1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2018, Joyent, Inc. 26 * Copyright 2020 Oxide Computer Company 27 */ 28 29 /* 30 * Kernel memory allocator, as described in the following two papers and a 31 * statement about the consolidator: 32 * 33 * Jeff Bonwick, 34 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 35 * Proceedings of the Summer 1994 Usenix Conference. 36 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 37 * 38 * Jeff Bonwick and Jonathan Adams, 39 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 40 * Arbitrary Resources. 41 * Proceedings of the 2001 Usenix Conference. 42 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 43 * 44 * kmem Slab Consolidator Big Theory Statement: 45 * 46 * 1. Motivation 47 * 48 * As stated in Bonwick94, slabs provide the following advantages over other 49 * allocation structures in terms of memory fragmentation: 50 * 51 * - Internal fragmentation (per-buffer wasted space) is minimal. 52 * - Severe external fragmentation (unused buffers on the free list) is 53 * unlikely. 54 * 55 * Segregating objects by size eliminates one source of external fragmentation, 56 * and according to Bonwick: 57 * 58 * The other reason that slabs reduce external fragmentation is that all 59 * objects in a slab are of the same type, so they have the same lifetime 60 * distribution. The resulting segregation of short-lived and long-lived 61 * objects at slab granularity reduces the likelihood of an entire page being 62 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 63 * 64 * While unlikely, severe external fragmentation remains possible. Clients that 65 * allocate both short- and long-lived objects from the same cache cannot 66 * anticipate the distribution of long-lived objects within the allocator's slab 67 * implementation. Even a small percentage of long-lived objects distributed 68 * randomly across many slabs can lead to a worst case scenario where the client 69 * frees the majority of its objects and the system gets back almost none of the 70 * slabs. Despite the client doing what it reasonably can to help the system 71 * reclaim memory, the allocator cannot shake free enough slabs because of 72 * lonely allocations stubbornly hanging on. Although the allocator is in a 73 * position to diagnose the fragmentation, there is nothing that the allocator 74 * by itself can do about it. It only takes a single allocated object to prevent 75 * an entire slab from being reclaimed, and any object handed out by 76 * kmem_cache_alloc() is by definition in the client's control. Conversely, 77 * although the client is in a position to move a long-lived object, it has no 78 * way of knowing if the object is causing fragmentation, and if so, where to 79 * move it. A solution necessarily requires further cooperation between the 80 * allocator and the client. 81 * 82 * 2. Move Callback 83 * 84 * The kmem slab consolidator therefore adds a move callback to the 85 * allocator/client interface, improving worst-case external fragmentation in 86 * kmem caches that supply a function to move objects from one memory location 87 * to another. In a situation of low memory kmem attempts to consolidate all of 88 * a cache's slabs at once; otherwise it works slowly to bring external 89 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 90 * thereby helping to avoid a low memory situation in the future. 91 * 92 * The callback has the following signature: 93 * 94 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 95 * 96 * It supplies the kmem client with two addresses: the allocated object that 97 * kmem wants to move and a buffer selected by kmem for the client to use as the 98 * copy destination. The callback is kmem's way of saying "Please get off of 99 * this buffer and use this one instead." kmem knows where it wants to move the 100 * object in order to best reduce fragmentation. All the client needs to know 101 * about the second argument (void *new) is that it is an allocated, constructed 102 * object ready to take the contents of the old object. When the move function 103 * is called, the system is likely to be low on memory, and the new object 104 * spares the client from having to worry about allocating memory for the 105 * requested move. The third argument supplies the size of the object, in case a 106 * single move function handles multiple caches whose objects differ only in 107 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 108 * user argument passed to the constructor, destructor, and reclaim functions is 109 * also passed to the move callback. 110 * 111 * 2.1 Setting the Move Callback 112 * 113 * The client sets the move callback after creating the cache and before 114 * allocating from it: 115 * 116 * object_cache = kmem_cache_create(...); 117 * kmem_cache_set_move(object_cache, object_move); 118 * 119 * 2.2 Move Callback Return Values 120 * 121 * Only the client knows about its own data and when is a good time to move it. 122 * The client is cooperating with kmem to return unused memory to the system, 123 * and kmem respectfully accepts this help at the client's convenience. When 124 * asked to move an object, the client can respond with any of the following: 125 * 126 * typedef enum kmem_cbrc { 127 * KMEM_CBRC_YES, 128 * KMEM_CBRC_NO, 129 * KMEM_CBRC_LATER, 130 * KMEM_CBRC_DONT_NEED, 131 * KMEM_CBRC_DONT_KNOW 132 * } kmem_cbrc_t; 133 * 134 * The client must not explicitly kmem_cache_free() either of the objects passed 135 * to the callback, since kmem wants to free them directly to the slab layer 136 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 137 * objects to free: 138 * 139 * YES: (Did it) The client moved the object, so kmem frees the old one. 140 * NO: (Never) The client refused, so kmem frees the new object (the 141 * unused copy destination). kmem also marks the slab of the old 142 * object so as not to bother the client with further callbacks for 143 * that object as long as the slab remains on the partial slab list. 144 * (The system won't be getting the slab back as long as the 145 * immovable object holds it hostage, so there's no point in moving 146 * any of its objects.) 147 * LATER: The client is using the object and cannot move it now, so kmem 148 * frees the new object (the unused copy destination). kmem still 149 * attempts to move other objects off the slab, since it expects to 150 * succeed in clearing the slab in a later callback. The client 151 * should use LATER instead of NO if the object is likely to become 152 * movable very soon. 153 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 154 * with the new object (the unused copy destination). This response 155 * is the client's opportunity to be a model citizen and give back as 156 * much as it can. 157 * DONT_KNOW: The client does not know about the object because 158 * a) the client has just allocated the object and not yet put it 159 * wherever it expects to find known objects 160 * b) the client has removed the object from wherever it expects to 161 * find known objects and is about to free it, or 162 * c) the client has freed the object. 163 * In all these cases (a, b, and c) kmem frees the new object (the 164 * unused copy destination). In the first case, the object is in 165 * use and the correct action is that for LATER; in the latter two 166 * cases, we know that the object is either freed or about to be 167 * freed, in which case it is either already in a magazine or about 168 * to be in one. In these cases, we know that the object will either 169 * be reallocated and reused, or it will end up in a full magazine 170 * that will be reaped (thereby liberating the slab). Because it 171 * is prohibitively expensive to differentiate these cases, and 172 * because the defrag code is executed when we're low on memory 173 * (thereby biasing the system to reclaim full magazines) we treat 174 * all DONT_KNOW cases as LATER and rely on cache reaping to 175 * generally clean up full magazines. While we take the same action 176 * for these cases, we maintain their semantic distinction: if 177 * defragmentation is not occurring, it is useful to know if this 178 * is due to objects in use (LATER) or objects in an unknown state 179 * of transition (DONT_KNOW). 180 * 181 * 2.3 Object States 182 * 183 * Neither kmem nor the client can be assumed to know the object's whereabouts 184 * at the time of the callback. An object belonging to a kmem cache may be in 185 * any of the following states: 186 * 187 * 1. Uninitialized on the slab 188 * 2. Allocated from the slab but not constructed (still uninitialized) 189 * 3. Allocated from the slab, constructed, but not yet ready for business 190 * (not in a valid state for the move callback) 191 * 4. In use (valid and known to the client) 192 * 5. About to be freed (no longer in a valid state for the move callback) 193 * 6. Freed to a magazine (still constructed) 194 * 7. Allocated from a magazine, not yet ready for business (not in a valid 195 * state for the move callback), and about to return to state #4 196 * 8. Deconstructed on a magazine that is about to be freed 197 * 9. Freed to the slab 198 * 199 * Since the move callback may be called at any time while the object is in any 200 * of the above states (except state #1), the client needs a safe way to 201 * determine whether or not it knows about the object. Specifically, the client 202 * needs to know whether or not the object is in state #4, the only state in 203 * which a move is valid. If the object is in any other state, the client should 204 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 205 * the object's fields. 206 * 207 * Note that although an object may be in state #4 when kmem initiates the move 208 * request, the object may no longer be in that state by the time kmem actually 209 * calls the move function. Not only does the client free objects 210 * asynchronously, kmem itself puts move requests on a queue where thay are 211 * pending until kmem processes them from another context. Also, objects freed 212 * to a magazine appear allocated from the point of view of the slab layer, so 213 * kmem may even initiate requests for objects in a state other than state #4. 214 * 215 * 2.3.1 Magazine Layer 216 * 217 * An important insight revealed by the states listed above is that the magazine 218 * layer is populated only by kmem_cache_free(). Magazines of constructed 219 * objects are never populated directly from the slab layer (which contains raw, 220 * unconstructed objects). Whenever an allocation request cannot be satisfied 221 * from the magazine layer, the magazines are bypassed and the request is 222 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 223 * the object constructor only when allocating from the slab layer, and only in 224 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 225 * the move callback. kmem does not preconstruct objects in anticipation of 226 * kmem_cache_alloc(). 227 * 228 * 2.3.2 Object Constructor and Destructor 229 * 230 * If the client supplies a destructor, it must be valid to call the destructor 231 * on a newly created object (immediately after the constructor). 232 * 233 * 2.4 Recognizing Known Objects 234 * 235 * There is a simple test to determine safely whether or not the client knows 236 * about a given object in the move callback. It relies on the fact that kmem 237 * guarantees that the object of the move callback has only been touched by the 238 * client itself or else by kmem. kmem does this by ensuring that none of the 239 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 240 * callback is pending. When the last object on a slab is freed, if there is a 241 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 242 * slabs on that list until all pending callbacks are completed. That way, 243 * clients can be certain that the object of a move callback is in one of the 244 * states listed above, making it possible to distinguish known objects (in 245 * state #4) using the two low order bits of any pointer member (with the 246 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 247 * platforms). 248 * 249 * The test works as long as the client always transitions objects from state #4 250 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 251 * order bit of the client-designated pointer member. Since kmem only writes 252 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 253 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 254 * guaranteed to set at least one of the two low order bits. Therefore, given an 255 * object with a back pointer to a 'container_t *o_container', the client can 256 * test 257 * 258 * container_t *container = object->o_container; 259 * if ((uintptr_t)container & 0x3) { 260 * return (KMEM_CBRC_DONT_KNOW); 261 * } 262 * 263 * Typically, an object will have a pointer to some structure with a list or 264 * hash where objects from the cache are kept while in use. Assuming that the 265 * client has some way of knowing that the container structure is valid and will 266 * not go away during the move, and assuming that the structure includes a lock 267 * to protect whatever collection is used, then the client would continue as 268 * follows: 269 * 270 * // Ensure that the container structure does not go away. 271 * if (container_hold(container) == 0) { 272 * return (KMEM_CBRC_DONT_KNOW); 273 * } 274 * mutex_enter(&container->c_objects_lock); 275 * if (container != object->o_container) { 276 * mutex_exit(&container->c_objects_lock); 277 * container_rele(container); 278 * return (KMEM_CBRC_DONT_KNOW); 279 * } 280 * 281 * At this point the client knows that the object cannot be freed as long as 282 * c_objects_lock is held. Note that after acquiring the lock, the client must 283 * recheck the o_container pointer in case the object was removed just before 284 * acquiring the lock. 285 * 286 * When the client is about to free an object, it must first remove that object 287 * from the list, hash, or other structure where it is kept. At that time, to 288 * mark the object so it can be distinguished from the remaining, known objects, 289 * the client sets the designated low order bit: 290 * 291 * mutex_enter(&container->c_objects_lock); 292 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 293 * list_remove(&container->c_objects, object); 294 * mutex_exit(&container->c_objects_lock); 295 * 296 * In the common case, the object is freed to the magazine layer, where it may 297 * be reused on a subsequent allocation without the overhead of calling the 298 * constructor. While in the magazine it appears allocated from the point of 299 * view of the slab layer, making it a candidate for the move callback. Most 300 * objects unrecognized by the client in the move callback fall into this 301 * category and are cheaply distinguished from known objects by the test 302 * described earlier. Because searching magazines is prohibitively expensive 303 * for kmem, clients that do not mark freed objects (and therefore return 304 * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation 305 * efficacy reduced. 306 * 307 * Invalidating the designated pointer member before freeing the object marks 308 * the object to be avoided in the callback, and conversely, assigning a valid 309 * value to the designated pointer member after allocating the object makes the 310 * object fair game for the callback: 311 * 312 * ... allocate object ... 313 * ... set any initial state not set by the constructor ... 314 * 315 * mutex_enter(&container->c_objects_lock); 316 * list_insert_tail(&container->c_objects, object); 317 * membar_producer(); 318 * object->o_container = container; 319 * mutex_exit(&container->c_objects_lock); 320 * 321 * Note that everything else must be valid before setting o_container makes the 322 * object fair game for the move callback. The membar_producer() call ensures 323 * that all the object's state is written to memory before setting the pointer 324 * that transitions the object from state #3 or #7 (allocated, constructed, not 325 * yet in use) to state #4 (in use, valid). That's important because the move 326 * function has to check the validity of the pointer before it can safely 327 * acquire the lock protecting the collection where it expects to find known 328 * objects. 329 * 330 * This method of distinguishing known objects observes the usual symmetry: 331 * invalidating the designated pointer is the first thing the client does before 332 * freeing the object, and setting the designated pointer is the last thing the 333 * client does after allocating the object. Of course, the client is not 334 * required to use this method. Fundamentally, how the client recognizes known 335 * objects is completely up to the client, but this method is recommended as an 336 * efficient and safe way to take advantage of the guarantees made by kmem. If 337 * the entire object is arbitrary data without any markable bits from a suitable 338 * pointer member, then the client must find some other method, such as 339 * searching a hash table of known objects. 340 * 341 * 2.5 Preventing Objects From Moving 342 * 343 * Besides a way to distinguish known objects, the other thing that the client 344 * needs is a strategy to ensure that an object will not move while the client 345 * is actively using it. The details of satisfying this requirement tend to be 346 * highly cache-specific. It might seem that the same rules that let a client 347 * remove an object safely should also decide when an object can be moved 348 * safely. However, any object state that makes a removal attempt invalid is 349 * likely to be long-lasting for objects that the client does not expect to 350 * remove. kmem knows nothing about the object state and is equally likely (from 351 * the client's point of view) to request a move for any object in the cache, 352 * whether prepared for removal or not. Even a low percentage of objects stuck 353 * in place by unremovability will defeat the consolidator if the stuck objects 354 * are the same long-lived allocations likely to hold slabs hostage. 355 * Fundamentally, the consolidator is not aimed at common cases. Severe external 356 * fragmentation is a worst case scenario manifested as sparsely allocated 357 * slabs, by definition a low percentage of the cache's objects. When deciding 358 * what makes an object movable, keep in mind the goal of the consolidator: to 359 * bring worst-case external fragmentation within the limits guaranteed for 360 * internal fragmentation. Removability is a poor criterion if it is likely to 361 * exclude more than an insignificant percentage of objects for long periods of 362 * time. 363 * 364 * A tricky general solution exists, and it has the advantage of letting you 365 * move any object at almost any moment, practically eliminating the likelihood 366 * that an object can hold a slab hostage. However, if there is a cache-specific 367 * way to ensure that an object is not actively in use in the vast majority of 368 * cases, a simpler solution that leverages this cache-specific knowledge is 369 * preferred. 370 * 371 * 2.5.1 Cache-Specific Solution 372 * 373 * As an example of a cache-specific solution, the ZFS znode cache takes 374 * advantage of the fact that the vast majority of znodes are only being 375 * referenced from the DNLC. (A typical case might be a few hundred in active 376 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 377 * client has established that it recognizes the znode and can access its fields 378 * safely (using the method described earlier), it then tests whether the znode 379 * is referenced by anything other than the DNLC. If so, it assumes that the 380 * znode may be in active use and is unsafe to move, so it drops its locks and 381 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 382 * else znodes are used, no change is needed to protect against the possibility 383 * of the znode moving. The disadvantage is that it remains possible for an 384 * application to hold a znode slab hostage with an open file descriptor. 385 * However, this case ought to be rare and the consolidator has a way to deal 386 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 387 * object, kmem eventually stops believing it and treats the slab as if the 388 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 389 * then focus on getting it off of the partial slab list by allocating rather 390 * than freeing all of its objects. (Either way of getting a slab off the 391 * free list reduces fragmentation.) 392 * 393 * 2.5.2 General Solution 394 * 395 * The general solution, on the other hand, requires an explicit hold everywhere 396 * the object is used to prevent it from moving. To keep the client locking 397 * strategy as uncomplicated as possible, kmem guarantees the simplifying 398 * assumption that move callbacks are sequential, even across multiple caches. 399 * Internally, a global queue processed by a single thread supports all caches 400 * implementing the callback function. No matter how many caches supply a move 401 * function, the consolidator never moves more than one object at a time, so the 402 * client does not have to worry about tricky lock ordering involving several 403 * related objects from different kmem caches. 404 * 405 * The general solution implements the explicit hold as a read-write lock, which 406 * allows multiple readers to access an object from the cache simultaneously 407 * while a single writer is excluded from moving it. A single rwlock for the 408 * entire cache would lock out all threads from using any of the cache's objects 409 * even though only a single object is being moved, so to reduce contention, 410 * the client can fan out the single rwlock into an array of rwlocks hashed by 411 * the object address, making it probable that moving one object will not 412 * prevent other threads from using a different object. The rwlock cannot be a 413 * member of the object itself, because the possibility of the object moving 414 * makes it unsafe to access any of the object's fields until the lock is 415 * acquired. 416 * 417 * Assuming a small, fixed number of locks, it's possible that multiple objects 418 * will hash to the same lock. A thread that needs to use multiple objects in 419 * the same function may acquire the same lock multiple times. Since rwlocks are 420 * reentrant for readers, and since there is never more than a single writer at 421 * a time (assuming that the client acquires the lock as a writer only when 422 * moving an object inside the callback), there would seem to be no problem. 423 * However, a client locking multiple objects in the same function must handle 424 * one case of potential deadlock: Assume that thread A needs to prevent both 425 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 426 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 427 * same lock, that thread A will acquire the lock for object 1 as a reader 428 * before thread B sets the lock's write-wanted bit, preventing thread A from 429 * reacquiring the lock for object 2 as a reader. Unable to make forward 430 * progress, thread A will never release the lock for object 1, resulting in 431 * deadlock. 432 * 433 * There are two ways of avoiding the deadlock just described. The first is to 434 * use rw_tryenter() rather than rw_enter() in the callback function when 435 * attempting to acquire the lock as a writer. If tryenter discovers that the 436 * same object (or another object hashed to the same lock) is already in use, it 437 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 438 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 439 * since it allows a thread to acquire the lock as a reader in spite of a 440 * waiting writer. This second approach insists on moving the object now, no 441 * matter how many readers the move function must wait for in order to do so, 442 * and could delay the completion of the callback indefinitely (blocking 443 * callbacks to other clients). In practice, a less insistent callback using 444 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 445 * little reason to use anything else. 446 * 447 * Avoiding deadlock is not the only problem that an implementation using an 448 * explicit hold needs to solve. Locking the object in the first place (to 449 * prevent it from moving) remains a problem, since the object could move 450 * between the time you obtain a pointer to the object and the time you acquire 451 * the rwlock hashed to that pointer value. Therefore the client needs to 452 * recheck the value of the pointer after acquiring the lock, drop the lock if 453 * the value has changed, and try again. This requires a level of indirection: 454 * something that points to the object rather than the object itself, that the 455 * client can access safely while attempting to acquire the lock. (The object 456 * itself cannot be referenced safely because it can move at any time.) 457 * The following lock-acquisition function takes whatever is safe to reference 458 * (arg), follows its pointer to the object (using function f), and tries as 459 * often as necessary to acquire the hashed lock and verify that the object 460 * still has not moved: 461 * 462 * object_t * 463 * object_hold(object_f f, void *arg) 464 * { 465 * object_t *op; 466 * 467 * op = f(arg); 468 * if (op == NULL) { 469 * return (NULL); 470 * } 471 * 472 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 473 * while (op != f(arg)) { 474 * rw_exit(OBJECT_RWLOCK(op)); 475 * op = f(arg); 476 * if (op == NULL) { 477 * break; 478 * } 479 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 480 * } 481 * 482 * return (op); 483 * } 484 * 485 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 486 * lock reacquisition loop, while necessary, almost never executes. The function 487 * pointer f (used to obtain the object pointer from arg) has the following type 488 * definition: 489 * 490 * typedef object_t *(*object_f)(void *arg); 491 * 492 * An object_f implementation is likely to be as simple as accessing a structure 493 * member: 494 * 495 * object_t * 496 * s_object(void *arg) 497 * { 498 * something_t *sp = arg; 499 * return (sp->s_object); 500 * } 501 * 502 * The flexibility of a function pointer allows the path to the object to be 503 * arbitrarily complex and also supports the notion that depending on where you 504 * are using the object, you may need to get it from someplace different. 505 * 506 * The function that releases the explicit hold is simpler because it does not 507 * have to worry about the object moving: 508 * 509 * void 510 * object_rele(object_t *op) 511 * { 512 * rw_exit(OBJECT_RWLOCK(op)); 513 * } 514 * 515 * The caller is spared these details so that obtaining and releasing an 516 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 517 * of object_hold() only needs to know that the returned object pointer is valid 518 * if not NULL and that the object will not move until released. 519 * 520 * Although object_hold() prevents an object from moving, it does not prevent it 521 * from being freed. The caller must take measures before calling object_hold() 522 * (afterwards is too late) to ensure that the held object cannot be freed. The 523 * caller must do so without accessing the unsafe object reference, so any lock 524 * or reference count used to ensure the continued existence of the object must 525 * live outside the object itself. 526 * 527 * Obtaining a new object is a special case where an explicit hold is impossible 528 * for the caller. Any function that returns a newly allocated object (either as 529 * a return value, or as an in-out paramter) must return it already held; after 530 * the caller gets it is too late, since the object cannot be safely accessed 531 * without the level of indirection described earlier. The following 532 * object_alloc() example uses the same code shown earlier to transition a new 533 * object into the state of being recognized (by the client) as a known object. 534 * The function must acquire the hold (rw_enter) before that state transition 535 * makes the object movable: 536 * 537 * static object_t * 538 * object_alloc(container_t *container) 539 * { 540 * object_t *object = kmem_cache_alloc(object_cache, 0); 541 * ... set any initial state not set by the constructor ... 542 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 543 * mutex_enter(&container->c_objects_lock); 544 * list_insert_tail(&container->c_objects, object); 545 * membar_producer(); 546 * object->o_container = container; 547 * mutex_exit(&container->c_objects_lock); 548 * return (object); 549 * } 550 * 551 * Functions that implicitly acquire an object hold (any function that calls 552 * object_alloc() to supply an object for the caller) need to be carefully noted 553 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 554 * prevent all objects hashed to the affected rwlocks from ever being moved. 555 * 556 * The pointer to a held object can be hashed to the holding rwlock even after 557 * the object has been freed. Although it is possible to release the hold 558 * after freeing the object, you may decide to release the hold implicitly in 559 * whatever function frees the object, so as to release the hold as soon as 560 * possible, and for the sake of symmetry with the function that implicitly 561 * acquires the hold when it allocates the object. Here, object_free() releases 562 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 563 * matching pair with object_hold(): 564 * 565 * void 566 * object_free(object_t *object) 567 * { 568 * container_t *container; 569 * 570 * ASSERT(object_held(object)); 571 * container = object->o_container; 572 * mutex_enter(&container->c_objects_lock); 573 * object->o_container = 574 * (void *)((uintptr_t)object->o_container | 0x1); 575 * list_remove(&container->c_objects, object); 576 * mutex_exit(&container->c_objects_lock); 577 * object_rele(object); 578 * kmem_cache_free(object_cache, object); 579 * } 580 * 581 * Note that object_free() cannot safely accept an object pointer as an argument 582 * unless the object is already held. Any function that calls object_free() 583 * needs to be carefully noted since it similarly forms a matching pair with 584 * object_hold(). 585 * 586 * To complete the picture, the following callback function implements the 587 * general solution by moving objects only if they are currently unheld: 588 * 589 * static kmem_cbrc_t 590 * object_move(void *buf, void *newbuf, size_t size, void *arg) 591 * { 592 * object_t *op = buf, *np = newbuf; 593 * container_t *container; 594 * 595 * container = op->o_container; 596 * if ((uintptr_t)container & 0x3) { 597 * return (KMEM_CBRC_DONT_KNOW); 598 * } 599 * 600 * // Ensure that the container structure does not go away. 601 * if (container_hold(container) == 0) { 602 * return (KMEM_CBRC_DONT_KNOW); 603 * } 604 * 605 * mutex_enter(&container->c_objects_lock); 606 * if (container != op->o_container) { 607 * mutex_exit(&container->c_objects_lock); 608 * container_rele(container); 609 * return (KMEM_CBRC_DONT_KNOW); 610 * } 611 * 612 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 613 * mutex_exit(&container->c_objects_lock); 614 * container_rele(container); 615 * return (KMEM_CBRC_LATER); 616 * } 617 * 618 * object_move_impl(op, np); // critical section 619 * rw_exit(OBJECT_RWLOCK(op)); 620 * 621 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 622 * list_link_replace(&op->o_link_node, &np->o_link_node); 623 * mutex_exit(&container->c_objects_lock); 624 * container_rele(container); 625 * return (KMEM_CBRC_YES); 626 * } 627 * 628 * Note that object_move() must invalidate the designated o_container pointer of 629 * the old object in the same way that object_free() does, since kmem will free 630 * the object in response to the KMEM_CBRC_YES return value. 631 * 632 * The lock order in object_move() differs from object_alloc(), which locks 633 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 634 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 635 * not a problem. Holding the lock on the object list in the example above 636 * through the entire callback not only prevents the object from going away, it 637 * also allows you to lock the list elsewhere and know that none of its elements 638 * will move during iteration. 639 * 640 * Adding an explicit hold everywhere an object from the cache is used is tricky 641 * and involves much more change to client code than a cache-specific solution 642 * that leverages existing state to decide whether or not an object is 643 * movable. However, this approach has the advantage that no object remains 644 * immovable for any significant length of time, making it extremely unlikely 645 * that long-lived allocations can continue holding slabs hostage; and it works 646 * for any cache. 647 * 648 * 3. Consolidator Implementation 649 * 650 * Once the client supplies a move function that a) recognizes known objects and 651 * b) avoids moving objects that are actively in use, the remaining work is up 652 * to the consolidator to decide which objects to move and when to issue 653 * callbacks. 654 * 655 * The consolidator relies on the fact that a cache's slabs are ordered by 656 * usage. Each slab has a fixed number of objects. Depending on the slab's 657 * "color" (the offset of the first object from the beginning of the slab; 658 * offsets are staggered to mitigate false sharing of cache lines) it is either 659 * the maximum number of objects per slab determined at cache creation time or 660 * else the number closest to the maximum that fits within the space remaining 661 * after the initial offset. A completely allocated slab may contribute some 662 * internal fragmentation (per-slab overhead) but no external fragmentation, so 663 * it is of no interest to the consolidator. At the other extreme, slabs whose 664 * objects have all been freed to the slab are released to the virtual memory 665 * (VM) subsystem (objects freed to magazines are still allocated as far as the 666 * slab is concerned). External fragmentation exists when there are slabs 667 * somewhere between these extremes. A partial slab has at least one but not all 668 * of its objects allocated. The more partial slabs, and the fewer allocated 669 * objects on each of them, the higher the fragmentation. Hence the 670 * consolidator's overall strategy is to reduce the number of partial slabs by 671 * moving allocated objects from the least allocated slabs to the most allocated 672 * slabs. 673 * 674 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 675 * slabs are kept separately in an unordered list. Since the majority of slabs 676 * tend to be completely allocated (a typical unfragmented cache may have 677 * thousands of complete slabs and only a single partial slab), separating 678 * complete slabs improves the efficiency of partial slab ordering, since the 679 * complete slabs do not affect the depth or balance of the AVL tree. This 680 * ordered sequence of partial slabs acts as a "free list" supplying objects for 681 * allocation requests. 682 * 683 * Objects are always allocated from the first partial slab in the free list, 684 * where the allocation is most likely to eliminate a partial slab (by 685 * completely allocating it). Conversely, when a single object from a completely 686 * allocated slab is freed to the slab, that slab is added to the front of the 687 * free list. Since most free list activity involves highly allocated slabs 688 * coming and going at the front of the list, slabs tend naturally toward the 689 * ideal order: highly allocated at the front, sparsely allocated at the back. 690 * Slabs with few allocated objects are likely to become completely free if they 691 * keep a safe distance away from the front of the free list. Slab misorders 692 * interfere with the natural tendency of slabs to become completely free or 693 * completely allocated. For example, a slab with a single allocated object 694 * needs only a single free to escape the cache; its natural desire is 695 * frustrated when it finds itself at the front of the list where a second 696 * allocation happens just before the free could have released it. Another slab 697 * with all but one object allocated might have supplied the buffer instead, so 698 * that both (as opposed to neither) of the slabs would have been taken off the 699 * free list. 700 * 701 * Although slabs tend naturally toward the ideal order, misorders allowed by a 702 * simple list implementation defeat the consolidator's strategy of merging 703 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 704 * needs another way to fix misorders to optimize its callback strategy. One 705 * approach is to periodically scan a limited number of slabs, advancing a 706 * marker to hold the current scan position, and to move extreme misorders to 707 * the front or back of the free list and to the front or back of the current 708 * scan range. By making consecutive scan ranges overlap by one slab, the least 709 * allocated slab in the current range can be carried along from the end of one 710 * scan to the start of the next. 711 * 712 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 713 * task, however. Since most of the cache's activity is in the magazine layer, 714 * and allocations from the slab layer represent only a startup cost, the 715 * overhead of maintaining a balanced tree is not a significant concern compared 716 * to the opportunity of reducing complexity by eliminating the partial slab 717 * scanner just described. The overhead of an AVL tree is minimized by 718 * maintaining only partial slabs in the tree and keeping completely allocated 719 * slabs separately in a list. To avoid increasing the size of the slab 720 * structure the AVL linkage pointers are reused for the slab's list linkage, 721 * since the slab will always be either partial or complete, never stored both 722 * ways at the same time. To further minimize the overhead of the AVL tree the 723 * compare function that orders partial slabs by usage divides the range of 724 * allocated object counts into bins such that counts within the same bin are 725 * considered equal. Binning partial slabs makes it less likely that allocating 726 * or freeing a single object will change the slab's order, requiring a tree 727 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 728 * requiring some rebalancing of the tree). Allocation counts closest to 729 * completely free and completely allocated are left unbinned (finely sorted) to 730 * better support the consolidator's strategy of merging slabs at either 731 * extreme. 732 * 733 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 734 * 735 * The consolidator piggybacks on the kmem maintenance thread and is called on 736 * the same interval as kmem_cache_update(), once per cache every fifteen 737 * seconds. kmem maintains a running count of unallocated objects in the slab 738 * layer (cache_bufslab). The consolidator checks whether that number exceeds 739 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 740 * there is a significant number of slabs in the cache (arbitrarily a minimum 741 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 742 * working set are included in the assessment, and magazines in the depot are 743 * reaped if those objects would lift cache_bufslab above the fragmentation 744 * threshold. Once the consolidator decides that a cache is fragmented, it looks 745 * for a candidate slab to reclaim, starting at the end of the partial slab free 746 * list and scanning backwards. At first the consolidator is choosy: only a slab 747 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 748 * single allocated object, regardless of percentage). If there is difficulty 749 * finding a candidate slab, kmem raises the allocation threshold incrementally, 750 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 751 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 752 * even in the worst case of every slab in the cache being almost 7/8 allocated. 753 * The threshold can also be lowered incrementally when candidate slabs are easy 754 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 755 * is no longer fragmented. 756 * 757 * 3.2 Generating Callbacks 758 * 759 * Once an eligible slab is chosen, a callback is generated for every allocated 760 * object on the slab, in the hope that the client will move everything off the 761 * slab and make it reclaimable. Objects selected as move destinations are 762 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 763 * order (most allocated at the front, least allocated at the back) and a 764 * cooperative client, the consolidator will succeed in removing slabs from both 765 * ends of the free list, completely allocating on the one hand and completely 766 * freeing on the other. Objects selected as move destinations are allocated in 767 * the kmem maintenance thread where move requests are enqueued. A separate 768 * callback thread removes pending callbacks from the queue and calls the 769 * client. The separate thread ensures that client code (the move function) does 770 * not interfere with internal kmem maintenance tasks. A map of pending 771 * callbacks keyed by object address (the object to be moved) is checked to 772 * ensure that duplicate callbacks are not generated for the same object. 773 * Allocating the move destination (the object to move to) prevents subsequent 774 * callbacks from selecting the same destination as an earlier pending callback. 775 * 776 * Move requests can also be generated by kmem_cache_reap() when the system is 777 * desperate for memory and by kmem_cache_move_notify(), called by the client to 778 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 779 * The map of pending callbacks is protected by the same lock that protects the 780 * slab layer. 781 * 782 * When the system is desperate for memory, kmem does not bother to determine 783 * whether or not the cache exceeds the fragmentation threshold, but tries to 784 * consolidate as many slabs as possible. Normally, the consolidator chews 785 * slowly, one sparsely allocated slab at a time during each maintenance 786 * interval that the cache is fragmented. When desperate, the consolidator 787 * starts at the last partial slab and enqueues callbacks for every allocated 788 * object on every partial slab, working backwards until it reaches the first 789 * partial slab. The first partial slab, meanwhile, advances in pace with the 790 * consolidator as allocations to supply move destinations for the enqueued 791 * callbacks use up the highly allocated slabs at the front of the free list. 792 * Ideally, the overgrown free list collapses like an accordion, starting at 793 * both ends and ending at the center with a single partial slab. 794 * 795 * 3.3 Client Responses 796 * 797 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 798 * marks the slab that supplied the stuck object non-reclaimable and moves it to 799 * front of the free list. The slab remains marked as long as it remains on the 800 * free list, and it appears more allocated to the partial slab compare function 801 * than any unmarked slab, no matter how many of its objects are allocated. 802 * Since even one immovable object ties up the entire slab, the goal is to 803 * completely allocate any slab that cannot be completely freed. kmem does not 804 * bother generating callbacks to move objects from a marked slab unless the 805 * system is desperate. 806 * 807 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 808 * slab. If the client responds LATER too many times, kmem disbelieves and 809 * treats the response as a NO. The count is cleared when the slab is taken off 810 * the partial slab list or when the client moves one of the slab's objects. 811 * 812 * 4. Observability 813 * 814 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 815 * the ::kmem_slabs dcmd. For a complete description of the command, enter 816 * '::help kmem_slabs' at the mdb prompt. 817 */ 818 819 #include <sys/kmem_impl.h> 820 #include <sys/vmem_impl.h> 821 #include <sys/param.h> 822 #include <sys/sysmacros.h> 823 #include <sys/vm.h> 824 #include <sys/proc.h> 825 #include <sys/tuneable.h> 826 #include <sys/systm.h> 827 #include <sys/cmn_err.h> 828 #include <sys/debug.h> 829 #include <sys/sdt.h> 830 #include <sys/mutex.h> 831 #include <sys/bitmap.h> 832 #include <sys/atomic.h> 833 #include <sys/kobj.h> 834 #include <sys/disp.h> 835 #include <vm/seg_kmem.h> 836 #include <sys/log.h> 837 #include <sys/callb.h> 838 #include <sys/taskq.h> 839 #include <sys/modctl.h> 840 #include <sys/reboot.h> 841 #include <sys/id32.h> 842 #include <sys/zone.h> 843 #include <sys/netstack.h> 844 #ifdef DEBUG 845 #include <sys/random.h> 846 #endif 847 848 extern void streams_msg_init(void); 849 extern int segkp_fromheap; 850 extern void segkp_cache_free(void); 851 extern int callout_init_done; 852 853 struct kmem_cache_kstat { 854 kstat_named_t kmc_buf_size; 855 kstat_named_t kmc_align; 856 kstat_named_t kmc_chunk_size; 857 kstat_named_t kmc_slab_size; 858 kstat_named_t kmc_alloc; 859 kstat_named_t kmc_alloc_fail; 860 kstat_named_t kmc_free; 861 kstat_named_t kmc_depot_alloc; 862 kstat_named_t kmc_depot_free; 863 kstat_named_t kmc_depot_contention; 864 kstat_named_t kmc_slab_alloc; 865 kstat_named_t kmc_slab_free; 866 kstat_named_t kmc_buf_constructed; 867 kstat_named_t kmc_buf_avail; 868 kstat_named_t kmc_buf_inuse; 869 kstat_named_t kmc_buf_total; 870 kstat_named_t kmc_buf_max; 871 kstat_named_t kmc_slab_create; 872 kstat_named_t kmc_slab_destroy; 873 kstat_named_t kmc_vmem_source; 874 kstat_named_t kmc_hash_size; 875 kstat_named_t kmc_hash_lookup_depth; 876 kstat_named_t kmc_hash_rescale; 877 kstat_named_t kmc_full_magazines; 878 kstat_named_t kmc_empty_magazines; 879 kstat_named_t kmc_magazine_size; 880 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 881 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 882 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 883 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 884 kstat_named_t kmc_move_yes; 885 kstat_named_t kmc_move_no; 886 kstat_named_t kmc_move_later; 887 kstat_named_t kmc_move_dont_need; 888 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 889 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 890 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 891 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 892 } kmem_cache_kstat = { 893 { "buf_size", KSTAT_DATA_UINT64 }, 894 { "align", KSTAT_DATA_UINT64 }, 895 { "chunk_size", KSTAT_DATA_UINT64 }, 896 { "slab_size", KSTAT_DATA_UINT64 }, 897 { "alloc", KSTAT_DATA_UINT64 }, 898 { "alloc_fail", KSTAT_DATA_UINT64 }, 899 { "free", KSTAT_DATA_UINT64 }, 900 { "depot_alloc", KSTAT_DATA_UINT64 }, 901 { "depot_free", KSTAT_DATA_UINT64 }, 902 { "depot_contention", KSTAT_DATA_UINT64 }, 903 { "slab_alloc", KSTAT_DATA_UINT64 }, 904 { "slab_free", KSTAT_DATA_UINT64 }, 905 { "buf_constructed", KSTAT_DATA_UINT64 }, 906 { "buf_avail", KSTAT_DATA_UINT64 }, 907 { "buf_inuse", KSTAT_DATA_UINT64 }, 908 { "buf_total", KSTAT_DATA_UINT64 }, 909 { "buf_max", KSTAT_DATA_UINT64 }, 910 { "slab_create", KSTAT_DATA_UINT64 }, 911 { "slab_destroy", KSTAT_DATA_UINT64 }, 912 { "vmem_source", KSTAT_DATA_UINT64 }, 913 { "hash_size", KSTAT_DATA_UINT64 }, 914 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 915 { "hash_rescale", KSTAT_DATA_UINT64 }, 916 { "full_magazines", KSTAT_DATA_UINT64 }, 917 { "empty_magazines", KSTAT_DATA_UINT64 }, 918 { "magazine_size", KSTAT_DATA_UINT64 }, 919 { "reap", KSTAT_DATA_UINT64 }, 920 { "defrag", KSTAT_DATA_UINT64 }, 921 { "scan", KSTAT_DATA_UINT64 }, 922 { "move_callbacks", KSTAT_DATA_UINT64 }, 923 { "move_yes", KSTAT_DATA_UINT64 }, 924 { "move_no", KSTAT_DATA_UINT64 }, 925 { "move_later", KSTAT_DATA_UINT64 }, 926 { "move_dont_need", KSTAT_DATA_UINT64 }, 927 { "move_dont_know", KSTAT_DATA_UINT64 }, 928 { "move_hunt_found", KSTAT_DATA_UINT64 }, 929 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 930 { "move_reclaimable", KSTAT_DATA_UINT64 }, 931 }; 932 933 static kmutex_t kmem_cache_kstat_lock; 934 935 /* 936 * The default set of caches to back kmem_alloc(). 937 * These sizes should be reevaluated periodically. 938 * 939 * We want allocations that are multiples of the coherency granularity 940 * (64 bytes) to be satisfied from a cache which is a multiple of 64 941 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 942 * the next kmem_cache_size greater than or equal to it must be a 943 * multiple of 64. 944 * 945 * We split the table into two sections: size <= 4k and size > 4k. This 946 * saves a lot of space and cache footprint in our cache tables. 947 */ 948 static const int kmem_alloc_sizes[] = { 949 1 * 8, 950 2 * 8, 951 3 * 8, 952 4 * 8, 5 * 8, 6 * 8, 7 * 8, 953 4 * 16, 5 * 16, 6 * 16, 7 * 16, 954 4 * 32, 5 * 32, 6 * 32, 7 * 32, 955 4 * 64, 5 * 64, 6 * 64, 7 * 64, 956 4 * 128, 5 * 128, 6 * 128, 7 * 128, 957 P2ALIGN(8192 / 7, 64), 958 P2ALIGN(8192 / 6, 64), 959 P2ALIGN(8192 / 5, 64), 960 P2ALIGN(8192 / 4, 64), 961 P2ALIGN(8192 / 3, 64), 962 P2ALIGN(8192 / 2, 64), 963 }; 964 965 static const int kmem_big_alloc_sizes[] = { 966 2 * 4096, 3 * 4096, 967 2 * 8192, 3 * 8192, 968 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 969 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 970 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 971 16 * 8192 972 }; 973 974 #define KMEM_MAXBUF 4096 975 #define KMEM_BIG_MAXBUF_32BIT 32768 976 #define KMEM_BIG_MAXBUF 131072 977 978 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 979 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 980 981 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 982 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 983 984 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 985 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 986 987 static kmem_magtype_t kmem_magtype[] = { 988 { 1, 8, 3200, 65536 }, 989 { 3, 16, 256, 32768 }, 990 { 7, 32, 64, 16384 }, 991 { 15, 64, 0, 8192 }, 992 { 31, 64, 0, 4096 }, 993 { 47, 64, 0, 2048 }, 994 { 63, 64, 0, 1024 }, 995 { 95, 64, 0, 512 }, 996 { 143, 64, 0, 0 }, 997 }; 998 999 static uint32_t kmem_reaping; 1000 static uint32_t kmem_reaping_idspace; 1001 1002 /* 1003 * kmem tunables 1004 */ 1005 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 1006 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 1007 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 1008 int kmem_panic = 1; /* whether to panic on error */ 1009 int kmem_logging = 1; /* kmem_log_enter() override */ 1010 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 1011 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 1012 size_t kmem_content_log_size; /* content log size [2% of memory] */ 1013 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 1014 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 1015 size_t kmem_zerosized_log_size; /* zero-sized log [4 pages per CPU] */ 1016 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1017 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1018 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1019 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1020 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1021 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1022 1023 #ifdef DEBUG 1024 int kmem_warn_zerosized = 1; /* whether to warn on zero-sized KM_SLEEP */ 1025 #else 1026 int kmem_warn_zerosized = 0; /* whether to warn on zero-sized KM_SLEEP */ 1027 #endif 1028 1029 int kmem_panic_zerosized = 0; /* whether to panic on zero-sized KM_SLEEP */ 1030 1031 #ifdef _LP64 1032 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1033 #else 1034 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1035 #endif 1036 1037 #ifdef DEBUG 1038 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1039 #else 1040 int kmem_flags = 0; 1041 #endif 1042 int kmem_ready; 1043 1044 static kmem_cache_t *kmem_slab_cache; 1045 static kmem_cache_t *kmem_bufctl_cache; 1046 static kmem_cache_t *kmem_bufctl_audit_cache; 1047 1048 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1049 static list_t kmem_caches; 1050 1051 static taskq_t *kmem_taskq; 1052 static kmutex_t kmem_flags_lock; 1053 static vmem_t *kmem_metadata_arena; 1054 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1055 static vmem_t *kmem_cache_arena; 1056 static vmem_t *kmem_hash_arena; 1057 static vmem_t *kmem_log_arena; 1058 static vmem_t *kmem_oversize_arena; 1059 static vmem_t *kmem_va_arena; 1060 static vmem_t *kmem_default_arena; 1061 static vmem_t *kmem_firewall_va_arena; 1062 static vmem_t *kmem_firewall_arena; 1063 1064 static int kmem_zerosized; /* # of zero-sized allocs */ 1065 1066 /* 1067 * kmem slab consolidator thresholds (tunables) 1068 */ 1069 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1070 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1071 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1072 /* 1073 * Maximum number of slabs from which to move buffers during a single 1074 * maintenance interval while the system is not low on memory. 1075 */ 1076 size_t kmem_reclaim_max_slabs = 1; 1077 /* 1078 * Number of slabs to scan backwards from the end of the partial slab list 1079 * when searching for buffers to relocate. 1080 */ 1081 size_t kmem_reclaim_scan_range = 12; 1082 1083 /* consolidator knobs */ 1084 boolean_t kmem_move_noreap; 1085 boolean_t kmem_move_blocked; 1086 boolean_t kmem_move_fulltilt; 1087 boolean_t kmem_move_any_partial; 1088 1089 #ifdef DEBUG 1090 /* 1091 * kmem consolidator debug tunables: 1092 * Ensure code coverage by occasionally running the consolidator even when the 1093 * caches are not fragmented (they may never be). These intervals are mean time 1094 * in cache maintenance intervals (kmem_cache_update). 1095 */ 1096 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1097 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1098 #endif /* DEBUG */ 1099 1100 static kmem_cache_t *kmem_defrag_cache; 1101 static kmem_cache_t *kmem_move_cache; 1102 static taskq_t *kmem_move_taskq; 1103 1104 static void kmem_cache_scan(kmem_cache_t *); 1105 static void kmem_cache_defrag(kmem_cache_t *); 1106 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1107 1108 1109 kmem_log_header_t *kmem_transaction_log; 1110 kmem_log_header_t *kmem_content_log; 1111 kmem_log_header_t *kmem_failure_log; 1112 kmem_log_header_t *kmem_slab_log; 1113 kmem_log_header_t *kmem_zerosized_log; 1114 1115 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1116 1117 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1118 if ((count) > 0) { \ 1119 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1120 pc_t *_e; \ 1121 /* memmove() the old entries down one notch */ \ 1122 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1123 *_e = *(_e - 1); \ 1124 *_s = (uintptr_t)(caller); \ 1125 } 1126 1127 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1128 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1129 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1130 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1131 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1132 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1133 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1134 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1135 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1136 1137 struct { 1138 hrtime_t kmp_timestamp; /* timestamp of panic */ 1139 int kmp_error; /* type of kmem error */ 1140 void *kmp_buffer; /* buffer that induced panic */ 1141 void *kmp_realbuf; /* real start address for buffer */ 1142 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1143 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1144 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1145 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1146 } kmem_panic_info; 1147 1148 1149 static void 1150 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1151 { 1152 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1153 uint64_t *buf = buf_arg; 1154 1155 while (buf < bufend) 1156 *buf++ = pattern; 1157 } 1158 1159 static void * 1160 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1161 { 1162 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1163 uint64_t *buf; 1164 1165 for (buf = buf_arg; buf < bufend; buf++) 1166 if (*buf != pattern) 1167 return (buf); 1168 return (NULL); 1169 } 1170 1171 static void * 1172 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1173 { 1174 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1175 uint64_t *buf; 1176 1177 for (buf = buf_arg; buf < bufend; buf++) { 1178 if (*buf != old) { 1179 copy_pattern(old, buf_arg, 1180 (char *)buf - (char *)buf_arg); 1181 return (buf); 1182 } 1183 *buf = new; 1184 } 1185 1186 return (NULL); 1187 } 1188 1189 static void 1190 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1191 { 1192 kmem_cache_t *cp; 1193 1194 mutex_enter(&kmem_cache_lock); 1195 for (cp = list_head(&kmem_caches); cp != NULL; 1196 cp = list_next(&kmem_caches, cp)) 1197 if (tq != NULL) 1198 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1199 tqflag); 1200 else 1201 func(cp); 1202 mutex_exit(&kmem_cache_lock); 1203 } 1204 1205 static void 1206 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1207 { 1208 kmem_cache_t *cp; 1209 1210 mutex_enter(&kmem_cache_lock); 1211 for (cp = list_head(&kmem_caches); cp != NULL; 1212 cp = list_next(&kmem_caches, cp)) { 1213 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1214 continue; 1215 if (tq != NULL) 1216 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1217 tqflag); 1218 else 1219 func(cp); 1220 } 1221 mutex_exit(&kmem_cache_lock); 1222 } 1223 1224 /* 1225 * Debugging support. Given a buffer address, find its slab. 1226 */ 1227 static kmem_slab_t * 1228 kmem_findslab(kmem_cache_t *cp, void *buf) 1229 { 1230 kmem_slab_t *sp; 1231 1232 mutex_enter(&cp->cache_lock); 1233 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1234 sp = list_next(&cp->cache_complete_slabs, sp)) { 1235 if (KMEM_SLAB_MEMBER(sp, buf)) { 1236 mutex_exit(&cp->cache_lock); 1237 return (sp); 1238 } 1239 } 1240 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1241 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1242 if (KMEM_SLAB_MEMBER(sp, buf)) { 1243 mutex_exit(&cp->cache_lock); 1244 return (sp); 1245 } 1246 } 1247 mutex_exit(&cp->cache_lock); 1248 1249 return (NULL); 1250 } 1251 1252 static void 1253 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1254 { 1255 kmem_buftag_t *btp = NULL; 1256 kmem_bufctl_t *bcp = NULL; 1257 kmem_cache_t *cp = cparg; 1258 kmem_slab_t *sp; 1259 uint64_t *off; 1260 void *buf = bufarg; 1261 1262 kmem_logging = 0; /* stop logging when a bad thing happens */ 1263 1264 kmem_panic_info.kmp_timestamp = gethrtime(); 1265 1266 sp = kmem_findslab(cp, buf); 1267 if (sp == NULL) { 1268 for (cp = list_tail(&kmem_caches); cp != NULL; 1269 cp = list_prev(&kmem_caches, cp)) { 1270 if ((sp = kmem_findslab(cp, buf)) != NULL) 1271 break; 1272 } 1273 } 1274 1275 if (sp == NULL) { 1276 cp = NULL; 1277 error = KMERR_BADADDR; 1278 } else { 1279 if (cp != cparg) 1280 error = KMERR_BADCACHE; 1281 else 1282 buf = (char *)bufarg - ((uintptr_t)bufarg - 1283 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1284 if (buf != bufarg) 1285 error = KMERR_BADBASE; 1286 if (cp->cache_flags & KMF_BUFTAG) 1287 btp = KMEM_BUFTAG(cp, buf); 1288 if (cp->cache_flags & KMF_HASH) { 1289 mutex_enter(&cp->cache_lock); 1290 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1291 if (bcp->bc_addr == buf) 1292 break; 1293 mutex_exit(&cp->cache_lock); 1294 if (bcp == NULL && btp != NULL) 1295 bcp = btp->bt_bufctl; 1296 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1297 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1298 bcp->bc_addr != buf) { 1299 error = KMERR_BADBUFCTL; 1300 bcp = NULL; 1301 } 1302 } 1303 } 1304 1305 kmem_panic_info.kmp_error = error; 1306 kmem_panic_info.kmp_buffer = bufarg; 1307 kmem_panic_info.kmp_realbuf = buf; 1308 kmem_panic_info.kmp_cache = cparg; 1309 kmem_panic_info.kmp_realcache = cp; 1310 kmem_panic_info.kmp_slab = sp; 1311 kmem_panic_info.kmp_bufctl = bcp; 1312 1313 printf("kernel memory allocator: "); 1314 1315 switch (error) { 1316 1317 case KMERR_MODIFIED: 1318 printf("buffer modified after being freed\n"); 1319 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1320 if (off == NULL) /* shouldn't happen */ 1321 off = buf; 1322 printf("modification occurred at offset 0x%lx " 1323 "(0x%llx replaced by 0x%llx)\n", 1324 (uintptr_t)off - (uintptr_t)buf, 1325 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1326 break; 1327 1328 case KMERR_REDZONE: 1329 printf("redzone violation: write past end of buffer\n"); 1330 break; 1331 1332 case KMERR_BADADDR: 1333 printf("invalid free: buffer not in cache\n"); 1334 break; 1335 1336 case KMERR_DUPFREE: 1337 printf("duplicate free: buffer freed twice\n"); 1338 break; 1339 1340 case KMERR_BADBUFTAG: 1341 printf("boundary tag corrupted\n"); 1342 printf("bcp ^ bxstat = %lx, should be %lx\n", 1343 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1344 KMEM_BUFTAG_FREE); 1345 break; 1346 1347 case KMERR_BADBUFCTL: 1348 printf("bufctl corrupted\n"); 1349 break; 1350 1351 case KMERR_BADCACHE: 1352 printf("buffer freed to wrong cache\n"); 1353 printf("buffer was allocated from %s,\n", cp->cache_name); 1354 printf("caller attempting free to %s.\n", cparg->cache_name); 1355 break; 1356 1357 case KMERR_BADSIZE: 1358 printf("bad free: free size (%u) != alloc size (%u)\n", 1359 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1360 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1361 break; 1362 1363 case KMERR_BADBASE: 1364 printf("bad free: free address (%p) != alloc address (%p)\n", 1365 bufarg, buf); 1366 break; 1367 } 1368 1369 printf("buffer=%p bufctl=%p cache: %s\n", 1370 bufarg, (void *)bcp, cparg->cache_name); 1371 1372 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1373 error != KMERR_BADBUFCTL) { 1374 int d; 1375 timestruc_t ts; 1376 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1377 1378 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1379 printf("previous transaction on buffer %p:\n", buf); 1380 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1381 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1382 (void *)sp, cp->cache_name); 1383 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1384 ulong_t off; 1385 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1386 printf("%s+%lx\n", sym ? sym : "?", off); 1387 } 1388 } 1389 if (kmem_panic > 0) 1390 panic("kernel heap corruption detected"); 1391 if (kmem_panic == 0) 1392 debug_enter(NULL); 1393 kmem_logging = 1; /* resume logging */ 1394 } 1395 1396 static kmem_log_header_t * 1397 kmem_log_init(size_t logsize) 1398 { 1399 kmem_log_header_t *lhp; 1400 int nchunks = 4 * max_ncpus; 1401 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1402 int i; 1403 1404 /* 1405 * Make sure that lhp->lh_cpu[] is nicely aligned 1406 * to prevent false sharing of cache lines. 1407 */ 1408 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1409 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1410 NULL, NULL, VM_SLEEP); 1411 bzero(lhp, lhsize); 1412 1413 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1414 lhp->lh_nchunks = nchunks; 1415 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1416 lhp->lh_base = vmem_alloc(kmem_log_arena, 1417 lhp->lh_chunksize * nchunks, VM_SLEEP); 1418 lhp->lh_free = vmem_alloc(kmem_log_arena, 1419 nchunks * sizeof (int), VM_SLEEP); 1420 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1421 1422 for (i = 0; i < max_ncpus; i++) { 1423 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1424 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1425 clhp->clh_chunk = i; 1426 } 1427 1428 for (i = max_ncpus; i < nchunks; i++) 1429 lhp->lh_free[i] = i; 1430 1431 lhp->lh_head = max_ncpus; 1432 lhp->lh_tail = 0; 1433 1434 return (lhp); 1435 } 1436 1437 static void * 1438 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1439 { 1440 void *logspace; 1441 kmem_cpu_log_header_t *clhp; 1442 1443 if (lhp == NULL || kmem_logging == 0 || panicstr) 1444 return (NULL); 1445 1446 clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1447 1448 mutex_enter(&clhp->clh_lock); 1449 clhp->clh_hits++; 1450 if (size > clhp->clh_avail) { 1451 mutex_enter(&lhp->lh_lock); 1452 lhp->lh_hits++; 1453 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1454 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1455 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1456 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1457 clhp->clh_current = lhp->lh_base + 1458 clhp->clh_chunk * lhp->lh_chunksize; 1459 clhp->clh_avail = lhp->lh_chunksize; 1460 if (size > lhp->lh_chunksize) 1461 size = lhp->lh_chunksize; 1462 mutex_exit(&lhp->lh_lock); 1463 } 1464 logspace = clhp->clh_current; 1465 clhp->clh_current += size; 1466 clhp->clh_avail -= size; 1467 bcopy(data, logspace, size); 1468 mutex_exit(&clhp->clh_lock); 1469 return (logspace); 1470 } 1471 1472 #define KMEM_AUDIT(lp, cp, bcp) \ 1473 { \ 1474 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1475 _bcp->bc_timestamp = gethrtime(); \ 1476 _bcp->bc_thread = curthread; \ 1477 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1478 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1479 } 1480 1481 static void 1482 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1483 kmem_slab_t *sp, void *addr) 1484 { 1485 kmem_bufctl_audit_t bca; 1486 1487 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1488 bca.bc_addr = addr; 1489 bca.bc_slab = sp; 1490 bca.bc_cache = cp; 1491 KMEM_AUDIT(lp, cp, &bca); 1492 } 1493 1494 /* 1495 * Create a new slab for cache cp. 1496 */ 1497 static kmem_slab_t * 1498 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1499 { 1500 size_t slabsize = cp->cache_slabsize; 1501 size_t chunksize = cp->cache_chunksize; 1502 int cache_flags = cp->cache_flags; 1503 size_t color, chunks; 1504 char *buf, *slab; 1505 kmem_slab_t *sp; 1506 kmem_bufctl_t *bcp; 1507 vmem_t *vmp = cp->cache_arena; 1508 1509 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1510 1511 color = cp->cache_color + cp->cache_align; 1512 if (color > cp->cache_maxcolor) 1513 color = cp->cache_mincolor; 1514 cp->cache_color = color; 1515 1516 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1517 1518 if (slab == NULL) 1519 goto vmem_alloc_failure; 1520 1521 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1522 1523 /* 1524 * Reverify what was already checked in kmem_cache_set_move(), since the 1525 * consolidator depends (for correctness) on slabs being initialized 1526 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1527 * clients to distinguish uninitialized memory from known objects). 1528 */ 1529 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1530 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1531 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1532 1533 if (cache_flags & KMF_HASH) { 1534 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1535 goto slab_alloc_failure; 1536 chunks = (slabsize - color) / chunksize; 1537 } else { 1538 sp = KMEM_SLAB(cp, slab); 1539 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1540 } 1541 1542 sp->slab_cache = cp; 1543 sp->slab_head = NULL; 1544 sp->slab_refcnt = 0; 1545 sp->slab_base = buf = slab + color; 1546 sp->slab_chunks = chunks; 1547 sp->slab_stuck_offset = (uint32_t)-1; 1548 sp->slab_later_count = 0; 1549 sp->slab_flags = 0; 1550 1551 ASSERT(chunks > 0); 1552 while (chunks-- != 0) { 1553 if (cache_flags & KMF_HASH) { 1554 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1555 if (bcp == NULL) 1556 goto bufctl_alloc_failure; 1557 if (cache_flags & KMF_AUDIT) { 1558 kmem_bufctl_audit_t *bcap = 1559 (kmem_bufctl_audit_t *)bcp; 1560 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1561 bcap->bc_cache = cp; 1562 } 1563 bcp->bc_addr = buf; 1564 bcp->bc_slab = sp; 1565 } else { 1566 bcp = KMEM_BUFCTL(cp, buf); 1567 } 1568 if (cache_flags & KMF_BUFTAG) { 1569 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1570 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1571 btp->bt_bufctl = bcp; 1572 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1573 if (cache_flags & KMF_DEADBEEF) { 1574 copy_pattern(KMEM_FREE_PATTERN, buf, 1575 cp->cache_verify); 1576 } 1577 } 1578 bcp->bc_next = sp->slab_head; 1579 sp->slab_head = bcp; 1580 buf += chunksize; 1581 } 1582 1583 kmem_log_event(kmem_slab_log, cp, sp, slab); 1584 1585 return (sp); 1586 1587 bufctl_alloc_failure: 1588 1589 while ((bcp = sp->slab_head) != NULL) { 1590 sp->slab_head = bcp->bc_next; 1591 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1592 } 1593 kmem_cache_free(kmem_slab_cache, sp); 1594 1595 slab_alloc_failure: 1596 1597 vmem_free(vmp, slab, slabsize); 1598 1599 vmem_alloc_failure: 1600 1601 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1602 atomic_inc_64(&cp->cache_alloc_fail); 1603 1604 return (NULL); 1605 } 1606 1607 /* 1608 * Destroy a slab. 1609 */ 1610 static void 1611 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1612 { 1613 vmem_t *vmp = cp->cache_arena; 1614 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1615 1616 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1617 ASSERT(sp->slab_refcnt == 0); 1618 1619 if (cp->cache_flags & KMF_HASH) { 1620 kmem_bufctl_t *bcp; 1621 while ((bcp = sp->slab_head) != NULL) { 1622 sp->slab_head = bcp->bc_next; 1623 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1624 } 1625 kmem_cache_free(kmem_slab_cache, sp); 1626 } 1627 vmem_free(vmp, slab, cp->cache_slabsize); 1628 } 1629 1630 static void * 1631 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 1632 { 1633 kmem_bufctl_t *bcp, **hash_bucket; 1634 void *buf; 1635 boolean_t new_slab = (sp->slab_refcnt == 0); 1636 1637 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1638 /* 1639 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1640 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1641 * slab is newly created. 1642 */ 1643 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1644 (sp == avl_first(&cp->cache_partial_slabs)))); 1645 ASSERT(sp->slab_cache == cp); 1646 1647 cp->cache_slab_alloc++; 1648 cp->cache_bufslab--; 1649 sp->slab_refcnt++; 1650 1651 bcp = sp->slab_head; 1652 sp->slab_head = bcp->bc_next; 1653 1654 if (cp->cache_flags & KMF_HASH) { 1655 /* 1656 * Add buffer to allocated-address hash table. 1657 */ 1658 buf = bcp->bc_addr; 1659 hash_bucket = KMEM_HASH(cp, buf); 1660 bcp->bc_next = *hash_bucket; 1661 *hash_bucket = bcp; 1662 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1663 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1664 } 1665 } else { 1666 buf = KMEM_BUF(cp, bcp); 1667 } 1668 1669 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1670 1671 if (sp->slab_head == NULL) { 1672 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1673 if (new_slab) { 1674 ASSERT(sp->slab_chunks == 1); 1675 } else { 1676 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1677 avl_remove(&cp->cache_partial_slabs, sp); 1678 sp->slab_later_count = 0; /* clear history */ 1679 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1680 sp->slab_stuck_offset = (uint32_t)-1; 1681 } 1682 list_insert_head(&cp->cache_complete_slabs, sp); 1683 cp->cache_complete_slab_count++; 1684 return (buf); 1685 } 1686 1687 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1688 /* 1689 * Peek to see if the magazine layer is enabled before 1690 * we prefill. We're not holding the cpu cache lock, 1691 * so the peek could be wrong, but there's no harm in it. 1692 */ 1693 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1694 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1695 kmem_slab_prefill(cp, sp); 1696 return (buf); 1697 } 1698 1699 if (new_slab) { 1700 avl_add(&cp->cache_partial_slabs, sp); 1701 return (buf); 1702 } 1703 1704 /* 1705 * The slab is now more allocated than it was, so the 1706 * order remains unchanged. 1707 */ 1708 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1709 return (buf); 1710 } 1711 1712 /* 1713 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1714 */ 1715 static void * 1716 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1717 { 1718 kmem_slab_t *sp; 1719 void *buf; 1720 boolean_t test_destructor; 1721 1722 mutex_enter(&cp->cache_lock); 1723 test_destructor = (cp->cache_slab_alloc == 0); 1724 sp = avl_first(&cp->cache_partial_slabs); 1725 if (sp == NULL) { 1726 ASSERT(cp->cache_bufslab == 0); 1727 1728 /* 1729 * The freelist is empty. Create a new slab. 1730 */ 1731 mutex_exit(&cp->cache_lock); 1732 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1733 return (NULL); 1734 } 1735 mutex_enter(&cp->cache_lock); 1736 cp->cache_slab_create++; 1737 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1738 cp->cache_bufmax = cp->cache_buftotal; 1739 cp->cache_bufslab += sp->slab_chunks; 1740 } 1741 1742 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1743 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1744 (cp->cache_complete_slab_count + 1745 avl_numnodes(&cp->cache_partial_slabs) + 1746 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1747 mutex_exit(&cp->cache_lock); 1748 1749 if (test_destructor && cp->cache_destructor != NULL) { 1750 /* 1751 * On the first kmem_slab_alloc(), assert that it is valid to 1752 * call the destructor on a newly constructed object without any 1753 * client involvement. 1754 */ 1755 if ((cp->cache_constructor == NULL) || 1756 cp->cache_constructor(buf, cp->cache_private, 1757 kmflag) == 0) { 1758 cp->cache_destructor(buf, cp->cache_private); 1759 } 1760 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1761 cp->cache_bufsize); 1762 if (cp->cache_flags & KMF_DEADBEEF) { 1763 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1764 } 1765 } 1766 1767 return (buf); 1768 } 1769 1770 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1771 1772 /* 1773 * Free a raw (unconstructed) buffer to cp's slab layer. 1774 */ 1775 static void 1776 kmem_slab_free(kmem_cache_t *cp, void *buf) 1777 { 1778 kmem_slab_t *sp; 1779 kmem_bufctl_t *bcp, **prev_bcpp; 1780 1781 ASSERT(buf != NULL); 1782 1783 mutex_enter(&cp->cache_lock); 1784 cp->cache_slab_free++; 1785 1786 if (cp->cache_flags & KMF_HASH) { 1787 /* 1788 * Look up buffer in allocated-address hash table. 1789 */ 1790 prev_bcpp = KMEM_HASH(cp, buf); 1791 while ((bcp = *prev_bcpp) != NULL) { 1792 if (bcp->bc_addr == buf) { 1793 *prev_bcpp = bcp->bc_next; 1794 sp = bcp->bc_slab; 1795 break; 1796 } 1797 cp->cache_lookup_depth++; 1798 prev_bcpp = &bcp->bc_next; 1799 } 1800 } else { 1801 bcp = KMEM_BUFCTL(cp, buf); 1802 sp = KMEM_SLAB(cp, buf); 1803 } 1804 1805 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1806 mutex_exit(&cp->cache_lock); 1807 kmem_error(KMERR_BADADDR, cp, buf); 1808 return; 1809 } 1810 1811 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1812 /* 1813 * If this is the buffer that prevented the consolidator from 1814 * clearing the slab, we can reset the slab flags now that the 1815 * buffer is freed. (It makes sense to do this in 1816 * kmem_cache_free(), where the client gives up ownership of the 1817 * buffer, but on the hot path the test is too expensive.) 1818 */ 1819 kmem_slab_move_yes(cp, sp, buf); 1820 } 1821 1822 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1823 if (cp->cache_flags & KMF_CONTENTS) 1824 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1825 kmem_log_enter(kmem_content_log, buf, 1826 cp->cache_contents); 1827 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1828 } 1829 1830 bcp->bc_next = sp->slab_head; 1831 sp->slab_head = bcp; 1832 1833 cp->cache_bufslab++; 1834 ASSERT(sp->slab_refcnt >= 1); 1835 1836 if (--sp->slab_refcnt == 0) { 1837 /* 1838 * There are no outstanding allocations from this slab, 1839 * so we can reclaim the memory. 1840 */ 1841 if (sp->slab_chunks == 1) { 1842 list_remove(&cp->cache_complete_slabs, sp); 1843 cp->cache_complete_slab_count--; 1844 } else { 1845 avl_remove(&cp->cache_partial_slabs, sp); 1846 } 1847 1848 cp->cache_buftotal -= sp->slab_chunks; 1849 cp->cache_bufslab -= sp->slab_chunks; 1850 /* 1851 * Defer releasing the slab to the virtual memory subsystem 1852 * while there is a pending move callback, since we guarantee 1853 * that buffers passed to the move callback have only been 1854 * touched by kmem or by the client itself. Since the memory 1855 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1856 * set at least one of the two lowest order bits, the client can 1857 * test those bits in the move callback to determine whether or 1858 * not it knows about the buffer (assuming that the client also 1859 * sets one of those low order bits whenever it frees a buffer). 1860 */ 1861 if (cp->cache_defrag == NULL || 1862 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1863 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1864 cp->cache_slab_destroy++; 1865 mutex_exit(&cp->cache_lock); 1866 kmem_slab_destroy(cp, sp); 1867 } else { 1868 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1869 /* 1870 * Slabs are inserted at both ends of the deadlist to 1871 * distinguish between slabs freed while move callbacks 1872 * are pending (list head) and a slab freed while the 1873 * lock is dropped in kmem_move_buffers() (list tail) so 1874 * that in both cases slab_destroy() is called from the 1875 * right context. 1876 */ 1877 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1878 list_insert_tail(deadlist, sp); 1879 } else { 1880 list_insert_head(deadlist, sp); 1881 } 1882 cp->cache_defrag->kmd_deadcount++; 1883 mutex_exit(&cp->cache_lock); 1884 } 1885 return; 1886 } 1887 1888 if (bcp->bc_next == NULL) { 1889 /* Transition the slab from completely allocated to partial. */ 1890 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1891 ASSERT(sp->slab_chunks > 1); 1892 list_remove(&cp->cache_complete_slabs, sp); 1893 cp->cache_complete_slab_count--; 1894 avl_add(&cp->cache_partial_slabs, sp); 1895 } else { 1896 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1897 } 1898 1899 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1900 (cp->cache_complete_slab_count + 1901 avl_numnodes(&cp->cache_partial_slabs) + 1902 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1903 mutex_exit(&cp->cache_lock); 1904 } 1905 1906 /* 1907 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1908 */ 1909 static int 1910 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1911 caddr_t caller) 1912 { 1913 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1914 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1915 uint32_t mtbf; 1916 1917 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1918 kmem_error(KMERR_BADBUFTAG, cp, buf); 1919 return (-1); 1920 } 1921 1922 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1923 1924 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1925 kmem_error(KMERR_BADBUFCTL, cp, buf); 1926 return (-1); 1927 } 1928 1929 if (cp->cache_flags & KMF_DEADBEEF) { 1930 if (!construct && (cp->cache_flags & KMF_LITE)) { 1931 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1932 kmem_error(KMERR_MODIFIED, cp, buf); 1933 return (-1); 1934 } 1935 if (cp->cache_constructor != NULL) 1936 *(uint64_t *)buf = btp->bt_redzone; 1937 else 1938 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1939 } else { 1940 construct = 1; 1941 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1942 KMEM_UNINITIALIZED_PATTERN, buf, 1943 cp->cache_verify)) { 1944 kmem_error(KMERR_MODIFIED, cp, buf); 1945 return (-1); 1946 } 1947 } 1948 } 1949 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1950 1951 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1952 gethrtime() % mtbf == 0 && 1953 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1954 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1955 if (!construct && cp->cache_destructor != NULL) 1956 cp->cache_destructor(buf, cp->cache_private); 1957 } else { 1958 mtbf = 0; 1959 } 1960 1961 if (mtbf || (construct && cp->cache_constructor != NULL && 1962 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1963 atomic_inc_64(&cp->cache_alloc_fail); 1964 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1965 if (cp->cache_flags & KMF_DEADBEEF) 1966 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1967 kmem_slab_free(cp, buf); 1968 return (1); 1969 } 1970 1971 if (cp->cache_flags & KMF_AUDIT) { 1972 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1973 } 1974 1975 if ((cp->cache_flags & KMF_LITE) && 1976 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1977 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1978 } 1979 1980 return (0); 1981 } 1982 1983 static int 1984 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1985 { 1986 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1987 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1988 kmem_slab_t *sp; 1989 1990 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1991 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1992 kmem_error(KMERR_DUPFREE, cp, buf); 1993 return (-1); 1994 } 1995 sp = kmem_findslab(cp, buf); 1996 if (sp == NULL || sp->slab_cache != cp) 1997 kmem_error(KMERR_BADADDR, cp, buf); 1998 else 1999 kmem_error(KMERR_REDZONE, cp, buf); 2000 return (-1); 2001 } 2002 2003 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 2004 2005 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 2006 kmem_error(KMERR_BADBUFCTL, cp, buf); 2007 return (-1); 2008 } 2009 2010 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 2011 kmem_error(KMERR_REDZONE, cp, buf); 2012 return (-1); 2013 } 2014 2015 if (cp->cache_flags & KMF_AUDIT) { 2016 if (cp->cache_flags & KMF_CONTENTS) 2017 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2018 buf, cp->cache_contents); 2019 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2020 } 2021 2022 if ((cp->cache_flags & KMF_LITE) && 2023 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2024 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2025 } 2026 2027 if (cp->cache_flags & KMF_DEADBEEF) { 2028 if (cp->cache_flags & KMF_LITE) 2029 btp->bt_redzone = *(uint64_t *)buf; 2030 else if (cp->cache_destructor != NULL) 2031 cp->cache_destructor(buf, cp->cache_private); 2032 2033 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2034 } 2035 2036 return (0); 2037 } 2038 2039 /* 2040 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2041 */ 2042 static void 2043 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2044 { 2045 int round; 2046 2047 ASSERT(!list_link_active(&cp->cache_link) || 2048 taskq_member(kmem_taskq, curthread)); 2049 2050 for (round = 0; round < nrounds; round++) { 2051 void *buf = mp->mag_round[round]; 2052 2053 if (cp->cache_flags & KMF_DEADBEEF) { 2054 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2055 cp->cache_verify) != NULL) { 2056 kmem_error(KMERR_MODIFIED, cp, buf); 2057 continue; 2058 } 2059 if ((cp->cache_flags & KMF_LITE) && 2060 cp->cache_destructor != NULL) { 2061 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2062 *(uint64_t *)buf = btp->bt_redzone; 2063 cp->cache_destructor(buf, cp->cache_private); 2064 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2065 } 2066 } else if (cp->cache_destructor != NULL) { 2067 cp->cache_destructor(buf, cp->cache_private); 2068 } 2069 2070 kmem_slab_free(cp, buf); 2071 } 2072 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2073 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2074 } 2075 2076 /* 2077 * Allocate a magazine from the depot. 2078 */ 2079 static kmem_magazine_t * 2080 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2081 { 2082 kmem_magazine_t *mp; 2083 2084 /* 2085 * If we can't get the depot lock without contention, 2086 * update our contention count. We use the depot 2087 * contention rate to determine whether we need to 2088 * increase the magazine size for better scalability. 2089 */ 2090 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2091 mutex_enter(&cp->cache_depot_lock); 2092 cp->cache_depot_contention++; 2093 } 2094 2095 if ((mp = mlp->ml_list) != NULL) { 2096 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2097 mlp->ml_list = mp->mag_next; 2098 if (--mlp->ml_total < mlp->ml_min) 2099 mlp->ml_min = mlp->ml_total; 2100 mlp->ml_alloc++; 2101 } 2102 2103 mutex_exit(&cp->cache_depot_lock); 2104 2105 return (mp); 2106 } 2107 2108 /* 2109 * Free a magazine to the depot. 2110 */ 2111 static void 2112 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2113 { 2114 mutex_enter(&cp->cache_depot_lock); 2115 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2116 mp->mag_next = mlp->ml_list; 2117 mlp->ml_list = mp; 2118 mlp->ml_total++; 2119 mutex_exit(&cp->cache_depot_lock); 2120 } 2121 2122 /* 2123 * Update the working set statistics for cp's depot. 2124 */ 2125 static void 2126 kmem_depot_ws_update(kmem_cache_t *cp) 2127 { 2128 mutex_enter(&cp->cache_depot_lock); 2129 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2130 cp->cache_full.ml_min = cp->cache_full.ml_total; 2131 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2132 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2133 mutex_exit(&cp->cache_depot_lock); 2134 } 2135 2136 /* 2137 * Set the working set statistics for cp's depot to zero. (Everything is 2138 * eligible for reaping.) 2139 */ 2140 static void 2141 kmem_depot_ws_zero(kmem_cache_t *cp) 2142 { 2143 mutex_enter(&cp->cache_depot_lock); 2144 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; 2145 cp->cache_full.ml_min = cp->cache_full.ml_total; 2146 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; 2147 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2148 mutex_exit(&cp->cache_depot_lock); 2149 } 2150 2151 /* 2152 * The number of bytes to reap before we call kpreempt(). The default (1MB) 2153 * causes us to preempt reaping up to hundreds of times per second. Using a 2154 * larger value (1GB) causes this to have virtually no effect. 2155 */ 2156 size_t kmem_reap_preempt_bytes = 1024 * 1024; 2157 2158 /* 2159 * Reap all magazines that have fallen out of the depot's working set. 2160 */ 2161 static void 2162 kmem_depot_ws_reap(kmem_cache_t *cp) 2163 { 2164 size_t bytes = 0; 2165 long reap; 2166 kmem_magazine_t *mp; 2167 2168 ASSERT(!list_link_active(&cp->cache_link) || 2169 taskq_member(kmem_taskq, curthread)); 2170 2171 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2172 while (reap-- && 2173 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { 2174 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2175 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2176 if (bytes > kmem_reap_preempt_bytes) { 2177 kpreempt(KPREEMPT_SYNC); 2178 bytes = 0; 2179 } 2180 } 2181 2182 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2183 while (reap-- && 2184 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { 2185 kmem_magazine_destroy(cp, mp, 0); 2186 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2187 if (bytes > kmem_reap_preempt_bytes) { 2188 kpreempt(KPREEMPT_SYNC); 2189 bytes = 0; 2190 } 2191 } 2192 } 2193 2194 static void 2195 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2196 { 2197 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2198 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2199 ASSERT(ccp->cc_magsize > 0); 2200 2201 ccp->cc_ploaded = ccp->cc_loaded; 2202 ccp->cc_prounds = ccp->cc_rounds; 2203 ccp->cc_loaded = mp; 2204 ccp->cc_rounds = rounds; 2205 } 2206 2207 /* 2208 * Intercept kmem alloc/free calls during crash dump in order to avoid 2209 * changing kmem state while memory is being saved to the dump device. 2210 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2211 * there are no locks because only one CPU calls kmem during a crash 2212 * dump. To enable this feature, first create the associated vmem 2213 * arena with VMC_DUMPSAFE. 2214 */ 2215 static void *kmem_dump_start; /* start of pre-reserved heap */ 2216 static void *kmem_dump_end; /* end of heap area */ 2217 static void *kmem_dump_curr; /* current free heap pointer */ 2218 static size_t kmem_dump_size; /* size of heap area */ 2219 2220 /* append to each buf created in the pre-reserved heap */ 2221 typedef struct kmem_dumpctl { 2222 void *kdc_next; /* cache dump free list linkage */ 2223 } kmem_dumpctl_t; 2224 2225 #define KMEM_DUMPCTL(cp, buf) \ 2226 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2227 sizeof (void *))) 2228 2229 /* set non zero for full report */ 2230 uint_t kmem_dump_verbose = 0; 2231 2232 /* stats for overize heap */ 2233 uint_t kmem_dump_oversize_allocs = 0; 2234 uint_t kmem_dump_oversize_max = 0; 2235 2236 static void 2237 kmem_dumppr(char **pp, char *e, const char *format, ...) 2238 { 2239 char *p = *pp; 2240 2241 if (p < e) { 2242 int n; 2243 va_list ap; 2244 2245 va_start(ap, format); 2246 n = vsnprintf(p, e - p, format, ap); 2247 va_end(ap); 2248 *pp = p + n; 2249 } 2250 } 2251 2252 /* 2253 * Called when dumpadm(1M) configures dump parameters. 2254 */ 2255 void 2256 kmem_dump_init(size_t size) 2257 { 2258 /* Our caller ensures size is always set. */ 2259 ASSERT3U(size, >, 0); 2260 2261 if (kmem_dump_start != NULL) 2262 kmem_free(kmem_dump_start, kmem_dump_size); 2263 2264 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2265 kmem_dump_size = size; 2266 kmem_dump_curr = kmem_dump_start; 2267 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2268 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2269 } 2270 2271 /* 2272 * Set flag for each kmem_cache_t if is safe to use alternate dump 2273 * memory. Called just before panic crash dump starts. Set the flag 2274 * for the calling CPU. 2275 */ 2276 void 2277 kmem_dump_begin(void) 2278 { 2279 kmem_cache_t *cp; 2280 2281 ASSERT(panicstr != NULL); 2282 2283 for (cp = list_head(&kmem_caches); cp != NULL; 2284 cp = list_next(&kmem_caches, cp)) { 2285 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2286 2287 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2288 cp->cache_flags |= KMF_DUMPDIVERT; 2289 ccp->cc_flags |= KMF_DUMPDIVERT; 2290 ccp->cc_dump_rounds = ccp->cc_rounds; 2291 ccp->cc_dump_prounds = ccp->cc_prounds; 2292 ccp->cc_rounds = ccp->cc_prounds = -1; 2293 } else { 2294 cp->cache_flags |= KMF_DUMPUNSAFE; 2295 ccp->cc_flags |= KMF_DUMPUNSAFE; 2296 } 2297 } 2298 } 2299 2300 /* 2301 * finished dump intercept 2302 * print any warnings on the console 2303 * return verbose information to dumpsys() in the given buffer 2304 */ 2305 size_t 2306 kmem_dump_finish(char *buf, size_t size) 2307 { 2308 int percent = 0; 2309 size_t used; 2310 char *e = buf + size; 2311 char *p = buf; 2312 2313 if (kmem_dump_curr == kmem_dump_end) { 2314 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu " 2315 "bytes: kmem state in dump may be inconsistent", 2316 kmem_dump_size); 2317 } 2318 2319 if (kmem_dump_verbose == 0) 2320 return (0); 2321 2322 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2323 percent = (used * 100) / kmem_dump_size; 2324 2325 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2326 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2327 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2328 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2329 kmem_dump_oversize_allocs); 2330 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2331 kmem_dump_oversize_max); 2332 2333 /* return buffer size used */ 2334 if (p < e) 2335 bzero(p, e - p); 2336 return (p - buf); 2337 } 2338 2339 /* 2340 * Allocate a constructed object from alternate dump memory. 2341 */ 2342 void * 2343 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2344 { 2345 void *buf; 2346 void *curr; 2347 char *bufend; 2348 2349 /* return a constructed object */ 2350 if ((buf = cp->cache_dump.kd_freelist) != NULL) { 2351 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2352 return (buf); 2353 } 2354 2355 /* create a new constructed object */ 2356 curr = kmem_dump_curr; 2357 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2358 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2359 2360 /* hat layer objects cannot cross a page boundary */ 2361 if (cp->cache_align < PAGESIZE) { 2362 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2363 if (bufend > page) { 2364 bufend += page - (char *)buf; 2365 buf = (void *)page; 2366 } 2367 } 2368 2369 /* fall back to normal alloc if reserved area is used up */ 2370 if (bufend > (char *)kmem_dump_end) { 2371 kmem_dump_curr = kmem_dump_end; 2372 cp->cache_dump.kd_alloc_fails++; 2373 return (NULL); 2374 } 2375 2376 /* 2377 * Must advance curr pointer before calling a constructor that 2378 * may also allocate memory. 2379 */ 2380 kmem_dump_curr = bufend; 2381 2382 /* run constructor */ 2383 if (cp->cache_constructor != NULL && 2384 cp->cache_constructor(buf, cp->cache_private, kmflag) 2385 != 0) { 2386 #ifdef DEBUG 2387 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2388 cp->cache_name, (void *)cp); 2389 #endif 2390 /* reset curr pointer iff no allocs were done */ 2391 if (kmem_dump_curr == bufend) 2392 kmem_dump_curr = curr; 2393 2394 cp->cache_dump.kd_alloc_fails++; 2395 /* fall back to normal alloc if the constructor fails */ 2396 return (NULL); 2397 } 2398 2399 return (buf); 2400 } 2401 2402 /* 2403 * Free a constructed object in alternate dump memory. 2404 */ 2405 int 2406 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2407 { 2408 /* save constructed buffers for next time */ 2409 if ((char *)buf >= (char *)kmem_dump_start && 2410 (char *)buf < (char *)kmem_dump_end) { 2411 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist; 2412 cp->cache_dump.kd_freelist = buf; 2413 return (0); 2414 } 2415 2416 /* just drop buffers that were allocated before dump started */ 2417 if (kmem_dump_curr < kmem_dump_end) 2418 return (0); 2419 2420 /* fall back to normal free if reserved area is used up */ 2421 return (1); 2422 } 2423 2424 /* 2425 * Allocate a constructed object from cache cp. 2426 */ 2427 void * 2428 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2429 { 2430 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2431 kmem_magazine_t *fmp; 2432 void *buf; 2433 2434 mutex_enter(&ccp->cc_lock); 2435 for (;;) { 2436 /* 2437 * If there's an object available in the current CPU's 2438 * loaded magazine, just take it and return. 2439 */ 2440 if (ccp->cc_rounds > 0) { 2441 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2442 ccp->cc_alloc++; 2443 mutex_exit(&ccp->cc_lock); 2444 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2445 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2446 ASSERT(!(ccp->cc_flags & 2447 KMF_DUMPDIVERT)); 2448 cp->cache_dump.kd_unsafe++; 2449 } 2450 if ((ccp->cc_flags & KMF_BUFTAG) && 2451 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2452 caller()) != 0) { 2453 if (kmflag & KM_NOSLEEP) 2454 return (NULL); 2455 mutex_enter(&ccp->cc_lock); 2456 continue; 2457 } 2458 } 2459 return (buf); 2460 } 2461 2462 /* 2463 * The loaded magazine is empty. If the previously loaded 2464 * magazine was full, exchange them and try again. 2465 */ 2466 if (ccp->cc_prounds > 0) { 2467 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2468 continue; 2469 } 2470 2471 /* 2472 * Return an alternate buffer at dump time to preserve 2473 * the heap. 2474 */ 2475 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2476 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2477 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2478 /* log it so that we can warn about it */ 2479 cp->cache_dump.kd_unsafe++; 2480 } else { 2481 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2482 NULL) { 2483 mutex_exit(&ccp->cc_lock); 2484 return (buf); 2485 } 2486 break; /* fall back to slab layer */ 2487 } 2488 } 2489 2490 /* 2491 * If the magazine layer is disabled, break out now. 2492 */ 2493 if (ccp->cc_magsize == 0) 2494 break; 2495 2496 /* 2497 * Try to get a full magazine from the depot. 2498 */ 2499 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2500 if (fmp != NULL) { 2501 if (ccp->cc_ploaded != NULL) 2502 kmem_depot_free(cp, &cp->cache_empty, 2503 ccp->cc_ploaded); 2504 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2505 continue; 2506 } 2507 2508 /* 2509 * There are no full magazines in the depot, 2510 * so fall through to the slab layer. 2511 */ 2512 break; 2513 } 2514 mutex_exit(&ccp->cc_lock); 2515 2516 /* 2517 * We couldn't allocate a constructed object from the magazine layer, 2518 * so get a raw buffer from the slab layer and apply its constructor. 2519 */ 2520 buf = kmem_slab_alloc(cp, kmflag); 2521 2522 if (buf == NULL) 2523 return (NULL); 2524 2525 if (cp->cache_flags & KMF_BUFTAG) { 2526 /* 2527 * Make kmem_cache_alloc_debug() apply the constructor for us. 2528 */ 2529 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2530 if (rc != 0) { 2531 if (kmflag & KM_NOSLEEP) 2532 return (NULL); 2533 /* 2534 * kmem_cache_alloc_debug() detected corruption 2535 * but didn't panic (kmem_panic <= 0). We should not be 2536 * here because the constructor failed (indicated by a 2537 * return code of 1). Try again. 2538 */ 2539 ASSERT(rc == -1); 2540 return (kmem_cache_alloc(cp, kmflag)); 2541 } 2542 return (buf); 2543 } 2544 2545 if (cp->cache_constructor != NULL && 2546 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2547 atomic_inc_64(&cp->cache_alloc_fail); 2548 kmem_slab_free(cp, buf); 2549 return (NULL); 2550 } 2551 2552 return (buf); 2553 } 2554 2555 /* 2556 * The freed argument tells whether or not kmem_cache_free_debug() has already 2557 * been called so that we can avoid the duplicate free error. For example, a 2558 * buffer on a magazine has already been freed by the client but is still 2559 * constructed. 2560 */ 2561 static void 2562 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2563 { 2564 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2565 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2566 return; 2567 2568 /* 2569 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2570 * kmem_cache_free_debug() will have already applied the destructor. 2571 */ 2572 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2573 cp->cache_destructor != NULL) { 2574 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2575 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2576 *(uint64_t *)buf = btp->bt_redzone; 2577 cp->cache_destructor(buf, cp->cache_private); 2578 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2579 } else { 2580 cp->cache_destructor(buf, cp->cache_private); 2581 } 2582 } 2583 2584 kmem_slab_free(cp, buf); 2585 } 2586 2587 /* 2588 * Used when there's no room to free a buffer to the per-CPU cache. 2589 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2590 * caller should try freeing to the per-CPU cache again. 2591 * Note that we don't directly install the magazine in the cpu cache, 2592 * since its state may have changed wildly while the lock was dropped. 2593 */ 2594 static int 2595 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2596 { 2597 kmem_magazine_t *emp; 2598 kmem_magtype_t *mtp; 2599 2600 ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2601 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2602 ((uint_t)ccp->cc_rounds == -1)) && 2603 ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2604 ((uint_t)ccp->cc_prounds == -1))); 2605 2606 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2607 if (emp != NULL) { 2608 if (ccp->cc_ploaded != NULL) 2609 kmem_depot_free(cp, &cp->cache_full, 2610 ccp->cc_ploaded); 2611 kmem_cpu_reload(ccp, emp, 0); 2612 return (1); 2613 } 2614 /* 2615 * There are no empty magazines in the depot, 2616 * so try to allocate a new one. We must drop all locks 2617 * across kmem_cache_alloc() because lower layers may 2618 * attempt to allocate from this cache. 2619 */ 2620 mtp = cp->cache_magtype; 2621 mutex_exit(&ccp->cc_lock); 2622 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2623 mutex_enter(&ccp->cc_lock); 2624 2625 if (emp != NULL) { 2626 /* 2627 * We successfully allocated an empty magazine. 2628 * However, we had to drop ccp->cc_lock to do it, 2629 * so the cache's magazine size may have changed. 2630 * If so, free the magazine and try again. 2631 */ 2632 if (ccp->cc_magsize != mtp->mt_magsize) { 2633 mutex_exit(&ccp->cc_lock); 2634 kmem_cache_free(mtp->mt_cache, emp); 2635 mutex_enter(&ccp->cc_lock); 2636 return (1); 2637 } 2638 2639 /* 2640 * We got a magazine of the right size. Add it to 2641 * the depot and try the whole dance again. 2642 */ 2643 kmem_depot_free(cp, &cp->cache_empty, emp); 2644 return (1); 2645 } 2646 2647 /* 2648 * We couldn't allocate an empty magazine, 2649 * so fall through to the slab layer. 2650 */ 2651 return (0); 2652 } 2653 2654 /* 2655 * Free a constructed object to cache cp. 2656 */ 2657 void 2658 kmem_cache_free(kmem_cache_t *cp, void *buf) 2659 { 2660 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2661 2662 /* 2663 * The client must not free either of the buffers passed to the move 2664 * callback function. 2665 */ 2666 ASSERT(cp->cache_defrag == NULL || 2667 cp->cache_defrag->kmd_thread != curthread || 2668 (buf != cp->cache_defrag->kmd_from_buf && 2669 buf != cp->cache_defrag->kmd_to_buf)); 2670 2671 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2672 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2673 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2674 /* log it so that we can warn about it */ 2675 cp->cache_dump.kd_unsafe++; 2676 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2677 return; 2678 } 2679 if (ccp->cc_flags & KMF_BUFTAG) { 2680 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2681 return; 2682 } 2683 } 2684 2685 mutex_enter(&ccp->cc_lock); 2686 /* 2687 * Any changes to this logic should be reflected in kmem_slab_prefill() 2688 */ 2689 for (;;) { 2690 /* 2691 * If there's a slot available in the current CPU's 2692 * loaded magazine, just put the object there and return. 2693 */ 2694 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2695 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2696 ccp->cc_free++; 2697 mutex_exit(&ccp->cc_lock); 2698 return; 2699 } 2700 2701 /* 2702 * The loaded magazine is full. If the previously loaded 2703 * magazine was empty, exchange them and try again. 2704 */ 2705 if (ccp->cc_prounds == 0) { 2706 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2707 continue; 2708 } 2709 2710 /* 2711 * If the magazine layer is disabled, break out now. 2712 */ 2713 if (ccp->cc_magsize == 0) 2714 break; 2715 2716 if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 2717 /* 2718 * We couldn't free our constructed object to the 2719 * magazine layer, so apply its destructor and free it 2720 * to the slab layer. 2721 */ 2722 break; 2723 } 2724 } 2725 mutex_exit(&ccp->cc_lock); 2726 kmem_slab_free_constructed(cp, buf, B_TRUE); 2727 } 2728 2729 static void 2730 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2731 { 2732 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2733 int cache_flags = cp->cache_flags; 2734 2735 kmem_bufctl_t *next, *head; 2736 size_t nbufs; 2737 2738 /* 2739 * Completely allocate the newly created slab and put the pre-allocated 2740 * buffers in magazines. Any of the buffers that cannot be put in 2741 * magazines must be returned to the slab. 2742 */ 2743 ASSERT(MUTEX_HELD(&cp->cache_lock)); 2744 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2745 ASSERT(cp->cache_constructor == NULL); 2746 ASSERT(sp->slab_cache == cp); 2747 ASSERT(sp->slab_refcnt == 1); 2748 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2749 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2750 2751 head = sp->slab_head; 2752 nbufs = (sp->slab_chunks - sp->slab_refcnt); 2753 sp->slab_head = NULL; 2754 sp->slab_refcnt += nbufs; 2755 cp->cache_bufslab -= nbufs; 2756 cp->cache_slab_alloc += nbufs; 2757 list_insert_head(&cp->cache_complete_slabs, sp); 2758 cp->cache_complete_slab_count++; 2759 mutex_exit(&cp->cache_lock); 2760 mutex_enter(&ccp->cc_lock); 2761 2762 while (head != NULL) { 2763 void *buf = KMEM_BUF(cp, head); 2764 /* 2765 * If there's a slot available in the current CPU's 2766 * loaded magazine, just put the object there and 2767 * continue. 2768 */ 2769 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2770 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2771 buf; 2772 ccp->cc_free++; 2773 nbufs--; 2774 head = head->bc_next; 2775 continue; 2776 } 2777 2778 /* 2779 * The loaded magazine is full. If the previously 2780 * loaded magazine was empty, exchange them and try 2781 * again. 2782 */ 2783 if (ccp->cc_prounds == 0) { 2784 kmem_cpu_reload(ccp, ccp->cc_ploaded, 2785 ccp->cc_prounds); 2786 continue; 2787 } 2788 2789 /* 2790 * If the magazine layer is disabled, break out now. 2791 */ 2792 2793 if (ccp->cc_magsize == 0) { 2794 break; 2795 } 2796 2797 if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2798 break; 2799 } 2800 mutex_exit(&ccp->cc_lock); 2801 if (nbufs != 0) { 2802 ASSERT(head != NULL); 2803 2804 /* 2805 * If there was a failure, return remaining objects to 2806 * the slab 2807 */ 2808 while (head != NULL) { 2809 ASSERT(nbufs != 0); 2810 next = head->bc_next; 2811 head->bc_next = NULL; 2812 kmem_slab_free(cp, KMEM_BUF(cp, head)); 2813 head = next; 2814 nbufs--; 2815 } 2816 } 2817 ASSERT(head == NULL); 2818 ASSERT(nbufs == 0); 2819 mutex_enter(&cp->cache_lock); 2820 } 2821 2822 void * 2823 kmem_zalloc(size_t size, int kmflag) 2824 { 2825 size_t index; 2826 void *buf; 2827 2828 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2829 kmem_cache_t *cp = kmem_alloc_table[index]; 2830 buf = kmem_cache_alloc(cp, kmflag); 2831 if (buf != NULL) { 2832 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2833 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2834 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2835 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2836 2837 if (cp->cache_flags & KMF_LITE) { 2838 KMEM_BUFTAG_LITE_ENTER(btp, 2839 kmem_lite_count, caller()); 2840 } 2841 } 2842 bzero(buf, size); 2843 } 2844 } else { 2845 buf = kmem_alloc(size, kmflag); 2846 if (buf != NULL) 2847 bzero(buf, size); 2848 } 2849 return (buf); 2850 } 2851 2852 void * 2853 kmem_alloc(size_t size, int kmflag) 2854 { 2855 size_t index; 2856 kmem_cache_t *cp; 2857 void *buf; 2858 2859 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2860 cp = kmem_alloc_table[index]; 2861 /* fall through to kmem_cache_alloc() */ 2862 2863 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2864 kmem_big_alloc_table_max) { 2865 cp = kmem_big_alloc_table[index]; 2866 /* fall through to kmem_cache_alloc() */ 2867 2868 } else { 2869 if (size == 0) { 2870 if (kmflag != KM_SLEEP && !(kmflag & KM_PANIC)) 2871 return (NULL); 2872 2873 /* 2874 * If this is a sleeping allocation or one that has 2875 * been specified to panic on allocation failure, we 2876 * consider it to be deprecated behavior to allocate 2877 * 0 bytes. If we have been configured to panic under 2878 * this condition, we panic; if to warn, we warn -- and 2879 * regardless, we log to the kmem_zerosized_log that 2880 * that this condition has occurred (which gives us 2881 * enough information to be able to debug it). 2882 */ 2883 if (kmem_panic && kmem_panic_zerosized) 2884 panic("attempted to kmem_alloc() size of 0"); 2885 2886 if (kmem_warn_zerosized) { 2887 cmn_err(CE_WARN, "kmem_alloc(): sleeping " 2888 "allocation with size of 0; " 2889 "see kmem_zerosized_log for details"); 2890 } 2891 2892 kmem_log_event(kmem_zerosized_log, NULL, NULL, NULL); 2893 2894 return (NULL); 2895 } 2896 2897 buf = vmem_alloc(kmem_oversize_arena, size, 2898 kmflag & KM_VMFLAGS); 2899 if (buf == NULL) 2900 kmem_log_event(kmem_failure_log, NULL, NULL, 2901 (void *)size); 2902 else if (KMEM_DUMP(kmem_slab_cache)) { 2903 /* stats for dump intercept */ 2904 kmem_dump_oversize_allocs++; 2905 if (size > kmem_dump_oversize_max) 2906 kmem_dump_oversize_max = size; 2907 } 2908 return (buf); 2909 } 2910 2911 buf = kmem_cache_alloc(cp, kmflag); 2912 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2913 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2914 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2915 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2916 2917 if (cp->cache_flags & KMF_LITE) { 2918 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2919 } 2920 } 2921 return (buf); 2922 } 2923 2924 void 2925 kmem_free(void *buf, size_t size) 2926 { 2927 size_t index; 2928 kmem_cache_t *cp; 2929 2930 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2931 cp = kmem_alloc_table[index]; 2932 /* fall through to kmem_cache_free() */ 2933 2934 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2935 kmem_big_alloc_table_max) { 2936 cp = kmem_big_alloc_table[index]; 2937 /* fall through to kmem_cache_free() */ 2938 2939 } else { 2940 EQUIV(buf == NULL, size == 0); 2941 if (buf == NULL && size == 0) 2942 return; 2943 vmem_free(kmem_oversize_arena, buf, size); 2944 return; 2945 } 2946 2947 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2948 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2949 uint32_t *ip = (uint32_t *)btp; 2950 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2951 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2952 kmem_error(KMERR_DUPFREE, cp, buf); 2953 return; 2954 } 2955 if (KMEM_SIZE_VALID(ip[1])) { 2956 ip[0] = KMEM_SIZE_ENCODE(size); 2957 kmem_error(KMERR_BADSIZE, cp, buf); 2958 } else { 2959 kmem_error(KMERR_REDZONE, cp, buf); 2960 } 2961 return; 2962 } 2963 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2964 kmem_error(KMERR_REDZONE, cp, buf); 2965 return; 2966 } 2967 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2968 if (cp->cache_flags & KMF_LITE) { 2969 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2970 caller()); 2971 } 2972 } 2973 kmem_cache_free(cp, buf); 2974 } 2975 2976 void * 2977 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2978 { 2979 size_t realsize = size + vmp->vm_quantum; 2980 void *addr; 2981 2982 /* 2983 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2984 * vm_quantum will cause integer wraparound. Check for this, and 2985 * blow off the firewall page in this case. Note that such a 2986 * giant allocation (the entire kernel address space) can never 2987 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2988 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2989 * corresponding check in kmem_firewall_va_free(). 2990 */ 2991 if (realsize < size) 2992 realsize = size; 2993 2994 /* 2995 * While boot still owns resource management, make sure that this 2996 * redzone virtual address allocation is properly accounted for in 2997 * OBPs "virtual-memory" "available" lists because we're 2998 * effectively claiming them for a red zone. If we don't do this, 2999 * the available lists become too fragmented and too large for the 3000 * current boot/kernel memory list interface. 3001 */ 3002 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 3003 3004 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 3005 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 3006 3007 return (addr); 3008 } 3009 3010 void 3011 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 3012 { 3013 ASSERT((kvseg.s_base == NULL ? 3014 va_to_pfn((char *)addr + size) : 3015 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 3016 3017 vmem_free(vmp, addr, size + vmp->vm_quantum); 3018 } 3019 3020 /* 3021 * Try to allocate at least `size' bytes of memory without sleeping or 3022 * panicking. Return actual allocated size in `asize'. If allocation failed, 3023 * try final allocation with sleep or panic allowed. 3024 */ 3025 void * 3026 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 3027 { 3028 void *p; 3029 3030 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3031 do { 3032 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 3033 if (p != NULL) 3034 return (p); 3035 *asize += KMEM_ALIGN; 3036 } while (*asize <= PAGESIZE); 3037 3038 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3039 return (kmem_alloc(*asize, kmflag)); 3040 } 3041 3042 /* 3043 * Reclaim all unused memory from a cache. 3044 */ 3045 static void 3046 kmem_cache_reap(kmem_cache_t *cp) 3047 { 3048 ASSERT(taskq_member(kmem_taskq, curthread)); 3049 cp->cache_reap++; 3050 3051 /* 3052 * Ask the cache's owner to free some memory if possible. 3053 * The idea is to handle things like the inode cache, which 3054 * typically sits on a bunch of memory that it doesn't truly 3055 * *need*. Reclaim policy is entirely up to the owner; this 3056 * callback is just an advisory plea for help. 3057 */ 3058 if (cp->cache_reclaim != NULL) { 3059 long delta; 3060 3061 /* 3062 * Reclaimed memory should be reapable (not included in the 3063 * depot's working set). 3064 */ 3065 delta = cp->cache_full.ml_total; 3066 cp->cache_reclaim(cp->cache_private); 3067 delta = cp->cache_full.ml_total - delta; 3068 if (delta > 0) { 3069 mutex_enter(&cp->cache_depot_lock); 3070 cp->cache_full.ml_reaplimit += delta; 3071 cp->cache_full.ml_min += delta; 3072 mutex_exit(&cp->cache_depot_lock); 3073 } 3074 } 3075 3076 kmem_depot_ws_reap(cp); 3077 3078 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3079 kmem_cache_defrag(cp); 3080 } 3081 } 3082 3083 static void 3084 kmem_reap_timeout(void *flag_arg) 3085 { 3086 uint32_t *flag = (uint32_t *)flag_arg; 3087 3088 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3089 *flag = 0; 3090 } 3091 3092 static void 3093 kmem_reap_done(void *flag) 3094 { 3095 if (!callout_init_done) { 3096 /* can't schedule a timeout at this point */ 3097 kmem_reap_timeout(flag); 3098 } else { 3099 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 3100 } 3101 } 3102 3103 static void 3104 kmem_reap_start(void *flag) 3105 { 3106 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3107 3108 if (flag == &kmem_reaping) { 3109 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3110 /* 3111 * if we have segkp under heap, reap segkp cache. 3112 */ 3113 if (segkp_fromheap) 3114 segkp_cache_free(); 3115 } 3116 else 3117 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3118 3119 /* 3120 * We use taskq_dispatch() to schedule a timeout to clear 3121 * the flag so that kmem_reap() becomes self-throttling: 3122 * we won't reap again until the current reap completes *and* 3123 * at least kmem_reap_interval ticks have elapsed. 3124 */ 3125 if (taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP) == 3126 TASKQID_INVALID) 3127 kmem_reap_done(flag); 3128 } 3129 3130 static void 3131 kmem_reap_common(void *flag_arg) 3132 { 3133 uint32_t *flag = (uint32_t *)flag_arg; 3134 3135 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3136 atomic_cas_32(flag, 0, 1) != 0) 3137 return; 3138 3139 /* 3140 * It may not be kosher to do memory allocation when a reap is called 3141 * (for example, if vmem_populate() is in the call chain). So we 3142 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch 3143 * fails, we reset the flag, and the next reap will try again. 3144 */ 3145 if (taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC) == 3146 TASKQID_INVALID) 3147 *flag = 0; 3148 } 3149 3150 /* 3151 * Reclaim all unused memory from all caches. Called from the VM system 3152 * when memory gets tight. 3153 */ 3154 void 3155 kmem_reap(void) 3156 { 3157 kmem_reap_common(&kmem_reaping); 3158 } 3159 3160 /* 3161 * Reclaim all unused memory from identifier arenas, called when a vmem 3162 * arena not back by memory is exhausted. Since reaping memory-backed caches 3163 * cannot help with identifier exhaustion, we avoid both a large amount of 3164 * work and unwanted side-effects from reclaim callbacks. 3165 */ 3166 void 3167 kmem_reap_idspace(void) 3168 { 3169 kmem_reap_common(&kmem_reaping_idspace); 3170 } 3171 3172 /* 3173 * Purge all magazines from a cache and set its magazine limit to zero. 3174 * All calls are serialized by the kmem_taskq lock, except for the final 3175 * call from kmem_cache_destroy(). 3176 */ 3177 static void 3178 kmem_cache_magazine_purge(kmem_cache_t *cp) 3179 { 3180 kmem_cpu_cache_t *ccp; 3181 kmem_magazine_t *mp, *pmp; 3182 int rounds, prounds, cpu_seqid; 3183 3184 ASSERT(!list_link_active(&cp->cache_link) || 3185 taskq_member(kmem_taskq, curthread)); 3186 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3187 3188 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3189 ccp = &cp->cache_cpu[cpu_seqid]; 3190 3191 mutex_enter(&ccp->cc_lock); 3192 mp = ccp->cc_loaded; 3193 pmp = ccp->cc_ploaded; 3194 rounds = ccp->cc_rounds; 3195 prounds = ccp->cc_prounds; 3196 ccp->cc_loaded = NULL; 3197 ccp->cc_ploaded = NULL; 3198 ccp->cc_rounds = -1; 3199 ccp->cc_prounds = -1; 3200 ccp->cc_magsize = 0; 3201 mutex_exit(&ccp->cc_lock); 3202 3203 if (mp) 3204 kmem_magazine_destroy(cp, mp, rounds); 3205 if (pmp) 3206 kmem_magazine_destroy(cp, pmp, prounds); 3207 } 3208 3209 kmem_depot_ws_zero(cp); 3210 kmem_depot_ws_reap(cp); 3211 } 3212 3213 /* 3214 * Enable per-cpu magazines on a cache. 3215 */ 3216 static void 3217 kmem_cache_magazine_enable(kmem_cache_t *cp) 3218 { 3219 int cpu_seqid; 3220 3221 if (cp->cache_flags & KMF_NOMAGAZINE) 3222 return; 3223 3224 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3225 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3226 mutex_enter(&ccp->cc_lock); 3227 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3228 mutex_exit(&ccp->cc_lock); 3229 } 3230 3231 } 3232 3233 /* 3234 * Allow our caller to determine if there are running reaps. 3235 * 3236 * This call is very conservative and may return B_TRUE even when 3237 * reaping activity isn't active. If it returns B_FALSE, then reaping 3238 * activity is definitely inactive. 3239 */ 3240 boolean_t 3241 kmem_cache_reap_active(void) 3242 { 3243 return (!taskq_empty(kmem_taskq)); 3244 } 3245 3246 /* 3247 * Reap (almost) everything soon. 3248 * 3249 * Note: this does not wait for the reap-tasks to complete. Caller 3250 * should use kmem_cache_reap_active() (above) and/or moderation to 3251 * avoid scheduling too many reap-tasks. 3252 */ 3253 void 3254 kmem_cache_reap_soon(kmem_cache_t *cp) 3255 { 3256 ASSERT(list_link_active(&cp->cache_link)); 3257 3258 kmem_depot_ws_zero(cp); 3259 3260 (void) taskq_dispatch(kmem_taskq, 3261 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3262 } 3263 3264 /* 3265 * Recompute a cache's magazine size. The trade-off is that larger magazines 3266 * provide a higher transfer rate with the depot, while smaller magazines 3267 * reduce memory consumption. Magazine resizing is an expensive operation; 3268 * it should not be done frequently. 3269 * 3270 * Changes to the magazine size are serialized by the kmem_taskq lock. 3271 * 3272 * Note: at present this only grows the magazine size. It might be useful 3273 * to allow shrinkage too. 3274 */ 3275 static void 3276 kmem_cache_magazine_resize(kmem_cache_t *cp) 3277 { 3278 kmem_magtype_t *mtp = cp->cache_magtype; 3279 3280 ASSERT(taskq_member(kmem_taskq, curthread)); 3281 3282 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3283 kmem_cache_magazine_purge(cp); 3284 mutex_enter(&cp->cache_depot_lock); 3285 cp->cache_magtype = ++mtp; 3286 cp->cache_depot_contention_prev = 3287 cp->cache_depot_contention + INT_MAX; 3288 mutex_exit(&cp->cache_depot_lock); 3289 kmem_cache_magazine_enable(cp); 3290 } 3291 } 3292 3293 /* 3294 * Rescale a cache's hash table, so that the table size is roughly the 3295 * cache size. We want the average lookup time to be extremely small. 3296 */ 3297 static void 3298 kmem_hash_rescale(kmem_cache_t *cp) 3299 { 3300 kmem_bufctl_t **old_table, **new_table, *bcp; 3301 size_t old_size, new_size, h; 3302 3303 ASSERT(taskq_member(kmem_taskq, curthread)); 3304 3305 new_size = MAX(KMEM_HASH_INITIAL, 3306 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3307 old_size = cp->cache_hash_mask + 1; 3308 3309 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3310 return; 3311 3312 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3313 VM_NOSLEEP); 3314 if (new_table == NULL) 3315 return; 3316 bzero(new_table, new_size * sizeof (void *)); 3317 3318 mutex_enter(&cp->cache_lock); 3319 3320 old_size = cp->cache_hash_mask + 1; 3321 old_table = cp->cache_hash_table; 3322 3323 cp->cache_hash_mask = new_size - 1; 3324 cp->cache_hash_table = new_table; 3325 cp->cache_rescale++; 3326 3327 for (h = 0; h < old_size; h++) { 3328 bcp = old_table[h]; 3329 while (bcp != NULL) { 3330 void *addr = bcp->bc_addr; 3331 kmem_bufctl_t *next_bcp = bcp->bc_next; 3332 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3333 bcp->bc_next = *hash_bucket; 3334 *hash_bucket = bcp; 3335 bcp = next_bcp; 3336 } 3337 } 3338 3339 mutex_exit(&cp->cache_lock); 3340 3341 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3342 } 3343 3344 /* 3345 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3346 * update, magazine resizing, and slab consolidation. 3347 */ 3348 static void 3349 kmem_cache_update(kmem_cache_t *cp) 3350 { 3351 int need_hash_rescale = 0; 3352 int need_magazine_resize = 0; 3353 3354 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3355 3356 /* 3357 * If the cache has become much larger or smaller than its hash table, 3358 * fire off a request to rescale the hash table. 3359 */ 3360 mutex_enter(&cp->cache_lock); 3361 3362 if ((cp->cache_flags & KMF_HASH) && 3363 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3364 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3365 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3366 need_hash_rescale = 1; 3367 3368 mutex_exit(&cp->cache_lock); 3369 3370 /* 3371 * Update the depot working set statistics. 3372 */ 3373 kmem_depot_ws_update(cp); 3374 3375 /* 3376 * If there's a lot of contention in the depot, 3377 * increase the magazine size. 3378 */ 3379 mutex_enter(&cp->cache_depot_lock); 3380 3381 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3382 (int)(cp->cache_depot_contention - 3383 cp->cache_depot_contention_prev) > kmem_depot_contention) 3384 need_magazine_resize = 1; 3385 3386 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3387 3388 mutex_exit(&cp->cache_depot_lock); 3389 3390 if (need_hash_rescale) 3391 (void) taskq_dispatch(kmem_taskq, 3392 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3393 3394 if (need_magazine_resize) 3395 (void) taskq_dispatch(kmem_taskq, 3396 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3397 3398 if (cp->cache_defrag != NULL) 3399 (void) taskq_dispatch(kmem_taskq, 3400 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3401 } 3402 3403 static void kmem_update(void *); 3404 3405 static void 3406 kmem_update_timeout(void *dummy) 3407 { 3408 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3409 } 3410 3411 static void 3412 kmem_update(void *dummy) 3413 { 3414 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3415 3416 /* 3417 * We use taskq_dispatch() to reschedule the timeout so that 3418 * kmem_update() becomes self-throttling: it won't schedule 3419 * new tasks until all previous tasks have completed. 3420 */ 3421 if (taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP) 3422 == TASKQID_INVALID) 3423 kmem_update_timeout(NULL); 3424 } 3425 3426 static int 3427 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3428 { 3429 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3430 kmem_cache_t *cp = ksp->ks_private; 3431 uint64_t cpu_buf_avail; 3432 uint64_t buf_avail = 0; 3433 int cpu_seqid; 3434 long reap; 3435 3436 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3437 3438 if (rw == KSTAT_WRITE) 3439 return (EACCES); 3440 3441 mutex_enter(&cp->cache_lock); 3442 3443 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3444 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3445 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3446 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3447 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3448 3449 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3450 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3451 3452 mutex_enter(&ccp->cc_lock); 3453 3454 cpu_buf_avail = 0; 3455 if (ccp->cc_rounds > 0) 3456 cpu_buf_avail += ccp->cc_rounds; 3457 if (ccp->cc_prounds > 0) 3458 cpu_buf_avail += ccp->cc_prounds; 3459 3460 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3461 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3462 buf_avail += cpu_buf_avail; 3463 3464 mutex_exit(&ccp->cc_lock); 3465 } 3466 3467 mutex_enter(&cp->cache_depot_lock); 3468 3469 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3470 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3471 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3472 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3473 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3474 kmcp->kmc_magazine_size.value.ui64 = 3475 (cp->cache_flags & KMF_NOMAGAZINE) ? 3476 0 : cp->cache_magtype->mt_magsize; 3477 3478 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3479 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3480 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3481 3482 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3483 reap = MIN(reap, cp->cache_full.ml_total); 3484 3485 mutex_exit(&cp->cache_depot_lock); 3486 3487 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3488 kmcp->kmc_align.value.ui64 = cp->cache_align; 3489 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3490 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3491 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3492 buf_avail += cp->cache_bufslab; 3493 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3494 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3495 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3496 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3497 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3498 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3499 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3500 cp->cache_hash_mask + 1 : 0; 3501 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3502 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3503 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3504 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3505 3506 if (cp->cache_defrag == NULL) { 3507 kmcp->kmc_move_callbacks.value.ui64 = 0; 3508 kmcp->kmc_move_yes.value.ui64 = 0; 3509 kmcp->kmc_move_no.value.ui64 = 0; 3510 kmcp->kmc_move_later.value.ui64 = 0; 3511 kmcp->kmc_move_dont_need.value.ui64 = 0; 3512 kmcp->kmc_move_dont_know.value.ui64 = 0; 3513 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3514 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3515 kmcp->kmc_defrag.value.ui64 = 0; 3516 kmcp->kmc_scan.value.ui64 = 0; 3517 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3518 } else { 3519 int64_t reclaimable; 3520 3521 kmem_defrag_t *kd = cp->cache_defrag; 3522 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3523 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3524 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3525 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3526 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3527 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3528 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3529 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3530 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3531 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3532 3533 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3534 reclaimable = MAX(reclaimable, 0); 3535 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3536 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3537 } 3538 3539 mutex_exit(&cp->cache_lock); 3540 return (0); 3541 } 3542 3543 /* 3544 * Return a named statistic about a particular cache. 3545 * This shouldn't be called very often, so it's currently designed for 3546 * simplicity (leverages existing kstat support) rather than efficiency. 3547 */ 3548 uint64_t 3549 kmem_cache_stat(kmem_cache_t *cp, char *name) 3550 { 3551 int i; 3552 kstat_t *ksp = cp->cache_kstat; 3553 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3554 uint64_t value = 0; 3555 3556 if (ksp != NULL) { 3557 mutex_enter(&kmem_cache_kstat_lock); 3558 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3559 for (i = 0; i < ksp->ks_ndata; i++) { 3560 if (strcmp(knp[i].name, name) == 0) { 3561 value = knp[i].value.ui64; 3562 break; 3563 } 3564 } 3565 mutex_exit(&kmem_cache_kstat_lock); 3566 } 3567 return (value); 3568 } 3569 3570 /* 3571 * Return an estimate of currently available kernel heap memory. 3572 * On 32-bit systems, physical memory may exceed virtual memory, 3573 * we just truncate the result at 1GB. 3574 */ 3575 size_t 3576 kmem_avail(void) 3577 { 3578 spgcnt_t rmem = availrmem - tune.t_minarmem; 3579 spgcnt_t fmem = freemem - minfree; 3580 3581 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3582 1 << (30 - PAGESHIFT)))); 3583 } 3584 3585 /* 3586 * Return the maximum amount of memory that is (in theory) allocatable 3587 * from the heap. This may be used as an estimate only since there 3588 * is no guarentee this space will still be available when an allocation 3589 * request is made, nor that the space may be allocated in one big request 3590 * due to kernel heap fragmentation. 3591 */ 3592 size_t 3593 kmem_maxavail(void) 3594 { 3595 spgcnt_t pmem = availrmem - tune.t_minarmem; 3596 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3597 3598 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3599 } 3600 3601 /* 3602 * Indicate whether memory-intensive kmem debugging is enabled. 3603 */ 3604 int 3605 kmem_debugging(void) 3606 { 3607 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3608 } 3609 3610 /* binning function, sorts finely at the two extremes */ 3611 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3612 ((((sp)->slab_refcnt <= (binshift)) || \ 3613 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3614 ? -(sp)->slab_refcnt \ 3615 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3616 3617 /* 3618 * Minimizing the number of partial slabs on the freelist minimizes 3619 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3620 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3621 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3622 * the most-used slabs at the front of the list where they have the best chance 3623 * of being completely allocated, and the least-used slabs at a safe distance 3624 * from the front to improve the odds that the few remaining buffers will all be 3625 * freed before another allocation can tie up the slab. For that reason a slab 3626 * with a higher slab_refcnt sorts less than than a slab with a lower 3627 * slab_refcnt. 3628 * 3629 * However, if a slab has at least one buffer that is deemed unfreeable, we 3630 * would rather have that slab at the front of the list regardless of 3631 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3632 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3633 * callback, the slab is marked unfreeable for as long as it remains on the 3634 * freelist. 3635 */ 3636 static int 3637 kmem_partial_slab_cmp(const void *p0, const void *p1) 3638 { 3639 const kmem_cache_t *cp; 3640 const kmem_slab_t *s0 = p0; 3641 const kmem_slab_t *s1 = p1; 3642 int w0, w1; 3643 size_t binshift; 3644 3645 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3646 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3647 ASSERT(s0->slab_cache == s1->slab_cache); 3648 cp = s1->slab_cache; 3649 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3650 binshift = cp->cache_partial_binshift; 3651 3652 /* weight of first slab */ 3653 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3654 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3655 w0 -= cp->cache_maxchunks; 3656 } 3657 3658 /* weight of second slab */ 3659 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3660 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3661 w1 -= cp->cache_maxchunks; 3662 } 3663 3664 if (w0 < w1) 3665 return (-1); 3666 if (w0 > w1) 3667 return (1); 3668 3669 /* compare pointer values */ 3670 if ((uintptr_t)s0 < (uintptr_t)s1) 3671 return (-1); 3672 if ((uintptr_t)s0 > (uintptr_t)s1) 3673 return (1); 3674 3675 return (0); 3676 } 3677 3678 /* 3679 * It must be valid to call the destructor (if any) on a newly created object. 3680 * That is, the constructor (if any) must leave the object in a valid state for 3681 * the destructor. 3682 */ 3683 kmem_cache_t * 3684 kmem_cache_create( 3685 char *name, /* descriptive name for this cache */ 3686 size_t bufsize, /* size of the objects it manages */ 3687 size_t align, /* required object alignment */ 3688 int (*constructor)(void *, void *, int), /* object constructor */ 3689 void (*destructor)(void *, void *), /* object destructor */ 3690 void (*reclaim)(void *), /* memory reclaim callback */ 3691 void *private, /* pass-thru arg for constr/destr/reclaim */ 3692 vmem_t *vmp, /* vmem source for slab allocation */ 3693 int cflags) /* cache creation flags */ 3694 { 3695 int cpu_seqid; 3696 size_t chunksize; 3697 kmem_cache_t *cp; 3698 kmem_magtype_t *mtp; 3699 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3700 3701 #ifdef DEBUG 3702 /* 3703 * Cache names should conform to the rules for valid C identifiers 3704 */ 3705 if (!strident_valid(name)) { 3706 cmn_err(CE_CONT, 3707 "kmem_cache_create: '%s' is an invalid cache name\n" 3708 "cache names must conform to the rules for " 3709 "C identifiers\n", name); 3710 } 3711 #endif /* DEBUG */ 3712 3713 if (vmp == NULL) 3714 vmp = kmem_default_arena; 3715 3716 /* 3717 * If this kmem cache has an identifier vmem arena as its source, mark 3718 * it such to allow kmem_reap_idspace(). 3719 */ 3720 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3721 if (vmp->vm_cflags & VMC_IDENTIFIER) 3722 cflags |= KMC_IDENTIFIER; 3723 3724 /* 3725 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3726 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3727 * false sharing of per-CPU data. 3728 */ 3729 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3730 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3731 bzero(cp, csize); 3732 list_link_init(&cp->cache_link); 3733 3734 if (align == 0) 3735 align = KMEM_ALIGN; 3736 3737 /* 3738 * If we're not at least KMEM_ALIGN aligned, we can't use free 3739 * memory to hold bufctl information (because we can't safely 3740 * perform word loads and stores on it). 3741 */ 3742 if (align < KMEM_ALIGN) 3743 cflags |= KMC_NOTOUCH; 3744 3745 if (!ISP2(align) || align > vmp->vm_quantum) 3746 panic("kmem_cache_create: bad alignment %lu", align); 3747 3748 mutex_enter(&kmem_flags_lock); 3749 if (kmem_flags & KMF_RANDOMIZE) 3750 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3751 KMF_RANDOMIZE; 3752 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3753 mutex_exit(&kmem_flags_lock); 3754 3755 /* 3756 * Make sure all the various flags are reasonable. 3757 */ 3758 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3759 3760 if (cp->cache_flags & KMF_LITE) { 3761 if (bufsize >= kmem_lite_minsize && 3762 align <= kmem_lite_maxalign && 3763 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3764 cp->cache_flags |= KMF_BUFTAG; 3765 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3766 } else { 3767 cp->cache_flags &= ~KMF_DEBUG; 3768 } 3769 } 3770 3771 if (cp->cache_flags & KMF_DEADBEEF) 3772 cp->cache_flags |= KMF_REDZONE; 3773 3774 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3775 cp->cache_flags |= KMF_NOMAGAZINE; 3776 3777 if (cflags & KMC_NODEBUG) 3778 cp->cache_flags &= ~KMF_DEBUG; 3779 3780 if (cflags & KMC_NOTOUCH) 3781 cp->cache_flags &= ~KMF_TOUCH; 3782 3783 if (cflags & KMC_PREFILL) 3784 cp->cache_flags |= KMF_PREFILL; 3785 3786 if (cflags & KMC_NOHASH) 3787 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3788 3789 if (cflags & KMC_NOMAGAZINE) 3790 cp->cache_flags |= KMF_NOMAGAZINE; 3791 3792 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3793 cp->cache_flags |= KMF_REDZONE; 3794 3795 if (!(cp->cache_flags & KMF_AUDIT)) 3796 cp->cache_flags &= ~KMF_CONTENTS; 3797 3798 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3799 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3800 cp->cache_flags |= KMF_FIREWALL; 3801 3802 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3803 cp->cache_flags &= ~KMF_FIREWALL; 3804 3805 if (cp->cache_flags & KMF_FIREWALL) { 3806 cp->cache_flags &= ~KMF_BUFTAG; 3807 cp->cache_flags |= KMF_NOMAGAZINE; 3808 ASSERT(vmp == kmem_default_arena); 3809 vmp = kmem_firewall_arena; 3810 } 3811 3812 /* 3813 * Set cache properties. 3814 */ 3815 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3816 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3817 cp->cache_bufsize = bufsize; 3818 cp->cache_align = align; 3819 cp->cache_constructor = constructor; 3820 cp->cache_destructor = destructor; 3821 cp->cache_reclaim = reclaim; 3822 cp->cache_private = private; 3823 cp->cache_arena = vmp; 3824 cp->cache_cflags = cflags; 3825 3826 /* 3827 * Determine the chunk size. 3828 */ 3829 chunksize = bufsize; 3830 3831 if (align >= KMEM_ALIGN) { 3832 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3833 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3834 } 3835 3836 if (cp->cache_flags & KMF_BUFTAG) { 3837 cp->cache_bufctl = chunksize; 3838 cp->cache_buftag = chunksize; 3839 if (cp->cache_flags & KMF_LITE) 3840 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3841 else 3842 chunksize += sizeof (kmem_buftag_t); 3843 } 3844 3845 if (cp->cache_flags & KMF_DEADBEEF) { 3846 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3847 if (cp->cache_flags & KMF_LITE) 3848 cp->cache_verify = sizeof (uint64_t); 3849 } 3850 3851 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3852 3853 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3854 3855 /* 3856 * Now that we know the chunk size, determine the optimal slab size. 3857 */ 3858 if (vmp == kmem_firewall_arena) { 3859 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3860 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3861 cp->cache_maxcolor = cp->cache_mincolor; 3862 cp->cache_flags |= KMF_HASH; 3863 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3864 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3865 !(cp->cache_flags & KMF_AUDIT) && 3866 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3867 cp->cache_slabsize = vmp->vm_quantum; 3868 cp->cache_mincolor = 0; 3869 cp->cache_maxcolor = 3870 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3871 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3872 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3873 } else { 3874 size_t chunks, bestfit, waste, slabsize; 3875 size_t minwaste = LONG_MAX; 3876 3877 bestfit = 0; 3878 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3879 slabsize = P2ROUNDUP(chunksize * chunks, 3880 vmp->vm_quantum); 3881 chunks = slabsize / chunksize; 3882 waste = (slabsize % chunksize) / chunks; 3883 if (waste < minwaste) { 3884 minwaste = waste; 3885 bestfit = slabsize; 3886 } 3887 } 3888 if (cflags & KMC_QCACHE) 3889 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3890 cp->cache_slabsize = bestfit; 3891 cp->cache_mincolor = 0; 3892 cp->cache_maxcolor = bestfit % chunksize; 3893 cp->cache_flags |= KMF_HASH; 3894 } 3895 3896 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3897 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3898 3899 /* 3900 * Disallowing prefill when either the DEBUG or HASH flag is set or when 3901 * there is a constructor avoids some tricky issues with debug setup 3902 * that may be revisited later. We cannot allow prefill in a 3903 * metadata cache because of potential recursion. 3904 */ 3905 if (vmp == kmem_msb_arena || 3906 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) || 3907 cp->cache_constructor != NULL) 3908 cp->cache_flags &= ~KMF_PREFILL; 3909 3910 if (cp->cache_flags & KMF_HASH) { 3911 ASSERT(!(cflags & KMC_NOHASH)); 3912 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3913 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3914 } 3915 3916 if (cp->cache_maxcolor >= vmp->vm_quantum) 3917 cp->cache_maxcolor = vmp->vm_quantum - 1; 3918 3919 cp->cache_color = cp->cache_mincolor; 3920 3921 /* 3922 * Initialize the rest of the slab layer. 3923 */ 3924 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3925 3926 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3927 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3928 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3929 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3930 /* reuse partial slab AVL linkage for complete slab list linkage */ 3931 list_create(&cp->cache_complete_slabs, 3932 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3933 3934 if (cp->cache_flags & KMF_HASH) { 3935 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3936 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3937 bzero(cp->cache_hash_table, 3938 KMEM_HASH_INITIAL * sizeof (void *)); 3939 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3940 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3941 } 3942 3943 /* 3944 * Initialize the depot. 3945 */ 3946 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3947 3948 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3949 continue; 3950 3951 cp->cache_magtype = mtp; 3952 3953 /* 3954 * Initialize the CPU layer. 3955 */ 3956 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3957 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3958 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3959 ccp->cc_flags = cp->cache_flags; 3960 ccp->cc_rounds = -1; 3961 ccp->cc_prounds = -1; 3962 } 3963 3964 /* 3965 * Create the cache's kstats. 3966 */ 3967 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3968 "kmem_cache", KSTAT_TYPE_NAMED, 3969 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3970 KSTAT_FLAG_VIRTUAL)) != NULL) { 3971 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3972 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 3973 cp->cache_kstat->ks_private = cp; 3974 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 3975 kstat_install(cp->cache_kstat); 3976 } 3977 3978 /* 3979 * Add the cache to the global list. This makes it visible 3980 * to kmem_update(), so the cache must be ready for business. 3981 */ 3982 mutex_enter(&kmem_cache_lock); 3983 list_insert_tail(&kmem_caches, cp); 3984 mutex_exit(&kmem_cache_lock); 3985 3986 if (kmem_ready) 3987 kmem_cache_magazine_enable(cp); 3988 3989 return (cp); 3990 } 3991 3992 static int 3993 kmem_move_cmp(const void *buf, const void *p) 3994 { 3995 const kmem_move_t *kmm = p; 3996 uintptr_t v1 = (uintptr_t)buf; 3997 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3998 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3999 } 4000 4001 static void 4002 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 4003 { 4004 kmd->kmd_reclaim_numer = 1; 4005 } 4006 4007 /* 4008 * Initially, when choosing candidate slabs for buffers to move, we want to be 4009 * very selective and take only slabs that are less than 4010 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 4011 * slabs, then we raise the allocation ceiling incrementally. The reclaim 4012 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 4013 * longer fragmented. 4014 */ 4015 static void 4016 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 4017 { 4018 if (direction > 0) { 4019 /* make it easier to find a candidate slab */ 4020 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 4021 kmd->kmd_reclaim_numer++; 4022 } 4023 } else { 4024 /* be more selective */ 4025 if (kmd->kmd_reclaim_numer > 1) { 4026 kmd->kmd_reclaim_numer--; 4027 } 4028 } 4029 } 4030 4031 void 4032 kmem_cache_set_move(kmem_cache_t *cp, 4033 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 4034 { 4035 kmem_defrag_t *defrag; 4036 4037 ASSERT(move != NULL); 4038 /* 4039 * The consolidator does not support NOTOUCH caches because kmem cannot 4040 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 4041 * a low order bit usable by clients to distinguish uninitialized memory 4042 * from known objects (see kmem_slab_create). 4043 */ 4044 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 4045 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 4046 4047 /* 4048 * We should not be holding anyone's cache lock when calling 4049 * kmem_cache_alloc(), so allocate in all cases before acquiring the 4050 * lock. 4051 */ 4052 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 4053 4054 mutex_enter(&cp->cache_lock); 4055 4056 if (KMEM_IS_MOVABLE(cp)) { 4057 if (cp->cache_move == NULL) { 4058 ASSERT(cp->cache_slab_alloc == 0); 4059 4060 cp->cache_defrag = defrag; 4061 defrag = NULL; /* nothing to free */ 4062 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 4063 avl_create(&cp->cache_defrag->kmd_moves_pending, 4064 kmem_move_cmp, sizeof (kmem_move_t), 4065 offsetof(kmem_move_t, kmm_entry)); 4066 /* LINTED: E_TRUE_LOGICAL_EXPR */ 4067 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 4068 /* reuse the slab's AVL linkage for deadlist linkage */ 4069 list_create(&cp->cache_defrag->kmd_deadlist, 4070 sizeof (kmem_slab_t), 4071 offsetof(kmem_slab_t, slab_link)); 4072 kmem_reset_reclaim_threshold(cp->cache_defrag); 4073 } 4074 cp->cache_move = move; 4075 } 4076 4077 mutex_exit(&cp->cache_lock); 4078 4079 if (defrag != NULL) { 4080 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 4081 } 4082 } 4083 4084 void 4085 kmem_cache_destroy(kmem_cache_t *cp) 4086 { 4087 int cpu_seqid; 4088 4089 /* 4090 * Remove the cache from the global cache list so that no one else 4091 * can schedule tasks on its behalf, wait for any pending tasks to 4092 * complete, purge the cache, and then destroy it. 4093 */ 4094 mutex_enter(&kmem_cache_lock); 4095 list_remove(&kmem_caches, cp); 4096 mutex_exit(&kmem_cache_lock); 4097 4098 if (kmem_taskq != NULL) 4099 taskq_wait(kmem_taskq); 4100 4101 if (kmem_move_taskq != NULL && cp->cache_defrag != NULL) 4102 taskq_wait(kmem_move_taskq); 4103 4104 kmem_cache_magazine_purge(cp); 4105 4106 mutex_enter(&cp->cache_lock); 4107 if (cp->cache_buftotal != 0) 4108 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 4109 cp->cache_name, (void *)cp); 4110 if (cp->cache_defrag != NULL) { 4111 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 4112 list_destroy(&cp->cache_defrag->kmd_deadlist); 4113 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 4114 cp->cache_defrag = NULL; 4115 } 4116 /* 4117 * The cache is now dead. There should be no further activity. We 4118 * enforce this by setting land mines in the constructor, destructor, 4119 * reclaim, and move routines that induce a kernel text fault if 4120 * invoked. 4121 */ 4122 cp->cache_constructor = (int (*)(void *, void *, int))1; 4123 cp->cache_destructor = (void (*)(void *, void *))2; 4124 cp->cache_reclaim = (void (*)(void *))3; 4125 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 4126 mutex_exit(&cp->cache_lock); 4127 4128 kstat_delete(cp->cache_kstat); 4129 4130 if (cp->cache_hash_table != NULL) 4131 vmem_free(kmem_hash_arena, cp->cache_hash_table, 4132 (cp->cache_hash_mask + 1) * sizeof (void *)); 4133 4134 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 4135 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 4136 4137 mutex_destroy(&cp->cache_depot_lock); 4138 mutex_destroy(&cp->cache_lock); 4139 4140 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 4141 } 4142 4143 /*ARGSUSED*/ 4144 static int 4145 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 4146 { 4147 ASSERT(MUTEX_HELD(&cpu_lock)); 4148 if (what == CPU_UNCONFIG) { 4149 kmem_cache_applyall(kmem_cache_magazine_purge, 4150 kmem_taskq, TQ_SLEEP); 4151 kmem_cache_applyall(kmem_cache_magazine_enable, 4152 kmem_taskq, TQ_SLEEP); 4153 } 4154 return (0); 4155 } 4156 4157 static void 4158 kmem_alloc_caches_create(const int *array, size_t count, 4159 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 4160 { 4161 char name[KMEM_CACHE_NAMELEN + 1]; 4162 size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 4163 size_t size = table_unit; 4164 int i; 4165 4166 for (i = 0; i < count; i++) { 4167 size_t cache_size = array[i]; 4168 size_t align = KMEM_ALIGN; 4169 kmem_cache_t *cp; 4170 4171 /* if the table has an entry for maxbuf, we're done */ 4172 if (size > maxbuf) 4173 break; 4174 4175 /* cache size must be a multiple of the table unit */ 4176 ASSERT(P2PHASE(cache_size, table_unit) == 0); 4177 4178 /* 4179 * If they allocate a multiple of the coherency granularity, 4180 * they get a coherency-granularity-aligned address. 4181 */ 4182 if (IS_P2ALIGNED(cache_size, 64)) 4183 align = 64; 4184 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 4185 align = PAGESIZE; 4186 (void) snprintf(name, sizeof (name), 4187 "kmem_alloc_%lu", cache_size); 4188 cp = kmem_cache_create(name, cache_size, align, 4189 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 4190 4191 while (size <= cache_size) { 4192 alloc_table[(size - 1) >> shift] = cp; 4193 size += table_unit; 4194 } 4195 } 4196 4197 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 4198 } 4199 4200 static void 4201 kmem_cache_init(int pass, int use_large_pages) 4202 { 4203 int i; 4204 size_t maxbuf; 4205 kmem_magtype_t *mtp; 4206 4207 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 4208 char name[KMEM_CACHE_NAMELEN + 1]; 4209 4210 mtp = &kmem_magtype[i]; 4211 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 4212 mtp->mt_cache = kmem_cache_create(name, 4213 (mtp->mt_magsize + 1) * sizeof (void *), 4214 mtp->mt_align, NULL, NULL, NULL, NULL, 4215 kmem_msb_arena, KMC_NOHASH); 4216 } 4217 4218 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 4219 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 4220 kmem_msb_arena, KMC_NOHASH); 4221 4222 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 4223 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 4224 kmem_msb_arena, KMC_NOHASH); 4225 4226 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 4227 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 4228 kmem_msb_arena, KMC_NOHASH); 4229 4230 if (pass == 2) { 4231 kmem_va_arena = vmem_create("kmem_va", 4232 NULL, 0, PAGESIZE, 4233 vmem_alloc, vmem_free, heap_arena, 4234 8 * PAGESIZE, VM_SLEEP); 4235 4236 if (use_large_pages) { 4237 kmem_default_arena = vmem_xcreate("kmem_default", 4238 NULL, 0, PAGESIZE, 4239 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 4240 0, VMC_DUMPSAFE | VM_SLEEP); 4241 } else { 4242 kmem_default_arena = vmem_create("kmem_default", 4243 NULL, 0, PAGESIZE, 4244 segkmem_alloc, segkmem_free, kmem_va_arena, 4245 0, VMC_DUMPSAFE | VM_SLEEP); 4246 } 4247 4248 /* Figure out what our maximum cache size is */ 4249 maxbuf = kmem_max_cached; 4250 if (maxbuf <= KMEM_MAXBUF) { 4251 maxbuf = 0; 4252 kmem_max_cached = KMEM_MAXBUF; 4253 } else { 4254 size_t size = 0; 4255 size_t max = 4256 sizeof (kmem_big_alloc_sizes) / sizeof (int); 4257 /* 4258 * Round maxbuf up to an existing cache size. If maxbuf 4259 * is larger than the largest cache, we truncate it to 4260 * the largest cache's size. 4261 */ 4262 for (i = 0; i < max; i++) { 4263 size = kmem_big_alloc_sizes[i]; 4264 if (maxbuf <= size) 4265 break; 4266 } 4267 kmem_max_cached = maxbuf = size; 4268 } 4269 4270 /* 4271 * The big alloc table may not be completely overwritten, so 4272 * we clear out any stale cache pointers from the first pass. 4273 */ 4274 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 4275 } else { 4276 /* 4277 * During the first pass, the kmem_alloc_* caches 4278 * are treated as metadata. 4279 */ 4280 kmem_default_arena = kmem_msb_arena; 4281 maxbuf = KMEM_BIG_MAXBUF_32BIT; 4282 } 4283 4284 /* 4285 * Set up the default caches to back kmem_alloc() 4286 */ 4287 kmem_alloc_caches_create( 4288 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 4289 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 4290 4291 kmem_alloc_caches_create( 4292 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 4293 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 4294 4295 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 4296 } 4297 4298 void 4299 kmem_init(void) 4300 { 4301 kmem_cache_t *cp; 4302 int old_kmem_flags = kmem_flags; 4303 int use_large_pages = 0; 4304 size_t maxverify, minfirewall; 4305 4306 kstat_init(); 4307 4308 /* 4309 * Don't do firewalled allocations if the heap is less than 1TB 4310 * (i.e. on a 32-bit kernel) 4311 * The resulting VM_NEXTFIT allocations would create too much 4312 * fragmentation in a small heap. 4313 */ 4314 #if defined(_LP64) 4315 maxverify = minfirewall = PAGESIZE / 2; 4316 #else 4317 maxverify = minfirewall = ULONG_MAX; 4318 #endif 4319 4320 /* LINTED */ 4321 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 4322 4323 list_create(&kmem_caches, sizeof (kmem_cache_t), 4324 offsetof(kmem_cache_t, cache_link)); 4325 4326 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 4327 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 4328 VM_SLEEP | VMC_NO_QCACHE); 4329 4330 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 4331 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 4332 VMC_DUMPSAFE | VM_SLEEP); 4333 4334 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 4335 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4336 4337 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 4338 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4339 4340 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 4341 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4342 4343 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 4344 NULL, 0, PAGESIZE, 4345 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 4346 0, VM_SLEEP); 4347 4348 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 4349 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, 4350 VMC_DUMPSAFE | VM_SLEEP); 4351 4352 /* temporary oversize arena for mod_read_system_file */ 4353 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 4354 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4355 4356 kmem_reap_interval = 15 * hz; 4357 4358 /* 4359 * Read /etc/system. This is a chicken-and-egg problem because 4360 * kmem_flags may be set in /etc/system, but mod_read_system_file() 4361 * needs to use the allocator. The simplest solution is to create 4362 * all the standard kmem caches, read /etc/system, destroy all the 4363 * caches we just created, and then create them all again in light 4364 * of the (possibly) new kmem_flags and other kmem tunables. 4365 */ 4366 kmem_cache_init(1, 0); 4367 4368 mod_read_system_file(boothowto & RB_ASKNAME); 4369 4370 while ((cp = list_tail(&kmem_caches)) != NULL) 4371 kmem_cache_destroy(cp); 4372 4373 vmem_destroy(kmem_oversize_arena); 4374 4375 if (old_kmem_flags & KMF_STICKY) 4376 kmem_flags = old_kmem_flags; 4377 4378 if (!(kmem_flags & KMF_AUDIT)) 4379 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 4380 4381 if (kmem_maxverify == 0) 4382 kmem_maxverify = maxverify; 4383 4384 if (kmem_minfirewall == 0) 4385 kmem_minfirewall = minfirewall; 4386 4387 /* 4388 * give segkmem a chance to figure out if we are using large pages 4389 * for the kernel heap 4390 */ 4391 use_large_pages = segkmem_lpsetup(); 4392 4393 /* 4394 * To protect against corruption, we keep the actual number of callers 4395 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 4396 * to 16, since the overhead for small buffers quickly gets out of 4397 * hand. 4398 * 4399 * The real limit would depend on the needs of the largest KMC_NOHASH 4400 * cache. 4401 */ 4402 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 4403 kmem_lite_pcs = kmem_lite_count; 4404 4405 /* 4406 * Normally, we firewall oversized allocations when possible, but 4407 * if we are using large pages for kernel memory, and we don't have 4408 * any non-LITE debugging flags set, we want to allocate oversized 4409 * buffers from large pages, and so skip the firewalling. 4410 */ 4411 if (use_large_pages && 4412 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 4413 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 4414 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 4415 0, VMC_DUMPSAFE | VM_SLEEP); 4416 } else { 4417 kmem_oversize_arena = vmem_create("kmem_oversize", 4418 NULL, 0, PAGESIZE, 4419 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 4420 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | 4421 VM_SLEEP); 4422 } 4423 4424 kmem_cache_init(2, use_large_pages); 4425 4426 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 4427 if (kmem_transaction_log_size == 0) 4428 kmem_transaction_log_size = kmem_maxavail() / 50; 4429 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 4430 } 4431 4432 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 4433 if (kmem_content_log_size == 0) 4434 kmem_content_log_size = kmem_maxavail() / 50; 4435 kmem_content_log = kmem_log_init(kmem_content_log_size); 4436 } 4437 4438 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 4439 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 4440 kmem_zerosized_log = kmem_log_init(kmem_zerosized_log_size); 4441 4442 /* 4443 * Initialize STREAMS message caches so allocb() is available. 4444 * This allows us to initialize the logging framework (cmn_err(9F), 4445 * strlog(9F), etc) so we can start recording messages. 4446 */ 4447 streams_msg_init(); 4448 4449 /* 4450 * Initialize the ZSD framework in Zones so modules loaded henceforth 4451 * can register their callbacks. 4452 */ 4453 zone_zsd_init(); 4454 4455 log_init(); 4456 taskq_init(); 4457 4458 /* 4459 * Warn about invalid or dangerous values of kmem_flags. 4460 * Always warn about unsupported values. 4461 */ 4462 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 4463 KMF_CONTENTS | KMF_LITE)) != 0) || 4464 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 4465 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x.", 4466 kmem_flags); 4467 4468 #ifdef DEBUG 4469 if ((kmem_flags & KMF_DEBUG) == 0) 4470 cmn_err(CE_NOTE, "kmem debugging disabled."); 4471 #else 4472 /* 4473 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 4474 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 4475 * if KMF_AUDIT is set). We should warn the user about the performance 4476 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 4477 * isn't set (since that disables AUDIT). 4478 */ 4479 if (!(kmem_flags & KMF_LITE) && 4480 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 4481 cmn_err(CE_WARN, "High-overhead kmem debugging features " 4482 "enabled (kmem_flags = 0x%x). Performance degradation " 4483 "and large memory overhead possible.", kmem_flags); 4484 #endif /* not DEBUG */ 4485 4486 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 4487 4488 kmem_ready = 1; 4489 4490 /* 4491 * Initialize the platform-specific aligned/DMA memory allocator. 4492 */ 4493 ka_init(); 4494 4495 /* 4496 * Initialize 32-bit ID cache. 4497 */ 4498 id32_init(); 4499 4500 /* 4501 * Initialize the networking stack so modules loaded can 4502 * register their callbacks. 4503 */ 4504 netstack_init(); 4505 } 4506 4507 static void 4508 kmem_move_init(void) 4509 { 4510 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4511 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4512 kmem_msb_arena, KMC_NOHASH); 4513 kmem_move_cache = kmem_cache_create("kmem_move_cache", 4514 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4515 kmem_msb_arena, KMC_NOHASH); 4516 4517 /* 4518 * kmem guarantees that move callbacks are sequential and that even 4519 * across multiple caches no two moves ever execute simultaneously. 4520 * Move callbacks are processed on a separate taskq so that client code 4521 * does not interfere with internal maintenance tasks. 4522 */ 4523 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4524 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4525 } 4526 4527 void 4528 kmem_thread_init(void) 4529 { 4530 kmem_move_init(); 4531 4532 /* 4533 * This taskq is used for various kmem maintenance functions, including 4534 * kmem_reap(). When maintenance is required on every cache, 4535 * kmem_cache_applyall() dispatches one task per cache onto this queue. 4536 * 4537 * In the case of kmem_reap(), the system may be under increasingly 4538 * dire memory pressure and may not be able to allocate a new task 4539 * entry. The count of entries to prepopulate (below) should cover at 4540 * least as many caches as we generally expect to exist on the system 4541 * so that they may all be scheduled for reaping under those 4542 * conditions. 4543 */ 4544 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4545 600, INT_MAX, TASKQ_PREPOPULATE); 4546 } 4547 4548 void 4549 kmem_mp_init(void) 4550 { 4551 mutex_enter(&cpu_lock); 4552 register_cpu_setup_func(kmem_cpu_setup, NULL); 4553 mutex_exit(&cpu_lock); 4554 4555 kmem_update_timeout(NULL); 4556 4557 taskq_mp_init(); 4558 } 4559 4560 /* 4561 * Return the slab of the allocated buffer, or NULL if the buffer is not 4562 * allocated. This function may be called with a known slab address to determine 4563 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4564 * an allocated buffer's slab. 4565 */ 4566 static kmem_slab_t * 4567 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4568 { 4569 kmem_bufctl_t *bcp, *bufbcp; 4570 4571 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4572 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4573 4574 if (cp->cache_flags & KMF_HASH) { 4575 for (bcp = *KMEM_HASH(cp, buf); 4576 (bcp != NULL) && (bcp->bc_addr != buf); 4577 bcp = bcp->bc_next) { 4578 continue; 4579 } 4580 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4581 return (bcp == NULL ? NULL : bcp->bc_slab); 4582 } 4583 4584 if (sp == NULL) { 4585 sp = KMEM_SLAB(cp, buf); 4586 } 4587 bufbcp = KMEM_BUFCTL(cp, buf); 4588 for (bcp = sp->slab_head; 4589 (bcp != NULL) && (bcp != bufbcp); 4590 bcp = bcp->bc_next) { 4591 continue; 4592 } 4593 return (bcp == NULL ? sp : NULL); 4594 } 4595 4596 static boolean_t 4597 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4598 { 4599 long refcnt = sp->slab_refcnt; 4600 4601 ASSERT(cp->cache_defrag != NULL); 4602 4603 /* 4604 * For code coverage we want to be able to move an object within the 4605 * same slab (the only partial slab) even if allocating the destination 4606 * buffer resulted in a completely allocated slab. 4607 */ 4608 if (flags & KMM_DEBUG) { 4609 return ((flags & KMM_DESPERATE) || 4610 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4611 } 4612 4613 /* If we're desperate, we don't care if the client said NO. */ 4614 if (flags & KMM_DESPERATE) { 4615 return (refcnt < sp->slab_chunks); /* any partial */ 4616 } 4617 4618 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4619 return (B_FALSE); 4620 } 4621 4622 if ((refcnt == 1) || kmem_move_any_partial) { 4623 return (refcnt < sp->slab_chunks); 4624 } 4625 4626 /* 4627 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4628 * slabs with a progressively higher percentage of used buffers can be 4629 * reclaimed until the cache as a whole is no longer fragmented. 4630 * 4631 * sp->slab_refcnt kmd_reclaim_numer 4632 * --------------- < ------------------ 4633 * sp->slab_chunks KMEM_VOID_FRACTION 4634 */ 4635 return ((refcnt * KMEM_VOID_FRACTION) < 4636 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4637 } 4638 4639 /* 4640 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4641 * or when the buffer is freed. 4642 */ 4643 static void 4644 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4645 { 4646 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4647 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4648 4649 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4650 return; 4651 } 4652 4653 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4654 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4655 avl_remove(&cp->cache_partial_slabs, sp); 4656 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4657 sp->slab_stuck_offset = (uint32_t)-1; 4658 avl_add(&cp->cache_partial_slabs, sp); 4659 } 4660 } else { 4661 sp->slab_later_count = 0; 4662 sp->slab_stuck_offset = (uint32_t)-1; 4663 } 4664 } 4665 4666 static void 4667 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4668 { 4669 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4670 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4671 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4672 4673 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4674 return; 4675 } 4676 4677 avl_remove(&cp->cache_partial_slabs, sp); 4678 sp->slab_later_count = 0; 4679 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4680 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4681 avl_add(&cp->cache_partial_slabs, sp); 4682 } 4683 4684 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4685 4686 /* 4687 * The move callback takes two buffer addresses, the buffer to be moved, and a 4688 * newly allocated and constructed buffer selected by kmem as the destination. 4689 * It also takes the size of the buffer and an optional user argument specified 4690 * at cache creation time. kmem guarantees that the buffer to be moved has not 4691 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4692 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4693 * the client to safely determine whether or not it is still using the buffer. 4694 * The client must not free either of the buffers passed to the move callback, 4695 * since kmem wants to free them directly to the slab layer. The client response 4696 * tells kmem which of the two buffers to free: 4697 * 4698 * YES kmem frees the old buffer (the move was successful) 4699 * NO kmem frees the new buffer, marks the slab of the old buffer 4700 * non-reclaimable to avoid bothering the client again 4701 * LATER kmem frees the new buffer, increments slab_later_count 4702 * DONT_KNOW kmem frees the new buffer 4703 * DONT_NEED kmem frees both the old buffer and the new buffer 4704 * 4705 * The pending callback argument now being processed contains both of the 4706 * buffers (old and new) passed to the move callback function, the slab of the 4707 * old buffer, and flags related to the move request, such as whether or not the 4708 * system was desperate for memory. 4709 * 4710 * Slabs are not freed while there is a pending callback, but instead are kept 4711 * on a deadlist, which is drained after the last callback completes. This means 4712 * that slabs are safe to access until kmem_move_end(), no matter how many of 4713 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4714 * zero for as long as the slab remains on the deadlist and until the slab is 4715 * freed. 4716 */ 4717 static void 4718 kmem_move_buffer(kmem_move_t *callback) 4719 { 4720 kmem_cbrc_t response; 4721 kmem_slab_t *sp = callback->kmm_from_slab; 4722 kmem_cache_t *cp = sp->slab_cache; 4723 boolean_t free_on_slab; 4724 4725 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4726 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4727 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4728 4729 /* 4730 * The number of allocated buffers on the slab may have changed since we 4731 * last checked the slab's reclaimability (when the pending move was 4732 * enqueued), or the client may have responded NO when asked to move 4733 * another buffer on the same slab. 4734 */ 4735 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4736 kmem_slab_free(cp, callback->kmm_to_buf); 4737 kmem_move_end(cp, callback); 4738 return; 4739 } 4740 4741 /* 4742 * Checking the slab layer is easy, so we might as well do that here 4743 * in case we can avoid bothering the client. 4744 */ 4745 mutex_enter(&cp->cache_lock); 4746 free_on_slab = (kmem_slab_allocated(cp, sp, 4747 callback->kmm_from_buf) == NULL); 4748 mutex_exit(&cp->cache_lock); 4749 4750 if (free_on_slab) { 4751 kmem_slab_free(cp, callback->kmm_to_buf); 4752 kmem_move_end(cp, callback); 4753 return; 4754 } 4755 4756 if (cp->cache_flags & KMF_BUFTAG) { 4757 /* 4758 * Make kmem_cache_alloc_debug() apply the constructor for us. 4759 */ 4760 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4761 KM_NOSLEEP, 1, caller()) != 0) { 4762 kmem_move_end(cp, callback); 4763 return; 4764 } 4765 } else if (cp->cache_constructor != NULL && 4766 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4767 KM_NOSLEEP) != 0) { 4768 atomic_inc_64(&cp->cache_alloc_fail); 4769 kmem_slab_free(cp, callback->kmm_to_buf); 4770 kmem_move_end(cp, callback); 4771 return; 4772 } 4773 4774 cp->cache_defrag->kmd_callbacks++; 4775 cp->cache_defrag->kmd_thread = curthread; 4776 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4777 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4778 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4779 callback); 4780 4781 response = cp->cache_move(callback->kmm_from_buf, 4782 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4783 4784 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4785 callback, kmem_cbrc_t, response); 4786 cp->cache_defrag->kmd_thread = NULL; 4787 cp->cache_defrag->kmd_from_buf = NULL; 4788 cp->cache_defrag->kmd_to_buf = NULL; 4789 4790 if (response == KMEM_CBRC_YES) { 4791 cp->cache_defrag->kmd_yes++; 4792 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4793 /* slab safe to access until kmem_move_end() */ 4794 if (sp->slab_refcnt == 0) 4795 cp->cache_defrag->kmd_slabs_freed++; 4796 mutex_enter(&cp->cache_lock); 4797 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4798 mutex_exit(&cp->cache_lock); 4799 kmem_move_end(cp, callback); 4800 return; 4801 } 4802 4803 switch (response) { 4804 case KMEM_CBRC_NO: 4805 cp->cache_defrag->kmd_no++; 4806 mutex_enter(&cp->cache_lock); 4807 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4808 mutex_exit(&cp->cache_lock); 4809 break; 4810 case KMEM_CBRC_LATER: 4811 cp->cache_defrag->kmd_later++; 4812 mutex_enter(&cp->cache_lock); 4813 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4814 mutex_exit(&cp->cache_lock); 4815 break; 4816 } 4817 4818 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4819 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4820 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4821 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4822 callback->kmm_from_buf); 4823 } 4824 mutex_exit(&cp->cache_lock); 4825 break; 4826 case KMEM_CBRC_DONT_NEED: 4827 cp->cache_defrag->kmd_dont_need++; 4828 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4829 if (sp->slab_refcnt == 0) 4830 cp->cache_defrag->kmd_slabs_freed++; 4831 mutex_enter(&cp->cache_lock); 4832 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4833 mutex_exit(&cp->cache_lock); 4834 break; 4835 case KMEM_CBRC_DONT_KNOW: 4836 /* 4837 * If we don't know if we can move this buffer or not, we'll 4838 * just assume that we can't: if the buffer is in fact free, 4839 * then it is sitting in one of the per-CPU magazines or in 4840 * a full magazine in the depot layer. Either way, because 4841 * defrag is induced in the same logic that reaps a cache, 4842 * it's likely that full magazines will be returned to the 4843 * system soon (thereby accomplishing what we're trying to 4844 * accomplish here: return those magazines to their slabs). 4845 * Given this, any work that we might do now to locate a buffer 4846 * in a magazine is wasted (and expensive!) work; we bump 4847 * a counter in this case and otherwise assume that we can't 4848 * move it. 4849 */ 4850 cp->cache_defrag->kmd_dont_know++; 4851 break; 4852 default: 4853 panic("'%s' (%p) unexpected move callback response %d\n", 4854 cp->cache_name, (void *)cp, response); 4855 } 4856 4857 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4858 kmem_move_end(cp, callback); 4859 } 4860 4861 /* Return B_FALSE if there is insufficient memory for the move request. */ 4862 static boolean_t 4863 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4864 { 4865 void *to_buf; 4866 avl_index_t index; 4867 kmem_move_t *callback, *pending; 4868 ulong_t n; 4869 4870 ASSERT(taskq_member(kmem_taskq, curthread)); 4871 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4872 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4873 4874 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4875 4876 if (callback == NULL) 4877 return (B_FALSE); 4878 4879 callback->kmm_from_slab = sp; 4880 callback->kmm_from_buf = buf; 4881 callback->kmm_flags = flags; 4882 4883 mutex_enter(&cp->cache_lock); 4884 4885 n = avl_numnodes(&cp->cache_partial_slabs); 4886 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4887 mutex_exit(&cp->cache_lock); 4888 kmem_cache_free(kmem_move_cache, callback); 4889 return (B_TRUE); /* there is no need for the move request */ 4890 } 4891 4892 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4893 if (pending != NULL) { 4894 /* 4895 * If the move is already pending and we're desperate now, 4896 * update the move flags. 4897 */ 4898 if (flags & KMM_DESPERATE) { 4899 pending->kmm_flags |= KMM_DESPERATE; 4900 } 4901 mutex_exit(&cp->cache_lock); 4902 kmem_cache_free(kmem_move_cache, callback); 4903 return (B_TRUE); 4904 } 4905 4906 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs), 4907 B_FALSE); 4908 callback->kmm_to_buf = to_buf; 4909 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4910 4911 mutex_exit(&cp->cache_lock); 4912 4913 if (taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4914 callback, TQ_NOSLEEP) == TASKQID_INVALID) { 4915 mutex_enter(&cp->cache_lock); 4916 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4917 mutex_exit(&cp->cache_lock); 4918 kmem_slab_free(cp, to_buf); 4919 kmem_cache_free(kmem_move_cache, callback); 4920 return (B_FALSE); 4921 } 4922 4923 return (B_TRUE); 4924 } 4925 4926 static void 4927 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4928 { 4929 avl_index_t index; 4930 4931 ASSERT(cp->cache_defrag != NULL); 4932 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4933 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4934 4935 mutex_enter(&cp->cache_lock); 4936 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4937 callback->kmm_from_buf, &index) != NULL); 4938 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4939 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4940 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4941 kmem_slab_t *sp; 4942 4943 /* 4944 * The last pending move completed. Release all slabs from the 4945 * front of the dead list except for any slab at the tail that 4946 * needs to be released from the context of kmem_move_buffers(). 4947 * kmem deferred unmapping the buffers on these slabs in order 4948 * to guarantee that buffers passed to the move callback have 4949 * been touched only by kmem or by the client itself. 4950 */ 4951 while ((sp = list_remove_head(deadlist)) != NULL) { 4952 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4953 list_insert_tail(deadlist, sp); 4954 break; 4955 } 4956 cp->cache_defrag->kmd_deadcount--; 4957 cp->cache_slab_destroy++; 4958 mutex_exit(&cp->cache_lock); 4959 kmem_slab_destroy(cp, sp); 4960 mutex_enter(&cp->cache_lock); 4961 } 4962 } 4963 mutex_exit(&cp->cache_lock); 4964 kmem_cache_free(kmem_move_cache, callback); 4965 } 4966 4967 /* 4968 * Move buffers from least used slabs first by scanning backwards from the end 4969 * of the partial slab list. Scan at most max_scan candidate slabs and move 4970 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4971 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4972 * skip slabs with a ratio of allocated buffers at or above the current 4973 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4974 * scan is aborted) so that the caller can adjust the reclaimability threshold 4975 * depending on how many reclaimable slabs it finds. 4976 * 4977 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4978 * move request, since it is not valid for kmem_move_begin() to call 4979 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4980 */ 4981 static int 4982 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4983 int flags) 4984 { 4985 kmem_slab_t *sp; 4986 void *buf; 4987 int i, j; /* slab index, buffer index */ 4988 int s; /* reclaimable slabs */ 4989 int b; /* allocated (movable) buffers on reclaimable slab */ 4990 boolean_t success; 4991 int refcnt; 4992 int nomove; 4993 4994 ASSERT(taskq_member(kmem_taskq, curthread)); 4995 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4996 ASSERT(kmem_move_cache != NULL); 4997 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4998 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 4999 avl_numnodes(&cp->cache_partial_slabs) > 1); 5000 5001 if (kmem_move_blocked) { 5002 return (0); 5003 } 5004 5005 if (kmem_move_fulltilt) { 5006 flags |= KMM_DESPERATE; 5007 } 5008 5009 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 5010 /* 5011 * Scan as many slabs as needed to find the desired number of 5012 * candidate slabs. 5013 */ 5014 max_scan = (size_t)-1; 5015 } 5016 5017 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 5018 /* Find as many candidate slabs as possible. */ 5019 max_slabs = (size_t)-1; 5020 } 5021 5022 sp = avl_last(&cp->cache_partial_slabs); 5023 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 5024 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 5025 ((sp != avl_first(&cp->cache_partial_slabs)) || 5026 (flags & KMM_DEBUG)); 5027 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 5028 5029 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 5030 continue; 5031 } 5032 s++; 5033 5034 /* Look for allocated buffers to move. */ 5035 for (j = 0, b = 0, buf = sp->slab_base; 5036 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 5037 buf = (((char *)buf) + cp->cache_chunksize), j++) { 5038 5039 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 5040 continue; 5041 } 5042 5043 b++; 5044 5045 /* 5046 * Prevent the slab from being destroyed while we drop 5047 * cache_lock and while the pending move is not yet 5048 * registered. Flag the pending move while 5049 * kmd_moves_pending may still be empty, since we can't 5050 * yet rely on a non-zero pending move count to prevent 5051 * the slab from being destroyed. 5052 */ 5053 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5054 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5055 /* 5056 * Recheck refcnt and nomove after reacquiring the lock, 5057 * since these control the order of partial slabs, and 5058 * we want to know if we can pick up the scan where we 5059 * left off. 5060 */ 5061 refcnt = sp->slab_refcnt; 5062 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 5063 mutex_exit(&cp->cache_lock); 5064 5065 success = kmem_move_begin(cp, sp, buf, flags); 5066 5067 /* 5068 * Now, before the lock is reacquired, kmem could 5069 * process all pending move requests and purge the 5070 * deadlist, so that upon reacquiring the lock, sp has 5071 * been remapped. Or, the client may free all the 5072 * objects on the slab while the pending moves are still 5073 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 5074 * flag causes the slab to be put at the end of the 5075 * deadlist and prevents it from being destroyed, since 5076 * we plan to destroy it here after reacquiring the 5077 * lock. 5078 */ 5079 mutex_enter(&cp->cache_lock); 5080 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5081 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5082 5083 if (sp->slab_refcnt == 0) { 5084 list_t *deadlist = 5085 &cp->cache_defrag->kmd_deadlist; 5086 list_remove(deadlist, sp); 5087 5088 if (!avl_is_empty( 5089 &cp->cache_defrag->kmd_moves_pending)) { 5090 /* 5091 * A pending move makes it unsafe to 5092 * destroy the slab, because even though 5093 * the move is no longer needed, the 5094 * context where that is determined 5095 * requires the slab to exist. 5096 * Fortunately, a pending move also 5097 * means we don't need to destroy the 5098 * slab here, since it will get 5099 * destroyed along with any other slabs 5100 * on the deadlist after the last 5101 * pending move completes. 5102 */ 5103 list_insert_head(deadlist, sp); 5104 return (-1); 5105 } 5106 5107 /* 5108 * Destroy the slab now if it was completely 5109 * freed while we dropped cache_lock and there 5110 * are no pending moves. Since slab_refcnt 5111 * cannot change once it reaches zero, no new 5112 * pending moves from that slab are possible. 5113 */ 5114 cp->cache_defrag->kmd_deadcount--; 5115 cp->cache_slab_destroy++; 5116 mutex_exit(&cp->cache_lock); 5117 kmem_slab_destroy(cp, sp); 5118 mutex_enter(&cp->cache_lock); 5119 /* 5120 * Since we can't pick up the scan where we left 5121 * off, abort the scan and say nothing about the 5122 * number of reclaimable slabs. 5123 */ 5124 return (-1); 5125 } 5126 5127 if (!success) { 5128 /* 5129 * Abort the scan if there is not enough memory 5130 * for the request and say nothing about the 5131 * number of reclaimable slabs. 5132 */ 5133 return (-1); 5134 } 5135 5136 /* 5137 * The slab's position changed while the lock was 5138 * dropped, so we don't know where we are in the 5139 * sequence any more. 5140 */ 5141 if (sp->slab_refcnt != refcnt) { 5142 /* 5143 * If this is a KMM_DEBUG move, the slab_refcnt 5144 * may have changed because we allocated a 5145 * destination buffer on the same slab. In that 5146 * case, we're not interested in counting it. 5147 */ 5148 return (-1); 5149 } 5150 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) 5151 return (-1); 5152 5153 /* 5154 * Generating a move request allocates a destination 5155 * buffer from the slab layer, bumping the first partial 5156 * slab if it is completely allocated. If the current 5157 * slab becomes the first partial slab as a result, we 5158 * can't continue to scan backwards. 5159 * 5160 * If this is a KMM_DEBUG move and we allocated the 5161 * destination buffer from the last partial slab, then 5162 * the buffer we're moving is on the same slab and our 5163 * slab_refcnt has changed, causing us to return before 5164 * reaching here if there are no partial slabs left. 5165 */ 5166 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 5167 if (sp == avl_first(&cp->cache_partial_slabs)) { 5168 /* 5169 * We're not interested in a second KMM_DEBUG 5170 * move. 5171 */ 5172 goto end_scan; 5173 } 5174 } 5175 } 5176 end_scan: 5177 5178 return (s); 5179 } 5180 5181 typedef struct kmem_move_notify_args { 5182 kmem_cache_t *kmna_cache; 5183 void *kmna_buf; 5184 } kmem_move_notify_args_t; 5185 5186 static void 5187 kmem_cache_move_notify_task(void *arg) 5188 { 5189 kmem_move_notify_args_t *args = arg; 5190 kmem_cache_t *cp = args->kmna_cache; 5191 void *buf = args->kmna_buf; 5192 kmem_slab_t *sp; 5193 5194 ASSERT(taskq_member(kmem_taskq, curthread)); 5195 ASSERT(list_link_active(&cp->cache_link)); 5196 5197 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5198 mutex_enter(&cp->cache_lock); 5199 sp = kmem_slab_allocated(cp, NULL, buf); 5200 5201 /* Ignore the notification if the buffer is no longer allocated. */ 5202 if (sp == NULL) { 5203 mutex_exit(&cp->cache_lock); 5204 return; 5205 } 5206 5207 /* Ignore the notification if there's no reason to move the buffer. */ 5208 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5209 /* 5210 * So far the notification is not ignored. Ignore the 5211 * notification if the slab is not marked by an earlier refusal 5212 * to move a buffer. 5213 */ 5214 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 5215 (sp->slab_later_count == 0)) { 5216 mutex_exit(&cp->cache_lock); 5217 return; 5218 } 5219 5220 kmem_slab_move_yes(cp, sp, buf); 5221 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5222 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5223 mutex_exit(&cp->cache_lock); 5224 /* see kmem_move_buffers() about dropping the lock */ 5225 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 5226 mutex_enter(&cp->cache_lock); 5227 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5228 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5229 if (sp->slab_refcnt == 0) { 5230 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5231 list_remove(deadlist, sp); 5232 5233 if (!avl_is_empty( 5234 &cp->cache_defrag->kmd_moves_pending)) { 5235 list_insert_head(deadlist, sp); 5236 mutex_exit(&cp->cache_lock); 5237 return; 5238 } 5239 5240 cp->cache_defrag->kmd_deadcount--; 5241 cp->cache_slab_destroy++; 5242 mutex_exit(&cp->cache_lock); 5243 kmem_slab_destroy(cp, sp); 5244 return; 5245 } 5246 } else { 5247 kmem_slab_move_yes(cp, sp, buf); 5248 } 5249 mutex_exit(&cp->cache_lock); 5250 } 5251 5252 void 5253 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 5254 { 5255 kmem_move_notify_args_t *args; 5256 5257 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 5258 if (args != NULL) { 5259 args->kmna_cache = cp; 5260 args->kmna_buf = buf; 5261 if (taskq_dispatch(kmem_taskq, 5262 (task_func_t *)kmem_cache_move_notify_task, args, 5263 TQ_NOSLEEP) == TASKQID_INVALID) 5264 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5265 } 5266 } 5267 5268 static void 5269 kmem_cache_defrag(kmem_cache_t *cp) 5270 { 5271 size_t n; 5272 5273 ASSERT(cp->cache_defrag != NULL); 5274 5275 mutex_enter(&cp->cache_lock); 5276 n = avl_numnodes(&cp->cache_partial_slabs); 5277 if (n > 1) { 5278 /* kmem_move_buffers() drops and reacquires cache_lock */ 5279 cp->cache_defrag->kmd_defrags++; 5280 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 5281 } 5282 mutex_exit(&cp->cache_lock); 5283 } 5284 5285 /* Is this cache above the fragmentation threshold? */ 5286 static boolean_t 5287 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 5288 { 5289 /* 5290 * nfree kmem_frag_numer 5291 * ------------------ > --------------- 5292 * cp->cache_buftotal kmem_frag_denom 5293 */ 5294 return ((nfree * kmem_frag_denom) > 5295 (cp->cache_buftotal * kmem_frag_numer)); 5296 } 5297 5298 static boolean_t 5299 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 5300 { 5301 boolean_t fragmented; 5302 uint64_t nfree; 5303 5304 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5305 *doreap = B_FALSE; 5306 5307 if (kmem_move_fulltilt) { 5308 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5309 return (B_TRUE); 5310 } 5311 } else { 5312 if ((cp->cache_complete_slab_count + avl_numnodes( 5313 &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 5314 return (B_FALSE); 5315 } 5316 } 5317 5318 nfree = cp->cache_bufslab; 5319 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 5320 kmem_cache_frag_threshold(cp, nfree)); 5321 5322 /* 5323 * Free buffers in the magazine layer appear allocated from the point of 5324 * view of the slab layer. We want to know if the slab layer would 5325 * appear fragmented if we included free buffers from magazines that 5326 * have fallen out of the working set. 5327 */ 5328 if (!fragmented) { 5329 long reap; 5330 5331 mutex_enter(&cp->cache_depot_lock); 5332 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5333 reap = MIN(reap, cp->cache_full.ml_total); 5334 mutex_exit(&cp->cache_depot_lock); 5335 5336 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5337 if (kmem_cache_frag_threshold(cp, nfree)) { 5338 *doreap = B_TRUE; 5339 } 5340 } 5341 5342 return (fragmented); 5343 } 5344 5345 /* Called periodically from kmem_taskq */ 5346 static void 5347 kmem_cache_scan(kmem_cache_t *cp) 5348 { 5349 boolean_t reap = B_FALSE; 5350 kmem_defrag_t *kmd; 5351 5352 ASSERT(taskq_member(kmem_taskq, curthread)); 5353 5354 mutex_enter(&cp->cache_lock); 5355 5356 kmd = cp->cache_defrag; 5357 if (kmd->kmd_consolidate > 0) { 5358 kmd->kmd_consolidate--; 5359 mutex_exit(&cp->cache_lock); 5360 kmem_cache_reap(cp); 5361 return; 5362 } 5363 5364 if (kmem_cache_is_fragmented(cp, &reap)) { 5365 size_t slabs_found; 5366 5367 /* 5368 * Consolidate reclaimable slabs from the end of the partial 5369 * slab list (scan at most kmem_reclaim_scan_range slabs to find 5370 * reclaimable slabs). Keep track of how many candidate slabs we 5371 * looked for and how many we actually found so we can adjust 5372 * the definition of a candidate slab if we're having trouble 5373 * finding them. 5374 * 5375 * kmem_move_buffers() drops and reacquires cache_lock. 5376 */ 5377 kmd->kmd_scans++; 5378 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5379 kmem_reclaim_max_slabs, 0); 5380 if (slabs_found >= 0) { 5381 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5382 kmd->kmd_slabs_found += slabs_found; 5383 } 5384 5385 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5386 kmd->kmd_tries = 0; 5387 5388 /* 5389 * If we had difficulty finding candidate slabs in 5390 * previous scans, adjust the threshold so that 5391 * candidates are easier to find. 5392 */ 5393 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5394 kmem_adjust_reclaim_threshold(kmd, -1); 5395 } else if ((kmd->kmd_slabs_found * 2) < 5396 kmd->kmd_slabs_sought) { 5397 kmem_adjust_reclaim_threshold(kmd, 1); 5398 } 5399 kmd->kmd_slabs_sought = 0; 5400 kmd->kmd_slabs_found = 0; 5401 } 5402 } else { 5403 kmem_reset_reclaim_threshold(cp->cache_defrag); 5404 #ifdef DEBUG 5405 if (!avl_is_empty(&cp->cache_partial_slabs)) { 5406 /* 5407 * In a debug kernel we want the consolidator to 5408 * run occasionally even when there is plenty of 5409 * memory. 5410 */ 5411 uint16_t debug_rand; 5412 5413 (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5414 if (!kmem_move_noreap && 5415 ((debug_rand % kmem_mtb_reap) == 0)) { 5416 mutex_exit(&cp->cache_lock); 5417 kmem_cache_reap(cp); 5418 return; 5419 } else if ((debug_rand % kmem_mtb_move) == 0) { 5420 kmd->kmd_scans++; 5421 (void) kmem_move_buffers(cp, 5422 kmem_reclaim_scan_range, 1, KMM_DEBUG); 5423 } 5424 } 5425 #endif /* DEBUG */ 5426 } 5427 5428 mutex_exit(&cp->cache_lock); 5429 5430 if (reap) 5431 kmem_depot_ws_reap(cp); 5432 } 5433