena; 1051 static vmem_t *kmem_firewall_va_arena; 1052 static vmem_t *kmem_firewall_arena; 1053 1054 /* 1055 * kmem slab consolidator thresholds (tunables) 1056 */ 1057 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1058 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1060 /* 1061 * Maximum number of slabs from which to move buffers during a single 1062 * maintenance interval while the system is not low on memory. 1063 */ 1064 size_t kmem_reclaim_max_slabs = 1; 1065 /* 1066 * Number of slabs to scan backwards from the end of the partial slab list 1067 * when searching for buffers to relocate. 1068 */ 1069 size_t kmem_reclaim_scan_range = 12; 1070 1071 /* consolidator knobs */ 1072 boolean_t kmem_move_noreap; 1073 boolean_t kmem_move_blocked; 1074 boolean_t kmem_move_fulltilt; 1075 boolean_t kmem_move_any_partial; 1076 1077 #ifdef DEBUG 1078 /* 1079 * kmem consolidator debug tunables: 1080 * Ensure code coverage by occasionally running the consolidator even when the 1081 * caches are not fragmented (they may never be). These intervals are mean time 1082 * in cache maintenance intervals (kmem_cache_update). 1083 */ 1084 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1085 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1086 #endif /* DEBUG */ 1087 1088 static kmem_cache_t *kmem_defrag_cache; 1089 static kmem_cache_t *kmem_move_cache; 1090 static taskq_t *kmem_move_taskq; 1091 1092 static void kmem_cache_scan(kmem_cache_t *); 1093 static void kmem_cache_defrag(kmem_cache_t *); 1094 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1095 1096 1097 kmem_log_header_t *kmem_transaction_log; 1098 kmem_log_header_t *kmem_content_log; 1099 kmem_log_header_t *kmem_failure_log; 1100 kmem_log_header_t *kmem_slab_log; 1101 1102 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1103 1104 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1105 if ((count) > 0) { \ 1106 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1107 pc_t *_e; \ 1108 /* memmove() the old entries down one notch */ \ 1109 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1110 *_e = *(_e - 1); \ 1111 *_s = (uintptr_t)(caller); \ 1112 } 1113 1114 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1115 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1116 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1117 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1118 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1119 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1120 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1121 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1122 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1123 1124 struct { 1125 hrtime_t kmp_timestamp; /* timestamp of panic */ 1126 int kmp_error; /* type of kmem error */ 1127 void *kmp_buffer; /* buffer that induced panic */ 1128 void *kmp_realbuf; /* real start address for buffer */ 1129 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1130 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1131 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1132 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1133 } kmem_panic_info; 1134 1135 1136 static void 1137 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1138 { 1139 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1140 uint64_t *buf = buf_arg; 1141 1142 while (buf < bufend) 1143 *buf++ = pattern; 1144 } 1145 1146 static void * 1147 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1148 { 1149 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1150 uint64_t *buf; 1151 1152 for (buf = buf_arg; buf < bufend; buf++) 1153 if (*buf != pattern) 1154 return (buf); 1155 return (NULL); 1156 } 1157 1158 static void * 1159 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1160 { 1161 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1162 uint64_t *buf; 1163 1164 for (buf = buf_arg; buf < bufend; buf++) { 1165 if (*buf != old) { 1166 copy_pattern(old, buf_arg, 1167 (char *)buf - (char *)buf_arg); 1168 return (buf); 1169 } 1170 *buf = new; 1171 } 1172 1173 return (NULL); 1174 } 1175 1176 static void 1177 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1178 { 1179 kmem_cache_t *cp; 1180 1181 mutex_enter(&kmem_cache_lock); 1182 for (cp = list_head(&kmem_caches); cp != NULL; 1183 cp = list_next(&kmem_caches, cp)) 1184 if (tq != NULL) 1185 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1186 tqflag); 1187 else 1188 func(cp); 1189 mutex_exit(&kmem_cache_lock); 1190 } 1191 1192 static void 1193 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1194 { 1195 kmem_cache_t *cp; 1196 1197 mutex_enter(&kmem_cache_lock); 1198 for (cp = list_head(&kmem_caches); cp != NULL; 1199 cp = list_next(&kmem_caches, cp)) { 1200 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1201 continue; 1202 if (tq != NULL) 1203 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1204 tqflag); 1205 else 1206 func(cp); 1207 } 1208 mutex_exit(&kmem_cache_lock); 1209 } 1210 1211 /* 1212 * Debugging support. Given a buffer address, find its slab. 1213 */ 1214 static kmem_slab_t * 1215 kmem_findslab(kmem_cache_t *cp, void *buf) 1216 { 1217 kmem_slab_t *sp; 1218 1219 mutex_enter(&cp->cache_lock); 1220 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1221 sp = list_next(&cp->cache_complete_slabs, sp)) { 1222 if (KMEM_SLAB_MEMBER(sp, buf)) { 1223 mutex_exit(&cp->cache_lock); 1224 return (sp); 1225 } 1226 } 1227 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1228 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1229 if (KMEM_SLAB_MEMBER(sp, buf)) { 1230 mutex_exit(&cp->cache_lock); 1231 return (sp); 1232 } 1233 } 1234 mutex_exit(&cp->cache_lock); 1235 1236 return (NULL); 1237 } 1238 1239 static void 1240 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1241 { 1242 kmem_buftag_t *btp = NULL; 1243 kmem_bufctl_t *bcp = NULL; 1244 kmem_cache_t *cp = cparg; 1245 kmem_slab_t *sp; 1246 uint64_t *off; 1247 void *buf = bufarg; 1248 1249 kmem_logging = 0; /* stop logging when a bad thing happens */ 1250 1251 kmem_panic_info.kmp_timestamp = gethrtime(); 1252 1253 sp = kmem_findslab(cp, buf); 1254 if (sp == NULL) { 1255 for (cp = list_tail(&kmem_caches); cp != NULL; 1256 cp = list_prev(&kmem_caches, cp)) { 1257 if ((sp = kmem_findslab(cp, buf)) != NULL) 1258 break; 1259 } 1260 } 1261 1262 if (sp == NULL) { 1263 cp = NULL; 1264 error = KMERR_BADADDR; 1265 } else { 1266 if (cp != cparg) 1267 error = KMERR_BADCACHE; 1268 else 1269 buf = (char *)bufarg - ((uintptr_t)bufarg - 1270 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1271 if (buf != bufarg) 1272 error = KMERR_BADBASE; 1273 if (cp->cache_flags & KMF_BUFTAG) 1274 btp = KMEM_BUFTAG(cp, buf); 1275 if (cp->cache_flags & KMF_HASH) { 1276 mutex_enter(&cp->cache_lock); 1277 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1278 if (bcp->bc_addr == buf) 1279 break; 1280 mutex_exit(&cp->cache_lock); 1281 if (bcp == NULL && btp != NULL) 1282 bcp = btp->bt_bufctl; 1283 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1284 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1285 bcp->bc_addr != buf) { 1286 error = KMERR_BADBUFCTL; 1287 bcp = NULL; 1288 } 1289 } 1290 } 1291 1292 kmem_panic_info.kmp_error = error; 1293 kmem_panic_info.kmp_buffer = bufarg; 1294 kmem_panic_info.kmp_realbuf = buf; 1295 kmem_panic_info.kmp_cache = cparg; 1296 kmem_panic_info.kmp_realcache = cp; 1297 kmem_panic_info.kmp_slab = sp; 1298 kmem_panic_info.kmp_bufctl = bcp; 1299 1300 printf("kernel memory allocator: "); 1301 1302 switch (error) { 1303 1304 case KMERR_MODIFIED: 1305 printf("buffer modified after being freed\n"); 1306 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1307 if (off == NULL) /* shouldn't happen */ 1308 off = buf; 1309 printf("modification occurred at offset 0x%lx " 1310 "(0x%llx replaced by 0x%llx)\n", 1311 (uintptr_t)off - (uintptr_t)buf, 1312 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1313 break; 1314 1315 case KMERR_REDZONE: 1316 printf("redzone violation: write past end of buffer\n"); 1317 break; 1318 1319 case KMERR_BADADDR: 1320 printf("invalid free: buffer not in cache\n"); 1321 break; 1322 1323 case KMERR_DUPFREE: 1324 printf("duplicate free: buffer freed twice\n"); 1325 break; 1326 1327 case KMERR_BADBUFTAG: 1328 printf("boundary tag corrupted\n"); 1329 printf("bcp ^ bxstat = %lx, should be %lx\n", 1330 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1331 KMEM_BUFTAG_FREE); 1332 break; 1333 1334 case KMERR_BADBUFCTL: 1335 printf("bufctl corrupted\n"); 1336 break; 1337 1338 case KMERR_BADCACHE: 1339 printf("buffer freed to wrong cache\n"); 1340 printf("buffer was allocated from %s,\n", cp->cache_name); 1341 printf("caller attempting free to %s.\n", cparg->cache_name); 1342 break; 1343 1344 case KMERR_BADSIZE: 1345 printf("bad free: free size (%u) != alloc size (%u)\n", 1346 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1347 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1348 break; 1349 1350 case KMERR_BADBASE: 1351 printf("bad free: free address (%p) != alloc address (%p)\n", 1352 bufarg, buf); 1353 break; 1354 } 1355 1356 printf("buffer=%p bufctl=%p cache: %s\n", 1357 bufarg, (void *)bcp, cparg->cache_name); 1358 1359 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1360 error != KMERR_BADBUFCTL) { 1361 int d; 1362 timestruc_t ts; 1363 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1364 1365 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1366 printf("previous transaction on buffer %p:\n", buf); 1367 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1368 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1369 (void *)sp, cp->cache_name); 1370 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1371 ulong_t off; 1372 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1373 printf("%s+%lx\n", sym ? sym : "?", off); 1374 } 1375 } 1376 if (kmem_panic > 0) 1377 panic("kernel heap corruption detected"); 1378 if (kmem_panic == 0) 1379 debug_enter(NULL); 1380 kmem_logging = 1; /* resume logging */ 1381 } 1382 1383 static kmem_log_header_t * 1384 kmem_log_init(size_t logsize) 1385 { 1386 kmem_log_header_t *lhp; 1387 int nchunks = 4 * max_ncpus; 1388 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1389 int i; 1390 1391 /* 1392 * Make sure that lhp->lh_cpu[] is nicely aligned 1393 * to prevent false sharing of cache lines. 1394 */ 1395 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1396 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1397 NULL, NULL, VM_SLEEP); 1398 bzero(lhp, lhsize); 1399 1400 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1401 lhp->lh_nchunks = nchunks; 1402 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1403 lhp->lh_base = vmem_alloc(kmem_log_arena, 1404 lhp->lh_chunksize * nchunks, VM_SLEEP); 1405 lhp->lh_free = vmem_alloc(kmem_log_arena, 1406 nchunks * sizeof (int), VM_SLEEP); 1407 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1408 1409 for (i = 0; i < max_ncpus; i++) { 1410 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1411 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1412 clhp->clh_chunk = i; 1413 } 1414 1415 for (i = max_ncpus; i < nchunks; i++) 1416 lhp->lh_free[i] = i; 1417 1418 lhp->lh_head = max_ncpus; 1419 lhp->lh_tail = 0; 1420 1421 return (lhp); 1422 } 1423 1424 static void * 1425 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1426 { 1427 void *logspace; 1428 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1429 1430 if (lhp == NULL || kmem_logging == 0 || panicstr) 1431 return (NULL); 1432 1433 mutex_enter(&clhp->clh_lock); 1434 clhp->clh_hits++; 1435 if (size > clhp->clh_avail) { 1436 mutex_enter(&lhp->lh_lock); 1437 lhp->lh_hits++; 1438 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1439 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1440 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1441 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1442 clhp->clh_current = lhp->lh_base + 1443 clhp->clh_chunk * lhp->lh_chunksize; 1444 clhp->clh_avail = lhp->lh_chunksize; 1445 if (size > lhp->lh_chunksize) 1446 size = lhp->lh_chunksize; 1447 mutex_exit(&lhp->lh_lock); 1448 } 1449 logspace = clhp->clh_current; 1450 clhp->clh_current += size; 1451 clhp->clh_avail -= size; 1452 bcopy(data, logspace, size); 1453 mutex_exit(&clhp->clh_lock); 1454 return (logspace); 1455 } 1456 1457 #define KMEM_AUDIT(lp, cp, bcp) \ 1458 { \ 1459 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1460 _bcp->bc_timestamp = gethrtime(); \ 1461 _bcp->bc_thread = curthread; \ 1462 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1463 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1464 } 1465 1466 static void 1467 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1468 kmem_slab_t *sp, void *addr) 1469 { 1470 kmem_bufctl_audit_t bca; 1471 1472 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1473 bca.bc_addr = addr; 1474 bca.bc_slab = sp; 1475 bca.bc_cache = cp; 1476 KMEM_AUDIT(lp, cp, &bca); 1477 } 1478 1479 /* 1480 * Create a new slab for cache cp. 1481 */ 1482 static kmem_slab_t * 1483 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1484 { 1485 size_t slabsize = cp->cache_slabsize; 1486 size_t chunksize = cp->cache_chunksize; 1487 int cache_flags = cp->cache_flags; 1488 size_t color, chunks; 1489 char *buf, *slab; 1490 kmem_slab_t *sp; 1491 kmem_bufctl_t *bcp; 1492 vmem_t *vmp = cp->cache_arena; 1493 1494 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1495 1496 color = cp->cache_color + cp->cache_align; 1497 if (color > cp->cache_maxcolor) 1498 color = cp->cache_mincolor; 1499 cp->cache_color = color; 1500 1501 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1502 1503 if (slab == NULL) 1504 goto vmem_alloc_failure; 1505 1506 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1507 1508 /* 1509 * Reverify what was already checked in kmem_cache_set_move(), since the 1510 * consolidator depends (for correctness) on slabs being initialized 1511 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1512 * clients to distinguish uninitialized memory from known objects). 1513 */ 1514 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1515 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1516 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1517 1518 if (cache_flags & KMF_HASH) { 1519 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1520 goto slab_alloc_failure; 1521 chunks = (slabsize - color) / chunksize; 1522 } else { 1523 sp = KMEM_SLAB(cp, slab); 1524 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1525 } 1526 1527 sp->slab_cache = cp; 1528 sp->slab_head = NULL; 1529 sp->slab_refcnt = 0; 1530 sp->slab_base = buf = slab + color; 1531 sp->slab_chunks = chunks; 1532 sp->slab_stuck_offset = (uint32_t)-1; 1533 sp->slab_later_count = 0; 1534 sp->slab_flags = 0; 1535 1536 ASSERT(chunks > 0); 1537 while (chunks-- != 0) { 1538 if (cache_flags & KMF_HASH) { 1539 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1540 if (bcp == NULL) 1541 goto bufctl_alloc_failure; 1542 if (cache_flags & KMF_AUDIT) { 1543 kmem_bufctl_audit_t *bcap = 1544 (kmem_bufctl_audit_t *)bcp; 1545 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1546 bcap->bc_cache = cp; 1547 } 1548 bcp->bc_addr = buf; 1549 bcp->bc_slab = sp; 1550 } else { 1551 bcp = KMEM_BUFCTL(cp, buf); 1552 } 1553 if (cache_flags & KMF_BUFTAG) { 1554 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1555 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1556 btp->bt_bufctl = bcp; 1557 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1558 if (cache_flags & KMF_DEADBEEF) { 1559 copy_pattern(KMEM_FREE_PATTERN, buf, 1560 cp->cache_verify); 1561 } 1562 } 1563 bcp->bc_next = sp->slab_head; 1564 sp->slab_head = bcp; 1565 buf += chunksize; 1566 } 1567 1568 kmem_log_event(kmem_slab_log, cp, sp, slab); 1569 1570 return (sp); 1571 1572 bufctl_alloc_failure: 1573 1574 while ((bcp = sp->slab_head) != NULL) { 1575 sp->slab_head = bcp->bc_next; 1576 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1577 } 1578 kmem_cache_free(kmem_slab_cache, sp); 1579 1580 slab_alloc_failure: 1581 1582 vmem_free(vmp, slab, slabsize); 1583 1584 vmem_alloc_failure: 1585 1586 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1587 atomic_inc_64(&cp->cache_alloc_fail); 1588 1589 return (NULL); 1590 } 1591 1592 /* 1593 * Destroy a slab. 1594 */ 1595 static void 1596 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1597 { 1598 vmem_t *vmp = cp->cache_arena; 1599 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1600 1601 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1602 ASSERT(sp->slab_refcnt == 0); 1603 1604 if (cp->cache_flags & KMF_HASH) { 1605 kmem_bufctl_t *bcp; 1606 while ((bcp = sp->slab_head) != NULL) { 1607 sp->slab_head = bcp->bc_next; 1608 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1609 } 1610 kmem_cache_free(kmem_slab_cache, sp); 1611 } 1612 vmem_free(vmp, slab, cp->cache_slabsize); 1613 } 1614 1615 static void * 1616 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 1617 { 1618 kmem_bufctl_t *bcp, **hash_bucket; 1619 void *buf; 1620 boolean_t new_slab = (sp->slab_refcnt == 0); 1621 1622 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1623 /* 1624 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1625 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1626 * slab is newly created. 1627 */ 1628 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1629 (sp == avl_first(&cp->cache_partial_slabs)))); 1630 ASSERT(sp->slab_cache == cp); 1631 1632 cp->cache_slab_alloc++; 1633 cp->cache_bufslab--; 1634 sp->slab_refcnt++; 1635 1636 bcp = sp->slab_head; 1637 sp->slab_head = bcp->bc_next; 1638 1639 if (cp->cache_flags & KMF_HASH) { 1640 /* 1641 * Add buffer to allocated-address hash table. 1642 */ 1643 buf = bcp->bc_addr; 1644 hash_bucket = KMEM_HASH(cp, buf); 1645 bcp->bc_next = *hash_bucket; 1646 *hash_bucket = bcp; 1647 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1648 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1649 } 1650 } else { 1651 buf = KMEM_BUF(cp, bcp); 1652 } 1653 1654 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1655 1656 if (sp->slab_head == NULL) { 1657 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1658 if (new_slab) { 1659 ASSERT(sp->slab_chunks == 1); 1660 } else { 1661 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1662 avl_remove(&cp->cache_partial_slabs, sp); 1663 sp->slab_later_count = 0; /* clear history */ 1664 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1665 sp->slab_stuck_offset = (uint32_t)-1; 1666 } 1667 list_insert_head(&cp->cache_complete_slabs, sp); 1668 cp->cache_complete_slab_count++; 1669 return (buf); 1670 } 1671 1672 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1673 /* 1674 * Peek to see if the magazine layer is enabled before 1675 * we prefill. We're not holding the cpu cache lock, 1676 * so the peek could be wrong, but there's no harm in it. 1677 */ 1678 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1679 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1680 kmem_slab_prefill(cp, sp); 1681 return (buf); 1682 } 1683 1684 if (new_slab) { 1685 avl_add(&cp->cache_partial_slabs, sp); 1686 return (buf); 1687 } 1688 1689 /* 1690 * The slab is now more allocated than it was, so the 1691 * order remains unchanged. 1692 */ 1693 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1694 return (buf); 1695 } 1696 1697 /* 1698 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1699 */ 1700 static void * 1701 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1702 { 1703 kmem_slab_t *sp; 1704 void *buf; 1705 boolean_t test_destructor; 1706 1707 mutex_enter(&cp->cache_lock); 1708 test_destructor = (cp->cache_slab_alloc == 0); 1709 sp = avl_first(&cp->cache_partial_slabs); 1710 if (sp == NULL) { 1711 ASSERT(cp->cache_bufslab == 0); 1712 1713 /* 1714 * The freelist is empty. Create a new slab. 1715 */ 1716 mutex_exit(&cp->cache_lock); 1717 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1718 return (NULL); 1719 } 1720 mutex_enter(&cp->cache_lock); 1721 cp->cache_slab_create++; 1722 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1723 cp->cache_bufmax = cp->cache_buftotal; 1724 cp->cache_bufslab += sp->slab_chunks; 1725 } 1726 1727 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1728 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1729 (cp->cache_complete_slab_count + 1730 avl_numnodes(&cp->cache_partial_slabs) + 1731 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1732 mutex_exit(&cp->cache_lock); 1733 1734 if (test_destructor && cp->cache_destructor != NULL) { 1735 /* 1736 * On the first kmem_slab_alloc(), assert that it is valid to 1737 * call the destructor on a newly constructed object without any 1738 * client involvement. 1739 */ 1740 if ((cp->cache_constructor == NULL) || 1741 cp->cache_constructor(buf, cp->cache_private, 1742 kmflag) == 0) { 1743 cp->cache_destructor(buf, cp->cache_private); 1744 } 1745 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1746 cp->cache_bufsize); 1747 if (cp->cache_flags & KMF_DEADBEEF) { 1748 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1749 } 1750 } 1751 1752 return (buf); 1753 } 1754 1755 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1756 1757 /* 1758 * Free a raw (unconstructed) buffer to cp's slab layer. 1759 */ 1760 static void 1761 kmem_slab_free(kmem_cache_t *cp, void *buf) 1762 { 1763 kmem_slab_t *sp; 1764 kmem_bufctl_t *bcp, **prev_bcpp; 1765 1766 ASSERT(buf != NULL); 1767 1768 mutex_enter(&cp->cache_lock); 1769 cp->cache_slab_free++; 1770 1771 if (cp->cache_flags & KMF_HASH) { 1772 /* 1773 * Look up buffer in allocated-address hash table. 1774 */ 1775 prev_bcpp = KMEM_HASH(cp, buf); 1776 while ((bcp = *prev_bcpp) != NULL) { 1777 if (bcp->bc_addr == buf) { 1778 *prev_bcpp = bcp->bc_next; 1779 sp = bcp->bc_slab; 1780 break; 1781 } 1782 cp->cache_lookup_depth++; 1783 prev_bcpp = &bcp->bc_next; 1784 } 1785 } else { 1786 bcp = KMEM_BUFCTL(cp, buf); 1787 sp = KMEM_SLAB(cp, buf); 1788 } 1789 1790 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1791 mutex_exit(&cp->cache_lock); 1792 kmem_error(KMERR_BADADDR, cp, buf); 1793 return; 1794 } 1795 1796 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1797 /* 1798 * If this is the buffer that prevented the consolidator from 1799 * clearing the slab, we can reset the slab flags now that the 1800 * buffer is freed. (It makes sense to do this in 1801 * kmem_cache_free(), where the client gives up ownership of the 1802 * buffer, but on the hot path the test is too expensive.) 1803 */ 1804 kmem_slab_move_yes(cp, sp, buf); 1805 } 1806 1807 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1808 if (cp->cache_flags & KMF_CONTENTS) 1809 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1810 kmem_log_enter(kmem_content_log, buf, 1811 cp->cache_contents); 1812 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1813 } 1814 1815 bcp->bc_next = sp->slab_head; 1816 sp->slab_head = bcp; 1817 1818 cp->cache_bufslab++; 1819 ASSERT(sp->slab_refcnt >= 1); 1820 1821 if (--sp->slab_refcnt == 0) { 1822 /* 1823 * There are no outstanding allocations from this slab, 1824 * so we can reclaim the memory. 1825 */ 1826 if (sp->slab_chunks == 1) { 1827 list_remove(&cp->cache_complete_slabs, sp); 1828 cp->cache_complete_slab_count--; 1829 } else { 1830 avl_remove(&cp->cache_partial_slabs, sp); 1831 } 1832 1833 cp->cache_buftotal -= sp->slab_chunks; 1834 cp->cache_bufslab -= sp->slab_chunks; 1835 /* 1836 * Defer releasing the slab to the virtual memory subsystem 1837 * while there is a pending move callback, since we guarantee 1838 * that buffers passed to the move callback have only been 1839 * touched by kmem or by the client itself. Since the memory 1840 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1841 * set at least one of the two lowest order bits, the client can 1842 * test those bits in the move callback to determine whether or 1843 * not it knows about the buffer (assuming that the client also 1844 * sets one of those low order bits whenever it frees a buffer). 1845 */ 1846 if (cp->cache_defrag == NULL || 1847 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1848 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1849 cp->cache_slab_destroy++; 1850 mutex_exit(&cp->cache_lock); 1851 kmem_slab_destroy(cp, sp); 1852 } else { 1853 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1854 /* 1855 * Slabs are inserted at both ends of the deadlist to 1856 * distinguish between slabs freed while move callbacks 1857 * are pending (list head) and a slab freed while the 1858 * lock is dropped in kmem_move_buffers() (list tail) so 1859 * that in both cases slab_destroy() is called from the 1860 * right context. 1861 */ 1862 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1863 list_insert_tail(deadlist, sp); 1864 } else { 1865 list_insert_head(deadlist, sp); 1866 } 1867 cp->cache_defrag->kmd_deadcount++; 1868 mutex_exit(&cp->cache_lock); 1869 } 1870 return; 1871 } 1872 1873 if (bcp->bc_next == NULL) { 1874 /* Transition the slab from completely allocated to partial. */ 1875 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1876 ASSERT(sp->slab_chunks > 1); 1877 list_remove(&cp->cache_complete_slabs, sp); 1878 cp->cache_complete_slab_count--; 1879 avl_add(&cp->cache_partial_slabs, sp); 1880 } else { 1881 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1882 } 1883 1884 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1885 (cp->cache_complete_slab_count + 1886 avl_numnodes(&cp->cache_partial_slabs) + 1887 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1888 mutex_exit(&cp->cache_lock); 1889 } 1890 1891 /* 1892 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1893 */ 1894 static int 1895 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1896 caddr_t caller) 1897 { 1898 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1899 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1900 uint32_t mtbf; 1901 1902 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1903 kmem_error(KMERR_BADBUFTAG, cp, buf); 1904 return (-1); 1905 } 1906 1907 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1908 1909 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1910 kmem_error(KMERR_BADBUFCTL, cp, buf); 1911 return (-1); 1912 } 1913 1914 if (cp->cache_flags & KMF_DEADBEEF) { 1915 if (!construct && (cp->cache_flags & KMF_LITE)) { 1916 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1917 kmem_error(KMERR_MODIFIED, cp, buf); 1918 return (-1); 1919 } 1920 if (cp->cache_constructor != NULL) 1921 *(uint64_t *)buf = btp->bt_redzone; 1922 else 1923 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1924 } else { 1925 construct = 1; 1926 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1927 KMEM_UNINITIALIZED_PATTERN, buf, 1928 cp->cache_verify)) { 1929 kmem_error(KMERR_MODIFIED, cp, buf); 1930 return (-1); 1931 } 1932 } 1933 } 1934 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1935 1936 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1937 gethrtime() % mtbf == 0 && 1938 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1939 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1940 if (!construct && cp->cache_destructor != NULL) 1941 cp->cache_destructor(buf, cp->cache_private); 1942 } else { 1943 mtbf = 0; 1944 } 1945 1946 if (mtbf || (construct && cp->cache_constructor != NULL && 1947 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1948 atomic_inc_64(&cp->cache_alloc_fail); 1949 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1950 if (cp->cache_flags & KMF_DEADBEEF) 1951 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1952 kmem_slab_free(cp, buf); 1953 return (1); 1954 } 1955 1956 if (cp->cache_flags & KMF_AUDIT) { 1957 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1958 } 1959 1960 if ((cp->cache_flags & KMF_LITE) && 1961 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1962 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1963 } 1964 1965 return (0); 1966 } 1967 1968 static int 1969 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1970 { 1971 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1972 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1973 kmem_slab_t *sp; 1974 1975 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1976 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1977 kmem_error(KMERR_DUPFREE, cp, buf); 1978 return (-1); 1979 } 1980 sp = kmem_findslab(cp, buf); 1981 if (sp == NULL || sp->slab_cache != cp) 1982 kmem_error(KMERR_BADADDR, cp, buf); 1983 else 1984 kmem_error(KMERR_REDZONE, cp, buf); 1985 return (-1); 1986 } 1987 1988 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1989 1990 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1991 kmem_error(KMERR_BADBUFCTL, cp, buf); 1992 return (-1); 1993 } 1994 1995 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 1996 kmem_error(KMERR_REDZONE, cp, buf); 1997 return (-1); 1998 } 1999 2000 if (cp->cache_flags & KMF_AUDIT) { 2001 if (cp->cache_flags & KMF_CONTENTS) 2002 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2003 buf, cp->cache_contents); 2004 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2005 } 2006 2007 if ((cp->cache_flags & KMF_LITE) && 2008 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2009 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2010 } 2011 2012 if (cp->cache_flags & KMF_DEADBEEF) { 2013 if (cp->cache_flags & KMF_LITE) 2014 btp->bt_redzone = *(uint64_t *)buf; 2015 else if (cp->cache_destructor != NULL) 2016 cp->cache_destructor(buf, cp->cache_private); 2017 2018 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2019 } 2020 2021 return (0); 2022 } 2023 2024 /* 2025 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2026 */ 2027 static void 2028 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2029 { 2030 int round; 2031 2032 ASSERT(!list_link_active(&cp->cache_link) || 2033 taskq_member(kmem_taskq, curthread)); 2034 2035 for (round = 0; round < nrounds; round++) { 2036 void *buf = mp->mag_round[round]; 2037 2038 if (cp->cache_flags & KMF_DEADBEEF) { 2039 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2040 cp->cache_verify) != NULL) { 2041 kmem_error(KMERR_MODIFIED, cp, buf); 2042 continue; 2043 } 2044 if ((cp->cache_flags & KMF_LITE) && 2045 cp->cache_destructor != NULL) { 2046 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2047 *(uint64_t *)buf = btp->bt_redzone; 2048 cp->cache_destructor(buf, cp->cache_private); 2049 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2050 } 2051 } else if (cp->cache_destructor != NULL) { 2052 cp->cache_destructor(buf, cp->cache_private); 2053 } 2054 2055 kmem_slab_free(cp, buf); 2056 } 2057 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2058 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2059 } 2060 2061 /* 2062 * Allocate a magazine from the depot. 2063 */ 2064 static kmem_magazine_t * 2065 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2066 { 2067 kmem_magazine_t *mp; 2068 2069 /* 2070 * If we can't get the depot lock without contention, 2071 * update our contention count. We use the depot 2072 * contention rate to determine whether we need to 2073 * increase the magazine size for better scalability. 2074 */ 2075 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2076 mutex_enter(&cp->cache_depot_lock); 2077 cp->cache_depot_contention++; 2078 } 2079 2080 if ((mp = mlp->ml_list) != NULL) { 2081 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2082 mlp->ml_list = mp->mag_next; 2083 if (--mlp->ml_total < mlp->ml_min) 2084 mlp->ml_min = mlp->ml_total; 2085 mlp->ml_alloc++; 2086 } 2087 2088 mutex_exit(&cp->cache_depot_lock); 2089 2090 return (mp); 2091 } 2092 2093 /* 2094 * Free a magazine to the depot. 2095 */ 2096 static void 2097 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2098 { 2099 mutex_enter(&cp->cache_depot_lock); 2100 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2101 mp->mag_next = mlp->ml_list; 2102 mlp->ml_list = mp; 2103 mlp->ml_total++; 2104 mutex_exit(&cp->cache_depot_lock); 2105 } 2106 2107 /* 2108 * Update the working set statistics for cp's depot. 2109 */ 2110 static void 2111 kmem_depot_ws_update(kmem_cache_t *cp) 2112 { 2113 mutex_enter(&cp->cache_depot_lock); 2114 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2115 cp->cache_full.ml_min = cp->cache_full.ml_total; 2116 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2117 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2118 mutex_exit(&cp->cache_depot_lock); 2119 } 2120 2121 /* 2122 * Set the working set statistics for cp's depot to zero. (Everything is 2123 * eligible for reaping.) 2124 */ 2125 static void 2126 kmem_depot_ws_zero(kmem_cache_t *cp) 2127 { 2128 mutex_enter(&cp->cache_depot_lock); 2129 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; 2130 cp->cache_full.ml_min = cp->cache_full.ml_total; 2131 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; 2132 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2133 mutex_exit(&cp->cache_depot_lock); 2134 } 2135 2136 /* 2137 * The number of bytes to reap before we call kpreempt(). The default (1MB) 2138 * causes us to preempt reaping up to hundreds of times per second. Using a 2139 * larger value (1GB) causes this to have virtually no effect. 2140 */ 2141 size_t kmem_reap_preempt_bytes = 1024 * 1024; 2142 2143 /* 2144 * Reap all magazines that have fallen out of the depot's working set. 2145 */ 2146 static void 2147 kmem_depot_ws_reap(kmem_cache_t *cp) 2148 { 2149 size_t bytes = 0; 2150 long reap; 2151 kmem_magazine_t *mp; 2152 2153 ASSERT(!list_link_active(&cp->cache_link) || 2154 taskq_member(kmem_taskq, curthread)); 2155 2156 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2157 while (reap-- && 2158 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { 2159 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2160 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2161 if (bytes > kmem_reap_preempt_bytes) { 2162 kpreempt(KPREEMPT_SYNC); 2163 bytes = 0; 2164 } 2165 } 2166 2167 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2168 while (reap-- && 2169 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { 2170 kmem_magazine_destroy(cp, mp, 0); 2171 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2172 if (bytes > kmem_reap_preempt_bytes) { 2173 kpreempt(KPREEMPT_SYNC); 2174 bytes = 0; 2175 } 2176 } 2177 } 2178 2179 static void 2180 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2181 { 2182 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2183 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2184 ASSERT(ccp->cc_magsize > 0); 2185 2186 ccp->cc_ploaded = ccp->cc_loaded; 2187 ccp->cc_prounds = ccp->cc_rounds; 2188 ccp->cc_loaded = mp; 2189 ccp->cc_rounds = rounds; 2190 } 2191 2192 /* 2193 * Intercept kmem alloc/free calls during crash dump in order to avoid 2194 * changing kmem state while memory is being saved to the dump device. 2195 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2196 * there are no locks because only one CPU calls kmem during a crash 2197 * dump. To enable this feature, first create the associated vmem 2198 * arena with VMC_DUMPSAFE. 2199 */ 2200 static void *kmem_dump_start; /* start of pre-reserved heap */ 2201 static void *kmem_dump_end; /* end of heap area */ 2202 static void *kmem_dump_curr; /* current free heap pointer */ 2203 static size_t kmem_dump_size; /* size of heap area */ 2204 2205 /* append to each buf created in the pre-reserved heap */ 2206 typedef struct kmem_dumpctl { 2207 void *kdc_next; /* cache dump free list linkage */ 2208 } kmem_dumpctl_t; 2209 2210 #define KMEM_DUMPCTL(cp, buf) \ 2211 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2212 sizeof (void *))) 2213 2214 /* Keep some simple stats. */ 2215 #define KMEM_DUMP_LOGS (100) 2216 2217 typedef struct kmem_dump_log { 2218 kmem_cache_t *kdl_cache; 2219 uint_t kdl_allocs; /* # of dump allocations */ 2220 uint_t kdl_frees; /* # of dump frees */ 2221 uint_t kdl_alloc_fails; /* # of allocation failures */ 2222 uint_t kdl_free_nondump; /* # of non-dump frees */ 2223 uint_t kdl_unsafe; /* cache was used, but unsafe */ 2224 } kmem_dump_log_t; 2225 2226 static kmem_dump_log_t *kmem_dump_log; 2227 static int kmem_dump_log_idx; 2228 2229 #define KDI_LOG(cp, stat) { \ 2230 kmem_dump_log_t *kdl; \ 2231 if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \ 2232 kdl->stat++; \ 2233 } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) { \ 2234 kdl = &kmem_dump_log[kmem_dump_log_idx++]; \ 2235 kdl->stat++; \ 2236 kdl->kdl_cache = (cp); \ 2237 (cp)->cache_dumplog = kdl; \ 2238 } \ 2239 } 2240 2241 /* set non zero for full report */ 2242 uint_t kmem_dump_verbose = 0; 2243 2244 /* stats for overize heap */ 2245 uint_t kmem_dump_oversize_allocs = 0; 2246 uint_t kmem_dump_oversize_max = 0; 2247 2248 static void 2249 kmem_dumppr(char **pp, char *e, const char *format, ...) 2250 { 2251 char *p = *pp; 2252 2253 if (p < e) { 2254 int n; 2255 va_list ap; 2256 2257 va_start(ap, format); 2258 n = vsnprintf(p, e - p, format, ap); 2259 va_end(ap); 2260 *pp = p + n; 2261 } 2262 } 2263 2264 /* 2265 * Called when dumpadm(1M) configures dump parameters. 2266 */ 2267 void 2268 kmem_dump_init(size_t size) 2269 { 2270 if (kmem_dump_start != NULL) 2271 kmem_free(kmem_dump_start, kmem_dump_size); 2272 2273 if (kmem_dump_log == NULL) 2274 kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS * 2275 sizeof (kmem_dump_log_t), KM_SLEEP); 2276 2277 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2278 2279 if (kmem_dump_start != NULL) { 2280 kmem_dump_size = size; 2281 kmem_dump_curr = kmem_dump_start; 2282 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2283 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2284 } else { 2285 kmem_dump_size = 0; 2286 kmem_dump_curr = NULL; 2287 kmem_dump_end = NULL; 2288 } 2289 } 2290 2291 /* 2292 * Set flag for each kmem_cache_t if is safe to use alternate dump 2293 * memory. Called just before panic crash dump starts. Set the flag 2294 * for the calling CPU. 2295 */ 2296 void 2297 kmem_dump_begin(void) 2298 { 2299 ASSERT(panicstr != NULL); 2300 if (kmem_dump_start != NULL) { 2301 kmem_cache_t *cp; 2302 2303 for (cp = list_head(&kmem_caches); cp != NULL; 2304 cp = list_next(&kmem_caches, cp)) { 2305 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2306 2307 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2308 cp->cache_flags |= KMF_DUMPDIVERT; 2309 ccp->cc_flags |= KMF_DUMPDIVERT; 2310 ccp->cc_dump_rounds = ccp->cc_rounds; 2311 ccp->cc_dump_prounds = ccp->cc_prounds; 2312 ccp->cc_rounds = ccp->cc_prounds = -1; 2313 } else { 2314 cp->cache_flags |= KMF_DUMPUNSAFE; 2315 ccp->cc_flags |= KMF_DUMPUNSAFE; 2316 } 2317 } 2318 } 2319 } 2320 2321 /* 2322 * finished dump intercept 2323 * print any warnings on the console 2324 * return verbose information to dumpsys() in the given buffer 2325 */ 2326 size_t 2327 kmem_dump_finish(char *buf, size_t size) 2328 { 2329 int kdi_idx; 2330 int kdi_end = kmem_dump_log_idx; 2331 int percent = 0; 2332 int header = 0; 2333 int warn = 0; 2334 size_t used; 2335 kmem_cache_t *cp; 2336 kmem_dump_log_t *kdl; 2337 char *e = buf + size; 2338 char *p = buf; 2339 2340 if (kmem_dump_size == 0 || kmem_dump_verbose == 0) 2341 return (0); 2342 2343 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2344 percent = (used * 100) / kmem_dump_size; 2345 2346 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2347 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2348 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2349 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2350 kmem_dump_oversize_allocs); 2351 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2352 kmem_dump_oversize_max); 2353 2354 for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) { 2355 kdl = &kmem_dump_log[kdi_idx]; 2356 cp = kdl->kdl_cache; 2357 if (cp == NULL) 2358 break; 2359 if (kdl->kdl_alloc_fails) 2360 ++warn; 2361 if (header == 0) { 2362 kmem_dumppr(&p, e, 2363 "Cache Name,Allocs,Frees,Alloc Fails," 2364 "Nondump Frees,Unsafe Allocs/Frees\n"); 2365 header = 1; 2366 } 2367 kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n", 2368 cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees, 2369 kdl->kdl_alloc_fails, kdl->kdl_free_nondump, 2370 kdl->kdl_unsafe); 2371 } 2372 2373 /* return buffer size used */ 2374 if (p < e) 2375 bzero(p, e - p); 2376 return (p - buf); 2377 } 2378 2379 /* 2380 * Allocate a constructed object from alternate dump memory. 2381 */ 2382 void * 2383 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2384 { 2385 void *buf; 2386 void *curr; 2387 char *bufend; 2388 2389 /* return a constructed object */ 2390 if ((buf = cp->cache_dumpfreelist) != NULL) { 2391 cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2392 KDI_LOG(cp, kdl_allocs); 2393 return (buf); 2394 } 2395 2396 /* create a new constructed object */ 2397 curr = kmem_dump_curr; 2398 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2399 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2400 2401 /* hat layer objects cannot cross a page boundary */ 2402 if (cp->cache_align < PAGESIZE) { 2403 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2404 if (bufend > page) { 2405 bufend += page - (char *)buf; 2406 buf = (void *)page; 2407 } 2408 } 2409 2410 /* fall back to normal alloc if reserved area is used up */ 2411 if (bufend > (char *)kmem_dump_end) { 2412 kmem_dump_curr = kmem_dump_end; 2413 KDI_LOG(cp, kdl_alloc_fails); 2414 return (NULL); 2415 } 2416 2417 /* 2418 * Must advance curr pointer before calling a constructor that 2419 * may also allocate memory. 2420 */ 2421 kmem_dump_curr = bufend; 2422 2423 /* run constructor */ 2424 if (cp->cache_constructor != NULL && 2425 cp->cache_constructor(buf, cp->cache_private, kmflag) 2426 != 0) { 2427 #ifdef DEBUG 2428 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2429 cp->cache_name, (void *)cp); 2430 #endif 2431 /* reset curr pointer iff no allocs were done */ 2432 if (kmem_dump_curr == bufend) 2433 kmem_dump_curr = curr; 2434 2435 /* fall back to normal alloc if the constructor fails */ 2436 KDI_LOG(cp, kdl_alloc_fails); 2437 return (NULL); 2438 } 2439 2440 KDI_LOG(cp, kdl_allocs); 2441 return (buf); 2442 } 2443 2444 /* 2445 * Free a constructed object in alternate dump memory. 2446 */ 2447 int 2448 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2449 { 2450 /* save constructed buffers for next time */ 2451 if ((char *)buf >= (char *)kmem_dump_start && 2452 (char *)buf < (char *)kmem_dump_end) { 2453 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist; 2454 cp->cache_dumpfreelist = buf; 2455 KDI_LOG(cp, kdl_frees); 2456 return (0); 2457 } 2458 2459 /* count all non-dump buf frees */ 2460 KDI_LOG(cp, kdl_free_nondump); 2461 2462 /* just drop buffers that were allocated before dump started */ 2463 if (kmem_dump_curr < kmem_dump_end) 2464 return (0); 2465 2466 /* fall back to normal free if reserved area is used up */ 2467 return (1); 2468 } 2469 2470 /* 2471 * Allocate a constructed object from cache cp. 2472 */ 2473 void * 2474 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2475 { 2476 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2477 kmem_magazine_t *fmp; 2478 void *buf; 2479 2480 mutex_enter(&ccp->cc_lock); 2481 for (;;) { 2482 /* 2483 * If there's an object available in the current CPU's 2484 * loaded magazine, just take it and return. 2485 */ 2486 if (ccp->cc_rounds > 0) { 2487 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2488 ccp->cc_alloc++; 2489 mutex_exit(&ccp->cc_lock); 2490 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2491 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2492 ASSERT(!(ccp->cc_flags & 2493 KMF_DUMPDIVERT)); 2494 KDI_LOG(cp, kdl_unsafe); 2495 } 2496 if ((ccp->cc_flags & KMF_BUFTAG) && 2497 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2498 caller()) != 0) { 2499 if (kmflag & KM_NOSLEEP) 2500 return (NULL); 2501 mutex_enter(&ccp->cc_lock); 2502 continue; 2503 } 2504 } 2505 return (buf); 2506 } 2507 2508 /* 2509 * The loaded magazine is empty. If the previously loaded 2510 * magazine was full, exchange them and try again. 2511 */ 2512 if (ccp->cc_prounds > 0) { 2513 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2514 continue; 2515 } 2516 2517 /* 2518 * Return an alternate buffer at dump time to preserve 2519 * the heap. 2520 */ 2521 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2522 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2523 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2524 /* log it so that we can warn about it */ 2525 KDI_LOG(cp, kdl_unsafe); 2526 } else { 2527 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2528 NULL) { 2529 mutex_exit(&ccp->cc_lock); 2530 return (buf); 2531 } 2532 break; /* fall back to slab layer */ 2533 } 2534 } 2535 2536 /* 2537 * If the magazine layer is disabled, break out now. 2538 */ 2539 if (ccp->cc_magsize == 0) 2540 break; 2541 2542 /* 2543 * Try to get a full magazine from the depot. 2544 */ 2545 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2546 if (fmp != NULL) { 2547 if (ccp->cc_ploaded != NULL) 2548 kmem_depot_free(cp, &cp->cache_empty, 2549 ccp->cc_ploaded); 2550 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2551 continue; 2552 } 2553 2554 /* 2555 * There are no full magazines in the depot, 2556 * so fall through to the slab layer. 2557 */ 2558 break; 2559 } 2560 mutex_exit(&ccp->cc_lock); 2561 2562 /* 2563 * We couldn't allocate a constructed object from the magazine layer, 2564 * so get a raw buffer from the slab layer and apply its constructor. 2565 */ 2566 buf = kmem_slab_alloc(cp, kmflag); 2567 2568 if (buf == NULL) 2569 return (NULL); 2570 2571 if (cp->cache_flags & KMF_BUFTAG) { 2572 /* 2573 * Make kmem_cache_alloc_debug() apply the constructor for us. 2574 */ 2575 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2576 if (rc != 0) { 2577 if (kmflag & KM_NOSLEEP) 2578 return (NULL); 2579 /* 2580 * kmem_cache_alloc_debug() detected corruption 2581 * but didn't panic (kmem_panic <= 0). We should not be 2582 * here because the constructor failed (indicated by a 2583 * return code of 1). Try again. 2584 */ 2585 ASSERT(rc == -1); 2586 return (kmem_cache_alloc(cp, kmflag)); 2587 } 2588 return (buf); 2589 } 2590 2591 if (cp->cache_constructor != NULL && 2592 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2593 atomic_inc_64(&cp->cache_alloc_fail); 2594 kmem_slab_free(cp, buf); 2595 return (NULL); 2596 } 2597 2598 return (buf); 2599 } 2600 2601 /* 2602 * The freed argument tells whether or not kmem_cache_free_debug() has already 2603 * been called so that we can avoid the duplicate free error. For example, a 2604 * buffer on a magazine has already been freed by the client but is still 2605 * constructed. 2606 */ 2607 static void 2608 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2609 { 2610 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2611 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2612 return; 2613 2614 /* 2615 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2616 * kmem_cache_free_debug() will have already applied the destructor. 2617 */ 2618 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2619 cp->cache_destructor != NULL) { 2620 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2621 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2622 *(uint64_t *)buf = btp->bt_redzone; 2623 cp->cache_destructor(buf, cp->cache_private); 2624 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2625 } else { 2626 cp->cache_destructor(buf, cp->cache_private); 2627 } 2628 } 2629 2630 kmem_slab_free(cp, buf); 2631 } 2632 2633 /* 2634 * Used when there's no room to free a buffer to the per-CPU cache. 2635 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2636 * caller should try freeing to the per-CPU cache again. 2637 * Note that we don't directly install the magazine in the cpu cache, 2638 * since its state may have changed wildly while the lock was dropped. 2639 */ 2640 static int 2641 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2642 { 2643 kmem_magazine_t *emp; 2644 kmem_magtype_t *mtp; 2645 2646 ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2647 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2648 ((uint_t)ccp->cc_rounds == -1)) && 2649 ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2650 ((uint_t)ccp->cc_prounds == -1))); 2651 2652 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2653 if (emp != NULL) { 2654 if (ccp->cc_ploaded != NULL) 2655 kmem_depot_free(cp, &cp->cache_full, 2656 ccp->cc_ploaded); 2657 kmem_cpu_reload(ccp, emp, 0); 2658 return (1); 2659 } 2660 /* 2661 * There are no empty magazines in the depot, 2662 * so try to allocate a new one. We must drop all locks 2663 * across kmem_cache_alloc() because lower layers may 2664 * attempt to allocate from this cache. 2665 */ 2666 mtp = cp->cache_magtype; 2667 mutex_exit(&ccp->cc_lock); 2668 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2669 mutex_enter(&ccp->cc_lock); 2670 2671 if (emp != NULL) { 2672 /* 2673 * We successfully allocated an empty magazine. 2674 * However, we had to drop ccp->cc_lock to do it, 2675 * so the cache's magazine size may have changed. 2676 * If so, free the magazine and try again. 2677 */ 2678 if (ccp->cc_magsize != mtp->mt_magsize) { 2679 mutex_exit(&ccp->cc_lock); 2680 kmem_cache_free(mtp->mt_cache, emp); 2681 mutex_enter(&ccp->cc_lock); 2682 return (1); 2683 } 2684 2685 /* 2686 * We got a magazine of the right size. Add it to 2687 * the depot and try the whole dance again. 2688 */ 2689 kmem_depot_free(cp, &cp->cache_empty, emp); 2690 return (1); 2691 } 2692 2693 /* 2694 * We couldn't allocate an empty magazine, 2695 * so fall through to the slab layer. 2696 */ 2697 return (0); 2698 } 2699 2700 /* 2701 * Free a constructed object to cache cp. 2702 */ 2703 void 2704 kmem_cache_free(kmem_cache_t *cp, void *buf) 2705 { 2706 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2707 2708 /* 2709 * The client must not free either of the buffers passed to the move 2710 * callback function. 2711 */ 2712 ASSERT(cp->cache_defrag == NULL || 2713 cp->cache_defrag->kmd_thread != curthread || 2714 (buf != cp->cache_defrag->kmd_from_buf && 2715 buf != cp->cache_defrag->kmd_to_buf)); 2716 2717 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2718 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2719 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2720 /* log it so that we can warn about it */ 2721 KDI_LOG(cp, kdl_unsafe); 2722 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2723 return; 2724 } 2725 if (ccp->cc_flags & KMF_BUFTAG) { 2726 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2727 return; 2728 } 2729 } 2730 2731 mutex_enter(&ccp->cc_lock); 2732 /* 2733 * Any changes to this logic should be reflected in kmem_slab_prefill() 2734 */ 2735 for (;;) { 2736 /* 2737 * If there's a slot available in the current CPU's 2738 * loaded magazine, just put the object there and return. 2739 */ 2740 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2741 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2742 ccp->cc_free++; 2743 mutex_exit(&ccp->cc_lock); 2744 return; 2745 } 2746 2747 /* 2748 * The loaded magazine is full. If the previously loaded 2749 * magazine was empty, exchange them and try again. 2750 */ 2751 if (ccp->cc_prounds == 0) { 2752 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2753 continue; 2754 } 2755 2756 /* 2757 * If the magazine layer is disabled, break out now. 2758 */ 2759 if (ccp->cc_magsize == 0) 2760 break; 2761 2762 if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 2763 /* 2764 * We couldn't free our constructed object to the 2765 * magazine layer, so apply its destructor and free it 2766 * to the slab layer. 2767 */ 2768 break; 2769 } 2770 } 2771 mutex_exit(&ccp->cc_lock); 2772 kmem_slab_free_constructed(cp, buf, B_TRUE); 2773 } 2774 2775 static void 2776 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2777 { 2778 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2779 int cache_flags = cp->cache_flags; 2780 2781 kmem_bufctl_t *next, *head; 2782 size_t nbufs; 2783 2784 /* 2785 * Completely allocate the newly created slab and put the pre-allocated 2786 * buffers in magazines. Any of the buffers that cannot be put in 2787 * magazines must be returned to the slab. 2788 */ 2789 ASSERT(MUTEX_HELD(&cp->cache_lock)); 2790 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2791 ASSERT(cp->cache_constructor == NULL); 2792 ASSERT(sp->slab_cache == cp); 2793 ASSERT(sp->slab_refcnt == 1); 2794 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2795 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2796 2797 head = sp->slab_head; 2798 nbufs = (sp->slab_chunks - sp->slab_refcnt); 2799 sp->slab_head = NULL; 2800 sp->slab_refcnt += nbufs; 2801 cp->cache_bufslab -= nbufs; 2802 cp->cache_slab_alloc += nbufs; 2803 list_insert_head(&cp->cache_complete_slabs, sp); 2804 cp->cache_complete_slab_count++; 2805 mutex_exit(&cp->cache_lock); 2806 mutex_enter(&ccp->cc_lock); 2807 2808 while (head != NULL) { 2809 void *buf = KMEM_BUF(cp, head); 2810 /* 2811 * If there's a slot available in the current CPU's 2812 * loaded magazine, just put the object there and 2813 * continue. 2814 */ 2815 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2816 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2817 buf; 2818 ccp->cc_free++; 2819 nbufs--; 2820 head = head->bc_next; 2821 continue; 2822 } 2823 2824 /* 2825 * The loaded magazine is full. If the previously 2826 * loaded magazine was empty, exchange them and try 2827 * again. 2828 */ 2829 if (ccp->cc_prounds == 0) { 2830 kmem_cpu_reload(ccp, ccp->cc_ploaded, 2831 ccp->cc_prounds); 2832 continue; 2833 } 2834 2835 /* 2836 * If the magazine layer is disabled, break out now. 2837 */ 2838 2839 if (ccp->cc_magsize == 0) { 2840 break; 2841 } 2842 2843 if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2844 break; 2845 } 2846 mutex_exit(&ccp->cc_lock); 2847 if (nbufs != 0) { 2848 ASSERT(head != NULL); 2849 2850 /* 2851 * If there was a failure, return remaining objects to 2852 * the slab 2853 */ 2854 while (head != NULL) { 2855 ASSERT(nbufs != 0); 2856 next = head->bc_next; 2857 head->bc_next = NULL; 2858 kmem_slab_free(cp, KMEM_BUF(cp, head)); 2859 head = next; 2860 nbufs--; 2861 } 2862 } 2863 ASSERT(head == NULL); 2864 ASSERT(nbufs == 0); 2865 mutex_enter(&cp->cache_lock); 2866 } 2867 2868 void * 2869 kmem_zalloc(size_t size, int kmflag) 2870 { 2871 size_t index; 2872 void *buf; 2873 2874 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2875 kmem_cache_t *cp = kmem_alloc_table[index]; 2876 buf = kmem_cache_alloc(cp, kmflag); 2877 if (buf != NULL) { 2878 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2879 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2880 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2881 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2882 2883 if (cp->cache_flags & KMF_LITE) { 2884 KMEM_BUFTAG_LITE_ENTER(btp, 2885 kmem_lite_count, caller()); 2886 } 2887 } 2888 bzero(buf, size); 2889 } 2890 } else { 2891 buf = kmem_alloc(size, kmflag); 2892 if (buf != NULL) 2893 bzero(buf, size); 2894 } 2895 return (buf); 2896 } 2897 2898 void * 2899 kmem_alloc(size_t size, int kmflag) 2900 { 2901 size_t index; 2902 kmem_cache_t *cp; 2903 void *buf; 2904 2905 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2906 cp = kmem_alloc_table[index]; 2907 /* fall through to kmem_cache_alloc() */ 2908 2909 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2910 kmem_big_alloc_table_max) { 2911 cp = kmem_big_alloc_table[index]; 2912 /* fall through to kmem_cache_alloc() */ 2913 2914 } else { 2915 if (size == 0) 2916 return (NULL); 2917 2918 buf = vmem_alloc(kmem_oversize_arena, size, 2919 kmflag & KM_VMFLAGS); 2920 if (buf == NULL) 2921 kmem_log_event(kmem_failure_log, NULL, NULL, 2922 (void *)size); 2923 else if (KMEM_DUMP(kmem_slab_cache)) { 2924 /* stats for dump intercept */ 2925 kmem_dump_oversize_allocs++; 2926 if (size > kmem_dump_oversize_max) 2927 kmem_dump_oversize_max = size; 2928 } 2929 return (buf); 2930 } 2931 2932 buf = kmem_cache_alloc(cp, kmflag); 2933 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2934 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2935 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2936 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2937 2938 if (cp->cache_flags & KMF_LITE) { 2939 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2940 } 2941 } 2942 return (buf); 2943 } 2944 2945 void 2946 kmem_free(void *buf, size_t size) 2947 { 2948 size_t index; 2949 kmem_cache_t *cp; 2950 2951 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2952 cp = kmem_alloc_table[index]; 2953 /* fall through to kmem_cache_free() */ 2954 2955 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2956 kmem_big_alloc_table_max) { 2957 cp = kmem_big_alloc_table[index]; 2958 /* fall through to kmem_cache_free() */ 2959 2960 } else { 2961 EQUIV(buf == NULL, size == 0); 2962 if (buf == NULL && size == 0) 2963 return; 2964 vmem_free(kmem_oversize_arena, buf, size); 2965 return; 2966 } 2967 2968 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2969 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2970 uint32_t *ip = (uint32_t *)btp; 2971 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2972 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2973 kmem_error(KMERR_DUPFREE, cp, buf); 2974 return; 2975 } 2976 if (KMEM_SIZE_VALID(ip[1])) { 2977 ip[0] = KMEM_SIZE_ENCODE(size); 2978 kmem_error(KMERR_BADSIZE, cp, buf); 2979 } else { 2980 kmem_error(KMERR_REDZONE, cp, buf); 2981 } 2982 return; 2983 } 2984 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2985 kmem_error(KMERR_REDZONE, cp, buf); 2986 return; 2987 } 2988 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2989 if (cp->cache_flags & KMF_LITE) { 2990 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2991 caller()); 2992 } 2993 } 2994 kmem_cache_free(cp, buf); 2995 } 2996 2997 void * 2998 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2999 { 3000 size_t realsize = size + vmp->vm_quantum; 3001 void *addr; 3002 3003 /* 3004 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 3005 * vm_quantum will cause integer wraparound. Check for this, and 3006 * blow off the firewall page in this case. Note that such a 3007 * giant allocation (the entire kernel address space) can never 3008 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 3009 * or sleep forever (VM_SLEEP). Thus, there is no need for a 3010 * corresponding check in kmem_firewall_va_free(). 3011 */ 3012 if (realsize < size) 3013 realsize = size; 3014 3015 /* 3016 * While boot still owns resource management, make sure that this 3017 * redzone virtual address allocation is properly accounted for in 3018 * OBPs "virtual-memory" "available" lists because we're 3019 * effectively claiming them for a red zone. If we don't do this, 3020 * the available lists become too fragmented and too large for the 3021 * current boot/kernel memory list interface. 3022 */ 3023 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 3024 3025 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 3026 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 3027 3028 return (addr); 3029 } 3030 3031 void 3032 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 3033 { 3034 ASSERT((kvseg.s_base == NULL ? 3035 va_to_pfn((char *)addr + size) : 3036 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 3037 3038 vmem_free(vmp, addr, size + vmp->vm_quantum); 3039 } 3040 3041 /* 3042 * Try to allocate at least `size' bytes of memory without sleeping or 3043 * panicking. Return actual allocated size in `asize'. If allocation failed, 3044 * try final allocation with sleep or panic allowed. 3045 */ 3046 void * 3047 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 3048 { 3049 void *p; 3050 3051 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3052 do { 3053 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 3054 if (p != NULL) 3055 return (p); 3056 *asize += KMEM_ALIGN; 3057 } while (*asize <= PAGESIZE); 3058 3059 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3060 return (kmem_alloc(*asize, kmflag)); 3061 } 3062 3063 /* 3064 * Reclaim all unused memory from a cache. 3065 */ 3066 static void 3067 kmem_cache_reap(kmem_cache_t *cp) 3068 { 3069 ASSERT(taskq_member(kmem_taskq, curthread)); 3070 cp->cache_reap++; 3071 3072 /* 3073 * Ask the cache's owner to free some memory if possible. 3074 * The idea is to handle things like the inode cache, which 3075 * typically sits on a bunch of memory that it doesn't truly 3076 * *need*. Reclaim policy is entirely up to the owner; this 3077 * callback is just an advisory plea for help. 3078 */ 3079 if (cp->cache_reclaim != NULL) { 3080 long delta; 3081 3082 /* 3083 * Reclaimed memory should be reapable (not included in the 3084 * depot's working set). 3085 */ 3086 delta = cp->cache_full.ml_total; 3087 cp->cache_reclaim(cp->cache_private); 3088 delta = cp->cache_full.ml_total - delta; 3089 if (delta > 0) { 3090 mutex_enter(&cp->cache_depot_lock); 3091 cp->cache_full.ml_reaplimit += delta; 3092 cp->cache_full.ml_min += delta; 3093 mutex_exit(&cp->cache_depot_lock); 3094 } 3095 } 3096 3097 kmem_depot_ws_reap(cp); 3098 3099 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3100 kmem_cache_defrag(cp); 3101 } 3102 } 3103 3104 static void 3105 kmem_reap_timeout(void *flag_arg) 3106 { 3107 uint32_t *flag = (uint32_t *)flag_arg; 3108 3109 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3110 *flag = 0; 3111 } 3112 3113 static void 3114 kmem_reap_done(void *flag) 3115 { 3116 if (!callout_init_done) { 3117 /* can't schedule a timeout at this point */ 3118 kmem_reap_timeout(flag); 3119 } else { 3120 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 3121 } 3122 } 3123 3124 static void 3125 kmem_reap_start(void *flag) 3126 { 3127 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3128 3129 if (flag == &kmem_reaping) { 3130 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3131 /* 3132 * if we have segkp under heap, reap segkp cache. 3133 */ 3134 if (segkp_fromheap) 3135 segkp_cache_free(); 3136 } 3137 else 3138 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3139 3140 /* 3141 * We use taskq_dispatch() to schedule a timeout to clear 3142 * the flag so that kmem_reap() becomes self-throttling: 3143 * we won't reap again until the current reap completes *and* 3144 * at least kmem_reap_interval ticks have elapsed. 3145 */ 3146 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 3147 kmem_reap_done(flag); 3148 } 3149 3150 static void 3151 kmem_reap_common(void *flag_arg) 3152 { 3153 uint32_t *flag = (uint32_t *)flag_arg; 3154 3155 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3156 atomic_cas_32(flag, 0, 1) != 0) 3157 return; 3158 3159 /* 3160 * It may not be kosher to do memory allocation when a reap is called 3161 * (for example, if vmem_populate() is in the call chain). So we 3162 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch 3163 * fails, we reset the flag, and the next reap will try again. 3164 */ 3165 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 3166 *flag = 0; 3167 } 3168 3169 /* 3170 * Reclaim all unused memory from all caches. Called from the VM system 3171 * when memory gets tight. 3172 */ 3173 void 3174 kmem_reap(void) 3175 { 3176 kmem_reap_common(&kmem_reaping); 3177 } 3178 3179 /* 3180 * Reclaim all unused memory from identifier arenas, called when a vmem 3181 * arena not back by memory is exhausted. Since reaping memory-backed caches 3182 * cannot help with identifier exhaustion, we avoid both a large amount of 3183 * work and unwanted side-effects from reclaim callbacks. 3184 */ 3185 void 3186 kmem_reap_idspace(void) 3187 { 3188 kmem_reap_common(&kmem_reaping_idspace); 3189 } 3190 3191 /* 3192 * Purge all magazines from a cache and set its magazine limit to zero. 3193 * All calls are serialized by the kmem_taskq lock, except for the final 3194 * call from kmem_cache_destroy(). 3195 */ 3196 static void 3197 kmem_cache_magazine_purge(kmem_cache_t *cp) 3198 { 3199 kmem_cpu_cache_t *ccp; 3200 kmem_magazine_t *mp, *pmp; 3201 int rounds, prounds, cpu_seqid; 3202 3203 ASSERT(!list_link_active(&cp->cache_link) || 3204 taskq_member(kmem_taskq, curthread)); 3205 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3206 3207 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3208 ccp = &cp->cache_cpu[cpu_seqid]; 3209 3210 mutex_enter(&ccp->cc_lock); 3211 mp = ccp->cc_loaded; 3212 pmp = ccp->cc_ploaded; 3213 rounds = ccp->cc_rounds; 3214 prounds = ccp->cc_prounds; 3215 ccp->cc_loaded = NULL; 3216 ccp->cc_ploaded = NULL; 3217 ccp->cc_rounds = -1; 3218 ccp->cc_prounds = -1; 3219 ccp->cc_magsize = 0; 3220 mutex_exit(&ccp->cc_lock); 3221 3222 if (mp) 3223 kmem_magazine_destroy(cp, mp, rounds); 3224 if (pmp) 3225 kmem_magazine_destroy(cp, pmp, prounds); 3226 } 3227 3228 kmem_depot_ws_zero(cp); 3229 kmem_depot_ws_reap(cp); 3230 } 3231 3232 /* 3233 * Enable per-cpu magazines on a cache. 3234 */ 3235 static void 3236 kmem_cache_magazine_enable(kmem_cache_t *cp) 3237 { 3238 int cpu_seqid; 3239 3240 if (cp->cache_flags & KMF_NOMAGAZINE) 3241 return; 3242 3243 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3244 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3245 mutex_enter(&ccp->cc_lock); 3246 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3247 mutex_exit(&ccp->cc_lock); 3248 } 3249 3250 } 3251 3252 /* 3253 * Allow our caller to determine if there are running reaps. 3254 * 3255 * This call is very conservative and may return B_TRUE even when 3256 * reaping activity isn't active. If it returns B_FALSE, then reaping 3257 * activity is definitely inactive. 3258 */ 3259 boolean_t 3260 kmem_cache_reap_active(void) 3261 { 3262 return (!taskq_empty(kmem_taskq)); 3263 } 3264 3265 /* 3266 * Reap (almost) everything soon. 3267 * 3268 * Note: this does not wait for the reap-tasks to complete. Caller 3269 * should use kmem_cache_reap_active() (above) and/or moderation to 3270 * avoid scheduling too many reap-tasks. 3271 */ 3272 void 3273 kmem_cache_reap_soon(kmem_cache_t *cp) 3274 { 3275 ASSERT(list_link_active(&cp->cache_link)); 3276 3277 kmem_depot_ws_zero(cp); 3278 3279 (void) taskq_dispatch(kmem_taskq, 3280 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3281 } 3282 3283 /* 3284 * Recompute a cache's magazine size. The trade-off is that larger magazines 3285 * provide a higher transfer rate with the depot, while smaller magazines 3286 * reduce memory consumption. Magazine resizing is an expensive operation; 3287 * it should not be done frequently. 3288 * 3289 * Changes to the magazine size are serialized by the kmem_taskq lock. 3290 * 3291 * Note: at present this only grows the magazine size. It might be useful 3292 * to allow shrinkage too. 3293 */ 3294 static void 3295 kmem_cache_magazine_resize(kmem_cache_t *cp) 3296 { 3297 kmem_magtype_t *mtp = cp->cache_magtype; 3298 3299 ASSERT(taskq_member(kmem_taskq, curthread)); 3300 3301 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3302 kmem_cache_magazine_purge(cp); 3303 mutex_enter(&cp->cache_depot_lock); 3304 cp->cache_magtype = ++mtp; 3305 cp->cache_depot_contention_prev = 3306 cp->cache_depot_contention + INT_MAX; 3307 mutex_exit(&cp->cache_depot_lock); 3308 kmem_cache_magazine_enable(cp); 3309 } 3310 } 3311 3312 /* 3313 * Rescale a cache's hash table, so that the table size is roughly the 3314 * cache size. We want the average lookup time to be extremely small. 3315 */ 3316 static void 3317 kmem_hash_rescale(kmem_cache_t *cp) 3318 { 3319 kmem_bufctl_t **old_table, **new_table, *bcp; 3320 size_t old_size, new_size, h; 3321 3322 ASSERT(taskq_member(kmem_taskq, curthread)); 3323 3324 new_size = MAX(KMEM_HASH_INITIAL, 3325 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3326 old_size = cp->cache_hash_mask + 1; 3327 3328 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3329 return; 3330 3331 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3332 VM_NOSLEEP); 3333 if (new_table == NULL) 3334 return; 3335 bzero(new_table, new_size * sizeof (void *)); 3336 3337 mutex_enter(&cp->cache_lock); 3338 3339 old_size = cp->cache_hash_mask + 1; 3340 old_table = cp->cache_hash_table; 3341 3342 cp->cache_hash_mask = new_size - 1; 3343 cp->cache_hash_table = new_table; 3344 cp->cache_rescale++; 3345 3346 for (h = 0; h < old_size; h++) { 3347 bcp = old_table[h]; 3348 while (bcp != NULL) { 3349 void *addr = bcp->bc_addr; 3350 kmem_bufctl_t *next_bcp = bcp->bc_next; 3351 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3352 bcp->bc_next = *hash_bucket; 3353 *hash_bucket = bcp; 3354 bcp = next_bcp; 3355 } 3356 } 3357 3358 mutex_exit(&cp->cache_lock); 3359 3360 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3361 } 3362 3363 /* 3364 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3365 * update, magazine resizing, and slab consolidation. 3366 */ 3367 static void 3368 kmem_cache_update(kmem_cache_t *cp) 3369 { 3370 int need_hash_rescale = 0; 3371 int need_magazine_resize = 0; 3372 3373 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3374 3375 /* 3376 * If the cache has become much larger or smaller than its hash table, 3377 * fire off a request to rescale the hash table. 3378 */ 3379 mutex_enter(&cp->cache_lock); 3380 3381 if ((cp->cache_flags & KMF_HASH) && 3382 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3383 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3384 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3385 need_hash_rescale = 1; 3386 3387 mutex_exit(&cp->cache_lock); 3388 3389 /* 3390 * Update the depot working set statistics. 3391 */ 3392 kmem_depot_ws_update(cp); 3393 3394 /* 3395 * If there's a lot of contention in the depot, 3396 * increase the magazine size. 3397 */ 3398 mutex_enter(&cp->cache_depot_lock); 3399 3400 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3401 (int)(cp->cache_depot_contention - 3402 cp->cache_depot_contention_prev) > kmem_depot_contention) 3403 need_magazine_resize = 1; 3404 3405 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3406 3407 mutex_exit(&cp->cache_depot_lock); 3408 3409 if (need_hash_rescale) 3410 (void) taskq_dispatch(kmem_taskq, 3411 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3412 3413 if (need_magazine_resize) 3414 (void) taskq_dispatch(kmem_taskq, 3415 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3416 3417 if (cp->cache_defrag != NULL) 3418 (void) taskq_dispatch(kmem_taskq, 3419 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3420 } 3421 3422 static void kmem_update(void *); 3423 3424 static void 3425 kmem_update_timeout(void *dummy) 3426 { 3427 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3428 } 3429 3430 static void 3431 kmem_update(void *dummy) 3432 { 3433 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3434 3435 /* 3436 * We use taskq_dispatch() to reschedule the timeout so that 3437 * kmem_update() becomes self-throttling: it won't schedule 3438 * new tasks until all previous tasks have completed. 3439 */ 3440 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 3441 kmem_update_timeout(NULL); 3442 } 3443 3444 static int 3445 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3446 { 3447 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3448 kmem_cache_t *cp = ksp->ks_private; 3449 uint64_t cpu_buf_avail; 3450 uint64_t buf_avail = 0; 3451 int cpu_seqid; 3452 long reap; 3453 3454 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3455 3456 if (rw == KSTAT_WRITE) 3457 return (EACCES); 3458 3459 mutex_enter(&cp->cache_lock); 3460 3461 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3462 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3463 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3464 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3465 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3466 3467 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3468 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3469 3470 mutex_enter(&ccp->cc_lock); 3471 3472 cpu_buf_avail = 0; 3473 if (ccp->cc_rounds > 0) 3474 cpu_buf_avail += ccp->cc_rounds; 3475 if (ccp->cc_prounds > 0) 3476 cpu_buf_avail += ccp->cc_prounds; 3477 3478 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3479 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3480 buf_avail += cpu_buf_avail; 3481 3482 mutex_exit(&ccp->cc_lock); 3483 } 3484 3485 mutex_enter(&cp->cache_depot_lock); 3486 3487 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3488 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3489 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3490 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3491 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3492 kmcp->kmc_magazine_size.value.ui64 = 3493 (cp->cache_flags & KMF_NOMAGAZINE) ? 3494 0 : cp->cache_magtype->mt_magsize; 3495 3496 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3497 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3498 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3499 3500 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3501 reap = MIN(reap, cp->cache_full.ml_total); 3502 3503 mutex_exit(&cp->cache_depot_lock); 3504 3505 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3506 kmcp->kmc_align.value.ui64 = cp->cache_align; 3507 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3508 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3509 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3510 buf_avail += cp->cache_bufslab; 3511 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3512 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3513 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3514 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3515 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3516 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3517 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3518 cp->cache_hash_mask + 1 : 0; 3519 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3520 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3521 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3522 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3523 3524 if (cp->cache_defrag == NULL) { 3525 kmcp->kmc_move_callbacks.value.ui64 = 0; 3526 kmcp->kmc_move_yes.value.ui64 = 0; 3527 kmcp->kmc_move_no.value.ui64 = 0; 3528 kmcp->kmc_move_later.value.ui64 = 0; 3529 kmcp->kmc_move_dont_need.value.ui64 = 0; 3530 kmcp->kmc_move_dont_know.value.ui64 = 0; 3531 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3532 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3533 kmcp->kmc_defrag.value.ui64 = 0; 3534 kmcp->kmc_scan.value.ui64 = 0; 3535 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3536 } else { 3537 int64_t reclaimable; 3538 3539 kmem_defrag_t *kd = cp->cache_defrag; 3540 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3541 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3542 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3543 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3544 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3545 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3546 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3547 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3548 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3549 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3550 3551 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3552 reclaimable = MAX(reclaimable, 0); 3553 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3554 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3555 } 3556 3557 mutex_exit(&cp->cache_lock); 3558 return (0); 3559 } 3560 3561 /* 3562 * Return a named statistic about a particular cache. 3563 * This shouldn't be called very often, so it's currently designed for 3564 * simplicity (leverages existing kstat support) rather than efficiency. 3565 */ 3566 uint64_t 3567 kmem_cache_stat(kmem_cache_t *cp, char *name) 3568 { 3569 int i; 3570 kstat_t *ksp = cp->cache_kstat; 3571 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3572 uint64_t value = 0; 3573 3574 if (ksp != NULL) { 3575 mutex_enter(&kmem_cache_kstat_lock); 3576 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3577 for (i = 0; i < ksp->ks_ndata; i++) { 3578 if (strcmp(knp[i].name, name) == 0) { 3579 value = knp[i].value.ui64; 3580 break; 3581 } 3582 } 3583 mutex_exit(&kmem_cache_kstat_lock); 3584 } 3585 return (value); 3586 } 3587 3588 /* 3589 * Return an estimate of currently available kernel heap memory. 3590 * On 32-bit systems, physical memory may exceed virtual memory, 3591 * we just truncate the result at 1GB. 3592 */ 3593 size_t 3594 kmem_avail(void) 3595 { 3596 spgcnt_t rmem = availrmem - tune.t_minarmem; 3597 spgcnt_t fmem = freemem - minfree; 3598 3599 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3600 1 << (30 - PAGESHIFT)))); 3601 } 3602 3603 /* 3604 * Return the maximum amount of memory that is (in theory) allocatable 3605 * from the heap. This may be used as an estimate only since there 3606 * is no guarentee this space will still be available when an allocation 3607 * request is made, nor that the space may be allocated in one big request 3608 * due to kernel heap fragmentation. 3609 */ 3610 size_t 3611 kmem_maxavail(void) 3612 { 3613 spgcnt_t pmem = availrmem - tune.t_minarmem; 3614 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3615 3616 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3617 } 3618 3619 /* 3620 * Indicate whether memory-intensive kmem debugging is enabled. 3621 */ 3622 int 3623 kmem_debugging(void) 3624 { 3625 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3626 } 3627 3628 /* binning function, sorts finely at the two extremes */ 3629 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3630 ((((sp)->slab_refcnt <= (binshift)) || \ 3631 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3632 ? -(sp)->slab_refcnt \ 3633 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3634 3635 /* 3636 * Minimizing the number of partial slabs on the freelist minimizes 3637 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3638 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3639 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3640 * the most-used slabs at the front of the list where they have the best chance 3641 * of being completely allocated, and the least-used slabs at a safe distance 3642 * from the front to improve the odds that the few remaining buffers will all be 3643 * freed before another allocation can tie up the slab. For that reason a slab 3644 * with a higher slab_refcnt sorts less than than a slab with a lower 3645 * slab_refcnt. 3646 * 3647 * However, if a slab has at least one buffer that is deemed unfreeable, we 3648 * would rather have that slab at the front of the list regardless of 3649 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3650 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3651 * callback, the slab is marked unfreeable for as long as it remains on the 3652 * freelist. 3653 */ 3654 static int 3655 kmem_partial_slab_cmp(const void *p0, const void *p1) 3656 { 3657 const kmem_cache_t *cp; 3658 const kmem_slab_t *s0 = p0; 3659 const kmem_slab_t *s1 = p1; 3660 int w0, w1; 3661 size_t binshift; 3662 3663 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3664 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3665 ASSERT(s0->slab_cache == s1->slab_cache); 3666 cp = s1->slab_cache; 3667 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3668 binshift = cp->cache_partial_binshift; 3669 3670 /* weight of first slab */ 3671 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3672 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3673 w0 -= cp->cache_maxchunks; 3674 } 3675 3676 /* weight of second slab */ 3677 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3678 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3679 w1 -= cp->cache_maxchunks; 3680 } 3681 3682 if (w0 < w1) 3683 return (-1); 3684 if (w0 > w1) 3685 return (1); 3686 3687 /* compare pointer values */ 3688 if ((uintptr_t)s0 < (uintptr_t)s1) 3689 return (-1); 3690 if ((uintptr_t)s0 > (uintptr_t)s1) 3691 return (1); 3692 3693 return (0); 3694 } 3695 3696 /* 3697 * It must be valid to call the destructor (if any) on a newly created object. 3698 * That is, the constructor (if any) must leave the object in a valid state for 3699 * the destructor. 3700 */ 3701 kmem_cache_t * 3702 kmem_cache_create( 3703 char *name, /* descriptive name for this cache */ 3704 size_t bufsize, /* size of the objects it manages */ 3705 size_t align, /* required object alignment */ 3706 int (*constructor)(void *, void *, int), /* object constructor */ 3707 void (*destructor)(void *, void *), /* object destructor */ 3708 void (*reclaim)(void *), /* memory reclaim callback */ 3709 void *private, /* pass-thru arg for constr/destr/reclaim */ 3710 vmem_t *vmp, /* vmem source for slab allocation */ 3711 int cflags) /* cache creation flags */ 3712 { 3713 int cpu_seqid; 3714 size_t chunksize; 3715 kmem_cache_t *cp; 3716 kmem_magtype_t *mtp; 3717 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3718 3719 #ifdef DEBUG 3720 /* 3721 * Cache names should conform to the rules for valid C identifiers 3722 */ 3723 if (!strident_valid(name)) { 3724 cmn_err(CE_CONT, 3725 "kmem_cache_create: '%s' is an invalid cache name\n" 3726 "cache names must conform to the rules for " 3727 "C identifiers\n", name); 3728 } 3729 #endif /* DEBUG */ 3730 3731 if (vmp == NULL) 3732 vmp = kmem_default_arena; 3733 3734 /* 3735 * If this kmem cache has an identifier vmem arena as its source, mark 3736 * it such to allow kmem_reap_idspace(). 3737 */ 3738 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3739 if (vmp->vm_cflags & VMC_IDENTIFIER) 3740 cflags |= KMC_IDENTIFIER; 3741 3742 /* 3743 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3744 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3745 * false sharing of per-CPU data. 3746 */ 3747 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3748 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3749 bzero(cp, csize); 3750 list_link_init(&cp->cache_link); 3751 3752 if (align == 0) 3753 align = KMEM_ALIGN; 3754 3755 /* 3756 * If we're not at least KMEM_ALIGN aligned, we can't use free 3757 * memory to hold bufctl information (because we can't safely 3758 * perform word loads and stores on it). 3759 */ 3760 if (align < KMEM_ALIGN) 3761 cflags |= KMC_NOTOUCH; 3762 3763 if (!ISP2(align) || align > vmp->vm_quantum) 3764 panic("kmem_cache_create: bad alignment %lu", align); 3765 3766 mutex_enter(&kmem_flags_lock); 3767 if (kmem_flags & KMF_RANDOMIZE) 3768 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3769 KMF_RANDOMIZE; 3770 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3771 mutex_exit(&kmem_flags_lock); 3772 3773 /* 3774 * Make sure all the various flags are reasonable. 3775 */ 3776 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3777 3778 if (cp->cache_flags & KMF_LITE) { 3779 if (bufsize >= kmem_lite_minsize && 3780 align <= kmem_lite_maxalign && 3781 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3782 cp->cache_flags |= KMF_BUFTAG; 3783 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3784 } else { 3785 cp->cache_flags &= ~KMF_DEBUG; 3786 } 3787 } 3788 3789 if (cp->cache_flags & KMF_DEADBEEF) 3790 cp->cache_flags |= KMF_REDZONE; 3791 3792 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3793 cp->cache_flags |= KMF_NOMAGAZINE; 3794 3795 if (cflags & KMC_NODEBUG) 3796 cp->cache_flags &= ~KMF_DEBUG; 3797 3798 if (cflags & KMC_NOTOUCH) 3799 cp->cache_flags &= ~KMF_TOUCH; 3800 3801 if (cflags & KMC_PREFILL) 3802 cp->cache_flags |= KMF_PREFILL; 3803 3804 if (cflags & KMC_NOHASH) 3805 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3806 3807 if (cflags & KMC_NOMAGAZINE) 3808 cp->cache_flags |= KMF_NOMAGAZINE; 3809 3810 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3811 cp->cache_flags |= KMF_REDZONE; 3812 3813 if (!(cp->cache_flags & KMF_AUDIT)) 3814 cp->cache_flags &= ~KMF_CONTENTS; 3815 3816 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3817 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3818 cp->cache_flags |= KMF_FIREWALL; 3819 3820 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3821 cp->cache_flags &= ~KMF_FIREWALL; 3822 3823 if (cp->cache_flags & KMF_FIREWALL) { 3824 cp->cache_flags &= ~KMF_BUFTAG; 3825 cp->cache_flags |= KMF_NOMAGAZINE; 3826 ASSERT(vmp == kmem_default_arena); 3827 vmp = kmem_firewall_arena; 3828 } 3829 3830 /* 3831 * Set cache properties. 3832 */ 3833 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3834 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3835 cp->cache_bufsize = bufsize; 3836 cp->cache_align = align; 3837 cp->cache_constructor = constructor; 3838 cp->cache_destructor = destructor; 3839 cp->cache_reclaim = reclaim; 3840 cp->cache_private = private; 3841 cp->cache_arena = vmp; 3842 cp->cache_cflags = cflags; 3843 3844 /* 3845 * Determine the chunk size. 3846 */ 3847 chunksize = bufsize; 3848 3849 if (align >= KMEM_ALIGN) { 3850 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3851 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3852 } 3853 3854 if (cp->cache_flags & KMF_BUFTAG) { 3855 cp->cache_bufctl = chunksize; 3856 cp->cache_buftag = chunksize; 3857 if (cp->cache_flags & KMF_LITE) 3858 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3859 else 3860 chunksize += sizeof (kmem_buftag_t); 3861 } 3862 3863 if (cp->cache_flags & KMF_DEADBEEF) { 3864 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3865 if (cp->cache_flags & KMF_LITE) 3866 cp->cache_verify = sizeof (uint64_t); 3867 } 3868 3869 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3870 3871 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3872 3873 /* 3874 * Now that we know the chunk size, determine the optimal slab size. 3875 */ 3876 if (vmp == kmem_firewall_arena) { 3877 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3878 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3879 cp->cache_maxcolor = cp->cache_mincolor; 3880 cp->cache_flags |= KMF_HASH; 3881 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3882 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3883 !(cp->cache_flags & KMF_AUDIT) && 3884 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3885 cp->cache_slabsize = vmp->vm_quantum; 3886 cp->cache_mincolor = 0; 3887 cp->cache_maxcolor = 3888 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3889 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3890 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3891 } else { 3892 size_t chunks, bestfit, waste, slabsize; 3893 size_t minwaste = LONG_MAX; 3894 3895 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3896 slabsize = P2ROUNDUP(chunksize * chunks, 3897 vmp->vm_quantum); 3898 chunks = slabsize / chunksize; 3899 waste = (slabsize % chunksize) / chunks; 3900 if (waste < minwaste) { 3901 minwaste = waste; 3902 bestfit = slabsize; 3903 } 3904 } 3905 if (cflags & KMC_QCACHE) 3906 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3907 cp->cache_slabsize = bestfit; 3908 cp->cache_mincolor = 0; 3909 cp->cache_maxcolor = bestfit % chunksize; 3910 cp->cache_flags |= KMF_HASH; 3911 } 3912 3913 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3914 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3915 3916 /* 3917 * Disallowing prefill when either the DEBUG or HASH flag is set or when 3918 * there is a constructor avoids some tricky issues with debug setup 3919 * that may be revisited later. We cannot allow prefill in a 3920 * metadata cache because of potential recursion. 3921 */ 3922 if (vmp == kmem_msb_arena || 3923 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) || 3924 cp->cache_constructor != NULL) 3925 cp->cache_flags &= ~KMF_PREFILL; 3926 3927 if (cp->cache_flags & KMF_HASH) { 3928 ASSERT(!(cflags & KMC_NOHASH)); 3929 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3930 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3931 } 3932 3933 if (cp->cache_maxcolor >= vmp->vm_quantum) 3934 cp->cache_maxcolor = vmp->vm_quantum - 1; 3935 3936 cp->cache_color = cp->cache_mincolor; 3937 3938 /* 3939 * Initialize the rest of the slab layer. 3940 */ 3941 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3942 3943 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3944 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3945 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3946 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3947 /* reuse partial slab AVL linkage for complete slab list linkage */ 3948 list_create(&cp->cache_complete_slabs, 3949 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3950 3951 if (cp->cache_flags & KMF_HASH) { 3952 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3953 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3954 bzero(cp->cache_hash_table, 3955 KMEM_HASH_INITIAL * sizeof (void *)); 3956 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3957 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3958 } 3959 3960 /* 3961 * Initialize the depot. 3962 */ 3963 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3964 3965 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3966 continue; 3967 3968 cp->cache_magtype = mtp; 3969 3970 /* 3971 * Initialize the CPU layer. 3972 */ 3973 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3974 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3975 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3976 ccp->cc_flags = cp->cache_flags; 3977 ccp->cc_rounds = -1; 3978 ccp->cc_prounds = -1; 3979 } 3980 3981 /* 3982 * Create the cache's kstats. 3983 */ 3984 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3985 "kmem_cache", KSTAT_TYPE_NAMED, 3986 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3987 KSTAT_FLAG_VIRTUAL)) != NULL) { 3988 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3989 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3990 cp->cache_kstat->ks_private = cp; 3991 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3992 kstat_install(cp->cache_kstat); 3993 } 3994 3995 /* 3996 * Add the cache to the global list. This makes it visible 3997 * to kmem_update(), so the cache must be ready for business. 3998 */ 3999 mutex_enter(&kmem_cache_lock); 4000 list_insert_tail(&kmem_caches, cp); 4001 mutex_exit(&kmem_cache_lock); 4002 4003 if (kmem_ready) 4004 kmem_cache_magazine_enable(cp); 4005 4006 return (cp); 4007 } 4008 4009 static int 4010 kmem_move_cmp(const void *buf, const void *p) 4011 { 4012 const kmem_move_t *kmm = p; 4013 uintptr_t v1 = (uintptr_t)buf; 4014 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 4015 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 4016 } 4017 4018 static void 4019 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 4020 { 4021 kmd->kmd_reclaim_numer = 1; 4022 } 4023 4024 /* 4025 * Initially, when choosing candidate slabs for buffers to move, we want to be 4026 * very selective and take only slabs that are less than 4027 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 4028 * slabs, then we raise the allocation ceiling incrementally. The reclaim 4029 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 4030 * longer fragmented. 4031 */ 4032 static void 4033 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 4034 { 4035 if (direction > 0) { 4036 /* make it easier to find a candidate slab */ 4037 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 4038 kmd->kmd_reclaim_numer++; 4039 } 4040 } else { 4041 /* be more selective */ 4042 if (kmd->kmd_reclaim_numer > 1) { 4043 kmd->kmd_reclaim_numer--; 4044 } 4045 } 4046 } 4047 4048 void 4049 kmem_cache_set_move(kmem_cache_t *cp, 4050 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 4051 { 4052 kmem_defrag_t *defrag; 4053 4054 ASSERT(move != NULL); 4055 /* 4056 * The consolidator does not support NOTOUCH caches because kmem cannot 4057 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 4058 * a low order bit usable by clients to distinguish uninitialized memory 4059 * from known objects (see kmem_slab_create). 4060 */ 4061 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 4062 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 4063 4064 /* 4065 * We should not be holding anyone's cache lock when calling 4066 * kmem_cache_alloc(), so allocate in all cases before acquiring the 4067 * lock. 4068 */ 4069 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 4070 4071 mutex_enter(&cp->cache_lock); 4072 4073 if (KMEM_IS_MOVABLE(cp)) { 4074 if (cp->cache_move == NULL) { 4075 ASSERT(cp->cache_slab_alloc == 0); 4076 4077 cp->cache_defrag = defrag; 4078 defrag = NULL; /* nothing to free */ 4079 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 4080 avl_create(&cp->cache_defrag->kmd_moves_pending, 4081 kmem_move_cmp, sizeof (kmem_move_t), 4082 offsetof(kmem_move_t, kmm_entry)); 4083 /* LINTED: E_TRUE_LOGICAL_EXPR */ 4084 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 4085 /* reuse the slab's AVL linkage for deadlist linkage */ 4086 list_create(&cp->cache_defrag->kmd_deadlist, 4087 sizeof (kmem_slab_t), 4088 offsetof(kmem_slab_t, slab_link)); 4089 kmem_reset_reclaim_threshold(cp->cache_defrag); 4090 } 4091 cp->cache_move = move; 4092 } 4093 4094 mutex_exit(&cp->cache_lock); 4095 4096 if (defrag != NULL) { 4097 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 4098 } 4099 } 4100 4101 void 4102 kmem_cache_destroy(kmem_cache_t *cp) 4103 { 4104 int cpu_seqid; 4105 4106 /* 4107 * Remove the cache from the global cache list so that no one else 4108 * can schedule tasks on its behalf, wait for any pending tasks to 4109 * complete, purge the cache, and then destroy it. 4110 */ 4111 mutex_enter(&kmem_cache_lock); 4112 list_remove(&kmem_caches, cp); 4113 mutex_exit(&kmem_cache_lock); 4114 4115 if (kmem_taskq != NULL) 4116 taskq_wait(kmem_taskq); 4117 4118 if (kmem_move_taskq != NULL && cp->cache_defrag != NULL) 4119 taskq_wait(kmem_move_taskq); 4120 4121 kmem_cache_magazine_purge(cp); 4122 4123 mutex_enter(&cp->cache_lock); 4124 if (cp->cache_buftotal != 0) 4125 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 4126 cp->cache_name, (void *)cp); 4127 if (cp->cache_defrag != NULL) { 4128 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 4129 list_destroy(&cp->cache_defrag->kmd_deadlist); 4130 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 4131 cp->cache_defrag = NULL; 4132 } 4133 /* 4134 * The cache is now dead. There should be no further activity. We 4135 * enforce this by setting land mines in the constructor, destructor, 4136 * reclaim, and move routines that induce a kernel text fault if 4137 * invoked. 4138 */ 4139 cp->cache_constructor = (int (*)(void *, void *, int))1; 4140 cp->cache_destructor = (void (*)(void *, void *))2; 4141 cp->cache_reclaim = (void (*)(void *))3; 4142 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 4143 mutex_exit(&cp->cache_lock); 4144 4145 kstat_delete(cp->cache_kstat); 4146 4147 if (cp->cache_hash_table != NULL) 4148 vmem_free(kmem_hash_arena, cp->cache_hash_table, 4149 (cp->cache_hash_mask + 1) * sizeof (void *)); 4150 4151 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 4152 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 4153 4154 mutex_destroy(&cp->cache_depot_lock); 4155 mutex_destroy(&cp->cache_lock); 4156 4157 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 4158 } 4159 4160 /*ARGSUSED*/ 4161 static int 4162 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 4163 { 4164 ASSERT(MUTEX_HELD(&cpu_lock)); 4165 if (what == CPU_UNCONFIG) { 4166 kmem_cache_applyall(kmem_cache_magazine_purge, 4167 kmem_taskq, TQ_SLEEP); 4168 kmem_cache_applyall(kmem_cache_magazine_enable, 4169 kmem_taskq, TQ_SLEEP); 4170 } 4171 return (0); 4172 } 4173 4174 static void 4175 kmem_alloc_caches_create(const int *array, size_t count, 4176 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 4177 { 4178 char name[KMEM_CACHE_NAMELEN + 1]; 4179 size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 4180 size_t size = table_unit; 4181 int i; 4182 4183 for (i = 0; i < count; i++) { 4184 size_t cache_size = array[i]; 4185 size_t align = KMEM_ALIGN; 4186 kmem_cache_t *cp; 4187 4188 /* if the table has an entry for maxbuf, we're done */ 4189 if (size > maxbuf) 4190 break; 4191 4192 /* cache size must be a multiple of the table unit */ 4193 ASSERT(P2PHASE(cache_size, table_unit) == 0); 4194 4195 /* 4196 * If they allocate a multiple of the coherency granularity, 4197 * they get a coherency-granularity-aligned address. 4198 */ 4199 if (IS_P2ALIGNED(cache_size, 64)) 4200 align = 64; 4201 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 4202 align = PAGESIZE; 4203 (void) snprintf(name, sizeof (name), 4204 "kmem_alloc_%lu", cache_size); 4205 cp = kmem_cache_create(name, cache_size, align, 4206 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 4207 4208 while (size <= cache_size) { 4209 alloc_table[(size - 1) >> shift] = cp; 4210 size += table_unit; 4211 } 4212 } 4213 4214 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 4215 } 4216 4217 static void 4218 kmem_cache_init(int pass, int use_large_pages) 4219 { 4220 int i; 4221 size_t maxbuf; 4222 kmem_magtype_t *mtp; 4223 4224 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 4225 char name[KMEM_CACHE_NAMELEN + 1]; 4226 4227 mtp = &kmem_magtype[i]; 4228 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 4229 mtp->mt_cache = kmem_cache_create(name, 4230 (mtp->mt_magsize + 1) * sizeof (void *), 4231 mtp->mt_align, NULL, NULL, NULL, NULL, 4232 kmem_msb_arena, KMC_NOHASH); 4233 } 4234 4235 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 4236 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 4237 kmem_msb_arena, KMC_NOHASH); 4238 4239 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 4240 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 4241 kmem_msb_arena, KMC_NOHASH); 4242 4243 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 4244 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 4245 kmem_msb_arena, KMC_NOHASH); 4246 4247 if (pass == 2) { 4248 kmem_va_arena = vmem_create("kmem_va", 4249 NULL, 0, PAGESIZE, 4250 vmem_alloc, vmem_free, heap_arena, 4251 8 * PAGESIZE, VM_SLEEP); 4252 4253 if (use_large_pages) { 4254 kmem_default_arena = vmem_xcreate("kmem_default", 4255 NULL, 0, PAGESIZE, 4256 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 4257 0, VMC_DUMPSAFE | VM_SLEEP); 4258 } else { 4259 kmem_default_arena = vmem_create("kmem_default", 4260 NULL, 0, PAGESIZE, 4261 segkmem_alloc, segkmem_free, kmem_va_arena, 4262 0, VMC_DUMPSAFE | VM_SLEEP); 4263 } 4264 4265 /* Figure out what our maximum cache size is */ 4266 maxbuf = kmem_max_cached; 4267 if (maxbuf <= KMEM_MAXBUF) { 4268 maxbuf = 0; 4269 kmem_max_cached = KMEM_MAXBUF; 4270 } else { 4271 size_t size = 0; 4272 size_t max = 4273 sizeof (kmem_big_alloc_sizes) / sizeof (int); 4274 /* 4275 * Round maxbuf up to an existing cache size. If maxbuf 4276 * is larger than the largest cache, we truncate it to 4277 * the largest cache's size. 4278 */ 4279 for (i = 0; i < max; i++) { 4280 size = kmem_big_alloc_sizes[i]; 4281 if (maxbuf <= size) 4282 break; 4283 } 4284 kmem_max_cached = maxbuf = size; 4285 } 4286 4287 /* 4288 * The big alloc table may not be completely overwritten, so 4289 * we clear out any stale cache pointers from the first pass. 4290 */ 4291 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 4292 } else { 4293 /* 4294 * During the first pass, the kmem_alloc_* caches 4295 * are treated as metadata. 4296 */ 4297 kmem_default_arena = kmem_msb_arena; 4298 maxbuf = KMEM_BIG_MAXBUF_32BIT; 4299 } 4300 4301 /* 4302 * Set up the default caches to back kmem_alloc() 4303 */ 4304 kmem_alloc_caches_create( 4305 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 4306 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 4307 4308 kmem_alloc_caches_create( 4309 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 4310 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 4311 4312 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 4313 } 4314 4315 void 4316 kmem_init(void) 4317 { 4318 kmem_cache_t *cp; 4319 int old_kmem_flags = kmem_flags; 4320 int use_large_pages = 0; 4321 size_t maxverify, minfirewall; 4322 4323 kstat_init(); 4324 4325 /* 4326 * Don't do firewalled allocations if the heap is less than 1TB 4327 * (i.e. on a 32-bit kernel) 4328 * The resulting VM_NEXTFIT allocations would create too much 4329 * fragmentation in a small heap. 4330 */ 4331 #if defined(_LP64) 4332 maxverify = minfirewall = PAGESIZE / 2; 4333 #else 4334 maxverify = minfirewall = ULONG_MAX; 4335 #endif 4336 4337 /* LINTED */ 4338 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 4339 4340 list_create(&kmem_caches, sizeof (kmem_cache_t), 4341 offsetof(kmem_cache_t, cache_link)); 4342 4343 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 4344 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 4345 VM_SLEEP | VMC_NO_QCACHE); 4346 4347 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 4348 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 4349 VMC_DUMPSAFE | VM_SLEEP); 4350 4351 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 4352 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4353 4354 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 4355 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4356 4357 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 4358 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4359 4360 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 4361 NULL, 0, PAGESIZE, 4362 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 4363 0, VM_SLEEP); 4364 4365 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 4366 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, 4367 VMC_DUMPSAFE | VM_SLEEP); 4368 4369 /* temporary oversize arena for mod_read_system_file */ 4370 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 4371 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4372 4373 kmem_reap_interval = 15 * hz; 4374 4375 /* 4376 * Read /etc/system. This is a chicken-and-egg problem because 4377 * kmem_flags may be set in /etc/system, but mod_read_system_file() 4378 * needs to use the allocator. The simplest solution is to create 4379 * all the standard kmem caches, read /etc/system, destroy all the 4380 * caches we just created, and then create them all again in light 4381 * of the (possibly) new kmem_flags and other kmem tunables. 4382 */ 4383 kmem_cache_init(1, 0); 4384 4385 mod_read_system_file(boothowto & RB_ASKNAME); 4386 4387 while ((cp = list_tail(&kmem_caches)) != NULL) 4388 kmem_cache_destroy(cp); 4389 4390 vmem_destroy(kmem_oversize_arena); 4391 4392 if (old_kmem_flags & KMF_STICKY) 4393 kmem_flags = old_kmem_flags; 4394 4395 if (!(kmem_flags & KMF_AUDIT)) 4396 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 4397 4398 if (kmem_maxverify == 0) 4399 kmem_maxverify = maxverify; 4400 4401 if (kmem_minfirewall == 0) 4402 kmem_minfirewall = minfirewall; 4403 4404 /* 4405 * give segkmem a chance to figure out if we are using large pages 4406 * for the kernel heap 4407 */ 4408 use_large_pages = segkmem_lpsetup(); 4409 4410 /* 4411 * To protect against corruption, we keep the actual number of callers 4412 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 4413 * to 16, since the overhead for small buffers quickly gets out of 4414 * hand. 4415 * 4416 * The real limit would depend on the needs of the largest KMC_NOHASH 4417 * cache. 4418 */ 4419 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 4420 kmem_lite_pcs = kmem_lite_count; 4421 4422 /* 4423 * Normally, we firewall oversized allocations when possible, but 4424 * if we are using large pages for kernel memory, and we don't have 4425 * any non-LITE debugging flags set, we want to allocate oversized 4426 * buffers from large pages, and so skip the firewalling. 4427 */ 4428 if (use_large_pages && 4429 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 4430 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 4431 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 4432 0, VMC_DUMPSAFE | VM_SLEEP); 4433 } else { 4434 kmem_oversize_arena = vmem_create("kmem_oversize", 4435 NULL, 0, PAGESIZE, 4436 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 4437 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | 4438 VM_SLEEP); 4439 } 4440 4441 kmem_cache_init(2, use_large_pages); 4442 4443 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 4444 if (kmem_transaction_log_size == 0) 4445 kmem_transaction_log_size = kmem_maxavail() / 50; 4446 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 4447 } 4448 4449 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 4450 if (kmem_content_log_size == 0) 4451 kmem_content_log_size = kmem_maxavail() / 50; 4452 kmem_content_log = kmem_log_init(kmem_content_log_size); 4453 } 4454 4455 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 4456 4457 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 4458 4459 /* 4460 * Initialize STREAMS message caches so allocb() is available. 4461 * This allows us to initialize the logging framework (cmn_err(9F), 4462 * strlog(9F), etc) so we can start recording messages. 4463 */ 4464 streams_msg_init(); 4465 4466 /* 4467 * Initialize the ZSD framework in Zones so modules loaded henceforth 4468 * can register their callbacks. 4469 */ 4470 zone_zsd_init(); 4471 4472 log_init(); 4473 taskq_init(); 4474 4475 /* 4476 * Warn about invalid or dangerous values of kmem_flags. 4477 * Always warn about unsupported values. 4478 */ 4479 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 4480 KMF_CONTENTS | KMF_LITE)) != 0) || 4481 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 4482 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 4483 "See the Solaris Tunable Parameters Reference Manual.", 4484 kmem_flags); 4485 4486 #ifdef DEBUG 4487 if ((kmem_flags & KMF_DEBUG) == 0) 4488 cmn_err(CE_NOTE, "kmem debugging disabled."); 4489 #else 4490 /* 4491 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 4492 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 4493 * if KMF_AUDIT is set). We should warn the user about the performance 4494 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 4495 * isn't set (since that disables AUDIT). 4496 */ 4497 if (!(kmem_flags & KMF_LITE) && 4498 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 4499 cmn_err(CE_WARN, "High-overhead kmem debugging features " 4500 "enabled (kmem_flags = 0x%x). Performance degradation " 4501 "and large memory overhead possible. See the Solaris " 4502 "Tunable Parameters Reference Manual.", kmem_flags); 4503 #endif /* not DEBUG */ 4504 4505 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 4506 4507 kmem_ready = 1; 4508 4509 /* 4510 * Initialize the platform-specific aligned/DMA memory allocator. 4511 */ 4512 ka_init(); 4513 4514 /* 4515 * Initialize 32-bit ID cache. 4516 */ 4517 id32_init(); 4518 4519 /* 4520 * Initialize the networking stack so modules loaded can 4521 * register their callbacks. 4522 */ 4523 netstack_init(); 4524 } 4525 4526 static void 4527 kmem_move_init(void) 4528 { 4529 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4530 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4531 kmem_msb_arena, KMC_NOHASH); 4532 kmem_move_cache = kmem_cache_create("kmem_move_cache", 4533 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4534 kmem_msb_arena, KMC_NOHASH); 4535 4536 /* 4537 * kmem guarantees that move callbacks are sequential and that even 4538 * across multiple caches no two moves ever execute simultaneously. 4539 * Move callbacks are processed on a separate taskq so that client code 4540 * does not interfere with internal maintenance tasks. 4541 */ 4542 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4543 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4544 } 4545 4546 void 4547 kmem_thread_init(void) 4548 { 4549 kmem_move_init(); 4550 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4551 300, INT_MAX, TASKQ_PREPOPULATE); 4552 } 4553 4554 void 4555 kmem_mp_init(void) 4556 { 4557 mutex_enter(&cpu_lock); 4558 register_cpu_setup_func(kmem_cpu_setup, NULL); 4559 mutex_exit(&cpu_lock); 4560 4561 kmem_update_timeout(NULL); 4562 4563 taskq_mp_init(); 4564 } 4565 4566 /* 4567 * Return the slab of the allocated buffer, or NULL if the buffer is not 4568 * allocated. This function may be called with a known slab address to determine 4569 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4570 * an allocated buffer's slab. 4571 */ 4572 static kmem_slab_t * 4573 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4574 { 4575 kmem_bufctl_t *bcp, *bufbcp; 4576 4577 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4578 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4579 4580 if (cp->cache_flags & KMF_HASH) { 4581 for (bcp = *KMEM_HASH(cp, buf); 4582 (bcp != NULL) && (bcp->bc_addr != buf); 4583 bcp = bcp->bc_next) { 4584 continue; 4585 } 4586 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4587 return (bcp == NULL ? NULL : bcp->bc_slab); 4588 } 4589 4590 if (sp == NULL) { 4591 sp = KMEM_SLAB(cp, buf); 4592 } 4593 bufbcp = KMEM_BUFCTL(cp, buf); 4594 for (bcp = sp->slab_head; 4595 (bcp != NULL) && (bcp != bufbcp); 4596 bcp = bcp->bc_next) { 4597 continue; 4598 } 4599 return (bcp == NULL ? sp : NULL); 4600 } 4601 4602 static boolean_t 4603 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4604 { 4605 long refcnt = sp->slab_refcnt; 4606 4607 ASSERT(cp->cache_defrag != NULL); 4608 4609 /* 4610 * For code coverage we want to be able to move an object within the 4611 * same slab (the only partial slab) even if allocating the destination 4612 * buffer resulted in a completely allocated slab. 4613 */ 4614 if (flags & KMM_DEBUG) { 4615 return ((flags & KMM_DESPERATE) || 4616 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4617 } 4618 4619 /* If we're desperate, we don't care if the client said NO. */ 4620 if (flags & KMM_DESPERATE) { 4621 return (refcnt < sp->slab_chunks); /* any partial */ 4622 } 4623 4624 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4625 return (B_FALSE); 4626 } 4627 4628 if ((refcnt == 1) || kmem_move_any_partial) { 4629 return (refcnt < sp->slab_chunks); 4630 } 4631 4632 /* 4633 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4634 * slabs with a progressively higher percentage of used buffers can be 4635 * reclaimed until the cache as a whole is no longer fragmented. 4636 * 4637 * sp->slab_refcnt kmd_reclaim_numer 4638 * --------------- < ------------------ 4639 * sp->slab_chunks KMEM_VOID_FRACTION 4640 */ 4641 return ((refcnt * KMEM_VOID_FRACTION) < 4642 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4643 } 4644 4645 /* 4646 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4647 * or when the buffer is freed. 4648 */ 4649 static void 4650 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4651 { 4652 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4653 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4654 4655 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4656 return; 4657 } 4658 4659 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4660 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4661 avl_remove(&cp->cache_partial_slabs, sp); 4662 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4663 sp->slab_stuck_offset = (uint32_t)-1; 4664 avl_add(&cp->cache_partial_slabs, sp); 4665 } 4666 } else { 4667 sp->slab_later_count = 0; 4668 sp->slab_stuck_offset = (uint32_t)-1; 4669 } 4670 } 4671 4672 static void 4673 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4674 { 4675 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4676 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4677 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4678 4679 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4680 return; 4681 } 4682 4683 avl_remove(&cp->cache_partial_slabs, sp); 4684 sp->slab_later_count = 0; 4685 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4686 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4687 avl_add(&cp->cache_partial_slabs, sp); 4688 } 4689 4690 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4691 4692 /* 4693 * The move callback takes two buffer addresses, the buffer to be moved, and a 4694 * newly allocated and constructed buffer selected by kmem as the destination. 4695 * It also takes the size of the buffer and an optional user argument specified 4696 * at cache creation time. kmem guarantees that the buffer to be moved has not 4697 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4698 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4699 * the client to safely determine whether or not it is still using the buffer. 4700 * The client must not free either of the buffers passed to the move callback, 4701 * since kmem wants to free them directly to the slab layer. The client response 4702 * tells kmem which of the two buffers to free: 4703 * 4704 * YES kmem frees the old buffer (the move was successful) 4705 * NO kmem frees the new buffer, marks the slab of the old buffer 4706 * non-reclaimable to avoid bothering the client again 4707 * LATER kmem frees the new buffer, increments slab_later_count 4708 * DONT_KNOW kmem frees the new buffer 4709 * DONT_NEED kmem frees both the old buffer and the new buffer 4710 * 4711 * The pending callback argument now being processed contains both of the 4712 * buffers (old and new) passed to the move callback function, the slab of the 4713 * old buffer, and flags related to the move request, such as whether or not the 4714 * system was desperate for memory. 4715 * 4716 * Slabs are not freed while there is a pending callback, but instead are kept 4717 * on a deadlist, which is drained after the last callback completes. This means 4718 * that slabs are safe to access until kmem_move_end(), no matter how many of 4719 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4720 * zero for as long as the slab remains on the deadlist and until the slab is 4721 * freed. 4722 */ 4723 static void 4724 kmem_move_buffer(kmem_move_t *callback) 4725 { 4726 kmem_cbrc_t response; 4727 kmem_slab_t *sp = callback->kmm_from_slab; 4728 kmem_cache_t *cp = sp->slab_cache; 4729 boolean_t free_on_slab; 4730 4731 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4732 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4733 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4734 4735 /* 4736 * The number of allocated buffers on the slab may have changed since we 4737 * last checked the slab's reclaimability (when the pending move was 4738 * enqueued), or the client may have responded NO when asked to move 4739 * another buffer on the same slab. 4740 */ 4741 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4742 kmem_slab_free(cp, callback->kmm_to_buf); 4743 kmem_move_end(cp, callback); 4744 return; 4745 } 4746 4747 /* 4748 * Checking the slab layer is easy, so we might as well do that here 4749 * in case we can avoid bothering the client. 4750 */ 4751 mutex_enter(&cp->cache_lock); 4752 free_on_slab = (kmem_slab_allocated(cp, sp, 4753 callback->kmm_from_buf) == NULL); 4754 mutex_exit(&cp->cache_lock); 4755 4756 if (free_on_slab) { 4757 kmem_slab_free(cp, callback->kmm_to_buf); 4758 kmem_move_end(cp, callback); 4759 return; 4760 } 4761 4762 if (cp->cache_flags & KMF_BUFTAG) { 4763 /* 4764 * Make kmem_cache_alloc_debug() apply the constructor for us. 4765 */ 4766 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4767 KM_NOSLEEP, 1, caller()) != 0) { 4768 kmem_move_end(cp, callback); 4769 return; 4770 } 4771 } else if (cp->cache_constructor != NULL && 4772 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4773 KM_NOSLEEP) != 0) { 4774 atomic_inc_64(&cp->cache_alloc_fail); 4775 kmem_slab_free(cp, callback->kmm_to_buf); 4776 kmem_move_end(cp, callback); 4777 return; 4778 } 4779 4780 cp->cache_defrag->kmd_callbacks++; 4781 cp->cache_defrag->kmd_thread = curthread; 4782 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4783 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4784 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4785 callback); 4786 4787 response = cp->cache_move(callback->kmm_from_buf, 4788 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4789 4790 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4791 callback, kmem_cbrc_t, response); 4792 cp->cache_defrag->kmd_thread = NULL; 4793 cp->cache_defrag->kmd_from_buf = NULL; 4794 cp->cache_defrag->kmd_to_buf = NULL; 4795 4796 if (response == KMEM_CBRC_YES) { 4797 cp->cache_defrag->kmd_yes++; 4798 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4799 /* slab safe to access until kmem_move_end() */ 4800 if (sp->slab_refcnt == 0) 4801 cp->cache_defrag->kmd_slabs_freed++; 4802 mutex_enter(&cp->cache_lock); 4803 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4804 mutex_exit(&cp->cache_lock); 4805 kmem_move_end(cp, callback); 4806 return; 4807 } 4808 4809 switch (response) { 4810 case KMEM_CBRC_NO: 4811 cp->cache_defrag->kmd_no++; 4812 mutex_enter(&cp->cache_lock); 4813 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4814 mutex_exit(&cp->cache_lock); 4815 break; 4816 case KMEM_CBRC_LATER: 4817 cp->cache_defrag->kmd_later++; 4818 mutex_enter(&cp->cache_lock); 4819 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4820 mutex_exit(&cp->cache_lock); 4821 break; 4822 } 4823 4824 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4825 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4826 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4827 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4828 callback->kmm_from_buf); 4829 } 4830 mutex_exit(&cp->cache_lock); 4831 break; 4832 case KMEM_CBRC_DONT_NEED: 4833 cp->cache_defrag->kmd_dont_need++; 4834 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4835 if (sp->slab_refcnt == 0) 4836 cp->cache_defrag->kmd_slabs_freed++; 4837 mutex_enter(&cp->cache_lock); 4838 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4839 mutex_exit(&cp->cache_lock); 4840 break; 4841 case KMEM_CBRC_DONT_KNOW: 4842 /* 4843 * If we don't know if we can move this buffer or not, we'll 4844 * just assume that we can't: if the buffer is in fact free, 4845 * then it is sitting in one of the per-CPU magazines or in 4846 * a full magazine in the depot layer. Either way, because 4847 * defrag is induced in the same logic that reaps a cache, 4848 * it's likely that full magazines will be returned to the 4849 * system soon (thereby accomplishing what we're trying to 4850 * accomplish here: return those magazines to their slabs). 4851 * Given this, any work that we might do now to locate a buffer 4852 * in a magazine is wasted (and expensive!) work; we bump 4853 * a counter in this case and otherwise assume that we can't 4854 * move it. 4855 */ 4856 cp->cache_defrag->kmd_dont_know++; 4857 break; 4858 default: 4859 panic("'%s' (%p) unexpected move callback response %d\n", 4860 cp->cache_name, (void *)cp, response); 4861 } 4862 4863 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4864 kmem_move_end(cp, callback); 4865 } 4866 4867 /* Return B_FALSE if there is insufficient memory for the move request. */ 4868 static boolean_t 4869 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4870 { 4871 void *to_buf; 4872 avl_index_t index; 4873 kmem_move_t *callback, *pending; 4874 ulong_t n; 4875 4876 ASSERT(taskq_member(kmem_taskq, curthread)); 4877 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4878 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4879 4880 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4881 4882 if (callback == NULL) 4883 return (B_FALSE); 4884 4885 callback->kmm_from_slab = sp; 4886 callback->kmm_from_buf = buf; 4887 callback->kmm_flags = flags; 4888 4889 mutex_enter(&cp->cache_lock); 4890 4891 n = avl_numnodes(&cp->cache_partial_slabs); 4892 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4893 mutex_exit(&cp->cache_lock); 4894 kmem_cache_free(kmem_move_cache, callback); 4895 return (B_TRUE); /* there is no need for the move request */ 4896 } 4897 4898 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4899 if (pending != NULL) { 4900 /* 4901 * If the move is already pending and we're desperate now, 4902 * update the move flags. 4903 */ 4904 if (flags & KMM_DESPERATE) { 4905 pending->kmm_flags |= KMM_DESPERATE; 4906 } 4907 mutex_exit(&cp->cache_lock); 4908 kmem_cache_free(kmem_move_cache, callback); 4909 return (B_TRUE); 4910 } 4911 4912 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs), 4913 B_FALSE); 4914 callback->kmm_to_buf = to_buf; 4915 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4916 4917 mutex_exit(&cp->cache_lock); 4918 4919 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4920 callback, TQ_NOSLEEP)) { 4921 mutex_enter(&cp->cache_lock); 4922 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4923 mutex_exit(&cp->cache_lock); 4924 kmem_slab_free(cp, to_buf); 4925 kmem_cache_free(kmem_move_cache, callback); 4926 return (B_FALSE); 4927 } 4928 4929 return (B_TRUE); 4930 } 4931 4932 static void 4933 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4934 { 4935 avl_index_t index; 4936 4937 ASSERT(cp->cache_defrag != NULL); 4938 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4939 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4940 4941 mutex_enter(&cp->cache_lock); 4942 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4943 callback->kmm_from_buf, &index) != NULL); 4944 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4945 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4946 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4947 kmem_slab_t *sp; 4948 4949 /* 4950 * The last pending move completed. Release all slabs from the 4951 * front of the dead list except for any slab at the tail that 4952 * needs to be released from the context of kmem_move_buffers(). 4953 * kmem deferred unmapping the buffers on these slabs in order 4954 * to guarantee that buffers passed to the move callback have 4955 * been touched only by kmem or by the client itself. 4956 */ 4957 while ((sp = list_remove_head(deadlist)) != NULL) { 4958 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4959 list_insert_tail(deadlist, sp); 4960 break; 4961 } 4962 cp->cache_defrag->kmd_deadcount--; 4963 cp->cache_slab_destroy++; 4964 mutex_exit(&cp->cache_lock); 4965 kmem_slab_destroy(cp, sp); 4966 mutex_enter(&cp->cache_lock); 4967 } 4968 } 4969 mutex_exit(&cp->cache_lock); 4970 kmem_cache_free(kmem_move_cache, callback); 4971 } 4972 4973 /* 4974 * Move buffers from least used slabs first by scanning backwards from the end 4975 * of the partial slab list. Scan at most max_scan candidate slabs and move 4976 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4977 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4978 * skip slabs with a ratio of allocated buffers at or above the current 4979 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4980 * scan is aborted) so that the caller can adjust the reclaimability threshold 4981 * depending on how many reclaimable slabs it finds. 4982 * 4983 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4984 * move request, since it is not valid for kmem_move_begin() to call 4985 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4986 */ 4987 static int 4988 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4989 int flags) 4990 { 4991 kmem_slab_t *sp; 4992 void *buf; 4993 int i, j; /* slab index, buffer index */ 4994 int s; /* reclaimable slabs */ 4995 int b; /* allocated (movable) buffers on reclaimable slab */ 4996 boolean_t success; 4997 int refcnt; 4998 int nomove; 4999 5000 ASSERT(taskq_member(kmem_taskq, curthread)); 5001 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5002 ASSERT(kmem_move_cache != NULL); 5003 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 5004 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 5005 avl_numnodes(&cp->cache_partial_slabs) > 1); 5006 5007 if (kmem_move_blocked) { 5008 return (0); 5009 } 5010 5011 if (kmem_move_fulltilt) { 5012 flags |= KMM_DESPERATE; 5013 } 5014 5015 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 5016 /* 5017 * Scan as many slabs as needed to find the desired number of 5018 * candidate slabs. 5019 */ 5020 max_scan = (size_t)-1; 5021 } 5022 5023 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 5024 /* Find as many candidate slabs as possible. */ 5025 max_slabs = (size_t)-1; 5026 } 5027 5028 sp = avl_last(&cp->cache_partial_slabs); 5029 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 5030 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 5031 ((sp != avl_first(&cp->cache_partial_slabs)) || 5032 (flags & KMM_DEBUG)); 5033 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 5034 5035 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 5036 continue; 5037 } 5038 s++; 5039 5040 /* Look for allocated buffers to move. */ 5041 for (j = 0, b = 0, buf = sp->slab_base; 5042 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 5043 buf = (((char *)buf) + cp->cache_chunksize), j++) { 5044 5045 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 5046 continue; 5047 } 5048 5049 b++; 5050 5051 /* 5052 * Prevent the slab from being destroyed while we drop 5053 * cache_lock and while the pending move is not yet 5054 * registered. Flag the pending move while 5055 * kmd_moves_pending may still be empty, since we can't 5056 * yet rely on a non-zero pending move count to prevent 5057 * the slab from being destroyed. 5058 */ 5059 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5060 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5061 /* 5062 * Recheck refcnt and nomove after reacquiring the lock, 5063 * since these control the order of partial slabs, and 5064 * we want to know if we can pick up the scan where we 5065 * left off. 5066 */ 5067 refcnt = sp->slab_refcnt; 5068 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 5069 mutex_exit(&cp->cache_lock); 5070 5071 success = kmem_move_begin(cp, sp, buf, flags); 5072 5073 /* 5074 * Now, before the lock is reacquired, kmem could 5075 * process all pending move requests and purge the 5076 * deadlist, so that upon reacquiring the lock, sp has 5077 * been remapped. Or, the client may free all the 5078 * objects on the slab while the pending moves are still 5079 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 5080 * flag causes the slab to be put at the end of the 5081 * deadlist and prevents it from being destroyed, since 5082 * we plan to destroy it here after reacquiring the 5083 * lock. 5084 */ 5085 mutex_enter(&cp->cache_lock); 5086 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5087 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5088 5089 if (sp->slab_refcnt == 0) { 5090 list_t *deadlist = 5091 &cp->cache_defrag->kmd_deadlist; 5092 list_remove(deadlist, sp); 5093 5094 if (!avl_is_empty( 5095 &cp->cache_defrag->kmd_moves_pending)) { 5096 /* 5097 * A pending move makes it unsafe to 5098 * destroy the slab, because even though 5099 * the move is no longer needed, the 5100 * context where that is determined 5101 * requires the slab to exist. 5102 * Fortunately, a pending move also 5103 * means we don't need to destroy the 5104 * slab here, since it will get 5105 * destroyed along with any other slabs 5106 * on the deadlist after the last 5107 * pending move completes. 5108 */ 5109 list_insert_head(deadlist, sp); 5110 return (-1); 5111 } 5112 5113 /* 5114 * Destroy the slab now if it was completely 5115 * freed while we dropped cache_lock and there 5116 * are no pending moves. Since slab_refcnt 5117 * cannot change once it reaches zero, no new 5118 * pending moves from that slab are possible. 5119 */ 5120 cp->cache_defrag->kmd_deadcount--; 5121 cp->cache_slab_destroy++; 5122 mutex_exit(&cp->cache_lock); 5123 kmem_slab_destroy(cp, sp); 5124 mutex_enter(&cp->cache_lock); 5125 /* 5126 * Since we can't pick up the scan where we left 5127 * off, abort the scan and say nothing about the 5128 * number of reclaimable slabs. 5129 */ 5130 return (-1); 5131 } 5132 5133 if (!success) { 5134 /* 5135 * Abort the scan if there is not enough memory 5136 * for the request and say nothing about the 5137 * number of reclaimable slabs. 5138 */ 5139 return (-1); 5140 } 5141 5142 /* 5143 * The slab's position changed while the lock was 5144 * dropped, so we don't know where we are in the 5145 * sequence any more. 5146 */ 5147 if (sp->slab_refcnt != refcnt) { 5148 /* 5149 * If this is a KMM_DEBUG move, the slab_refcnt 5150 * may have changed because we allocated a 5151 * destination buffer on the same slab. In that 5152 * case, we're not interested in counting it. 5153 */ 5154 return (-1); 5155 } 5156 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) 5157 return (-1); 5158 5159 /* 5160 * Generating a move request allocates a destination 5161 * buffer from the slab layer, bumping the first partial 5162 * slab if it is completely allocated. If the current 5163 * slab becomes the first partial slab as a result, we 5164 * can't continue to scan backwards. 5165 * 5166 * If this is a KMM_DEBUG move and we allocated the 5167 * destination buffer from the last partial slab, then 5168 * the buffer we're moving is on the same slab and our 5169 * slab_refcnt has changed, causing us to return before 5170 * reaching here if there are no partial slabs left. 5171 */ 5172 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 5173 if (sp == avl_first(&cp->cache_partial_slabs)) { 5174 /* 5175 * We're not interested in a second KMM_DEBUG 5176 * move. 5177 */ 5178 goto end_scan; 5179 } 5180 } 5181 } 5182 end_scan: 5183 5184 return (s); 5185 } 5186 5187 typedef struct kmem_move_notify_args { 5188 kmem_cache_t *kmna_cache; 5189 void *kmna_buf; 5190 } kmem_move_notify_args_t; 5191 5192 static void 5193 kmem_cache_move_notify_task(void *arg) 5194 { 5195 kmem_move_notify_args_t *args = arg; 5196 kmem_cache_t *cp = args->kmna_cache; 5197 void *buf = args->kmna_buf; 5198 kmem_slab_t *sp; 5199 5200 ASSERT(taskq_member(kmem_taskq, curthread)); 5201 ASSERT(list_link_active(&cp->cache_link)); 5202 5203 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5204 mutex_enter(&cp->cache_lock); 5205 sp = kmem_slab_allocated(cp, NULL, buf); 5206 5207 /* Ignore the notification if the buffer is no longer allocated. */ 5208 if (sp == NULL) { 5209 mutex_exit(&cp->cache_lock); 5210 return; 5211 } 5212 5213 /* Ignore the notification if there's no reason to move the buffer. */ 5214 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5215 /* 5216 * So far the notification is not ignored. Ignore the 5217 * notification if the slab is not marked by an earlier refusal 5218 * to move a buffer. 5219 */ 5220 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 5221 (sp->slab_later_count == 0)) { 5222 mutex_exit(&cp->cache_lock); 5223 return; 5224 } 5225 5226 kmem_slab_move_yes(cp, sp, buf); 5227 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5228 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5229 mutex_exit(&cp->cache_lock); 5230 /* see kmem_move_buffers() about dropping the lock */ 5231 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 5232 mutex_enter(&cp->cache_lock); 5233 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5234 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5235 if (sp->slab_refcnt == 0) { 5236 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5237 list_remove(deadlist, sp); 5238 5239 if (!avl_is_empty( 5240 &cp->cache_defrag->kmd_moves_pending)) { 5241 list_insert_head(deadlist, sp); 5242 mutex_exit(&cp->cache_lock); 5243 return; 5244 } 5245 5246 cp->cache_defrag->kmd_deadcount--; 5247 cp->cache_slab_destroy++; 5248 mutex_exit(&cp->cache_lock); 5249 kmem_slab_destroy(cp, sp); 5250 return; 5251 } 5252 } else { 5253 kmem_slab_move_yes(cp, sp, buf); 5254 } 5255 mutex_exit(&cp->cache_lock); 5256 } 5257 5258 void 5259 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 5260 { 5261 kmem_move_notify_args_t *args; 5262 5263 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 5264 if (args != NULL) { 5265 args->kmna_cache = cp; 5266 args->kmna_buf = buf; 5267 if (!taskq_dispatch(kmem_taskq, 5268 (task_func_t *)kmem_cache_move_notify_task, args, 5269 TQ_NOSLEEP)) 5270 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5271 } 5272 } 5273 5274 static void 5275 kmem_cache_defrag(kmem_cache_t *cp) 5276 { 5277 size_t n; 5278 5279 ASSERT(cp->cache_defrag != NULL); 5280 5281 mutex_enter(&cp->cache_lock); 5282 n = avl_numnodes(&cp->cache_partial_slabs); 5283 if (n > 1) { 5284 /* kmem_move_buffers() drops and reacquires cache_lock */ 5285 cp->cache_defrag->kmd_defrags++; 5286 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 5287 } 5288 mutex_exit(&cp->cache_lock); 5289 } 5290 5291 /* Is this cache above the fragmentation threshold? */ 5292 static boolean_t 5293 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 5294 { 5295 /* 5296 * nfree kmem_frag_numer 5297 * ------------------ > --------------- 5298 * cp->cache_buftotal kmem_frag_denom 5299 */ 5300 return ((nfree * kmem_frag_denom) > 5301 (cp->cache_buftotal * kmem_frag_numer)); 5302 } 5303 5304 static boolean_t 5305 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 5306 { 5307 boolean_t fragmented; 5308 uint64_t nfree; 5309 5310 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5311 *doreap = B_FALSE; 5312 5313 if (kmem_move_fulltilt) { 5314 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5315 return (B_TRUE); 5316 } 5317 } else { 5318 if ((cp->cache_complete_slab_count + avl_numnodes( 5319 &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 5320 return (B_FALSE); 5321 } 5322 } 5323 5324 nfree = cp->cache_bufslab; 5325 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 5326 kmem_cache_frag_threshold(cp, nfree)); 5327 5328 /* 5329 * Free buffers in the magazine layer appear allocated from the point of 5330 * view of the slab layer. We want to know if the slab layer would 5331 * appear fragmented if we included free buffers from magazines that 5332 * have fallen out of the working set. 5333 */ 5334 if (!fragmented) { 5335 long reap; 5336 5337 mutex_enter(&cp->cache_depot_lock); 5338 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5339 reap = MIN(reap, cp->cache_full.ml_total); 5340 mutex_exit(&cp->cache_depot_lock); 5341 5342 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5343 if (kmem_cache_frag_threshold(cp, nfree)) { 5344 *doreap = B_TRUE; 5345 } 5346 } 5347 5348 return (fragmented); 5349 } 5350 5351 /* Called periodically from kmem_taskq */ 5352 static void 5353 kmem_cache_scan(kmem_cache_t *cp) 5354 { 5355 boolean_t reap = B_FALSE; 5356 kmem_defrag_t *kmd; 5357 5358 ASSERT(taskq_member(kmem_taskq, curthread)); 5359 5360 mutex_enter(&cp->cache_lock); 5361 5362 kmd = cp->cache_defrag; 5363 if (kmd->kmd_consolidate > 0) { 5364 kmd->kmd_consolidate--; 5365 mutex_exit(&cp->cache_lock); 5366 kmem_cache_reap(cp); 5367 return; 5368 } 5369 5370 if (kmem_cache_is_fragmented(cp, &reap)) { 5371 size_t slabs_found; 5372 5373 /* 5374 * Consolidate reclaimable slabs from the end of the partial 5375 * slab list (scan at most kmem_reclaim_scan_range slabs to find 5376 * reclaimable slabs). Keep track of how many candidate slabs we 5377 * looked for and how many we actually found so we can adjust 5378 * the definition of a candidate slab if we're having trouble 5379 * finding them. 5380 * 5381 * kmem_move_buffers() drops and reacquires cache_lock. 5382 */ 5383 kmd->kmd_scans++; 5384 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5385 kmem_reclaim_max_slabs, 0); 5386 if (slabs_found >= 0) { 5387 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5388 kmd->kmd_slabs_found += slabs_found; 5389 } 5390 5391 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5392 kmd->kmd_tries = 0; 5393 5394 /* 5395 * If we had difficulty finding candidate slabs in 5396 * previous scans, adjust the threshold so that 5397 * candidates are easier to find. 5398 */ 5399 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5400 kmem_adjust_reclaim_threshold(kmd, -1); 5401 } else if ((kmd->kmd_slabs_found * 2) < 5402 kmd->kmd_slabs_sought) { 5403 kmem_adjust_reclaim_threshold(kmd, 1); 5404 } 5405 kmd->kmd_slabs_sought = 0; 5406 kmd->kmd_slabs_found = 0; 5407 } 5408 } else { 5409 kmem_reset_reclaim_threshold(cp->cache_defrag); 5410 #ifdef DEBUG 5411 if (!avl_is_empty(&cp->cache_partial_slabs)) { 5412 /* 5413 * In a debug kernel we want the consolidator to 5414 * run occasionally even when there is plenty of 5415 * memory. 5416 */ 5417 uint16_t debug_rand; 5418 5419 (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5420 if (!kmem_move_noreap && 5421 ((debug_rand % kmem_mtb_reap) == 0)) { 5422 mutex_exit(&cp->cache_lock); 5423 kmem_cache_reap(cp); 5424 return; 5425 } else if ((debug_rand % kmem_mtb_move) == 0) { 5426 kmd->kmd_scans++; 5427 (void) kmem_move_buffers(cp, 5428 kmem_reclaim_scan_range, 1, KMM_DEBUG); 5429 } 5430 } 5431 #endif /* DEBUG */ 5432 } 5433 5434 mutex_exit(&cp->cache_lock); 5435 5436 if (reap) 5437 kmem_depot_ws_reap(cp); 5438 } 5439