xref: /illumos-gate/usr/src/uts/common/os/kmem.c (revision 7ae111d47a973fff4c6e231cc31f271dd9cef473)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Kernel memory allocator, as described in the following two papers:
30  *
31  * Jeff Bonwick,
32  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
33  * Proceedings of the Summer 1994 Usenix Conference.
34  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
35  *
36  * Jeff Bonwick and Jonathan Adams,
37  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
38  * Arbitrary Resources.
39  * Proceedings of the 2001 Usenix Conference.
40  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
41  */
42 
43 #include <sys/kmem_impl.h>
44 #include <sys/vmem_impl.h>
45 #include <sys/param.h>
46 #include <sys/sysmacros.h>
47 #include <sys/vm.h>
48 #include <sys/proc.h>
49 #include <sys/tuneable.h>
50 #include <sys/systm.h>
51 #include <sys/cmn_err.h>
52 #include <sys/debug.h>
53 #include <sys/mutex.h>
54 #include <sys/bitmap.h>
55 #include <sys/atomic.h>
56 #include <sys/kobj.h>
57 #include <sys/disp.h>
58 #include <vm/seg_kmem.h>
59 #include <sys/log.h>
60 #include <sys/callb.h>
61 #include <sys/taskq.h>
62 #include <sys/modctl.h>
63 #include <sys/reboot.h>
64 #include <sys/id32.h>
65 #include <sys/zone.h>
66 
67 extern void streams_msg_init(void);
68 extern int segkp_fromheap;
69 extern void segkp_cache_free(void);
70 
71 struct kmem_cache_kstat {
72 	kstat_named_t	kmc_buf_size;
73 	kstat_named_t	kmc_align;
74 	kstat_named_t	kmc_chunk_size;
75 	kstat_named_t	kmc_slab_size;
76 	kstat_named_t	kmc_alloc;
77 	kstat_named_t	kmc_alloc_fail;
78 	kstat_named_t	kmc_free;
79 	kstat_named_t	kmc_depot_alloc;
80 	kstat_named_t	kmc_depot_free;
81 	kstat_named_t	kmc_depot_contention;
82 	kstat_named_t	kmc_slab_alloc;
83 	kstat_named_t	kmc_slab_free;
84 	kstat_named_t	kmc_buf_constructed;
85 	kstat_named_t	kmc_buf_avail;
86 	kstat_named_t	kmc_buf_inuse;
87 	kstat_named_t	kmc_buf_total;
88 	kstat_named_t	kmc_buf_max;
89 	kstat_named_t	kmc_slab_create;
90 	kstat_named_t	kmc_slab_destroy;
91 	kstat_named_t	kmc_vmem_source;
92 	kstat_named_t	kmc_hash_size;
93 	kstat_named_t	kmc_hash_lookup_depth;
94 	kstat_named_t	kmc_hash_rescale;
95 	kstat_named_t	kmc_full_magazines;
96 	kstat_named_t	kmc_empty_magazines;
97 	kstat_named_t	kmc_magazine_size;
98 } kmem_cache_kstat = {
99 	{ "buf_size",		KSTAT_DATA_UINT64 },
100 	{ "align",		KSTAT_DATA_UINT64 },
101 	{ "chunk_size",		KSTAT_DATA_UINT64 },
102 	{ "slab_size",		KSTAT_DATA_UINT64 },
103 	{ "alloc",		KSTAT_DATA_UINT64 },
104 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
105 	{ "free",		KSTAT_DATA_UINT64 },
106 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
107 	{ "depot_free",		KSTAT_DATA_UINT64 },
108 	{ "depot_contention",	KSTAT_DATA_UINT64 },
109 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
110 	{ "slab_free",		KSTAT_DATA_UINT64 },
111 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
112 	{ "buf_avail",		KSTAT_DATA_UINT64 },
113 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
114 	{ "buf_total",		KSTAT_DATA_UINT64 },
115 	{ "buf_max",		KSTAT_DATA_UINT64 },
116 	{ "slab_create",	KSTAT_DATA_UINT64 },
117 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
118 	{ "vmem_source",	KSTAT_DATA_UINT64 },
119 	{ "hash_size",		KSTAT_DATA_UINT64 },
120 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
121 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
122 	{ "full_magazines",	KSTAT_DATA_UINT64 },
123 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
124 	{ "magazine_size",	KSTAT_DATA_UINT64 },
125 };
126 
127 static kmutex_t kmem_cache_kstat_lock;
128 
129 /*
130  * The default set of caches to back kmem_alloc().
131  * These sizes should be reevaluated periodically.
132  *
133  * We want allocations that are multiples of the coherency granularity
134  * (64 bytes) to be satisfied from a cache which is a multiple of 64
135  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
136  * the next kmem_cache_size greater than or equal to it must be a
137  * multiple of 64.
138  */
139 static const int kmem_alloc_sizes[] = {
140 	1 * 8,
141 	2 * 8,
142 	3 * 8,
143 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
144 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
145 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
146 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
147 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
148 	P2ALIGN(8192 / 7, 64),
149 	P2ALIGN(8192 / 6, 64),
150 	P2ALIGN(8192 / 5, 64),
151 	P2ALIGN(8192 / 4, 64),
152 	P2ALIGN(8192 / 3, 64),
153 	P2ALIGN(8192 / 2, 64),
154 	P2ALIGN(8192 / 1, 64),
155 	4096 * 3,
156 	8192 * 2,
157 };
158 
159 #define	KMEM_MAXBUF	16384
160 
161 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
162 
163 static kmem_magtype_t kmem_magtype[] = {
164 	{ 1,	8,	3200,	65536	},
165 	{ 3,	16,	256,	32768	},
166 	{ 7,	32,	64,	16384	},
167 	{ 15,	64,	0,	8192	},
168 	{ 31,	64,	0,	4096	},
169 	{ 47,	64,	0,	2048	},
170 	{ 63,	64,	0,	1024	},
171 	{ 95,	64,	0,	512	},
172 	{ 143,	64,	0,	0	},
173 };
174 
175 static uint32_t kmem_reaping;
176 static uint32_t kmem_reaping_idspace;
177 
178 /*
179  * kmem tunables
180  */
181 clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
182 int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
183 pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
184 int kmem_panic = 1;		/* whether to panic on error */
185 int kmem_logging = 1;		/* kmem_log_enter() override */
186 uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
187 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
188 size_t kmem_content_log_size;	/* content log size [2% of memory] */
189 size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
190 size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
191 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
192 size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
193 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
194 int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
195 size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
196 size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
197 
198 #ifdef DEBUG
199 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
200 #else
201 int kmem_flags = 0;
202 #endif
203 int kmem_ready;
204 
205 static kmem_cache_t	*kmem_slab_cache;
206 static kmem_cache_t	*kmem_bufctl_cache;
207 static kmem_cache_t	*kmem_bufctl_audit_cache;
208 
209 static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
210 kmem_cache_t		kmem_null_cache;
211 
212 static taskq_t		*kmem_taskq;
213 static kmutex_t		kmem_flags_lock;
214 static vmem_t		*kmem_metadata_arena;
215 static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
216 static vmem_t		*kmem_cache_arena;
217 static vmem_t		*kmem_hash_arena;
218 static vmem_t		*kmem_log_arena;
219 static vmem_t		*kmem_oversize_arena;
220 static vmem_t		*kmem_va_arena;
221 static vmem_t		*kmem_default_arena;
222 static vmem_t		*kmem_firewall_va_arena;
223 static vmem_t		*kmem_firewall_arena;
224 
225 kmem_log_header_t	*kmem_transaction_log;
226 kmem_log_header_t	*kmem_content_log;
227 kmem_log_header_t	*kmem_failure_log;
228 kmem_log_header_t	*kmem_slab_log;
229 
230 static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
231 
232 #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
233 	if ((count) > 0) {						\
234 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
235 		pc_t *_e;						\
236 		/* memmove() the old entries down one notch */		\
237 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
238 			*_e = *(_e - 1);				\
239 		*_s = (uintptr_t)(caller);				\
240 	}
241 
242 #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
243 #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
244 #define	KMERR_DUPFREE	2	/* freed a buffer twice */
245 #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
246 #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
247 #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
248 #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
249 #define	KMERR_BADSIZE	7	/* alloc size != free size */
250 #define	KMERR_BADBASE	8	/* buffer base address wrong */
251 
252 struct {
253 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
254 	int		kmp_error;	/* type of kmem error */
255 	void		*kmp_buffer;	/* buffer that induced panic */
256 	void		*kmp_realbuf;	/* real start address for buffer */
257 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
258 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
259 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
260 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
261 } kmem_panic_info;
262 
263 
264 static void
265 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
266 {
267 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
268 	uint64_t *buf = buf_arg;
269 
270 	while (buf < bufend)
271 		*buf++ = pattern;
272 }
273 
274 static void *
275 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
276 {
277 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
278 	uint64_t *buf;
279 
280 	for (buf = buf_arg; buf < bufend; buf++)
281 		if (*buf != pattern)
282 			return (buf);
283 	return (NULL);
284 }
285 
286 static void *
287 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
288 {
289 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
290 	uint64_t *buf;
291 
292 	for (buf = buf_arg; buf < bufend; buf++) {
293 		if (*buf != old) {
294 			copy_pattern(old, buf_arg,
295 				(char *)buf - (char *)buf_arg);
296 			return (buf);
297 		}
298 		*buf = new;
299 	}
300 
301 	return (NULL);
302 }
303 
304 static void
305 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
306 {
307 	kmem_cache_t *cp;
308 
309 	mutex_enter(&kmem_cache_lock);
310 	for (cp = kmem_null_cache.cache_next; cp != &kmem_null_cache;
311 	    cp = cp->cache_next)
312 		if (tq != NULL)
313 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
314 			    tqflag);
315 		else
316 			func(cp);
317 	mutex_exit(&kmem_cache_lock);
318 }
319 
320 static void
321 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
322 {
323 	kmem_cache_t *cp;
324 
325 	mutex_enter(&kmem_cache_lock);
326 	for (cp = kmem_null_cache.cache_next; cp != &kmem_null_cache;
327 	    cp = cp->cache_next) {
328 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
329 			continue;
330 		if (tq != NULL)
331 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
332 			    tqflag);
333 		else
334 			func(cp);
335 	}
336 	mutex_exit(&kmem_cache_lock);
337 }
338 
339 /*
340  * Debugging support.  Given a buffer address, find its slab.
341  */
342 static kmem_slab_t *
343 kmem_findslab(kmem_cache_t *cp, void *buf)
344 {
345 	kmem_slab_t *sp;
346 
347 	mutex_enter(&cp->cache_lock);
348 	for (sp = cp->cache_nullslab.slab_next;
349 	    sp != &cp->cache_nullslab; sp = sp->slab_next) {
350 		if (KMEM_SLAB_MEMBER(sp, buf)) {
351 			mutex_exit(&cp->cache_lock);
352 			return (sp);
353 		}
354 	}
355 	mutex_exit(&cp->cache_lock);
356 
357 	return (NULL);
358 }
359 
360 static void
361 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
362 {
363 	kmem_buftag_t *btp = NULL;
364 	kmem_bufctl_t *bcp = NULL;
365 	kmem_cache_t *cp = cparg;
366 	kmem_slab_t *sp;
367 	uint64_t *off;
368 	void *buf = bufarg;
369 
370 	kmem_logging = 0;	/* stop logging when a bad thing happens */
371 
372 	kmem_panic_info.kmp_timestamp = gethrtime();
373 
374 	sp = kmem_findslab(cp, buf);
375 	if (sp == NULL) {
376 		for (cp = kmem_null_cache.cache_prev; cp != &kmem_null_cache;
377 		    cp = cp->cache_prev) {
378 			if ((sp = kmem_findslab(cp, buf)) != NULL)
379 				break;
380 		}
381 	}
382 
383 	if (sp == NULL) {
384 		cp = NULL;
385 		error = KMERR_BADADDR;
386 	} else {
387 		if (cp != cparg)
388 			error = KMERR_BADCACHE;
389 		else
390 			buf = (char *)bufarg - ((uintptr_t)bufarg -
391 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
392 		if (buf != bufarg)
393 			error = KMERR_BADBASE;
394 		if (cp->cache_flags & KMF_BUFTAG)
395 			btp = KMEM_BUFTAG(cp, buf);
396 		if (cp->cache_flags & KMF_HASH) {
397 			mutex_enter(&cp->cache_lock);
398 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
399 				if (bcp->bc_addr == buf)
400 					break;
401 			mutex_exit(&cp->cache_lock);
402 			if (bcp == NULL && btp != NULL)
403 				bcp = btp->bt_bufctl;
404 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
405 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
406 			    bcp->bc_addr != buf) {
407 				error = KMERR_BADBUFCTL;
408 				bcp = NULL;
409 			}
410 		}
411 	}
412 
413 	kmem_panic_info.kmp_error = error;
414 	kmem_panic_info.kmp_buffer = bufarg;
415 	kmem_panic_info.kmp_realbuf = buf;
416 	kmem_panic_info.kmp_cache = cparg;
417 	kmem_panic_info.kmp_realcache = cp;
418 	kmem_panic_info.kmp_slab = sp;
419 	kmem_panic_info.kmp_bufctl = bcp;
420 
421 	printf("kernel memory allocator: ");
422 
423 	switch (error) {
424 
425 	case KMERR_MODIFIED:
426 		printf("buffer modified after being freed\n");
427 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
428 		if (off == NULL)	/* shouldn't happen */
429 			off = buf;
430 		printf("modification occurred at offset 0x%lx "
431 		    "(0x%llx replaced by 0x%llx)\n",
432 		    (uintptr_t)off - (uintptr_t)buf,
433 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
434 		break;
435 
436 	case KMERR_REDZONE:
437 		printf("redzone violation: write past end of buffer\n");
438 		break;
439 
440 	case KMERR_BADADDR:
441 		printf("invalid free: buffer not in cache\n");
442 		break;
443 
444 	case KMERR_DUPFREE:
445 		printf("duplicate free: buffer freed twice\n");
446 		break;
447 
448 	case KMERR_BADBUFTAG:
449 		printf("boundary tag corrupted\n");
450 		printf("bcp ^ bxstat = %lx, should be %lx\n",
451 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
452 		    KMEM_BUFTAG_FREE);
453 		break;
454 
455 	case KMERR_BADBUFCTL:
456 		printf("bufctl corrupted\n");
457 		break;
458 
459 	case KMERR_BADCACHE:
460 		printf("buffer freed to wrong cache\n");
461 		printf("buffer was allocated from %s,\n", cp->cache_name);
462 		printf("caller attempting free to %s.\n", cparg->cache_name);
463 		break;
464 
465 	case KMERR_BADSIZE:
466 		printf("bad free: free size (%u) != alloc size (%u)\n",
467 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
468 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
469 		break;
470 
471 	case KMERR_BADBASE:
472 		printf("bad free: free address (%p) != alloc address (%p)\n",
473 		    bufarg, buf);
474 		break;
475 	}
476 
477 	printf("buffer=%p  bufctl=%p  cache: %s\n",
478 	    bufarg, (void *)bcp, cparg->cache_name);
479 
480 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
481 	    error != KMERR_BADBUFCTL) {
482 		int d;
483 		timestruc_t ts;
484 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
485 
486 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
487 		printf("previous transaction on buffer %p:\n", buf);
488 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
489 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
490 		    (void *)sp, cp->cache_name);
491 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
492 			ulong_t off;
493 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
494 			printf("%s+%lx\n", sym ? sym : "?", off);
495 		}
496 	}
497 	if (kmem_panic > 0)
498 		panic("kernel heap corruption detected");
499 	if (kmem_panic == 0)
500 		debug_enter(NULL);
501 	kmem_logging = 1;	/* resume logging */
502 }
503 
504 static kmem_log_header_t *
505 kmem_log_init(size_t logsize)
506 {
507 	kmem_log_header_t *lhp;
508 	int nchunks = 4 * max_ncpus;
509 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
510 	int i;
511 
512 	/*
513 	 * Make sure that lhp->lh_cpu[] is nicely aligned
514 	 * to prevent false sharing of cache lines.
515 	 */
516 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
517 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
518 	    NULL, NULL, VM_SLEEP);
519 	bzero(lhp, lhsize);
520 
521 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
522 	lhp->lh_nchunks = nchunks;
523 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
524 	lhp->lh_base = vmem_alloc(kmem_log_arena,
525 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
526 	lhp->lh_free = vmem_alloc(kmem_log_arena,
527 	    nchunks * sizeof (int), VM_SLEEP);
528 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
529 
530 	for (i = 0; i < max_ncpus; i++) {
531 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
532 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
533 		clhp->clh_chunk = i;
534 	}
535 
536 	for (i = max_ncpus; i < nchunks; i++)
537 		lhp->lh_free[i] = i;
538 
539 	lhp->lh_head = max_ncpus;
540 	lhp->lh_tail = 0;
541 
542 	return (lhp);
543 }
544 
545 static void *
546 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
547 {
548 	void *logspace;
549 	kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
550 
551 	if (lhp == NULL || kmem_logging == 0 || panicstr)
552 		return (NULL);
553 
554 	mutex_enter(&clhp->clh_lock);
555 	clhp->clh_hits++;
556 	if (size > clhp->clh_avail) {
557 		mutex_enter(&lhp->lh_lock);
558 		lhp->lh_hits++;
559 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
560 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
561 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
562 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
563 		clhp->clh_current = lhp->lh_base +
564 			clhp->clh_chunk * lhp->lh_chunksize;
565 		clhp->clh_avail = lhp->lh_chunksize;
566 		if (size > lhp->lh_chunksize)
567 			size = lhp->lh_chunksize;
568 		mutex_exit(&lhp->lh_lock);
569 	}
570 	logspace = clhp->clh_current;
571 	clhp->clh_current += size;
572 	clhp->clh_avail -= size;
573 	bcopy(data, logspace, size);
574 	mutex_exit(&clhp->clh_lock);
575 	return (logspace);
576 }
577 
578 #define	KMEM_AUDIT(lp, cp, bcp)						\
579 {									\
580 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
581 	_bcp->bc_timestamp = gethrtime();				\
582 	_bcp->bc_thread = curthread;					\
583 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
584 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
585 }
586 
587 static void
588 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
589 	kmem_slab_t *sp, void *addr)
590 {
591 	kmem_bufctl_audit_t bca;
592 
593 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
594 	bca.bc_addr = addr;
595 	bca.bc_slab = sp;
596 	bca.bc_cache = cp;
597 	KMEM_AUDIT(lp, cp, &bca);
598 }
599 
600 /*
601  * Create a new slab for cache cp.
602  */
603 static kmem_slab_t *
604 kmem_slab_create(kmem_cache_t *cp, int kmflag)
605 {
606 	size_t slabsize = cp->cache_slabsize;
607 	size_t chunksize = cp->cache_chunksize;
608 	int cache_flags = cp->cache_flags;
609 	size_t color, chunks;
610 	char *buf, *slab;
611 	kmem_slab_t *sp;
612 	kmem_bufctl_t *bcp;
613 	vmem_t *vmp = cp->cache_arena;
614 
615 	color = cp->cache_color + cp->cache_align;
616 	if (color > cp->cache_maxcolor)
617 		color = cp->cache_mincolor;
618 	cp->cache_color = color;
619 
620 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
621 
622 	if (slab == NULL)
623 		goto vmem_alloc_failure;
624 
625 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
626 
627 	if (!(cp->cache_cflags & KMC_NOTOUCH))
628 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
629 
630 	if (cache_flags & KMF_HASH) {
631 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
632 			goto slab_alloc_failure;
633 		chunks = (slabsize - color) / chunksize;
634 	} else {
635 		sp = KMEM_SLAB(cp, slab);
636 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
637 	}
638 
639 	sp->slab_cache	= cp;
640 	sp->slab_head	= NULL;
641 	sp->slab_refcnt	= 0;
642 	sp->slab_base	= buf = slab + color;
643 	sp->slab_chunks	= chunks;
644 
645 	ASSERT(chunks > 0);
646 	while (chunks-- != 0) {
647 		if (cache_flags & KMF_HASH) {
648 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
649 			if (bcp == NULL)
650 				goto bufctl_alloc_failure;
651 			if (cache_flags & KMF_AUDIT) {
652 				kmem_bufctl_audit_t *bcap =
653 				    (kmem_bufctl_audit_t *)bcp;
654 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
655 				bcap->bc_cache = cp;
656 			}
657 			bcp->bc_addr = buf;
658 			bcp->bc_slab = sp;
659 		} else {
660 			bcp = KMEM_BUFCTL(cp, buf);
661 		}
662 		if (cache_flags & KMF_BUFTAG) {
663 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
664 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
665 			btp->bt_bufctl = bcp;
666 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
667 			if (cache_flags & KMF_DEADBEEF) {
668 				copy_pattern(KMEM_FREE_PATTERN, buf,
669 				    cp->cache_verify);
670 			}
671 		}
672 		bcp->bc_next = sp->slab_head;
673 		sp->slab_head = bcp;
674 		buf += chunksize;
675 	}
676 
677 	kmem_log_event(kmem_slab_log, cp, sp, slab);
678 
679 	return (sp);
680 
681 bufctl_alloc_failure:
682 
683 	while ((bcp = sp->slab_head) != NULL) {
684 		sp->slab_head = bcp->bc_next;
685 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
686 	}
687 	kmem_cache_free(kmem_slab_cache, sp);
688 
689 slab_alloc_failure:
690 
691 	vmem_free(vmp, slab, slabsize);
692 
693 vmem_alloc_failure:
694 
695 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
696 	atomic_add_64(&cp->cache_alloc_fail, 1);
697 
698 	return (NULL);
699 }
700 
701 /*
702  * Destroy a slab.
703  */
704 static void
705 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
706 {
707 	vmem_t *vmp = cp->cache_arena;
708 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
709 
710 	if (cp->cache_flags & KMF_HASH) {
711 		kmem_bufctl_t *bcp;
712 		while ((bcp = sp->slab_head) != NULL) {
713 			sp->slab_head = bcp->bc_next;
714 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
715 		}
716 		kmem_cache_free(kmem_slab_cache, sp);
717 	}
718 	vmem_free(vmp, slab, cp->cache_slabsize);
719 }
720 
721 /*
722  * Allocate a raw (unconstructed) buffer from cp's slab layer.
723  */
724 static void *
725 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
726 {
727 	kmem_bufctl_t *bcp, **hash_bucket;
728 	kmem_slab_t *sp;
729 	void *buf;
730 
731 	mutex_enter(&cp->cache_lock);
732 	cp->cache_slab_alloc++;
733 	sp = cp->cache_freelist;
734 	ASSERT(sp->slab_cache == cp);
735 	if (sp->slab_head == NULL) {
736 		/*
737 		 * The freelist is empty.  Create a new slab.
738 		 */
739 		mutex_exit(&cp->cache_lock);
740 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL)
741 			return (NULL);
742 		mutex_enter(&cp->cache_lock);
743 		cp->cache_slab_create++;
744 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
745 			cp->cache_bufmax = cp->cache_buftotal;
746 		sp->slab_next = cp->cache_freelist;
747 		sp->slab_prev = cp->cache_freelist->slab_prev;
748 		sp->slab_next->slab_prev = sp;
749 		sp->slab_prev->slab_next = sp;
750 		cp->cache_freelist = sp;
751 	}
752 
753 	sp->slab_refcnt++;
754 	ASSERT(sp->slab_refcnt <= sp->slab_chunks);
755 
756 	/*
757 	 * If we're taking the last buffer in the slab,
758 	 * remove the slab from the cache's freelist.
759 	 */
760 	bcp = sp->slab_head;
761 	if ((sp->slab_head = bcp->bc_next) == NULL) {
762 		cp->cache_freelist = sp->slab_next;
763 		ASSERT(sp->slab_refcnt == sp->slab_chunks);
764 	}
765 
766 	if (cp->cache_flags & KMF_HASH) {
767 		/*
768 		 * Add buffer to allocated-address hash table.
769 		 */
770 		buf = bcp->bc_addr;
771 		hash_bucket = KMEM_HASH(cp, buf);
772 		bcp->bc_next = *hash_bucket;
773 		*hash_bucket = bcp;
774 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
775 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
776 		}
777 	} else {
778 		buf = KMEM_BUF(cp, bcp);
779 	}
780 
781 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
782 
783 	mutex_exit(&cp->cache_lock);
784 
785 	return (buf);
786 }
787 
788 /*
789  * Free a raw (unconstructed) buffer to cp's slab layer.
790  */
791 static void
792 kmem_slab_free(kmem_cache_t *cp, void *buf)
793 {
794 	kmem_slab_t *sp;
795 	kmem_bufctl_t *bcp, **prev_bcpp;
796 
797 	ASSERT(buf != NULL);
798 
799 	mutex_enter(&cp->cache_lock);
800 	cp->cache_slab_free++;
801 
802 	if (cp->cache_flags & KMF_HASH) {
803 		/*
804 		 * Look up buffer in allocated-address hash table.
805 		 */
806 		prev_bcpp = KMEM_HASH(cp, buf);
807 		while ((bcp = *prev_bcpp) != NULL) {
808 			if (bcp->bc_addr == buf) {
809 				*prev_bcpp = bcp->bc_next;
810 				sp = bcp->bc_slab;
811 				break;
812 			}
813 			cp->cache_lookup_depth++;
814 			prev_bcpp = &bcp->bc_next;
815 		}
816 	} else {
817 		bcp = KMEM_BUFCTL(cp, buf);
818 		sp = KMEM_SLAB(cp, buf);
819 	}
820 
821 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
822 		mutex_exit(&cp->cache_lock);
823 		kmem_error(KMERR_BADADDR, cp, buf);
824 		return;
825 	}
826 
827 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
828 		if (cp->cache_flags & KMF_CONTENTS)
829 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
830 			    kmem_log_enter(kmem_content_log, buf,
831 				cp->cache_contents);
832 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
833 	}
834 
835 	/*
836 	 * If this slab isn't currently on the freelist, put it there.
837 	 */
838 	if (sp->slab_head == NULL) {
839 		ASSERT(sp->slab_refcnt == sp->slab_chunks);
840 		ASSERT(cp->cache_freelist != sp);
841 		sp->slab_next->slab_prev = sp->slab_prev;
842 		sp->slab_prev->slab_next = sp->slab_next;
843 		sp->slab_next = cp->cache_freelist;
844 		sp->slab_prev = cp->cache_freelist->slab_prev;
845 		sp->slab_next->slab_prev = sp;
846 		sp->slab_prev->slab_next = sp;
847 		cp->cache_freelist = sp;
848 	}
849 
850 	bcp->bc_next = sp->slab_head;
851 	sp->slab_head = bcp;
852 
853 	ASSERT(sp->slab_refcnt >= 1);
854 	if (--sp->slab_refcnt == 0) {
855 		/*
856 		 * There are no outstanding allocations from this slab,
857 		 * so we can reclaim the memory.
858 		 */
859 		sp->slab_next->slab_prev = sp->slab_prev;
860 		sp->slab_prev->slab_next = sp->slab_next;
861 		if (sp == cp->cache_freelist)
862 			cp->cache_freelist = sp->slab_next;
863 		cp->cache_slab_destroy++;
864 		cp->cache_buftotal -= sp->slab_chunks;
865 		mutex_exit(&cp->cache_lock);
866 		kmem_slab_destroy(cp, sp);
867 		return;
868 	}
869 	mutex_exit(&cp->cache_lock);
870 }
871 
872 static int
873 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
874     caddr_t caller)
875 {
876 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
877 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
878 	uint32_t mtbf;
879 
880 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
881 		kmem_error(KMERR_BADBUFTAG, cp, buf);
882 		return (-1);
883 	}
884 
885 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
886 
887 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
888 		kmem_error(KMERR_BADBUFCTL, cp, buf);
889 		return (-1);
890 	}
891 
892 	if (cp->cache_flags & KMF_DEADBEEF) {
893 		if (!construct && (cp->cache_flags & KMF_LITE)) {
894 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
895 				kmem_error(KMERR_MODIFIED, cp, buf);
896 				return (-1);
897 			}
898 			if (cp->cache_constructor != NULL)
899 				*(uint64_t *)buf = btp->bt_redzone;
900 			else
901 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
902 		} else {
903 			construct = 1;
904 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
905 			    KMEM_UNINITIALIZED_PATTERN, buf,
906 			    cp->cache_verify)) {
907 				kmem_error(KMERR_MODIFIED, cp, buf);
908 				return (-1);
909 			}
910 		}
911 	}
912 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
913 
914 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
915 	    gethrtime() % mtbf == 0 &&
916 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
917 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
918 		if (!construct && cp->cache_destructor != NULL)
919 			cp->cache_destructor(buf, cp->cache_private);
920 	} else {
921 		mtbf = 0;
922 	}
923 
924 	if (mtbf || (construct && cp->cache_constructor != NULL &&
925 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
926 		atomic_add_64(&cp->cache_alloc_fail, 1);
927 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
928 		if (cp->cache_flags & KMF_DEADBEEF)
929 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
930 		kmem_slab_free(cp, buf);
931 		return (-1);
932 	}
933 
934 	if (cp->cache_flags & KMF_AUDIT) {
935 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
936 	}
937 
938 	if ((cp->cache_flags & KMF_LITE) &&
939 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
940 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
941 	}
942 
943 	return (0);
944 }
945 
946 static int
947 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
948 {
949 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
950 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
951 	kmem_slab_t *sp;
952 
953 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
954 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
955 			kmem_error(KMERR_DUPFREE, cp, buf);
956 			return (-1);
957 		}
958 		sp = kmem_findslab(cp, buf);
959 		if (sp == NULL || sp->slab_cache != cp)
960 			kmem_error(KMERR_BADADDR, cp, buf);
961 		else
962 			kmem_error(KMERR_REDZONE, cp, buf);
963 		return (-1);
964 	}
965 
966 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
967 
968 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
969 		kmem_error(KMERR_BADBUFCTL, cp, buf);
970 		return (-1);
971 	}
972 
973 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
974 		kmem_error(KMERR_REDZONE, cp, buf);
975 		return (-1);
976 	}
977 
978 	if (cp->cache_flags & KMF_AUDIT) {
979 		if (cp->cache_flags & KMF_CONTENTS)
980 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
981 			    buf, cp->cache_contents);
982 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
983 	}
984 
985 	if ((cp->cache_flags & KMF_LITE) &&
986 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
987 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
988 	}
989 
990 	if (cp->cache_flags & KMF_DEADBEEF) {
991 		if (cp->cache_flags & KMF_LITE)
992 			btp->bt_redzone = *(uint64_t *)buf;
993 		else if (cp->cache_destructor != NULL)
994 			cp->cache_destructor(buf, cp->cache_private);
995 
996 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
997 	}
998 
999 	return (0);
1000 }
1001 
1002 /*
1003  * Free each object in magazine mp to cp's slab layer, and free mp itself.
1004  */
1005 static void
1006 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
1007 {
1008 	int round;
1009 
1010 	ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread));
1011 
1012 	for (round = 0; round < nrounds; round++) {
1013 		void *buf = mp->mag_round[round];
1014 
1015 		if (cp->cache_flags & KMF_DEADBEEF) {
1016 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
1017 			    cp->cache_verify) != NULL) {
1018 				kmem_error(KMERR_MODIFIED, cp, buf);
1019 				continue;
1020 			}
1021 			if ((cp->cache_flags & KMF_LITE) &&
1022 			    cp->cache_destructor != NULL) {
1023 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1024 				*(uint64_t *)buf = btp->bt_redzone;
1025 				cp->cache_destructor(buf, cp->cache_private);
1026 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
1027 			}
1028 		} else if (cp->cache_destructor != NULL) {
1029 			cp->cache_destructor(buf, cp->cache_private);
1030 		}
1031 
1032 		kmem_slab_free(cp, buf);
1033 	}
1034 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
1035 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
1036 }
1037 
1038 /*
1039  * Allocate a magazine from the depot.
1040  */
1041 static kmem_magazine_t *
1042 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
1043 {
1044 	kmem_magazine_t *mp;
1045 
1046 	/*
1047 	 * If we can't get the depot lock without contention,
1048 	 * update our contention count.  We use the depot
1049 	 * contention rate to determine whether we need to
1050 	 * increase the magazine size for better scalability.
1051 	 */
1052 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
1053 		mutex_enter(&cp->cache_depot_lock);
1054 		cp->cache_depot_contention++;
1055 	}
1056 
1057 	if ((mp = mlp->ml_list) != NULL) {
1058 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
1059 		mlp->ml_list = mp->mag_next;
1060 		if (--mlp->ml_total < mlp->ml_min)
1061 			mlp->ml_min = mlp->ml_total;
1062 		mlp->ml_alloc++;
1063 	}
1064 
1065 	mutex_exit(&cp->cache_depot_lock);
1066 
1067 	return (mp);
1068 }
1069 
1070 /*
1071  * Free a magazine to the depot.
1072  */
1073 static void
1074 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
1075 {
1076 	mutex_enter(&cp->cache_depot_lock);
1077 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
1078 	mp->mag_next = mlp->ml_list;
1079 	mlp->ml_list = mp;
1080 	mlp->ml_total++;
1081 	mutex_exit(&cp->cache_depot_lock);
1082 }
1083 
1084 /*
1085  * Update the working set statistics for cp's depot.
1086  */
1087 static void
1088 kmem_depot_ws_update(kmem_cache_t *cp)
1089 {
1090 	mutex_enter(&cp->cache_depot_lock);
1091 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
1092 	cp->cache_full.ml_min = cp->cache_full.ml_total;
1093 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
1094 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
1095 	mutex_exit(&cp->cache_depot_lock);
1096 }
1097 
1098 /*
1099  * Reap all magazines that have fallen out of the depot's working set.
1100  */
1101 static void
1102 kmem_depot_ws_reap(kmem_cache_t *cp)
1103 {
1104 	long reap;
1105 	kmem_magazine_t *mp;
1106 
1107 	ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread));
1108 
1109 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
1110 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL)
1111 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
1112 
1113 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
1114 	while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL)
1115 		kmem_magazine_destroy(cp, mp, 0);
1116 }
1117 
1118 static void
1119 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
1120 {
1121 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
1122 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
1123 	ASSERT(ccp->cc_magsize > 0);
1124 
1125 	ccp->cc_ploaded = ccp->cc_loaded;
1126 	ccp->cc_prounds = ccp->cc_rounds;
1127 	ccp->cc_loaded = mp;
1128 	ccp->cc_rounds = rounds;
1129 }
1130 
1131 /*
1132  * Allocate a constructed object from cache cp.
1133  */
1134 void *
1135 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
1136 {
1137 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
1138 	kmem_magazine_t *fmp;
1139 	void *buf;
1140 
1141 	mutex_enter(&ccp->cc_lock);
1142 	for (;;) {
1143 		/*
1144 		 * If there's an object available in the current CPU's
1145 		 * loaded magazine, just take it and return.
1146 		 */
1147 		if (ccp->cc_rounds > 0) {
1148 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
1149 			ccp->cc_alloc++;
1150 			mutex_exit(&ccp->cc_lock);
1151 			if ((ccp->cc_flags & KMF_BUFTAG) &&
1152 			    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
1153 			    caller()) == -1) {
1154 				if (kmflag & KM_NOSLEEP)
1155 					return (NULL);
1156 				mutex_enter(&ccp->cc_lock);
1157 				continue;
1158 			}
1159 			return (buf);
1160 		}
1161 
1162 		/*
1163 		 * The loaded magazine is empty.  If the previously loaded
1164 		 * magazine was full, exchange them and try again.
1165 		 */
1166 		if (ccp->cc_prounds > 0) {
1167 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1168 			continue;
1169 		}
1170 
1171 		/*
1172 		 * If the magazine layer is disabled, break out now.
1173 		 */
1174 		if (ccp->cc_magsize == 0)
1175 			break;
1176 
1177 		/*
1178 		 * Try to get a full magazine from the depot.
1179 		 */
1180 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
1181 		if (fmp != NULL) {
1182 			if (ccp->cc_ploaded != NULL)
1183 				kmem_depot_free(cp, &cp->cache_empty,
1184 				    ccp->cc_ploaded);
1185 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
1186 			continue;
1187 		}
1188 
1189 		/*
1190 		 * There are no full magazines in the depot,
1191 		 * so fall through to the slab layer.
1192 		 */
1193 		break;
1194 	}
1195 	mutex_exit(&ccp->cc_lock);
1196 
1197 	/*
1198 	 * We couldn't allocate a constructed object from the magazine layer,
1199 	 * so get a raw buffer from the slab layer and apply its constructor.
1200 	 */
1201 	buf = kmem_slab_alloc(cp, kmflag);
1202 
1203 	if (buf == NULL)
1204 		return (NULL);
1205 
1206 	if (cp->cache_flags & KMF_BUFTAG) {
1207 		/*
1208 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
1209 		 */
1210 		if (kmem_cache_alloc_debug(cp, buf, kmflag, 1,
1211 		    caller()) == -1) {
1212 			if (kmflag & KM_NOSLEEP)
1213 				return (NULL);
1214 			/*
1215 			 * kmem_cache_alloc_debug() detected corruption
1216 			 * but didn't panic (kmem_panic <= 0).  Try again.
1217 			 */
1218 			return (kmem_cache_alloc(cp, kmflag));
1219 		}
1220 		return (buf);
1221 	}
1222 
1223 	if (cp->cache_constructor != NULL &&
1224 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
1225 		atomic_add_64(&cp->cache_alloc_fail, 1);
1226 		kmem_slab_free(cp, buf);
1227 		return (NULL);
1228 	}
1229 
1230 	return (buf);
1231 }
1232 
1233 /*
1234  * Free a constructed object to cache cp.
1235  */
1236 void
1237 kmem_cache_free(kmem_cache_t *cp, void *buf)
1238 {
1239 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
1240 	kmem_magazine_t *emp;
1241 	kmem_magtype_t *mtp;
1242 
1243 	if (ccp->cc_flags & KMF_BUFTAG)
1244 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
1245 			return;
1246 
1247 	mutex_enter(&ccp->cc_lock);
1248 	for (;;) {
1249 		/*
1250 		 * If there's a slot available in the current CPU's
1251 		 * loaded magazine, just put the object there and return.
1252 		 */
1253 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
1254 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
1255 			ccp->cc_free++;
1256 			mutex_exit(&ccp->cc_lock);
1257 			return;
1258 		}
1259 
1260 		/*
1261 		 * The loaded magazine is full.  If the previously loaded
1262 		 * magazine was empty, exchange them and try again.
1263 		 */
1264 		if (ccp->cc_prounds == 0) {
1265 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1266 			continue;
1267 		}
1268 
1269 		/*
1270 		 * If the magazine layer is disabled, break out now.
1271 		 */
1272 		if (ccp->cc_magsize == 0)
1273 			break;
1274 
1275 		/*
1276 		 * Try to get an empty magazine from the depot.
1277 		 */
1278 		emp = kmem_depot_alloc(cp, &cp->cache_empty);
1279 		if (emp != NULL) {
1280 			if (ccp->cc_ploaded != NULL)
1281 				kmem_depot_free(cp, &cp->cache_full,
1282 				    ccp->cc_ploaded);
1283 			kmem_cpu_reload(ccp, emp, 0);
1284 			continue;
1285 		}
1286 
1287 		/*
1288 		 * There are no empty magazines in the depot,
1289 		 * so try to allocate a new one.  We must drop all locks
1290 		 * across kmem_cache_alloc() because lower layers may
1291 		 * attempt to allocate from this cache.
1292 		 */
1293 		mtp = cp->cache_magtype;
1294 		mutex_exit(&ccp->cc_lock);
1295 		emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
1296 		mutex_enter(&ccp->cc_lock);
1297 
1298 		if (emp != NULL) {
1299 			/*
1300 			 * We successfully allocated an empty magazine.
1301 			 * However, we had to drop ccp->cc_lock to do it,
1302 			 * so the cache's magazine size may have changed.
1303 			 * If so, free the magazine and try again.
1304 			 */
1305 			if (ccp->cc_magsize != mtp->mt_magsize) {
1306 				mutex_exit(&ccp->cc_lock);
1307 				kmem_cache_free(mtp->mt_cache, emp);
1308 				mutex_enter(&ccp->cc_lock);
1309 				continue;
1310 			}
1311 
1312 			/*
1313 			 * We got a magazine of the right size.  Add it to
1314 			 * the depot and try the whole dance again.
1315 			 */
1316 			kmem_depot_free(cp, &cp->cache_empty, emp);
1317 			continue;
1318 		}
1319 
1320 		/*
1321 		 * We couldn't allocate an empty magazine,
1322 		 * so fall through to the slab layer.
1323 		 */
1324 		break;
1325 	}
1326 	mutex_exit(&ccp->cc_lock);
1327 
1328 	/*
1329 	 * We couldn't free our constructed object to the magazine layer,
1330 	 * so apply its destructor and free it to the slab layer.
1331 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
1332 	 * kmem_cache_free_debug() will have already applied the destructor.
1333 	 */
1334 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
1335 	    cp->cache_destructor != NULL) {
1336 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
1337 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1338 			*(uint64_t *)buf = btp->bt_redzone;
1339 			cp->cache_destructor(buf, cp->cache_private);
1340 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
1341 		} else {
1342 			cp->cache_destructor(buf, cp->cache_private);
1343 		}
1344 	}
1345 
1346 	kmem_slab_free(cp, buf);
1347 }
1348 
1349 void *
1350 kmem_zalloc(size_t size, int kmflag)
1351 {
1352 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
1353 	void *buf;
1354 
1355 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
1356 		kmem_cache_t *cp = kmem_alloc_table[index];
1357 		buf = kmem_cache_alloc(cp, kmflag);
1358 		if (buf != NULL) {
1359 			if (cp->cache_flags & KMF_BUFTAG) {
1360 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1361 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
1362 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
1363 
1364 				if (cp->cache_flags & KMF_LITE) {
1365 					KMEM_BUFTAG_LITE_ENTER(btp,
1366 					    kmem_lite_count, caller());
1367 				}
1368 			}
1369 			bzero(buf, size);
1370 		}
1371 	} else {
1372 		buf = kmem_alloc(size, kmflag);
1373 		if (buf != NULL)
1374 			bzero(buf, size);
1375 	}
1376 	return (buf);
1377 }
1378 
1379 void *
1380 kmem_alloc(size_t size, int kmflag)
1381 {
1382 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
1383 	void *buf;
1384 
1385 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
1386 		kmem_cache_t *cp = kmem_alloc_table[index];
1387 		buf = kmem_cache_alloc(cp, kmflag);
1388 		if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) {
1389 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1390 			((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
1391 			((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
1392 
1393 			if (cp->cache_flags & KMF_LITE) {
1394 				KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
1395 				    caller());
1396 			}
1397 		}
1398 		return (buf);
1399 	}
1400 	if (size == 0)
1401 		return (NULL);
1402 	buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS);
1403 	if (buf == NULL)
1404 		kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size);
1405 	return (buf);
1406 }
1407 
1408 void
1409 kmem_free(void *buf, size_t size)
1410 {
1411 	size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
1412 
1413 	if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
1414 		kmem_cache_t *cp = kmem_alloc_table[index];
1415 		if (cp->cache_flags & KMF_BUFTAG) {
1416 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1417 			uint32_t *ip = (uint32_t *)btp;
1418 			if (ip[1] != KMEM_SIZE_ENCODE(size)) {
1419 				if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
1420 					kmem_error(KMERR_DUPFREE, cp, buf);
1421 					return;
1422 				}
1423 				if (KMEM_SIZE_VALID(ip[1])) {
1424 					ip[0] = KMEM_SIZE_ENCODE(size);
1425 					kmem_error(KMERR_BADSIZE, cp, buf);
1426 				} else {
1427 					kmem_error(KMERR_REDZONE, cp, buf);
1428 				}
1429 				return;
1430 			}
1431 			if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
1432 				kmem_error(KMERR_REDZONE, cp, buf);
1433 				return;
1434 			}
1435 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
1436 			if (cp->cache_flags & KMF_LITE) {
1437 				KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
1438 				    caller());
1439 			}
1440 		}
1441 		kmem_cache_free(cp, buf);
1442 	} else {
1443 		if (buf == NULL && size == 0)
1444 			return;
1445 		vmem_free(kmem_oversize_arena, buf, size);
1446 	}
1447 }
1448 
1449 void *
1450 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
1451 {
1452 	size_t realsize = size + vmp->vm_quantum;
1453 	void *addr;
1454 
1455 	/*
1456 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
1457 	 * vm_quantum will cause integer wraparound.  Check for this, and
1458 	 * blow off the firewall page in this case.  Note that such a
1459 	 * giant allocation (the entire kernel address space) can never
1460 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
1461 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
1462 	 * corresponding check in kmem_firewall_va_free().
1463 	 */
1464 	if (realsize < size)
1465 		realsize = size;
1466 
1467 	/*
1468 	 * While boot still owns resource management, make sure that this
1469 	 * redzone virtual address allocation is properly accounted for in
1470 	 * OBPs "virtual-memory" "available" lists because we're
1471 	 * effectively claiming them for a red zone.  If we don't do this,
1472 	 * the available lists become too fragmented and too large for the
1473 	 * current boot/kernel memory list interface.
1474 	 */
1475 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
1476 
1477 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
1478 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
1479 
1480 	return (addr);
1481 }
1482 
1483 void
1484 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
1485 {
1486 	ASSERT((kvseg.s_base == NULL ?
1487 	    va_to_pfn((char *)addr + size) :
1488 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
1489 
1490 	vmem_free(vmp, addr, size + vmp->vm_quantum);
1491 }
1492 
1493 /*
1494  * Try to allocate at least `size' bytes of memory without sleeping or
1495  * panicking. Return actual allocated size in `asize'. If allocation failed,
1496  * try final allocation with sleep or panic allowed.
1497  */
1498 void *
1499 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
1500 {
1501 	void *p;
1502 
1503 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
1504 	do {
1505 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
1506 		if (p != NULL)
1507 			return (p);
1508 		*asize += KMEM_ALIGN;
1509 	} while (*asize <= PAGESIZE);
1510 
1511 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
1512 	return (kmem_alloc(*asize, kmflag));
1513 }
1514 
1515 /*
1516  * Reclaim all unused memory from a cache.
1517  */
1518 static void
1519 kmem_cache_reap(kmem_cache_t *cp)
1520 {
1521 	/*
1522 	 * Ask the cache's owner to free some memory if possible.
1523 	 * The idea is to handle things like the inode cache, which
1524 	 * typically sits on a bunch of memory that it doesn't truly
1525 	 * *need*.  Reclaim policy is entirely up to the owner; this
1526 	 * callback is just an advisory plea for help.
1527 	 */
1528 	if (cp->cache_reclaim != NULL)
1529 		cp->cache_reclaim(cp->cache_private);
1530 
1531 	kmem_depot_ws_reap(cp);
1532 }
1533 
1534 static void
1535 kmem_reap_timeout(void *flag_arg)
1536 {
1537 	uint32_t *flag = (uint32_t *)flag_arg;
1538 
1539 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
1540 	*flag = 0;
1541 }
1542 
1543 static void
1544 kmem_reap_done(void *flag)
1545 {
1546 	(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
1547 }
1548 
1549 static void
1550 kmem_reap_start(void *flag)
1551 {
1552 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
1553 
1554 	if (flag == &kmem_reaping) {
1555 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
1556 		/*
1557 		 * if we have segkp under heap, reap segkp cache.
1558 		 */
1559 		if (segkp_fromheap)
1560 			segkp_cache_free();
1561 	}
1562 	else
1563 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
1564 
1565 	/*
1566 	 * We use taskq_dispatch() to schedule a timeout to clear
1567 	 * the flag so that kmem_reap() becomes self-throttling:
1568 	 * we won't reap again until the current reap completes *and*
1569 	 * at least kmem_reap_interval ticks have elapsed.
1570 	 */
1571 	if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
1572 		kmem_reap_done(flag);
1573 }
1574 
1575 static void
1576 kmem_reap_common(void *flag_arg)
1577 {
1578 	uint32_t *flag = (uint32_t *)flag_arg;
1579 
1580 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
1581 	    cas32(flag, 0, 1) != 0)
1582 		return;
1583 
1584 	/*
1585 	 * It may not be kosher to do memory allocation when a reap is called
1586 	 * is called (for example, if vmem_populate() is in the call chain).
1587 	 * So we start the reap going with a TQ_NOALLOC dispatch.  If the
1588 	 * dispatch fails, we reset the flag, and the next reap will try again.
1589 	 */
1590 	if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
1591 		*flag = 0;
1592 }
1593 
1594 /*
1595  * Reclaim all unused memory from all caches.  Called from the VM system
1596  * when memory gets tight.
1597  */
1598 void
1599 kmem_reap(void)
1600 {
1601 	kmem_reap_common(&kmem_reaping);
1602 }
1603 
1604 /*
1605  * Reclaim all unused memory from identifier arenas, called when a vmem
1606  * arena not back by memory is exhausted.  Since reaping memory-backed caches
1607  * cannot help with identifier exhaustion, we avoid both a large amount of
1608  * work and unwanted side-effects from reclaim callbacks.
1609  */
1610 void
1611 kmem_reap_idspace(void)
1612 {
1613 	kmem_reap_common(&kmem_reaping_idspace);
1614 }
1615 
1616 /*
1617  * Purge all magazines from a cache and set its magazine limit to zero.
1618  * All calls are serialized by the kmem_taskq lock, except for the final
1619  * call from kmem_cache_destroy().
1620  */
1621 static void
1622 kmem_cache_magazine_purge(kmem_cache_t *cp)
1623 {
1624 	kmem_cpu_cache_t *ccp;
1625 	kmem_magazine_t *mp, *pmp;
1626 	int rounds, prounds, cpu_seqid;
1627 
1628 	ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread));
1629 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1630 
1631 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
1632 		ccp = &cp->cache_cpu[cpu_seqid];
1633 
1634 		mutex_enter(&ccp->cc_lock);
1635 		mp = ccp->cc_loaded;
1636 		pmp = ccp->cc_ploaded;
1637 		rounds = ccp->cc_rounds;
1638 		prounds = ccp->cc_prounds;
1639 		ccp->cc_loaded = NULL;
1640 		ccp->cc_ploaded = NULL;
1641 		ccp->cc_rounds = -1;
1642 		ccp->cc_prounds = -1;
1643 		ccp->cc_magsize = 0;
1644 		mutex_exit(&ccp->cc_lock);
1645 
1646 		if (mp)
1647 			kmem_magazine_destroy(cp, mp, rounds);
1648 		if (pmp)
1649 			kmem_magazine_destroy(cp, pmp, prounds);
1650 	}
1651 
1652 	/*
1653 	 * Updating the working set statistics twice in a row has the
1654 	 * effect of setting the working set size to zero, so everything
1655 	 * is eligible for reaping.
1656 	 */
1657 	kmem_depot_ws_update(cp);
1658 	kmem_depot_ws_update(cp);
1659 
1660 	kmem_depot_ws_reap(cp);
1661 }
1662 
1663 /*
1664  * Enable per-cpu magazines on a cache.
1665  */
1666 static void
1667 kmem_cache_magazine_enable(kmem_cache_t *cp)
1668 {
1669 	int cpu_seqid;
1670 
1671 	if (cp->cache_flags & KMF_NOMAGAZINE)
1672 		return;
1673 
1674 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
1675 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
1676 		mutex_enter(&ccp->cc_lock);
1677 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
1678 		mutex_exit(&ccp->cc_lock);
1679 	}
1680 
1681 }
1682 
1683 /*
1684  * Reap (almost) everything right now.  See kmem_cache_magazine_purge()
1685  * for explanation of the back-to-back kmem_depot_ws_update() calls.
1686  */
1687 void
1688 kmem_cache_reap_now(kmem_cache_t *cp)
1689 {
1690 	kmem_depot_ws_update(cp);
1691 	kmem_depot_ws_update(cp);
1692 
1693 	(void) taskq_dispatch(kmem_taskq,
1694 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
1695 	taskq_wait(kmem_taskq);
1696 }
1697 
1698 /*
1699  * Recompute a cache's magazine size.  The trade-off is that larger magazines
1700  * provide a higher transfer rate with the depot, while smaller magazines
1701  * reduce memory consumption.  Magazine resizing is an expensive operation;
1702  * it should not be done frequently.
1703  *
1704  * Changes to the magazine size are serialized by the kmem_taskq lock.
1705  *
1706  * Note: at present this only grows the magazine size.  It might be useful
1707  * to allow shrinkage too.
1708  */
1709 static void
1710 kmem_cache_magazine_resize(kmem_cache_t *cp)
1711 {
1712 	kmem_magtype_t *mtp = cp->cache_magtype;
1713 
1714 	ASSERT(taskq_member(kmem_taskq, curthread));
1715 
1716 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
1717 		kmem_cache_magazine_purge(cp);
1718 		mutex_enter(&cp->cache_depot_lock);
1719 		cp->cache_magtype = ++mtp;
1720 		cp->cache_depot_contention_prev =
1721 		    cp->cache_depot_contention + INT_MAX;
1722 		mutex_exit(&cp->cache_depot_lock);
1723 		kmem_cache_magazine_enable(cp);
1724 	}
1725 }
1726 
1727 /*
1728  * Rescale a cache's hash table, so that the table size is roughly the
1729  * cache size.  We want the average lookup time to be extremely small.
1730  */
1731 static void
1732 kmem_hash_rescale(kmem_cache_t *cp)
1733 {
1734 	kmem_bufctl_t **old_table, **new_table, *bcp;
1735 	size_t old_size, new_size, h;
1736 
1737 	ASSERT(taskq_member(kmem_taskq, curthread));
1738 
1739 	new_size = MAX(KMEM_HASH_INITIAL,
1740 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
1741 	old_size = cp->cache_hash_mask + 1;
1742 
1743 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
1744 		return;
1745 
1746 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
1747 	    VM_NOSLEEP);
1748 	if (new_table == NULL)
1749 		return;
1750 	bzero(new_table, new_size * sizeof (void *));
1751 
1752 	mutex_enter(&cp->cache_lock);
1753 
1754 	old_size = cp->cache_hash_mask + 1;
1755 	old_table = cp->cache_hash_table;
1756 
1757 	cp->cache_hash_mask = new_size - 1;
1758 	cp->cache_hash_table = new_table;
1759 	cp->cache_rescale++;
1760 
1761 	for (h = 0; h < old_size; h++) {
1762 		bcp = old_table[h];
1763 		while (bcp != NULL) {
1764 			void *addr = bcp->bc_addr;
1765 			kmem_bufctl_t *next_bcp = bcp->bc_next;
1766 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
1767 			bcp->bc_next = *hash_bucket;
1768 			*hash_bucket = bcp;
1769 			bcp = next_bcp;
1770 		}
1771 	}
1772 
1773 	mutex_exit(&cp->cache_lock);
1774 
1775 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
1776 }
1777 
1778 /*
1779  * Perform periodic maintenance on a cache: hash rescaling,
1780  * depot working-set update, and magazine resizing.
1781  */
1782 static void
1783 kmem_cache_update(kmem_cache_t *cp)
1784 {
1785 	int need_hash_rescale = 0;
1786 	int need_magazine_resize = 0;
1787 
1788 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
1789 
1790 	/*
1791 	 * If the cache has become much larger or smaller than its hash table,
1792 	 * fire off a request to rescale the hash table.
1793 	 */
1794 	mutex_enter(&cp->cache_lock);
1795 
1796 	if ((cp->cache_flags & KMF_HASH) &&
1797 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
1798 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
1799 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
1800 		need_hash_rescale = 1;
1801 
1802 	mutex_exit(&cp->cache_lock);
1803 
1804 	/*
1805 	 * Update the depot working set statistics.
1806 	 */
1807 	kmem_depot_ws_update(cp);
1808 
1809 	/*
1810 	 * If there's a lot of contention in the depot,
1811 	 * increase the magazine size.
1812 	 */
1813 	mutex_enter(&cp->cache_depot_lock);
1814 
1815 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
1816 	    (int)(cp->cache_depot_contention -
1817 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
1818 		need_magazine_resize = 1;
1819 
1820 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
1821 
1822 	mutex_exit(&cp->cache_depot_lock);
1823 
1824 	if (need_hash_rescale)
1825 		(void) taskq_dispatch(kmem_taskq,
1826 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
1827 
1828 	if (need_magazine_resize)
1829 		(void) taskq_dispatch(kmem_taskq,
1830 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
1831 }
1832 
1833 static void
1834 kmem_update_timeout(void *dummy)
1835 {
1836 	static void kmem_update(void *);
1837 
1838 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
1839 }
1840 
1841 static void
1842 kmem_update(void *dummy)
1843 {
1844 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
1845 
1846 	/*
1847 	 * We use taskq_dispatch() to reschedule the timeout so that
1848 	 * kmem_update() becomes self-throttling: it won't schedule
1849 	 * new tasks until all previous tasks have completed.
1850 	 */
1851 	if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
1852 		kmem_update_timeout(NULL);
1853 }
1854 
1855 static int
1856 kmem_cache_kstat_update(kstat_t *ksp, int rw)
1857 {
1858 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
1859 	kmem_cache_t *cp = ksp->ks_private;
1860 	kmem_slab_t *sp;
1861 	uint64_t cpu_buf_avail;
1862 	uint64_t buf_avail = 0;
1863 	int cpu_seqid;
1864 
1865 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
1866 
1867 	if (rw == KSTAT_WRITE)
1868 		return (EACCES);
1869 
1870 	mutex_enter(&cp->cache_lock);
1871 
1872 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
1873 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
1874 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
1875 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
1876 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
1877 
1878 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
1879 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
1880 
1881 		mutex_enter(&ccp->cc_lock);
1882 
1883 		cpu_buf_avail = 0;
1884 		if (ccp->cc_rounds > 0)
1885 			cpu_buf_avail += ccp->cc_rounds;
1886 		if (ccp->cc_prounds > 0)
1887 			cpu_buf_avail += ccp->cc_prounds;
1888 
1889 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
1890 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
1891 		buf_avail			+= cpu_buf_avail;
1892 
1893 		mutex_exit(&ccp->cc_lock);
1894 	}
1895 
1896 	mutex_enter(&cp->cache_depot_lock);
1897 
1898 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
1899 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
1900 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
1901 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
1902 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
1903 	kmcp->kmc_magazine_size.value.ui64	=
1904 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
1905 	    0 : cp->cache_magtype->mt_magsize;
1906 
1907 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
1908 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
1909 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
1910 
1911 	mutex_exit(&cp->cache_depot_lock);
1912 
1913 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
1914 	kmcp->kmc_align.value.ui64	= cp->cache_align;
1915 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
1916 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
1917 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
1918 	for (sp = cp->cache_freelist; sp != &cp->cache_nullslab;
1919 	    sp = sp->slab_next)
1920 		buf_avail += sp->slab_chunks - sp->slab_refcnt;
1921 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
1922 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
1923 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
1924 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
1925 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
1926 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
1927 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
1928 	    cp->cache_hash_mask + 1 : 0;
1929 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
1930 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
1931 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
1932 
1933 	mutex_exit(&cp->cache_lock);
1934 	return (0);
1935 }
1936 
1937 /*
1938  * Return a named statistic about a particular cache.
1939  * This shouldn't be called very often, so it's currently designed for
1940  * simplicity (leverages existing kstat support) rather than efficiency.
1941  */
1942 uint64_t
1943 kmem_cache_stat(kmem_cache_t *cp, char *name)
1944 {
1945 	int i;
1946 	kstat_t *ksp = cp->cache_kstat;
1947 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
1948 	uint64_t value = 0;
1949 
1950 	if (ksp != NULL) {
1951 		mutex_enter(&kmem_cache_kstat_lock);
1952 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
1953 		for (i = 0; i < ksp->ks_ndata; i++) {
1954 			if (strcmp(knp[i].name, name) == 0) {
1955 				value = knp[i].value.ui64;
1956 				break;
1957 			}
1958 		}
1959 		mutex_exit(&kmem_cache_kstat_lock);
1960 	}
1961 	return (value);
1962 }
1963 
1964 /*
1965  * Return an estimate of currently available kernel heap memory.
1966  * On 32-bit systems, physical memory may exceed virtual memory,
1967  * we just truncate the result at 1GB.
1968  */
1969 size_t
1970 kmem_avail(void)
1971 {
1972 	spgcnt_t rmem = availrmem - tune.t_minarmem;
1973 	spgcnt_t fmem = freemem - minfree;
1974 
1975 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
1976 	    1 << (30 - PAGESHIFT))));
1977 }
1978 
1979 /*
1980  * Return the maximum amount of memory that is (in theory) allocatable
1981  * from the heap. This may be used as an estimate only since there
1982  * is no guarentee this space will still be available when an allocation
1983  * request is made, nor that the space may be allocated in one big request
1984  * due to kernel heap fragmentation.
1985  */
1986 size_t
1987 kmem_maxavail(void)
1988 {
1989 	spgcnt_t pmem = availrmem - tune.t_minarmem;
1990 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
1991 
1992 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
1993 }
1994 
1995 /*
1996  * Indicate whether memory-intensive kmem debugging is enabled.
1997  */
1998 int
1999 kmem_debugging(void)
2000 {
2001 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
2002 }
2003 
2004 kmem_cache_t *
2005 kmem_cache_create(
2006 	char *name,		/* descriptive name for this cache */
2007 	size_t bufsize,		/* size of the objects it manages */
2008 	size_t align,		/* required object alignment */
2009 	int (*constructor)(void *, void *, int), /* object constructor */
2010 	void (*destructor)(void *, void *),	/* object destructor */
2011 	void (*reclaim)(void *), /* memory reclaim callback */
2012 	void *private,		/* pass-thru arg for constr/destr/reclaim */
2013 	vmem_t *vmp,		/* vmem source for slab allocation */
2014 	int cflags)		/* cache creation flags */
2015 {
2016 	int cpu_seqid;
2017 	size_t chunksize;
2018 	kmem_cache_t *cp, *cnext, *cprev;
2019 	kmem_magtype_t *mtp;
2020 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
2021 
2022 #ifdef	DEBUG
2023 	/*
2024 	 * Cache names should conform to the rules for valid C identifiers
2025 	 */
2026 	if (!strident_valid(name)) {
2027 		cmn_err(CE_CONT,
2028 		    "kmem_cache_create: '%s' is an invalid cache name\n"
2029 		    "cache names must conform to the rules for "
2030 		    "C identifiers\n", name);
2031 	}
2032 #endif	/* DEBUG */
2033 
2034 	if (vmp == NULL)
2035 		vmp = kmem_default_arena;
2036 
2037 	/*
2038 	 * If this kmem cache has an identifier vmem arena as its source, mark
2039 	 * it such to allow kmem_reap_idspace().
2040 	 */
2041 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
2042 	if (vmp->vm_cflags & VMC_IDENTIFIER)
2043 		cflags |= KMC_IDENTIFIER;
2044 
2045 	/*
2046 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
2047 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
2048 	 * false sharing of per-CPU data.
2049 	 */
2050 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
2051 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
2052 	bzero(cp, csize);
2053 
2054 	if (align == 0)
2055 		align = KMEM_ALIGN;
2056 
2057 	/*
2058 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
2059 	 * memory to hold bufctl information (because we can't safely
2060 	 * perform word loads and stores on it).
2061 	 */
2062 	if (align < KMEM_ALIGN)
2063 		cflags |= KMC_NOTOUCH;
2064 
2065 	if ((align & (align - 1)) != 0 || align > vmp->vm_quantum)
2066 		panic("kmem_cache_create: bad alignment %lu", align);
2067 
2068 	mutex_enter(&kmem_flags_lock);
2069 	if (kmem_flags & KMF_RANDOMIZE)
2070 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
2071 		    KMF_RANDOMIZE;
2072 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
2073 	mutex_exit(&kmem_flags_lock);
2074 
2075 	/*
2076 	 * Make sure all the various flags are reasonable.
2077 	 */
2078 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
2079 
2080 	if (cp->cache_flags & KMF_LITE) {
2081 		if (bufsize >= kmem_lite_minsize &&
2082 		    align <= kmem_lite_maxalign &&
2083 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
2084 			cp->cache_flags |= KMF_BUFTAG;
2085 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
2086 		} else {
2087 			cp->cache_flags &= ~KMF_DEBUG;
2088 		}
2089 	}
2090 
2091 	if (cp->cache_flags & KMF_DEADBEEF)
2092 		cp->cache_flags |= KMF_REDZONE;
2093 
2094 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
2095 		cp->cache_flags |= KMF_NOMAGAZINE;
2096 
2097 	if (cflags & KMC_NODEBUG)
2098 		cp->cache_flags &= ~KMF_DEBUG;
2099 
2100 	if (cflags & KMC_NOTOUCH)
2101 		cp->cache_flags &= ~KMF_TOUCH;
2102 
2103 	if (cflags & KMC_NOHASH)
2104 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
2105 
2106 	if (cflags & KMC_NOMAGAZINE)
2107 		cp->cache_flags |= KMF_NOMAGAZINE;
2108 
2109 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
2110 		cp->cache_flags |= KMF_REDZONE;
2111 
2112 	if (!(cp->cache_flags & KMF_AUDIT))
2113 		cp->cache_flags &= ~KMF_CONTENTS;
2114 
2115 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
2116 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
2117 		cp->cache_flags |= KMF_FIREWALL;
2118 
2119 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
2120 		cp->cache_flags &= ~KMF_FIREWALL;
2121 
2122 	if (cp->cache_flags & KMF_FIREWALL) {
2123 		cp->cache_flags &= ~KMF_BUFTAG;
2124 		cp->cache_flags |= KMF_NOMAGAZINE;
2125 		ASSERT(vmp == kmem_default_arena);
2126 		vmp = kmem_firewall_arena;
2127 	}
2128 
2129 	/*
2130 	 * Set cache properties.
2131 	 */
2132 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
2133 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN);
2134 	cp->cache_bufsize = bufsize;
2135 	cp->cache_align = align;
2136 	cp->cache_constructor = constructor;
2137 	cp->cache_destructor = destructor;
2138 	cp->cache_reclaim = reclaim;
2139 	cp->cache_private = private;
2140 	cp->cache_arena = vmp;
2141 	cp->cache_cflags = cflags;
2142 
2143 	/*
2144 	 * Determine the chunk size.
2145 	 */
2146 	chunksize = bufsize;
2147 
2148 	if (align >= KMEM_ALIGN) {
2149 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
2150 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
2151 	}
2152 
2153 	if (cp->cache_flags & KMF_BUFTAG) {
2154 		cp->cache_bufctl = chunksize;
2155 		cp->cache_buftag = chunksize;
2156 		if (cp->cache_flags & KMF_LITE)
2157 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
2158 		else
2159 			chunksize += sizeof (kmem_buftag_t);
2160 	}
2161 
2162 	if (cp->cache_flags & KMF_DEADBEEF) {
2163 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
2164 		if (cp->cache_flags & KMF_LITE)
2165 			cp->cache_verify = sizeof (uint64_t);
2166 	}
2167 
2168 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
2169 
2170 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
2171 
2172 	/*
2173 	 * Now that we know the chunk size, determine the optimal slab size.
2174 	 */
2175 	if (vmp == kmem_firewall_arena) {
2176 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
2177 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
2178 		cp->cache_maxcolor = cp->cache_mincolor;
2179 		cp->cache_flags |= KMF_HASH;
2180 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
2181 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
2182 	    !(cp->cache_flags & KMF_AUDIT) &&
2183 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
2184 		cp->cache_slabsize = vmp->vm_quantum;
2185 		cp->cache_mincolor = 0;
2186 		cp->cache_maxcolor =
2187 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
2188 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
2189 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
2190 	} else {
2191 		size_t chunks, bestfit, waste, slabsize;
2192 		size_t minwaste = LONG_MAX;
2193 
2194 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
2195 			slabsize = P2ROUNDUP(chunksize * chunks,
2196 			    vmp->vm_quantum);
2197 			chunks = slabsize / chunksize;
2198 			waste = (slabsize % chunksize) / chunks;
2199 			if (waste < minwaste) {
2200 				minwaste = waste;
2201 				bestfit = slabsize;
2202 			}
2203 		}
2204 		if (cflags & KMC_QCACHE)
2205 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
2206 		cp->cache_slabsize = bestfit;
2207 		cp->cache_mincolor = 0;
2208 		cp->cache_maxcolor = bestfit % chunksize;
2209 		cp->cache_flags |= KMF_HASH;
2210 	}
2211 
2212 	if (cp->cache_flags & KMF_HASH) {
2213 		ASSERT(!(cflags & KMC_NOHASH));
2214 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
2215 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
2216 	}
2217 
2218 	if (cp->cache_maxcolor >= vmp->vm_quantum)
2219 		cp->cache_maxcolor = vmp->vm_quantum - 1;
2220 
2221 	cp->cache_color = cp->cache_mincolor;
2222 
2223 	/*
2224 	 * Initialize the rest of the slab layer.
2225 	 */
2226 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
2227 
2228 	cp->cache_freelist = &cp->cache_nullslab;
2229 	cp->cache_nullslab.slab_cache = cp;
2230 	cp->cache_nullslab.slab_refcnt = -1;
2231 	cp->cache_nullslab.slab_next = &cp->cache_nullslab;
2232 	cp->cache_nullslab.slab_prev = &cp->cache_nullslab;
2233 
2234 	if (cp->cache_flags & KMF_HASH) {
2235 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
2236 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
2237 		bzero(cp->cache_hash_table,
2238 		    KMEM_HASH_INITIAL * sizeof (void *));
2239 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
2240 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
2241 	}
2242 
2243 	/*
2244 	 * Initialize the depot.
2245 	 */
2246 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
2247 
2248 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
2249 		continue;
2250 
2251 	cp->cache_magtype = mtp;
2252 
2253 	/*
2254 	 * Initialize the CPU layer.
2255 	 */
2256 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
2257 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2258 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
2259 		ccp->cc_flags = cp->cache_flags;
2260 		ccp->cc_rounds = -1;
2261 		ccp->cc_prounds = -1;
2262 	}
2263 
2264 	/*
2265 	 * Create the cache's kstats.
2266 	 */
2267 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
2268 	    "kmem_cache", KSTAT_TYPE_NAMED,
2269 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
2270 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
2271 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
2272 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
2273 		cp->cache_kstat->ks_private = cp;
2274 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
2275 		kstat_install(cp->cache_kstat);
2276 	}
2277 
2278 	/*
2279 	 * Add the cache to the global list.  This makes it visible
2280 	 * to kmem_update(), so the cache must be ready for business.
2281 	 */
2282 	mutex_enter(&kmem_cache_lock);
2283 	cp->cache_next = cnext = &kmem_null_cache;
2284 	cp->cache_prev = cprev = kmem_null_cache.cache_prev;
2285 	cnext->cache_prev = cp;
2286 	cprev->cache_next = cp;
2287 	mutex_exit(&kmem_cache_lock);
2288 
2289 	if (kmem_ready)
2290 		kmem_cache_magazine_enable(cp);
2291 
2292 	return (cp);
2293 }
2294 
2295 void
2296 kmem_cache_destroy(kmem_cache_t *cp)
2297 {
2298 	int cpu_seqid;
2299 
2300 	/*
2301 	 * Remove the cache from the global cache list so that no one else
2302 	 * can schedule tasks on its behalf, wait for any pending tasks to
2303 	 * complete, purge the cache, and then destroy it.
2304 	 */
2305 	mutex_enter(&kmem_cache_lock);
2306 	cp->cache_prev->cache_next = cp->cache_next;
2307 	cp->cache_next->cache_prev = cp->cache_prev;
2308 	cp->cache_prev = cp->cache_next = NULL;
2309 	mutex_exit(&kmem_cache_lock);
2310 
2311 	if (kmem_taskq != NULL)
2312 		taskq_wait(kmem_taskq);
2313 
2314 	kmem_cache_magazine_purge(cp);
2315 
2316 	mutex_enter(&cp->cache_lock);
2317 	if (cp->cache_buftotal != 0)
2318 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
2319 		    cp->cache_name, (void *)cp);
2320 	cp->cache_reclaim = NULL;
2321 	/*
2322 	 * The cache is now dead.  There should be no further activity.
2323 	 * We enforce this by setting land mines in the constructor and
2324 	 * destructor routines that induce a kernel text fault if invoked.
2325 	 */
2326 	cp->cache_constructor = (int (*)(void *, void *, int))1;
2327 	cp->cache_destructor = (void (*)(void *, void *))2;
2328 	mutex_exit(&cp->cache_lock);
2329 
2330 	kstat_delete(cp->cache_kstat);
2331 
2332 	if (cp->cache_hash_table != NULL)
2333 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
2334 		    (cp->cache_hash_mask + 1) * sizeof (void *));
2335 
2336 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
2337 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
2338 
2339 	mutex_destroy(&cp->cache_depot_lock);
2340 	mutex_destroy(&cp->cache_lock);
2341 
2342 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
2343 }
2344 
2345 /*ARGSUSED*/
2346 static int
2347 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
2348 {
2349 	ASSERT(MUTEX_HELD(&cpu_lock));
2350 	if (what == CPU_UNCONFIG) {
2351 		kmem_cache_applyall(kmem_cache_magazine_purge,
2352 		    kmem_taskq, TQ_SLEEP);
2353 		kmem_cache_applyall(kmem_cache_magazine_enable,
2354 		    kmem_taskq, TQ_SLEEP);
2355 	}
2356 	return (0);
2357 }
2358 
2359 static void
2360 kmem_cache_init(int pass, int use_large_pages)
2361 {
2362 	int i;
2363 	size_t size;
2364 	kmem_cache_t *cp;
2365 	kmem_magtype_t *mtp;
2366 	char name[KMEM_CACHE_NAMELEN + 1];
2367 
2368 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
2369 		mtp = &kmem_magtype[i];
2370 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
2371 		mtp->mt_cache = kmem_cache_create(name,
2372 		    (mtp->mt_magsize + 1) * sizeof (void *),
2373 		    mtp->mt_align, NULL, NULL, NULL, NULL,
2374 		    kmem_msb_arena, KMC_NOHASH);
2375 	}
2376 
2377 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
2378 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
2379 	    kmem_msb_arena, KMC_NOHASH);
2380 
2381 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
2382 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
2383 	    kmem_msb_arena, KMC_NOHASH);
2384 
2385 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
2386 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
2387 	    kmem_msb_arena, KMC_NOHASH);
2388 
2389 	if (pass == 2) {
2390 		kmem_va_arena = vmem_create("kmem_va",
2391 		    NULL, 0, PAGESIZE,
2392 		    vmem_alloc, vmem_free, heap_arena,
2393 		    8 * PAGESIZE, VM_SLEEP);
2394 
2395 		if (use_large_pages) {
2396 			kmem_default_arena = vmem_xcreate("kmem_default",
2397 			    NULL, 0, PAGESIZE,
2398 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
2399 			    0, VM_SLEEP);
2400 		} else {
2401 			kmem_default_arena = vmem_create("kmem_default",
2402 			    NULL, 0, PAGESIZE,
2403 			    segkmem_alloc, segkmem_free, kmem_va_arena,
2404 			    0, VM_SLEEP);
2405 		}
2406 	} else {
2407 		/*
2408 		 * During the first pass, the kmem_alloc_* caches
2409 		 * are treated as metadata.
2410 		 */
2411 		kmem_default_arena = kmem_msb_arena;
2412 	}
2413 
2414 	/*
2415 	 * Set up the default caches to back kmem_alloc()
2416 	 */
2417 	size = KMEM_ALIGN;
2418 	for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) {
2419 		size_t align = KMEM_ALIGN;
2420 		size_t cache_size = kmem_alloc_sizes[i];
2421 		/*
2422 		 * If they allocate a multiple of the coherency granularity,
2423 		 * they get a coherency-granularity-aligned address.
2424 		 */
2425 		if (IS_P2ALIGNED(cache_size, 64))
2426 			align = 64;
2427 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
2428 			align = PAGESIZE;
2429 		(void) sprintf(name, "kmem_alloc_%lu", cache_size);
2430 		cp = kmem_cache_create(name, cache_size, align,
2431 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
2432 		while (size <= cache_size) {
2433 			kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp;
2434 			size += KMEM_ALIGN;
2435 		}
2436 	}
2437 }
2438 
2439 void
2440 kmem_init(void)
2441 {
2442 	kmem_cache_t *cp;
2443 	int old_kmem_flags = kmem_flags;
2444 	int use_large_pages = 0;
2445 	size_t maxverify, minfirewall;
2446 
2447 	kstat_init();
2448 
2449 	/*
2450 	 * Small-memory systems (< 24 MB) can't handle kmem_flags overhead.
2451 	 */
2452 	if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY))
2453 		kmem_flags = 0;
2454 
2455 	/*
2456 	 * Don't do firewalled allocations if the heap is less than 1TB
2457 	 * (i.e. on a 32-bit kernel)
2458 	 * The resulting VM_NEXTFIT allocations would create too much
2459 	 * fragmentation in a small heap.
2460 	 */
2461 #if defined(_LP64)
2462 	maxverify = minfirewall = PAGESIZE / 2;
2463 #else
2464 	maxverify = minfirewall = ULONG_MAX;
2465 #endif
2466 
2467 	/* LINTED */
2468 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
2469 
2470 	kmem_null_cache.cache_next = &kmem_null_cache;
2471 	kmem_null_cache.cache_prev = &kmem_null_cache;
2472 
2473 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
2474 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
2475 	    VM_SLEEP | VMC_NO_QCACHE);
2476 
2477 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
2478 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
2479 	    VM_SLEEP);
2480 
2481 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
2482 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
2483 
2484 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
2485 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
2486 
2487 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
2488 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
2489 
2490 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
2491 	    NULL, 0, PAGESIZE,
2492 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
2493 	    0, VM_SLEEP);
2494 
2495 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
2496 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP);
2497 
2498 	/* temporary oversize arena for mod_read_system_file */
2499 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
2500 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
2501 
2502 	kmem_null_cache.cache_next = &kmem_null_cache;
2503 	kmem_null_cache.cache_prev = &kmem_null_cache;
2504 
2505 	kmem_reap_interval = 15 * hz;
2506 
2507 	/*
2508 	 * Read /etc/system.  This is a chicken-and-egg problem because
2509 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
2510 	 * needs to use the allocator.  The simplest solution is to create
2511 	 * all the standard kmem caches, read /etc/system, destroy all the
2512 	 * caches we just created, and then create them all again in light
2513 	 * of the (possibly) new kmem_flags and other kmem tunables.
2514 	 */
2515 	kmem_cache_init(1, 0);
2516 
2517 	mod_read_system_file(boothowto & RB_ASKNAME);
2518 
2519 	while ((cp = kmem_null_cache.cache_prev) != &kmem_null_cache)
2520 		kmem_cache_destroy(cp);
2521 
2522 	vmem_destroy(kmem_oversize_arena);
2523 
2524 	if (old_kmem_flags & KMF_STICKY)
2525 		kmem_flags = old_kmem_flags;
2526 
2527 	if (!(kmem_flags & KMF_AUDIT))
2528 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
2529 
2530 	if (kmem_maxverify == 0)
2531 		kmem_maxverify = maxverify;
2532 
2533 	if (kmem_minfirewall == 0)
2534 		kmem_minfirewall = minfirewall;
2535 
2536 	/*
2537 	 * give segkmem a chance to figure out if we are using large pages
2538 	 * for the kernel heap
2539 	 */
2540 	use_large_pages = segkmem_lpsetup();
2541 
2542 	/*
2543 	 * To protect against corruption, we keep the actual number of callers
2544 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
2545 	 * to 16, since the overhead for small buffers quickly gets out of
2546 	 * hand.
2547 	 *
2548 	 * The real limit would depend on the needs of the largest KMC_NOHASH
2549 	 * cache.
2550 	 */
2551 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
2552 	kmem_lite_pcs = kmem_lite_count;
2553 
2554 	/*
2555 	 * Normally, we firewall oversized allocations when possible, but
2556 	 * if we are using large pages for kernel memory, and we don't have
2557 	 * any non-LITE debugging flags set, we want to allocate oversized
2558 	 * buffers from large pages, and so skip the firewalling.
2559 	 */
2560 	if (use_large_pages &&
2561 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
2562 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
2563 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
2564 		    0, VM_SLEEP);
2565 	} else {
2566 		kmem_oversize_arena = vmem_create("kmem_oversize",
2567 		    NULL, 0, PAGESIZE,
2568 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
2569 		    kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP);
2570 	}
2571 
2572 	kmem_cache_init(2, use_large_pages);
2573 
2574 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
2575 		if (kmem_transaction_log_size == 0)
2576 			kmem_transaction_log_size = kmem_maxavail() / 50;
2577 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
2578 	}
2579 
2580 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
2581 		if (kmem_content_log_size == 0)
2582 			kmem_content_log_size = kmem_maxavail() / 50;
2583 		kmem_content_log = kmem_log_init(kmem_content_log_size);
2584 	}
2585 
2586 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
2587 
2588 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
2589 
2590 	/*
2591 	 * Initialize STREAMS message caches so allocb() is available.
2592 	 * This allows us to initialize the logging framework (cmn_err(9F),
2593 	 * strlog(9F), etc) so we can start recording messages.
2594 	 */
2595 	streams_msg_init();
2596 
2597 	/*
2598 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
2599 	 * can register their callbacks.
2600 	 */
2601 	zone_zsd_init();
2602 	log_init();
2603 	taskq_init();
2604 
2605 	/*
2606 	 * Warn about invalid or dangerous values of kmem_flags.
2607 	 * Always warn about unsupported values.
2608 	 */
2609 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
2610 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
2611 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
2612 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
2613 		    "See the Solaris Tunable Parameters Reference Manual.",
2614 		    kmem_flags);
2615 
2616 #ifdef DEBUG
2617 	if ((kmem_flags & KMF_DEBUG) == 0)
2618 		cmn_err(CE_NOTE, "kmem debugging disabled.");
2619 #else
2620 	/*
2621 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
2622 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
2623 	 * if KMF_AUDIT is set). We should warn the user about the performance
2624 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
2625 	 * isn't set (since that disables AUDIT).
2626 	 */
2627 	if (!(kmem_flags & KMF_LITE) &&
2628 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
2629 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
2630 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
2631 		    "and large memory overhead possible. See the Solaris "
2632 		    "Tunable Parameters Reference Manual.", kmem_flags);
2633 #endif /* not DEBUG */
2634 
2635 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
2636 
2637 	kmem_ready = 1;
2638 
2639 	/*
2640 	 * Initialize the platform-specific aligned/DMA memory allocator.
2641 	 */
2642 	ka_init();
2643 
2644 	/*
2645 	 * Initialize 32-bit ID cache.
2646 	 */
2647 	id32_init();
2648 }
2649 
2650 void
2651 kmem_thread_init(void)
2652 {
2653 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
2654 	    300, INT_MAX, TASKQ_PREPOPULATE);
2655 }
2656 
2657 void
2658 kmem_mp_init(void)
2659 {
2660 	mutex_enter(&cpu_lock);
2661 	register_cpu_setup_func(kmem_cpu_setup, NULL);
2662 	mutex_exit(&cpu_lock);
2663 
2664 	kmem_update_timeout(NULL);
2665 }
2666