xref: /illumos-gate/usr/src/uts/common/os/kmem.c (revision 096c97d62be876a03a0a8cdb0a540e9c84ec509f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2018, Joyent, Inc.
26  */
27 
28 /*
29  * Kernel memory allocator, as described in the following two papers and a
30  * statement about the consolidator:
31  *
32  * Jeff Bonwick,
33  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
34  * Proceedings of the Summer 1994 Usenix Conference.
35  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
36  *
37  * Jeff Bonwick and Jonathan Adams,
38  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
39  * Arbitrary Resources.
40  * Proceedings of the 2001 Usenix Conference.
41  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
42  *
43  * kmem Slab Consolidator Big Theory Statement:
44  *
45  * 1. Motivation
46  *
47  * As stated in Bonwick94, slabs provide the following advantages over other
48  * allocation structures in terms of memory fragmentation:
49  *
50  *  - Internal fragmentation (per-buffer wasted space) is minimal.
51  *  - Severe external fragmentation (unused buffers on the free list) is
52  *    unlikely.
53  *
54  * Segregating objects by size eliminates one source of external fragmentation,
55  * and according to Bonwick:
56  *
57  *   The other reason that slabs reduce external fragmentation is that all
58  *   objects in a slab are of the same type, so they have the same lifetime
59  *   distribution. The resulting segregation of short-lived and long-lived
60  *   objects at slab granularity reduces the likelihood of an entire page being
61  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
62  *
63  * While unlikely, severe external fragmentation remains possible. Clients that
64  * allocate both short- and long-lived objects from the same cache cannot
65  * anticipate the distribution of long-lived objects within the allocator's slab
66  * implementation. Even a small percentage of long-lived objects distributed
67  * randomly across many slabs can lead to a worst case scenario where the client
68  * frees the majority of its objects and the system gets back almost none of the
69  * slabs. Despite the client doing what it reasonably can to help the system
70  * reclaim memory, the allocator cannot shake free enough slabs because of
71  * lonely allocations stubbornly hanging on. Although the allocator is in a
72  * position to diagnose the fragmentation, there is nothing that the allocator
73  * by itself can do about it. It only takes a single allocated object to prevent
74  * an entire slab from being reclaimed, and any object handed out by
75  * kmem_cache_alloc() is by definition in the client's control. Conversely,
76  * although the client is in a position to move a long-lived object, it has no
77  * way of knowing if the object is causing fragmentation, and if so, where to
78  * move it. A solution necessarily requires further cooperation between the
79  * allocator and the client.
80  *
81  * 2. Move Callback
82  *
83  * The kmem slab consolidator therefore adds a move callback to the
84  * allocator/client interface, improving worst-case external fragmentation in
85  * kmem caches that supply a function to move objects from one memory location
86  * to another. In a situation of low memory kmem attempts to consolidate all of
87  * a cache's slabs at once; otherwise it works slowly to bring external
88  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
89  * thereby helping to avoid a low memory situation in the future.
90  *
91  * The callback has the following signature:
92  *
93  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
94  *
95  * It supplies the kmem client with two addresses: the allocated object that
96  * kmem wants to move and a buffer selected by kmem for the client to use as the
97  * copy destination. The callback is kmem's way of saying "Please get off of
98  * this buffer and use this one instead." kmem knows where it wants to move the
99  * object in order to best reduce fragmentation. All the client needs to know
100  * about the second argument (void *new) is that it is an allocated, constructed
101  * object ready to take the contents of the old object. When the move function
102  * is called, the system is likely to be low on memory, and the new object
103  * spares the client from having to worry about allocating memory for the
104  * requested move. The third argument supplies the size of the object, in case a
105  * single move function handles multiple caches whose objects differ only in
106  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
107  * user argument passed to the constructor, destructor, and reclaim functions is
108  * also passed to the move callback.
109  *
110  * 2.1 Setting the Move Callback
111  *
112  * The client sets the move callback after creating the cache and before
113  * allocating from it:
114  *
115  *	object_cache = kmem_cache_create(...);
116  *      kmem_cache_set_move(object_cache, object_move);
117  *
118  * 2.2 Move Callback Return Values
119  *
120  * Only the client knows about its own data and when is a good time to move it.
121  * The client is cooperating with kmem to return unused memory to the system,
122  * and kmem respectfully accepts this help at the client's convenience. When
123  * asked to move an object, the client can respond with any of the following:
124  *
125  *   typedef enum kmem_cbrc {
126  *           KMEM_CBRC_YES,
127  *           KMEM_CBRC_NO,
128  *           KMEM_CBRC_LATER,
129  *           KMEM_CBRC_DONT_NEED,
130  *           KMEM_CBRC_DONT_KNOW
131  *   } kmem_cbrc_t;
132  *
133  * The client must not explicitly kmem_cache_free() either of the objects passed
134  * to the callback, since kmem wants to free them directly to the slab layer
135  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
136  * objects to free:
137  *
138  *       YES: (Did it) The client moved the object, so kmem frees the old one.
139  *        NO: (Never) The client refused, so kmem frees the new object (the
140  *            unused copy destination). kmem also marks the slab of the old
141  *            object so as not to bother the client with further callbacks for
142  *            that object as long as the slab remains on the partial slab list.
143  *            (The system won't be getting the slab back as long as the
144  *            immovable object holds it hostage, so there's no point in moving
145  *            any of its objects.)
146  *     LATER: The client is using the object and cannot move it now, so kmem
147  *            frees the new object (the unused copy destination). kmem still
148  *            attempts to move other objects off the slab, since it expects to
149  *            succeed in clearing the slab in a later callback. The client
150  *            should use LATER instead of NO if the object is likely to become
151  *            movable very soon.
152  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
153  *            with the new object (the unused copy destination). This response
154  *            is the client's opportunity to be a model citizen and give back as
155  *            much as it can.
156  * DONT_KNOW: The client does not know about the object because
157  *            a) the client has just allocated the object and not yet put it
158  *               wherever it expects to find known objects
159  *            b) the client has removed the object from wherever it expects to
160  *               find known objects and is about to free it, or
161  *            c) the client has freed the object.
162  *            In all these cases (a, b, and c) kmem frees the new object (the
163  *            unused copy destination).  In the first case, the object is in
164  *            use and the correct action is that for LATER; in the latter two
165  *            cases, we know that the object is either freed or about to be
166  *            freed, in which case it is either already in a magazine or about
167  *            to be in one.  In these cases, we know that the object will either
168  *            be reallocated and reused, or it will end up in a full magazine
169  *            that will be reaped (thereby liberating the slab).  Because it
170  *            is prohibitively expensive to differentiate these cases, and
171  *            because the defrag code is executed when we're low on memory
172  *            (thereby biasing the system to reclaim full magazines) we treat
173  *            all DONT_KNOW cases as LATER and rely on cache reaping to
174  *            generally clean up full magazines.  While we take the same action
175  *            for these cases, we maintain their semantic distinction:  if
176  *            defragmentation is not occurring, it is useful to know if this
177  *            is due to objects in use (LATER) or objects in an unknown state
178  *            of transition (DONT_KNOW).
179  *
180  * 2.3 Object States
181  *
182  * Neither kmem nor the client can be assumed to know the object's whereabouts
183  * at the time of the callback. An object belonging to a kmem cache may be in
184  * any of the following states:
185  *
186  * 1. Uninitialized on the slab
187  * 2. Allocated from the slab but not constructed (still uninitialized)
188  * 3. Allocated from the slab, constructed, but not yet ready for business
189  *    (not in a valid state for the move callback)
190  * 4. In use (valid and known to the client)
191  * 5. About to be freed (no longer in a valid state for the move callback)
192  * 6. Freed to a magazine (still constructed)
193  * 7. Allocated from a magazine, not yet ready for business (not in a valid
194  *    state for the move callback), and about to return to state #4
195  * 8. Deconstructed on a magazine that is about to be freed
196  * 9. Freed to the slab
197  *
198  * Since the move callback may be called at any time while the object is in any
199  * of the above states (except state #1), the client needs a safe way to
200  * determine whether or not it knows about the object. Specifically, the client
201  * needs to know whether or not the object is in state #4, the only state in
202  * which a move is valid. If the object is in any other state, the client should
203  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
204  * the object's fields.
205  *
206  * Note that although an object may be in state #4 when kmem initiates the move
207  * request, the object may no longer be in that state by the time kmem actually
208  * calls the move function. Not only does the client free objects
209  * asynchronously, kmem itself puts move requests on a queue where thay are
210  * pending until kmem processes them from another context. Also, objects freed
211  * to a magazine appear allocated from the point of view of the slab layer, so
212  * kmem may even initiate requests for objects in a state other than state #4.
213  *
214  * 2.3.1 Magazine Layer
215  *
216  * An important insight revealed by the states listed above is that the magazine
217  * layer is populated only by kmem_cache_free(). Magazines of constructed
218  * objects are never populated directly from the slab layer (which contains raw,
219  * unconstructed objects). Whenever an allocation request cannot be satisfied
220  * from the magazine layer, the magazines are bypassed and the request is
221  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
222  * the object constructor only when allocating from the slab layer, and only in
223  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
224  * the move callback. kmem does not preconstruct objects in anticipation of
225  * kmem_cache_alloc().
226  *
227  * 2.3.2 Object Constructor and Destructor
228  *
229  * If the client supplies a destructor, it must be valid to call the destructor
230  * on a newly created object (immediately after the constructor).
231  *
232  * 2.4 Recognizing Known Objects
233  *
234  * There is a simple test to determine safely whether or not the client knows
235  * about a given object in the move callback. It relies on the fact that kmem
236  * guarantees that the object of the move callback has only been touched by the
237  * client itself or else by kmem. kmem does this by ensuring that none of the
238  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
239  * callback is pending. When the last object on a slab is freed, if there is a
240  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
241  * slabs on that list until all pending callbacks are completed. That way,
242  * clients can be certain that the object of a move callback is in one of the
243  * states listed above, making it possible to distinguish known objects (in
244  * state #4) using the two low order bits of any pointer member (with the
245  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
246  * platforms).
247  *
248  * The test works as long as the client always transitions objects from state #4
249  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
250  * order bit of the client-designated pointer member. Since kmem only writes
251  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
252  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
253  * guaranteed to set at least one of the two low order bits. Therefore, given an
254  * object with a back pointer to a 'container_t *o_container', the client can
255  * test
256  *
257  *      container_t *container = object->o_container;
258  *      if ((uintptr_t)container & 0x3) {
259  *              return (KMEM_CBRC_DONT_KNOW);
260  *      }
261  *
262  * Typically, an object will have a pointer to some structure with a list or
263  * hash where objects from the cache are kept while in use. Assuming that the
264  * client has some way of knowing that the container structure is valid and will
265  * not go away during the move, and assuming that the structure includes a lock
266  * to protect whatever collection is used, then the client would continue as
267  * follows:
268  *
269  *	// Ensure that the container structure does not go away.
270  *      if (container_hold(container) == 0) {
271  *              return (KMEM_CBRC_DONT_KNOW);
272  *      }
273  *      mutex_enter(&container->c_objects_lock);
274  *      if (container != object->o_container) {
275  *              mutex_exit(&container->c_objects_lock);
276  *              container_rele(container);
277  *              return (KMEM_CBRC_DONT_KNOW);
278  *      }
279  *
280  * At this point the client knows that the object cannot be freed as long as
281  * c_objects_lock is held. Note that after acquiring the lock, the client must
282  * recheck the o_container pointer in case the object was removed just before
283  * acquiring the lock.
284  *
285  * When the client is about to free an object, it must first remove that object
286  * from the list, hash, or other structure where it is kept. At that time, to
287  * mark the object so it can be distinguished from the remaining, known objects,
288  * the client sets the designated low order bit:
289  *
290  *      mutex_enter(&container->c_objects_lock);
291  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
292  *      list_remove(&container->c_objects, object);
293  *      mutex_exit(&container->c_objects_lock);
294  *
295  * In the common case, the object is freed to the magazine layer, where it may
296  * be reused on a subsequent allocation without the overhead of calling the
297  * constructor. While in the magazine it appears allocated from the point of
298  * view of the slab layer, making it a candidate for the move callback. Most
299  * objects unrecognized by the client in the move callback fall into this
300  * category and are cheaply distinguished from known objects by the test
301  * described earlier. Because searching magazines is prohibitively expensive
302  * for kmem, clients that do not mark freed objects (and therefore return
303  * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
304  * efficacy reduced.
305  *
306  * Invalidating the designated pointer member before freeing the object marks
307  * the object to be avoided in the callback, and conversely, assigning a valid
308  * value to the designated pointer member after allocating the object makes the
309  * object fair game for the callback:
310  *
311  *      ... allocate object ...
312  *      ... set any initial state not set by the constructor ...
313  *
314  *      mutex_enter(&container->c_objects_lock);
315  *      list_insert_tail(&container->c_objects, object);
316  *      membar_producer();
317  *      object->o_container = container;
318  *      mutex_exit(&container->c_objects_lock);
319  *
320  * Note that everything else must be valid before setting o_container makes the
321  * object fair game for the move callback. The membar_producer() call ensures
322  * that all the object's state is written to memory before setting the pointer
323  * that transitions the object from state #3 or #7 (allocated, constructed, not
324  * yet in use) to state #4 (in use, valid). That's important because the move
325  * function has to check the validity of the pointer before it can safely
326  * acquire the lock protecting the collection where it expects to find known
327  * objects.
328  *
329  * This method of distinguishing known objects observes the usual symmetry:
330  * invalidating the designated pointer is the first thing the client does before
331  * freeing the object, and setting the designated pointer is the last thing the
332  * client does after allocating the object. Of course, the client is not
333  * required to use this method. Fundamentally, how the client recognizes known
334  * objects is completely up to the client, but this method is recommended as an
335  * efficient and safe way to take advantage of the guarantees made by kmem. If
336  * the entire object is arbitrary data without any markable bits from a suitable
337  * pointer member, then the client must find some other method, such as
338  * searching a hash table of known objects.
339  *
340  * 2.5 Preventing Objects From Moving
341  *
342  * Besides a way to distinguish known objects, the other thing that the client
343  * needs is a strategy to ensure that an object will not move while the client
344  * is actively using it. The details of satisfying this requirement tend to be
345  * highly cache-specific. It might seem that the same rules that let a client
346  * remove an object safely should also decide when an object can be moved
347  * safely. However, any object state that makes a removal attempt invalid is
348  * likely to be long-lasting for objects that the client does not expect to
349  * remove. kmem knows nothing about the object state and is equally likely (from
350  * the client's point of view) to request a move for any object in the cache,
351  * whether prepared for removal or not. Even a low percentage of objects stuck
352  * in place by unremovability will defeat the consolidator if the stuck objects
353  * are the same long-lived allocations likely to hold slabs hostage.
354  * Fundamentally, the consolidator is not aimed at common cases. Severe external
355  * fragmentation is a worst case scenario manifested as sparsely allocated
356  * slabs, by definition a low percentage of the cache's objects. When deciding
357  * what makes an object movable, keep in mind the goal of the consolidator: to
358  * bring worst-case external fragmentation within the limits guaranteed for
359  * internal fragmentation. Removability is a poor criterion if it is likely to
360  * exclude more than an insignificant percentage of objects for long periods of
361  * time.
362  *
363  * A tricky general solution exists, and it has the advantage of letting you
364  * move any object at almost any moment, practically eliminating the likelihood
365  * that an object can hold a slab hostage. However, if there is a cache-specific
366  * way to ensure that an object is not actively in use in the vast majority of
367  * cases, a simpler solution that leverages this cache-specific knowledge is
368  * preferred.
369  *
370  * 2.5.1 Cache-Specific Solution
371  *
372  * As an example of a cache-specific solution, the ZFS znode cache takes
373  * advantage of the fact that the vast majority of znodes are only being
374  * referenced from the DNLC. (A typical case might be a few hundred in active
375  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
376  * client has established that it recognizes the znode and can access its fields
377  * safely (using the method described earlier), it then tests whether the znode
378  * is referenced by anything other than the DNLC. If so, it assumes that the
379  * znode may be in active use and is unsafe to move, so it drops its locks and
380  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
381  * else znodes are used, no change is needed to protect against the possibility
382  * of the znode moving. The disadvantage is that it remains possible for an
383  * application to hold a znode slab hostage with an open file descriptor.
384  * However, this case ought to be rare and the consolidator has a way to deal
385  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
386  * object, kmem eventually stops believing it and treats the slab as if the
387  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
388  * then focus on getting it off of the partial slab list by allocating rather
389  * than freeing all of its objects. (Either way of getting a slab off the
390  * free list reduces fragmentation.)
391  *
392  * 2.5.2 General Solution
393  *
394  * The general solution, on the other hand, requires an explicit hold everywhere
395  * the object is used to prevent it from moving. To keep the client locking
396  * strategy as uncomplicated as possible, kmem guarantees the simplifying
397  * assumption that move callbacks are sequential, even across multiple caches.
398  * Internally, a global queue processed by a single thread supports all caches
399  * implementing the callback function. No matter how many caches supply a move
400  * function, the consolidator never moves more than one object at a time, so the
401  * client does not have to worry about tricky lock ordering involving several
402  * related objects from different kmem caches.
403  *
404  * The general solution implements the explicit hold as a read-write lock, which
405  * allows multiple readers to access an object from the cache simultaneously
406  * while a single writer is excluded from moving it. A single rwlock for the
407  * entire cache would lock out all threads from using any of the cache's objects
408  * even though only a single object is being moved, so to reduce contention,
409  * the client can fan out the single rwlock into an array of rwlocks hashed by
410  * the object address, making it probable that moving one object will not
411  * prevent other threads from using a different object. The rwlock cannot be a
412  * member of the object itself, because the possibility of the object moving
413  * makes it unsafe to access any of the object's fields until the lock is
414  * acquired.
415  *
416  * Assuming a small, fixed number of locks, it's possible that multiple objects
417  * will hash to the same lock. A thread that needs to use multiple objects in
418  * the same function may acquire the same lock multiple times. Since rwlocks are
419  * reentrant for readers, and since there is never more than a single writer at
420  * a time (assuming that the client acquires the lock as a writer only when
421  * moving an object inside the callback), there would seem to be no problem.
422  * However, a client locking multiple objects in the same function must handle
423  * one case of potential deadlock: Assume that thread A needs to prevent both
424  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
425  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
426  * same lock, that thread A will acquire the lock for object 1 as a reader
427  * before thread B sets the lock's write-wanted bit, preventing thread A from
428  * reacquiring the lock for object 2 as a reader. Unable to make forward
429  * progress, thread A will never release the lock for object 1, resulting in
430  * deadlock.
431  *
432  * There are two ways of avoiding the deadlock just described. The first is to
433  * use rw_tryenter() rather than rw_enter() in the callback function when
434  * attempting to acquire the lock as a writer. If tryenter discovers that the
435  * same object (or another object hashed to the same lock) is already in use, it
436  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
437  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
438  * since it allows a thread to acquire the lock as a reader in spite of a
439  * waiting writer. This second approach insists on moving the object now, no
440  * matter how many readers the move function must wait for in order to do so,
441  * and could delay the completion of the callback indefinitely (blocking
442  * callbacks to other clients). In practice, a less insistent callback using
443  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
444  * little reason to use anything else.
445  *
446  * Avoiding deadlock is not the only problem that an implementation using an
447  * explicit hold needs to solve. Locking the object in the first place (to
448  * prevent it from moving) remains a problem, since the object could move
449  * between the time you obtain a pointer to the object and the time you acquire
450  * the rwlock hashed to that pointer value. Therefore the client needs to
451  * recheck the value of the pointer after acquiring the lock, drop the lock if
452  * the value has changed, and try again. This requires a level of indirection:
453  * something that points to the object rather than the object itself, that the
454  * client can access safely while attempting to acquire the lock. (The object
455  * itself cannot be referenced safely because it can move at any time.)
456  * The following lock-acquisition function takes whatever is safe to reference
457  * (arg), follows its pointer to the object (using function f), and tries as
458  * often as necessary to acquire the hashed lock and verify that the object
459  * still has not moved:
460  *
461  *      object_t *
462  *      object_hold(object_f f, void *arg)
463  *      {
464  *              object_t *op;
465  *
466  *              op = f(arg);
467  *              if (op == NULL) {
468  *                      return (NULL);
469  *              }
470  *
471  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
472  *              while (op != f(arg)) {
473  *                      rw_exit(OBJECT_RWLOCK(op));
474  *                      op = f(arg);
475  *                      if (op == NULL) {
476  *                              break;
477  *                      }
478  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
479  *              }
480  *
481  *              return (op);
482  *      }
483  *
484  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
485  * lock reacquisition loop, while necessary, almost never executes. The function
486  * pointer f (used to obtain the object pointer from arg) has the following type
487  * definition:
488  *
489  *      typedef object_t *(*object_f)(void *arg);
490  *
491  * An object_f implementation is likely to be as simple as accessing a structure
492  * member:
493  *
494  *      object_t *
495  *      s_object(void *arg)
496  *      {
497  *              something_t *sp = arg;
498  *              return (sp->s_object);
499  *      }
500  *
501  * The flexibility of a function pointer allows the path to the object to be
502  * arbitrarily complex and also supports the notion that depending on where you
503  * are using the object, you may need to get it from someplace different.
504  *
505  * The function that releases the explicit hold is simpler because it does not
506  * have to worry about the object moving:
507  *
508  *      void
509  *      object_rele(object_t *op)
510  *      {
511  *              rw_exit(OBJECT_RWLOCK(op));
512  *      }
513  *
514  * The caller is spared these details so that obtaining and releasing an
515  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
516  * of object_hold() only needs to know that the returned object pointer is valid
517  * if not NULL and that the object will not move until released.
518  *
519  * Although object_hold() prevents an object from moving, it does not prevent it
520  * from being freed. The caller must take measures before calling object_hold()
521  * (afterwards is too late) to ensure that the held object cannot be freed. The
522  * caller must do so without accessing the unsafe object reference, so any lock
523  * or reference count used to ensure the continued existence of the object must
524  * live outside the object itself.
525  *
526  * Obtaining a new object is a special case where an explicit hold is impossible
527  * for the caller. Any function that returns a newly allocated object (either as
528  * a return value, or as an in-out paramter) must return it already held; after
529  * the caller gets it is too late, since the object cannot be safely accessed
530  * without the level of indirection described earlier. The following
531  * object_alloc() example uses the same code shown earlier to transition a new
532  * object into the state of being recognized (by the client) as a known object.
533  * The function must acquire the hold (rw_enter) before that state transition
534  * makes the object movable:
535  *
536  *      static object_t *
537  *      object_alloc(container_t *container)
538  *      {
539  *              object_t *object = kmem_cache_alloc(object_cache, 0);
540  *              ... set any initial state not set by the constructor ...
541  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
542  *              mutex_enter(&container->c_objects_lock);
543  *              list_insert_tail(&container->c_objects, object);
544  *              membar_producer();
545  *              object->o_container = container;
546  *              mutex_exit(&container->c_objects_lock);
547  *              return (object);
548  *      }
549  *
550  * Functions that implicitly acquire an object hold (any function that calls
551  * object_alloc() to supply an object for the caller) need to be carefully noted
552  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
553  * prevent all objects hashed to the affected rwlocks from ever being moved.
554  *
555  * The pointer to a held object can be hashed to the holding rwlock even after
556  * the object has been freed. Although it is possible to release the hold
557  * after freeing the object, you may decide to release the hold implicitly in
558  * whatever function frees the object, so as to release the hold as soon as
559  * possible, and for the sake of symmetry with the function that implicitly
560  * acquires the hold when it allocates the object. Here, object_free() releases
561  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
562  * matching pair with object_hold():
563  *
564  *      void
565  *      object_free(object_t *object)
566  *      {
567  *              container_t *container;
568  *
569  *              ASSERT(object_held(object));
570  *              container = object->o_container;
571  *              mutex_enter(&container->c_objects_lock);
572  *              object->o_container =
573  *                  (void *)((uintptr_t)object->o_container | 0x1);
574  *              list_remove(&container->c_objects, object);
575  *              mutex_exit(&container->c_objects_lock);
576  *              object_rele(object);
577  *              kmem_cache_free(object_cache, object);
578  *      }
579  *
580  * Note that object_free() cannot safely accept an object pointer as an argument
581  * unless the object is already held. Any function that calls object_free()
582  * needs to be carefully noted since it similarly forms a matching pair with
583  * object_hold().
584  *
585  * To complete the picture, the following callback function implements the
586  * general solution by moving objects only if they are currently unheld:
587  *
588  *      static kmem_cbrc_t
589  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
590  *      {
591  *              object_t *op = buf, *np = newbuf;
592  *              container_t *container;
593  *
594  *              container = op->o_container;
595  *              if ((uintptr_t)container & 0x3) {
596  *                      return (KMEM_CBRC_DONT_KNOW);
597  *              }
598  *
599  *	        // Ensure that the container structure does not go away.
600  *              if (container_hold(container) == 0) {
601  *                      return (KMEM_CBRC_DONT_KNOW);
602  *              }
603  *
604  *              mutex_enter(&container->c_objects_lock);
605  *              if (container != op->o_container) {
606  *                      mutex_exit(&container->c_objects_lock);
607  *                      container_rele(container);
608  *                      return (KMEM_CBRC_DONT_KNOW);
609  *              }
610  *
611  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
612  *                      mutex_exit(&container->c_objects_lock);
613  *                      container_rele(container);
614  *                      return (KMEM_CBRC_LATER);
615  *              }
616  *
617  *              object_move_impl(op, np); // critical section
618  *              rw_exit(OBJECT_RWLOCK(op));
619  *
620  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
621  *              list_link_replace(&op->o_link_node, &np->o_link_node);
622  *              mutex_exit(&container->c_objects_lock);
623  *              container_rele(container);
624  *              return (KMEM_CBRC_YES);
625  *      }
626  *
627  * Note that object_move() must invalidate the designated o_container pointer of
628  * the old object in the same way that object_free() does, since kmem will free
629  * the object in response to the KMEM_CBRC_YES return value.
630  *
631  * The lock order in object_move() differs from object_alloc(), which locks
632  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
633  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
634  * not a problem. Holding the lock on the object list in the example above
635  * through the entire callback not only prevents the object from going away, it
636  * also allows you to lock the list elsewhere and know that none of its elements
637  * will move during iteration.
638  *
639  * Adding an explicit hold everywhere an object from the cache is used is tricky
640  * and involves much more change to client code than a cache-specific solution
641  * that leverages existing state to decide whether or not an object is
642  * movable. However, this approach has the advantage that no object remains
643  * immovable for any significant length of time, making it extremely unlikely
644  * that long-lived allocations can continue holding slabs hostage; and it works
645  * for any cache.
646  *
647  * 3. Consolidator Implementation
648  *
649  * Once the client supplies a move function that a) recognizes known objects and
650  * b) avoids moving objects that are actively in use, the remaining work is up
651  * to the consolidator to decide which objects to move and when to issue
652  * callbacks.
653  *
654  * The consolidator relies on the fact that a cache's slabs are ordered by
655  * usage. Each slab has a fixed number of objects. Depending on the slab's
656  * "color" (the offset of the first object from the beginning of the slab;
657  * offsets are staggered to mitigate false sharing of cache lines) it is either
658  * the maximum number of objects per slab determined at cache creation time or
659  * else the number closest to the maximum that fits within the space remaining
660  * after the initial offset. A completely allocated slab may contribute some
661  * internal fragmentation (per-slab overhead) but no external fragmentation, so
662  * it is of no interest to the consolidator. At the other extreme, slabs whose
663  * objects have all been freed to the slab are released to the virtual memory
664  * (VM) subsystem (objects freed to magazines are still allocated as far as the
665  * slab is concerned). External fragmentation exists when there are slabs
666  * somewhere between these extremes. A partial slab has at least one but not all
667  * of its objects allocated. The more partial slabs, and the fewer allocated
668  * objects on each of them, the higher the fragmentation. Hence the
669  * consolidator's overall strategy is to reduce the number of partial slabs by
670  * moving allocated objects from the least allocated slabs to the most allocated
671  * slabs.
672  *
673  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
674  * slabs are kept separately in an unordered list. Since the majority of slabs
675  * tend to be completely allocated (a typical unfragmented cache may have
676  * thousands of complete slabs and only a single partial slab), separating
677  * complete slabs improves the efficiency of partial slab ordering, since the
678  * complete slabs do not affect the depth or balance of the AVL tree. This
679  * ordered sequence of partial slabs acts as a "free list" supplying objects for
680  * allocation requests.
681  *
682  * Objects are always allocated from the first partial slab in the free list,
683  * where the allocation is most likely to eliminate a partial slab (by
684  * completely allocating it). Conversely, when a single object from a completely
685  * allocated slab is freed to the slab, that slab is added to the front of the
686  * free list. Since most free list activity involves highly allocated slabs
687  * coming and going at the front of the list, slabs tend naturally toward the
688  * ideal order: highly allocated at the front, sparsely allocated at the back.
689  * Slabs with few allocated objects are likely to become completely free if they
690  * keep a safe distance away from the front of the free list. Slab misorders
691  * interfere with the natural tendency of slabs to become completely free or
692  * completely allocated. For example, a slab with a single allocated object
693  * needs only a single free to escape the cache; its natural desire is
694  * frustrated when it finds itself at the front of the list where a second
695  * allocation happens just before the free could have released it. Another slab
696  * with all but one object allocated might have supplied the buffer instead, so
697  * that both (as opposed to neither) of the slabs would have been taken off the
698  * free list.
699  *
700  * Although slabs tend naturally toward the ideal order, misorders allowed by a
701  * simple list implementation defeat the consolidator's strategy of merging
702  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
703  * needs another way to fix misorders to optimize its callback strategy. One
704  * approach is to periodically scan a limited number of slabs, advancing a
705  * marker to hold the current scan position, and to move extreme misorders to
706  * the front or back of the free list and to the front or back of the current
707  * scan range. By making consecutive scan ranges overlap by one slab, the least
708  * allocated slab in the current range can be carried along from the end of one
709  * scan to the start of the next.
710  *
711  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
712  * task, however. Since most of the cache's activity is in the magazine layer,
713  * and allocations from the slab layer represent only a startup cost, the
714  * overhead of maintaining a balanced tree is not a significant concern compared
715  * to the opportunity of reducing complexity by eliminating the partial slab
716  * scanner just described. The overhead of an AVL tree is minimized by
717  * maintaining only partial slabs in the tree and keeping completely allocated
718  * slabs separately in a list. To avoid increasing the size of the slab
719  * structure the AVL linkage pointers are reused for the slab's list linkage,
720  * since the slab will always be either partial or complete, never stored both
721  * ways at the same time. To further minimize the overhead of the AVL tree the
722  * compare function that orders partial slabs by usage divides the range of
723  * allocated object counts into bins such that counts within the same bin are
724  * considered equal. Binning partial slabs makes it less likely that allocating
725  * or freeing a single object will change the slab's order, requiring a tree
726  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
727  * requiring some rebalancing of the tree). Allocation counts closest to
728  * completely free and completely allocated are left unbinned (finely sorted) to
729  * better support the consolidator's strategy of merging slabs at either
730  * extreme.
731  *
732  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
733  *
734  * The consolidator piggybacks on the kmem maintenance thread and is called on
735  * the same interval as kmem_cache_update(), once per cache every fifteen
736  * seconds. kmem maintains a running count of unallocated objects in the slab
737  * layer (cache_bufslab). The consolidator checks whether that number exceeds
738  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
739  * there is a significant number of slabs in the cache (arbitrarily a minimum
740  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
741  * working set are included in the assessment, and magazines in the depot are
742  * reaped if those objects would lift cache_bufslab above the fragmentation
743  * threshold. Once the consolidator decides that a cache is fragmented, it looks
744  * for a candidate slab to reclaim, starting at the end of the partial slab free
745  * list and scanning backwards. At first the consolidator is choosy: only a slab
746  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
747  * single allocated object, regardless of percentage). If there is difficulty
748  * finding a candidate slab, kmem raises the allocation threshold incrementally,
749  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
750  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
751  * even in the worst case of every slab in the cache being almost 7/8 allocated.
752  * The threshold can also be lowered incrementally when candidate slabs are easy
753  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
754  * is no longer fragmented.
755  *
756  * 3.2 Generating Callbacks
757  *
758  * Once an eligible slab is chosen, a callback is generated for every allocated
759  * object on the slab, in the hope that the client will move everything off the
760  * slab and make it reclaimable. Objects selected as move destinations are
761  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
762  * order (most allocated at the front, least allocated at the back) and a
763  * cooperative client, the consolidator will succeed in removing slabs from both
764  * ends of the free list, completely allocating on the one hand and completely
765  * freeing on the other. Objects selected as move destinations are allocated in
766  * the kmem maintenance thread where move requests are enqueued. A separate
767  * callback thread removes pending callbacks from the queue and calls the
768  * client. The separate thread ensures that client code (the move function) does
769  * not interfere with internal kmem maintenance tasks. A map of pending
770  * callbacks keyed by object address (the object to be moved) is checked to
771  * ensure that duplicate callbacks are not generated for the same object.
772  * Allocating the move destination (the object to move to) prevents subsequent
773  * callbacks from selecting the same destination as an earlier pending callback.
774  *
775  * Move requests can also be generated by kmem_cache_reap() when the system is
776  * desperate for memory and by kmem_cache_move_notify(), called by the client to
777  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
778  * The map of pending callbacks is protected by the same lock that protects the
779  * slab layer.
780  *
781  * When the system is desperate for memory, kmem does not bother to determine
782  * whether or not the cache exceeds the fragmentation threshold, but tries to
783  * consolidate as many slabs as possible. Normally, the consolidator chews
784  * slowly, one sparsely allocated slab at a time during each maintenance
785  * interval that the cache is fragmented. When desperate, the consolidator
786  * starts at the last partial slab and enqueues callbacks for every allocated
787  * object on every partial slab, working backwards until it reaches the first
788  * partial slab. The first partial slab, meanwhile, advances in pace with the
789  * consolidator as allocations to supply move destinations for the enqueued
790  * callbacks use up the highly allocated slabs at the front of the free list.
791  * Ideally, the overgrown free list collapses like an accordion, starting at
792  * both ends and ending at the center with a single partial slab.
793  *
794  * 3.3 Client Responses
795  *
796  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
797  * marks the slab that supplied the stuck object non-reclaimable and moves it to
798  * front of the free list. The slab remains marked as long as it remains on the
799  * free list, and it appears more allocated to the partial slab compare function
800  * than any unmarked slab, no matter how many of its objects are allocated.
801  * Since even one immovable object ties up the entire slab, the goal is to
802  * completely allocate any slab that cannot be completely freed. kmem does not
803  * bother generating callbacks to move objects from a marked slab unless the
804  * system is desperate.
805  *
806  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
807  * slab. If the client responds LATER too many times, kmem disbelieves and
808  * treats the response as a NO. The count is cleared when the slab is taken off
809  * the partial slab list or when the client moves one of the slab's objects.
810  *
811  * 4. Observability
812  *
813  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
814  * the ::kmem_slabs dcmd. For a complete description of the command, enter
815  * '::help kmem_slabs' at the mdb prompt.
816  */
817 
818 #include <sys/kmem_impl.h>
819 #include <sys/vmem_impl.h>
820 #include <sys/param.h>
821 #include <sys/sysmacros.h>
822 #include <sys/vm.h>
823 #include <sys/proc.h>
824 #include <sys/tuneable.h>
825 #include <sys/systm.h>
826 #include <sys/cmn_err.h>
827 #include <sys/debug.h>
828 #include <sys/sdt.h>
829 #include <sys/mutex.h>
830 #include <sys/bitmap.h>
831 #include <sys/atomic.h>
832 #include <sys/kobj.h>
833 #include <sys/disp.h>
834 #include <vm/seg_kmem.h>
835 #include <sys/log.h>
836 #include <sys/callb.h>
837 #include <sys/taskq.h>
838 #include <sys/modctl.h>
839 #include <sys/reboot.h>
840 #include <sys/id32.h>
841 #include <sys/zone.h>
842 #include <sys/netstack.h>
843 #ifdef	DEBUG
844 #include <sys/random.h>
845 #endif
846 
847 extern void streams_msg_init(void);
848 extern int segkp_fromheap;
849 extern void segkp_cache_free(void);
850 extern int callout_init_done;
851 
852 struct kmem_cache_kstat {
853 	kstat_named_t	kmc_buf_size;
854 	kstat_named_t	kmc_align;
855 	kstat_named_t	kmc_chunk_size;
856 	kstat_named_t	kmc_slab_size;
857 	kstat_named_t	kmc_alloc;
858 	kstat_named_t	kmc_alloc_fail;
859 	kstat_named_t	kmc_free;
860 	kstat_named_t	kmc_depot_alloc;
861 	kstat_named_t	kmc_depot_free;
862 	kstat_named_t	kmc_depot_contention;
863 	kstat_named_t	kmc_slab_alloc;
864 	kstat_named_t	kmc_slab_free;
865 	kstat_named_t	kmc_buf_constructed;
866 	kstat_named_t	kmc_buf_avail;
867 	kstat_named_t	kmc_buf_inuse;
868 	kstat_named_t	kmc_buf_total;
869 	kstat_named_t	kmc_buf_max;
870 	kstat_named_t	kmc_slab_create;
871 	kstat_named_t	kmc_slab_destroy;
872 	kstat_named_t	kmc_vmem_source;
873 	kstat_named_t	kmc_hash_size;
874 	kstat_named_t	kmc_hash_lookup_depth;
875 	kstat_named_t	kmc_hash_rescale;
876 	kstat_named_t	kmc_full_magazines;
877 	kstat_named_t	kmc_empty_magazines;
878 	kstat_named_t	kmc_magazine_size;
879 	kstat_named_t	kmc_reap; /* number of kmem_cache_reap() calls */
880 	kstat_named_t	kmc_defrag; /* attempts to defrag all partial slabs */
881 	kstat_named_t	kmc_scan; /* attempts to defrag one partial slab */
882 	kstat_named_t	kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
883 	kstat_named_t	kmc_move_yes;
884 	kstat_named_t	kmc_move_no;
885 	kstat_named_t	kmc_move_later;
886 	kstat_named_t	kmc_move_dont_need;
887 	kstat_named_t	kmc_move_dont_know; /* obj unrecognized by client ... */
888 	kstat_named_t	kmc_move_hunt_found; /* ... but found in mag layer */
889 	kstat_named_t	kmc_move_slabs_freed; /* slabs freed by consolidator */
890 	kstat_named_t	kmc_move_reclaimable; /* buffers, if consolidator ran */
891 } kmem_cache_kstat = {
892 	{ "buf_size",		KSTAT_DATA_UINT64 },
893 	{ "align",		KSTAT_DATA_UINT64 },
894 	{ "chunk_size",		KSTAT_DATA_UINT64 },
895 	{ "slab_size",		KSTAT_DATA_UINT64 },
896 	{ "alloc",		KSTAT_DATA_UINT64 },
897 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
898 	{ "free",		KSTAT_DATA_UINT64 },
899 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
900 	{ "depot_free",		KSTAT_DATA_UINT64 },
901 	{ "depot_contention",	KSTAT_DATA_UINT64 },
902 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
903 	{ "slab_free",		KSTAT_DATA_UINT64 },
904 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
905 	{ "buf_avail",		KSTAT_DATA_UINT64 },
906 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
907 	{ "buf_total",		KSTAT_DATA_UINT64 },
908 	{ "buf_max",		KSTAT_DATA_UINT64 },
909 	{ "slab_create",	KSTAT_DATA_UINT64 },
910 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
911 	{ "vmem_source",	KSTAT_DATA_UINT64 },
912 	{ "hash_size",		KSTAT_DATA_UINT64 },
913 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
914 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
915 	{ "full_magazines",	KSTAT_DATA_UINT64 },
916 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
917 	{ "magazine_size",	KSTAT_DATA_UINT64 },
918 	{ "reap",		KSTAT_DATA_UINT64 },
919 	{ "defrag",		KSTAT_DATA_UINT64 },
920 	{ "scan",		KSTAT_DATA_UINT64 },
921 	{ "move_callbacks",	KSTAT_DATA_UINT64 },
922 	{ "move_yes",		KSTAT_DATA_UINT64 },
923 	{ "move_no",		KSTAT_DATA_UINT64 },
924 	{ "move_later",		KSTAT_DATA_UINT64 },
925 	{ "move_dont_need",	KSTAT_DATA_UINT64 },
926 	{ "move_dont_know",	KSTAT_DATA_UINT64 },
927 	{ "move_hunt_found",	KSTAT_DATA_UINT64 },
928 	{ "move_slabs_freed",	KSTAT_DATA_UINT64 },
929 	{ "move_reclaimable",	KSTAT_DATA_UINT64 },
930 };
931 
932 static kmutex_t kmem_cache_kstat_lock;
933 
934 /*
935  * The default set of caches to back kmem_alloc().
936  * These sizes should be reevaluated periodically.
937  *
938  * We want allocations that are multiples of the coherency granularity
939  * (64 bytes) to be satisfied from a cache which is a multiple of 64
940  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
941  * the next kmem_cache_size greater than or equal to it must be a
942  * multiple of 64.
943  *
944  * We split the table into two sections:  size <= 4k and size > 4k.  This
945  * saves a lot of space and cache footprint in our cache tables.
946  */
947 static const int kmem_alloc_sizes[] = {
948 	1 * 8,
949 	2 * 8,
950 	3 * 8,
951 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
952 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
953 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
954 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
955 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
956 	P2ALIGN(8192 / 7, 64),
957 	P2ALIGN(8192 / 6, 64),
958 	P2ALIGN(8192 / 5, 64),
959 	P2ALIGN(8192 / 4, 64),
960 	P2ALIGN(8192 / 3, 64),
961 	P2ALIGN(8192 / 2, 64),
962 };
963 
964 static const int kmem_big_alloc_sizes[] = {
965 	2 * 4096,	3 * 4096,
966 	2 * 8192,	3 * 8192,
967 	4 * 8192,	5 * 8192,	6 * 8192,	7 * 8192,
968 	8 * 8192,	9 * 8192,	10 * 8192,	11 * 8192,
969 	12 * 8192,	13 * 8192,	14 * 8192,	15 * 8192,
970 	16 * 8192
971 };
972 
973 #define	KMEM_MAXBUF		4096
974 #define	KMEM_BIG_MAXBUF_32BIT	32768
975 #define	KMEM_BIG_MAXBUF		131072
976 
977 #define	KMEM_BIG_MULTIPLE	4096	/* big_alloc_sizes must be a multiple */
978 #define	KMEM_BIG_SHIFT		12	/* lg(KMEM_BIG_MULTIPLE) */
979 
980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
982 
983 #define	KMEM_ALLOC_TABLE_MAX	(KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
984 static size_t kmem_big_alloc_table_max = 0;	/* # of filled elements */
985 
986 static kmem_magtype_t kmem_magtype[] = {
987 	{ 1,	8,	3200,	65536	},
988 	{ 3,	16,	256,	32768	},
989 	{ 7,	32,	64,	16384	},
990 	{ 15,	64,	0,	8192	},
991 	{ 31,	64,	0,	4096	},
992 	{ 47,	64,	0,	2048	},
993 	{ 63,	64,	0,	1024	},
994 	{ 95,	64,	0,	512	},
995 	{ 143,	64,	0,	0	},
996 };
997 
998 static uint32_t kmem_reaping;
999 static uint32_t kmem_reaping_idspace;
1000 
1001 /*
1002  * kmem tunables
1003  */
1004 clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
1005 int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
1006 pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
1007 int kmem_panic = 1;		/* whether to panic on error */
1008 int kmem_logging = 1;		/* kmem_log_enter() override */
1009 uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1011 size_t kmem_content_log_size;	/* content log size [2% of memory] */
1012 size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
1013 size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
1014 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1015 size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
1016 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1017 int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
1018 size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
1019 size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
1020 
1021 #ifdef _LP64
1022 size_t	kmem_max_cached = KMEM_BIG_MAXBUF;	/* maximum kmem_alloc cache */
1023 #else
1024 size_t	kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1025 #endif
1026 
1027 #ifdef DEBUG
1028 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1029 #else
1030 int kmem_flags = 0;
1031 #endif
1032 int kmem_ready;
1033 
1034 static kmem_cache_t	*kmem_slab_cache;
1035 static kmem_cache_t	*kmem_bufctl_cache;
1036 static kmem_cache_t	*kmem_bufctl_audit_cache;
1037 
1038 static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
1039 static list_t		kmem_caches;
1040 
1041 static taskq_t		*kmem_taskq;
1042 static kmutex_t		kmem_flags_lock;
1043 static vmem_t		*kmem_metadata_arena;
1044 static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
1045 static vmem_t		*kmem_cache_arena;
1046 static vmem_t		*kmem_hash_arena;
1047 static vmem_t		*kmem_log_arena;
1048 static vmem_t		*kmem_oversize_arena;
1049 static vmem_t		*kmem_va_arena;
1050 static vmem_t		*kmem_default_arena;
1051 static vmem_t		*kmem_firewall_va_arena;
1052 static vmem_t		*kmem_firewall_arena;
1053 
1054 /*
1055  * kmem slab consolidator thresholds (tunables)
1056  */
1057 size_t kmem_frag_minslabs = 101;	/* minimum total slabs */
1058 size_t kmem_frag_numer = 1;		/* free buffers (numerator) */
1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1060 /*
1061  * Maximum number of slabs from which to move buffers during a single
1062  * maintenance interval while the system is not low on memory.
1063  */
1064 size_t kmem_reclaim_max_slabs = 1;
1065 /*
1066  * Number of slabs to scan backwards from the end of the partial slab list
1067  * when searching for buffers to relocate.
1068  */
1069 size_t kmem_reclaim_scan_range = 12;
1070 
1071 /* consolidator knobs */
1072 boolean_t kmem_move_noreap;
1073 boolean_t kmem_move_blocked;
1074 boolean_t kmem_move_fulltilt;
1075 boolean_t kmem_move_any_partial;
1076 
1077 #ifdef	DEBUG
1078 /*
1079  * kmem consolidator debug tunables:
1080  * Ensure code coverage by occasionally running the consolidator even when the
1081  * caches are not fragmented (they may never be). These intervals are mean time
1082  * in cache maintenance intervals (kmem_cache_update).
1083  */
1084 uint32_t kmem_mtb_move = 60;	/* defrag 1 slab (~15min) */
1085 uint32_t kmem_mtb_reap = 1800;	/* defrag all slabs (~7.5hrs) */
1086 #endif	/* DEBUG */
1087 
1088 static kmem_cache_t	*kmem_defrag_cache;
1089 static kmem_cache_t	*kmem_move_cache;
1090 static taskq_t		*kmem_move_taskq;
1091 
1092 static void kmem_cache_scan(kmem_cache_t *);
1093 static void kmem_cache_defrag(kmem_cache_t *);
1094 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1095 
1096 
1097 kmem_log_header_t	*kmem_transaction_log;
1098 kmem_log_header_t	*kmem_content_log;
1099 kmem_log_header_t	*kmem_failure_log;
1100 kmem_log_header_t	*kmem_slab_log;
1101 
1102 static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1103 
1104 #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
1105 	if ((count) > 0) {						\
1106 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
1107 		pc_t *_e;						\
1108 		/* memmove() the old entries down one notch */		\
1109 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
1110 			*_e = *(_e - 1);				\
1111 		*_s = (uintptr_t)(caller);				\
1112 	}
1113 
1114 #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
1115 #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
1116 #define	KMERR_DUPFREE	2	/* freed a buffer twice */
1117 #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
1118 #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
1119 #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
1120 #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
1121 #define	KMERR_BADSIZE	7	/* alloc size != free size */
1122 #define	KMERR_BADBASE	8	/* buffer base address wrong */
1123 
1124 struct {
1125 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
1126 	int		kmp_error;	/* type of kmem error */
1127 	void		*kmp_buffer;	/* buffer that induced panic */
1128 	void		*kmp_realbuf;	/* real start address for buffer */
1129 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
1130 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
1131 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
1132 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
1133 } kmem_panic_info;
1134 
1135 
1136 static void
1137 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1138 {
1139 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1140 	uint64_t *buf = buf_arg;
1141 
1142 	while (buf < bufend)
1143 		*buf++ = pattern;
1144 }
1145 
1146 static void *
1147 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1148 {
1149 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1150 	uint64_t *buf;
1151 
1152 	for (buf = buf_arg; buf < bufend; buf++)
1153 		if (*buf != pattern)
1154 			return (buf);
1155 	return (NULL);
1156 }
1157 
1158 static void *
1159 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1160 {
1161 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1162 	uint64_t *buf;
1163 
1164 	for (buf = buf_arg; buf < bufend; buf++) {
1165 		if (*buf != old) {
1166 			copy_pattern(old, buf_arg,
1167 			    (char *)buf - (char *)buf_arg);
1168 			return (buf);
1169 		}
1170 		*buf = new;
1171 	}
1172 
1173 	return (NULL);
1174 }
1175 
1176 static void
1177 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1178 {
1179 	kmem_cache_t *cp;
1180 
1181 	mutex_enter(&kmem_cache_lock);
1182 	for (cp = list_head(&kmem_caches); cp != NULL;
1183 	    cp = list_next(&kmem_caches, cp))
1184 		if (tq != NULL)
1185 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1186 			    tqflag);
1187 		else
1188 			func(cp);
1189 	mutex_exit(&kmem_cache_lock);
1190 }
1191 
1192 static void
1193 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1194 {
1195 	kmem_cache_t *cp;
1196 
1197 	mutex_enter(&kmem_cache_lock);
1198 	for (cp = list_head(&kmem_caches); cp != NULL;
1199 	    cp = list_next(&kmem_caches, cp)) {
1200 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
1201 			continue;
1202 		if (tq != NULL)
1203 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1204 			    tqflag);
1205 		else
1206 			func(cp);
1207 	}
1208 	mutex_exit(&kmem_cache_lock);
1209 }
1210 
1211 /*
1212  * Debugging support.  Given a buffer address, find its slab.
1213  */
1214 static kmem_slab_t *
1215 kmem_findslab(kmem_cache_t *cp, void *buf)
1216 {
1217 	kmem_slab_t *sp;
1218 
1219 	mutex_enter(&cp->cache_lock);
1220 	for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1221 	    sp = list_next(&cp->cache_complete_slabs, sp)) {
1222 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1223 			mutex_exit(&cp->cache_lock);
1224 			return (sp);
1225 		}
1226 	}
1227 	for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1228 	    sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1229 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1230 			mutex_exit(&cp->cache_lock);
1231 			return (sp);
1232 		}
1233 	}
1234 	mutex_exit(&cp->cache_lock);
1235 
1236 	return (NULL);
1237 }
1238 
1239 static void
1240 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1241 {
1242 	kmem_buftag_t *btp = NULL;
1243 	kmem_bufctl_t *bcp = NULL;
1244 	kmem_cache_t *cp = cparg;
1245 	kmem_slab_t *sp;
1246 	uint64_t *off;
1247 	void *buf = bufarg;
1248 
1249 	kmem_logging = 0;	/* stop logging when a bad thing happens */
1250 
1251 	kmem_panic_info.kmp_timestamp = gethrtime();
1252 
1253 	sp = kmem_findslab(cp, buf);
1254 	if (sp == NULL) {
1255 		for (cp = list_tail(&kmem_caches); cp != NULL;
1256 		    cp = list_prev(&kmem_caches, cp)) {
1257 			if ((sp = kmem_findslab(cp, buf)) != NULL)
1258 				break;
1259 		}
1260 	}
1261 
1262 	if (sp == NULL) {
1263 		cp = NULL;
1264 		error = KMERR_BADADDR;
1265 	} else {
1266 		if (cp != cparg)
1267 			error = KMERR_BADCACHE;
1268 		else
1269 			buf = (char *)bufarg - ((uintptr_t)bufarg -
1270 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1271 		if (buf != bufarg)
1272 			error = KMERR_BADBASE;
1273 		if (cp->cache_flags & KMF_BUFTAG)
1274 			btp = KMEM_BUFTAG(cp, buf);
1275 		if (cp->cache_flags & KMF_HASH) {
1276 			mutex_enter(&cp->cache_lock);
1277 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1278 				if (bcp->bc_addr == buf)
1279 					break;
1280 			mutex_exit(&cp->cache_lock);
1281 			if (bcp == NULL && btp != NULL)
1282 				bcp = btp->bt_bufctl;
1283 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1284 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1285 			    bcp->bc_addr != buf) {
1286 				error = KMERR_BADBUFCTL;
1287 				bcp = NULL;
1288 			}
1289 		}
1290 	}
1291 
1292 	kmem_panic_info.kmp_error = error;
1293 	kmem_panic_info.kmp_buffer = bufarg;
1294 	kmem_panic_info.kmp_realbuf = buf;
1295 	kmem_panic_info.kmp_cache = cparg;
1296 	kmem_panic_info.kmp_realcache = cp;
1297 	kmem_panic_info.kmp_slab = sp;
1298 	kmem_panic_info.kmp_bufctl = bcp;
1299 
1300 	printf("kernel memory allocator: ");
1301 
1302 	switch (error) {
1303 
1304 	case KMERR_MODIFIED:
1305 		printf("buffer modified after being freed\n");
1306 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1307 		if (off == NULL)	/* shouldn't happen */
1308 			off = buf;
1309 		printf("modification occurred at offset 0x%lx "
1310 		    "(0x%llx replaced by 0x%llx)\n",
1311 		    (uintptr_t)off - (uintptr_t)buf,
1312 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1313 		break;
1314 
1315 	case KMERR_REDZONE:
1316 		printf("redzone violation: write past end of buffer\n");
1317 		break;
1318 
1319 	case KMERR_BADADDR:
1320 		printf("invalid free: buffer not in cache\n");
1321 		break;
1322 
1323 	case KMERR_DUPFREE:
1324 		printf("duplicate free: buffer freed twice\n");
1325 		break;
1326 
1327 	case KMERR_BADBUFTAG:
1328 		printf("boundary tag corrupted\n");
1329 		printf("bcp ^ bxstat = %lx, should be %lx\n",
1330 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1331 		    KMEM_BUFTAG_FREE);
1332 		break;
1333 
1334 	case KMERR_BADBUFCTL:
1335 		printf("bufctl corrupted\n");
1336 		break;
1337 
1338 	case KMERR_BADCACHE:
1339 		printf("buffer freed to wrong cache\n");
1340 		printf("buffer was allocated from %s,\n", cp->cache_name);
1341 		printf("caller attempting free to %s.\n", cparg->cache_name);
1342 		break;
1343 
1344 	case KMERR_BADSIZE:
1345 		printf("bad free: free size (%u) != alloc size (%u)\n",
1346 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1347 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1348 		break;
1349 
1350 	case KMERR_BADBASE:
1351 		printf("bad free: free address (%p) != alloc address (%p)\n",
1352 		    bufarg, buf);
1353 		break;
1354 	}
1355 
1356 	printf("buffer=%p  bufctl=%p  cache: %s\n",
1357 	    bufarg, (void *)bcp, cparg->cache_name);
1358 
1359 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1360 	    error != KMERR_BADBUFCTL) {
1361 		int d;
1362 		timestruc_t ts;
1363 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1364 
1365 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1366 		printf("previous transaction on buffer %p:\n", buf);
1367 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1368 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1369 		    (void *)sp, cp->cache_name);
1370 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1371 			ulong_t off;
1372 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1373 			printf("%s+%lx\n", sym ? sym : "?", off);
1374 		}
1375 	}
1376 	if (kmem_panic > 0)
1377 		panic("kernel heap corruption detected");
1378 	if (kmem_panic == 0)
1379 		debug_enter(NULL);
1380 	kmem_logging = 1;	/* resume logging */
1381 }
1382 
1383 static kmem_log_header_t *
1384 kmem_log_init(size_t logsize)
1385 {
1386 	kmem_log_header_t *lhp;
1387 	int nchunks = 4 * max_ncpus;
1388 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1389 	int i;
1390 
1391 	/*
1392 	 * Make sure that lhp->lh_cpu[] is nicely aligned
1393 	 * to prevent false sharing of cache lines.
1394 	 */
1395 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1396 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1397 	    NULL, NULL, VM_SLEEP);
1398 	bzero(lhp, lhsize);
1399 
1400 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1401 	lhp->lh_nchunks = nchunks;
1402 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1403 	lhp->lh_base = vmem_alloc(kmem_log_arena,
1404 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
1405 	lhp->lh_free = vmem_alloc(kmem_log_arena,
1406 	    nchunks * sizeof (int), VM_SLEEP);
1407 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1408 
1409 	for (i = 0; i < max_ncpus; i++) {
1410 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1411 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1412 		clhp->clh_chunk = i;
1413 	}
1414 
1415 	for (i = max_ncpus; i < nchunks; i++)
1416 		lhp->lh_free[i] = i;
1417 
1418 	lhp->lh_head = max_ncpus;
1419 	lhp->lh_tail = 0;
1420 
1421 	return (lhp);
1422 }
1423 
1424 static void *
1425 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1426 {
1427 	void *logspace;
1428 	kmem_cpu_log_header_t *clhp;
1429 
1430 	if (lhp == NULL || kmem_logging == 0 || panicstr)
1431 		return (NULL);
1432 
1433 	clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1434 
1435 	mutex_enter(&clhp->clh_lock);
1436 	clhp->clh_hits++;
1437 	if (size > clhp->clh_avail) {
1438 		mutex_enter(&lhp->lh_lock);
1439 		lhp->lh_hits++;
1440 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1441 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1442 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1443 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1444 		clhp->clh_current = lhp->lh_base +
1445 		    clhp->clh_chunk * lhp->lh_chunksize;
1446 		clhp->clh_avail = lhp->lh_chunksize;
1447 		if (size > lhp->lh_chunksize)
1448 			size = lhp->lh_chunksize;
1449 		mutex_exit(&lhp->lh_lock);
1450 	}
1451 	logspace = clhp->clh_current;
1452 	clhp->clh_current += size;
1453 	clhp->clh_avail -= size;
1454 	bcopy(data, logspace, size);
1455 	mutex_exit(&clhp->clh_lock);
1456 	return (logspace);
1457 }
1458 
1459 #define	KMEM_AUDIT(lp, cp, bcp)						\
1460 {									\
1461 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
1462 	_bcp->bc_timestamp = gethrtime();				\
1463 	_bcp->bc_thread = curthread;					\
1464 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
1465 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
1466 }
1467 
1468 static void
1469 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1470     kmem_slab_t *sp, void *addr)
1471 {
1472 	kmem_bufctl_audit_t bca;
1473 
1474 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
1475 	bca.bc_addr = addr;
1476 	bca.bc_slab = sp;
1477 	bca.bc_cache = cp;
1478 	KMEM_AUDIT(lp, cp, &bca);
1479 }
1480 
1481 /*
1482  * Create a new slab for cache cp.
1483  */
1484 static kmem_slab_t *
1485 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1486 {
1487 	size_t slabsize = cp->cache_slabsize;
1488 	size_t chunksize = cp->cache_chunksize;
1489 	int cache_flags = cp->cache_flags;
1490 	size_t color, chunks;
1491 	char *buf, *slab;
1492 	kmem_slab_t *sp;
1493 	kmem_bufctl_t *bcp;
1494 	vmem_t *vmp = cp->cache_arena;
1495 
1496 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1497 
1498 	color = cp->cache_color + cp->cache_align;
1499 	if (color > cp->cache_maxcolor)
1500 		color = cp->cache_mincolor;
1501 	cp->cache_color = color;
1502 
1503 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1504 
1505 	if (slab == NULL)
1506 		goto vmem_alloc_failure;
1507 
1508 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1509 
1510 	/*
1511 	 * Reverify what was already checked in kmem_cache_set_move(), since the
1512 	 * consolidator depends (for correctness) on slabs being initialized
1513 	 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1514 	 * clients to distinguish uninitialized memory from known objects).
1515 	 */
1516 	ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1517 	if (!(cp->cache_cflags & KMC_NOTOUCH))
1518 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1519 
1520 	if (cache_flags & KMF_HASH) {
1521 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1522 			goto slab_alloc_failure;
1523 		chunks = (slabsize - color) / chunksize;
1524 	} else {
1525 		sp = KMEM_SLAB(cp, slab);
1526 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1527 	}
1528 
1529 	sp->slab_cache	= cp;
1530 	sp->slab_head	= NULL;
1531 	sp->slab_refcnt	= 0;
1532 	sp->slab_base	= buf = slab + color;
1533 	sp->slab_chunks	= chunks;
1534 	sp->slab_stuck_offset = (uint32_t)-1;
1535 	sp->slab_later_count = 0;
1536 	sp->slab_flags = 0;
1537 
1538 	ASSERT(chunks > 0);
1539 	while (chunks-- != 0) {
1540 		if (cache_flags & KMF_HASH) {
1541 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1542 			if (bcp == NULL)
1543 				goto bufctl_alloc_failure;
1544 			if (cache_flags & KMF_AUDIT) {
1545 				kmem_bufctl_audit_t *bcap =
1546 				    (kmem_bufctl_audit_t *)bcp;
1547 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
1548 				bcap->bc_cache = cp;
1549 			}
1550 			bcp->bc_addr = buf;
1551 			bcp->bc_slab = sp;
1552 		} else {
1553 			bcp = KMEM_BUFCTL(cp, buf);
1554 		}
1555 		if (cache_flags & KMF_BUFTAG) {
1556 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1557 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
1558 			btp->bt_bufctl = bcp;
1559 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1560 			if (cache_flags & KMF_DEADBEEF) {
1561 				copy_pattern(KMEM_FREE_PATTERN, buf,
1562 				    cp->cache_verify);
1563 			}
1564 		}
1565 		bcp->bc_next = sp->slab_head;
1566 		sp->slab_head = bcp;
1567 		buf += chunksize;
1568 	}
1569 
1570 	kmem_log_event(kmem_slab_log, cp, sp, slab);
1571 
1572 	return (sp);
1573 
1574 bufctl_alloc_failure:
1575 
1576 	while ((bcp = sp->slab_head) != NULL) {
1577 		sp->slab_head = bcp->bc_next;
1578 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
1579 	}
1580 	kmem_cache_free(kmem_slab_cache, sp);
1581 
1582 slab_alloc_failure:
1583 
1584 	vmem_free(vmp, slab, slabsize);
1585 
1586 vmem_alloc_failure:
1587 
1588 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1589 	atomic_inc_64(&cp->cache_alloc_fail);
1590 
1591 	return (NULL);
1592 }
1593 
1594 /*
1595  * Destroy a slab.
1596  */
1597 static void
1598 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1599 {
1600 	vmem_t *vmp = cp->cache_arena;
1601 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1602 
1603 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1604 	ASSERT(sp->slab_refcnt == 0);
1605 
1606 	if (cp->cache_flags & KMF_HASH) {
1607 		kmem_bufctl_t *bcp;
1608 		while ((bcp = sp->slab_head) != NULL) {
1609 			sp->slab_head = bcp->bc_next;
1610 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
1611 		}
1612 		kmem_cache_free(kmem_slab_cache, sp);
1613 	}
1614 	vmem_free(vmp, slab, cp->cache_slabsize);
1615 }
1616 
1617 static void *
1618 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1619 {
1620 	kmem_bufctl_t *bcp, **hash_bucket;
1621 	void *buf;
1622 	boolean_t new_slab = (sp->slab_refcnt == 0);
1623 
1624 	ASSERT(MUTEX_HELD(&cp->cache_lock));
1625 	/*
1626 	 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1627 	 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1628 	 * slab is newly created.
1629 	 */
1630 	ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1631 	    (sp == avl_first(&cp->cache_partial_slabs))));
1632 	ASSERT(sp->slab_cache == cp);
1633 
1634 	cp->cache_slab_alloc++;
1635 	cp->cache_bufslab--;
1636 	sp->slab_refcnt++;
1637 
1638 	bcp = sp->slab_head;
1639 	sp->slab_head = bcp->bc_next;
1640 
1641 	if (cp->cache_flags & KMF_HASH) {
1642 		/*
1643 		 * Add buffer to allocated-address hash table.
1644 		 */
1645 		buf = bcp->bc_addr;
1646 		hash_bucket = KMEM_HASH(cp, buf);
1647 		bcp->bc_next = *hash_bucket;
1648 		*hash_bucket = bcp;
1649 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1650 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1651 		}
1652 	} else {
1653 		buf = KMEM_BUF(cp, bcp);
1654 	}
1655 
1656 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1657 
1658 	if (sp->slab_head == NULL) {
1659 		ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1660 		if (new_slab) {
1661 			ASSERT(sp->slab_chunks == 1);
1662 		} else {
1663 			ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1664 			avl_remove(&cp->cache_partial_slabs, sp);
1665 			sp->slab_later_count = 0; /* clear history */
1666 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1667 			sp->slab_stuck_offset = (uint32_t)-1;
1668 		}
1669 		list_insert_head(&cp->cache_complete_slabs, sp);
1670 		cp->cache_complete_slab_count++;
1671 		return (buf);
1672 	}
1673 
1674 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1675 	/*
1676 	 * Peek to see if the magazine layer is enabled before
1677 	 * we prefill.  We're not holding the cpu cache lock,
1678 	 * so the peek could be wrong, but there's no harm in it.
1679 	 */
1680 	if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1681 	    (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1682 		kmem_slab_prefill(cp, sp);
1683 		return (buf);
1684 	}
1685 
1686 	if (new_slab) {
1687 		avl_add(&cp->cache_partial_slabs, sp);
1688 		return (buf);
1689 	}
1690 
1691 	/*
1692 	 * The slab is now more allocated than it was, so the
1693 	 * order remains unchanged.
1694 	 */
1695 	ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1696 	return (buf);
1697 }
1698 
1699 /*
1700  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1701  */
1702 static void *
1703 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1704 {
1705 	kmem_slab_t *sp;
1706 	void *buf;
1707 	boolean_t test_destructor;
1708 
1709 	mutex_enter(&cp->cache_lock);
1710 	test_destructor = (cp->cache_slab_alloc == 0);
1711 	sp = avl_first(&cp->cache_partial_slabs);
1712 	if (sp == NULL) {
1713 		ASSERT(cp->cache_bufslab == 0);
1714 
1715 		/*
1716 		 * The freelist is empty.  Create a new slab.
1717 		 */
1718 		mutex_exit(&cp->cache_lock);
1719 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1720 			return (NULL);
1721 		}
1722 		mutex_enter(&cp->cache_lock);
1723 		cp->cache_slab_create++;
1724 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1725 			cp->cache_bufmax = cp->cache_buftotal;
1726 		cp->cache_bufslab += sp->slab_chunks;
1727 	}
1728 
1729 	buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1730 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1731 	    (cp->cache_complete_slab_count +
1732 	    avl_numnodes(&cp->cache_partial_slabs) +
1733 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1734 	mutex_exit(&cp->cache_lock);
1735 
1736 	if (test_destructor && cp->cache_destructor != NULL) {
1737 		/*
1738 		 * On the first kmem_slab_alloc(), assert that it is valid to
1739 		 * call the destructor on a newly constructed object without any
1740 		 * client involvement.
1741 		 */
1742 		if ((cp->cache_constructor == NULL) ||
1743 		    cp->cache_constructor(buf, cp->cache_private,
1744 		    kmflag) == 0) {
1745 			cp->cache_destructor(buf, cp->cache_private);
1746 		}
1747 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1748 		    cp->cache_bufsize);
1749 		if (cp->cache_flags & KMF_DEADBEEF) {
1750 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1751 		}
1752 	}
1753 
1754 	return (buf);
1755 }
1756 
1757 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1758 
1759 /*
1760  * Free a raw (unconstructed) buffer to cp's slab layer.
1761  */
1762 static void
1763 kmem_slab_free(kmem_cache_t *cp, void *buf)
1764 {
1765 	kmem_slab_t *sp;
1766 	kmem_bufctl_t *bcp, **prev_bcpp;
1767 
1768 	ASSERT(buf != NULL);
1769 
1770 	mutex_enter(&cp->cache_lock);
1771 	cp->cache_slab_free++;
1772 
1773 	if (cp->cache_flags & KMF_HASH) {
1774 		/*
1775 		 * Look up buffer in allocated-address hash table.
1776 		 */
1777 		prev_bcpp = KMEM_HASH(cp, buf);
1778 		while ((bcp = *prev_bcpp) != NULL) {
1779 			if (bcp->bc_addr == buf) {
1780 				*prev_bcpp = bcp->bc_next;
1781 				sp = bcp->bc_slab;
1782 				break;
1783 			}
1784 			cp->cache_lookup_depth++;
1785 			prev_bcpp = &bcp->bc_next;
1786 		}
1787 	} else {
1788 		bcp = KMEM_BUFCTL(cp, buf);
1789 		sp = KMEM_SLAB(cp, buf);
1790 	}
1791 
1792 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1793 		mutex_exit(&cp->cache_lock);
1794 		kmem_error(KMERR_BADADDR, cp, buf);
1795 		return;
1796 	}
1797 
1798 	if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1799 		/*
1800 		 * If this is the buffer that prevented the consolidator from
1801 		 * clearing the slab, we can reset the slab flags now that the
1802 		 * buffer is freed. (It makes sense to do this in
1803 		 * kmem_cache_free(), where the client gives up ownership of the
1804 		 * buffer, but on the hot path the test is too expensive.)
1805 		 */
1806 		kmem_slab_move_yes(cp, sp, buf);
1807 	}
1808 
1809 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1810 		if (cp->cache_flags & KMF_CONTENTS)
1811 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
1812 			    kmem_log_enter(kmem_content_log, buf,
1813 			    cp->cache_contents);
1814 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1815 	}
1816 
1817 	bcp->bc_next = sp->slab_head;
1818 	sp->slab_head = bcp;
1819 
1820 	cp->cache_bufslab++;
1821 	ASSERT(sp->slab_refcnt >= 1);
1822 
1823 	if (--sp->slab_refcnt == 0) {
1824 		/*
1825 		 * There are no outstanding allocations from this slab,
1826 		 * so we can reclaim the memory.
1827 		 */
1828 		if (sp->slab_chunks == 1) {
1829 			list_remove(&cp->cache_complete_slabs, sp);
1830 			cp->cache_complete_slab_count--;
1831 		} else {
1832 			avl_remove(&cp->cache_partial_slabs, sp);
1833 		}
1834 
1835 		cp->cache_buftotal -= sp->slab_chunks;
1836 		cp->cache_bufslab -= sp->slab_chunks;
1837 		/*
1838 		 * Defer releasing the slab to the virtual memory subsystem
1839 		 * while there is a pending move callback, since we guarantee
1840 		 * that buffers passed to the move callback have only been
1841 		 * touched by kmem or by the client itself. Since the memory
1842 		 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1843 		 * set at least one of the two lowest order bits, the client can
1844 		 * test those bits in the move callback to determine whether or
1845 		 * not it knows about the buffer (assuming that the client also
1846 		 * sets one of those low order bits whenever it frees a buffer).
1847 		 */
1848 		if (cp->cache_defrag == NULL ||
1849 		    (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1850 		    !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1851 			cp->cache_slab_destroy++;
1852 			mutex_exit(&cp->cache_lock);
1853 			kmem_slab_destroy(cp, sp);
1854 		} else {
1855 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1856 			/*
1857 			 * Slabs are inserted at both ends of the deadlist to
1858 			 * distinguish between slabs freed while move callbacks
1859 			 * are pending (list head) and a slab freed while the
1860 			 * lock is dropped in kmem_move_buffers() (list tail) so
1861 			 * that in both cases slab_destroy() is called from the
1862 			 * right context.
1863 			 */
1864 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1865 				list_insert_tail(deadlist, sp);
1866 			} else {
1867 				list_insert_head(deadlist, sp);
1868 			}
1869 			cp->cache_defrag->kmd_deadcount++;
1870 			mutex_exit(&cp->cache_lock);
1871 		}
1872 		return;
1873 	}
1874 
1875 	if (bcp->bc_next == NULL) {
1876 		/* Transition the slab from completely allocated to partial. */
1877 		ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1878 		ASSERT(sp->slab_chunks > 1);
1879 		list_remove(&cp->cache_complete_slabs, sp);
1880 		cp->cache_complete_slab_count--;
1881 		avl_add(&cp->cache_partial_slabs, sp);
1882 	} else {
1883 		(void) avl_update_gt(&cp->cache_partial_slabs, sp);
1884 	}
1885 
1886 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1887 	    (cp->cache_complete_slab_count +
1888 	    avl_numnodes(&cp->cache_partial_slabs) +
1889 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1890 	mutex_exit(&cp->cache_lock);
1891 }
1892 
1893 /*
1894  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1895  */
1896 static int
1897 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1898     caddr_t caller)
1899 {
1900 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1901 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1902 	uint32_t mtbf;
1903 
1904 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1905 		kmem_error(KMERR_BADBUFTAG, cp, buf);
1906 		return (-1);
1907 	}
1908 
1909 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1910 
1911 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1912 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1913 		return (-1);
1914 	}
1915 
1916 	if (cp->cache_flags & KMF_DEADBEEF) {
1917 		if (!construct && (cp->cache_flags & KMF_LITE)) {
1918 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1919 				kmem_error(KMERR_MODIFIED, cp, buf);
1920 				return (-1);
1921 			}
1922 			if (cp->cache_constructor != NULL)
1923 				*(uint64_t *)buf = btp->bt_redzone;
1924 			else
1925 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1926 		} else {
1927 			construct = 1;
1928 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1929 			    KMEM_UNINITIALIZED_PATTERN, buf,
1930 			    cp->cache_verify)) {
1931 				kmem_error(KMERR_MODIFIED, cp, buf);
1932 				return (-1);
1933 			}
1934 		}
1935 	}
1936 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
1937 
1938 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1939 	    gethrtime() % mtbf == 0 &&
1940 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1941 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1942 		if (!construct && cp->cache_destructor != NULL)
1943 			cp->cache_destructor(buf, cp->cache_private);
1944 	} else {
1945 		mtbf = 0;
1946 	}
1947 
1948 	if (mtbf || (construct && cp->cache_constructor != NULL &&
1949 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1950 		atomic_inc_64(&cp->cache_alloc_fail);
1951 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1952 		if (cp->cache_flags & KMF_DEADBEEF)
1953 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1954 		kmem_slab_free(cp, buf);
1955 		return (1);
1956 	}
1957 
1958 	if (cp->cache_flags & KMF_AUDIT) {
1959 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1960 	}
1961 
1962 	if ((cp->cache_flags & KMF_LITE) &&
1963 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1964 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1965 	}
1966 
1967 	return (0);
1968 }
1969 
1970 static int
1971 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1972 {
1973 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1974 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1975 	kmem_slab_t *sp;
1976 
1977 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1978 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1979 			kmem_error(KMERR_DUPFREE, cp, buf);
1980 			return (-1);
1981 		}
1982 		sp = kmem_findslab(cp, buf);
1983 		if (sp == NULL || sp->slab_cache != cp)
1984 			kmem_error(KMERR_BADADDR, cp, buf);
1985 		else
1986 			kmem_error(KMERR_REDZONE, cp, buf);
1987 		return (-1);
1988 	}
1989 
1990 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1991 
1992 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1993 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1994 		return (-1);
1995 	}
1996 
1997 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1998 		kmem_error(KMERR_REDZONE, cp, buf);
1999 		return (-1);
2000 	}
2001 
2002 	if (cp->cache_flags & KMF_AUDIT) {
2003 		if (cp->cache_flags & KMF_CONTENTS)
2004 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
2005 			    buf, cp->cache_contents);
2006 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2007 	}
2008 
2009 	if ((cp->cache_flags & KMF_LITE) &&
2010 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2011 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2012 	}
2013 
2014 	if (cp->cache_flags & KMF_DEADBEEF) {
2015 		if (cp->cache_flags & KMF_LITE)
2016 			btp->bt_redzone = *(uint64_t *)buf;
2017 		else if (cp->cache_destructor != NULL)
2018 			cp->cache_destructor(buf, cp->cache_private);
2019 
2020 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2021 	}
2022 
2023 	return (0);
2024 }
2025 
2026 /*
2027  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2028  */
2029 static void
2030 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2031 {
2032 	int round;
2033 
2034 	ASSERT(!list_link_active(&cp->cache_link) ||
2035 	    taskq_member(kmem_taskq, curthread));
2036 
2037 	for (round = 0; round < nrounds; round++) {
2038 		void *buf = mp->mag_round[round];
2039 
2040 		if (cp->cache_flags & KMF_DEADBEEF) {
2041 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
2042 			    cp->cache_verify) != NULL) {
2043 				kmem_error(KMERR_MODIFIED, cp, buf);
2044 				continue;
2045 			}
2046 			if ((cp->cache_flags & KMF_LITE) &&
2047 			    cp->cache_destructor != NULL) {
2048 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2049 				*(uint64_t *)buf = btp->bt_redzone;
2050 				cp->cache_destructor(buf, cp->cache_private);
2051 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
2052 			}
2053 		} else if (cp->cache_destructor != NULL) {
2054 			cp->cache_destructor(buf, cp->cache_private);
2055 		}
2056 
2057 		kmem_slab_free(cp, buf);
2058 	}
2059 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2060 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2061 }
2062 
2063 /*
2064  * Allocate a magazine from the depot.
2065  */
2066 static kmem_magazine_t *
2067 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2068 {
2069 	kmem_magazine_t *mp;
2070 
2071 	/*
2072 	 * If we can't get the depot lock without contention,
2073 	 * update our contention count.  We use the depot
2074 	 * contention rate to determine whether we need to
2075 	 * increase the magazine size for better scalability.
2076 	 */
2077 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
2078 		mutex_enter(&cp->cache_depot_lock);
2079 		cp->cache_depot_contention++;
2080 	}
2081 
2082 	if ((mp = mlp->ml_list) != NULL) {
2083 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2084 		mlp->ml_list = mp->mag_next;
2085 		if (--mlp->ml_total < mlp->ml_min)
2086 			mlp->ml_min = mlp->ml_total;
2087 		mlp->ml_alloc++;
2088 	}
2089 
2090 	mutex_exit(&cp->cache_depot_lock);
2091 
2092 	return (mp);
2093 }
2094 
2095 /*
2096  * Free a magazine to the depot.
2097  */
2098 static void
2099 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2100 {
2101 	mutex_enter(&cp->cache_depot_lock);
2102 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2103 	mp->mag_next = mlp->ml_list;
2104 	mlp->ml_list = mp;
2105 	mlp->ml_total++;
2106 	mutex_exit(&cp->cache_depot_lock);
2107 }
2108 
2109 /*
2110  * Update the working set statistics for cp's depot.
2111  */
2112 static void
2113 kmem_depot_ws_update(kmem_cache_t *cp)
2114 {
2115 	mutex_enter(&cp->cache_depot_lock);
2116 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2117 	cp->cache_full.ml_min = cp->cache_full.ml_total;
2118 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2119 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2120 	mutex_exit(&cp->cache_depot_lock);
2121 }
2122 
2123 /*
2124  * Set the working set statistics for cp's depot to zero.  (Everything is
2125  * eligible for reaping.)
2126  */
2127 static void
2128 kmem_depot_ws_zero(kmem_cache_t *cp)
2129 {
2130 	mutex_enter(&cp->cache_depot_lock);
2131 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2132 	cp->cache_full.ml_min = cp->cache_full.ml_total;
2133 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2134 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2135 	mutex_exit(&cp->cache_depot_lock);
2136 }
2137 
2138 /*
2139  * The number of bytes to reap before we call kpreempt(). The default (1MB)
2140  * causes us to preempt reaping up to hundreds of times per second. Using a
2141  * larger value (1GB) causes this to have virtually no effect.
2142  */
2143 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2144 
2145 /*
2146  * Reap all magazines that have fallen out of the depot's working set.
2147  */
2148 static void
2149 kmem_depot_ws_reap(kmem_cache_t *cp)
2150 {
2151 	size_t bytes = 0;
2152 	long reap;
2153 	kmem_magazine_t *mp;
2154 
2155 	ASSERT(!list_link_active(&cp->cache_link) ||
2156 	    taskq_member(kmem_taskq, curthread));
2157 
2158 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2159 	while (reap-- &&
2160 	    (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2161 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2162 		bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2163 		if (bytes > kmem_reap_preempt_bytes) {
2164 			kpreempt(KPREEMPT_SYNC);
2165 			bytes = 0;
2166 		}
2167 	}
2168 
2169 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2170 	while (reap-- &&
2171 	    (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2172 		kmem_magazine_destroy(cp, mp, 0);
2173 		bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2174 		if (bytes > kmem_reap_preempt_bytes) {
2175 			kpreempt(KPREEMPT_SYNC);
2176 			bytes = 0;
2177 		}
2178 	}
2179 }
2180 
2181 static void
2182 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2183 {
2184 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2185 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2186 	ASSERT(ccp->cc_magsize > 0);
2187 
2188 	ccp->cc_ploaded = ccp->cc_loaded;
2189 	ccp->cc_prounds = ccp->cc_rounds;
2190 	ccp->cc_loaded = mp;
2191 	ccp->cc_rounds = rounds;
2192 }
2193 
2194 /*
2195  * Intercept kmem alloc/free calls during crash dump in order to avoid
2196  * changing kmem state while memory is being saved to the dump device.
2197  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2198  * there are no locks because only one CPU calls kmem during a crash
2199  * dump. To enable this feature, first create the associated vmem
2200  * arena with VMC_DUMPSAFE.
2201  */
2202 static void *kmem_dump_start;	/* start of pre-reserved heap */
2203 static void *kmem_dump_end;	/* end of heap area */
2204 static void *kmem_dump_curr;	/* current free heap pointer */
2205 static size_t kmem_dump_size;	/* size of heap area */
2206 
2207 /* append to each buf created in the pre-reserved heap */
2208 typedef struct kmem_dumpctl {
2209 	void	*kdc_next;	/* cache dump free list linkage */
2210 } kmem_dumpctl_t;
2211 
2212 #define	KMEM_DUMPCTL(cp, buf)	\
2213 	((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2214 	    sizeof (void *)))
2215 
2216 /* set non zero for full report */
2217 uint_t kmem_dump_verbose = 0;
2218 
2219 /* stats for overize heap */
2220 uint_t kmem_dump_oversize_allocs = 0;
2221 uint_t kmem_dump_oversize_max = 0;
2222 
2223 static void
2224 kmem_dumppr(char **pp, char *e, const char *format, ...)
2225 {
2226 	char *p = *pp;
2227 
2228 	if (p < e) {
2229 		int n;
2230 		va_list ap;
2231 
2232 		va_start(ap, format);
2233 		n = vsnprintf(p, e - p, format, ap);
2234 		va_end(ap);
2235 		*pp = p + n;
2236 	}
2237 }
2238 
2239 /*
2240  * Called when dumpadm(1M) configures dump parameters.
2241  */
2242 void
2243 kmem_dump_init(size_t size)
2244 {
2245 	/* Our caller ensures size is always set. */
2246 	ASSERT3U(size, >, 0);
2247 
2248 	if (kmem_dump_start != NULL)
2249 		kmem_free(kmem_dump_start, kmem_dump_size);
2250 
2251 	kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2252 	kmem_dump_size = size;
2253 	kmem_dump_curr = kmem_dump_start;
2254 	kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2255 	copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2256 }
2257 
2258 /*
2259  * Set flag for each kmem_cache_t if is safe to use alternate dump
2260  * memory. Called just before panic crash dump starts. Set the flag
2261  * for the calling CPU.
2262  */
2263 void
2264 kmem_dump_begin(void)
2265 {
2266 	kmem_cache_t *cp;
2267 
2268 	ASSERT(panicstr != NULL);
2269 
2270 	for (cp = list_head(&kmem_caches); cp != NULL;
2271 	    cp = list_next(&kmem_caches, cp)) {
2272 		kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2273 
2274 		if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2275 			cp->cache_flags |= KMF_DUMPDIVERT;
2276 			ccp->cc_flags |= KMF_DUMPDIVERT;
2277 			ccp->cc_dump_rounds = ccp->cc_rounds;
2278 			ccp->cc_dump_prounds = ccp->cc_prounds;
2279 			ccp->cc_rounds = ccp->cc_prounds = -1;
2280 		} else {
2281 			cp->cache_flags |= KMF_DUMPUNSAFE;
2282 			ccp->cc_flags |= KMF_DUMPUNSAFE;
2283 		}
2284 	}
2285 }
2286 
2287 /*
2288  * finished dump intercept
2289  * print any warnings on the console
2290  * return verbose information to dumpsys() in the given buffer
2291  */
2292 size_t
2293 kmem_dump_finish(char *buf, size_t size)
2294 {
2295 	int percent = 0;
2296 	size_t used;
2297 	char *e = buf + size;
2298 	char *p = buf;
2299 
2300 	if (kmem_dump_curr == kmem_dump_end) {
2301 		cmn_err(CE_WARN, "exceeded kmem_dump space of %lu "
2302 		    "bytes: kmem state in dump may be inconsistent",
2303 		    kmem_dump_size);
2304 	}
2305 
2306 	if (kmem_dump_verbose == 0)
2307 		return (0);
2308 
2309 	used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2310 	percent = (used * 100) / kmem_dump_size;
2311 
2312 	kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2313 	kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2314 	kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2315 	kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2316 	    kmem_dump_oversize_allocs);
2317 	kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2318 	    kmem_dump_oversize_max);
2319 
2320 	/* return buffer size used */
2321 	if (p < e)
2322 		bzero(p, e - p);
2323 	return (p - buf);
2324 }
2325 
2326 /*
2327  * Allocate a constructed object from alternate dump memory.
2328  */
2329 void *
2330 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2331 {
2332 	void *buf;
2333 	void *curr;
2334 	char *bufend;
2335 
2336 	/* return a constructed object */
2337 	if ((buf = cp->cache_dump.kd_freelist) != NULL) {
2338 		cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2339 		return (buf);
2340 	}
2341 
2342 	/* create a new constructed object */
2343 	curr = kmem_dump_curr;
2344 	buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2345 	bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2346 
2347 	/* hat layer objects cannot cross a page boundary */
2348 	if (cp->cache_align < PAGESIZE) {
2349 		char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2350 		if (bufend > page) {
2351 			bufend += page - (char *)buf;
2352 			buf = (void *)page;
2353 		}
2354 	}
2355 
2356 	/* fall back to normal alloc if reserved area is used up */
2357 	if (bufend > (char *)kmem_dump_end) {
2358 		kmem_dump_curr = kmem_dump_end;
2359 		cp->cache_dump.kd_alloc_fails++;
2360 		return (NULL);
2361 	}
2362 
2363 	/*
2364 	 * Must advance curr pointer before calling a constructor that
2365 	 * may also allocate memory.
2366 	 */
2367 	kmem_dump_curr = bufend;
2368 
2369 	/* run constructor */
2370 	if (cp->cache_constructor != NULL &&
2371 	    cp->cache_constructor(buf, cp->cache_private, kmflag)
2372 	    != 0) {
2373 #ifdef DEBUG
2374 		printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2375 		    cp->cache_name, (void *)cp);
2376 #endif
2377 		/* reset curr pointer iff no allocs were done */
2378 		if (kmem_dump_curr == bufend)
2379 			kmem_dump_curr = curr;
2380 
2381 		cp->cache_dump.kd_alloc_fails++;
2382 		/* fall back to normal alloc if the constructor fails */
2383 		return (NULL);
2384 	}
2385 
2386 	return (buf);
2387 }
2388 
2389 /*
2390  * Free a constructed object in alternate dump memory.
2391  */
2392 int
2393 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2394 {
2395 	/* save constructed buffers for next time */
2396 	if ((char *)buf >= (char *)kmem_dump_start &&
2397 	    (char *)buf < (char *)kmem_dump_end) {
2398 		KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist;
2399 		cp->cache_dump.kd_freelist = buf;
2400 		return (0);
2401 	}
2402 
2403 	/* just drop buffers that were allocated before dump started */
2404 	if (kmem_dump_curr < kmem_dump_end)
2405 		return (0);
2406 
2407 	/* fall back to normal free if reserved area is used up */
2408 	return (1);
2409 }
2410 
2411 /*
2412  * Allocate a constructed object from cache cp.
2413  */
2414 void *
2415 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2416 {
2417 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2418 	kmem_magazine_t *fmp;
2419 	void *buf;
2420 
2421 	mutex_enter(&ccp->cc_lock);
2422 	for (;;) {
2423 		/*
2424 		 * If there's an object available in the current CPU's
2425 		 * loaded magazine, just take it and return.
2426 		 */
2427 		if (ccp->cc_rounds > 0) {
2428 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2429 			ccp->cc_alloc++;
2430 			mutex_exit(&ccp->cc_lock);
2431 			if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2432 				if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2433 					ASSERT(!(ccp->cc_flags &
2434 					    KMF_DUMPDIVERT));
2435 					cp->cache_dump.kd_unsafe++;
2436 				}
2437 				if ((ccp->cc_flags & KMF_BUFTAG) &&
2438 				    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2439 				    caller()) != 0) {
2440 					if (kmflag & KM_NOSLEEP)
2441 						return (NULL);
2442 					mutex_enter(&ccp->cc_lock);
2443 					continue;
2444 				}
2445 			}
2446 			return (buf);
2447 		}
2448 
2449 		/*
2450 		 * The loaded magazine is empty.  If the previously loaded
2451 		 * magazine was full, exchange them and try again.
2452 		 */
2453 		if (ccp->cc_prounds > 0) {
2454 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2455 			continue;
2456 		}
2457 
2458 		/*
2459 		 * Return an alternate buffer at dump time to preserve
2460 		 * the heap.
2461 		 */
2462 		if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2463 			if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2464 				ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2465 				/* log it so that we can warn about it */
2466 				cp->cache_dump.kd_unsafe++;
2467 			} else {
2468 				if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2469 				    NULL) {
2470 					mutex_exit(&ccp->cc_lock);
2471 					return (buf);
2472 				}
2473 				break;		/* fall back to slab layer */
2474 			}
2475 		}
2476 
2477 		/*
2478 		 * If the magazine layer is disabled, break out now.
2479 		 */
2480 		if (ccp->cc_magsize == 0)
2481 			break;
2482 
2483 		/*
2484 		 * Try to get a full magazine from the depot.
2485 		 */
2486 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
2487 		if (fmp != NULL) {
2488 			if (ccp->cc_ploaded != NULL)
2489 				kmem_depot_free(cp, &cp->cache_empty,
2490 				    ccp->cc_ploaded);
2491 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2492 			continue;
2493 		}
2494 
2495 		/*
2496 		 * There are no full magazines in the depot,
2497 		 * so fall through to the slab layer.
2498 		 */
2499 		break;
2500 	}
2501 	mutex_exit(&ccp->cc_lock);
2502 
2503 	/*
2504 	 * We couldn't allocate a constructed object from the magazine layer,
2505 	 * so get a raw buffer from the slab layer and apply its constructor.
2506 	 */
2507 	buf = kmem_slab_alloc(cp, kmflag);
2508 
2509 	if (buf == NULL)
2510 		return (NULL);
2511 
2512 	if (cp->cache_flags & KMF_BUFTAG) {
2513 		/*
2514 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
2515 		 */
2516 		int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2517 		if (rc != 0) {
2518 			if (kmflag & KM_NOSLEEP)
2519 				return (NULL);
2520 			/*
2521 			 * kmem_cache_alloc_debug() detected corruption
2522 			 * but didn't panic (kmem_panic <= 0). We should not be
2523 			 * here because the constructor failed (indicated by a
2524 			 * return code of 1). Try again.
2525 			 */
2526 			ASSERT(rc == -1);
2527 			return (kmem_cache_alloc(cp, kmflag));
2528 		}
2529 		return (buf);
2530 	}
2531 
2532 	if (cp->cache_constructor != NULL &&
2533 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2534 		atomic_inc_64(&cp->cache_alloc_fail);
2535 		kmem_slab_free(cp, buf);
2536 		return (NULL);
2537 	}
2538 
2539 	return (buf);
2540 }
2541 
2542 /*
2543  * The freed argument tells whether or not kmem_cache_free_debug() has already
2544  * been called so that we can avoid the duplicate free error. For example, a
2545  * buffer on a magazine has already been freed by the client but is still
2546  * constructed.
2547  */
2548 static void
2549 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2550 {
2551 	if (!freed && (cp->cache_flags & KMF_BUFTAG))
2552 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2553 			return;
2554 
2555 	/*
2556 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2557 	 * kmem_cache_free_debug() will have already applied the destructor.
2558 	 */
2559 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2560 	    cp->cache_destructor != NULL) {
2561 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
2562 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2563 			*(uint64_t *)buf = btp->bt_redzone;
2564 			cp->cache_destructor(buf, cp->cache_private);
2565 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
2566 		} else {
2567 			cp->cache_destructor(buf, cp->cache_private);
2568 		}
2569 	}
2570 
2571 	kmem_slab_free(cp, buf);
2572 }
2573 
2574 /*
2575  * Used when there's no room to free a buffer to the per-CPU cache.
2576  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2577  * caller should try freeing to the per-CPU cache again.
2578  * Note that we don't directly install the magazine in the cpu cache,
2579  * since its state may have changed wildly while the lock was dropped.
2580  */
2581 static int
2582 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2583 {
2584 	kmem_magazine_t *emp;
2585 	kmem_magtype_t *mtp;
2586 
2587 	ASSERT(MUTEX_HELD(&ccp->cc_lock));
2588 	ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2589 	    ((uint_t)ccp->cc_rounds == -1)) &&
2590 	    ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2591 	    ((uint_t)ccp->cc_prounds == -1)));
2592 
2593 	emp = kmem_depot_alloc(cp, &cp->cache_empty);
2594 	if (emp != NULL) {
2595 		if (ccp->cc_ploaded != NULL)
2596 			kmem_depot_free(cp, &cp->cache_full,
2597 			    ccp->cc_ploaded);
2598 		kmem_cpu_reload(ccp, emp, 0);
2599 		return (1);
2600 	}
2601 	/*
2602 	 * There are no empty magazines in the depot,
2603 	 * so try to allocate a new one.  We must drop all locks
2604 	 * across kmem_cache_alloc() because lower layers may
2605 	 * attempt to allocate from this cache.
2606 	 */
2607 	mtp = cp->cache_magtype;
2608 	mutex_exit(&ccp->cc_lock);
2609 	emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2610 	mutex_enter(&ccp->cc_lock);
2611 
2612 	if (emp != NULL) {
2613 		/*
2614 		 * We successfully allocated an empty magazine.
2615 		 * However, we had to drop ccp->cc_lock to do it,
2616 		 * so the cache's magazine size may have changed.
2617 		 * If so, free the magazine and try again.
2618 		 */
2619 		if (ccp->cc_magsize != mtp->mt_magsize) {
2620 			mutex_exit(&ccp->cc_lock);
2621 			kmem_cache_free(mtp->mt_cache, emp);
2622 			mutex_enter(&ccp->cc_lock);
2623 			return (1);
2624 		}
2625 
2626 		/*
2627 		 * We got a magazine of the right size.  Add it to
2628 		 * the depot and try the whole dance again.
2629 		 */
2630 		kmem_depot_free(cp, &cp->cache_empty, emp);
2631 		return (1);
2632 	}
2633 
2634 	/*
2635 	 * We couldn't allocate an empty magazine,
2636 	 * so fall through to the slab layer.
2637 	 */
2638 	return (0);
2639 }
2640 
2641 /*
2642  * Free a constructed object to cache cp.
2643  */
2644 void
2645 kmem_cache_free(kmem_cache_t *cp, void *buf)
2646 {
2647 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2648 
2649 	/*
2650 	 * The client must not free either of the buffers passed to the move
2651 	 * callback function.
2652 	 */
2653 	ASSERT(cp->cache_defrag == NULL ||
2654 	    cp->cache_defrag->kmd_thread != curthread ||
2655 	    (buf != cp->cache_defrag->kmd_from_buf &&
2656 	    buf != cp->cache_defrag->kmd_to_buf));
2657 
2658 	if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2659 		if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2660 			ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2661 			/* log it so that we can warn about it */
2662 			cp->cache_dump.kd_unsafe++;
2663 		} else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2664 			return;
2665 		}
2666 		if (ccp->cc_flags & KMF_BUFTAG) {
2667 			if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2668 				return;
2669 		}
2670 	}
2671 
2672 	mutex_enter(&ccp->cc_lock);
2673 	/*
2674 	 * Any changes to this logic should be reflected in kmem_slab_prefill()
2675 	 */
2676 	for (;;) {
2677 		/*
2678 		 * If there's a slot available in the current CPU's
2679 		 * loaded magazine, just put the object there and return.
2680 		 */
2681 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2682 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2683 			ccp->cc_free++;
2684 			mutex_exit(&ccp->cc_lock);
2685 			return;
2686 		}
2687 
2688 		/*
2689 		 * The loaded magazine is full.  If the previously loaded
2690 		 * magazine was empty, exchange them and try again.
2691 		 */
2692 		if (ccp->cc_prounds == 0) {
2693 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2694 			continue;
2695 		}
2696 
2697 		/*
2698 		 * If the magazine layer is disabled, break out now.
2699 		 */
2700 		if (ccp->cc_magsize == 0)
2701 			break;
2702 
2703 		if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2704 			/*
2705 			 * We couldn't free our constructed object to the
2706 			 * magazine layer, so apply its destructor and free it
2707 			 * to the slab layer.
2708 			 */
2709 			break;
2710 		}
2711 	}
2712 	mutex_exit(&ccp->cc_lock);
2713 	kmem_slab_free_constructed(cp, buf, B_TRUE);
2714 }
2715 
2716 static void
2717 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2718 {
2719 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2720 	int cache_flags = cp->cache_flags;
2721 
2722 	kmem_bufctl_t *next, *head;
2723 	size_t nbufs;
2724 
2725 	/*
2726 	 * Completely allocate the newly created slab and put the pre-allocated
2727 	 * buffers in magazines. Any of the buffers that cannot be put in
2728 	 * magazines must be returned to the slab.
2729 	 */
2730 	ASSERT(MUTEX_HELD(&cp->cache_lock));
2731 	ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2732 	ASSERT(cp->cache_constructor == NULL);
2733 	ASSERT(sp->slab_cache == cp);
2734 	ASSERT(sp->slab_refcnt == 1);
2735 	ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2736 	ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2737 
2738 	head = sp->slab_head;
2739 	nbufs = (sp->slab_chunks - sp->slab_refcnt);
2740 	sp->slab_head = NULL;
2741 	sp->slab_refcnt += nbufs;
2742 	cp->cache_bufslab -= nbufs;
2743 	cp->cache_slab_alloc += nbufs;
2744 	list_insert_head(&cp->cache_complete_slabs, sp);
2745 	cp->cache_complete_slab_count++;
2746 	mutex_exit(&cp->cache_lock);
2747 	mutex_enter(&ccp->cc_lock);
2748 
2749 	while (head != NULL) {
2750 		void *buf = KMEM_BUF(cp, head);
2751 		/*
2752 		 * If there's a slot available in the current CPU's
2753 		 * loaded magazine, just put the object there and
2754 		 * continue.
2755 		 */
2756 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2757 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2758 			    buf;
2759 			ccp->cc_free++;
2760 			nbufs--;
2761 			head = head->bc_next;
2762 			continue;
2763 		}
2764 
2765 		/*
2766 		 * The loaded magazine is full.  If the previously
2767 		 * loaded magazine was empty, exchange them and try
2768 		 * again.
2769 		 */
2770 		if (ccp->cc_prounds == 0) {
2771 			kmem_cpu_reload(ccp, ccp->cc_ploaded,
2772 			    ccp->cc_prounds);
2773 			continue;
2774 		}
2775 
2776 		/*
2777 		 * If the magazine layer is disabled, break out now.
2778 		 */
2779 
2780 		if (ccp->cc_magsize == 0) {
2781 			break;
2782 		}
2783 
2784 		if (!kmem_cpucache_magazine_alloc(ccp, cp))
2785 			break;
2786 	}
2787 	mutex_exit(&ccp->cc_lock);
2788 	if (nbufs != 0) {
2789 		ASSERT(head != NULL);
2790 
2791 		/*
2792 		 * If there was a failure, return remaining objects to
2793 		 * the slab
2794 		 */
2795 		while (head != NULL) {
2796 			ASSERT(nbufs != 0);
2797 			next = head->bc_next;
2798 			head->bc_next = NULL;
2799 			kmem_slab_free(cp, KMEM_BUF(cp, head));
2800 			head = next;
2801 			nbufs--;
2802 		}
2803 	}
2804 	ASSERT(head == NULL);
2805 	ASSERT(nbufs == 0);
2806 	mutex_enter(&cp->cache_lock);
2807 }
2808 
2809 void *
2810 kmem_zalloc(size_t size, int kmflag)
2811 {
2812 	size_t index;
2813 	void *buf;
2814 
2815 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2816 		kmem_cache_t *cp = kmem_alloc_table[index];
2817 		buf = kmem_cache_alloc(cp, kmflag);
2818 		if (buf != NULL) {
2819 			if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2820 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2821 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2822 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2823 
2824 				if (cp->cache_flags & KMF_LITE) {
2825 					KMEM_BUFTAG_LITE_ENTER(btp,
2826 					    kmem_lite_count, caller());
2827 				}
2828 			}
2829 			bzero(buf, size);
2830 		}
2831 	} else {
2832 		buf = kmem_alloc(size, kmflag);
2833 		if (buf != NULL)
2834 			bzero(buf, size);
2835 	}
2836 	return (buf);
2837 }
2838 
2839 void *
2840 kmem_alloc(size_t size, int kmflag)
2841 {
2842 	size_t index;
2843 	kmem_cache_t *cp;
2844 	void *buf;
2845 
2846 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2847 		cp = kmem_alloc_table[index];
2848 		/* fall through to kmem_cache_alloc() */
2849 
2850 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2851 	    kmem_big_alloc_table_max) {
2852 		cp = kmem_big_alloc_table[index];
2853 		/* fall through to kmem_cache_alloc() */
2854 
2855 	} else {
2856 		if (size == 0)
2857 			return (NULL);
2858 
2859 		buf = vmem_alloc(kmem_oversize_arena, size,
2860 		    kmflag & KM_VMFLAGS);
2861 		if (buf == NULL)
2862 			kmem_log_event(kmem_failure_log, NULL, NULL,
2863 			    (void *)size);
2864 		else if (KMEM_DUMP(kmem_slab_cache)) {
2865 			/* stats for dump intercept */
2866 			kmem_dump_oversize_allocs++;
2867 			if (size > kmem_dump_oversize_max)
2868 				kmem_dump_oversize_max = size;
2869 		}
2870 		return (buf);
2871 	}
2872 
2873 	buf = kmem_cache_alloc(cp, kmflag);
2874 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2875 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2876 		((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2877 		((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2878 
2879 		if (cp->cache_flags & KMF_LITE) {
2880 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2881 		}
2882 	}
2883 	return (buf);
2884 }
2885 
2886 void
2887 kmem_free(void *buf, size_t size)
2888 {
2889 	size_t index;
2890 	kmem_cache_t *cp;
2891 
2892 	if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2893 		cp = kmem_alloc_table[index];
2894 		/* fall through to kmem_cache_free() */
2895 
2896 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2897 	    kmem_big_alloc_table_max) {
2898 		cp = kmem_big_alloc_table[index];
2899 		/* fall through to kmem_cache_free() */
2900 
2901 	} else {
2902 		EQUIV(buf == NULL, size == 0);
2903 		if (buf == NULL && size == 0)
2904 			return;
2905 		vmem_free(kmem_oversize_arena, buf, size);
2906 		return;
2907 	}
2908 
2909 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2910 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2911 		uint32_t *ip = (uint32_t *)btp;
2912 		if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2913 			if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2914 				kmem_error(KMERR_DUPFREE, cp, buf);
2915 				return;
2916 			}
2917 			if (KMEM_SIZE_VALID(ip[1])) {
2918 				ip[0] = KMEM_SIZE_ENCODE(size);
2919 				kmem_error(KMERR_BADSIZE, cp, buf);
2920 			} else {
2921 				kmem_error(KMERR_REDZONE, cp, buf);
2922 			}
2923 			return;
2924 		}
2925 		if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2926 			kmem_error(KMERR_REDZONE, cp, buf);
2927 			return;
2928 		}
2929 		btp->bt_redzone = KMEM_REDZONE_PATTERN;
2930 		if (cp->cache_flags & KMF_LITE) {
2931 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2932 			    caller());
2933 		}
2934 	}
2935 	kmem_cache_free(cp, buf);
2936 }
2937 
2938 void *
2939 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2940 {
2941 	size_t realsize = size + vmp->vm_quantum;
2942 	void *addr;
2943 
2944 	/*
2945 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2946 	 * vm_quantum will cause integer wraparound.  Check for this, and
2947 	 * blow off the firewall page in this case.  Note that such a
2948 	 * giant allocation (the entire kernel address space) can never
2949 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2950 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2951 	 * corresponding check in kmem_firewall_va_free().
2952 	 */
2953 	if (realsize < size)
2954 		realsize = size;
2955 
2956 	/*
2957 	 * While boot still owns resource management, make sure that this
2958 	 * redzone virtual address allocation is properly accounted for in
2959 	 * OBPs "virtual-memory" "available" lists because we're
2960 	 * effectively claiming them for a red zone.  If we don't do this,
2961 	 * the available lists become too fragmented and too large for the
2962 	 * current boot/kernel memory list interface.
2963 	 */
2964 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
2965 
2966 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
2967 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
2968 
2969 	return (addr);
2970 }
2971 
2972 void
2973 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2974 {
2975 	ASSERT((kvseg.s_base == NULL ?
2976 	    va_to_pfn((char *)addr + size) :
2977 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
2978 
2979 	vmem_free(vmp, addr, size + vmp->vm_quantum);
2980 }
2981 
2982 /*
2983  * Try to allocate at least `size' bytes of memory without sleeping or
2984  * panicking. Return actual allocated size in `asize'. If allocation failed,
2985  * try final allocation with sleep or panic allowed.
2986  */
2987 void *
2988 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
2989 {
2990 	void *p;
2991 
2992 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
2993 	do {
2994 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
2995 		if (p != NULL)
2996 			return (p);
2997 		*asize += KMEM_ALIGN;
2998 	} while (*asize <= PAGESIZE);
2999 
3000 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
3001 	return (kmem_alloc(*asize, kmflag));
3002 }
3003 
3004 /*
3005  * Reclaim all unused memory from a cache.
3006  */
3007 static void
3008 kmem_cache_reap(kmem_cache_t *cp)
3009 {
3010 	ASSERT(taskq_member(kmem_taskq, curthread));
3011 	cp->cache_reap++;
3012 
3013 	/*
3014 	 * Ask the cache's owner to free some memory if possible.
3015 	 * The idea is to handle things like the inode cache, which
3016 	 * typically sits on a bunch of memory that it doesn't truly
3017 	 * *need*.  Reclaim policy is entirely up to the owner; this
3018 	 * callback is just an advisory plea for help.
3019 	 */
3020 	if (cp->cache_reclaim != NULL) {
3021 		long delta;
3022 
3023 		/*
3024 		 * Reclaimed memory should be reapable (not included in the
3025 		 * depot's working set).
3026 		 */
3027 		delta = cp->cache_full.ml_total;
3028 		cp->cache_reclaim(cp->cache_private);
3029 		delta = cp->cache_full.ml_total - delta;
3030 		if (delta > 0) {
3031 			mutex_enter(&cp->cache_depot_lock);
3032 			cp->cache_full.ml_reaplimit += delta;
3033 			cp->cache_full.ml_min += delta;
3034 			mutex_exit(&cp->cache_depot_lock);
3035 		}
3036 	}
3037 
3038 	kmem_depot_ws_reap(cp);
3039 
3040 	if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3041 		kmem_cache_defrag(cp);
3042 	}
3043 }
3044 
3045 static void
3046 kmem_reap_timeout(void *flag_arg)
3047 {
3048 	uint32_t *flag = (uint32_t *)flag_arg;
3049 
3050 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3051 	*flag = 0;
3052 }
3053 
3054 static void
3055 kmem_reap_done(void *flag)
3056 {
3057 	if (!callout_init_done) {
3058 		/* can't schedule a timeout at this point */
3059 		kmem_reap_timeout(flag);
3060 	} else {
3061 		(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3062 	}
3063 }
3064 
3065 static void
3066 kmem_reap_start(void *flag)
3067 {
3068 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3069 
3070 	if (flag == &kmem_reaping) {
3071 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3072 		/*
3073 		 * if we have segkp under heap, reap segkp cache.
3074 		 */
3075 		if (segkp_fromheap)
3076 			segkp_cache_free();
3077 	}
3078 	else
3079 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3080 
3081 	/*
3082 	 * We use taskq_dispatch() to schedule a timeout to clear
3083 	 * the flag so that kmem_reap() becomes self-throttling:
3084 	 * we won't reap again until the current reap completes *and*
3085 	 * at least kmem_reap_interval ticks have elapsed.
3086 	 */
3087 	if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3088 		kmem_reap_done(flag);
3089 }
3090 
3091 static void
3092 kmem_reap_common(void *flag_arg)
3093 {
3094 	uint32_t *flag = (uint32_t *)flag_arg;
3095 
3096 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3097 	    atomic_cas_32(flag, 0, 1) != 0)
3098 		return;
3099 
3100 	/*
3101 	 * It may not be kosher to do memory allocation when a reap is called
3102 	 * (for example, if vmem_populate() is in the call chain).  So we
3103 	 * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3104 	 * fails, we reset the flag, and the next reap will try again.
3105 	 */
3106 	if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3107 		*flag = 0;
3108 }
3109 
3110 /*
3111  * Reclaim all unused memory from all caches.  Called from the VM system
3112  * when memory gets tight.
3113  */
3114 void
3115 kmem_reap(void)
3116 {
3117 	kmem_reap_common(&kmem_reaping);
3118 }
3119 
3120 /*
3121  * Reclaim all unused memory from identifier arenas, called when a vmem
3122  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3123  * cannot help with identifier exhaustion, we avoid both a large amount of
3124  * work and unwanted side-effects from reclaim callbacks.
3125  */
3126 void
3127 kmem_reap_idspace(void)
3128 {
3129 	kmem_reap_common(&kmem_reaping_idspace);
3130 }
3131 
3132 /*
3133  * Purge all magazines from a cache and set its magazine limit to zero.
3134  * All calls are serialized by the kmem_taskq lock, except for the final
3135  * call from kmem_cache_destroy().
3136  */
3137 static void
3138 kmem_cache_magazine_purge(kmem_cache_t *cp)
3139 {
3140 	kmem_cpu_cache_t *ccp;
3141 	kmem_magazine_t *mp, *pmp;
3142 	int rounds, prounds, cpu_seqid;
3143 
3144 	ASSERT(!list_link_active(&cp->cache_link) ||
3145 	    taskq_member(kmem_taskq, curthread));
3146 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3147 
3148 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3149 		ccp = &cp->cache_cpu[cpu_seqid];
3150 
3151 		mutex_enter(&ccp->cc_lock);
3152 		mp = ccp->cc_loaded;
3153 		pmp = ccp->cc_ploaded;
3154 		rounds = ccp->cc_rounds;
3155 		prounds = ccp->cc_prounds;
3156 		ccp->cc_loaded = NULL;
3157 		ccp->cc_ploaded = NULL;
3158 		ccp->cc_rounds = -1;
3159 		ccp->cc_prounds = -1;
3160 		ccp->cc_magsize = 0;
3161 		mutex_exit(&ccp->cc_lock);
3162 
3163 		if (mp)
3164 			kmem_magazine_destroy(cp, mp, rounds);
3165 		if (pmp)
3166 			kmem_magazine_destroy(cp, pmp, prounds);
3167 	}
3168 
3169 	kmem_depot_ws_zero(cp);
3170 	kmem_depot_ws_reap(cp);
3171 }
3172 
3173 /*
3174  * Enable per-cpu magazines on a cache.
3175  */
3176 static void
3177 kmem_cache_magazine_enable(kmem_cache_t *cp)
3178 {
3179 	int cpu_seqid;
3180 
3181 	if (cp->cache_flags & KMF_NOMAGAZINE)
3182 		return;
3183 
3184 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3185 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3186 		mutex_enter(&ccp->cc_lock);
3187 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3188 		mutex_exit(&ccp->cc_lock);
3189 	}
3190 
3191 }
3192 
3193 /*
3194  * Allow our caller to determine if there are running reaps.
3195  *
3196  * This call is very conservative and may return B_TRUE even when
3197  * reaping activity isn't active. If it returns B_FALSE, then reaping
3198  * activity is definitely inactive.
3199  */
3200 boolean_t
3201 kmem_cache_reap_active(void)
3202 {
3203 	return (!taskq_empty(kmem_taskq));
3204 }
3205 
3206 /*
3207  * Reap (almost) everything soon.
3208  *
3209  * Note: this does not wait for the reap-tasks to complete. Caller
3210  * should use kmem_cache_reap_active() (above) and/or moderation to
3211  * avoid scheduling too many reap-tasks.
3212  */
3213 void
3214 kmem_cache_reap_soon(kmem_cache_t *cp)
3215 {
3216 	ASSERT(list_link_active(&cp->cache_link));
3217 
3218 	kmem_depot_ws_zero(cp);
3219 
3220 	(void) taskq_dispatch(kmem_taskq,
3221 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3222 }
3223 
3224 /*
3225  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3226  * provide a higher transfer rate with the depot, while smaller magazines
3227  * reduce memory consumption.  Magazine resizing is an expensive operation;
3228  * it should not be done frequently.
3229  *
3230  * Changes to the magazine size are serialized by the kmem_taskq lock.
3231  *
3232  * Note: at present this only grows the magazine size.  It might be useful
3233  * to allow shrinkage too.
3234  */
3235 static void
3236 kmem_cache_magazine_resize(kmem_cache_t *cp)
3237 {
3238 	kmem_magtype_t *mtp = cp->cache_magtype;
3239 
3240 	ASSERT(taskq_member(kmem_taskq, curthread));
3241 
3242 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
3243 		kmem_cache_magazine_purge(cp);
3244 		mutex_enter(&cp->cache_depot_lock);
3245 		cp->cache_magtype = ++mtp;
3246 		cp->cache_depot_contention_prev =
3247 		    cp->cache_depot_contention + INT_MAX;
3248 		mutex_exit(&cp->cache_depot_lock);
3249 		kmem_cache_magazine_enable(cp);
3250 	}
3251 }
3252 
3253 /*
3254  * Rescale a cache's hash table, so that the table size is roughly the
3255  * cache size.  We want the average lookup time to be extremely small.
3256  */
3257 static void
3258 kmem_hash_rescale(kmem_cache_t *cp)
3259 {
3260 	kmem_bufctl_t **old_table, **new_table, *bcp;
3261 	size_t old_size, new_size, h;
3262 
3263 	ASSERT(taskq_member(kmem_taskq, curthread));
3264 
3265 	new_size = MAX(KMEM_HASH_INITIAL,
3266 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3267 	old_size = cp->cache_hash_mask + 1;
3268 
3269 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3270 		return;
3271 
3272 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3273 	    VM_NOSLEEP);
3274 	if (new_table == NULL)
3275 		return;
3276 	bzero(new_table, new_size * sizeof (void *));
3277 
3278 	mutex_enter(&cp->cache_lock);
3279 
3280 	old_size = cp->cache_hash_mask + 1;
3281 	old_table = cp->cache_hash_table;
3282 
3283 	cp->cache_hash_mask = new_size - 1;
3284 	cp->cache_hash_table = new_table;
3285 	cp->cache_rescale++;
3286 
3287 	for (h = 0; h < old_size; h++) {
3288 		bcp = old_table[h];
3289 		while (bcp != NULL) {
3290 			void *addr = bcp->bc_addr;
3291 			kmem_bufctl_t *next_bcp = bcp->bc_next;
3292 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3293 			bcp->bc_next = *hash_bucket;
3294 			*hash_bucket = bcp;
3295 			bcp = next_bcp;
3296 		}
3297 	}
3298 
3299 	mutex_exit(&cp->cache_lock);
3300 
3301 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3302 }
3303 
3304 /*
3305  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3306  * update, magazine resizing, and slab consolidation.
3307  */
3308 static void
3309 kmem_cache_update(kmem_cache_t *cp)
3310 {
3311 	int need_hash_rescale = 0;
3312 	int need_magazine_resize = 0;
3313 
3314 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
3315 
3316 	/*
3317 	 * If the cache has become much larger or smaller than its hash table,
3318 	 * fire off a request to rescale the hash table.
3319 	 */
3320 	mutex_enter(&cp->cache_lock);
3321 
3322 	if ((cp->cache_flags & KMF_HASH) &&
3323 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3324 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3325 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3326 		need_hash_rescale = 1;
3327 
3328 	mutex_exit(&cp->cache_lock);
3329 
3330 	/*
3331 	 * Update the depot working set statistics.
3332 	 */
3333 	kmem_depot_ws_update(cp);
3334 
3335 	/*
3336 	 * If there's a lot of contention in the depot,
3337 	 * increase the magazine size.
3338 	 */
3339 	mutex_enter(&cp->cache_depot_lock);
3340 
3341 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3342 	    (int)(cp->cache_depot_contention -
3343 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
3344 		need_magazine_resize = 1;
3345 
3346 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
3347 
3348 	mutex_exit(&cp->cache_depot_lock);
3349 
3350 	if (need_hash_rescale)
3351 		(void) taskq_dispatch(kmem_taskq,
3352 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3353 
3354 	if (need_magazine_resize)
3355 		(void) taskq_dispatch(kmem_taskq,
3356 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3357 
3358 	if (cp->cache_defrag != NULL)
3359 		(void) taskq_dispatch(kmem_taskq,
3360 		    (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3361 }
3362 
3363 static void kmem_update(void *);
3364 
3365 static void
3366 kmem_update_timeout(void *dummy)
3367 {
3368 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
3369 }
3370 
3371 static void
3372 kmem_update(void *dummy)
3373 {
3374 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3375 
3376 	/*
3377 	 * We use taskq_dispatch() to reschedule the timeout so that
3378 	 * kmem_update() becomes self-throttling: it won't schedule
3379 	 * new tasks until all previous tasks have completed.
3380 	 */
3381 	if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3382 		kmem_update_timeout(NULL);
3383 }
3384 
3385 static int
3386 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3387 {
3388 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3389 	kmem_cache_t *cp = ksp->ks_private;
3390 	uint64_t cpu_buf_avail;
3391 	uint64_t buf_avail = 0;
3392 	int cpu_seqid;
3393 	long reap;
3394 
3395 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3396 
3397 	if (rw == KSTAT_WRITE)
3398 		return (EACCES);
3399 
3400 	mutex_enter(&cp->cache_lock);
3401 
3402 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
3403 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
3404 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
3405 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
3406 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
3407 
3408 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3409 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3410 
3411 		mutex_enter(&ccp->cc_lock);
3412 
3413 		cpu_buf_avail = 0;
3414 		if (ccp->cc_rounds > 0)
3415 			cpu_buf_avail += ccp->cc_rounds;
3416 		if (ccp->cc_prounds > 0)
3417 			cpu_buf_avail += ccp->cc_prounds;
3418 
3419 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
3420 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
3421 		buf_avail			+= cpu_buf_avail;
3422 
3423 		mutex_exit(&ccp->cc_lock);
3424 	}
3425 
3426 	mutex_enter(&cp->cache_depot_lock);
3427 
3428 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
3429 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
3430 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
3431 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
3432 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
3433 	kmcp->kmc_magazine_size.value.ui64	=
3434 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
3435 	    0 : cp->cache_magtype->mt_magsize;
3436 
3437 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
3438 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
3439 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3440 
3441 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3442 	reap = MIN(reap, cp->cache_full.ml_total);
3443 
3444 	mutex_exit(&cp->cache_depot_lock);
3445 
3446 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
3447 	kmcp->kmc_align.value.ui64	= cp->cache_align;
3448 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
3449 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
3450 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3451 	buf_avail += cp->cache_bufslab;
3452 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
3453 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
3454 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
3455 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
3456 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
3457 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
3458 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
3459 	    cp->cache_hash_mask + 1 : 0;
3460 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
3461 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
3462 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
3463 	kmcp->kmc_reap.value.ui64	= cp->cache_reap;
3464 
3465 	if (cp->cache_defrag == NULL) {
3466 		kmcp->kmc_move_callbacks.value.ui64	= 0;
3467 		kmcp->kmc_move_yes.value.ui64		= 0;
3468 		kmcp->kmc_move_no.value.ui64		= 0;
3469 		kmcp->kmc_move_later.value.ui64		= 0;
3470 		kmcp->kmc_move_dont_need.value.ui64	= 0;
3471 		kmcp->kmc_move_dont_know.value.ui64	= 0;
3472 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3473 		kmcp->kmc_move_slabs_freed.value.ui64	= 0;
3474 		kmcp->kmc_defrag.value.ui64		= 0;
3475 		kmcp->kmc_scan.value.ui64		= 0;
3476 		kmcp->kmc_move_reclaimable.value.ui64	= 0;
3477 	} else {
3478 		int64_t reclaimable;
3479 
3480 		kmem_defrag_t *kd = cp->cache_defrag;
3481 		kmcp->kmc_move_callbacks.value.ui64	= kd->kmd_callbacks;
3482 		kmcp->kmc_move_yes.value.ui64		= kd->kmd_yes;
3483 		kmcp->kmc_move_no.value.ui64		= kd->kmd_no;
3484 		kmcp->kmc_move_later.value.ui64		= kd->kmd_later;
3485 		kmcp->kmc_move_dont_need.value.ui64	= kd->kmd_dont_need;
3486 		kmcp->kmc_move_dont_know.value.ui64	= kd->kmd_dont_know;
3487 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3488 		kmcp->kmc_move_slabs_freed.value.ui64	= kd->kmd_slabs_freed;
3489 		kmcp->kmc_defrag.value.ui64		= kd->kmd_defrags;
3490 		kmcp->kmc_scan.value.ui64		= kd->kmd_scans;
3491 
3492 		reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3493 		reclaimable = MAX(reclaimable, 0);
3494 		reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3495 		kmcp->kmc_move_reclaimable.value.ui64	= reclaimable;
3496 	}
3497 
3498 	mutex_exit(&cp->cache_lock);
3499 	return (0);
3500 }
3501 
3502 /*
3503  * Return a named statistic about a particular cache.
3504  * This shouldn't be called very often, so it's currently designed for
3505  * simplicity (leverages existing kstat support) rather than efficiency.
3506  */
3507 uint64_t
3508 kmem_cache_stat(kmem_cache_t *cp, char *name)
3509 {
3510 	int i;
3511 	kstat_t *ksp = cp->cache_kstat;
3512 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3513 	uint64_t value = 0;
3514 
3515 	if (ksp != NULL) {
3516 		mutex_enter(&kmem_cache_kstat_lock);
3517 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3518 		for (i = 0; i < ksp->ks_ndata; i++) {
3519 			if (strcmp(knp[i].name, name) == 0) {
3520 				value = knp[i].value.ui64;
3521 				break;
3522 			}
3523 		}
3524 		mutex_exit(&kmem_cache_kstat_lock);
3525 	}
3526 	return (value);
3527 }
3528 
3529 /*
3530  * Return an estimate of currently available kernel heap memory.
3531  * On 32-bit systems, physical memory may exceed virtual memory,
3532  * we just truncate the result at 1GB.
3533  */
3534 size_t
3535 kmem_avail(void)
3536 {
3537 	spgcnt_t rmem = availrmem - tune.t_minarmem;
3538 	spgcnt_t fmem = freemem - minfree;
3539 
3540 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3541 	    1 << (30 - PAGESHIFT))));
3542 }
3543 
3544 /*
3545  * Return the maximum amount of memory that is (in theory) allocatable
3546  * from the heap. This may be used as an estimate only since there
3547  * is no guarentee this space will still be available when an allocation
3548  * request is made, nor that the space may be allocated in one big request
3549  * due to kernel heap fragmentation.
3550  */
3551 size_t
3552 kmem_maxavail(void)
3553 {
3554 	spgcnt_t pmem = availrmem - tune.t_minarmem;
3555 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3556 
3557 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3558 }
3559 
3560 /*
3561  * Indicate whether memory-intensive kmem debugging is enabled.
3562  */
3563 int
3564 kmem_debugging(void)
3565 {
3566 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3567 }
3568 
3569 /* binning function, sorts finely at the two extremes */
3570 #define	KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)				\
3571 	((((sp)->slab_refcnt <= (binshift)) ||				\
3572 	    (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))	\
3573 	    ? -(sp)->slab_refcnt					\
3574 	    : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3575 
3576 /*
3577  * Minimizing the number of partial slabs on the freelist minimizes
3578  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3579  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3580  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3581  * the most-used slabs at the front of the list where they have the best chance
3582  * of being completely allocated, and the least-used slabs at a safe distance
3583  * from the front to improve the odds that the few remaining buffers will all be
3584  * freed before another allocation can tie up the slab. For that reason a slab
3585  * with a higher slab_refcnt sorts less than than a slab with a lower
3586  * slab_refcnt.
3587  *
3588  * However, if a slab has at least one buffer that is deemed unfreeable, we
3589  * would rather have that slab at the front of the list regardless of
3590  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3591  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3592  * callback, the slab is marked unfreeable for as long as it remains on the
3593  * freelist.
3594  */
3595 static int
3596 kmem_partial_slab_cmp(const void *p0, const void *p1)
3597 {
3598 	const kmem_cache_t *cp;
3599 	const kmem_slab_t *s0 = p0;
3600 	const kmem_slab_t *s1 = p1;
3601 	int w0, w1;
3602 	size_t binshift;
3603 
3604 	ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3605 	ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3606 	ASSERT(s0->slab_cache == s1->slab_cache);
3607 	cp = s1->slab_cache;
3608 	ASSERT(MUTEX_HELD(&cp->cache_lock));
3609 	binshift = cp->cache_partial_binshift;
3610 
3611 	/* weight of first slab */
3612 	w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3613 	if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3614 		w0 -= cp->cache_maxchunks;
3615 	}
3616 
3617 	/* weight of second slab */
3618 	w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3619 	if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3620 		w1 -= cp->cache_maxchunks;
3621 	}
3622 
3623 	if (w0 < w1)
3624 		return (-1);
3625 	if (w0 > w1)
3626 		return (1);
3627 
3628 	/* compare pointer values */
3629 	if ((uintptr_t)s0 < (uintptr_t)s1)
3630 		return (-1);
3631 	if ((uintptr_t)s0 > (uintptr_t)s1)
3632 		return (1);
3633 
3634 	return (0);
3635 }
3636 
3637 /*
3638  * It must be valid to call the destructor (if any) on a newly created object.
3639  * That is, the constructor (if any) must leave the object in a valid state for
3640  * the destructor.
3641  */
3642 kmem_cache_t *
3643 kmem_cache_create(
3644 	char *name,		/* descriptive name for this cache */
3645 	size_t bufsize,		/* size of the objects it manages */
3646 	size_t align,		/* required object alignment */
3647 	int (*constructor)(void *, void *, int), /* object constructor */
3648 	void (*destructor)(void *, void *),	/* object destructor */
3649 	void (*reclaim)(void *), /* memory reclaim callback */
3650 	void *private,		/* pass-thru arg for constr/destr/reclaim */
3651 	vmem_t *vmp,		/* vmem source for slab allocation */
3652 	int cflags)		/* cache creation flags */
3653 {
3654 	int cpu_seqid;
3655 	size_t chunksize;
3656 	kmem_cache_t *cp;
3657 	kmem_magtype_t *mtp;
3658 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3659 
3660 #ifdef	DEBUG
3661 	/*
3662 	 * Cache names should conform to the rules for valid C identifiers
3663 	 */
3664 	if (!strident_valid(name)) {
3665 		cmn_err(CE_CONT,
3666 		    "kmem_cache_create: '%s' is an invalid cache name\n"
3667 		    "cache names must conform to the rules for "
3668 		    "C identifiers\n", name);
3669 	}
3670 #endif	/* DEBUG */
3671 
3672 	if (vmp == NULL)
3673 		vmp = kmem_default_arena;
3674 
3675 	/*
3676 	 * If this kmem cache has an identifier vmem arena as its source, mark
3677 	 * it such to allow kmem_reap_idspace().
3678 	 */
3679 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3680 	if (vmp->vm_cflags & VMC_IDENTIFIER)
3681 		cflags |= KMC_IDENTIFIER;
3682 
3683 	/*
3684 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3685 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3686 	 * false sharing of per-CPU data.
3687 	 */
3688 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3689 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3690 	bzero(cp, csize);
3691 	list_link_init(&cp->cache_link);
3692 
3693 	if (align == 0)
3694 		align = KMEM_ALIGN;
3695 
3696 	/*
3697 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
3698 	 * memory to hold bufctl information (because we can't safely
3699 	 * perform word loads and stores on it).
3700 	 */
3701 	if (align < KMEM_ALIGN)
3702 		cflags |= KMC_NOTOUCH;
3703 
3704 	if (!ISP2(align) || align > vmp->vm_quantum)
3705 		panic("kmem_cache_create: bad alignment %lu", align);
3706 
3707 	mutex_enter(&kmem_flags_lock);
3708 	if (kmem_flags & KMF_RANDOMIZE)
3709 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3710 		    KMF_RANDOMIZE;
3711 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3712 	mutex_exit(&kmem_flags_lock);
3713 
3714 	/*
3715 	 * Make sure all the various flags are reasonable.
3716 	 */
3717 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3718 
3719 	if (cp->cache_flags & KMF_LITE) {
3720 		if (bufsize >= kmem_lite_minsize &&
3721 		    align <= kmem_lite_maxalign &&
3722 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3723 			cp->cache_flags |= KMF_BUFTAG;
3724 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3725 		} else {
3726 			cp->cache_flags &= ~KMF_DEBUG;
3727 		}
3728 	}
3729 
3730 	if (cp->cache_flags & KMF_DEADBEEF)
3731 		cp->cache_flags |= KMF_REDZONE;
3732 
3733 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3734 		cp->cache_flags |= KMF_NOMAGAZINE;
3735 
3736 	if (cflags & KMC_NODEBUG)
3737 		cp->cache_flags &= ~KMF_DEBUG;
3738 
3739 	if (cflags & KMC_NOTOUCH)
3740 		cp->cache_flags &= ~KMF_TOUCH;
3741 
3742 	if (cflags & KMC_PREFILL)
3743 		cp->cache_flags |= KMF_PREFILL;
3744 
3745 	if (cflags & KMC_NOHASH)
3746 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3747 
3748 	if (cflags & KMC_NOMAGAZINE)
3749 		cp->cache_flags |= KMF_NOMAGAZINE;
3750 
3751 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3752 		cp->cache_flags |= KMF_REDZONE;
3753 
3754 	if (!(cp->cache_flags & KMF_AUDIT))
3755 		cp->cache_flags &= ~KMF_CONTENTS;
3756 
3757 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3758 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3759 		cp->cache_flags |= KMF_FIREWALL;
3760 
3761 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3762 		cp->cache_flags &= ~KMF_FIREWALL;
3763 
3764 	if (cp->cache_flags & KMF_FIREWALL) {
3765 		cp->cache_flags &= ~KMF_BUFTAG;
3766 		cp->cache_flags |= KMF_NOMAGAZINE;
3767 		ASSERT(vmp == kmem_default_arena);
3768 		vmp = kmem_firewall_arena;
3769 	}
3770 
3771 	/*
3772 	 * Set cache properties.
3773 	 */
3774 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3775 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3776 	cp->cache_bufsize = bufsize;
3777 	cp->cache_align = align;
3778 	cp->cache_constructor = constructor;
3779 	cp->cache_destructor = destructor;
3780 	cp->cache_reclaim = reclaim;
3781 	cp->cache_private = private;
3782 	cp->cache_arena = vmp;
3783 	cp->cache_cflags = cflags;
3784 
3785 	/*
3786 	 * Determine the chunk size.
3787 	 */
3788 	chunksize = bufsize;
3789 
3790 	if (align >= KMEM_ALIGN) {
3791 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3792 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
3793 	}
3794 
3795 	if (cp->cache_flags & KMF_BUFTAG) {
3796 		cp->cache_bufctl = chunksize;
3797 		cp->cache_buftag = chunksize;
3798 		if (cp->cache_flags & KMF_LITE)
3799 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3800 		else
3801 			chunksize += sizeof (kmem_buftag_t);
3802 	}
3803 
3804 	if (cp->cache_flags & KMF_DEADBEEF) {
3805 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3806 		if (cp->cache_flags & KMF_LITE)
3807 			cp->cache_verify = sizeof (uint64_t);
3808 	}
3809 
3810 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3811 
3812 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3813 
3814 	/*
3815 	 * Now that we know the chunk size, determine the optimal slab size.
3816 	 */
3817 	if (vmp == kmem_firewall_arena) {
3818 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3819 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
3820 		cp->cache_maxcolor = cp->cache_mincolor;
3821 		cp->cache_flags |= KMF_HASH;
3822 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3823 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3824 	    !(cp->cache_flags & KMF_AUDIT) &&
3825 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3826 		cp->cache_slabsize = vmp->vm_quantum;
3827 		cp->cache_mincolor = 0;
3828 		cp->cache_maxcolor =
3829 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3830 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3831 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
3832 	} else {
3833 		size_t chunks, bestfit, waste, slabsize;
3834 		size_t minwaste = LONG_MAX;
3835 
3836 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3837 			slabsize = P2ROUNDUP(chunksize * chunks,
3838 			    vmp->vm_quantum);
3839 			chunks = slabsize / chunksize;
3840 			waste = (slabsize % chunksize) / chunks;
3841 			if (waste < minwaste) {
3842 				minwaste = waste;
3843 				bestfit = slabsize;
3844 			}
3845 		}
3846 		if (cflags & KMC_QCACHE)
3847 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3848 		cp->cache_slabsize = bestfit;
3849 		cp->cache_mincolor = 0;
3850 		cp->cache_maxcolor = bestfit % chunksize;
3851 		cp->cache_flags |= KMF_HASH;
3852 	}
3853 
3854 	cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3855 	cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3856 
3857 	/*
3858 	 * Disallowing prefill when either the DEBUG or HASH flag is set or when
3859 	 * there is a constructor avoids some tricky issues with debug setup
3860 	 * that may be revisited later. We cannot allow prefill in a
3861 	 * metadata cache because of potential recursion.
3862 	 */
3863 	if (vmp == kmem_msb_arena ||
3864 	    cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3865 	    cp->cache_constructor != NULL)
3866 		cp->cache_flags &= ~KMF_PREFILL;
3867 
3868 	if (cp->cache_flags & KMF_HASH) {
3869 		ASSERT(!(cflags & KMC_NOHASH));
3870 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3871 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
3872 	}
3873 
3874 	if (cp->cache_maxcolor >= vmp->vm_quantum)
3875 		cp->cache_maxcolor = vmp->vm_quantum - 1;
3876 
3877 	cp->cache_color = cp->cache_mincolor;
3878 
3879 	/*
3880 	 * Initialize the rest of the slab layer.
3881 	 */
3882 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3883 
3884 	avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3885 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3886 	/* LINTED: E_TRUE_LOGICAL_EXPR */
3887 	ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3888 	/* reuse partial slab AVL linkage for complete slab list linkage */
3889 	list_create(&cp->cache_complete_slabs,
3890 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3891 
3892 	if (cp->cache_flags & KMF_HASH) {
3893 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3894 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3895 		bzero(cp->cache_hash_table,
3896 		    KMEM_HASH_INITIAL * sizeof (void *));
3897 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3898 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3899 	}
3900 
3901 	/*
3902 	 * Initialize the depot.
3903 	 */
3904 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3905 
3906 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3907 		continue;
3908 
3909 	cp->cache_magtype = mtp;
3910 
3911 	/*
3912 	 * Initialize the CPU layer.
3913 	 */
3914 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3915 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3916 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3917 		ccp->cc_flags = cp->cache_flags;
3918 		ccp->cc_rounds = -1;
3919 		ccp->cc_prounds = -1;
3920 	}
3921 
3922 	/*
3923 	 * Create the cache's kstats.
3924 	 */
3925 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3926 	    "kmem_cache", KSTAT_TYPE_NAMED,
3927 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3928 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
3929 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
3930 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3931 		cp->cache_kstat->ks_private = cp;
3932 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3933 		kstat_install(cp->cache_kstat);
3934 	}
3935 
3936 	/*
3937 	 * Add the cache to the global list.  This makes it visible
3938 	 * to kmem_update(), so the cache must be ready for business.
3939 	 */
3940 	mutex_enter(&kmem_cache_lock);
3941 	list_insert_tail(&kmem_caches, cp);
3942 	mutex_exit(&kmem_cache_lock);
3943 
3944 	if (kmem_ready)
3945 		kmem_cache_magazine_enable(cp);
3946 
3947 	return (cp);
3948 }
3949 
3950 static int
3951 kmem_move_cmp(const void *buf, const void *p)
3952 {
3953 	const kmem_move_t *kmm = p;
3954 	uintptr_t v1 = (uintptr_t)buf;
3955 	uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3956 	return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3957 }
3958 
3959 static void
3960 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3961 {
3962 	kmd->kmd_reclaim_numer = 1;
3963 }
3964 
3965 /*
3966  * Initially, when choosing candidate slabs for buffers to move, we want to be
3967  * very selective and take only slabs that are less than
3968  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3969  * slabs, then we raise the allocation ceiling incrementally. The reclaim
3970  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3971  * longer fragmented.
3972  */
3973 static void
3974 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3975 {
3976 	if (direction > 0) {
3977 		/* make it easier to find a candidate slab */
3978 		if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3979 			kmd->kmd_reclaim_numer++;
3980 		}
3981 	} else {
3982 		/* be more selective */
3983 		if (kmd->kmd_reclaim_numer > 1) {
3984 			kmd->kmd_reclaim_numer--;
3985 		}
3986 	}
3987 }
3988 
3989 void
3990 kmem_cache_set_move(kmem_cache_t *cp,
3991     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3992 {
3993 	kmem_defrag_t *defrag;
3994 
3995 	ASSERT(move != NULL);
3996 	/*
3997 	 * The consolidator does not support NOTOUCH caches because kmem cannot
3998 	 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
3999 	 * a low order bit usable by clients to distinguish uninitialized memory
4000 	 * from known objects (see kmem_slab_create).
4001 	 */
4002 	ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4003 	ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4004 
4005 	/*
4006 	 * We should not be holding anyone's cache lock when calling
4007 	 * kmem_cache_alloc(), so allocate in all cases before acquiring the
4008 	 * lock.
4009 	 */
4010 	defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4011 
4012 	mutex_enter(&cp->cache_lock);
4013 
4014 	if (KMEM_IS_MOVABLE(cp)) {
4015 		if (cp->cache_move == NULL) {
4016 			ASSERT(cp->cache_slab_alloc == 0);
4017 
4018 			cp->cache_defrag = defrag;
4019 			defrag = NULL; /* nothing to free */
4020 			bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4021 			avl_create(&cp->cache_defrag->kmd_moves_pending,
4022 			    kmem_move_cmp, sizeof (kmem_move_t),
4023 			    offsetof(kmem_move_t, kmm_entry));
4024 			/* LINTED: E_TRUE_LOGICAL_EXPR */
4025 			ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4026 			/* reuse the slab's AVL linkage for deadlist linkage */
4027 			list_create(&cp->cache_defrag->kmd_deadlist,
4028 			    sizeof (kmem_slab_t),
4029 			    offsetof(kmem_slab_t, slab_link));
4030 			kmem_reset_reclaim_threshold(cp->cache_defrag);
4031 		}
4032 		cp->cache_move = move;
4033 	}
4034 
4035 	mutex_exit(&cp->cache_lock);
4036 
4037 	if (defrag != NULL) {
4038 		kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4039 	}
4040 }
4041 
4042 void
4043 kmem_cache_destroy(kmem_cache_t *cp)
4044 {
4045 	int cpu_seqid;
4046 
4047 	/*
4048 	 * Remove the cache from the global cache list so that no one else
4049 	 * can schedule tasks on its behalf, wait for any pending tasks to
4050 	 * complete, purge the cache, and then destroy it.
4051 	 */
4052 	mutex_enter(&kmem_cache_lock);
4053 	list_remove(&kmem_caches, cp);
4054 	mutex_exit(&kmem_cache_lock);
4055 
4056 	if (kmem_taskq != NULL)
4057 		taskq_wait(kmem_taskq);
4058 
4059 	if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4060 		taskq_wait(kmem_move_taskq);
4061 
4062 	kmem_cache_magazine_purge(cp);
4063 
4064 	mutex_enter(&cp->cache_lock);
4065 	if (cp->cache_buftotal != 0)
4066 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4067 		    cp->cache_name, (void *)cp);
4068 	if (cp->cache_defrag != NULL) {
4069 		avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4070 		list_destroy(&cp->cache_defrag->kmd_deadlist);
4071 		kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4072 		cp->cache_defrag = NULL;
4073 	}
4074 	/*
4075 	 * The cache is now dead.  There should be no further activity.  We
4076 	 * enforce this by setting land mines in the constructor, destructor,
4077 	 * reclaim, and move routines that induce a kernel text fault if
4078 	 * invoked.
4079 	 */
4080 	cp->cache_constructor = (int (*)(void *, void *, int))1;
4081 	cp->cache_destructor = (void (*)(void *, void *))2;
4082 	cp->cache_reclaim = (void (*)(void *))3;
4083 	cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4084 	mutex_exit(&cp->cache_lock);
4085 
4086 	kstat_delete(cp->cache_kstat);
4087 
4088 	if (cp->cache_hash_table != NULL)
4089 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
4090 		    (cp->cache_hash_mask + 1) * sizeof (void *));
4091 
4092 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4093 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4094 
4095 	mutex_destroy(&cp->cache_depot_lock);
4096 	mutex_destroy(&cp->cache_lock);
4097 
4098 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4099 }
4100 
4101 /*ARGSUSED*/
4102 static int
4103 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4104 {
4105 	ASSERT(MUTEX_HELD(&cpu_lock));
4106 	if (what == CPU_UNCONFIG) {
4107 		kmem_cache_applyall(kmem_cache_magazine_purge,
4108 		    kmem_taskq, TQ_SLEEP);
4109 		kmem_cache_applyall(kmem_cache_magazine_enable,
4110 		    kmem_taskq, TQ_SLEEP);
4111 	}
4112 	return (0);
4113 }
4114 
4115 static void
4116 kmem_alloc_caches_create(const int *array, size_t count,
4117     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4118 {
4119 	char name[KMEM_CACHE_NAMELEN + 1];
4120 	size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4121 	size_t size = table_unit;
4122 	int i;
4123 
4124 	for (i = 0; i < count; i++) {
4125 		size_t cache_size = array[i];
4126 		size_t align = KMEM_ALIGN;
4127 		kmem_cache_t *cp;
4128 
4129 		/* if the table has an entry for maxbuf, we're done */
4130 		if (size > maxbuf)
4131 			break;
4132 
4133 		/* cache size must be a multiple of the table unit */
4134 		ASSERT(P2PHASE(cache_size, table_unit) == 0);
4135 
4136 		/*
4137 		 * If they allocate a multiple of the coherency granularity,
4138 		 * they get a coherency-granularity-aligned address.
4139 		 */
4140 		if (IS_P2ALIGNED(cache_size, 64))
4141 			align = 64;
4142 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
4143 			align = PAGESIZE;
4144 		(void) snprintf(name, sizeof (name),
4145 		    "kmem_alloc_%lu", cache_size);
4146 		cp = kmem_cache_create(name, cache_size, align,
4147 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4148 
4149 		while (size <= cache_size) {
4150 			alloc_table[(size - 1) >> shift] = cp;
4151 			size += table_unit;
4152 		}
4153 	}
4154 
4155 	ASSERT(size > maxbuf);		/* i.e. maxbuf <= max(cache_size) */
4156 }
4157 
4158 static void
4159 kmem_cache_init(int pass, int use_large_pages)
4160 {
4161 	int i;
4162 	size_t maxbuf;
4163 	kmem_magtype_t *mtp;
4164 
4165 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4166 		char name[KMEM_CACHE_NAMELEN + 1];
4167 
4168 		mtp = &kmem_magtype[i];
4169 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4170 		mtp->mt_cache = kmem_cache_create(name,
4171 		    (mtp->mt_magsize + 1) * sizeof (void *),
4172 		    mtp->mt_align, NULL, NULL, NULL, NULL,
4173 		    kmem_msb_arena, KMC_NOHASH);
4174 	}
4175 
4176 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4177 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4178 	    kmem_msb_arena, KMC_NOHASH);
4179 
4180 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4181 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4182 	    kmem_msb_arena, KMC_NOHASH);
4183 
4184 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4185 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4186 	    kmem_msb_arena, KMC_NOHASH);
4187 
4188 	if (pass == 2) {
4189 		kmem_va_arena = vmem_create("kmem_va",
4190 		    NULL, 0, PAGESIZE,
4191 		    vmem_alloc, vmem_free, heap_arena,
4192 		    8 * PAGESIZE, VM_SLEEP);
4193 
4194 		if (use_large_pages) {
4195 			kmem_default_arena = vmem_xcreate("kmem_default",
4196 			    NULL, 0, PAGESIZE,
4197 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4198 			    0, VMC_DUMPSAFE | VM_SLEEP);
4199 		} else {
4200 			kmem_default_arena = vmem_create("kmem_default",
4201 			    NULL, 0, PAGESIZE,
4202 			    segkmem_alloc, segkmem_free, kmem_va_arena,
4203 			    0, VMC_DUMPSAFE | VM_SLEEP);
4204 		}
4205 
4206 		/* Figure out what our maximum cache size is */
4207 		maxbuf = kmem_max_cached;
4208 		if (maxbuf <= KMEM_MAXBUF) {
4209 			maxbuf = 0;
4210 			kmem_max_cached = KMEM_MAXBUF;
4211 		} else {
4212 			size_t size = 0;
4213 			size_t max =
4214 			    sizeof (kmem_big_alloc_sizes) / sizeof (int);
4215 			/*
4216 			 * Round maxbuf up to an existing cache size.  If maxbuf
4217 			 * is larger than the largest cache, we truncate it to
4218 			 * the largest cache's size.
4219 			 */
4220 			for (i = 0; i < max; i++) {
4221 				size = kmem_big_alloc_sizes[i];
4222 				if (maxbuf <= size)
4223 					break;
4224 			}
4225 			kmem_max_cached = maxbuf = size;
4226 		}
4227 
4228 		/*
4229 		 * The big alloc table may not be completely overwritten, so
4230 		 * we clear out any stale cache pointers from the first pass.
4231 		 */
4232 		bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4233 	} else {
4234 		/*
4235 		 * During the first pass, the kmem_alloc_* caches
4236 		 * are treated as metadata.
4237 		 */
4238 		kmem_default_arena = kmem_msb_arena;
4239 		maxbuf = KMEM_BIG_MAXBUF_32BIT;
4240 	}
4241 
4242 	/*
4243 	 * Set up the default caches to back kmem_alloc()
4244 	 */
4245 	kmem_alloc_caches_create(
4246 	    kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4247 	    kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4248 
4249 	kmem_alloc_caches_create(
4250 	    kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4251 	    kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4252 
4253 	kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4254 }
4255 
4256 void
4257 kmem_init(void)
4258 {
4259 	kmem_cache_t *cp;
4260 	int old_kmem_flags = kmem_flags;
4261 	int use_large_pages = 0;
4262 	size_t maxverify, minfirewall;
4263 
4264 	kstat_init();
4265 
4266 	/*
4267 	 * Don't do firewalled allocations if the heap is less than 1TB
4268 	 * (i.e. on a 32-bit kernel)
4269 	 * The resulting VM_NEXTFIT allocations would create too much
4270 	 * fragmentation in a small heap.
4271 	 */
4272 #if defined(_LP64)
4273 	maxverify = minfirewall = PAGESIZE / 2;
4274 #else
4275 	maxverify = minfirewall = ULONG_MAX;
4276 #endif
4277 
4278 	/* LINTED */
4279 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4280 
4281 	list_create(&kmem_caches, sizeof (kmem_cache_t),
4282 	    offsetof(kmem_cache_t, cache_link));
4283 
4284 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4285 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4286 	    VM_SLEEP | VMC_NO_QCACHE);
4287 
4288 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4289 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4290 	    VMC_DUMPSAFE | VM_SLEEP);
4291 
4292 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4293 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4294 
4295 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4296 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4297 
4298 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4299 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4300 
4301 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4302 	    NULL, 0, PAGESIZE,
4303 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4304 	    0, VM_SLEEP);
4305 
4306 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4307 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4308 	    VMC_DUMPSAFE | VM_SLEEP);
4309 
4310 	/* temporary oversize arena for mod_read_system_file */
4311 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4312 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4313 
4314 	kmem_reap_interval = 15 * hz;
4315 
4316 	/*
4317 	 * Read /etc/system.  This is a chicken-and-egg problem because
4318 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
4319 	 * needs to use the allocator.  The simplest solution is to create
4320 	 * all the standard kmem caches, read /etc/system, destroy all the
4321 	 * caches we just created, and then create them all again in light
4322 	 * of the (possibly) new kmem_flags and other kmem tunables.
4323 	 */
4324 	kmem_cache_init(1, 0);
4325 
4326 	mod_read_system_file(boothowto & RB_ASKNAME);
4327 
4328 	while ((cp = list_tail(&kmem_caches)) != NULL)
4329 		kmem_cache_destroy(cp);
4330 
4331 	vmem_destroy(kmem_oversize_arena);
4332 
4333 	if (old_kmem_flags & KMF_STICKY)
4334 		kmem_flags = old_kmem_flags;
4335 
4336 	if (!(kmem_flags & KMF_AUDIT))
4337 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4338 
4339 	if (kmem_maxverify == 0)
4340 		kmem_maxverify = maxverify;
4341 
4342 	if (kmem_minfirewall == 0)
4343 		kmem_minfirewall = minfirewall;
4344 
4345 	/*
4346 	 * give segkmem a chance to figure out if we are using large pages
4347 	 * for the kernel heap
4348 	 */
4349 	use_large_pages = segkmem_lpsetup();
4350 
4351 	/*
4352 	 * To protect against corruption, we keep the actual number of callers
4353 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4354 	 * to 16, since the overhead for small buffers quickly gets out of
4355 	 * hand.
4356 	 *
4357 	 * The real limit would depend on the needs of the largest KMC_NOHASH
4358 	 * cache.
4359 	 */
4360 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4361 	kmem_lite_pcs = kmem_lite_count;
4362 
4363 	/*
4364 	 * Normally, we firewall oversized allocations when possible, but
4365 	 * if we are using large pages for kernel memory, and we don't have
4366 	 * any non-LITE debugging flags set, we want to allocate oversized
4367 	 * buffers from large pages, and so skip the firewalling.
4368 	 */
4369 	if (use_large_pages &&
4370 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4371 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4372 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4373 		    0, VMC_DUMPSAFE | VM_SLEEP);
4374 	} else {
4375 		kmem_oversize_arena = vmem_create("kmem_oversize",
4376 		    NULL, 0, PAGESIZE,
4377 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4378 		    kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4379 		    VM_SLEEP);
4380 	}
4381 
4382 	kmem_cache_init(2, use_large_pages);
4383 
4384 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4385 		if (kmem_transaction_log_size == 0)
4386 			kmem_transaction_log_size = kmem_maxavail() / 50;
4387 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4388 	}
4389 
4390 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4391 		if (kmem_content_log_size == 0)
4392 			kmem_content_log_size = kmem_maxavail() / 50;
4393 		kmem_content_log = kmem_log_init(kmem_content_log_size);
4394 	}
4395 
4396 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4397 
4398 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4399 
4400 	/*
4401 	 * Initialize STREAMS message caches so allocb() is available.
4402 	 * This allows us to initialize the logging framework (cmn_err(9F),
4403 	 * strlog(9F), etc) so we can start recording messages.
4404 	 */
4405 	streams_msg_init();
4406 
4407 	/*
4408 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
4409 	 * can register their callbacks.
4410 	 */
4411 	zone_zsd_init();
4412 
4413 	log_init();
4414 	taskq_init();
4415 
4416 	/*
4417 	 * Warn about invalid or dangerous values of kmem_flags.
4418 	 * Always warn about unsupported values.
4419 	 */
4420 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4421 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
4422 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4423 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4424 		    "See the Solaris Tunable Parameters Reference Manual.",
4425 		    kmem_flags);
4426 
4427 #ifdef DEBUG
4428 	if ((kmem_flags & KMF_DEBUG) == 0)
4429 		cmn_err(CE_NOTE, "kmem debugging disabled.");
4430 #else
4431 	/*
4432 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4433 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4434 	 * if KMF_AUDIT is set). We should warn the user about the performance
4435 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4436 	 * isn't set (since that disables AUDIT).
4437 	 */
4438 	if (!(kmem_flags & KMF_LITE) &&
4439 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4440 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
4441 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
4442 		    "and large memory overhead possible. See the Solaris "
4443 		    "Tunable Parameters Reference Manual.", kmem_flags);
4444 #endif /* not DEBUG */
4445 
4446 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4447 
4448 	kmem_ready = 1;
4449 
4450 	/*
4451 	 * Initialize the platform-specific aligned/DMA memory allocator.
4452 	 */
4453 	ka_init();
4454 
4455 	/*
4456 	 * Initialize 32-bit ID cache.
4457 	 */
4458 	id32_init();
4459 
4460 	/*
4461 	 * Initialize the networking stack so modules loaded can
4462 	 * register their callbacks.
4463 	 */
4464 	netstack_init();
4465 }
4466 
4467 static void
4468 kmem_move_init(void)
4469 {
4470 	kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4471 	    sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4472 	    kmem_msb_arena, KMC_NOHASH);
4473 	kmem_move_cache = kmem_cache_create("kmem_move_cache",
4474 	    sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4475 	    kmem_msb_arena, KMC_NOHASH);
4476 
4477 	/*
4478 	 * kmem guarantees that move callbacks are sequential and that even
4479 	 * across multiple caches no two moves ever execute simultaneously.
4480 	 * Move callbacks are processed on a separate taskq so that client code
4481 	 * does not interfere with internal maintenance tasks.
4482 	 */
4483 	kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4484 	    minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4485 }
4486 
4487 void
4488 kmem_thread_init(void)
4489 {
4490 	kmem_move_init();
4491 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4492 	    300, INT_MAX, TASKQ_PREPOPULATE);
4493 }
4494 
4495 void
4496 kmem_mp_init(void)
4497 {
4498 	mutex_enter(&cpu_lock);
4499 	register_cpu_setup_func(kmem_cpu_setup, NULL);
4500 	mutex_exit(&cpu_lock);
4501 
4502 	kmem_update_timeout(NULL);
4503 
4504 	taskq_mp_init();
4505 }
4506 
4507 /*
4508  * Return the slab of the allocated buffer, or NULL if the buffer is not
4509  * allocated. This function may be called with a known slab address to determine
4510  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4511  * an allocated buffer's slab.
4512  */
4513 static kmem_slab_t *
4514 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4515 {
4516 	kmem_bufctl_t *bcp, *bufbcp;
4517 
4518 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4519 	ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4520 
4521 	if (cp->cache_flags & KMF_HASH) {
4522 		for (bcp = *KMEM_HASH(cp, buf);
4523 		    (bcp != NULL) && (bcp->bc_addr != buf);
4524 		    bcp = bcp->bc_next) {
4525 			continue;
4526 		}
4527 		ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4528 		return (bcp == NULL ? NULL : bcp->bc_slab);
4529 	}
4530 
4531 	if (sp == NULL) {
4532 		sp = KMEM_SLAB(cp, buf);
4533 	}
4534 	bufbcp = KMEM_BUFCTL(cp, buf);
4535 	for (bcp = sp->slab_head;
4536 	    (bcp != NULL) && (bcp != bufbcp);
4537 	    bcp = bcp->bc_next) {
4538 		continue;
4539 	}
4540 	return (bcp == NULL ? sp : NULL);
4541 }
4542 
4543 static boolean_t
4544 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4545 {
4546 	long refcnt = sp->slab_refcnt;
4547 
4548 	ASSERT(cp->cache_defrag != NULL);
4549 
4550 	/*
4551 	 * For code coverage we want to be able to move an object within the
4552 	 * same slab (the only partial slab) even if allocating the destination
4553 	 * buffer resulted in a completely allocated slab.
4554 	 */
4555 	if (flags & KMM_DEBUG) {
4556 		return ((flags & KMM_DESPERATE) ||
4557 		    ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4558 	}
4559 
4560 	/* If we're desperate, we don't care if the client said NO. */
4561 	if (flags & KMM_DESPERATE) {
4562 		return (refcnt < sp->slab_chunks); /* any partial */
4563 	}
4564 
4565 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4566 		return (B_FALSE);
4567 	}
4568 
4569 	if ((refcnt == 1) || kmem_move_any_partial) {
4570 		return (refcnt < sp->slab_chunks);
4571 	}
4572 
4573 	/*
4574 	 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4575 	 * slabs with a progressively higher percentage of used buffers can be
4576 	 * reclaimed until the cache as a whole is no longer fragmented.
4577 	 *
4578 	 *	sp->slab_refcnt   kmd_reclaim_numer
4579 	 *	--------------- < ------------------
4580 	 *	sp->slab_chunks   KMEM_VOID_FRACTION
4581 	 */
4582 	return ((refcnt * KMEM_VOID_FRACTION) <
4583 	    (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4584 }
4585 
4586 /*
4587  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4588  * or when the buffer is freed.
4589  */
4590 static void
4591 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4592 {
4593 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4594 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4595 
4596 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4597 		return;
4598 	}
4599 
4600 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4601 		if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4602 			avl_remove(&cp->cache_partial_slabs, sp);
4603 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4604 			sp->slab_stuck_offset = (uint32_t)-1;
4605 			avl_add(&cp->cache_partial_slabs, sp);
4606 		}
4607 	} else {
4608 		sp->slab_later_count = 0;
4609 		sp->slab_stuck_offset = (uint32_t)-1;
4610 	}
4611 }
4612 
4613 static void
4614 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4615 {
4616 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4617 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4618 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4619 
4620 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4621 		return;
4622 	}
4623 
4624 	avl_remove(&cp->cache_partial_slabs, sp);
4625 	sp->slab_later_count = 0;
4626 	sp->slab_flags |= KMEM_SLAB_NOMOVE;
4627 	sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4628 	avl_add(&cp->cache_partial_slabs, sp);
4629 }
4630 
4631 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4632 
4633 /*
4634  * The move callback takes two buffer addresses, the buffer to be moved, and a
4635  * newly allocated and constructed buffer selected by kmem as the destination.
4636  * It also takes the size of the buffer and an optional user argument specified
4637  * at cache creation time. kmem guarantees that the buffer to be moved has not
4638  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4639  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4640  * the client to safely determine whether or not it is still using the buffer.
4641  * The client must not free either of the buffers passed to the move callback,
4642  * since kmem wants to free them directly to the slab layer. The client response
4643  * tells kmem which of the two buffers to free:
4644  *
4645  * YES		kmem frees the old buffer (the move was successful)
4646  * NO		kmem frees the new buffer, marks the slab of the old buffer
4647  *              non-reclaimable to avoid bothering the client again
4648  * LATER	kmem frees the new buffer, increments slab_later_count
4649  * DONT_KNOW	kmem frees the new buffer
4650  * DONT_NEED	kmem frees both the old buffer and the new buffer
4651  *
4652  * The pending callback argument now being processed contains both of the
4653  * buffers (old and new) passed to the move callback function, the slab of the
4654  * old buffer, and flags related to the move request, such as whether or not the
4655  * system was desperate for memory.
4656  *
4657  * Slabs are not freed while there is a pending callback, but instead are kept
4658  * on a deadlist, which is drained after the last callback completes. This means
4659  * that slabs are safe to access until kmem_move_end(), no matter how many of
4660  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4661  * zero for as long as the slab remains on the deadlist and until the slab is
4662  * freed.
4663  */
4664 static void
4665 kmem_move_buffer(kmem_move_t *callback)
4666 {
4667 	kmem_cbrc_t response;
4668 	kmem_slab_t *sp = callback->kmm_from_slab;
4669 	kmem_cache_t *cp = sp->slab_cache;
4670 	boolean_t free_on_slab;
4671 
4672 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4673 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4674 	ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4675 
4676 	/*
4677 	 * The number of allocated buffers on the slab may have changed since we
4678 	 * last checked the slab's reclaimability (when the pending move was
4679 	 * enqueued), or the client may have responded NO when asked to move
4680 	 * another buffer on the same slab.
4681 	 */
4682 	if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4683 		kmem_slab_free(cp, callback->kmm_to_buf);
4684 		kmem_move_end(cp, callback);
4685 		return;
4686 	}
4687 
4688 	/*
4689 	 * Checking the slab layer is easy, so we might as well do that here
4690 	 * in case we can avoid bothering the client.
4691 	 */
4692 	mutex_enter(&cp->cache_lock);
4693 	free_on_slab = (kmem_slab_allocated(cp, sp,
4694 	    callback->kmm_from_buf) == NULL);
4695 	mutex_exit(&cp->cache_lock);
4696 
4697 	if (free_on_slab) {
4698 		kmem_slab_free(cp, callback->kmm_to_buf);
4699 		kmem_move_end(cp, callback);
4700 		return;
4701 	}
4702 
4703 	if (cp->cache_flags & KMF_BUFTAG) {
4704 		/*
4705 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
4706 		 */
4707 		if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4708 		    KM_NOSLEEP, 1, caller()) != 0) {
4709 			kmem_move_end(cp, callback);
4710 			return;
4711 		}
4712 	} else if (cp->cache_constructor != NULL &&
4713 	    cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4714 	    KM_NOSLEEP) != 0) {
4715 		atomic_inc_64(&cp->cache_alloc_fail);
4716 		kmem_slab_free(cp, callback->kmm_to_buf);
4717 		kmem_move_end(cp, callback);
4718 		return;
4719 	}
4720 
4721 	cp->cache_defrag->kmd_callbacks++;
4722 	cp->cache_defrag->kmd_thread = curthread;
4723 	cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4724 	cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4725 	DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4726 	    callback);
4727 
4728 	response = cp->cache_move(callback->kmm_from_buf,
4729 	    callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4730 
4731 	DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4732 	    callback, kmem_cbrc_t, response);
4733 	cp->cache_defrag->kmd_thread = NULL;
4734 	cp->cache_defrag->kmd_from_buf = NULL;
4735 	cp->cache_defrag->kmd_to_buf = NULL;
4736 
4737 	if (response == KMEM_CBRC_YES) {
4738 		cp->cache_defrag->kmd_yes++;
4739 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4740 		/* slab safe to access until kmem_move_end() */
4741 		if (sp->slab_refcnt == 0)
4742 			cp->cache_defrag->kmd_slabs_freed++;
4743 		mutex_enter(&cp->cache_lock);
4744 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4745 		mutex_exit(&cp->cache_lock);
4746 		kmem_move_end(cp, callback);
4747 		return;
4748 	}
4749 
4750 	switch (response) {
4751 	case KMEM_CBRC_NO:
4752 		cp->cache_defrag->kmd_no++;
4753 		mutex_enter(&cp->cache_lock);
4754 		kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4755 		mutex_exit(&cp->cache_lock);
4756 		break;
4757 	case KMEM_CBRC_LATER:
4758 		cp->cache_defrag->kmd_later++;
4759 		mutex_enter(&cp->cache_lock);
4760 		if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4761 			mutex_exit(&cp->cache_lock);
4762 			break;
4763 		}
4764 
4765 		if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4766 			kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4767 		} else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4768 			sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4769 			    callback->kmm_from_buf);
4770 		}
4771 		mutex_exit(&cp->cache_lock);
4772 		break;
4773 	case KMEM_CBRC_DONT_NEED:
4774 		cp->cache_defrag->kmd_dont_need++;
4775 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4776 		if (sp->slab_refcnt == 0)
4777 			cp->cache_defrag->kmd_slabs_freed++;
4778 		mutex_enter(&cp->cache_lock);
4779 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4780 		mutex_exit(&cp->cache_lock);
4781 		break;
4782 	case KMEM_CBRC_DONT_KNOW:
4783 		/*
4784 		 * If we don't know if we can move this buffer or not, we'll
4785 		 * just assume that we can't:  if the buffer is in fact free,
4786 		 * then it is sitting in one of the per-CPU magazines or in
4787 		 * a full magazine in the depot layer.  Either way, because
4788 		 * defrag is induced in the same logic that reaps a cache,
4789 		 * it's likely that full magazines will be returned to the
4790 		 * system soon (thereby accomplishing what we're trying to
4791 		 * accomplish here: return those magazines to their slabs).
4792 		 * Given this, any work that we might do now to locate a buffer
4793 		 * in a magazine is wasted (and expensive!) work; we bump
4794 		 * a counter in this case and otherwise assume that we can't
4795 		 * move it.
4796 		 */
4797 		cp->cache_defrag->kmd_dont_know++;
4798 		break;
4799 	default:
4800 		panic("'%s' (%p) unexpected move callback response %d\n",
4801 		    cp->cache_name, (void *)cp, response);
4802 	}
4803 
4804 	kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4805 	kmem_move_end(cp, callback);
4806 }
4807 
4808 /* Return B_FALSE if there is insufficient memory for the move request. */
4809 static boolean_t
4810 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4811 {
4812 	void *to_buf;
4813 	avl_index_t index;
4814 	kmem_move_t *callback, *pending;
4815 	ulong_t n;
4816 
4817 	ASSERT(taskq_member(kmem_taskq, curthread));
4818 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4819 	ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4820 
4821 	callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4822 
4823 	if (callback == NULL)
4824 		return (B_FALSE);
4825 
4826 	callback->kmm_from_slab = sp;
4827 	callback->kmm_from_buf = buf;
4828 	callback->kmm_flags = flags;
4829 
4830 	mutex_enter(&cp->cache_lock);
4831 
4832 	n = avl_numnodes(&cp->cache_partial_slabs);
4833 	if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4834 		mutex_exit(&cp->cache_lock);
4835 		kmem_cache_free(kmem_move_cache, callback);
4836 		return (B_TRUE); /* there is no need for the move request */
4837 	}
4838 
4839 	pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4840 	if (pending != NULL) {
4841 		/*
4842 		 * If the move is already pending and we're desperate now,
4843 		 * update the move flags.
4844 		 */
4845 		if (flags & KMM_DESPERATE) {
4846 			pending->kmm_flags |= KMM_DESPERATE;
4847 		}
4848 		mutex_exit(&cp->cache_lock);
4849 		kmem_cache_free(kmem_move_cache, callback);
4850 		return (B_TRUE);
4851 	}
4852 
4853 	to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4854 	    B_FALSE);
4855 	callback->kmm_to_buf = to_buf;
4856 	avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4857 
4858 	mutex_exit(&cp->cache_lock);
4859 
4860 	if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4861 	    callback, TQ_NOSLEEP)) {
4862 		mutex_enter(&cp->cache_lock);
4863 		avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4864 		mutex_exit(&cp->cache_lock);
4865 		kmem_slab_free(cp, to_buf);
4866 		kmem_cache_free(kmem_move_cache, callback);
4867 		return (B_FALSE);
4868 	}
4869 
4870 	return (B_TRUE);
4871 }
4872 
4873 static void
4874 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4875 {
4876 	avl_index_t index;
4877 
4878 	ASSERT(cp->cache_defrag != NULL);
4879 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4880 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4881 
4882 	mutex_enter(&cp->cache_lock);
4883 	VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4884 	    callback->kmm_from_buf, &index) != NULL);
4885 	avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4886 	if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4887 		list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4888 		kmem_slab_t *sp;
4889 
4890 		/*
4891 		 * The last pending move completed. Release all slabs from the
4892 		 * front of the dead list except for any slab at the tail that
4893 		 * needs to be released from the context of kmem_move_buffers().
4894 		 * kmem deferred unmapping the buffers on these slabs in order
4895 		 * to guarantee that buffers passed to the move callback have
4896 		 * been touched only by kmem or by the client itself.
4897 		 */
4898 		while ((sp = list_remove_head(deadlist)) != NULL) {
4899 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4900 				list_insert_tail(deadlist, sp);
4901 				break;
4902 			}
4903 			cp->cache_defrag->kmd_deadcount--;
4904 			cp->cache_slab_destroy++;
4905 			mutex_exit(&cp->cache_lock);
4906 			kmem_slab_destroy(cp, sp);
4907 			mutex_enter(&cp->cache_lock);
4908 		}
4909 	}
4910 	mutex_exit(&cp->cache_lock);
4911 	kmem_cache_free(kmem_move_cache, callback);
4912 }
4913 
4914 /*
4915  * Move buffers from least used slabs first by scanning backwards from the end
4916  * of the partial slab list. Scan at most max_scan candidate slabs and move
4917  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4918  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4919  * skip slabs with a ratio of allocated buffers at or above the current
4920  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4921  * scan is aborted) so that the caller can adjust the reclaimability threshold
4922  * depending on how many reclaimable slabs it finds.
4923  *
4924  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4925  * move request, since it is not valid for kmem_move_begin() to call
4926  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4927  */
4928 static int
4929 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4930     int flags)
4931 {
4932 	kmem_slab_t *sp;
4933 	void *buf;
4934 	int i, j; /* slab index, buffer index */
4935 	int s; /* reclaimable slabs */
4936 	int b; /* allocated (movable) buffers on reclaimable slab */
4937 	boolean_t success;
4938 	int refcnt;
4939 	int nomove;
4940 
4941 	ASSERT(taskq_member(kmem_taskq, curthread));
4942 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4943 	ASSERT(kmem_move_cache != NULL);
4944 	ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4945 	ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4946 	    avl_numnodes(&cp->cache_partial_slabs) > 1);
4947 
4948 	if (kmem_move_blocked) {
4949 		return (0);
4950 	}
4951 
4952 	if (kmem_move_fulltilt) {
4953 		flags |= KMM_DESPERATE;
4954 	}
4955 
4956 	if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4957 		/*
4958 		 * Scan as many slabs as needed to find the desired number of
4959 		 * candidate slabs.
4960 		 */
4961 		max_scan = (size_t)-1;
4962 	}
4963 
4964 	if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4965 		/* Find as many candidate slabs as possible. */
4966 		max_slabs = (size_t)-1;
4967 	}
4968 
4969 	sp = avl_last(&cp->cache_partial_slabs);
4970 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
4971 	for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
4972 	    ((sp != avl_first(&cp->cache_partial_slabs)) ||
4973 	    (flags & KMM_DEBUG));
4974 	    sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4975 
4976 		if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4977 			continue;
4978 		}
4979 		s++;
4980 
4981 		/* Look for allocated buffers to move. */
4982 		for (j = 0, b = 0, buf = sp->slab_base;
4983 		    (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4984 		    buf = (((char *)buf) + cp->cache_chunksize), j++) {
4985 
4986 			if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4987 				continue;
4988 			}
4989 
4990 			b++;
4991 
4992 			/*
4993 			 * Prevent the slab from being destroyed while we drop
4994 			 * cache_lock and while the pending move is not yet
4995 			 * registered. Flag the pending move while
4996 			 * kmd_moves_pending may still be empty, since we can't
4997 			 * yet rely on a non-zero pending move count to prevent
4998 			 * the slab from being destroyed.
4999 			 */
5000 			ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5001 			sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5002 			/*
5003 			 * Recheck refcnt and nomove after reacquiring the lock,
5004 			 * since these control the order of partial slabs, and
5005 			 * we want to know if we can pick up the scan where we
5006 			 * left off.
5007 			 */
5008 			refcnt = sp->slab_refcnt;
5009 			nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5010 			mutex_exit(&cp->cache_lock);
5011 
5012 			success = kmem_move_begin(cp, sp, buf, flags);
5013 
5014 			/*
5015 			 * Now, before the lock is reacquired, kmem could
5016 			 * process all pending move requests and purge the
5017 			 * deadlist, so that upon reacquiring the lock, sp has
5018 			 * been remapped. Or, the client may free all the
5019 			 * objects on the slab while the pending moves are still
5020 			 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5021 			 * flag causes the slab to be put at the end of the
5022 			 * deadlist and prevents it from being destroyed, since
5023 			 * we plan to destroy it here after reacquiring the
5024 			 * lock.
5025 			 */
5026 			mutex_enter(&cp->cache_lock);
5027 			ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5028 			sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5029 
5030 			if (sp->slab_refcnt == 0) {
5031 				list_t *deadlist =
5032 				    &cp->cache_defrag->kmd_deadlist;
5033 				list_remove(deadlist, sp);
5034 
5035 				if (!avl_is_empty(
5036 				    &cp->cache_defrag->kmd_moves_pending)) {
5037 					/*
5038 					 * A pending move makes it unsafe to
5039 					 * destroy the slab, because even though
5040 					 * the move is no longer needed, the
5041 					 * context where that is determined
5042 					 * requires the slab to exist.
5043 					 * Fortunately, a pending move also
5044 					 * means we don't need to destroy the
5045 					 * slab here, since it will get
5046 					 * destroyed along with any other slabs
5047 					 * on the deadlist after the last
5048 					 * pending move completes.
5049 					 */
5050 					list_insert_head(deadlist, sp);
5051 					return (-1);
5052 				}
5053 
5054 				/*
5055 				 * Destroy the slab now if it was completely
5056 				 * freed while we dropped cache_lock and there
5057 				 * are no pending moves. Since slab_refcnt
5058 				 * cannot change once it reaches zero, no new
5059 				 * pending moves from that slab are possible.
5060 				 */
5061 				cp->cache_defrag->kmd_deadcount--;
5062 				cp->cache_slab_destroy++;
5063 				mutex_exit(&cp->cache_lock);
5064 				kmem_slab_destroy(cp, sp);
5065 				mutex_enter(&cp->cache_lock);
5066 				/*
5067 				 * Since we can't pick up the scan where we left
5068 				 * off, abort the scan and say nothing about the
5069 				 * number of reclaimable slabs.
5070 				 */
5071 				return (-1);
5072 			}
5073 
5074 			if (!success) {
5075 				/*
5076 				 * Abort the scan if there is not enough memory
5077 				 * for the request and say nothing about the
5078 				 * number of reclaimable slabs.
5079 				 */
5080 				return (-1);
5081 			}
5082 
5083 			/*
5084 			 * The slab's position changed while the lock was
5085 			 * dropped, so we don't know where we are in the
5086 			 * sequence any more.
5087 			 */
5088 			if (sp->slab_refcnt != refcnt) {
5089 				/*
5090 				 * If this is a KMM_DEBUG move, the slab_refcnt
5091 				 * may have changed because we allocated a
5092 				 * destination buffer on the same slab. In that
5093 				 * case, we're not interested in counting it.
5094 				 */
5095 				return (-1);
5096 			}
5097 			if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5098 				return (-1);
5099 
5100 			/*
5101 			 * Generating a move request allocates a destination
5102 			 * buffer from the slab layer, bumping the first partial
5103 			 * slab if it is completely allocated. If the current
5104 			 * slab becomes the first partial slab as a result, we
5105 			 * can't continue to scan backwards.
5106 			 *
5107 			 * If this is a KMM_DEBUG move and we allocated the
5108 			 * destination buffer from the last partial slab, then
5109 			 * the buffer we're moving is on the same slab and our
5110 			 * slab_refcnt has changed, causing us to return before
5111 			 * reaching here if there are no partial slabs left.
5112 			 */
5113 			ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5114 			if (sp == avl_first(&cp->cache_partial_slabs)) {
5115 				/*
5116 				 * We're not interested in a second KMM_DEBUG
5117 				 * move.
5118 				 */
5119 				goto end_scan;
5120 			}
5121 		}
5122 	}
5123 end_scan:
5124 
5125 	return (s);
5126 }
5127 
5128 typedef struct kmem_move_notify_args {
5129 	kmem_cache_t *kmna_cache;
5130 	void *kmna_buf;
5131 } kmem_move_notify_args_t;
5132 
5133 static void
5134 kmem_cache_move_notify_task(void *arg)
5135 {
5136 	kmem_move_notify_args_t *args = arg;
5137 	kmem_cache_t *cp = args->kmna_cache;
5138 	void *buf = args->kmna_buf;
5139 	kmem_slab_t *sp;
5140 
5141 	ASSERT(taskq_member(kmem_taskq, curthread));
5142 	ASSERT(list_link_active(&cp->cache_link));
5143 
5144 	kmem_free(args, sizeof (kmem_move_notify_args_t));
5145 	mutex_enter(&cp->cache_lock);
5146 	sp = kmem_slab_allocated(cp, NULL, buf);
5147 
5148 	/* Ignore the notification if the buffer is no longer allocated. */
5149 	if (sp == NULL) {
5150 		mutex_exit(&cp->cache_lock);
5151 		return;
5152 	}
5153 
5154 	/* Ignore the notification if there's no reason to move the buffer. */
5155 	if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5156 		/*
5157 		 * So far the notification is not ignored. Ignore the
5158 		 * notification if the slab is not marked by an earlier refusal
5159 		 * to move a buffer.
5160 		 */
5161 		if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5162 		    (sp->slab_later_count == 0)) {
5163 			mutex_exit(&cp->cache_lock);
5164 			return;
5165 		}
5166 
5167 		kmem_slab_move_yes(cp, sp, buf);
5168 		ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5169 		sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5170 		mutex_exit(&cp->cache_lock);
5171 		/* see kmem_move_buffers() about dropping the lock */
5172 		(void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5173 		mutex_enter(&cp->cache_lock);
5174 		ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5175 		sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5176 		if (sp->slab_refcnt == 0) {
5177 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5178 			list_remove(deadlist, sp);
5179 
5180 			if (!avl_is_empty(
5181 			    &cp->cache_defrag->kmd_moves_pending)) {
5182 				list_insert_head(deadlist, sp);
5183 				mutex_exit(&cp->cache_lock);
5184 				return;
5185 			}
5186 
5187 			cp->cache_defrag->kmd_deadcount--;
5188 			cp->cache_slab_destroy++;
5189 			mutex_exit(&cp->cache_lock);
5190 			kmem_slab_destroy(cp, sp);
5191 			return;
5192 		}
5193 	} else {
5194 		kmem_slab_move_yes(cp, sp, buf);
5195 	}
5196 	mutex_exit(&cp->cache_lock);
5197 }
5198 
5199 void
5200 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5201 {
5202 	kmem_move_notify_args_t *args;
5203 
5204 	args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5205 	if (args != NULL) {
5206 		args->kmna_cache = cp;
5207 		args->kmna_buf = buf;
5208 		if (!taskq_dispatch(kmem_taskq,
5209 		    (task_func_t *)kmem_cache_move_notify_task, args,
5210 		    TQ_NOSLEEP))
5211 			kmem_free(args, sizeof (kmem_move_notify_args_t));
5212 	}
5213 }
5214 
5215 static void
5216 kmem_cache_defrag(kmem_cache_t *cp)
5217 {
5218 	size_t n;
5219 
5220 	ASSERT(cp->cache_defrag != NULL);
5221 
5222 	mutex_enter(&cp->cache_lock);
5223 	n = avl_numnodes(&cp->cache_partial_slabs);
5224 	if (n > 1) {
5225 		/* kmem_move_buffers() drops and reacquires cache_lock */
5226 		cp->cache_defrag->kmd_defrags++;
5227 		(void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5228 	}
5229 	mutex_exit(&cp->cache_lock);
5230 }
5231 
5232 /* Is this cache above the fragmentation threshold? */
5233 static boolean_t
5234 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5235 {
5236 	/*
5237 	 *	nfree		kmem_frag_numer
5238 	 * ------------------ > ---------------
5239 	 * cp->cache_buftotal	kmem_frag_denom
5240 	 */
5241 	return ((nfree * kmem_frag_denom) >
5242 	    (cp->cache_buftotal * kmem_frag_numer));
5243 }
5244 
5245 static boolean_t
5246 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5247 {
5248 	boolean_t fragmented;
5249 	uint64_t nfree;
5250 
5251 	ASSERT(MUTEX_HELD(&cp->cache_lock));
5252 	*doreap = B_FALSE;
5253 
5254 	if (kmem_move_fulltilt) {
5255 		if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5256 			return (B_TRUE);
5257 		}
5258 	} else {
5259 		if ((cp->cache_complete_slab_count + avl_numnodes(
5260 		    &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5261 			return (B_FALSE);
5262 		}
5263 	}
5264 
5265 	nfree = cp->cache_bufslab;
5266 	fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5267 	    kmem_cache_frag_threshold(cp, nfree));
5268 
5269 	/*
5270 	 * Free buffers in the magazine layer appear allocated from the point of
5271 	 * view of the slab layer. We want to know if the slab layer would
5272 	 * appear fragmented if we included free buffers from magazines that
5273 	 * have fallen out of the working set.
5274 	 */
5275 	if (!fragmented) {
5276 		long reap;
5277 
5278 		mutex_enter(&cp->cache_depot_lock);
5279 		reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5280 		reap = MIN(reap, cp->cache_full.ml_total);
5281 		mutex_exit(&cp->cache_depot_lock);
5282 
5283 		nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5284 		if (kmem_cache_frag_threshold(cp, nfree)) {
5285 			*doreap = B_TRUE;
5286 		}
5287 	}
5288 
5289 	return (fragmented);
5290 }
5291 
5292 /* Called periodically from kmem_taskq */
5293 static void
5294 kmem_cache_scan(kmem_cache_t *cp)
5295 {
5296 	boolean_t reap = B_FALSE;
5297 	kmem_defrag_t *kmd;
5298 
5299 	ASSERT(taskq_member(kmem_taskq, curthread));
5300 
5301 	mutex_enter(&cp->cache_lock);
5302 
5303 	kmd = cp->cache_defrag;
5304 	if (kmd->kmd_consolidate > 0) {
5305 		kmd->kmd_consolidate--;
5306 		mutex_exit(&cp->cache_lock);
5307 		kmem_cache_reap(cp);
5308 		return;
5309 	}
5310 
5311 	if (kmem_cache_is_fragmented(cp, &reap)) {
5312 		size_t slabs_found;
5313 
5314 		/*
5315 		 * Consolidate reclaimable slabs from the end of the partial
5316 		 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5317 		 * reclaimable slabs). Keep track of how many candidate slabs we
5318 		 * looked for and how many we actually found so we can adjust
5319 		 * the definition of a candidate slab if we're having trouble
5320 		 * finding them.
5321 		 *
5322 		 * kmem_move_buffers() drops and reacquires cache_lock.
5323 		 */
5324 		kmd->kmd_scans++;
5325 		slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5326 		    kmem_reclaim_max_slabs, 0);
5327 		if (slabs_found >= 0) {
5328 			kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5329 			kmd->kmd_slabs_found += slabs_found;
5330 		}
5331 
5332 		if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5333 			kmd->kmd_tries = 0;
5334 
5335 			/*
5336 			 * If we had difficulty finding candidate slabs in
5337 			 * previous scans, adjust the threshold so that
5338 			 * candidates are easier to find.
5339 			 */
5340 			if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5341 				kmem_adjust_reclaim_threshold(kmd, -1);
5342 			} else if ((kmd->kmd_slabs_found * 2) <
5343 			    kmd->kmd_slabs_sought) {
5344 				kmem_adjust_reclaim_threshold(kmd, 1);
5345 			}
5346 			kmd->kmd_slabs_sought = 0;
5347 			kmd->kmd_slabs_found = 0;
5348 		}
5349 	} else {
5350 		kmem_reset_reclaim_threshold(cp->cache_defrag);
5351 #ifdef	DEBUG
5352 		if (!avl_is_empty(&cp->cache_partial_slabs)) {
5353 			/*
5354 			 * In a debug kernel we want the consolidator to
5355 			 * run occasionally even when there is plenty of
5356 			 * memory.
5357 			 */
5358 			uint16_t debug_rand;
5359 
5360 			(void) random_get_bytes((uint8_t *)&debug_rand, 2);
5361 			if (!kmem_move_noreap &&
5362 			    ((debug_rand % kmem_mtb_reap) == 0)) {
5363 				mutex_exit(&cp->cache_lock);
5364 				kmem_cache_reap(cp);
5365 				return;
5366 			} else if ((debug_rand % kmem_mtb_move) == 0) {
5367 				kmd->kmd_scans++;
5368 				(void) kmem_move_buffers(cp,
5369 				    kmem_reclaim_scan_range, 1, KMM_DEBUG);
5370 			}
5371 		}
5372 #endif	/* DEBUG */
5373 	}
5374 
5375 	mutex_exit(&cp->cache_lock);
5376 
5377 	if (reap)
5378 		kmem_depot_ws_reap(cp);
5379 }
5380