1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2018, Joyent, Inc. 26 * Copyright 2023 Oxide Computer Company 27 */ 28 29 /* 30 * Kernel memory allocator, as described in the following two papers and a 31 * statement about the consolidator: 32 * 33 * Jeff Bonwick, 34 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 35 * Proceedings of the Summer 1994 Usenix Conference. 36 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 37 * 38 * Jeff Bonwick and Jonathan Adams, 39 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 40 * Arbitrary Resources. 41 * Proceedings of the 2001 Usenix Conference. 42 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 43 * 44 * kmem Slab Consolidator Big Theory Statement: 45 * 46 * 1. Motivation 47 * 48 * As stated in Bonwick94, slabs provide the following advantages over other 49 * allocation structures in terms of memory fragmentation: 50 * 51 * - Internal fragmentation (per-buffer wasted space) is minimal. 52 * - Severe external fragmentation (unused buffers on the free list) is 53 * unlikely. 54 * 55 * Segregating objects by size eliminates one source of external fragmentation, 56 * and according to Bonwick: 57 * 58 * The other reason that slabs reduce external fragmentation is that all 59 * objects in a slab are of the same type, so they have the same lifetime 60 * distribution. The resulting segregation of short-lived and long-lived 61 * objects at slab granularity reduces the likelihood of an entire page being 62 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 63 * 64 * While unlikely, severe external fragmentation remains possible. Clients that 65 * allocate both short- and long-lived objects from the same cache cannot 66 * anticipate the distribution of long-lived objects within the allocator's slab 67 * implementation. Even a small percentage of long-lived objects distributed 68 * randomly across many slabs can lead to a worst case scenario where the client 69 * frees the majority of its objects and the system gets back almost none of the 70 * slabs. Despite the client doing what it reasonably can to help the system 71 * reclaim memory, the allocator cannot shake free enough slabs because of 72 * lonely allocations stubbornly hanging on. Although the allocator is in a 73 * position to diagnose the fragmentation, there is nothing that the allocator 74 * by itself can do about it. It only takes a single allocated object to prevent 75 * an entire slab from being reclaimed, and any object handed out by 76 * kmem_cache_alloc() is by definition in the client's control. Conversely, 77 * although the client is in a position to move a long-lived object, it has no 78 * way of knowing if the object is causing fragmentation, and if so, where to 79 * move it. A solution necessarily requires further cooperation between the 80 * allocator and the client. 81 * 82 * 2. Move Callback 83 * 84 * The kmem slab consolidator therefore adds a move callback to the 85 * allocator/client interface, improving worst-case external fragmentation in 86 * kmem caches that supply a function to move objects from one memory location 87 * to another. In a situation of low memory kmem attempts to consolidate all of 88 * a cache's slabs at once; otherwise it works slowly to bring external 89 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 90 * thereby helping to avoid a low memory situation in the future. 91 * 92 * The callback has the following signature: 93 * 94 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 95 * 96 * It supplies the kmem client with two addresses: the allocated object that 97 * kmem wants to move and a buffer selected by kmem for the client to use as the 98 * copy destination. The callback is kmem's way of saying "Please get off of 99 * this buffer and use this one instead." kmem knows where it wants to move the 100 * object in order to best reduce fragmentation. All the client needs to know 101 * about the second argument (void *new) is that it is an allocated, constructed 102 * object ready to take the contents of the old object. When the move function 103 * is called, the system is likely to be low on memory, and the new object 104 * spares the client from having to worry about allocating memory for the 105 * requested move. The third argument supplies the size of the object, in case a 106 * single move function handles multiple caches whose objects differ only in 107 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 108 * user argument passed to the constructor, destructor, and reclaim functions is 109 * also passed to the move callback. 110 * 111 * 2.1 Setting the Move Callback 112 * 113 * The client sets the move callback after creating the cache and before 114 * allocating from it: 115 * 116 * object_cache = kmem_cache_create(...); 117 * kmem_cache_set_move(object_cache, object_move); 118 * 119 * 2.2 Move Callback Return Values 120 * 121 * Only the client knows about its own data and when is a good time to move it. 122 * The client is cooperating with kmem to return unused memory to the system, 123 * and kmem respectfully accepts this help at the client's convenience. When 124 * asked to move an object, the client can respond with any of the following: 125 * 126 * typedef enum kmem_cbrc { 127 * KMEM_CBRC_YES, 128 * KMEM_CBRC_NO, 129 * KMEM_CBRC_LATER, 130 * KMEM_CBRC_DONT_NEED, 131 * KMEM_CBRC_DONT_KNOW 132 * } kmem_cbrc_t; 133 * 134 * The client must not explicitly kmem_cache_free() either of the objects passed 135 * to the callback, since kmem wants to free them directly to the slab layer 136 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 137 * objects to free: 138 * 139 * YES: (Did it) The client moved the object, so kmem frees the old one. 140 * NO: (Never) The client refused, so kmem frees the new object (the 141 * unused copy destination). kmem also marks the slab of the old 142 * object so as not to bother the client with further callbacks for 143 * that object as long as the slab remains on the partial slab list. 144 * (The system won't be getting the slab back as long as the 145 * immovable object holds it hostage, so there's no point in moving 146 * any of its objects.) 147 * LATER: The client is using the object and cannot move it now, so kmem 148 * frees the new object (the unused copy destination). kmem still 149 * attempts to move other objects off the slab, since it expects to 150 * succeed in clearing the slab in a later callback. The client 151 * should use LATER instead of NO if the object is likely to become 152 * movable very soon. 153 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 154 * with the new object (the unused copy destination). This response 155 * is the client's opportunity to be a model citizen and give back as 156 * much as it can. 157 * DONT_KNOW: The client does not know about the object because 158 * a) the client has just allocated the object and not yet put it 159 * wherever it expects to find known objects 160 * b) the client has removed the object from wherever it expects to 161 * find known objects and is about to free it, or 162 * c) the client has freed the object. 163 * In all these cases (a, b, and c) kmem frees the new object (the 164 * unused copy destination). In the first case, the object is in 165 * use and the correct action is that for LATER; in the latter two 166 * cases, we know that the object is either freed or about to be 167 * freed, in which case it is either already in a magazine or about 168 * to be in one. In these cases, we know that the object will either 169 * be reallocated and reused, or it will end up in a full magazine 170 * that will be reaped (thereby liberating the slab). Because it 171 * is prohibitively expensive to differentiate these cases, and 172 * because the defrag code is executed when we're low on memory 173 * (thereby biasing the system to reclaim full magazines) we treat 174 * all DONT_KNOW cases as LATER and rely on cache reaping to 175 * generally clean up full magazines. While we take the same action 176 * for these cases, we maintain their semantic distinction: if 177 * defragmentation is not occurring, it is useful to know if this 178 * is due to objects in use (LATER) or objects in an unknown state 179 * of transition (DONT_KNOW). 180 * 181 * 2.3 Object States 182 * 183 * Neither kmem nor the client can be assumed to know the object's whereabouts 184 * at the time of the callback. An object belonging to a kmem cache may be in 185 * any of the following states: 186 * 187 * 1. Uninitialized on the slab 188 * 2. Allocated from the slab but not constructed (still uninitialized) 189 * 3. Allocated from the slab, constructed, but not yet ready for business 190 * (not in a valid state for the move callback) 191 * 4. In use (valid and known to the client) 192 * 5. About to be freed (no longer in a valid state for the move callback) 193 * 6. Freed to a magazine (still constructed) 194 * 7. Allocated from a magazine, not yet ready for business (not in a valid 195 * state for the move callback), and about to return to state #4 196 * 8. Deconstructed on a magazine that is about to be freed 197 * 9. Freed to the slab 198 * 199 * Since the move callback may be called at any time while the object is in any 200 * of the above states (except state #1), the client needs a safe way to 201 * determine whether or not it knows about the object. Specifically, the client 202 * needs to know whether or not the object is in state #4, the only state in 203 * which a move is valid. If the object is in any other state, the client should 204 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 205 * the object's fields. 206 * 207 * Note that although an object may be in state #4 when kmem initiates the move 208 * request, the object may no longer be in that state by the time kmem actually 209 * calls the move function. Not only does the client free objects 210 * asynchronously, kmem itself puts move requests on a queue where thay are 211 * pending until kmem processes them from another context. Also, objects freed 212 * to a magazine appear allocated from the point of view of the slab layer, so 213 * kmem may even initiate requests for objects in a state other than state #4. 214 * 215 * 2.3.1 Magazine Layer 216 * 217 * An important insight revealed by the states listed above is that the magazine 218 * layer is populated only by kmem_cache_free(). Magazines of constructed 219 * objects are never populated directly from the slab layer (which contains raw, 220 * unconstructed objects). Whenever an allocation request cannot be satisfied 221 * from the magazine layer, the magazines are bypassed and the request is 222 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 223 * the object constructor only when allocating from the slab layer, and only in 224 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 225 * the move callback. kmem does not preconstruct objects in anticipation of 226 * kmem_cache_alloc(). 227 * 228 * 2.3.2 Object Constructor and Destructor 229 * 230 * If the client supplies a destructor, it must be valid to call the destructor 231 * on a newly created object (immediately after the constructor). 232 * 233 * 2.4 Recognizing Known Objects 234 * 235 * There is a simple test to determine safely whether or not the client knows 236 * about a given object in the move callback. It relies on the fact that kmem 237 * guarantees that the object of the move callback has only been touched by the 238 * client itself or else by kmem. kmem does this by ensuring that none of the 239 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 240 * callback is pending. When the last object on a slab is freed, if there is a 241 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 242 * slabs on that list until all pending callbacks are completed. That way, 243 * clients can be certain that the object of a move callback is in one of the 244 * states listed above, making it possible to distinguish known objects (in 245 * state #4) using the two low order bits of any pointer member (with the 246 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 247 * platforms). 248 * 249 * The test works as long as the client always transitions objects from state #4 250 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 251 * order bit of the client-designated pointer member. Since kmem only writes 252 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 253 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 254 * guaranteed to set at least one of the two low order bits. Therefore, given an 255 * object with a back pointer to a 'container_t *o_container', the client can 256 * test 257 * 258 * container_t *container = object->o_container; 259 * if ((uintptr_t)container & 0x3) { 260 * return (KMEM_CBRC_DONT_KNOW); 261 * } 262 * 263 * Typically, an object will have a pointer to some structure with a list or 264 * hash where objects from the cache are kept while in use. Assuming that the 265 * client has some way of knowing that the container structure is valid and will 266 * not go away during the move, and assuming that the structure includes a lock 267 * to protect whatever collection is used, then the client would continue as 268 * follows: 269 * 270 * // Ensure that the container structure does not go away. 271 * if (container_hold(container) == 0) { 272 * return (KMEM_CBRC_DONT_KNOW); 273 * } 274 * mutex_enter(&container->c_objects_lock); 275 * if (container != object->o_container) { 276 * mutex_exit(&container->c_objects_lock); 277 * container_rele(container); 278 * return (KMEM_CBRC_DONT_KNOW); 279 * } 280 * 281 * At this point the client knows that the object cannot be freed as long as 282 * c_objects_lock is held. Note that after acquiring the lock, the client must 283 * recheck the o_container pointer in case the object was removed just before 284 * acquiring the lock. 285 * 286 * When the client is about to free an object, it must first remove that object 287 * from the list, hash, or other structure where it is kept. At that time, to 288 * mark the object so it can be distinguished from the remaining, known objects, 289 * the client sets the designated low order bit: 290 * 291 * mutex_enter(&container->c_objects_lock); 292 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 293 * list_remove(&container->c_objects, object); 294 * mutex_exit(&container->c_objects_lock); 295 * 296 * In the common case, the object is freed to the magazine layer, where it may 297 * be reused on a subsequent allocation without the overhead of calling the 298 * constructor. While in the magazine it appears allocated from the point of 299 * view of the slab layer, making it a candidate for the move callback. Most 300 * objects unrecognized by the client in the move callback fall into this 301 * category and are cheaply distinguished from known objects by the test 302 * described earlier. Because searching magazines is prohibitively expensive 303 * for kmem, clients that do not mark freed objects (and therefore return 304 * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation 305 * efficacy reduced. 306 * 307 * Invalidating the designated pointer member before freeing the object marks 308 * the object to be avoided in the callback, and conversely, assigning a valid 309 * value to the designated pointer member after allocating the object makes the 310 * object fair game for the callback: 311 * 312 * ... allocate object ... 313 * ... set any initial state not set by the constructor ... 314 * 315 * mutex_enter(&container->c_objects_lock); 316 * list_insert_tail(&container->c_objects, object); 317 * membar_producer(); 318 * object->o_container = container; 319 * mutex_exit(&container->c_objects_lock); 320 * 321 * Note that everything else must be valid before setting o_container makes the 322 * object fair game for the move callback. The membar_producer() call ensures 323 * that all the object's state is written to memory before setting the pointer 324 * that transitions the object from state #3 or #7 (allocated, constructed, not 325 * yet in use) to state #4 (in use, valid). That's important because the move 326 * function has to check the validity of the pointer before it can safely 327 * acquire the lock protecting the collection where it expects to find known 328 * objects. 329 * 330 * This method of distinguishing known objects observes the usual symmetry: 331 * invalidating the designated pointer is the first thing the client does before 332 * freeing the object, and setting the designated pointer is the last thing the 333 * client does after allocating the object. Of course, the client is not 334 * required to use this method. Fundamentally, how the client recognizes known 335 * objects is completely up to the client, but this method is recommended as an 336 * efficient and safe way to take advantage of the guarantees made by kmem. If 337 * the entire object is arbitrary data without any markable bits from a suitable 338 * pointer member, then the client must find some other method, such as 339 * searching a hash table of known objects. 340 * 341 * 2.5 Preventing Objects From Moving 342 * 343 * Besides a way to distinguish known objects, the other thing that the client 344 * needs is a strategy to ensure that an object will not move while the client 345 * is actively using it. The details of satisfying this requirement tend to be 346 * highly cache-specific. It might seem that the same rules that let a client 347 * remove an object safely should also decide when an object can be moved 348 * safely. However, any object state that makes a removal attempt invalid is 349 * likely to be long-lasting for objects that the client does not expect to 350 * remove. kmem knows nothing about the object state and is equally likely (from 351 * the client's point of view) to request a move for any object in the cache, 352 * whether prepared for removal or not. Even a low percentage of objects stuck 353 * in place by unremovability will defeat the consolidator if the stuck objects 354 * are the same long-lived allocations likely to hold slabs hostage. 355 * Fundamentally, the consolidator is not aimed at common cases. Severe external 356 * fragmentation is a worst case scenario manifested as sparsely allocated 357 * slabs, by definition a low percentage of the cache's objects. When deciding 358 * what makes an object movable, keep in mind the goal of the consolidator: to 359 * bring worst-case external fragmentation within the limits guaranteed for 360 * internal fragmentation. Removability is a poor criterion if it is likely to 361 * exclude more than an insignificant percentage of objects for long periods of 362 * time. 363 * 364 * A tricky general solution exists, and it has the advantage of letting you 365 * move any object at almost any moment, practically eliminating the likelihood 366 * that an object can hold a slab hostage. However, if there is a cache-specific 367 * way to ensure that an object is not actively in use in the vast majority of 368 * cases, a simpler solution that leverages this cache-specific knowledge is 369 * preferred. 370 * 371 * 2.5.1 Cache-Specific Solution 372 * 373 * As an example of a cache-specific solution, the ZFS znode cache takes 374 * advantage of the fact that the vast majority of znodes are only being 375 * referenced from the DNLC. (A typical case might be a few hundred in active 376 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 377 * client has established that it recognizes the znode and can access its fields 378 * safely (using the method described earlier), it then tests whether the znode 379 * is referenced by anything other than the DNLC. If so, it assumes that the 380 * znode may be in active use and is unsafe to move, so it drops its locks and 381 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 382 * else znodes are used, no change is needed to protect against the possibility 383 * of the znode moving. The disadvantage is that it remains possible for an 384 * application to hold a znode slab hostage with an open file descriptor. 385 * However, this case ought to be rare and the consolidator has a way to deal 386 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 387 * object, kmem eventually stops believing it and treats the slab as if the 388 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 389 * then focus on getting it off of the partial slab list by allocating rather 390 * than freeing all of its objects. (Either way of getting a slab off the 391 * free list reduces fragmentation.) 392 * 393 * 2.5.2 General Solution 394 * 395 * The general solution, on the other hand, requires an explicit hold everywhere 396 * the object is used to prevent it from moving. To keep the client locking 397 * strategy as uncomplicated as possible, kmem guarantees the simplifying 398 * assumption that move callbacks are sequential, even across multiple caches. 399 * Internally, a global queue processed by a single thread supports all caches 400 * implementing the callback function. No matter how many caches supply a move 401 * function, the consolidator never moves more than one object at a time, so the 402 * client does not have to worry about tricky lock ordering involving several 403 * related objects from different kmem caches. 404 * 405 * The general solution implements the explicit hold as a read-write lock, which 406 * allows multiple readers to access an object from the cache simultaneously 407 * while a single writer is excluded from moving it. A single rwlock for the 408 * entire cache would lock out all threads from using any of the cache's objects 409 * even though only a single object is being moved, so to reduce contention, 410 * the client can fan out the single rwlock into an array of rwlocks hashed by 411 * the object address, making it probable that moving one object will not 412 * prevent other threads from using a different object. The rwlock cannot be a 413 * member of the object itself, because the possibility of the object moving 414 * makes it unsafe to access any of the object's fields until the lock is 415 * acquired. 416 * 417 * Assuming a small, fixed number of locks, it's possible that multiple objects 418 * will hash to the same lock. A thread that needs to use multiple objects in 419 * the same function may acquire the same lock multiple times. Since rwlocks are 420 * reentrant for readers, and since there is never more than a single writer at 421 * a time (assuming that the client acquires the lock as a writer only when 422 * moving an object inside the callback), there would seem to be no problem. 423 * However, a client locking multiple objects in the same function must handle 424 * one case of potential deadlock: Assume that thread A needs to prevent both 425 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 426 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 427 * same lock, that thread A will acquire the lock for object 1 as a reader 428 * before thread B sets the lock's write-wanted bit, preventing thread A from 429 * reacquiring the lock for object 2 as a reader. Unable to make forward 430 * progress, thread A will never release the lock for object 1, resulting in 431 * deadlock. 432 * 433 * There are two ways of avoiding the deadlock just described. The first is to 434 * use rw_tryenter() rather than rw_enter() in the callback function when 435 * attempting to acquire the lock as a writer. If tryenter discovers that the 436 * same object (or another object hashed to the same lock) is already in use, it 437 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 438 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 439 * since it allows a thread to acquire the lock as a reader in spite of a 440 * waiting writer. This second approach insists on moving the object now, no 441 * matter how many readers the move function must wait for in order to do so, 442 * and could delay the completion of the callback indefinitely (blocking 443 * callbacks to other clients). In practice, a less insistent callback using 444 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 445 * little reason to use anything else. 446 * 447 * Avoiding deadlock is not the only problem that an implementation using an 448 * explicit hold needs to solve. Locking the object in the first place (to 449 * prevent it from moving) remains a problem, since the object could move 450 * between the time you obtain a pointer to the object and the time you acquire 451 * the rwlock hashed to that pointer value. Therefore the client needs to 452 * recheck the value of the pointer after acquiring the lock, drop the lock if 453 * the value has changed, and try again. This requires a level of indirection: 454 * something that points to the object rather than the object itself, that the 455 * client can access safely while attempting to acquire the lock. (The object 456 * itself cannot be referenced safely because it can move at any time.) 457 * The following lock-acquisition function takes whatever is safe to reference 458 * (arg), follows its pointer to the object (using function f), and tries as 459 * often as necessary to acquire the hashed lock and verify that the object 460 * still has not moved: 461 * 462 * object_t * 463 * object_hold(object_f f, void *arg) 464 * { 465 * object_t *op; 466 * 467 * op = f(arg); 468 * if (op == NULL) { 469 * return (NULL); 470 * } 471 * 472 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 473 * while (op != f(arg)) { 474 * rw_exit(OBJECT_RWLOCK(op)); 475 * op = f(arg); 476 * if (op == NULL) { 477 * break; 478 * } 479 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 480 * } 481 * 482 * return (op); 483 * } 484 * 485 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 486 * lock reacquisition loop, while necessary, almost never executes. The function 487 * pointer f (used to obtain the object pointer from arg) has the following type 488 * definition: 489 * 490 * typedef object_t *(*object_f)(void *arg); 491 * 492 * An object_f implementation is likely to be as simple as accessing a structure 493 * member: 494 * 495 * object_t * 496 * s_object(void *arg) 497 * { 498 * something_t *sp = arg; 499 * return (sp->s_object); 500 * } 501 * 502 * The flexibility of a function pointer allows the path to the object to be 503 * arbitrarily complex and also supports the notion that depending on where you 504 * are using the object, you may need to get it from someplace different. 505 * 506 * The function that releases the explicit hold is simpler because it does not 507 * have to worry about the object moving: 508 * 509 * void 510 * object_rele(object_t *op) 511 * { 512 * rw_exit(OBJECT_RWLOCK(op)); 513 * } 514 * 515 * The caller is spared these details so that obtaining and releasing an 516 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 517 * of object_hold() only needs to know that the returned object pointer is valid 518 * if not NULL and that the object will not move until released. 519 * 520 * Although object_hold() prevents an object from moving, it does not prevent it 521 * from being freed. The caller must take measures before calling object_hold() 522 * (afterwards is too late) to ensure that the held object cannot be freed. The 523 * caller must do so without accessing the unsafe object reference, so any lock 524 * or reference count used to ensure the continued existence of the object must 525 * live outside the object itself. 526 * 527 * Obtaining a new object is a special case where an explicit hold is impossible 528 * for the caller. Any function that returns a newly allocated object (either as 529 * a return value, or as an in-out paramter) must return it already held; after 530 * the caller gets it is too late, since the object cannot be safely accessed 531 * without the level of indirection described earlier. The following 532 * object_alloc() example uses the same code shown earlier to transition a new 533 * object into the state of being recognized (by the client) as a known object. 534 * The function must acquire the hold (rw_enter) before that state transition 535 * makes the object movable: 536 * 537 * static object_t * 538 * object_alloc(container_t *container) 539 * { 540 * object_t *object = kmem_cache_alloc(object_cache, 0); 541 * ... set any initial state not set by the constructor ... 542 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 543 * mutex_enter(&container->c_objects_lock); 544 * list_insert_tail(&container->c_objects, object); 545 * membar_producer(); 546 * object->o_container = container; 547 * mutex_exit(&container->c_objects_lock); 548 * return (object); 549 * } 550 * 551 * Functions that implicitly acquire an object hold (any function that calls 552 * object_alloc() to supply an object for the caller) need to be carefully noted 553 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 554 * prevent all objects hashed to the affected rwlocks from ever being moved. 555 * 556 * The pointer to a held object can be hashed to the holding rwlock even after 557 * the object has been freed. Although it is possible to release the hold 558 * after freeing the object, you may decide to release the hold implicitly in 559 * whatever function frees the object, so as to release the hold as soon as 560 * possible, and for the sake of symmetry with the function that implicitly 561 * acquires the hold when it allocates the object. Here, object_free() releases 562 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 563 * matching pair with object_hold(): 564 * 565 * void 566 * object_free(object_t *object) 567 * { 568 * container_t *container; 569 * 570 * ASSERT(object_held(object)); 571 * container = object->o_container; 572 * mutex_enter(&container->c_objects_lock); 573 * object->o_container = 574 * (void *)((uintptr_t)object->o_container | 0x1); 575 * list_remove(&container->c_objects, object); 576 * mutex_exit(&container->c_objects_lock); 577 * object_rele(object); 578 * kmem_cache_free(object_cache, object); 579 * } 580 * 581 * Note that object_free() cannot safely accept an object pointer as an argument 582 * unless the object is already held. Any function that calls object_free() 583 * needs to be carefully noted since it similarly forms a matching pair with 584 * object_hold(). 585 * 586 * To complete the picture, the following callback function implements the 587 * general solution by moving objects only if they are currently unheld: 588 * 589 * static kmem_cbrc_t 590 * object_move(void *buf, void *newbuf, size_t size, void *arg) 591 * { 592 * object_t *op = buf, *np = newbuf; 593 * container_t *container; 594 * 595 * container = op->o_container; 596 * if ((uintptr_t)container & 0x3) { 597 * return (KMEM_CBRC_DONT_KNOW); 598 * } 599 * 600 * // Ensure that the container structure does not go away. 601 * if (container_hold(container) == 0) { 602 * return (KMEM_CBRC_DONT_KNOW); 603 * } 604 * 605 * mutex_enter(&container->c_objects_lock); 606 * if (container != op->o_container) { 607 * mutex_exit(&container->c_objects_lock); 608 * container_rele(container); 609 * return (KMEM_CBRC_DONT_KNOW); 610 * } 611 * 612 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 613 * mutex_exit(&container->c_objects_lock); 614 * container_rele(container); 615 * return (KMEM_CBRC_LATER); 616 * } 617 * 618 * object_move_impl(op, np); // critical section 619 * rw_exit(OBJECT_RWLOCK(op)); 620 * 621 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 622 * list_link_replace(&op->o_link_node, &np->o_link_node); 623 * mutex_exit(&container->c_objects_lock); 624 * container_rele(container); 625 * return (KMEM_CBRC_YES); 626 * } 627 * 628 * Note that object_move() must invalidate the designated o_container pointer of 629 * the old object in the same way that object_free() does, since kmem will free 630 * the object in response to the KMEM_CBRC_YES return value. 631 * 632 * The lock order in object_move() differs from object_alloc(), which locks 633 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 634 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 635 * not a problem. Holding the lock on the object list in the example above 636 * through the entire callback not only prevents the object from going away, it 637 * also allows you to lock the list elsewhere and know that none of its elements 638 * will move during iteration. 639 * 640 * Adding an explicit hold everywhere an object from the cache is used is tricky 641 * and involves much more change to client code than a cache-specific solution 642 * that leverages existing state to decide whether or not an object is 643 * movable. However, this approach has the advantage that no object remains 644 * immovable for any significant length of time, making it extremely unlikely 645 * that long-lived allocations can continue holding slabs hostage; and it works 646 * for any cache. 647 * 648 * 3. Consolidator Implementation 649 * 650 * Once the client supplies a move function that a) recognizes known objects and 651 * b) avoids moving objects that are actively in use, the remaining work is up 652 * to the consolidator to decide which objects to move and when to issue 653 * callbacks. 654 * 655 * The consolidator relies on the fact that a cache's slabs are ordered by 656 * usage. Each slab has a fixed number of objects. Depending on the slab's 657 * "color" (the offset of the first object from the beginning of the slab; 658 * offsets are staggered to mitigate false sharing of cache lines) it is either 659 * the maximum number of objects per slab determined at cache creation time or 660 * else the number closest to the maximum that fits within the space remaining 661 * after the initial offset. A completely allocated slab may contribute some 662 * internal fragmentation (per-slab overhead) but no external fragmentation, so 663 * it is of no interest to the consolidator. At the other extreme, slabs whose 664 * objects have all been freed to the slab are released to the virtual memory 665 * (VM) subsystem (objects freed to magazines are still allocated as far as the 666 * slab is concerned). External fragmentation exists when there are slabs 667 * somewhere between these extremes. A partial slab has at least one but not all 668 * of its objects allocated. The more partial slabs, and the fewer allocated 669 * objects on each of them, the higher the fragmentation. Hence the 670 * consolidator's overall strategy is to reduce the number of partial slabs by 671 * moving allocated objects from the least allocated slabs to the most allocated 672 * slabs. 673 * 674 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 675 * slabs are kept separately in an unordered list. Since the majority of slabs 676 * tend to be completely allocated (a typical unfragmented cache may have 677 * thousands of complete slabs and only a single partial slab), separating 678 * complete slabs improves the efficiency of partial slab ordering, since the 679 * complete slabs do not affect the depth or balance of the AVL tree. This 680 * ordered sequence of partial slabs acts as a "free list" supplying objects for 681 * allocation requests. 682 * 683 * Objects are always allocated from the first partial slab in the free list, 684 * where the allocation is most likely to eliminate a partial slab (by 685 * completely allocating it). Conversely, when a single object from a completely 686 * allocated slab is freed to the slab, that slab is added to the front of the 687 * free list. Since most free list activity involves highly allocated slabs 688 * coming and going at the front of the list, slabs tend naturally toward the 689 * ideal order: highly allocated at the front, sparsely allocated at the back. 690 * Slabs with few allocated objects are likely to become completely free if they 691 * keep a safe distance away from the front of the free list. Slab misorders 692 * interfere with the natural tendency of slabs to become completely free or 693 * completely allocated. For example, a slab with a single allocated object 694 * needs only a single free to escape the cache; its natural desire is 695 * frustrated when it finds itself at the front of the list where a second 696 * allocation happens just before the free could have released it. Another slab 697 * with all but one object allocated might have supplied the buffer instead, so 698 * that both (as opposed to neither) of the slabs would have been taken off the 699 * free list. 700 * 701 * Although slabs tend naturally toward the ideal order, misorders allowed by a 702 * simple list implementation defeat the consolidator's strategy of merging 703 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 704 * needs another way to fix misorders to optimize its callback strategy. One 705 * approach is to periodically scan a limited number of slabs, advancing a 706 * marker to hold the current scan position, and to move extreme misorders to 707 * the front or back of the free list and to the front or back of the current 708 * scan range. By making consecutive scan ranges overlap by one slab, the least 709 * allocated slab in the current range can be carried along from the end of one 710 * scan to the start of the next. 711 * 712 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 713 * task, however. Since most of the cache's activity is in the magazine layer, 714 * and allocations from the slab layer represent only a startup cost, the 715 * overhead of maintaining a balanced tree is not a significant concern compared 716 * to the opportunity of reducing complexity by eliminating the partial slab 717 * scanner just described. The overhead of an AVL tree is minimized by 718 * maintaining only partial slabs in the tree and keeping completely allocated 719 * slabs separately in a list. To avoid increasing the size of the slab 720 * structure the AVL linkage pointers are reused for the slab's list linkage, 721 * since the slab will always be either partial or complete, never stored both 722 * ways at the same time. To further minimize the overhead of the AVL tree the 723 * compare function that orders partial slabs by usage divides the range of 724 * allocated object counts into bins such that counts within the same bin are 725 * considered equal. Binning partial slabs makes it less likely that allocating 726 * or freeing a single object will change the slab's order, requiring a tree 727 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 728 * requiring some rebalancing of the tree). Allocation counts closest to 729 * completely free and completely allocated are left unbinned (finely sorted) to 730 * better support the consolidator's strategy of merging slabs at either 731 * extreme. 732 * 733 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 734 * 735 * The consolidator piggybacks on the kmem maintenance thread and is called on 736 * the same interval as kmem_cache_update(), once per cache every fifteen 737 * seconds. kmem maintains a running count of unallocated objects in the slab 738 * layer (cache_bufslab). The consolidator checks whether that number exceeds 739 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 740 * there is a significant number of slabs in the cache (arbitrarily a minimum 741 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 742 * working set are included in the assessment, and magazines in the depot are 743 * reaped if those objects would lift cache_bufslab above the fragmentation 744 * threshold. Once the consolidator decides that a cache is fragmented, it looks 745 * for a candidate slab to reclaim, starting at the end of the partial slab free 746 * list and scanning backwards. At first the consolidator is choosy: only a slab 747 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 748 * single allocated object, regardless of percentage). If there is difficulty 749 * finding a candidate slab, kmem raises the allocation threshold incrementally, 750 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 751 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 752 * even in the worst case of every slab in the cache being almost 7/8 allocated. 753 * The threshold can also be lowered incrementally when candidate slabs are easy 754 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 755 * is no longer fragmented. 756 * 757 * 3.2 Generating Callbacks 758 * 759 * Once an eligible slab is chosen, a callback is generated for every allocated 760 * object on the slab, in the hope that the client will move everything off the 761 * slab and make it reclaimable. Objects selected as move destinations are 762 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 763 * order (most allocated at the front, least allocated at the back) and a 764 * cooperative client, the consolidator will succeed in removing slabs from both 765 * ends of the free list, completely allocating on the one hand and completely 766 * freeing on the other. Objects selected as move destinations are allocated in 767 * the kmem maintenance thread where move requests are enqueued. A separate 768 * callback thread removes pending callbacks from the queue and calls the 769 * client. The separate thread ensures that client code (the move function) does 770 * not interfere with internal kmem maintenance tasks. A map of pending 771 * callbacks keyed by object address (the object to be moved) is checked to 772 * ensure that duplicate callbacks are not generated for the same object. 773 * Allocating the move destination (the object to move to) prevents subsequent 774 * callbacks from selecting the same destination as an earlier pending callback. 775 * 776 * Move requests can also be generated by kmem_cache_reap() when the system is 777 * desperate for memory and by kmem_cache_move_notify(), called by the client to 778 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 779 * The map of pending callbacks is protected by the same lock that protects the 780 * slab layer. 781 * 782 * When the system is desperate for memory, kmem does not bother to determine 783 * whether or not the cache exceeds the fragmentation threshold, but tries to 784 * consolidate as many slabs as possible. Normally, the consolidator chews 785 * slowly, one sparsely allocated slab at a time during each maintenance 786 * interval that the cache is fragmented. When desperate, the consolidator 787 * starts at the last partial slab and enqueues callbacks for every allocated 788 * object on every partial slab, working backwards until it reaches the first 789 * partial slab. The first partial slab, meanwhile, advances in pace with the 790 * consolidator as allocations to supply move destinations for the enqueued 791 * callbacks use up the highly allocated slabs at the front of the free list. 792 * Ideally, the overgrown free list collapses like an accordion, starting at 793 * both ends and ending at the center with a single partial slab. 794 * 795 * 3.3 Client Responses 796 * 797 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 798 * marks the slab that supplied the stuck object non-reclaimable and moves it to 799 * front of the free list. The slab remains marked as long as it remains on the 800 * free list, and it appears more allocated to the partial slab compare function 801 * than any unmarked slab, no matter how many of its objects are allocated. 802 * Since even one immovable object ties up the entire slab, the goal is to 803 * completely allocate any slab that cannot be completely freed. kmem does not 804 * bother generating callbacks to move objects from a marked slab unless the 805 * system is desperate. 806 * 807 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 808 * slab. If the client responds LATER too many times, kmem disbelieves and 809 * treats the response as a NO. The count is cleared when the slab is taken off 810 * the partial slab list or when the client moves one of the slab's objects. 811 * 812 * 4. Observability 813 * 814 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 815 * the ::kmem_slabs dcmd. For a complete description of the command, enter 816 * '::help kmem_slabs' at the mdb prompt. 817 */ 818 819 #include <sys/kmem_impl.h> 820 #include <sys/vmem_impl.h> 821 #include <sys/param.h> 822 #include <sys/sysmacros.h> 823 #include <sys/vm.h> 824 #include <sys/proc.h> 825 #include <sys/tuneable.h> 826 #include <sys/systm.h> 827 #include <sys/cmn_err.h> 828 #include <sys/debug.h> 829 #include <sys/sdt.h> 830 #include <sys/mutex.h> 831 #include <sys/bitmap.h> 832 #include <sys/atomic.h> 833 #include <sys/kobj.h> 834 #include <sys/disp.h> 835 #include <vm/seg_kmem.h> 836 #include <sys/log.h> 837 #include <sys/callb.h> 838 #include <sys/taskq.h> 839 #include <sys/modctl.h> 840 #include <sys/reboot.h> 841 #include <sys/id32.h> 842 #include <sys/zone.h> 843 #include <sys/netstack.h> 844 #ifdef DEBUG 845 #include <sys/random.h> 846 #endif 847 848 extern void streams_msg_init(void); 849 extern int segkp_fromheap; 850 extern void segkp_cache_free(void); 851 extern int callout_init_done; 852 853 struct kmem_cache_kstat { 854 kstat_named_t kmc_buf_size; 855 kstat_named_t kmc_align; 856 kstat_named_t kmc_chunk_size; 857 kstat_named_t kmc_slab_size; 858 kstat_named_t kmc_alloc; 859 kstat_named_t kmc_alloc_fail; 860 kstat_named_t kmc_free; 861 kstat_named_t kmc_depot_alloc; 862 kstat_named_t kmc_depot_free; 863 kstat_named_t kmc_depot_contention; 864 kstat_named_t kmc_slab_alloc; 865 kstat_named_t kmc_slab_free; 866 kstat_named_t kmc_buf_constructed; 867 kstat_named_t kmc_buf_avail; 868 kstat_named_t kmc_buf_inuse; 869 kstat_named_t kmc_buf_total; 870 kstat_named_t kmc_buf_max; 871 kstat_named_t kmc_slab_create; 872 kstat_named_t kmc_slab_destroy; 873 kstat_named_t kmc_vmem_source; 874 kstat_named_t kmc_hash_size; 875 kstat_named_t kmc_hash_lookup_depth; 876 kstat_named_t kmc_hash_rescale; 877 kstat_named_t kmc_full_magazines; 878 kstat_named_t kmc_empty_magazines; 879 kstat_named_t kmc_magazine_size; 880 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 881 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 882 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 883 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 884 kstat_named_t kmc_move_yes; 885 kstat_named_t kmc_move_no; 886 kstat_named_t kmc_move_later; 887 kstat_named_t kmc_move_dont_need; 888 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 889 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 890 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 891 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 892 } kmem_cache_kstat = { 893 { "buf_size", KSTAT_DATA_UINT64 }, 894 { "align", KSTAT_DATA_UINT64 }, 895 { "chunk_size", KSTAT_DATA_UINT64 }, 896 { "slab_size", KSTAT_DATA_UINT64 }, 897 { "alloc", KSTAT_DATA_UINT64 }, 898 { "alloc_fail", KSTAT_DATA_UINT64 }, 899 { "free", KSTAT_DATA_UINT64 }, 900 { "depot_alloc", KSTAT_DATA_UINT64 }, 901 { "depot_free", KSTAT_DATA_UINT64 }, 902 { "depot_contention", KSTAT_DATA_UINT64 }, 903 { "slab_alloc", KSTAT_DATA_UINT64 }, 904 { "slab_free", KSTAT_DATA_UINT64 }, 905 { "buf_constructed", KSTAT_DATA_UINT64 }, 906 { "buf_avail", KSTAT_DATA_UINT64 }, 907 { "buf_inuse", KSTAT_DATA_UINT64 }, 908 { "buf_total", KSTAT_DATA_UINT64 }, 909 { "buf_max", KSTAT_DATA_UINT64 }, 910 { "slab_create", KSTAT_DATA_UINT64 }, 911 { "slab_destroy", KSTAT_DATA_UINT64 }, 912 { "vmem_source", KSTAT_DATA_UINT64 }, 913 { "hash_size", KSTAT_DATA_UINT64 }, 914 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 915 { "hash_rescale", KSTAT_DATA_UINT64 }, 916 { "full_magazines", KSTAT_DATA_UINT64 }, 917 { "empty_magazines", KSTAT_DATA_UINT64 }, 918 { "magazine_size", KSTAT_DATA_UINT64 }, 919 { "reap", KSTAT_DATA_UINT64 }, 920 { "defrag", KSTAT_DATA_UINT64 }, 921 { "scan", KSTAT_DATA_UINT64 }, 922 { "move_callbacks", KSTAT_DATA_UINT64 }, 923 { "move_yes", KSTAT_DATA_UINT64 }, 924 { "move_no", KSTAT_DATA_UINT64 }, 925 { "move_later", KSTAT_DATA_UINT64 }, 926 { "move_dont_need", KSTAT_DATA_UINT64 }, 927 { "move_dont_know", KSTAT_DATA_UINT64 }, 928 { "move_hunt_found", KSTAT_DATA_UINT64 }, 929 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 930 { "move_reclaimable", KSTAT_DATA_UINT64 }, 931 }; 932 933 static kmutex_t kmem_cache_kstat_lock; 934 935 /* 936 * The default set of caches to back kmem_alloc(). 937 * These sizes should be reevaluated periodically. 938 * 939 * We want allocations that are multiples of the coherency granularity 940 * (64 bytes) to be satisfied from a cache which is a multiple of 64 941 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 942 * the next kmem_cache_size greater than or equal to it must be a 943 * multiple of 64. 944 * 945 * We split the table into two sections: size <= 4k and size > 4k. This 946 * saves a lot of space and cache footprint in our cache tables. 947 */ 948 static const int kmem_alloc_sizes[] = { 949 1 * 8, 950 2 * 8, 951 3 * 8, 952 4 * 8, 5 * 8, 6 * 8, 7 * 8, 953 4 * 16, 5 * 16, 6 * 16, 7 * 16, 954 4 * 32, 5 * 32, 6 * 32, 7 * 32, 955 4 * 64, 5 * 64, 6 * 64, 7 * 64, 956 4 * 128, 5 * 128, 6 * 128, 7 * 128, 957 P2ALIGN(8192 / 7, 64), 958 P2ALIGN(8192 / 6, 64), 959 P2ALIGN(8192 / 5, 64), 960 P2ALIGN(8192 / 4, 64), 961 P2ALIGN(8192 / 3, 64), 962 P2ALIGN(8192 / 2, 64), 963 }; 964 965 static const int kmem_big_alloc_sizes[] = { 966 2 * 4096, 3 * 4096, 967 2 * 8192, 3 * 8192, 968 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 969 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 970 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 971 16 * 8192 972 }; 973 974 #define KMEM_MAXBUF 4096 975 #define KMEM_BIG_MAXBUF_32BIT 32768 976 #define KMEM_BIG_MAXBUF 131072 977 978 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 979 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 980 981 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 982 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 983 984 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 985 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 986 987 static kmem_magtype_t kmem_magtype[] = { 988 { 1, 8, 3200, 65536 }, 989 { 3, 16, 256, 32768 }, 990 { 7, 32, 64, 16384 }, 991 { 15, 64, 0, 8192 }, 992 { 31, 64, 0, 4096 }, 993 { 47, 64, 0, 2048 }, 994 { 63, 64, 0, 1024 }, 995 { 95, 64, 0, 512 }, 996 { 143, 64, 0, 0 }, 997 }; 998 999 static uint32_t kmem_reaping; 1000 static uint32_t kmem_reaping_idspace; 1001 1002 /* 1003 * kmem tunables 1004 */ 1005 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 1006 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 1007 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 1008 int kmem_panic = 1; /* whether to panic on error */ 1009 int kmem_logging = 1; /* kmem_log_enter() override */ 1010 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 1011 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 1012 size_t kmem_content_log_size; /* content log size [2% of memory] */ 1013 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 1014 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 1015 size_t kmem_zerosized_log_size; /* zero-sized log [4 pages per CPU] */ 1016 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1017 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1018 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1019 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1020 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1021 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1022 1023 #ifdef DEBUG 1024 int kmem_warn_zerosized = 1; /* whether to warn on zero-sized KM_SLEEP */ 1025 #else 1026 int kmem_warn_zerosized = 0; /* whether to warn on zero-sized KM_SLEEP */ 1027 #endif 1028 1029 int kmem_panic_zerosized = 0; /* whether to panic on zero-sized KM_SLEEP */ 1030 1031 #ifdef _LP64 1032 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1033 #else 1034 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1035 #endif 1036 1037 #ifdef DEBUG 1038 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1039 #else 1040 int kmem_flags = 0; 1041 #endif 1042 int kmem_ready; 1043 1044 static kmem_cache_t *kmem_slab_cache; 1045 static kmem_cache_t *kmem_bufctl_cache; 1046 static kmem_cache_t *kmem_bufctl_audit_cache; 1047 1048 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1049 static list_t kmem_caches; 1050 1051 static taskq_t *kmem_taskq; 1052 static kmutex_t kmem_flags_lock; 1053 static vmem_t *kmem_metadata_arena; 1054 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1055 static vmem_t *kmem_cache_arena; 1056 static vmem_t *kmem_hash_arena; 1057 static vmem_t *kmem_log_arena; 1058 static vmem_t *kmem_oversize_arena; 1059 static vmem_t *kmem_va_arena; 1060 static vmem_t *kmem_default_arena; 1061 static vmem_t *kmem_firewall_va_arena; 1062 static vmem_t *kmem_firewall_arena; 1063 1064 static int kmem_zerosized; /* # of zero-sized allocs */ 1065 1066 /* 1067 * kmem slab consolidator thresholds (tunables) 1068 */ 1069 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1070 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1071 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1072 /* 1073 * Maximum number of slabs from which to move buffers during a single 1074 * maintenance interval while the system is not low on memory. 1075 */ 1076 size_t kmem_reclaim_max_slabs = 1; 1077 /* 1078 * Number of slabs to scan backwards from the end of the partial slab list 1079 * when searching for buffers to relocate. 1080 */ 1081 size_t kmem_reclaim_scan_range = 12; 1082 1083 /* consolidator knobs */ 1084 boolean_t kmem_move_noreap; 1085 boolean_t kmem_move_blocked; 1086 boolean_t kmem_move_fulltilt; 1087 boolean_t kmem_move_any_partial; 1088 1089 #ifdef DEBUG 1090 /* 1091 * kmem consolidator debug tunables: 1092 * Ensure code coverage by occasionally running the consolidator even when the 1093 * caches are not fragmented (they may never be). These intervals are mean time 1094 * in cache maintenance intervals (kmem_cache_update). 1095 */ 1096 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1097 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1098 #endif /* DEBUG */ 1099 1100 static kmem_cache_t *kmem_defrag_cache; 1101 static kmem_cache_t *kmem_move_cache; 1102 static taskq_t *kmem_move_taskq; 1103 1104 static void kmem_cache_scan(kmem_cache_t *); 1105 static void kmem_cache_defrag(kmem_cache_t *); 1106 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1107 1108 1109 kmem_log_header_t *kmem_transaction_log; 1110 kmem_log_header_t *kmem_content_log; 1111 kmem_log_header_t *kmem_failure_log; 1112 kmem_log_header_t *kmem_slab_log; 1113 kmem_log_header_t *kmem_zerosized_log; 1114 1115 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1116 1117 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1118 if ((count) > 0) { \ 1119 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1120 pc_t *_e; \ 1121 /* memmove() the old entries down one notch */ \ 1122 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1123 *_e = *(_e - 1); \ 1124 *_s = (uintptr_t)(caller); \ 1125 } 1126 1127 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1128 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1129 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1130 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1131 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1132 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1133 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1134 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1135 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1136 1137 struct { 1138 hrtime_t kmp_timestamp; /* timestamp of panic */ 1139 int kmp_error; /* type of kmem error */ 1140 void *kmp_buffer; /* buffer that induced panic */ 1141 void *kmp_realbuf; /* real start address for buffer */ 1142 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1143 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1144 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1145 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1146 } kmem_panic_info; 1147 1148 1149 static void 1150 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1151 { 1152 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1153 uint64_t *buf = buf_arg; 1154 1155 while (buf < bufend) 1156 *buf++ = pattern; 1157 } 1158 1159 static void * 1160 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1161 { 1162 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1163 uint64_t *buf; 1164 1165 for (buf = buf_arg; buf < bufend; buf++) 1166 if (*buf != pattern) 1167 return (buf); 1168 return (NULL); 1169 } 1170 1171 static void * 1172 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1173 { 1174 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1175 uint64_t *buf; 1176 1177 for (buf = buf_arg; buf < bufend; buf++) { 1178 if (*buf != old) { 1179 copy_pattern(old, buf_arg, 1180 (char *)buf - (char *)buf_arg); 1181 return (buf); 1182 } 1183 *buf = new; 1184 } 1185 1186 return (NULL); 1187 } 1188 1189 static void 1190 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1191 { 1192 kmem_cache_t *cp; 1193 1194 mutex_enter(&kmem_cache_lock); 1195 for (cp = list_head(&kmem_caches); cp != NULL; 1196 cp = list_next(&kmem_caches, cp)) 1197 if (tq != NULL) 1198 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1199 tqflag); 1200 else 1201 func(cp); 1202 mutex_exit(&kmem_cache_lock); 1203 } 1204 1205 static void 1206 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1207 { 1208 kmem_cache_t *cp; 1209 1210 mutex_enter(&kmem_cache_lock); 1211 for (cp = list_head(&kmem_caches); cp != NULL; 1212 cp = list_next(&kmem_caches, cp)) { 1213 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1214 continue; 1215 if (tq != NULL) 1216 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1217 tqflag); 1218 else 1219 func(cp); 1220 } 1221 mutex_exit(&kmem_cache_lock); 1222 } 1223 1224 /* 1225 * Debugging support. Given a buffer address, find its slab. 1226 */ 1227 static kmem_slab_t * 1228 kmem_findslab(kmem_cache_t *cp, void *buf) 1229 { 1230 kmem_slab_t *sp; 1231 1232 mutex_enter(&cp->cache_lock); 1233 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1234 sp = list_next(&cp->cache_complete_slabs, sp)) { 1235 if (KMEM_SLAB_MEMBER(sp, buf)) { 1236 mutex_exit(&cp->cache_lock); 1237 return (sp); 1238 } 1239 } 1240 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1241 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1242 if (KMEM_SLAB_MEMBER(sp, buf)) { 1243 mutex_exit(&cp->cache_lock); 1244 return (sp); 1245 } 1246 } 1247 mutex_exit(&cp->cache_lock); 1248 1249 return (NULL); 1250 } 1251 1252 static void 1253 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1254 { 1255 kmem_buftag_t *btp = NULL; 1256 kmem_bufctl_t *bcp = NULL; 1257 kmem_cache_t *cp = cparg; 1258 kmem_slab_t *sp; 1259 uint64_t *off; 1260 void *buf = bufarg; 1261 1262 kmem_logging = 0; /* stop logging when a bad thing happens */ 1263 1264 kmem_panic_info.kmp_timestamp = gethrtime(); 1265 1266 sp = kmem_findslab(cp, buf); 1267 if (sp == NULL) { 1268 for (cp = list_tail(&kmem_caches); cp != NULL; 1269 cp = list_prev(&kmem_caches, cp)) { 1270 if ((sp = kmem_findslab(cp, buf)) != NULL) 1271 break; 1272 } 1273 } 1274 1275 if (sp == NULL) { 1276 cp = NULL; 1277 error = KMERR_BADADDR; 1278 } else { 1279 if (cp != cparg) 1280 error = KMERR_BADCACHE; 1281 else 1282 buf = (char *)bufarg - ((uintptr_t)bufarg - 1283 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1284 if (buf != bufarg) 1285 error = KMERR_BADBASE; 1286 if (cp->cache_flags & KMF_BUFTAG) 1287 btp = KMEM_BUFTAG(cp, buf); 1288 if (cp->cache_flags & KMF_HASH) { 1289 mutex_enter(&cp->cache_lock); 1290 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1291 if (bcp->bc_addr == buf) 1292 break; 1293 mutex_exit(&cp->cache_lock); 1294 if (bcp == NULL && btp != NULL) 1295 bcp = btp->bt_bufctl; 1296 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1297 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1298 bcp->bc_addr != buf) { 1299 error = KMERR_BADBUFCTL; 1300 bcp = NULL; 1301 } 1302 } 1303 } 1304 1305 kmem_panic_info.kmp_error = error; 1306 kmem_panic_info.kmp_buffer = bufarg; 1307 kmem_panic_info.kmp_realbuf = buf; 1308 kmem_panic_info.kmp_cache = cparg; 1309 kmem_panic_info.kmp_realcache = cp; 1310 kmem_panic_info.kmp_slab = sp; 1311 kmem_panic_info.kmp_bufctl = bcp; 1312 1313 printf("kernel memory allocator: "); 1314 1315 switch (error) { 1316 1317 case KMERR_MODIFIED: 1318 printf("buffer modified after being freed\n"); 1319 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1320 if (off == NULL) /* shouldn't happen */ 1321 off = buf; 1322 printf("modification occurred at offset 0x%lx " 1323 "(0x%llx replaced by 0x%llx)\n", 1324 (uintptr_t)off - (uintptr_t)buf, 1325 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1326 break; 1327 1328 case KMERR_REDZONE: 1329 printf("redzone violation: write past end of buffer\n"); 1330 break; 1331 1332 case KMERR_BADADDR: 1333 printf("invalid free: buffer not in cache\n"); 1334 break; 1335 1336 case KMERR_DUPFREE: 1337 printf("duplicate free: buffer freed twice\n"); 1338 break; 1339 1340 case KMERR_BADBUFTAG: 1341 printf("boundary tag corrupted\n"); 1342 printf("bcp ^ bxstat = %lx, should be %lx\n", 1343 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1344 KMEM_BUFTAG_FREE); 1345 break; 1346 1347 case KMERR_BADBUFCTL: 1348 printf("bufctl corrupted\n"); 1349 break; 1350 1351 case KMERR_BADCACHE: 1352 printf("buffer freed to wrong cache\n"); 1353 printf("buffer was allocated from %s,\n", cp->cache_name); 1354 printf("caller attempting free to %s.\n", cparg->cache_name); 1355 break; 1356 1357 case KMERR_BADSIZE: 1358 printf("bad free: free size (%u) != alloc size (%u)\n", 1359 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1360 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1361 break; 1362 1363 case KMERR_BADBASE: 1364 printf("bad free: free address (%p) != alloc address (%p)\n", 1365 bufarg, buf); 1366 break; 1367 } 1368 1369 printf("buffer=%p bufctl=%p cache: %s\n", 1370 bufarg, (void *)bcp, cparg->cache_name); 1371 1372 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1373 error != KMERR_BADBUFCTL) { 1374 int d; 1375 timestruc_t ts; 1376 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1377 1378 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1379 printf("previous transaction on buffer %p:\n", buf); 1380 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1381 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1382 (void *)sp, cp->cache_name); 1383 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1384 ulong_t off; 1385 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1386 printf("%s+%lx\n", sym ? sym : "?", off); 1387 } 1388 } 1389 if (kmem_panic > 0) 1390 panic("kernel heap corruption detected"); 1391 if (kmem_panic == 0) 1392 debug_enter(NULL); 1393 kmem_logging = 1; /* resume logging */ 1394 } 1395 1396 static kmem_log_header_t * 1397 kmem_log_init(size_t logsize) 1398 { 1399 kmem_log_header_t *lhp; 1400 int nchunks = 4 * max_ncpus; 1401 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1402 int i; 1403 1404 /* 1405 * Make sure that lhp->lh_cpu[] is nicely aligned 1406 * to prevent false sharing of cache lines. 1407 */ 1408 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1409 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1410 NULL, NULL, VM_SLEEP); 1411 bzero(lhp, lhsize); 1412 1413 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1414 lhp->lh_nchunks = nchunks; 1415 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1416 lhp->lh_base = vmem_alloc(kmem_log_arena, 1417 lhp->lh_chunksize * nchunks, VM_SLEEP); 1418 lhp->lh_free = vmem_alloc(kmem_log_arena, 1419 nchunks * sizeof (int), VM_SLEEP); 1420 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1421 1422 for (i = 0; i < max_ncpus; i++) { 1423 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1424 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1425 clhp->clh_chunk = i; 1426 } 1427 1428 for (i = max_ncpus; i < nchunks; i++) 1429 lhp->lh_free[i] = i; 1430 1431 lhp->lh_head = max_ncpus; 1432 lhp->lh_tail = 0; 1433 1434 return (lhp); 1435 } 1436 1437 static void * 1438 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1439 { 1440 void *logspace; 1441 kmem_cpu_log_header_t *clhp; 1442 1443 if (lhp == NULL || kmem_logging == 0 || panicstr) 1444 return (NULL); 1445 1446 clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1447 1448 mutex_enter(&clhp->clh_lock); 1449 clhp->clh_hits++; 1450 if (size > clhp->clh_avail) { 1451 mutex_enter(&lhp->lh_lock); 1452 lhp->lh_hits++; 1453 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1454 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1455 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1456 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1457 clhp->clh_current = lhp->lh_base + 1458 clhp->clh_chunk * lhp->lh_chunksize; 1459 clhp->clh_avail = lhp->lh_chunksize; 1460 if (size > lhp->lh_chunksize) 1461 size = lhp->lh_chunksize; 1462 mutex_exit(&lhp->lh_lock); 1463 } 1464 logspace = clhp->clh_current; 1465 clhp->clh_current += size; 1466 clhp->clh_avail -= size; 1467 bcopy(data, logspace, size); 1468 mutex_exit(&clhp->clh_lock); 1469 return (logspace); 1470 } 1471 1472 #define KMEM_AUDIT(lp, cp, bcp) \ 1473 { \ 1474 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1475 _bcp->bc_timestamp = gethrtime(); \ 1476 _bcp->bc_thread = curthread; \ 1477 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1478 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1479 } 1480 1481 static void 1482 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1483 kmem_slab_t *sp, void *addr) 1484 { 1485 kmem_bufctl_audit_t bca; 1486 1487 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1488 bca.bc_addr = addr; 1489 bca.bc_slab = sp; 1490 bca.bc_cache = cp; 1491 KMEM_AUDIT(lp, cp, &bca); 1492 } 1493 1494 /* 1495 * Create a new slab for cache cp. 1496 */ 1497 static kmem_slab_t * 1498 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1499 { 1500 size_t slabsize = cp->cache_slabsize; 1501 size_t chunksize = cp->cache_chunksize; 1502 int cache_flags = cp->cache_flags; 1503 size_t color, chunks; 1504 char *buf, *slab; 1505 kmem_slab_t *sp; 1506 kmem_bufctl_t *bcp; 1507 vmem_t *vmp = cp->cache_arena; 1508 1509 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1510 1511 color = cp->cache_color + cp->cache_align; 1512 if (color > cp->cache_maxcolor) 1513 color = cp->cache_mincolor; 1514 cp->cache_color = color; 1515 1516 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1517 1518 if (slab == NULL) 1519 goto vmem_alloc_failure; 1520 1521 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1522 1523 /* 1524 * Reverify what was already checked in kmem_cache_set_move(), since the 1525 * consolidator depends (for correctness) on slabs being initialized 1526 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1527 * clients to distinguish uninitialized memory from known objects). 1528 */ 1529 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1530 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1531 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1532 1533 if (cache_flags & KMF_HASH) { 1534 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1535 goto slab_alloc_failure; 1536 chunks = (slabsize - color) / chunksize; 1537 } else { 1538 sp = KMEM_SLAB(cp, slab); 1539 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1540 } 1541 1542 sp->slab_cache = cp; 1543 sp->slab_head = NULL; 1544 sp->slab_refcnt = 0; 1545 sp->slab_base = buf = slab + color; 1546 sp->slab_chunks = chunks; 1547 sp->slab_stuck_offset = (uint32_t)-1; 1548 sp->slab_later_count = 0; 1549 sp->slab_flags = 0; 1550 1551 ASSERT(chunks > 0); 1552 while (chunks-- != 0) { 1553 if (cache_flags & KMF_HASH) { 1554 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1555 if (bcp == NULL) 1556 goto bufctl_alloc_failure; 1557 if (cache_flags & KMF_AUDIT) { 1558 kmem_bufctl_audit_t *bcap = 1559 (kmem_bufctl_audit_t *)bcp; 1560 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1561 bcap->bc_cache = cp; 1562 } 1563 bcp->bc_addr = buf; 1564 bcp->bc_slab = sp; 1565 } else { 1566 bcp = KMEM_BUFCTL(cp, buf); 1567 } 1568 if (cache_flags & KMF_BUFTAG) { 1569 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1570 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1571 btp->bt_bufctl = bcp; 1572 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1573 if (cache_flags & KMF_DEADBEEF) { 1574 copy_pattern(KMEM_FREE_PATTERN, buf, 1575 cp->cache_verify); 1576 } 1577 } 1578 bcp->bc_next = sp->slab_head; 1579 sp->slab_head = bcp; 1580 buf += chunksize; 1581 } 1582 1583 kmem_log_event(kmem_slab_log, cp, sp, slab); 1584 1585 return (sp); 1586 1587 bufctl_alloc_failure: 1588 1589 while ((bcp = sp->slab_head) != NULL) { 1590 sp->slab_head = bcp->bc_next; 1591 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1592 } 1593 kmem_cache_free(kmem_slab_cache, sp); 1594 1595 slab_alloc_failure: 1596 1597 vmem_free(vmp, slab, slabsize); 1598 1599 vmem_alloc_failure: 1600 1601 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1602 atomic_inc_64(&cp->cache_alloc_fail); 1603 1604 return (NULL); 1605 } 1606 1607 /* 1608 * Destroy a slab. 1609 */ 1610 static void 1611 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1612 { 1613 vmem_t *vmp = cp->cache_arena; 1614 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1615 1616 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1617 ASSERT(sp->slab_refcnt == 0); 1618 1619 if (cp->cache_flags & KMF_HASH) { 1620 kmem_bufctl_t *bcp; 1621 while ((bcp = sp->slab_head) != NULL) { 1622 sp->slab_head = bcp->bc_next; 1623 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1624 } 1625 kmem_cache_free(kmem_slab_cache, sp); 1626 } 1627 vmem_free(vmp, slab, cp->cache_slabsize); 1628 } 1629 1630 static void * 1631 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 1632 { 1633 kmem_bufctl_t *bcp, **hash_bucket; 1634 void *buf; 1635 boolean_t new_slab = (sp->slab_refcnt == 0); 1636 1637 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1638 /* 1639 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1640 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1641 * slab is newly created. 1642 */ 1643 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1644 (sp == avl_first(&cp->cache_partial_slabs)))); 1645 ASSERT(sp->slab_cache == cp); 1646 1647 cp->cache_slab_alloc++; 1648 cp->cache_bufslab--; 1649 sp->slab_refcnt++; 1650 1651 bcp = sp->slab_head; 1652 sp->slab_head = bcp->bc_next; 1653 1654 if (cp->cache_flags & KMF_HASH) { 1655 /* 1656 * Add buffer to allocated-address hash table. 1657 */ 1658 buf = bcp->bc_addr; 1659 hash_bucket = KMEM_HASH(cp, buf); 1660 bcp->bc_next = *hash_bucket; 1661 *hash_bucket = bcp; 1662 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1663 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1664 } 1665 } else { 1666 buf = KMEM_BUF(cp, bcp); 1667 } 1668 1669 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1670 1671 if (sp->slab_head == NULL) { 1672 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1673 if (new_slab) { 1674 ASSERT(sp->slab_chunks == 1); 1675 } else { 1676 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1677 avl_remove(&cp->cache_partial_slabs, sp); 1678 sp->slab_later_count = 0; /* clear history */ 1679 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1680 sp->slab_stuck_offset = (uint32_t)-1; 1681 } 1682 list_insert_head(&cp->cache_complete_slabs, sp); 1683 cp->cache_complete_slab_count++; 1684 return (buf); 1685 } 1686 1687 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1688 /* 1689 * Peek to see if the magazine layer is enabled before 1690 * we prefill. We're not holding the cpu cache lock, 1691 * so the peek could be wrong, but there's no harm in it. 1692 */ 1693 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1694 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1695 kmem_slab_prefill(cp, sp); 1696 return (buf); 1697 } 1698 1699 if (new_slab) { 1700 avl_add(&cp->cache_partial_slabs, sp); 1701 return (buf); 1702 } 1703 1704 /* 1705 * The slab is now more allocated than it was, so the 1706 * order remains unchanged. 1707 */ 1708 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1709 return (buf); 1710 } 1711 1712 /* 1713 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1714 */ 1715 static void * 1716 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1717 { 1718 kmem_slab_t *sp; 1719 void *buf; 1720 boolean_t test_destructor; 1721 1722 mutex_enter(&cp->cache_lock); 1723 test_destructor = (cp->cache_slab_alloc == 0); 1724 sp = avl_first(&cp->cache_partial_slabs); 1725 if (sp == NULL) { 1726 ASSERT(cp->cache_bufslab == 0); 1727 1728 /* 1729 * The freelist is empty. Create a new slab. 1730 */ 1731 mutex_exit(&cp->cache_lock); 1732 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1733 return (NULL); 1734 } 1735 mutex_enter(&cp->cache_lock); 1736 cp->cache_slab_create++; 1737 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1738 cp->cache_bufmax = cp->cache_buftotal; 1739 cp->cache_bufslab += sp->slab_chunks; 1740 } 1741 1742 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1743 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1744 (cp->cache_complete_slab_count + 1745 avl_numnodes(&cp->cache_partial_slabs) + 1746 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1747 mutex_exit(&cp->cache_lock); 1748 1749 if (test_destructor && cp->cache_destructor != NULL) { 1750 /* 1751 * On the first kmem_slab_alloc(), assert that it is valid to 1752 * call the destructor on a newly constructed object without any 1753 * client involvement. 1754 */ 1755 if ((cp->cache_constructor == NULL) || 1756 cp->cache_constructor(buf, cp->cache_private, 1757 kmflag) == 0) { 1758 cp->cache_destructor(buf, cp->cache_private); 1759 } 1760 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1761 cp->cache_bufsize); 1762 if (cp->cache_flags & KMF_DEADBEEF) { 1763 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1764 } 1765 } 1766 1767 return (buf); 1768 } 1769 1770 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1771 1772 /* 1773 * Free a raw (unconstructed) buffer to cp's slab layer. 1774 */ 1775 static void 1776 kmem_slab_free(kmem_cache_t *cp, void *buf) 1777 { 1778 kmem_slab_t *sp; 1779 kmem_bufctl_t *bcp, **prev_bcpp; 1780 1781 ASSERT(buf != NULL); 1782 1783 mutex_enter(&cp->cache_lock); 1784 cp->cache_slab_free++; 1785 1786 if (cp->cache_flags & KMF_HASH) { 1787 /* 1788 * Look up buffer in allocated-address hash table. 1789 */ 1790 prev_bcpp = KMEM_HASH(cp, buf); 1791 while ((bcp = *prev_bcpp) != NULL) { 1792 if (bcp->bc_addr == buf) { 1793 *prev_bcpp = bcp->bc_next; 1794 sp = bcp->bc_slab; 1795 break; 1796 } 1797 cp->cache_lookup_depth++; 1798 prev_bcpp = &bcp->bc_next; 1799 } 1800 } else { 1801 bcp = KMEM_BUFCTL(cp, buf); 1802 sp = KMEM_SLAB(cp, buf); 1803 } 1804 1805 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1806 mutex_exit(&cp->cache_lock); 1807 kmem_error(KMERR_BADADDR, cp, buf); 1808 return; 1809 } 1810 1811 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1812 /* 1813 * If this is the buffer that prevented the consolidator from 1814 * clearing the slab, we can reset the slab flags now that the 1815 * buffer is freed. (It makes sense to do this in 1816 * kmem_cache_free(), where the client gives up ownership of the 1817 * buffer, but on the hot path the test is too expensive.) 1818 */ 1819 kmem_slab_move_yes(cp, sp, buf); 1820 } 1821 1822 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1823 if (cp->cache_flags & KMF_CONTENTS) 1824 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1825 kmem_log_enter(kmem_content_log, buf, 1826 cp->cache_contents); 1827 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1828 } 1829 1830 bcp->bc_next = sp->slab_head; 1831 sp->slab_head = bcp; 1832 1833 cp->cache_bufslab++; 1834 ASSERT(sp->slab_refcnt >= 1); 1835 1836 if (--sp->slab_refcnt == 0) { 1837 /* 1838 * There are no outstanding allocations from this slab, 1839 * so we can reclaim the memory. 1840 */ 1841 if (sp->slab_chunks == 1) { 1842 list_remove(&cp->cache_complete_slabs, sp); 1843 cp->cache_complete_slab_count--; 1844 } else { 1845 avl_remove(&cp->cache_partial_slabs, sp); 1846 } 1847 1848 cp->cache_buftotal -= sp->slab_chunks; 1849 cp->cache_bufslab -= sp->slab_chunks; 1850 /* 1851 * Defer releasing the slab to the virtual memory subsystem 1852 * while there is a pending move callback, since we guarantee 1853 * that buffers passed to the move callback have only been 1854 * touched by kmem or by the client itself. Since the memory 1855 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1856 * set at least one of the two lowest order bits, the client can 1857 * test those bits in the move callback to determine whether or 1858 * not it knows about the buffer (assuming that the client also 1859 * sets one of those low order bits whenever it frees a buffer). 1860 */ 1861 if (cp->cache_defrag == NULL || 1862 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1863 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1864 cp->cache_slab_destroy++; 1865 mutex_exit(&cp->cache_lock); 1866 kmem_slab_destroy(cp, sp); 1867 } else { 1868 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1869 /* 1870 * Slabs are inserted at both ends of the deadlist to 1871 * distinguish between slabs freed while move callbacks 1872 * are pending (list head) and a slab freed while the 1873 * lock is dropped in kmem_move_buffers() (list tail) so 1874 * that in both cases slab_destroy() is called from the 1875 * right context. 1876 */ 1877 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1878 list_insert_tail(deadlist, sp); 1879 } else { 1880 list_insert_head(deadlist, sp); 1881 } 1882 cp->cache_defrag->kmd_deadcount++; 1883 mutex_exit(&cp->cache_lock); 1884 } 1885 return; 1886 } 1887 1888 if (bcp->bc_next == NULL) { 1889 /* Transition the slab from completely allocated to partial. */ 1890 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1891 ASSERT(sp->slab_chunks > 1); 1892 list_remove(&cp->cache_complete_slabs, sp); 1893 cp->cache_complete_slab_count--; 1894 avl_add(&cp->cache_partial_slabs, sp); 1895 } else { 1896 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1897 } 1898 1899 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1900 (cp->cache_complete_slab_count + 1901 avl_numnodes(&cp->cache_partial_slabs) + 1902 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1903 mutex_exit(&cp->cache_lock); 1904 } 1905 1906 /* 1907 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1908 */ 1909 static int 1910 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1911 caddr_t caller) 1912 { 1913 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1914 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1915 uint32_t mtbf; 1916 1917 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1918 kmem_error(KMERR_BADBUFTAG, cp, buf); 1919 return (-1); 1920 } 1921 1922 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1923 1924 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1925 kmem_error(KMERR_BADBUFCTL, cp, buf); 1926 return (-1); 1927 } 1928 1929 if (cp->cache_flags & KMF_DEADBEEF) { 1930 if (!construct && (cp->cache_flags & KMF_LITE)) { 1931 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1932 kmem_error(KMERR_MODIFIED, cp, buf); 1933 return (-1); 1934 } 1935 if (cp->cache_constructor != NULL) 1936 *(uint64_t *)buf = btp->bt_redzone; 1937 else 1938 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1939 } else { 1940 construct = 1; 1941 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1942 KMEM_UNINITIALIZED_PATTERN, buf, 1943 cp->cache_verify)) { 1944 kmem_error(KMERR_MODIFIED, cp, buf); 1945 return (-1); 1946 } 1947 } 1948 } 1949 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1950 1951 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1952 gethrtime() % mtbf == 0 && 1953 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1954 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1955 if (!construct && cp->cache_destructor != NULL) 1956 cp->cache_destructor(buf, cp->cache_private); 1957 } else { 1958 mtbf = 0; 1959 } 1960 1961 if (mtbf || (construct && cp->cache_constructor != NULL && 1962 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1963 atomic_inc_64(&cp->cache_alloc_fail); 1964 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1965 if (cp->cache_flags & KMF_DEADBEEF) 1966 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1967 kmem_slab_free(cp, buf); 1968 return (1); 1969 } 1970 1971 if (cp->cache_flags & KMF_AUDIT) { 1972 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1973 } 1974 1975 if ((cp->cache_flags & KMF_LITE) && 1976 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1977 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1978 } 1979 1980 return (0); 1981 } 1982 1983 static int 1984 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1985 { 1986 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1987 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1988 kmem_slab_t *sp; 1989 1990 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1991 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1992 kmem_error(KMERR_DUPFREE, cp, buf); 1993 return (-1); 1994 } 1995 sp = kmem_findslab(cp, buf); 1996 if (sp == NULL || sp->slab_cache != cp) 1997 kmem_error(KMERR_BADADDR, cp, buf); 1998 else 1999 kmem_error(KMERR_REDZONE, cp, buf); 2000 return (-1); 2001 } 2002 2003 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 2004 2005 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 2006 kmem_error(KMERR_BADBUFCTL, cp, buf); 2007 return (-1); 2008 } 2009 2010 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 2011 kmem_error(KMERR_REDZONE, cp, buf); 2012 return (-1); 2013 } 2014 2015 if (cp->cache_flags & KMF_AUDIT) { 2016 if (cp->cache_flags & KMF_CONTENTS) 2017 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2018 buf, cp->cache_contents); 2019 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2020 } 2021 2022 if ((cp->cache_flags & KMF_LITE) && 2023 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2024 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2025 } 2026 2027 if (cp->cache_flags & KMF_DEADBEEF) { 2028 if (cp->cache_flags & KMF_LITE) 2029 btp->bt_redzone = *(uint64_t *)buf; 2030 else if (cp->cache_destructor != NULL) 2031 cp->cache_destructor(buf, cp->cache_private); 2032 2033 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2034 } 2035 2036 return (0); 2037 } 2038 2039 /* 2040 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2041 */ 2042 static void 2043 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2044 { 2045 int round; 2046 2047 ASSERT(!list_link_active(&cp->cache_link) || 2048 taskq_member(kmem_taskq, curthread)); 2049 2050 for (round = 0; round < nrounds; round++) { 2051 void *buf = mp->mag_round[round]; 2052 2053 if (cp->cache_flags & KMF_DEADBEEF) { 2054 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2055 cp->cache_verify) != NULL) { 2056 kmem_error(KMERR_MODIFIED, cp, buf); 2057 continue; 2058 } 2059 if ((cp->cache_flags & KMF_LITE) && 2060 cp->cache_destructor != NULL) { 2061 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2062 *(uint64_t *)buf = btp->bt_redzone; 2063 cp->cache_destructor(buf, cp->cache_private); 2064 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2065 } 2066 } else if (cp->cache_destructor != NULL) { 2067 cp->cache_destructor(buf, cp->cache_private); 2068 } 2069 2070 kmem_slab_free(cp, buf); 2071 } 2072 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2073 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2074 } 2075 2076 /* 2077 * Allocate a magazine from the depot. 2078 */ 2079 static kmem_magazine_t * 2080 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2081 { 2082 kmem_magazine_t *mp; 2083 2084 /* 2085 * If we can't get the depot lock without contention, 2086 * update our contention count. We use the depot 2087 * contention rate to determine whether we need to 2088 * increase the magazine size for better scalability. 2089 */ 2090 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2091 mutex_enter(&cp->cache_depot_lock); 2092 cp->cache_depot_contention++; 2093 } 2094 2095 if ((mp = mlp->ml_list) != NULL) { 2096 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2097 mlp->ml_list = mp->mag_next; 2098 if (--mlp->ml_total < mlp->ml_min) 2099 mlp->ml_min = mlp->ml_total; 2100 mlp->ml_alloc++; 2101 } 2102 2103 mutex_exit(&cp->cache_depot_lock); 2104 2105 return (mp); 2106 } 2107 2108 /* 2109 * Free a magazine to the depot. 2110 */ 2111 static void 2112 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2113 { 2114 mutex_enter(&cp->cache_depot_lock); 2115 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2116 mp->mag_next = mlp->ml_list; 2117 mlp->ml_list = mp; 2118 mlp->ml_total++; 2119 mutex_exit(&cp->cache_depot_lock); 2120 } 2121 2122 /* 2123 * Update the working set statistics for cp's depot. 2124 */ 2125 static void 2126 kmem_depot_ws_update(kmem_cache_t *cp) 2127 { 2128 mutex_enter(&cp->cache_depot_lock); 2129 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2130 cp->cache_full.ml_min = cp->cache_full.ml_total; 2131 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2132 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2133 mutex_exit(&cp->cache_depot_lock); 2134 } 2135 2136 /* 2137 * Set the working set statistics for cp's depot to zero. (Everything is 2138 * eligible for reaping.) 2139 */ 2140 static void 2141 kmem_depot_ws_zero(kmem_cache_t *cp) 2142 { 2143 mutex_enter(&cp->cache_depot_lock); 2144 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; 2145 cp->cache_full.ml_min = cp->cache_full.ml_total; 2146 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; 2147 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2148 mutex_exit(&cp->cache_depot_lock); 2149 } 2150 2151 /* 2152 * The number of bytes to reap before we call kpreempt(). The default (1MB) 2153 * causes us to preempt reaping up to hundreds of times per second. Using a 2154 * larger value (1GB) causes this to have virtually no effect. 2155 */ 2156 size_t kmem_reap_preempt_bytes = 1024 * 1024; 2157 2158 /* 2159 * Reap all magazines that have fallen out of the depot's working set. 2160 */ 2161 static void 2162 kmem_depot_ws_reap(kmem_cache_t *cp) 2163 { 2164 size_t bytes = 0; 2165 long reap; 2166 kmem_magazine_t *mp; 2167 2168 ASSERT(!list_link_active(&cp->cache_link) || 2169 taskq_member(kmem_taskq, curthread)); 2170 2171 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2172 while (reap-- && 2173 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { 2174 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2175 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2176 if (bytes > kmem_reap_preempt_bytes) { 2177 kpreempt(KPREEMPT_SYNC); 2178 bytes = 0; 2179 } 2180 } 2181 2182 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2183 while (reap-- && 2184 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { 2185 kmem_magazine_destroy(cp, mp, 0); 2186 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2187 if (bytes > kmem_reap_preempt_bytes) { 2188 kpreempt(KPREEMPT_SYNC); 2189 bytes = 0; 2190 } 2191 } 2192 } 2193 2194 static void 2195 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2196 { 2197 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2198 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2199 ASSERT(ccp->cc_magsize > 0); 2200 2201 ccp->cc_ploaded = ccp->cc_loaded; 2202 ccp->cc_prounds = ccp->cc_rounds; 2203 ccp->cc_loaded = mp; 2204 ccp->cc_rounds = rounds; 2205 } 2206 2207 /* 2208 * Intercept kmem alloc/free calls during crash dump in order to avoid 2209 * changing kmem state while memory is being saved to the dump device. 2210 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2211 * there are no locks because only one CPU calls kmem during a crash 2212 * dump. To enable this feature, first create the associated vmem 2213 * arena with VMC_DUMPSAFE. 2214 */ 2215 static void *kmem_dump_start; /* start of pre-reserved heap */ 2216 static void *kmem_dump_end; /* end of heap area */ 2217 static void *kmem_dump_curr; /* current free heap pointer */ 2218 static size_t kmem_dump_size; /* size of heap area */ 2219 2220 /* append to each buf created in the pre-reserved heap */ 2221 typedef struct kmem_dumpctl { 2222 void *kdc_next; /* cache dump free list linkage */ 2223 } kmem_dumpctl_t; 2224 2225 #define KMEM_DUMPCTL(cp, buf) \ 2226 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2227 sizeof (void *))) 2228 2229 /* set non zero for full report */ 2230 uint_t kmem_dump_verbose = 0; 2231 2232 /* stats for overize heap */ 2233 uint_t kmem_dump_oversize_allocs = 0; 2234 uint_t kmem_dump_oversize_max = 0; 2235 2236 static void 2237 kmem_dumppr(char **pp, char *e, const char *format, ...) 2238 { 2239 char *p = *pp; 2240 2241 if (p < e) { 2242 int n; 2243 va_list ap; 2244 2245 va_start(ap, format); 2246 n = vsnprintf(p, e - p, format, ap); 2247 va_end(ap); 2248 *pp = p + n; 2249 } 2250 } 2251 2252 /* 2253 * Called when dumpadm(8) configures dump parameters. 2254 */ 2255 void 2256 kmem_dump_init(size_t size) 2257 { 2258 /* Our caller ensures size is always set. */ 2259 ASSERT3U(size, >, 0); 2260 2261 if (kmem_dump_start != NULL) 2262 kmem_free(kmem_dump_start, kmem_dump_size); 2263 2264 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2265 kmem_dump_size = size; 2266 kmem_dump_curr = kmem_dump_start; 2267 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2268 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2269 } 2270 2271 /* 2272 * Set flag for each kmem_cache_t if is safe to use alternate dump 2273 * memory. Called just before panic crash dump starts. Set the flag 2274 * for the calling CPU. 2275 */ 2276 void 2277 kmem_dump_begin(void) 2278 { 2279 kmem_cache_t *cp; 2280 2281 ASSERT(panicstr != NULL); 2282 2283 for (cp = list_head(&kmem_caches); cp != NULL; 2284 cp = list_next(&kmem_caches, cp)) { 2285 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2286 2287 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2288 cp->cache_flags |= KMF_DUMPDIVERT; 2289 ccp->cc_flags |= KMF_DUMPDIVERT; 2290 ccp->cc_dump_rounds = ccp->cc_rounds; 2291 ccp->cc_dump_prounds = ccp->cc_prounds; 2292 ccp->cc_rounds = ccp->cc_prounds = -1; 2293 } else { 2294 cp->cache_flags |= KMF_DUMPUNSAFE; 2295 ccp->cc_flags |= KMF_DUMPUNSAFE; 2296 } 2297 } 2298 } 2299 2300 /* 2301 * finished dump intercept 2302 * print any warnings on the console 2303 * return verbose information to dumpsys() in the given buffer 2304 */ 2305 size_t 2306 kmem_dump_finish(char *buf, size_t size) 2307 { 2308 int percent = 0; 2309 size_t used; 2310 char *e = buf + size; 2311 char *p = buf; 2312 2313 if (kmem_dump_curr == kmem_dump_end) { 2314 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu " 2315 "bytes: kmem state in dump may be inconsistent", 2316 kmem_dump_size); 2317 } 2318 2319 if (kmem_dump_verbose == 0) 2320 return (0); 2321 2322 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2323 percent = (used * 100) / kmem_dump_size; 2324 2325 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2326 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2327 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2328 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2329 kmem_dump_oversize_allocs); 2330 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2331 kmem_dump_oversize_max); 2332 2333 /* return buffer size used */ 2334 if (p < e) 2335 bzero(p, e - p); 2336 return (p - buf); 2337 } 2338 2339 /* 2340 * Allocate a constructed object from alternate dump memory. 2341 */ 2342 void * 2343 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2344 { 2345 void *buf; 2346 void *curr; 2347 char *bufend; 2348 2349 /* return a constructed object */ 2350 if ((buf = cp->cache_dump.kd_freelist) != NULL) { 2351 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2352 return (buf); 2353 } 2354 2355 /* create a new constructed object */ 2356 curr = kmem_dump_curr; 2357 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2358 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2359 2360 /* hat layer objects cannot cross a page boundary */ 2361 if (cp->cache_align < PAGESIZE) { 2362 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2363 if (bufend > page) { 2364 bufend += page - (char *)buf; 2365 buf = (void *)page; 2366 } 2367 } 2368 2369 /* fall back to normal alloc if reserved area is used up */ 2370 if (bufend > (char *)kmem_dump_end) { 2371 kmem_dump_curr = kmem_dump_end; 2372 cp->cache_dump.kd_alloc_fails++; 2373 return (NULL); 2374 } 2375 2376 /* 2377 * Must advance curr pointer before calling a constructor that 2378 * may also allocate memory. 2379 */ 2380 kmem_dump_curr = bufend; 2381 2382 /* run constructor */ 2383 if (cp->cache_constructor != NULL && 2384 cp->cache_constructor(buf, cp->cache_private, kmflag) 2385 != 0) { 2386 #ifdef DEBUG 2387 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2388 cp->cache_name, (void *)cp); 2389 #endif 2390 /* reset curr pointer iff no allocs were done */ 2391 if (kmem_dump_curr == bufend) 2392 kmem_dump_curr = curr; 2393 2394 cp->cache_dump.kd_alloc_fails++; 2395 /* fall back to normal alloc if the constructor fails */ 2396 return (NULL); 2397 } 2398 2399 return (buf); 2400 } 2401 2402 /* 2403 * Free a constructed object in alternate dump memory. 2404 */ 2405 int 2406 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2407 { 2408 /* save constructed buffers for next time */ 2409 if ((char *)buf >= (char *)kmem_dump_start && 2410 (char *)buf < (char *)kmem_dump_end) { 2411 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist; 2412 cp->cache_dump.kd_freelist = buf; 2413 return (0); 2414 } 2415 2416 /* just drop buffers that were allocated before dump started */ 2417 if (kmem_dump_curr < kmem_dump_end) 2418 return (0); 2419 2420 /* fall back to normal free if reserved area is used up */ 2421 return (1); 2422 } 2423 2424 /* 2425 * Allocate a constructed object from cache cp. 2426 */ 2427 void * 2428 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2429 { 2430 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2431 kmem_magazine_t *fmp; 2432 void *buf; 2433 2434 mutex_enter(&ccp->cc_lock); 2435 for (;;) { 2436 /* 2437 * If there's an object available in the current CPU's 2438 * loaded magazine, just take it and return. 2439 */ 2440 if (ccp->cc_rounds > 0) { 2441 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2442 ccp->cc_alloc++; 2443 mutex_exit(&ccp->cc_lock); 2444 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2445 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2446 ASSERT(!(ccp->cc_flags & 2447 KMF_DUMPDIVERT)); 2448 cp->cache_dump.kd_unsafe++; 2449 } 2450 if ((ccp->cc_flags & KMF_BUFTAG) && 2451 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2452 caller()) != 0) { 2453 if (kmflag & KM_NOSLEEP) 2454 return (NULL); 2455 mutex_enter(&ccp->cc_lock); 2456 continue; 2457 } 2458 } 2459 return (buf); 2460 } 2461 2462 /* 2463 * The loaded magazine is empty. If the previously loaded 2464 * magazine was full, exchange them and try again. 2465 */ 2466 if (ccp->cc_prounds > 0) { 2467 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2468 continue; 2469 } 2470 2471 /* 2472 * Return an alternate buffer at dump time to preserve 2473 * the heap. 2474 */ 2475 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2476 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2477 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2478 /* log it so that we can warn about it */ 2479 cp->cache_dump.kd_unsafe++; 2480 } else { 2481 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2482 NULL) { 2483 mutex_exit(&ccp->cc_lock); 2484 return (buf); 2485 } 2486 break; /* fall back to slab layer */ 2487 } 2488 } 2489 2490 /* 2491 * If the magazine layer is disabled, break out now. 2492 */ 2493 if (ccp->cc_magsize == 0) 2494 break; 2495 2496 /* 2497 * Try to get a full magazine from the depot. 2498 */ 2499 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2500 if (fmp != NULL) { 2501 if (ccp->cc_ploaded != NULL) 2502 kmem_depot_free(cp, &cp->cache_empty, 2503 ccp->cc_ploaded); 2504 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2505 continue; 2506 } 2507 2508 /* 2509 * There are no full magazines in the depot, 2510 * so fall through to the slab layer. 2511 */ 2512 break; 2513 } 2514 mutex_exit(&ccp->cc_lock); 2515 2516 /* 2517 * We couldn't allocate a constructed object from the magazine layer, 2518 * so get a raw buffer from the slab layer and apply its constructor. 2519 */ 2520 buf = kmem_slab_alloc(cp, kmflag); 2521 2522 if (buf == NULL) 2523 return (NULL); 2524 2525 if (cp->cache_flags & KMF_BUFTAG) { 2526 /* 2527 * Make kmem_cache_alloc_debug() apply the constructor for us. 2528 */ 2529 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2530 if (rc != 0) { 2531 if (kmflag & KM_NOSLEEP) 2532 return (NULL); 2533 /* 2534 * kmem_cache_alloc_debug() detected corruption 2535 * but didn't panic (kmem_panic <= 0). We should not be 2536 * here because the constructor failed (indicated by a 2537 * return code of 1). Try again. 2538 */ 2539 ASSERT(rc == -1); 2540 return (kmem_cache_alloc(cp, kmflag)); 2541 } 2542 return (buf); 2543 } 2544 2545 if (cp->cache_constructor != NULL && 2546 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2547 atomic_inc_64(&cp->cache_alloc_fail); 2548 kmem_slab_free(cp, buf); 2549 return (NULL); 2550 } 2551 2552 return (buf); 2553 } 2554 2555 /* 2556 * The freed argument tells whether or not kmem_cache_free_debug() has already 2557 * been called so that we can avoid the duplicate free error. For example, a 2558 * buffer on a magazine has already been freed by the client but is still 2559 * constructed. 2560 */ 2561 static void 2562 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2563 { 2564 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2565 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2566 return; 2567 2568 /* 2569 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2570 * kmem_cache_free_debug() will have already applied the destructor. 2571 */ 2572 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2573 cp->cache_destructor != NULL) { 2574 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2575 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2576 *(uint64_t *)buf = btp->bt_redzone; 2577 cp->cache_destructor(buf, cp->cache_private); 2578 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2579 } else { 2580 cp->cache_destructor(buf, cp->cache_private); 2581 } 2582 } 2583 2584 kmem_slab_free(cp, buf); 2585 } 2586 2587 /* 2588 * Used when there's no room to free a buffer to the per-CPU cache. 2589 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2590 * caller should try freeing to the per-CPU cache again. 2591 * Note that we don't directly install the magazine in the cpu cache, 2592 * since its state may have changed wildly while the lock was dropped. 2593 */ 2594 static int 2595 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2596 { 2597 kmem_magazine_t *emp; 2598 kmem_magtype_t *mtp; 2599 2600 ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2601 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2602 ((uint_t)ccp->cc_rounds == -1)) && 2603 ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2604 ((uint_t)ccp->cc_prounds == -1))); 2605 2606 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2607 if (emp != NULL) { 2608 if (ccp->cc_ploaded != NULL) 2609 kmem_depot_free(cp, &cp->cache_full, 2610 ccp->cc_ploaded); 2611 kmem_cpu_reload(ccp, emp, 0); 2612 return (1); 2613 } 2614 /* 2615 * There are no empty magazines in the depot, 2616 * so try to allocate a new one. We must drop all locks 2617 * across kmem_cache_alloc() because lower layers may 2618 * attempt to allocate from this cache. 2619 */ 2620 mtp = cp->cache_magtype; 2621 mutex_exit(&ccp->cc_lock); 2622 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2623 mutex_enter(&ccp->cc_lock); 2624 2625 if (emp != NULL) { 2626 /* 2627 * We successfully allocated an empty magazine. 2628 * However, we had to drop ccp->cc_lock to do it, 2629 * so the cache's magazine size may have changed. 2630 * If so, free the magazine and try again. 2631 */ 2632 if (ccp->cc_magsize != mtp->mt_magsize) { 2633 mutex_exit(&ccp->cc_lock); 2634 kmem_cache_free(mtp->mt_cache, emp); 2635 mutex_enter(&ccp->cc_lock); 2636 return (1); 2637 } 2638 2639 /* 2640 * We got a magazine of the right size. Add it to 2641 * the depot and try the whole dance again. 2642 */ 2643 kmem_depot_free(cp, &cp->cache_empty, emp); 2644 return (1); 2645 } 2646 2647 /* 2648 * We couldn't allocate an empty magazine, 2649 * so fall through to the slab layer. 2650 */ 2651 return (0); 2652 } 2653 2654 /* 2655 * Free a constructed object to cache cp. 2656 */ 2657 void 2658 kmem_cache_free(kmem_cache_t *cp, void *buf) 2659 { 2660 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2661 2662 /* 2663 * The client must not free either of the buffers passed to the move 2664 * callback function. 2665 */ 2666 ASSERT(cp->cache_defrag == NULL || 2667 cp->cache_defrag->kmd_thread != curthread || 2668 (buf != cp->cache_defrag->kmd_from_buf && 2669 buf != cp->cache_defrag->kmd_to_buf)); 2670 2671 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2672 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2673 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2674 /* log it so that we can warn about it */ 2675 cp->cache_dump.kd_unsafe++; 2676 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2677 return; 2678 } 2679 if (ccp->cc_flags & KMF_BUFTAG) { 2680 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2681 return; 2682 } 2683 } 2684 2685 mutex_enter(&ccp->cc_lock); 2686 /* 2687 * Any changes to this logic should be reflected in kmem_slab_prefill() 2688 */ 2689 for (;;) { 2690 /* 2691 * If there's a slot available in the current CPU's 2692 * loaded magazine, just put the object there and return. 2693 */ 2694 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2695 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2696 ccp->cc_free++; 2697 mutex_exit(&ccp->cc_lock); 2698 return; 2699 } 2700 2701 /* 2702 * The loaded magazine is full. If the previously loaded 2703 * magazine was empty, exchange them and try again. 2704 */ 2705 if (ccp->cc_prounds == 0) { 2706 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2707 continue; 2708 } 2709 2710 /* 2711 * If the magazine layer is disabled, break out now. 2712 */ 2713 if (ccp->cc_magsize == 0) 2714 break; 2715 2716 if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 2717 /* 2718 * We couldn't free our constructed object to the 2719 * magazine layer, so apply its destructor and free it 2720 * to the slab layer. 2721 */ 2722 break; 2723 } 2724 } 2725 mutex_exit(&ccp->cc_lock); 2726 kmem_slab_free_constructed(cp, buf, B_TRUE); 2727 } 2728 2729 static void 2730 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2731 { 2732 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2733 int cache_flags = cp->cache_flags; 2734 2735 kmem_bufctl_t *next, *head; 2736 size_t nbufs; 2737 2738 /* 2739 * Completely allocate the newly created slab and put the pre-allocated 2740 * buffers in magazines. Any of the buffers that cannot be put in 2741 * magazines must be returned to the slab. 2742 */ 2743 ASSERT(MUTEX_HELD(&cp->cache_lock)); 2744 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2745 ASSERT(cp->cache_constructor == NULL); 2746 ASSERT(sp->slab_cache == cp); 2747 ASSERT(sp->slab_refcnt == 1); 2748 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2749 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2750 2751 head = sp->slab_head; 2752 nbufs = (sp->slab_chunks - sp->slab_refcnt); 2753 sp->slab_head = NULL; 2754 sp->slab_refcnt += nbufs; 2755 cp->cache_bufslab -= nbufs; 2756 cp->cache_slab_alloc += nbufs; 2757 list_insert_head(&cp->cache_complete_slabs, sp); 2758 cp->cache_complete_slab_count++; 2759 mutex_exit(&cp->cache_lock); 2760 mutex_enter(&ccp->cc_lock); 2761 2762 while (head != NULL) { 2763 void *buf = KMEM_BUF(cp, head); 2764 /* 2765 * If there's a slot available in the current CPU's 2766 * loaded magazine, just put the object there and 2767 * continue. 2768 */ 2769 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2770 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2771 buf; 2772 ccp->cc_free++; 2773 nbufs--; 2774 head = head->bc_next; 2775 continue; 2776 } 2777 2778 /* 2779 * The loaded magazine is full. If the previously 2780 * loaded magazine was empty, exchange them and try 2781 * again. 2782 */ 2783 if (ccp->cc_prounds == 0) { 2784 kmem_cpu_reload(ccp, ccp->cc_ploaded, 2785 ccp->cc_prounds); 2786 continue; 2787 } 2788 2789 /* 2790 * If the magazine layer is disabled, break out now. 2791 */ 2792 2793 if (ccp->cc_magsize == 0) { 2794 break; 2795 } 2796 2797 if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2798 break; 2799 } 2800 mutex_exit(&ccp->cc_lock); 2801 if (nbufs != 0) { 2802 ASSERT(head != NULL); 2803 2804 /* 2805 * If there was a failure, return remaining objects to 2806 * the slab 2807 */ 2808 while (head != NULL) { 2809 ASSERT(nbufs != 0); 2810 next = head->bc_next; 2811 head->bc_next = NULL; 2812 kmem_slab_free(cp, KMEM_BUF(cp, head)); 2813 head = next; 2814 nbufs--; 2815 } 2816 } 2817 ASSERT(head == NULL); 2818 ASSERT(nbufs == 0); 2819 mutex_enter(&cp->cache_lock); 2820 } 2821 2822 /* 2823 * kmem_rezalloc() is currently considered private and subject to change until 2824 * we sort out how we want to handle realloc vs. reallocf style interfaces. We 2825 * have currently chosen realloc. 2826 */ 2827 void * 2828 kmem_rezalloc(void *oldbuf, size_t oldsize, size_t newsize, int kmflag) 2829 { 2830 void *newbuf = kmem_alloc(newsize, kmflag); 2831 if (newbuf == NULL) { 2832 return (NULL); 2833 } 2834 2835 bcopy(oldbuf, newbuf, MIN(oldsize, newsize)); 2836 if (newsize > oldsize) { 2837 void *start = (void *)((uintptr_t)newbuf + oldsize); 2838 bzero(start, newsize - oldsize); 2839 } 2840 2841 if (oldbuf != NULL) { 2842 ASSERT3U(oldsize, !=, 0); 2843 kmem_free(oldbuf, oldsize); 2844 } 2845 2846 return (newbuf); 2847 } 2848 2849 void * 2850 kmem_zalloc(size_t size, int kmflag) 2851 { 2852 size_t index; 2853 void *buf; 2854 2855 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2856 kmem_cache_t *cp = kmem_alloc_table[index]; 2857 buf = kmem_cache_alloc(cp, kmflag); 2858 if (buf != NULL) { 2859 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2860 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2861 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2862 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2863 2864 if (cp->cache_flags & KMF_LITE) { 2865 KMEM_BUFTAG_LITE_ENTER(btp, 2866 kmem_lite_count, caller()); 2867 } 2868 } 2869 bzero(buf, size); 2870 } 2871 } else { 2872 buf = kmem_alloc(size, kmflag); 2873 if (buf != NULL) 2874 bzero(buf, size); 2875 } 2876 return (buf); 2877 } 2878 2879 void * 2880 kmem_alloc(size_t size, int kmflag) 2881 { 2882 size_t index; 2883 kmem_cache_t *cp; 2884 void *buf; 2885 2886 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2887 cp = kmem_alloc_table[index]; 2888 /* fall through to kmem_cache_alloc() */ 2889 2890 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2891 kmem_big_alloc_table_max) { 2892 cp = kmem_big_alloc_table[index]; 2893 /* fall through to kmem_cache_alloc() */ 2894 2895 } else { 2896 if (size == 0) { 2897 if (kmflag != KM_SLEEP && !(kmflag & KM_PANIC)) 2898 return (NULL); 2899 2900 /* 2901 * If this is a sleeping allocation or one that has 2902 * been specified to panic on allocation failure, we 2903 * consider it to be deprecated behavior to allocate 2904 * 0 bytes. If we have been configured to panic under 2905 * this condition, we panic; if to warn, we warn -- and 2906 * regardless, we log to the kmem_zerosized_log that 2907 * that this condition has occurred (which gives us 2908 * enough information to be able to debug it). 2909 */ 2910 if (kmem_panic && kmem_panic_zerosized) 2911 panic("attempted to kmem_alloc() size of 0"); 2912 2913 if (kmem_warn_zerosized) { 2914 cmn_err(CE_WARN, "kmem_alloc(): sleeping " 2915 "allocation with size of 0; " 2916 "see kmem_zerosized_log for details"); 2917 } 2918 2919 kmem_log_event(kmem_zerosized_log, NULL, NULL, NULL); 2920 2921 return (NULL); 2922 } 2923 2924 buf = vmem_alloc(kmem_oversize_arena, size, 2925 kmflag & KM_VMFLAGS); 2926 if (buf == NULL) 2927 kmem_log_event(kmem_failure_log, NULL, NULL, 2928 (void *)size); 2929 else if (KMEM_DUMP(kmem_slab_cache)) { 2930 /* stats for dump intercept */ 2931 kmem_dump_oversize_allocs++; 2932 if (size > kmem_dump_oversize_max) 2933 kmem_dump_oversize_max = size; 2934 } 2935 return (buf); 2936 } 2937 2938 buf = kmem_cache_alloc(cp, kmflag); 2939 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2940 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2941 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2942 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2943 2944 if (cp->cache_flags & KMF_LITE) { 2945 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2946 } 2947 } 2948 return (buf); 2949 } 2950 2951 void 2952 kmem_free(void *buf, size_t size) 2953 { 2954 size_t index; 2955 kmem_cache_t *cp; 2956 2957 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2958 cp = kmem_alloc_table[index]; 2959 /* fall through to kmem_cache_free() */ 2960 2961 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2962 kmem_big_alloc_table_max) { 2963 cp = kmem_big_alloc_table[index]; 2964 /* fall through to kmem_cache_free() */ 2965 2966 } else { 2967 EQUIV(buf == NULL, size == 0); 2968 if (buf == NULL && size == 0) 2969 return; 2970 vmem_free(kmem_oversize_arena, buf, size); 2971 return; 2972 } 2973 2974 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2975 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2976 uint32_t *ip = (uint32_t *)btp; 2977 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2978 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2979 kmem_error(KMERR_DUPFREE, cp, buf); 2980 return; 2981 } 2982 if (KMEM_SIZE_VALID(ip[1])) { 2983 ip[0] = KMEM_SIZE_ENCODE(size); 2984 kmem_error(KMERR_BADSIZE, cp, buf); 2985 } else { 2986 kmem_error(KMERR_REDZONE, cp, buf); 2987 } 2988 return; 2989 } 2990 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2991 kmem_error(KMERR_REDZONE, cp, buf); 2992 return; 2993 } 2994 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2995 if (cp->cache_flags & KMF_LITE) { 2996 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2997 caller()); 2998 } 2999 } 3000 kmem_cache_free(cp, buf); 3001 } 3002 3003 void * 3004 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 3005 { 3006 size_t realsize = size + vmp->vm_quantum; 3007 void *addr; 3008 3009 /* 3010 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 3011 * vm_quantum will cause integer wraparound. Check for this, and 3012 * blow off the firewall page in this case. Note that such a 3013 * giant allocation (the entire kernel address space) can never 3014 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 3015 * or sleep forever (VM_SLEEP). Thus, there is no need for a 3016 * corresponding check in kmem_firewall_va_free(). 3017 */ 3018 if (realsize < size) 3019 realsize = size; 3020 3021 /* 3022 * While boot still owns resource management, make sure that this 3023 * redzone virtual address allocation is properly accounted for in 3024 * OBPs "virtual-memory" "available" lists because we're 3025 * effectively claiming them for a red zone. If we don't do this, 3026 * the available lists become too fragmented and too large for the 3027 * current boot/kernel memory list interface. 3028 */ 3029 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 3030 3031 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 3032 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 3033 3034 return (addr); 3035 } 3036 3037 void 3038 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 3039 { 3040 ASSERT((kvseg.s_base == NULL ? 3041 va_to_pfn((char *)addr + size) : 3042 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 3043 3044 vmem_free(vmp, addr, size + vmp->vm_quantum); 3045 } 3046 3047 /* 3048 * Try to allocate at least `size' bytes of memory without sleeping or 3049 * panicking. Return actual allocated size in `asize'. If allocation failed, 3050 * try final allocation with sleep or panic allowed. 3051 */ 3052 void * 3053 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 3054 { 3055 void *p; 3056 3057 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3058 do { 3059 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 3060 if (p != NULL) 3061 return (p); 3062 *asize += KMEM_ALIGN; 3063 } while (*asize <= PAGESIZE); 3064 3065 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3066 return (kmem_alloc(*asize, kmflag)); 3067 } 3068 3069 /* 3070 * Reclaim all unused memory from a cache. 3071 */ 3072 static void 3073 kmem_cache_reap(kmem_cache_t *cp) 3074 { 3075 ASSERT(taskq_member(kmem_taskq, curthread)); 3076 cp->cache_reap++; 3077 3078 /* 3079 * Ask the cache's owner to free some memory if possible. 3080 * The idea is to handle things like the inode cache, which 3081 * typically sits on a bunch of memory that it doesn't truly 3082 * *need*. Reclaim policy is entirely up to the owner; this 3083 * callback is just an advisory plea for help. 3084 */ 3085 if (cp->cache_reclaim != NULL) { 3086 long delta; 3087 3088 /* 3089 * Reclaimed memory should be reapable (not included in the 3090 * depot's working set). 3091 */ 3092 delta = cp->cache_full.ml_total; 3093 cp->cache_reclaim(cp->cache_private); 3094 delta = cp->cache_full.ml_total - delta; 3095 if (delta > 0) { 3096 mutex_enter(&cp->cache_depot_lock); 3097 cp->cache_full.ml_reaplimit += delta; 3098 cp->cache_full.ml_min += delta; 3099 mutex_exit(&cp->cache_depot_lock); 3100 } 3101 } 3102 3103 kmem_depot_ws_reap(cp); 3104 3105 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3106 kmem_cache_defrag(cp); 3107 } 3108 } 3109 3110 static void 3111 kmem_reap_timeout(void *flag_arg) 3112 { 3113 uint32_t *flag = (uint32_t *)flag_arg; 3114 3115 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3116 *flag = 0; 3117 } 3118 3119 static void 3120 kmem_reap_done(void *flag) 3121 { 3122 if (!callout_init_done) { 3123 /* can't schedule a timeout at this point */ 3124 kmem_reap_timeout(flag); 3125 } else { 3126 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 3127 } 3128 } 3129 3130 static void 3131 kmem_reap_start(void *flag) 3132 { 3133 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3134 3135 if (flag == &kmem_reaping) { 3136 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3137 /* 3138 * if we have segkp under heap, reap segkp cache. 3139 */ 3140 if (segkp_fromheap) 3141 segkp_cache_free(); 3142 } 3143 else 3144 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3145 3146 /* 3147 * We use taskq_dispatch() to schedule a timeout to clear 3148 * the flag so that kmem_reap() becomes self-throttling: 3149 * we won't reap again until the current reap completes *and* 3150 * at least kmem_reap_interval ticks have elapsed. 3151 */ 3152 if (taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP) == 3153 TASKQID_INVALID) 3154 kmem_reap_done(flag); 3155 } 3156 3157 static void 3158 kmem_reap_common(void *flag_arg) 3159 { 3160 uint32_t *flag = (uint32_t *)flag_arg; 3161 3162 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3163 atomic_cas_32(flag, 0, 1) != 0) 3164 return; 3165 3166 /* 3167 * It may not be kosher to do memory allocation when a reap is called 3168 * (for example, if vmem_populate() is in the call chain). So we 3169 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch 3170 * fails, we reset the flag, and the next reap will try again. 3171 */ 3172 if (taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC) == 3173 TASKQID_INVALID) 3174 *flag = 0; 3175 } 3176 3177 /* 3178 * Reclaim all unused memory from all caches. Called from the VM system 3179 * when memory gets tight. 3180 */ 3181 void 3182 kmem_reap(void) 3183 { 3184 kmem_reap_common(&kmem_reaping); 3185 } 3186 3187 /* 3188 * Reclaim all unused memory from identifier arenas, called when a vmem 3189 * arena not back by memory is exhausted. Since reaping memory-backed caches 3190 * cannot help with identifier exhaustion, we avoid both a large amount of 3191 * work and unwanted side-effects from reclaim callbacks. 3192 */ 3193 void 3194 kmem_reap_idspace(void) 3195 { 3196 kmem_reap_common(&kmem_reaping_idspace); 3197 } 3198 3199 /* 3200 * Purge all magazines from a cache and set its magazine limit to zero. 3201 * All calls are serialized by the kmem_taskq lock, except for the final 3202 * call from kmem_cache_destroy(). 3203 */ 3204 static void 3205 kmem_cache_magazine_purge(kmem_cache_t *cp) 3206 { 3207 kmem_cpu_cache_t *ccp; 3208 kmem_magazine_t *mp, *pmp; 3209 int rounds, prounds, cpu_seqid; 3210 3211 ASSERT(!list_link_active(&cp->cache_link) || 3212 taskq_member(kmem_taskq, curthread)); 3213 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3214 3215 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3216 ccp = &cp->cache_cpu[cpu_seqid]; 3217 3218 mutex_enter(&ccp->cc_lock); 3219 mp = ccp->cc_loaded; 3220 pmp = ccp->cc_ploaded; 3221 rounds = ccp->cc_rounds; 3222 prounds = ccp->cc_prounds; 3223 ccp->cc_loaded = NULL; 3224 ccp->cc_ploaded = NULL; 3225 ccp->cc_rounds = -1; 3226 ccp->cc_prounds = -1; 3227 ccp->cc_magsize = 0; 3228 mutex_exit(&ccp->cc_lock); 3229 3230 if (mp) 3231 kmem_magazine_destroy(cp, mp, rounds); 3232 if (pmp) 3233 kmem_magazine_destroy(cp, pmp, prounds); 3234 } 3235 3236 kmem_depot_ws_zero(cp); 3237 kmem_depot_ws_reap(cp); 3238 } 3239 3240 /* 3241 * Enable per-cpu magazines on a cache. 3242 */ 3243 static void 3244 kmem_cache_magazine_enable(kmem_cache_t *cp) 3245 { 3246 int cpu_seqid; 3247 3248 if (cp->cache_flags & KMF_NOMAGAZINE) 3249 return; 3250 3251 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3252 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3253 mutex_enter(&ccp->cc_lock); 3254 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3255 mutex_exit(&ccp->cc_lock); 3256 } 3257 3258 } 3259 3260 /* 3261 * Allow our caller to determine if there are running reaps. 3262 * 3263 * This call is very conservative and may return B_TRUE even when 3264 * reaping activity isn't active. If it returns B_FALSE, then reaping 3265 * activity is definitely inactive. 3266 */ 3267 boolean_t 3268 kmem_cache_reap_active(void) 3269 { 3270 return (!taskq_empty(kmem_taskq)); 3271 } 3272 3273 /* 3274 * Reap (almost) everything soon. 3275 * 3276 * Note: this does not wait for the reap-tasks to complete. Caller 3277 * should use kmem_cache_reap_active() (above) and/or moderation to 3278 * avoid scheduling too many reap-tasks. 3279 */ 3280 void 3281 kmem_cache_reap_soon(kmem_cache_t *cp) 3282 { 3283 ASSERT(list_link_active(&cp->cache_link)); 3284 3285 kmem_depot_ws_zero(cp); 3286 3287 (void) taskq_dispatch(kmem_taskq, 3288 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3289 } 3290 3291 /* 3292 * Recompute a cache's magazine size. The trade-off is that larger magazines 3293 * provide a higher transfer rate with the depot, while smaller magazines 3294 * reduce memory consumption. Magazine resizing is an expensive operation; 3295 * it should not be done frequently. 3296 * 3297 * Changes to the magazine size are serialized by the kmem_taskq lock. 3298 * 3299 * Note: at present this only grows the magazine size. It might be useful 3300 * to allow shrinkage too. 3301 */ 3302 static void 3303 kmem_cache_magazine_resize(kmem_cache_t *cp) 3304 { 3305 kmem_magtype_t *mtp = cp->cache_magtype; 3306 3307 ASSERT(taskq_member(kmem_taskq, curthread)); 3308 3309 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3310 kmem_cache_magazine_purge(cp); 3311 mutex_enter(&cp->cache_depot_lock); 3312 cp->cache_magtype = ++mtp; 3313 cp->cache_depot_contention_prev = 3314 cp->cache_depot_contention + INT_MAX; 3315 mutex_exit(&cp->cache_depot_lock); 3316 kmem_cache_magazine_enable(cp); 3317 } 3318 } 3319 3320 /* 3321 * Rescale a cache's hash table, so that the table size is roughly the 3322 * cache size. We want the average lookup time to be extremely small. 3323 */ 3324 static void 3325 kmem_hash_rescale(kmem_cache_t *cp) 3326 { 3327 kmem_bufctl_t **old_table, **new_table, *bcp; 3328 size_t old_size, new_size, h; 3329 3330 ASSERT(taskq_member(kmem_taskq, curthread)); 3331 3332 new_size = MAX(KMEM_HASH_INITIAL, 3333 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3334 old_size = cp->cache_hash_mask + 1; 3335 3336 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3337 return; 3338 3339 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3340 VM_NOSLEEP); 3341 if (new_table == NULL) 3342 return; 3343 bzero(new_table, new_size * sizeof (void *)); 3344 3345 mutex_enter(&cp->cache_lock); 3346 3347 old_size = cp->cache_hash_mask + 1; 3348 old_table = cp->cache_hash_table; 3349 3350 cp->cache_hash_mask = new_size - 1; 3351 cp->cache_hash_table = new_table; 3352 cp->cache_rescale++; 3353 3354 for (h = 0; h < old_size; h++) { 3355 bcp = old_table[h]; 3356 while (bcp != NULL) { 3357 void *addr = bcp->bc_addr; 3358 kmem_bufctl_t *next_bcp = bcp->bc_next; 3359 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3360 bcp->bc_next = *hash_bucket; 3361 *hash_bucket = bcp; 3362 bcp = next_bcp; 3363 } 3364 } 3365 3366 mutex_exit(&cp->cache_lock); 3367 3368 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3369 } 3370 3371 /* 3372 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3373 * update, magazine resizing, and slab consolidation. 3374 */ 3375 static void 3376 kmem_cache_update(kmem_cache_t *cp) 3377 { 3378 int need_hash_rescale = 0; 3379 int need_magazine_resize = 0; 3380 3381 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3382 3383 /* 3384 * If the cache has become much larger or smaller than its hash table, 3385 * fire off a request to rescale the hash table. 3386 */ 3387 mutex_enter(&cp->cache_lock); 3388 3389 if ((cp->cache_flags & KMF_HASH) && 3390 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3391 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3392 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3393 need_hash_rescale = 1; 3394 3395 mutex_exit(&cp->cache_lock); 3396 3397 /* 3398 * Update the depot working set statistics. 3399 */ 3400 kmem_depot_ws_update(cp); 3401 3402 /* 3403 * If there's a lot of contention in the depot, 3404 * increase the magazine size. 3405 */ 3406 mutex_enter(&cp->cache_depot_lock); 3407 3408 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3409 (int)(cp->cache_depot_contention - 3410 cp->cache_depot_contention_prev) > kmem_depot_contention) 3411 need_magazine_resize = 1; 3412 3413 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3414 3415 mutex_exit(&cp->cache_depot_lock); 3416 3417 if (need_hash_rescale) 3418 (void) taskq_dispatch(kmem_taskq, 3419 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3420 3421 if (need_magazine_resize) 3422 (void) taskq_dispatch(kmem_taskq, 3423 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3424 3425 if (cp->cache_defrag != NULL) 3426 (void) taskq_dispatch(kmem_taskq, 3427 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3428 } 3429 3430 static void kmem_update(void *); 3431 3432 static void 3433 kmem_update_timeout(void *dummy) 3434 { 3435 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3436 } 3437 3438 static void 3439 kmem_update(void *dummy) 3440 { 3441 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3442 3443 /* 3444 * We use taskq_dispatch() to reschedule the timeout so that 3445 * kmem_update() becomes self-throttling: it won't schedule 3446 * new tasks until all previous tasks have completed. 3447 */ 3448 if (taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP) 3449 == TASKQID_INVALID) 3450 kmem_update_timeout(NULL); 3451 } 3452 3453 static int 3454 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3455 { 3456 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3457 kmem_cache_t *cp = ksp->ks_private; 3458 uint64_t cpu_buf_avail; 3459 uint64_t buf_avail = 0; 3460 int cpu_seqid; 3461 long reap; 3462 3463 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3464 3465 if (rw == KSTAT_WRITE) 3466 return (EACCES); 3467 3468 mutex_enter(&cp->cache_lock); 3469 3470 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3471 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3472 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3473 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3474 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3475 3476 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3477 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3478 3479 mutex_enter(&ccp->cc_lock); 3480 3481 cpu_buf_avail = 0; 3482 if (ccp->cc_rounds > 0) 3483 cpu_buf_avail += ccp->cc_rounds; 3484 if (ccp->cc_prounds > 0) 3485 cpu_buf_avail += ccp->cc_prounds; 3486 3487 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3488 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3489 buf_avail += cpu_buf_avail; 3490 3491 mutex_exit(&ccp->cc_lock); 3492 } 3493 3494 mutex_enter(&cp->cache_depot_lock); 3495 3496 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3497 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3498 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3499 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3500 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3501 kmcp->kmc_magazine_size.value.ui64 = 3502 (cp->cache_flags & KMF_NOMAGAZINE) ? 3503 0 : cp->cache_magtype->mt_magsize; 3504 3505 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3506 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3507 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3508 3509 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3510 reap = MIN(reap, cp->cache_full.ml_total); 3511 3512 mutex_exit(&cp->cache_depot_lock); 3513 3514 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3515 kmcp->kmc_align.value.ui64 = cp->cache_align; 3516 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3517 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3518 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3519 buf_avail += cp->cache_bufslab; 3520 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3521 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3522 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3523 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3524 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3525 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3526 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3527 cp->cache_hash_mask + 1 : 0; 3528 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3529 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3530 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3531 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3532 3533 if (cp->cache_defrag == NULL) { 3534 kmcp->kmc_move_callbacks.value.ui64 = 0; 3535 kmcp->kmc_move_yes.value.ui64 = 0; 3536 kmcp->kmc_move_no.value.ui64 = 0; 3537 kmcp->kmc_move_later.value.ui64 = 0; 3538 kmcp->kmc_move_dont_need.value.ui64 = 0; 3539 kmcp->kmc_move_dont_know.value.ui64 = 0; 3540 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3541 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3542 kmcp->kmc_defrag.value.ui64 = 0; 3543 kmcp->kmc_scan.value.ui64 = 0; 3544 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3545 } else { 3546 int64_t reclaimable; 3547 3548 kmem_defrag_t *kd = cp->cache_defrag; 3549 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3550 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3551 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3552 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3553 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3554 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3555 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3556 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3557 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3558 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3559 3560 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3561 reclaimable = MAX(reclaimable, 0); 3562 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3563 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3564 } 3565 3566 mutex_exit(&cp->cache_lock); 3567 return (0); 3568 } 3569 3570 /* 3571 * Return a named statistic about a particular cache. 3572 * This shouldn't be called very often, so it's currently designed for 3573 * simplicity (leverages existing kstat support) rather than efficiency. 3574 */ 3575 uint64_t 3576 kmem_cache_stat(kmem_cache_t *cp, char *name) 3577 { 3578 int i; 3579 kstat_t *ksp = cp->cache_kstat; 3580 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3581 uint64_t value = 0; 3582 3583 if (ksp != NULL) { 3584 mutex_enter(&kmem_cache_kstat_lock); 3585 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3586 for (i = 0; i < ksp->ks_ndata; i++) { 3587 if (strcmp(knp[i].name, name) == 0) { 3588 value = knp[i].value.ui64; 3589 break; 3590 } 3591 } 3592 mutex_exit(&kmem_cache_kstat_lock); 3593 } 3594 return (value); 3595 } 3596 3597 /* 3598 * Return an estimate of currently available kernel heap memory. 3599 * On 32-bit systems, physical memory may exceed virtual memory, 3600 * we just truncate the result at 1GB. 3601 */ 3602 size_t 3603 kmem_avail(void) 3604 { 3605 spgcnt_t rmem = availrmem - tune.t_minarmem; 3606 spgcnt_t fmem = freemem - minfree; 3607 3608 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3609 1 << (30 - PAGESHIFT)))); 3610 } 3611 3612 /* 3613 * Return the maximum amount of memory that is (in theory) allocatable 3614 * from the heap. This may be used as an estimate only since there 3615 * is no guarentee this space will still be available when an allocation 3616 * request is made, nor that the space may be allocated in one big request 3617 * due to kernel heap fragmentation. 3618 */ 3619 size_t 3620 kmem_maxavail(void) 3621 { 3622 spgcnt_t pmem = availrmem - tune.t_minarmem; 3623 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3624 3625 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 3626 } 3627 3628 /* 3629 * Indicate whether memory-intensive kmem debugging is enabled. 3630 */ 3631 int 3632 kmem_debugging(void) 3633 { 3634 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3635 } 3636 3637 /* binning function, sorts finely at the two extremes */ 3638 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3639 ((((sp)->slab_refcnt <= (binshift)) || \ 3640 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3641 ? -(sp)->slab_refcnt \ 3642 : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3643 3644 /* 3645 * Minimizing the number of partial slabs on the freelist minimizes 3646 * fragmentation (the ratio of unused buffers held by the slab layer). There are 3647 * two ways to get a slab off of the freelist: 1) free all the buffers on the 3648 * slab, and 2) allocate all the buffers on the slab. It follows that we want 3649 * the most-used slabs at the front of the list where they have the best chance 3650 * of being completely allocated, and the least-used slabs at a safe distance 3651 * from the front to improve the odds that the few remaining buffers will all be 3652 * freed before another allocation can tie up the slab. For that reason a slab 3653 * with a higher slab_refcnt sorts less than than a slab with a lower 3654 * slab_refcnt. 3655 * 3656 * However, if a slab has at least one buffer that is deemed unfreeable, we 3657 * would rather have that slab at the front of the list regardless of 3658 * slab_refcnt, since even one unfreeable buffer makes the entire slab 3659 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3660 * callback, the slab is marked unfreeable for as long as it remains on the 3661 * freelist. 3662 */ 3663 static int 3664 kmem_partial_slab_cmp(const void *p0, const void *p1) 3665 { 3666 const kmem_cache_t *cp; 3667 const kmem_slab_t *s0 = p0; 3668 const kmem_slab_t *s1 = p1; 3669 int w0, w1; 3670 size_t binshift; 3671 3672 ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3673 ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3674 ASSERT(s0->slab_cache == s1->slab_cache); 3675 cp = s1->slab_cache; 3676 ASSERT(MUTEX_HELD(&cp->cache_lock)); 3677 binshift = cp->cache_partial_binshift; 3678 3679 /* weight of first slab */ 3680 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3681 if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3682 w0 -= cp->cache_maxchunks; 3683 } 3684 3685 /* weight of second slab */ 3686 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3687 if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3688 w1 -= cp->cache_maxchunks; 3689 } 3690 3691 if (w0 < w1) 3692 return (-1); 3693 if (w0 > w1) 3694 return (1); 3695 3696 /* compare pointer values */ 3697 if ((uintptr_t)s0 < (uintptr_t)s1) 3698 return (-1); 3699 if ((uintptr_t)s0 > (uintptr_t)s1) 3700 return (1); 3701 3702 return (0); 3703 } 3704 3705 /* 3706 * It must be valid to call the destructor (if any) on a newly created object. 3707 * That is, the constructor (if any) must leave the object in a valid state for 3708 * the destructor. 3709 */ 3710 kmem_cache_t * 3711 kmem_cache_create( 3712 char *name, /* descriptive name for this cache */ 3713 size_t bufsize, /* size of the objects it manages */ 3714 size_t align, /* required object alignment */ 3715 int (*constructor)(void *, void *, int), /* object constructor */ 3716 void (*destructor)(void *, void *), /* object destructor */ 3717 void (*reclaim)(void *), /* memory reclaim callback */ 3718 void *private, /* pass-thru arg for constr/destr/reclaim */ 3719 vmem_t *vmp, /* vmem source for slab allocation */ 3720 int cflags) /* cache creation flags */ 3721 { 3722 int cpu_seqid; 3723 size_t chunksize; 3724 kmem_cache_t *cp; 3725 kmem_magtype_t *mtp; 3726 size_t csize = KMEM_CACHE_SIZE(max_ncpus); 3727 3728 #ifdef DEBUG 3729 /* 3730 * Cache names should conform to the rules for valid C identifiers 3731 */ 3732 if (!strident_valid(name)) { 3733 cmn_err(CE_CONT, 3734 "kmem_cache_create: '%s' is an invalid cache name\n" 3735 "cache names must conform to the rules for " 3736 "C identifiers\n", name); 3737 } 3738 #endif /* DEBUG */ 3739 3740 if (vmp == NULL) 3741 vmp = kmem_default_arena; 3742 3743 /* 3744 * If this kmem cache has an identifier vmem arena as its source, mark 3745 * it such to allow kmem_reap_idspace(). 3746 */ 3747 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 3748 if (vmp->vm_cflags & VMC_IDENTIFIER) 3749 cflags |= KMC_IDENTIFIER; 3750 3751 /* 3752 * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 3753 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 3754 * false sharing of per-CPU data. 3755 */ 3756 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 3757 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 3758 bzero(cp, csize); 3759 list_link_init(&cp->cache_link); 3760 3761 if (align == 0) 3762 align = KMEM_ALIGN; 3763 3764 /* 3765 * If we're not at least KMEM_ALIGN aligned, we can't use free 3766 * memory to hold bufctl information (because we can't safely 3767 * perform word loads and stores on it). 3768 */ 3769 if (align < KMEM_ALIGN) 3770 cflags |= KMC_NOTOUCH; 3771 3772 if (!ISP2(align) || align > vmp->vm_quantum) 3773 panic("kmem_cache_create: bad alignment %lu", align); 3774 3775 mutex_enter(&kmem_flags_lock); 3776 if (kmem_flags & KMF_RANDOMIZE) 3777 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 3778 KMF_RANDOMIZE; 3779 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 3780 mutex_exit(&kmem_flags_lock); 3781 3782 /* 3783 * Make sure all the various flags are reasonable. 3784 */ 3785 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 3786 3787 if (cp->cache_flags & KMF_LITE) { 3788 if (bufsize >= kmem_lite_minsize && 3789 align <= kmem_lite_maxalign && 3790 P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 3791 cp->cache_flags |= KMF_BUFTAG; 3792 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3793 } else { 3794 cp->cache_flags &= ~KMF_DEBUG; 3795 } 3796 } 3797 3798 if (cp->cache_flags & KMF_DEADBEEF) 3799 cp->cache_flags |= KMF_REDZONE; 3800 3801 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 3802 cp->cache_flags |= KMF_NOMAGAZINE; 3803 3804 if (cflags & KMC_NODEBUG) 3805 cp->cache_flags &= ~KMF_DEBUG; 3806 3807 if (cflags & KMC_NOTOUCH) 3808 cp->cache_flags &= ~KMF_TOUCH; 3809 3810 if (cflags & KMC_PREFILL) 3811 cp->cache_flags |= KMF_PREFILL; 3812 3813 if (cflags & KMC_NOHASH) 3814 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 3815 3816 if (cflags & KMC_NOMAGAZINE) 3817 cp->cache_flags |= KMF_NOMAGAZINE; 3818 3819 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 3820 cp->cache_flags |= KMF_REDZONE; 3821 3822 if (!(cp->cache_flags & KMF_AUDIT)) 3823 cp->cache_flags &= ~KMF_CONTENTS; 3824 3825 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 3826 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 3827 cp->cache_flags |= KMF_FIREWALL; 3828 3829 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 3830 cp->cache_flags &= ~KMF_FIREWALL; 3831 3832 if (cp->cache_flags & KMF_FIREWALL) { 3833 cp->cache_flags &= ~KMF_BUFTAG; 3834 cp->cache_flags |= KMF_NOMAGAZINE; 3835 ASSERT(vmp == kmem_default_arena); 3836 vmp = kmem_firewall_arena; 3837 } 3838 3839 /* 3840 * Set cache properties. 3841 */ 3842 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3843 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 3844 cp->cache_bufsize = bufsize; 3845 cp->cache_align = align; 3846 cp->cache_constructor = constructor; 3847 cp->cache_destructor = destructor; 3848 cp->cache_reclaim = reclaim; 3849 cp->cache_private = private; 3850 cp->cache_arena = vmp; 3851 cp->cache_cflags = cflags; 3852 3853 /* 3854 * Determine the chunk size. 3855 */ 3856 chunksize = bufsize; 3857 3858 if (align >= KMEM_ALIGN) { 3859 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 3860 cp->cache_bufctl = chunksize - KMEM_ALIGN; 3861 } 3862 3863 if (cp->cache_flags & KMF_BUFTAG) { 3864 cp->cache_bufctl = chunksize; 3865 cp->cache_buftag = chunksize; 3866 if (cp->cache_flags & KMF_LITE) 3867 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 3868 else 3869 chunksize += sizeof (kmem_buftag_t); 3870 } 3871 3872 if (cp->cache_flags & KMF_DEADBEEF) { 3873 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 3874 if (cp->cache_flags & KMF_LITE) 3875 cp->cache_verify = sizeof (uint64_t); 3876 } 3877 3878 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 3879 3880 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 3881 3882 /* 3883 * Now that we know the chunk size, determine the optimal slab size. 3884 */ 3885 if (vmp == kmem_firewall_arena) { 3886 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 3887 cp->cache_mincolor = cp->cache_slabsize - chunksize; 3888 cp->cache_maxcolor = cp->cache_mincolor; 3889 cp->cache_flags |= KMF_HASH; 3890 ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 3891 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 3892 !(cp->cache_flags & KMF_AUDIT) && 3893 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 3894 cp->cache_slabsize = vmp->vm_quantum; 3895 cp->cache_mincolor = 0; 3896 cp->cache_maxcolor = 3897 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 3898 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 3899 ASSERT(!(cp->cache_flags & KMF_AUDIT)); 3900 } else { 3901 size_t chunks, bestfit, waste, slabsize; 3902 size_t minwaste = LONG_MAX; 3903 3904 bestfit = 0; 3905 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 3906 slabsize = P2ROUNDUP(chunksize * chunks, 3907 vmp->vm_quantum); 3908 chunks = slabsize / chunksize; 3909 waste = (slabsize % chunksize) / chunks; 3910 if (waste < minwaste) { 3911 minwaste = waste; 3912 bestfit = slabsize; 3913 } 3914 } 3915 if (cflags & KMC_QCACHE) 3916 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 3917 cp->cache_slabsize = bestfit; 3918 cp->cache_mincolor = 0; 3919 cp->cache_maxcolor = bestfit % chunksize; 3920 cp->cache_flags |= KMF_HASH; 3921 } 3922 3923 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3924 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3925 3926 /* 3927 * Disallowing prefill when either the DEBUG or HASH flag is set or when 3928 * there is a constructor avoids some tricky issues with debug setup 3929 * that may be revisited later. We cannot allow prefill in a 3930 * metadata cache because of potential recursion. 3931 */ 3932 if (vmp == kmem_msb_arena || 3933 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) || 3934 cp->cache_constructor != NULL) 3935 cp->cache_flags &= ~KMF_PREFILL; 3936 3937 if (cp->cache_flags & KMF_HASH) { 3938 ASSERT(!(cflags & KMC_NOHASH)); 3939 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 3940 kmem_bufctl_audit_cache : kmem_bufctl_cache; 3941 } 3942 3943 if (cp->cache_maxcolor >= vmp->vm_quantum) 3944 cp->cache_maxcolor = vmp->vm_quantum - 1; 3945 3946 cp->cache_color = cp->cache_mincolor; 3947 3948 /* 3949 * Initialize the rest of the slab layer. 3950 */ 3951 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 3952 3953 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3954 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3955 /* LINTED: E_TRUE_LOGICAL_EXPR */ 3956 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3957 /* reuse partial slab AVL linkage for complete slab list linkage */ 3958 list_create(&cp->cache_complete_slabs, 3959 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3960 3961 if (cp->cache_flags & KMF_HASH) { 3962 cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 3963 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 3964 bzero(cp->cache_hash_table, 3965 KMEM_HASH_INITIAL * sizeof (void *)); 3966 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 3967 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 3968 } 3969 3970 /* 3971 * Initialize the depot. 3972 */ 3973 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 3974 3975 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 3976 continue; 3977 3978 cp->cache_magtype = mtp; 3979 3980 /* 3981 * Initialize the CPU layer. 3982 */ 3983 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3984 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3985 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 3986 ccp->cc_flags = cp->cache_flags; 3987 ccp->cc_rounds = -1; 3988 ccp->cc_prounds = -1; 3989 } 3990 3991 /* 3992 * Create the cache's kstats. 3993 */ 3994 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 3995 "kmem_cache", KSTAT_TYPE_NAMED, 3996 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 3997 KSTAT_FLAG_VIRTUAL)) != NULL) { 3998 cp->cache_kstat->ks_data = &kmem_cache_kstat; 3999 cp->cache_kstat->ks_update = kmem_cache_kstat_update; 4000 cp->cache_kstat->ks_private = cp; 4001 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 4002 kstat_install(cp->cache_kstat); 4003 } 4004 4005 /* 4006 * Add the cache to the global list. This makes it visible 4007 * to kmem_update(), so the cache must be ready for business. 4008 */ 4009 mutex_enter(&kmem_cache_lock); 4010 list_insert_tail(&kmem_caches, cp); 4011 mutex_exit(&kmem_cache_lock); 4012 4013 if (kmem_ready) 4014 kmem_cache_magazine_enable(cp); 4015 4016 return (cp); 4017 } 4018 4019 static int 4020 kmem_move_cmp(const void *buf, const void *p) 4021 { 4022 const kmem_move_t *kmm = p; 4023 uintptr_t v1 = (uintptr_t)buf; 4024 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 4025 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 4026 } 4027 4028 static void 4029 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 4030 { 4031 kmd->kmd_reclaim_numer = 1; 4032 } 4033 4034 /* 4035 * Initially, when choosing candidate slabs for buffers to move, we want to be 4036 * very selective and take only slabs that are less than 4037 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 4038 * slabs, then we raise the allocation ceiling incrementally. The reclaim 4039 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 4040 * longer fragmented. 4041 */ 4042 static void 4043 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 4044 { 4045 if (direction > 0) { 4046 /* make it easier to find a candidate slab */ 4047 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 4048 kmd->kmd_reclaim_numer++; 4049 } 4050 } else { 4051 /* be more selective */ 4052 if (kmd->kmd_reclaim_numer > 1) { 4053 kmd->kmd_reclaim_numer--; 4054 } 4055 } 4056 } 4057 4058 void 4059 kmem_cache_set_move(kmem_cache_t *cp, 4060 kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 4061 { 4062 kmem_defrag_t *defrag; 4063 4064 ASSERT(move != NULL); 4065 /* 4066 * The consolidator does not support NOTOUCH caches because kmem cannot 4067 * initialize their slabs with the 0xbaddcafe memory pattern, which sets 4068 * a low order bit usable by clients to distinguish uninitialized memory 4069 * from known objects (see kmem_slab_create). 4070 */ 4071 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 4072 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 4073 4074 /* 4075 * We should not be holding anyone's cache lock when calling 4076 * kmem_cache_alloc(), so allocate in all cases before acquiring the 4077 * lock. 4078 */ 4079 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 4080 4081 mutex_enter(&cp->cache_lock); 4082 4083 if (KMEM_IS_MOVABLE(cp)) { 4084 if (cp->cache_move == NULL) { 4085 ASSERT(cp->cache_slab_alloc == 0); 4086 4087 cp->cache_defrag = defrag; 4088 defrag = NULL; /* nothing to free */ 4089 bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 4090 avl_create(&cp->cache_defrag->kmd_moves_pending, 4091 kmem_move_cmp, sizeof (kmem_move_t), 4092 offsetof(kmem_move_t, kmm_entry)); 4093 /* LINTED: E_TRUE_LOGICAL_EXPR */ 4094 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 4095 /* reuse the slab's AVL linkage for deadlist linkage */ 4096 list_create(&cp->cache_defrag->kmd_deadlist, 4097 sizeof (kmem_slab_t), 4098 offsetof(kmem_slab_t, slab_link)); 4099 kmem_reset_reclaim_threshold(cp->cache_defrag); 4100 } 4101 cp->cache_move = move; 4102 } 4103 4104 mutex_exit(&cp->cache_lock); 4105 4106 if (defrag != NULL) { 4107 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 4108 } 4109 } 4110 4111 void 4112 kmem_cache_destroy(kmem_cache_t *cp) 4113 { 4114 int cpu_seqid; 4115 4116 /* 4117 * Remove the cache from the global cache list so that no one else 4118 * can schedule tasks on its behalf, wait for any pending tasks to 4119 * complete, purge the cache, and then destroy it. 4120 */ 4121 mutex_enter(&kmem_cache_lock); 4122 list_remove(&kmem_caches, cp); 4123 mutex_exit(&kmem_cache_lock); 4124 4125 if (kmem_taskq != NULL) 4126 taskq_wait(kmem_taskq); 4127 4128 if (kmem_move_taskq != NULL && cp->cache_defrag != NULL) 4129 taskq_wait(kmem_move_taskq); 4130 4131 kmem_cache_magazine_purge(cp); 4132 4133 mutex_enter(&cp->cache_lock); 4134 if (cp->cache_buftotal != 0) 4135 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 4136 cp->cache_name, (void *)cp); 4137 if (cp->cache_defrag != NULL) { 4138 avl_destroy(&cp->cache_defrag->kmd_moves_pending); 4139 list_destroy(&cp->cache_defrag->kmd_deadlist); 4140 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 4141 cp->cache_defrag = NULL; 4142 } 4143 /* 4144 * The cache is now dead. There should be no further activity. We 4145 * enforce this by setting land mines in the constructor, destructor, 4146 * reclaim, and move routines that induce a kernel text fault if 4147 * invoked. 4148 */ 4149 cp->cache_constructor = (int (*)(void *, void *, int))1; 4150 cp->cache_destructor = (void (*)(void *, void *))2; 4151 cp->cache_reclaim = (void (*)(void *))3; 4152 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 4153 mutex_exit(&cp->cache_lock); 4154 4155 kstat_delete(cp->cache_kstat); 4156 4157 if (cp->cache_hash_table != NULL) 4158 vmem_free(kmem_hash_arena, cp->cache_hash_table, 4159 (cp->cache_hash_mask + 1) * sizeof (void *)); 4160 4161 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 4162 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 4163 4164 mutex_destroy(&cp->cache_depot_lock); 4165 mutex_destroy(&cp->cache_lock); 4166 4167 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 4168 } 4169 4170 /*ARGSUSED*/ 4171 static int 4172 kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 4173 { 4174 ASSERT(MUTEX_HELD(&cpu_lock)); 4175 if (what == CPU_UNCONFIG) { 4176 kmem_cache_applyall(kmem_cache_magazine_purge, 4177 kmem_taskq, TQ_SLEEP); 4178 kmem_cache_applyall(kmem_cache_magazine_enable, 4179 kmem_taskq, TQ_SLEEP); 4180 } 4181 return (0); 4182 } 4183 4184 static void 4185 kmem_alloc_caches_create(const int *array, size_t count, 4186 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 4187 { 4188 char name[KMEM_CACHE_NAMELEN + 1]; 4189 size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 4190 size_t size = table_unit; 4191 int i; 4192 4193 for (i = 0; i < count; i++) { 4194 size_t cache_size = array[i]; 4195 size_t align = KMEM_ALIGN; 4196 kmem_cache_t *cp; 4197 4198 /* if the table has an entry for maxbuf, we're done */ 4199 if (size > maxbuf) 4200 break; 4201 4202 /* cache size must be a multiple of the table unit */ 4203 ASSERT(P2PHASE(cache_size, table_unit) == 0); 4204 4205 /* 4206 * If they allocate a multiple of the coherency granularity, 4207 * they get a coherency-granularity-aligned address. 4208 */ 4209 if (IS_P2ALIGNED(cache_size, 64)) 4210 align = 64; 4211 if (IS_P2ALIGNED(cache_size, PAGESIZE)) 4212 align = PAGESIZE; 4213 (void) snprintf(name, sizeof (name), 4214 "kmem_alloc_%lu", cache_size); 4215 cp = kmem_cache_create(name, cache_size, align, 4216 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 4217 4218 while (size <= cache_size) { 4219 alloc_table[(size - 1) >> shift] = cp; 4220 size += table_unit; 4221 } 4222 } 4223 4224 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 4225 } 4226 4227 static void 4228 kmem_cache_init(int pass, int use_large_pages) 4229 { 4230 int i; 4231 size_t maxbuf; 4232 kmem_magtype_t *mtp; 4233 4234 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 4235 char name[KMEM_CACHE_NAMELEN + 1]; 4236 4237 mtp = &kmem_magtype[i]; 4238 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 4239 mtp->mt_cache = kmem_cache_create(name, 4240 (mtp->mt_magsize + 1) * sizeof (void *), 4241 mtp->mt_align, NULL, NULL, NULL, NULL, 4242 kmem_msb_arena, KMC_NOHASH); 4243 } 4244 4245 kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 4246 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 4247 kmem_msb_arena, KMC_NOHASH); 4248 4249 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 4250 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 4251 kmem_msb_arena, KMC_NOHASH); 4252 4253 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 4254 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 4255 kmem_msb_arena, KMC_NOHASH); 4256 4257 if (pass == 2) { 4258 kmem_va_arena = vmem_create("kmem_va", 4259 NULL, 0, PAGESIZE, 4260 vmem_alloc, vmem_free, heap_arena, 4261 8 * PAGESIZE, VM_SLEEP); 4262 4263 if (use_large_pages) { 4264 kmem_default_arena = vmem_xcreate("kmem_default", 4265 NULL, 0, PAGESIZE, 4266 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 4267 0, VMC_DUMPSAFE | VM_SLEEP); 4268 } else { 4269 kmem_default_arena = vmem_create("kmem_default", 4270 NULL, 0, PAGESIZE, 4271 segkmem_alloc, segkmem_free, kmem_va_arena, 4272 0, VMC_DUMPSAFE | VM_SLEEP); 4273 } 4274 4275 /* Figure out what our maximum cache size is */ 4276 maxbuf = kmem_max_cached; 4277 if (maxbuf <= KMEM_MAXBUF) { 4278 maxbuf = 0; 4279 kmem_max_cached = KMEM_MAXBUF; 4280 } else { 4281 size_t size = 0; 4282 size_t max = 4283 sizeof (kmem_big_alloc_sizes) / sizeof (int); 4284 /* 4285 * Round maxbuf up to an existing cache size. If maxbuf 4286 * is larger than the largest cache, we truncate it to 4287 * the largest cache's size. 4288 */ 4289 for (i = 0; i < max; i++) { 4290 size = kmem_big_alloc_sizes[i]; 4291 if (maxbuf <= size) 4292 break; 4293 } 4294 kmem_max_cached = maxbuf = size; 4295 } 4296 4297 /* 4298 * The big alloc table may not be completely overwritten, so 4299 * we clear out any stale cache pointers from the first pass. 4300 */ 4301 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 4302 } else { 4303 /* 4304 * During the first pass, the kmem_alloc_* caches 4305 * are treated as metadata. 4306 */ 4307 kmem_default_arena = kmem_msb_arena; 4308 maxbuf = KMEM_BIG_MAXBUF_32BIT; 4309 } 4310 4311 /* 4312 * Set up the default caches to back kmem_alloc() 4313 */ 4314 kmem_alloc_caches_create( 4315 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 4316 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 4317 4318 kmem_alloc_caches_create( 4319 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 4320 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 4321 4322 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 4323 } 4324 4325 void 4326 kmem_init(void) 4327 { 4328 kmem_cache_t *cp; 4329 int old_kmem_flags = kmem_flags; 4330 int use_large_pages = 0; 4331 size_t maxverify, minfirewall; 4332 4333 kstat_init(); 4334 4335 /* 4336 * Don't do firewalled allocations if the heap is less than 1TB 4337 * (i.e. on a 32-bit kernel) 4338 * The resulting VM_NEXTFIT allocations would create too much 4339 * fragmentation in a small heap. 4340 */ 4341 #if defined(_LP64) 4342 maxverify = minfirewall = PAGESIZE / 2; 4343 #else 4344 maxverify = minfirewall = ULONG_MAX; 4345 #endif 4346 4347 /* LINTED */ 4348 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 4349 4350 list_create(&kmem_caches, sizeof (kmem_cache_t), 4351 offsetof(kmem_cache_t, cache_link)); 4352 4353 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 4354 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 4355 VM_SLEEP | VMC_NO_QCACHE); 4356 4357 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 4358 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 4359 VMC_DUMPSAFE | VM_SLEEP); 4360 4361 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 4362 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4363 4364 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 4365 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 4366 4367 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 4368 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4369 4370 kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 4371 NULL, 0, PAGESIZE, 4372 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 4373 0, VM_SLEEP); 4374 4375 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 4376 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, 4377 VMC_DUMPSAFE | VM_SLEEP); 4378 4379 /* temporary oversize arena for mod_read_system_file */ 4380 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 4381 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 4382 4383 kmem_reap_interval = 15 * hz; 4384 4385 /* 4386 * Read /etc/system. This is a chicken-and-egg problem because 4387 * kmem_flags may be set in /etc/system, but mod_read_system_file() 4388 * needs to use the allocator. The simplest solution is to create 4389 * all the standard kmem caches, read /etc/system, destroy all the 4390 * caches we just created, and then create them all again in light 4391 * of the (possibly) new kmem_flags and other kmem tunables. 4392 */ 4393 kmem_cache_init(1, 0); 4394 4395 mod_read_system_file(boothowto & RB_ASKNAME); 4396 4397 while ((cp = list_tail(&kmem_caches)) != NULL) 4398 kmem_cache_destroy(cp); 4399 4400 vmem_destroy(kmem_oversize_arena); 4401 4402 if (old_kmem_flags & KMF_STICKY) 4403 kmem_flags = old_kmem_flags; 4404 4405 if (!(kmem_flags & KMF_AUDIT)) 4406 vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 4407 4408 if (kmem_maxverify == 0) 4409 kmem_maxverify = maxverify; 4410 4411 if (kmem_minfirewall == 0) 4412 kmem_minfirewall = minfirewall; 4413 4414 /* 4415 * give segkmem a chance to figure out if we are using large pages 4416 * for the kernel heap 4417 */ 4418 use_large_pages = segkmem_lpsetup(); 4419 4420 /* 4421 * To protect against corruption, we keep the actual number of callers 4422 * KMF_LITE records seperate from the tunable. We arbitrarily clamp 4423 * to 16, since the overhead for small buffers quickly gets out of 4424 * hand. 4425 * 4426 * The real limit would depend on the needs of the largest KMC_NOHASH 4427 * cache. 4428 */ 4429 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 4430 kmem_lite_pcs = kmem_lite_count; 4431 4432 /* 4433 * Normally, we firewall oversized allocations when possible, but 4434 * if we are using large pages for kernel memory, and we don't have 4435 * any non-LITE debugging flags set, we want to allocate oversized 4436 * buffers from large pages, and so skip the firewalling. 4437 */ 4438 if (use_large_pages && 4439 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 4440 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 4441 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 4442 0, VMC_DUMPSAFE | VM_SLEEP); 4443 } else { 4444 kmem_oversize_arena = vmem_create("kmem_oversize", 4445 NULL, 0, PAGESIZE, 4446 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 4447 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | 4448 VM_SLEEP); 4449 } 4450 4451 kmem_cache_init(2, use_large_pages); 4452 4453 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 4454 if (kmem_transaction_log_size == 0) 4455 kmem_transaction_log_size = kmem_maxavail() / 50; 4456 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 4457 } 4458 4459 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 4460 if (kmem_content_log_size == 0) 4461 kmem_content_log_size = kmem_maxavail() / 50; 4462 kmem_content_log = kmem_log_init(kmem_content_log_size); 4463 } 4464 4465 kmem_failure_log = kmem_log_init(kmem_failure_log_size); 4466 kmem_slab_log = kmem_log_init(kmem_slab_log_size); 4467 kmem_zerosized_log = kmem_log_init(kmem_zerosized_log_size); 4468 4469 /* 4470 * Initialize STREAMS message caches so allocb() is available. 4471 * This allows us to initialize the logging framework (cmn_err(9F), 4472 * strlog(9F), etc) so we can start recording messages. 4473 */ 4474 streams_msg_init(); 4475 4476 /* 4477 * Initialize the ZSD framework in Zones so modules loaded henceforth 4478 * can register their callbacks. 4479 */ 4480 zone_zsd_init(); 4481 4482 log_init(); 4483 taskq_init(); 4484 4485 /* 4486 * Warn about invalid or dangerous values of kmem_flags. 4487 * Always warn about unsupported values. 4488 */ 4489 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 4490 KMF_CONTENTS | KMF_LITE)) != 0) || 4491 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 4492 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x.", 4493 kmem_flags); 4494 4495 #ifdef DEBUG 4496 if ((kmem_flags & KMF_DEBUG) == 0) 4497 cmn_err(CE_NOTE, "kmem debugging disabled."); 4498 #else 4499 /* 4500 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 4501 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 4502 * if KMF_AUDIT is set). We should warn the user about the performance 4503 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 4504 * isn't set (since that disables AUDIT). 4505 */ 4506 if (!(kmem_flags & KMF_LITE) && 4507 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 4508 cmn_err(CE_WARN, "High-overhead kmem debugging features " 4509 "enabled (kmem_flags = 0x%x). Performance degradation " 4510 "and large memory overhead possible.", kmem_flags); 4511 #endif /* not DEBUG */ 4512 4513 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 4514 4515 kmem_ready = 1; 4516 4517 /* 4518 * Initialize the platform-specific aligned/DMA memory allocator. 4519 */ 4520 ka_init(); 4521 4522 /* 4523 * Initialize 32-bit ID cache. 4524 */ 4525 id32_init(); 4526 4527 /* 4528 * Initialize the networking stack so modules loaded can 4529 * register their callbacks. 4530 */ 4531 netstack_init(); 4532 } 4533 4534 static void 4535 kmem_move_init(void) 4536 { 4537 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4538 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4539 kmem_msb_arena, KMC_NOHASH); 4540 kmem_move_cache = kmem_cache_create("kmem_move_cache", 4541 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4542 kmem_msb_arena, KMC_NOHASH); 4543 4544 /* 4545 * kmem guarantees that move callbacks are sequential and that even 4546 * across multiple caches no two moves ever execute simultaneously. 4547 * Move callbacks are processed on a separate taskq so that client code 4548 * does not interfere with internal maintenance tasks. 4549 */ 4550 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4551 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4552 } 4553 4554 void 4555 kmem_thread_init(void) 4556 { 4557 kmem_move_init(); 4558 4559 /* 4560 * This taskq is used for various kmem maintenance functions, including 4561 * kmem_reap(). When maintenance is required on every cache, 4562 * kmem_cache_applyall() dispatches one task per cache onto this queue. 4563 * 4564 * In the case of kmem_reap(), the system may be under increasingly 4565 * dire memory pressure and may not be able to allocate a new task 4566 * entry. The count of entries to prepopulate (below) should cover at 4567 * least as many caches as we generally expect to exist on the system 4568 * so that they may all be scheduled for reaping under those 4569 * conditions. 4570 */ 4571 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4572 600, INT_MAX, TASKQ_PREPOPULATE); 4573 } 4574 4575 void 4576 kmem_mp_init(void) 4577 { 4578 mutex_enter(&cpu_lock); 4579 register_cpu_setup_func(kmem_cpu_setup, NULL); 4580 mutex_exit(&cpu_lock); 4581 4582 kmem_update_timeout(NULL); 4583 4584 taskq_mp_init(); 4585 } 4586 4587 /* 4588 * Return the slab of the allocated buffer, or NULL if the buffer is not 4589 * allocated. This function may be called with a known slab address to determine 4590 * whether or not the buffer is allocated, or with a NULL slab address to obtain 4591 * an allocated buffer's slab. 4592 */ 4593 static kmem_slab_t * 4594 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4595 { 4596 kmem_bufctl_t *bcp, *bufbcp; 4597 4598 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4599 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4600 4601 if (cp->cache_flags & KMF_HASH) { 4602 for (bcp = *KMEM_HASH(cp, buf); 4603 (bcp != NULL) && (bcp->bc_addr != buf); 4604 bcp = bcp->bc_next) { 4605 continue; 4606 } 4607 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4608 return (bcp == NULL ? NULL : bcp->bc_slab); 4609 } 4610 4611 if (sp == NULL) { 4612 sp = KMEM_SLAB(cp, buf); 4613 } 4614 bufbcp = KMEM_BUFCTL(cp, buf); 4615 for (bcp = sp->slab_head; 4616 (bcp != NULL) && (bcp != bufbcp); 4617 bcp = bcp->bc_next) { 4618 continue; 4619 } 4620 return (bcp == NULL ? sp : NULL); 4621 } 4622 4623 static boolean_t 4624 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4625 { 4626 long refcnt = sp->slab_refcnt; 4627 4628 ASSERT(cp->cache_defrag != NULL); 4629 4630 /* 4631 * For code coverage we want to be able to move an object within the 4632 * same slab (the only partial slab) even if allocating the destination 4633 * buffer resulted in a completely allocated slab. 4634 */ 4635 if (flags & KMM_DEBUG) { 4636 return ((flags & KMM_DESPERATE) || 4637 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4638 } 4639 4640 /* If we're desperate, we don't care if the client said NO. */ 4641 if (flags & KMM_DESPERATE) { 4642 return (refcnt < sp->slab_chunks); /* any partial */ 4643 } 4644 4645 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4646 return (B_FALSE); 4647 } 4648 4649 if ((refcnt == 1) || kmem_move_any_partial) { 4650 return (refcnt < sp->slab_chunks); 4651 } 4652 4653 /* 4654 * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4655 * slabs with a progressively higher percentage of used buffers can be 4656 * reclaimed until the cache as a whole is no longer fragmented. 4657 * 4658 * sp->slab_refcnt kmd_reclaim_numer 4659 * --------------- < ------------------ 4660 * sp->slab_chunks KMEM_VOID_FRACTION 4661 */ 4662 return ((refcnt * KMEM_VOID_FRACTION) < 4663 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4664 } 4665 4666 /* 4667 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4668 * or when the buffer is freed. 4669 */ 4670 static void 4671 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4672 { 4673 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4674 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4675 4676 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4677 return; 4678 } 4679 4680 if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4681 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4682 avl_remove(&cp->cache_partial_slabs, sp); 4683 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4684 sp->slab_stuck_offset = (uint32_t)-1; 4685 avl_add(&cp->cache_partial_slabs, sp); 4686 } 4687 } else { 4688 sp->slab_later_count = 0; 4689 sp->slab_stuck_offset = (uint32_t)-1; 4690 } 4691 } 4692 4693 static void 4694 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4695 { 4696 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4697 ASSERT(MUTEX_HELD(&cp->cache_lock)); 4698 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4699 4700 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4701 return; 4702 } 4703 4704 avl_remove(&cp->cache_partial_slabs, sp); 4705 sp->slab_later_count = 0; 4706 sp->slab_flags |= KMEM_SLAB_NOMOVE; 4707 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4708 avl_add(&cp->cache_partial_slabs, sp); 4709 } 4710 4711 static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4712 4713 /* 4714 * The move callback takes two buffer addresses, the buffer to be moved, and a 4715 * newly allocated and constructed buffer selected by kmem as the destination. 4716 * It also takes the size of the buffer and an optional user argument specified 4717 * at cache creation time. kmem guarantees that the buffer to be moved has not 4718 * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4719 * guarantee the present whereabouts of the buffer to be moved, so it is up to 4720 * the client to safely determine whether or not it is still using the buffer. 4721 * The client must not free either of the buffers passed to the move callback, 4722 * since kmem wants to free them directly to the slab layer. The client response 4723 * tells kmem which of the two buffers to free: 4724 * 4725 * YES kmem frees the old buffer (the move was successful) 4726 * NO kmem frees the new buffer, marks the slab of the old buffer 4727 * non-reclaimable to avoid bothering the client again 4728 * LATER kmem frees the new buffer, increments slab_later_count 4729 * DONT_KNOW kmem frees the new buffer 4730 * DONT_NEED kmem frees both the old buffer and the new buffer 4731 * 4732 * The pending callback argument now being processed contains both of the 4733 * buffers (old and new) passed to the move callback function, the slab of the 4734 * old buffer, and flags related to the move request, such as whether or not the 4735 * system was desperate for memory. 4736 * 4737 * Slabs are not freed while there is a pending callback, but instead are kept 4738 * on a deadlist, which is drained after the last callback completes. This means 4739 * that slabs are safe to access until kmem_move_end(), no matter how many of 4740 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4741 * zero for as long as the slab remains on the deadlist and until the slab is 4742 * freed. 4743 */ 4744 static void 4745 kmem_move_buffer(kmem_move_t *callback) 4746 { 4747 kmem_cbrc_t response; 4748 kmem_slab_t *sp = callback->kmm_from_slab; 4749 kmem_cache_t *cp = sp->slab_cache; 4750 boolean_t free_on_slab; 4751 4752 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4753 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4754 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4755 4756 /* 4757 * The number of allocated buffers on the slab may have changed since we 4758 * last checked the slab's reclaimability (when the pending move was 4759 * enqueued), or the client may have responded NO when asked to move 4760 * another buffer on the same slab. 4761 */ 4762 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4763 kmem_slab_free(cp, callback->kmm_to_buf); 4764 kmem_move_end(cp, callback); 4765 return; 4766 } 4767 4768 /* 4769 * Checking the slab layer is easy, so we might as well do that here 4770 * in case we can avoid bothering the client. 4771 */ 4772 mutex_enter(&cp->cache_lock); 4773 free_on_slab = (kmem_slab_allocated(cp, sp, 4774 callback->kmm_from_buf) == NULL); 4775 mutex_exit(&cp->cache_lock); 4776 4777 if (free_on_slab) { 4778 kmem_slab_free(cp, callback->kmm_to_buf); 4779 kmem_move_end(cp, callback); 4780 return; 4781 } 4782 4783 if (cp->cache_flags & KMF_BUFTAG) { 4784 /* 4785 * Make kmem_cache_alloc_debug() apply the constructor for us. 4786 */ 4787 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4788 KM_NOSLEEP, 1, caller()) != 0) { 4789 kmem_move_end(cp, callback); 4790 return; 4791 } 4792 } else if (cp->cache_constructor != NULL && 4793 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4794 KM_NOSLEEP) != 0) { 4795 atomic_inc_64(&cp->cache_alloc_fail); 4796 kmem_slab_free(cp, callback->kmm_to_buf); 4797 kmem_move_end(cp, callback); 4798 return; 4799 } 4800 4801 cp->cache_defrag->kmd_callbacks++; 4802 cp->cache_defrag->kmd_thread = curthread; 4803 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4804 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4805 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4806 callback); 4807 4808 response = cp->cache_move(callback->kmm_from_buf, 4809 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4810 4811 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4812 callback, kmem_cbrc_t, response); 4813 cp->cache_defrag->kmd_thread = NULL; 4814 cp->cache_defrag->kmd_from_buf = NULL; 4815 cp->cache_defrag->kmd_to_buf = NULL; 4816 4817 if (response == KMEM_CBRC_YES) { 4818 cp->cache_defrag->kmd_yes++; 4819 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4820 /* slab safe to access until kmem_move_end() */ 4821 if (sp->slab_refcnt == 0) 4822 cp->cache_defrag->kmd_slabs_freed++; 4823 mutex_enter(&cp->cache_lock); 4824 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4825 mutex_exit(&cp->cache_lock); 4826 kmem_move_end(cp, callback); 4827 return; 4828 } 4829 4830 switch (response) { 4831 case KMEM_CBRC_NO: 4832 cp->cache_defrag->kmd_no++; 4833 mutex_enter(&cp->cache_lock); 4834 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4835 mutex_exit(&cp->cache_lock); 4836 break; 4837 case KMEM_CBRC_LATER: 4838 cp->cache_defrag->kmd_later++; 4839 mutex_enter(&cp->cache_lock); 4840 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4841 mutex_exit(&cp->cache_lock); 4842 break; 4843 } 4844 4845 if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4846 kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4847 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4848 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4849 callback->kmm_from_buf); 4850 } 4851 mutex_exit(&cp->cache_lock); 4852 break; 4853 case KMEM_CBRC_DONT_NEED: 4854 cp->cache_defrag->kmd_dont_need++; 4855 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4856 if (sp->slab_refcnt == 0) 4857 cp->cache_defrag->kmd_slabs_freed++; 4858 mutex_enter(&cp->cache_lock); 4859 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4860 mutex_exit(&cp->cache_lock); 4861 break; 4862 case KMEM_CBRC_DONT_KNOW: 4863 /* 4864 * If we don't know if we can move this buffer or not, we'll 4865 * just assume that we can't: if the buffer is in fact free, 4866 * then it is sitting in one of the per-CPU magazines or in 4867 * a full magazine in the depot layer. Either way, because 4868 * defrag is induced in the same logic that reaps a cache, 4869 * it's likely that full magazines will be returned to the 4870 * system soon (thereby accomplishing what we're trying to 4871 * accomplish here: return those magazines to their slabs). 4872 * Given this, any work that we might do now to locate a buffer 4873 * in a magazine is wasted (and expensive!) work; we bump 4874 * a counter in this case and otherwise assume that we can't 4875 * move it. 4876 */ 4877 cp->cache_defrag->kmd_dont_know++; 4878 break; 4879 default: 4880 panic("'%s' (%p) unexpected move callback response %d\n", 4881 cp->cache_name, (void *)cp, response); 4882 } 4883 4884 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4885 kmem_move_end(cp, callback); 4886 } 4887 4888 /* Return B_FALSE if there is insufficient memory for the move request. */ 4889 static boolean_t 4890 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4891 { 4892 void *to_buf; 4893 avl_index_t index; 4894 kmem_move_t *callback, *pending; 4895 ulong_t n; 4896 4897 ASSERT(taskq_member(kmem_taskq, curthread)); 4898 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4899 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4900 4901 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4902 4903 if (callback == NULL) 4904 return (B_FALSE); 4905 4906 callback->kmm_from_slab = sp; 4907 callback->kmm_from_buf = buf; 4908 callback->kmm_flags = flags; 4909 4910 mutex_enter(&cp->cache_lock); 4911 4912 n = avl_numnodes(&cp->cache_partial_slabs); 4913 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4914 mutex_exit(&cp->cache_lock); 4915 kmem_cache_free(kmem_move_cache, callback); 4916 return (B_TRUE); /* there is no need for the move request */ 4917 } 4918 4919 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4920 if (pending != NULL) { 4921 /* 4922 * If the move is already pending and we're desperate now, 4923 * update the move flags. 4924 */ 4925 if (flags & KMM_DESPERATE) { 4926 pending->kmm_flags |= KMM_DESPERATE; 4927 } 4928 mutex_exit(&cp->cache_lock); 4929 kmem_cache_free(kmem_move_cache, callback); 4930 return (B_TRUE); 4931 } 4932 4933 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs), 4934 B_FALSE); 4935 callback->kmm_to_buf = to_buf; 4936 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4937 4938 mutex_exit(&cp->cache_lock); 4939 4940 if (taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4941 callback, TQ_NOSLEEP) == TASKQID_INVALID) { 4942 mutex_enter(&cp->cache_lock); 4943 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4944 mutex_exit(&cp->cache_lock); 4945 kmem_slab_free(cp, to_buf); 4946 kmem_cache_free(kmem_move_cache, callback); 4947 return (B_FALSE); 4948 } 4949 4950 return (B_TRUE); 4951 } 4952 4953 static void 4954 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4955 { 4956 avl_index_t index; 4957 4958 ASSERT(cp->cache_defrag != NULL); 4959 ASSERT(taskq_member(kmem_move_taskq, curthread)); 4960 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4961 4962 mutex_enter(&cp->cache_lock); 4963 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4964 callback->kmm_from_buf, &index) != NULL); 4965 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4966 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4967 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4968 kmem_slab_t *sp; 4969 4970 /* 4971 * The last pending move completed. Release all slabs from the 4972 * front of the dead list except for any slab at the tail that 4973 * needs to be released from the context of kmem_move_buffers(). 4974 * kmem deferred unmapping the buffers on these slabs in order 4975 * to guarantee that buffers passed to the move callback have 4976 * been touched only by kmem or by the client itself. 4977 */ 4978 while ((sp = list_remove_head(deadlist)) != NULL) { 4979 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4980 list_insert_tail(deadlist, sp); 4981 break; 4982 } 4983 cp->cache_defrag->kmd_deadcount--; 4984 cp->cache_slab_destroy++; 4985 mutex_exit(&cp->cache_lock); 4986 kmem_slab_destroy(cp, sp); 4987 mutex_enter(&cp->cache_lock); 4988 } 4989 } 4990 mutex_exit(&cp->cache_lock); 4991 kmem_cache_free(kmem_move_cache, callback); 4992 } 4993 4994 /* 4995 * Move buffers from least used slabs first by scanning backwards from the end 4996 * of the partial slab list. Scan at most max_scan candidate slabs and move 4997 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4998 * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4999 * skip slabs with a ratio of allocated buffers at or above the current 5000 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 5001 * scan is aborted) so that the caller can adjust the reclaimability threshold 5002 * depending on how many reclaimable slabs it finds. 5003 * 5004 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 5005 * move request, since it is not valid for kmem_move_begin() to call 5006 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 5007 */ 5008 static int 5009 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 5010 int flags) 5011 { 5012 kmem_slab_t *sp; 5013 void *buf; 5014 int i, j; /* slab index, buffer index */ 5015 int s; /* reclaimable slabs */ 5016 int b; /* allocated (movable) buffers on reclaimable slab */ 5017 boolean_t success; 5018 int refcnt; 5019 int nomove; 5020 5021 ASSERT(taskq_member(kmem_taskq, curthread)); 5022 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5023 ASSERT(kmem_move_cache != NULL); 5024 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 5025 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 5026 avl_numnodes(&cp->cache_partial_slabs) > 1); 5027 5028 if (kmem_move_blocked) { 5029 return (0); 5030 } 5031 5032 if (kmem_move_fulltilt) { 5033 flags |= KMM_DESPERATE; 5034 } 5035 5036 if (max_scan == 0 || (flags & KMM_DESPERATE)) { 5037 /* 5038 * Scan as many slabs as needed to find the desired number of 5039 * candidate slabs. 5040 */ 5041 max_scan = (size_t)-1; 5042 } 5043 5044 if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 5045 /* Find as many candidate slabs as possible. */ 5046 max_slabs = (size_t)-1; 5047 } 5048 5049 sp = avl_last(&cp->cache_partial_slabs); 5050 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 5051 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 5052 ((sp != avl_first(&cp->cache_partial_slabs)) || 5053 (flags & KMM_DEBUG)); 5054 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 5055 5056 if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 5057 continue; 5058 } 5059 s++; 5060 5061 /* Look for allocated buffers to move. */ 5062 for (j = 0, b = 0, buf = sp->slab_base; 5063 (j < sp->slab_chunks) && (b < sp->slab_refcnt); 5064 buf = (((char *)buf) + cp->cache_chunksize), j++) { 5065 5066 if (kmem_slab_allocated(cp, sp, buf) == NULL) { 5067 continue; 5068 } 5069 5070 b++; 5071 5072 /* 5073 * Prevent the slab from being destroyed while we drop 5074 * cache_lock and while the pending move is not yet 5075 * registered. Flag the pending move while 5076 * kmd_moves_pending may still be empty, since we can't 5077 * yet rely on a non-zero pending move count to prevent 5078 * the slab from being destroyed. 5079 */ 5080 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5081 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5082 /* 5083 * Recheck refcnt and nomove after reacquiring the lock, 5084 * since these control the order of partial slabs, and 5085 * we want to know if we can pick up the scan where we 5086 * left off. 5087 */ 5088 refcnt = sp->slab_refcnt; 5089 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 5090 mutex_exit(&cp->cache_lock); 5091 5092 success = kmem_move_begin(cp, sp, buf, flags); 5093 5094 /* 5095 * Now, before the lock is reacquired, kmem could 5096 * process all pending move requests and purge the 5097 * deadlist, so that upon reacquiring the lock, sp has 5098 * been remapped. Or, the client may free all the 5099 * objects on the slab while the pending moves are still 5100 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 5101 * flag causes the slab to be put at the end of the 5102 * deadlist and prevents it from being destroyed, since 5103 * we plan to destroy it here after reacquiring the 5104 * lock. 5105 */ 5106 mutex_enter(&cp->cache_lock); 5107 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5108 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5109 5110 if (sp->slab_refcnt == 0) { 5111 list_t *deadlist = 5112 &cp->cache_defrag->kmd_deadlist; 5113 list_remove(deadlist, sp); 5114 5115 if (!avl_is_empty( 5116 &cp->cache_defrag->kmd_moves_pending)) { 5117 /* 5118 * A pending move makes it unsafe to 5119 * destroy the slab, because even though 5120 * the move is no longer needed, the 5121 * context where that is determined 5122 * requires the slab to exist. 5123 * Fortunately, a pending move also 5124 * means we don't need to destroy the 5125 * slab here, since it will get 5126 * destroyed along with any other slabs 5127 * on the deadlist after the last 5128 * pending move completes. 5129 */ 5130 list_insert_head(deadlist, sp); 5131 return (-1); 5132 } 5133 5134 /* 5135 * Destroy the slab now if it was completely 5136 * freed while we dropped cache_lock and there 5137 * are no pending moves. Since slab_refcnt 5138 * cannot change once it reaches zero, no new 5139 * pending moves from that slab are possible. 5140 */ 5141 cp->cache_defrag->kmd_deadcount--; 5142 cp->cache_slab_destroy++; 5143 mutex_exit(&cp->cache_lock); 5144 kmem_slab_destroy(cp, sp); 5145 mutex_enter(&cp->cache_lock); 5146 /* 5147 * Since we can't pick up the scan where we left 5148 * off, abort the scan and say nothing about the 5149 * number of reclaimable slabs. 5150 */ 5151 return (-1); 5152 } 5153 5154 if (!success) { 5155 /* 5156 * Abort the scan if there is not enough memory 5157 * for the request and say nothing about the 5158 * number of reclaimable slabs. 5159 */ 5160 return (-1); 5161 } 5162 5163 /* 5164 * The slab's position changed while the lock was 5165 * dropped, so we don't know where we are in the 5166 * sequence any more. 5167 */ 5168 if (sp->slab_refcnt != refcnt) { 5169 /* 5170 * If this is a KMM_DEBUG move, the slab_refcnt 5171 * may have changed because we allocated a 5172 * destination buffer on the same slab. In that 5173 * case, we're not interested in counting it. 5174 */ 5175 return (-1); 5176 } 5177 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) 5178 return (-1); 5179 5180 /* 5181 * Generating a move request allocates a destination 5182 * buffer from the slab layer, bumping the first partial 5183 * slab if it is completely allocated. If the current 5184 * slab becomes the first partial slab as a result, we 5185 * can't continue to scan backwards. 5186 * 5187 * If this is a KMM_DEBUG move and we allocated the 5188 * destination buffer from the last partial slab, then 5189 * the buffer we're moving is on the same slab and our 5190 * slab_refcnt has changed, causing us to return before 5191 * reaching here if there are no partial slabs left. 5192 */ 5193 ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 5194 if (sp == avl_first(&cp->cache_partial_slabs)) { 5195 /* 5196 * We're not interested in a second KMM_DEBUG 5197 * move. 5198 */ 5199 goto end_scan; 5200 } 5201 } 5202 } 5203 end_scan: 5204 5205 return (s); 5206 } 5207 5208 typedef struct kmem_move_notify_args { 5209 kmem_cache_t *kmna_cache; 5210 void *kmna_buf; 5211 } kmem_move_notify_args_t; 5212 5213 static void 5214 kmem_cache_move_notify_task(void *arg) 5215 { 5216 kmem_move_notify_args_t *args = arg; 5217 kmem_cache_t *cp = args->kmna_cache; 5218 void *buf = args->kmna_buf; 5219 kmem_slab_t *sp; 5220 5221 ASSERT(taskq_member(kmem_taskq, curthread)); 5222 ASSERT(list_link_active(&cp->cache_link)); 5223 5224 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5225 mutex_enter(&cp->cache_lock); 5226 sp = kmem_slab_allocated(cp, NULL, buf); 5227 5228 /* Ignore the notification if the buffer is no longer allocated. */ 5229 if (sp == NULL) { 5230 mutex_exit(&cp->cache_lock); 5231 return; 5232 } 5233 5234 /* Ignore the notification if there's no reason to move the buffer. */ 5235 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5236 /* 5237 * So far the notification is not ignored. Ignore the 5238 * notification if the slab is not marked by an earlier refusal 5239 * to move a buffer. 5240 */ 5241 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 5242 (sp->slab_later_count == 0)) { 5243 mutex_exit(&cp->cache_lock); 5244 return; 5245 } 5246 5247 kmem_slab_move_yes(cp, sp, buf); 5248 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5249 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5250 mutex_exit(&cp->cache_lock); 5251 /* see kmem_move_buffers() about dropping the lock */ 5252 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 5253 mutex_enter(&cp->cache_lock); 5254 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5255 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5256 if (sp->slab_refcnt == 0) { 5257 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5258 list_remove(deadlist, sp); 5259 5260 if (!avl_is_empty( 5261 &cp->cache_defrag->kmd_moves_pending)) { 5262 list_insert_head(deadlist, sp); 5263 mutex_exit(&cp->cache_lock); 5264 return; 5265 } 5266 5267 cp->cache_defrag->kmd_deadcount--; 5268 cp->cache_slab_destroy++; 5269 mutex_exit(&cp->cache_lock); 5270 kmem_slab_destroy(cp, sp); 5271 return; 5272 } 5273 } else { 5274 kmem_slab_move_yes(cp, sp, buf); 5275 } 5276 mutex_exit(&cp->cache_lock); 5277 } 5278 5279 void 5280 kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 5281 { 5282 kmem_move_notify_args_t *args; 5283 5284 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 5285 if (args != NULL) { 5286 args->kmna_cache = cp; 5287 args->kmna_buf = buf; 5288 if (taskq_dispatch(kmem_taskq, 5289 (task_func_t *)kmem_cache_move_notify_task, args, 5290 TQ_NOSLEEP) == TASKQID_INVALID) 5291 kmem_free(args, sizeof (kmem_move_notify_args_t)); 5292 } 5293 } 5294 5295 static void 5296 kmem_cache_defrag(kmem_cache_t *cp) 5297 { 5298 size_t n; 5299 5300 ASSERT(cp->cache_defrag != NULL); 5301 5302 mutex_enter(&cp->cache_lock); 5303 n = avl_numnodes(&cp->cache_partial_slabs); 5304 if (n > 1) { 5305 /* kmem_move_buffers() drops and reacquires cache_lock */ 5306 cp->cache_defrag->kmd_defrags++; 5307 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 5308 } 5309 mutex_exit(&cp->cache_lock); 5310 } 5311 5312 /* Is this cache above the fragmentation threshold? */ 5313 static boolean_t 5314 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 5315 { 5316 /* 5317 * nfree kmem_frag_numer 5318 * ------------------ > --------------- 5319 * cp->cache_buftotal kmem_frag_denom 5320 */ 5321 return ((nfree * kmem_frag_denom) > 5322 (cp->cache_buftotal * kmem_frag_numer)); 5323 } 5324 5325 static boolean_t 5326 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 5327 { 5328 boolean_t fragmented; 5329 uint64_t nfree; 5330 5331 ASSERT(MUTEX_HELD(&cp->cache_lock)); 5332 *doreap = B_FALSE; 5333 5334 if (kmem_move_fulltilt) { 5335 if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5336 return (B_TRUE); 5337 } 5338 } else { 5339 if ((cp->cache_complete_slab_count + avl_numnodes( 5340 &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 5341 return (B_FALSE); 5342 } 5343 } 5344 5345 nfree = cp->cache_bufslab; 5346 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 5347 kmem_cache_frag_threshold(cp, nfree)); 5348 5349 /* 5350 * Free buffers in the magazine layer appear allocated from the point of 5351 * view of the slab layer. We want to know if the slab layer would 5352 * appear fragmented if we included free buffers from magazines that 5353 * have fallen out of the working set. 5354 */ 5355 if (!fragmented) { 5356 long reap; 5357 5358 mutex_enter(&cp->cache_depot_lock); 5359 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5360 reap = MIN(reap, cp->cache_full.ml_total); 5361 mutex_exit(&cp->cache_depot_lock); 5362 5363 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5364 if (kmem_cache_frag_threshold(cp, nfree)) { 5365 *doreap = B_TRUE; 5366 } 5367 } 5368 5369 return (fragmented); 5370 } 5371 5372 /* Called periodically from kmem_taskq */ 5373 static void 5374 kmem_cache_scan(kmem_cache_t *cp) 5375 { 5376 boolean_t reap = B_FALSE; 5377 kmem_defrag_t *kmd; 5378 5379 ASSERT(taskq_member(kmem_taskq, curthread)); 5380 5381 mutex_enter(&cp->cache_lock); 5382 5383 kmd = cp->cache_defrag; 5384 if (kmd->kmd_consolidate > 0) { 5385 kmd->kmd_consolidate--; 5386 mutex_exit(&cp->cache_lock); 5387 kmem_cache_reap(cp); 5388 return; 5389 } 5390 5391 if (kmem_cache_is_fragmented(cp, &reap)) { 5392 int slabs_found; 5393 5394 /* 5395 * Consolidate reclaimable slabs from the end of the partial 5396 * slab list (scan at most kmem_reclaim_scan_range slabs to find 5397 * reclaimable slabs). Keep track of how many candidate slabs we 5398 * looked for and how many we actually found so we can adjust 5399 * the definition of a candidate slab if we're having trouble 5400 * finding them. 5401 * 5402 * kmem_move_buffers() drops and reacquires cache_lock. 5403 */ 5404 kmd->kmd_scans++; 5405 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5406 kmem_reclaim_max_slabs, 0); 5407 if (slabs_found >= 0) { 5408 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5409 kmd->kmd_slabs_found += slabs_found; 5410 } 5411 5412 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5413 kmd->kmd_tries = 0; 5414 5415 /* 5416 * If we had difficulty finding candidate slabs in 5417 * previous scans, adjust the threshold so that 5418 * candidates are easier to find. 5419 */ 5420 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5421 kmem_adjust_reclaim_threshold(kmd, -1); 5422 } else if ((kmd->kmd_slabs_found * 2) < 5423 kmd->kmd_slabs_sought) { 5424 kmem_adjust_reclaim_threshold(kmd, 1); 5425 } 5426 kmd->kmd_slabs_sought = 0; 5427 kmd->kmd_slabs_found = 0; 5428 } 5429 } else { 5430 kmem_reset_reclaim_threshold(cp->cache_defrag); 5431 #ifdef DEBUG 5432 if (!avl_is_empty(&cp->cache_partial_slabs)) { 5433 /* 5434 * In a debug kernel we want the consolidator to 5435 * run occasionally even when there is plenty of 5436 * memory. 5437 */ 5438 uint16_t debug_rand; 5439 5440 (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5441 if (!kmem_move_noreap && 5442 ((debug_rand % kmem_mtb_reap) == 0)) { 5443 mutex_exit(&cp->cache_lock); 5444 kmem_cache_reap(cp); 5445 return; 5446 } else if ((debug_rand % kmem_mtb_move) == 0) { 5447 kmd->kmd_scans++; 5448 (void) kmem_move_buffers(cp, 5449 kmem_reclaim_scan_range, 1, KMM_DEBUG); 5450 } 5451 } 5452 #endif /* DEBUG */ 5453 } 5454 5455 mutex_exit(&cp->cache_lock); 5456 5457 if (reap) 5458 kmem_depot_ws_reap(cp); 5459 } 5460