1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 /* 31 * Common Inter-Process Communication routines. 32 * 33 * Overview 34 * -------- 35 * 36 * The System V inter-process communication (IPC) facilities provide 37 * three services, message queues, semaphore arrays, and shared memory 38 * segments, which are mananged using filesystem-like namespaces. 39 * Unlike a filesystem, these namespaces aren't mounted and accessible 40 * via a path -- a special API is used to interact with the different 41 * facilities (nothing precludes a VFS-based interface, but the 42 * standards require the special APIs). Furthermore, these special 43 * APIs don't use file descriptors, nor do they have an equivalent. 44 * This means that every operation which acts on an object needs to 45 * perform the quivalent of a lookup, which in turn means that every 46 * operation can fail if the specified object doesn't exist in the 47 * facility's namespace. 48 * 49 * Objects 50 * ------- 51 * 52 * Each object in a namespace has a unique ID, which is assigned by the 53 * system and is used to identify the object when performing operations 54 * on it. An object can also have a key, which is selected by the user 55 * at allocation time and is used as a primitive rendezvous mechanism. 56 * An object without a key is said to have a "private" key. 57 * 58 * To perform an operation on an object given its key, one must first 59 * perform a lookup and obtain its ID. The ID is then used to identify 60 * the object when performing the operation. If the object has a 61 * private key, the ID must be known or obtained by other means. 62 * 63 * Each object in the namespace has a creator uid and gid, as well as 64 * an owner uid and gid. Both are initialized with the ruid and rgid 65 * of the process which created the object. The creator or current 66 * owner has the ability to change the owner of the object. 67 * 68 * Each object in the namespace has a set of file-like permissions, 69 * which, in conjunction with the creator and owner uid and gid, 70 * control read and write access to the object (execute is ignored). 71 * 72 * Each object also has a creator project and zone, which are used to 73 * account for its resource usage. 74 * 75 * Operations 76 * ---------- 77 * 78 * There are five operations which all three facilities have in 79 * common: GET, SET, STAT, RMID, and IDS. 80 * 81 * GET, like open, is used to allocate a new object or obtain an 82 * existing one (using its key). It takes a key, a set of flags and 83 * mode bits, and optionally facility-specific arguments. If the key 84 * is IPC_PRIVATE, a new object with the requested mode bits and 85 * facility-specific attributes is created. If the key isn't 86 * IPC_PRIVATE, the GET will attempt to look up the specified key and 87 * either return that or create a new key depending on the state of the 88 * IPC_CREAT and IPC_EXCL flags, much like open. If GET needs to 89 * allocate an object, it can fail if there is insufficient space in 90 * the namespace (the maximum number of ids for the facility has been 91 * exceeded) or if the facility-specific initialization fails. If GET 92 * finds an object it can return, it can still fail if that object's 93 * permissions or facility-specific attributes are less than those 94 * requested. 95 * 96 * SET is used to adjust facility-specific parameters of an object, in 97 * addition to the owner uid and gid, and mode bits. It can fail if 98 * the caller isn't the creator or owner. 99 * 100 * STAT is used to obtain information about an object including the 101 * general attributes object described as well as facility-specific 102 * information. It can fail if the caller doesn't have read 103 * permission. 104 * 105 * RMID removes an object from the namespace. Subsequent operations 106 * using the object's ID or key will fail (until another object is 107 * created with the same key or ID). Since an RMID may be performed 108 * asynchronously with other operations, it is possible that other 109 * threads and/or processes will have references to the object. While 110 * a facility may have actions which need to be performed at RMID time, 111 * only when all references are dropped can the object be destroyed. 112 * RMID will fail if the caller isn't the creator or owner. 113 * 114 * IDS obtains a list of all IDs in a facility's namespace. There are 115 * no facility-specific behaviors of IDS. 116 * 117 * Design 118 * ------ 119 * 120 * Because some IPC facilities provide services whose operations must 121 * scale, a mechanism which allows fast, concurrent access to 122 * individual objects is needed. Of primary importance is object 123 * lookup based on ID (SET, STAT, others). Allocation (GET), 124 * deallocation (RMID), ID enumeration (IDS), and key lookups (GET) are 125 * lesser concerns, but should be implemented in such a way that ID 126 * lookup isn't affected (at least not in the common case). 127 * 128 * Starting from the bottom up, each object is represented by a 129 * structure, the first member of which must be a kipc_perm_t. The 130 * kipc_perm_t contains the information described above in "Objects", a 131 * reference count (since the object may continue to exist after it has 132 * been removed from the namespace), as well as some additional 133 * metadata used to manage data structure membership. These objects 134 * are dynamically allocated. 135 * 136 * Above the objects is a power-of-two sized table of ID slots. Each 137 * slot contains a pointer to an object, a sequence number, and a 138 * lock. An object's ID is a function of its slot's index in the table 139 * and its slot's sequence number. Every time a slot is released (via 140 * RMID) its sequence number is increased. Strictly speaking, the 141 * sequence number is unnecessary. However, checking the sequence 142 * number after a lookup provides a certain degree of robustness 143 * against the use of stale IDs (useful since nothing else does). When 144 * the table fills up, it is resized (see Locking, below). 145 * 146 * Of an ID's 31 bits (an ID is, as defined by the standards, a signed 147 * int) the top IPC_SEQ_BITS are used for the sequence number with the 148 * remainder holding the index into the table. The size of the table 149 * is therefore bounded at 2 ^ (31 - IPC_SEQ_BITS) slots. 150 * 151 * Managing this table is the ipc_service structure. It contains a 152 * pointer to the dynamically allocated ID table, a namespace-global 153 * lock, an id_space for managing the free space in the table, and 154 * sundry other metadata necessary for the maintenance of the 155 * namespace. An AVL tree of all keyed objects in the table (sorted by 156 * key) is used for key lookups. An unordered doubly linked list of 157 * all objects in the namespace (keyed or not) is maintained to 158 * facilitate ID enumeration. 159 * 160 * To help visualize these relationships, here's a picture of a 161 * namespace with a table of size 8 containing three objects 162 * (IPC_SEQ_BITS = 28): 163 * 164 * 165 * +-ipc_service_t--+ 166 * | table *---\ 167 * | keys *---+----------------------\ 168 * | all ids *--\| | 169 * | | || | 170 * +----------------+ || | 171 * || | 172 * /-------------------/| | 173 * | /---------------/ | 174 * | | | 175 * | v | 176 * | +-0------+-1------+-2------+-3------+-4--+---+-5------+-6------+-7------+ 177 * | | Seq=3 | | | Seq=1 | : | | | Seq=6 | 178 * | | | | | | : | | | | 179 * | +-*------+--------+--------+-*------+----+---+--------+--------+-*------+ 180 * | | | | | 181 * | | /---/ | /----------------/ 182 * | | | | | 183 * | v v | v 184 * | +-kipc_perm_t-+ +-kipc_perm_t-+ | +-kipc_perm_t-+ 185 * | | id=0x30 | | id=0x13 | | | id=0x67 | 186 * | | key=0xfeed | | key=0xbeef | | | key=0xcafe | 187 * \->| [list] |<------>| [list] |<------>| [list] | 188 * /->| [avl left] x /--->| [avl left] x \--->| [avl left] *---\ 189 * | | [avl right] x | | [avl right] x | [avl right] *---+-\ 190 * | | | | | | | | | | 191 * | +-------------+ | +-------------+ +-------------+ | | 192 * | \---------------------------------------------/ | 193 * \--------------------------------------------------------------------/ 194 * 195 * Locking 196 * ------- 197 * 198 * There are three locks (or sets of locks) which are used to ensure 199 * correctness: the slot locks, the namespace lock, and p_lock (needed 200 * when checking resource controls). Their ordering is 201 * 202 * namespace lock -> slot lock 0 -> ... -> slot lock t -> p_lock 203 * 204 * Generally speaking, the namespace lock is used to protect allocation 205 * and removal from the namespace, ID enumeration, and resizing the ID 206 * table. Specifically: 207 * 208 * - write access to all fields of the ipc_service structure 209 * - read access to all variable fields of ipc_service except 210 * ipcs_tabsz (table size) and ipcs_table (the table pointer) 211 * - read/write access to ipc_avl, ipc_list in visible objects' 212 * kipc_perm structures (i.e. objects which have been removed from 213 * the namespace don't have this restriction) 214 * - write access to ipct_seq and ipct_data in the table entries 215 * 216 * A slot lock by itself is meaningless (except when resizing). Of 217 * greater interest conceptually is the notion of an ID lock -- a 218 * "virtual lock" which refers to whichever slot lock an object's ID 219 * currently hashes to. 220 * 221 * An ID lock protects all objects with that ID. Normally there will 222 * only be one such object: the one pointed to by the locked slot. 223 * However, if an object is removed from the namespace but retains 224 * references (e.g. an attached shared memory segment which has been 225 * RMIDed), it continues to use the lock associated with its original 226 * ID. While this can result in increased contention, operations which 227 * require taking the ID lock of removed objects are infrequent. 228 * 229 * Specifically, an ID lock protects the contents of an object's 230 * structure, including the contents of the embedded kipc_perm 231 * structure (but excluding those fields protected by the namespace 232 * lock). It also protects the ipct_seq and ipct_data fields in its 233 * slot (it is really a slot lock, after all). 234 * 235 * Recall that the table is resizable. To avoid requiring every ID 236 * lookup to take a global lock, a scheme much like that employed for 237 * file descriptors (see the comment above UF_ENTER in user.h) is 238 * used. Note that the sequence number and data pointer are protected 239 * by both the namespace lock and their slot lock. When the table is 240 * resized, the following operations take place: 241 * 242 * 1) A new table is allocated. 243 * 2) The global lock is taken. 244 * 3) All old slots are locked, in order. 245 * 4) The first half of the new slots are locked. 246 * 5) All table entries are copied to the new table, and cleared from 247 * the old table. 248 * 6) The ipc_service structure is updated to point to the new table. 249 * 7) The ipc_service structure is updated with the new table size. 250 * 8) All slot locks (old and new) are dropped. 251 * 252 * Because the slot locks are embedded in the table, ID lookups and 253 * other operations which require taking an slot lock need to verify 254 * that the lock taken wasn't part of a stale table. This is 255 * accomplished by checking the table size before and after 256 * dereferencing the table pointer and taking the lock: if the size 257 * changes, the lock must be dropped and reacquired. It is this 258 * additional work which distinguishes an ID lock from a slot lock. 259 * 260 * Because we can't guarantee that threads aren't accessing the old 261 * tables' locks, they are never deallocated. To prevent spurious 262 * reports of memory leaks, a pointer to the discarded table is stored 263 * in the new one in step 5. (Theoretically ipcs_destroy will delete 264 * the discarded tables, but it is only ever called from a failed _init 265 * invocation; i.e. when there aren't any.) 266 * 267 * Interfaces 268 * ---------- 269 * 270 * The following interfaces are provided by the ipc module for use by 271 * the individual IPC facilities: 272 * 273 * ipcperm_access 274 * 275 * Given an object and a cred structure, determines if the requested 276 * access type is allowed. 277 * 278 * ipcperm_set, ipcperm_stat, 279 * ipcperm_set64, ipcperm_stat64 280 * 281 * Performs the common portion of an STAT or SET operation. All 282 * (except stat and stat64) can fail, so they should be called before 283 * any facility-specific non-reversible changes are made to an 284 * object. Similarly, the set operations have side effects, so they 285 * should only be called once the possibility of a facility-specific 286 * failure is eliminated. 287 * 288 * ipcs_create 289 * 290 * Creates an IPC namespace for use by an IPC facility. 291 * 292 * ipcs_destroy 293 * 294 * Destroys an IPC namespace. 295 * 296 * ipcs_lock, ipcs_unlock 297 * 298 * Takes the namespace lock. Ideally such access wouldn't be 299 * necessary, but there may be facility-specific data protected by 300 * this lock (e.g. project-wide resource consumption). 301 * 302 * ipc_lock 303 * 304 * Takes the lock associated with an ID. Can't fail. 305 * 306 * ipc_relock 307 * 308 * Like ipc_lock, but takes a pointer to a held lock. Drops the lock 309 * unless it is the one that would have been returned by ipc_lock. 310 * Used after calls to cv_wait. 311 * 312 * ipc_lookup 313 * 314 * Performs an ID lookup, returns with the ID lock held. Fails if 315 * the ID doesn't exist in the namespace. 316 * 317 * ipc_hold 318 * 319 * Takes a reference on an object. 320 * 321 * ipc_rele 322 * 323 * Releases a reference on an object, and drops the object's lock. 324 * Calls the object's destructor if last reference is being 325 * released. 326 * 327 * ipc_rele_locked 328 * 329 * Releases a reference on an object. Doesn't drop lock, and may 330 * only be called when there is more than one reference to the 331 * object. 332 * 333 * ipc_get, ipc_commit_begin, ipc_commit_end, ipc_cleanup 334 * 335 * Components of a GET operation. ipc_get performs a key lookup, 336 * allocating an object if the key isn't found (returning with the 337 * namespace lock and p_lock held), and returning the existing object 338 * if it is (with the object lock held). ipc_get doesn't modify the 339 * namespace. 340 * 341 * ipc_commit_begin begins the process of inserting an object 342 * allocated by ipc_get into the namespace, and can fail. If 343 * successful, it returns with the namespace lock and p_lock held. 344 * ipc_commit_end completes the process of inserting an object into 345 * the namespace and can't fail. The facility can call ipc_cleanup 346 * at any time following a successful ipc_get and before 347 * ipc_commit_end or a failed ipc_commit_begin to fail the 348 * allocation. Pseudocode for the suggested GET implementation: 349 * 350 * top: 351 * 352 * ipc_get 353 * 354 * if failure 355 * return 356 * 357 * if found { 358 * 359 * if object meets criteria 360 * unlock object and return success 361 * else 362 * unlock object and return failure 363 * 364 * } else { 365 * 366 * perform resource control tests 367 * drop namespace lock, p_lock 368 * if failure 369 * ipc_cleanup 370 * 371 * perform facility-specific initialization 372 * if failure { 373 * facility-specific cleanup 374 * ipc_cleanup 375 * } 376 * 377 * ( At this point the object should be destructible using the 378 * destructor given to ipcs_create ) 379 * 380 * ipc_commit_begin 381 * if retry 382 * goto top 383 * else if failure 384 * return 385 * 386 * perform facility-specific resource control tests/allocations 387 * if failure 388 * ipc_cleanup 389 * 390 * ipc_commit_end 391 * perform any infallible post-creation actions, unlock, and return 392 * 393 * } 394 * 395 * ipc_rmid 396 * 397 * Performs the common portion of an RMID operation -- looks up an ID 398 * removes it, and calls the a facility-specific function to do 399 * RMID-time cleanup on the private portions of the object. 400 * 401 * ipc_ids 402 * 403 * Performs the common portion of an IDS operation. 404 * 405 */ 406 407 #include <sys/types.h> 408 #include <sys/param.h> 409 #include <sys/cred.h> 410 #include <sys/policy.h> 411 #include <sys/proc.h> 412 #include <sys/user.h> 413 #include <sys/ipc.h> 414 #include <sys/ipc_impl.h> 415 #include <sys/errno.h> 416 #include <sys/systm.h> 417 #include <sys/list.h> 418 #include <sys/atomic.h> 419 #include <sys/zone.h> 420 #include <sys/task.h> 421 #include <sys/modctl.h> 422 423 #include <c2/audit.h> 424 425 static struct modlmisc modlmisc = { 426 &mod_miscops, 427 "common ipc code", 428 }; 429 430 static struct modlinkage modlinkage = { 431 MODREV_1, (void *)&modlmisc, NULL 432 }; 433 434 435 int 436 _init(void) 437 { 438 return (mod_install(&modlinkage)); 439 } 440 441 int 442 _fini(void) 443 { 444 return (mod_remove(&modlinkage)); 445 } 446 447 int 448 _info(struct modinfo *modinfop) 449 { 450 return (mod_info(&modlinkage, modinfop)); 451 } 452 453 454 /* 455 * Check message, semaphore, or shared memory access permissions. 456 * 457 * This routine verifies the requested access permission for the current 458 * process. The zone ids are compared, and the appropriate bits are 459 * checked corresponding to owner, group (including the list of 460 * supplementary groups), or everyone. Zero is returned on success. 461 * On failure, the security policy is asked to check to override the 462 * permissions check; the policy will either return 0 for access granted 463 * or EACCES. 464 * 465 * Access to objects in other zones requires that the caller be in the 466 * global zone and have the appropriate IPC_DAC_* privilege, regardless 467 * of whether the uid or gid match those of the object. Note that 468 * cross-zone accesses will normally never get here since they'll 469 * fail in ipc_lookup or ipc_get. 470 * 471 * The arguments must be set up as follows: 472 * p - Pointer to permission structure to verify 473 * mode - Desired access permissions 474 */ 475 int 476 ipcperm_access(kipc_perm_t *p, int mode, cred_t *cr) 477 { 478 int shifts = 0; 479 uid_t uid = crgetuid(cr); 480 zoneid_t zoneid = getzoneid(); 481 482 if (p->ipc_zoneid == zoneid) { 483 if (uid != p->ipc_uid && uid != p->ipc_cuid) { 484 shifts += 3; 485 if (!groupmember(p->ipc_gid, cr) && 486 !groupmember(p->ipc_cgid, cr)) 487 shifts += 3; 488 } 489 490 mode &= ~(p->ipc_mode << shifts); 491 492 if (mode == 0) 493 return (0); 494 } else if (zoneid != GLOBAL_ZONEID) 495 return (EACCES); 496 497 return (secpolicy_ipc_access(cr, p, mode)); 498 } 499 500 /* 501 * There are two versions of the ipcperm_set/stat functions: 502 * ipcperm_??? - for use with IPC_SET/STAT 503 * ipcperm_???_64 - for use with IPC_SET64/STAT64 504 * 505 * These functions encapsulate the common portions (copying, permission 506 * checks, and auditing) of the set/stat operations. All, except for 507 * stat and stat_64 which are void, return 0 on success or a non-zero 508 * errno value on error. 509 */ 510 511 int 512 ipcperm_set(ipc_service_t *service, struct cred *cr, 513 kipc_perm_t *kperm, struct ipc_perm *perm, model_t model) 514 { 515 STRUCT_HANDLE(ipc_perm, lperm); 516 uid_t uid; 517 gid_t gid; 518 mode_t mode; 519 zone_t *zone; 520 521 ASSERT(IPC_LOCKED(service, kperm)); 522 523 STRUCT_SET_HANDLE(lperm, model, perm); 524 uid = STRUCT_FGET(lperm, uid); 525 gid = STRUCT_FGET(lperm, gid); 526 mode = STRUCT_FGET(lperm, mode); 527 528 if (secpolicy_ipc_owner(cr, kperm) != 0) 529 return (EPERM); 530 531 zone = crgetzone(cr); 532 if (!VALID_UID(uid, zone) || !VALID_GID(gid, zone)) 533 return (EINVAL); 534 535 kperm->ipc_uid = uid; 536 kperm->ipc_gid = gid; 537 kperm->ipc_mode = (mode & 0777) | (kperm->ipc_mode & ~0777); 538 539 if (AU_AUDITING()) 540 audit_ipcget(service->ipcs_atype, kperm); 541 542 return (0); 543 } 544 545 void 546 ipcperm_stat(struct ipc_perm *perm, kipc_perm_t *kperm, model_t model) 547 { 548 STRUCT_HANDLE(ipc_perm, lperm); 549 550 STRUCT_SET_HANDLE(lperm, model, perm); 551 STRUCT_FSET(lperm, uid, kperm->ipc_uid); 552 STRUCT_FSET(lperm, gid, kperm->ipc_gid); 553 STRUCT_FSET(lperm, cuid, kperm->ipc_cuid); 554 STRUCT_FSET(lperm, cgid, kperm->ipc_cgid); 555 STRUCT_FSET(lperm, mode, kperm->ipc_mode); 556 STRUCT_FSET(lperm, seq, 0); 557 STRUCT_FSET(lperm, key, kperm->ipc_key); 558 } 559 560 int 561 ipcperm_set64(ipc_service_t *service, struct cred *cr, 562 kipc_perm_t *kperm, ipc_perm64_t *perm64) 563 { 564 zone_t *zone; 565 566 ASSERT(IPC_LOCKED(service, kperm)); 567 568 if (secpolicy_ipc_owner(cr, kperm) != 0) 569 return (EPERM); 570 571 zone = crgetzone(cr); 572 if (!VALID_UID(perm64->ipcx_uid, zone) || 573 !VALID_GID(perm64->ipcx_gid, zone)) 574 return (EINVAL); 575 576 kperm->ipc_uid = perm64->ipcx_uid; 577 kperm->ipc_gid = perm64->ipcx_gid; 578 kperm->ipc_mode = (perm64->ipcx_mode & 0777) | 579 (kperm->ipc_mode & ~0777); 580 581 if (AU_AUDITING()) 582 audit_ipcget(service->ipcs_atype, kperm); 583 584 return (0); 585 } 586 587 void 588 ipcperm_stat64(ipc_perm64_t *perm64, kipc_perm_t *kperm) 589 { 590 perm64->ipcx_uid = kperm->ipc_uid; 591 perm64->ipcx_gid = kperm->ipc_gid; 592 perm64->ipcx_cuid = kperm->ipc_cuid; 593 perm64->ipcx_cgid = kperm->ipc_cgid; 594 perm64->ipcx_mode = kperm->ipc_mode; 595 perm64->ipcx_key = kperm->ipc_key; 596 perm64->ipcx_projid = kperm->ipc_proj->kpj_id; 597 perm64->ipcx_zoneid = kperm->ipc_zoneid; 598 } 599 600 601 /* 602 * ipc key comparator. 603 */ 604 static int 605 ipc_key_compar(const void *a, const void *b) 606 { 607 kipc_perm_t *aperm = (kipc_perm_t *)a; 608 kipc_perm_t *bperm = (kipc_perm_t *)b; 609 int ak = aperm->ipc_key; 610 int bk = bperm->ipc_key; 611 zoneid_t az; 612 zoneid_t bz; 613 614 ASSERT(ak != IPC_PRIVATE); 615 ASSERT(bk != IPC_PRIVATE); 616 617 /* 618 * Compare key first, then zoneid. This optimizes performance for 619 * systems with only one zone, since the zone checks will only be 620 * made when the keys match. 621 */ 622 if (ak < bk) 623 return (-1); 624 if (ak > bk) 625 return (1); 626 627 /* keys match */ 628 az = aperm->ipc_zoneid; 629 bz = bperm->ipc_zoneid; 630 if (az < bz) 631 return (-1); 632 if (az > bz) 633 return (1); 634 return (0); 635 } 636 637 /* 638 * Create an ipc service. 639 */ 640 ipc_service_t * 641 ipcs_create(const char *name, rctl_hndl_t proj_rctl, rctl_hndl_t zone_rctl, 642 size_t size, ipc_func_t *dtor, ipc_func_t *rmid, int audit_type, 643 size_t rctl_offset) 644 { 645 ipc_service_t *result; 646 647 result = kmem_alloc(sizeof (ipc_service_t), KM_SLEEP); 648 649 mutex_init(&result->ipcs_lock, NULL, MUTEX_ADAPTIVE, NULL); 650 result->ipcs_count = 0; 651 avl_create(&result->ipcs_keys, ipc_key_compar, size, 0); 652 result->ipcs_tabsz = IPC_IDS_MIN; 653 result->ipcs_table = 654 kmem_zalloc(IPC_IDS_MIN * sizeof (ipc_slot_t), KM_SLEEP); 655 result->ipcs_ssize = size; 656 result->ipcs_ids = id_space_create(name, 0, IPC_IDS_MIN); 657 result->ipcs_dtor = dtor; 658 result->ipcs_rmid = rmid; 659 result->ipcs_proj_rctl = proj_rctl; 660 result->ipcs_zone_rctl = zone_rctl; 661 result->ipcs_atype = audit_type; 662 ASSERT(rctl_offset < sizeof (ipc_rqty_t)); 663 result->ipcs_rctlofs = rctl_offset; 664 list_create(&result->ipcs_usedids, sizeof (kipc_perm_t), 665 offsetof(kipc_perm_t, ipc_list)); 666 667 return (result); 668 } 669 670 /* 671 * Destroy an ipc service. 672 */ 673 void 674 ipcs_destroy(ipc_service_t *service) 675 { 676 ipc_slot_t *slot, *next; 677 678 mutex_enter(&service->ipcs_lock); 679 680 ASSERT(service->ipcs_count == 0); 681 avl_destroy(&service->ipcs_keys); 682 list_destroy(&service->ipcs_usedids); 683 id_space_destroy(service->ipcs_ids); 684 685 for (slot = service->ipcs_table; slot; slot = next) { 686 next = slot[0].ipct_chain; 687 kmem_free(slot, service->ipcs_tabsz * sizeof (ipc_slot_t)); 688 service->ipcs_tabsz >>= 1; 689 } 690 691 mutex_destroy(&service->ipcs_lock); 692 kmem_free(service, sizeof (ipc_service_t)); 693 } 694 695 /* 696 * Takes the service lock. 697 */ 698 void 699 ipcs_lock(ipc_service_t *service) 700 { 701 mutex_enter(&service->ipcs_lock); 702 } 703 704 /* 705 * Releases the service lock. 706 */ 707 void 708 ipcs_unlock(ipc_service_t *service) 709 { 710 mutex_exit(&service->ipcs_lock); 711 } 712 713 714 /* 715 * Locks the specified ID. Returns the ID's ID table index. 716 */ 717 static int 718 ipc_lock_internal(ipc_service_t *service, uint_t id) 719 { 720 uint_t tabsz; 721 uint_t index; 722 kmutex_t *mutex; 723 724 for (;;) { 725 tabsz = service->ipcs_tabsz; 726 membar_consumer(); 727 index = id & (tabsz - 1); 728 mutex = &service->ipcs_table[index].ipct_lock; 729 mutex_enter(mutex); 730 if (tabsz == service->ipcs_tabsz) 731 break; 732 mutex_exit(mutex); 733 } 734 735 return (index); 736 } 737 738 /* 739 * Locks the specified ID. Returns a pointer to the ID's lock. 740 */ 741 kmutex_t * 742 ipc_lock(ipc_service_t *service, int id) 743 { 744 uint_t index; 745 746 /* 747 * These assertions don't reflect requirements of the code 748 * which follows, but they should never fail nonetheless. 749 */ 750 ASSERT(id >= 0); 751 ASSERT(IPC_INDEX(id) < service->ipcs_tabsz); 752 index = ipc_lock_internal(service, id); 753 754 return (&service->ipcs_table[index].ipct_lock); 755 } 756 757 /* 758 * Checks to see if the held lock provided is the current lock for the 759 * specified id. If so, we return it instead of dropping it and 760 * returning the result of ipc_lock. This is intended to speed up cv 761 * wakeups where we are left holding a lock which could be stale, but 762 * probably isn't. 763 */ 764 kmutex_t * 765 ipc_relock(ipc_service_t *service, int id, kmutex_t *lock) 766 { 767 ASSERT(id >= 0); 768 ASSERT(IPC_INDEX(id) < service->ipcs_tabsz); 769 ASSERT(MUTEX_HELD(lock)); 770 771 if (&service->ipcs_table[IPC_INDEX(id)].ipct_lock == lock) 772 return (lock); 773 774 mutex_exit(lock); 775 return (ipc_lock(service, id)); 776 } 777 778 /* 779 * Performs an ID lookup. If the ID doesn't exist or has been removed, 780 * or isn't visible to the caller (because of zones), NULL is returned. 781 * Otherwise, a pointer to the ID's perm structure and held ID lock are 782 * returned. 783 */ 784 kmutex_t * 785 ipc_lookup(ipc_service_t *service, int id, kipc_perm_t **perm) 786 { 787 kipc_perm_t *result; 788 uint_t index; 789 790 /* 791 * There is no need to check to see if id is in-range (i.e. 792 * positive and fits into the table). If it is out-of-range, 793 * the id simply won't match the object's. 794 */ 795 796 index = ipc_lock_internal(service, id); 797 result = service->ipcs_table[index].ipct_data; 798 if (result == NULL || result->ipc_id != (uint_t)id || 799 !HASZONEACCESS(curproc, result->ipc_zoneid)) { 800 mutex_exit(&service->ipcs_table[index].ipct_lock); 801 return (NULL); 802 } 803 804 ASSERT(IPC_SEQ(id) == service->ipcs_table[index].ipct_seq); 805 806 *perm = result; 807 if (AU_AUDITING()) 808 audit_ipc(service->ipcs_atype, id, result); 809 810 return (&service->ipcs_table[index].ipct_lock); 811 } 812 813 /* 814 * Increase the reference count on an ID. 815 */ 816 /*ARGSUSED*/ 817 void 818 ipc_hold(ipc_service_t *s, kipc_perm_t *perm) 819 { 820 ASSERT(IPC_INDEX(perm->ipc_id) < s->ipcs_tabsz); 821 ASSERT(IPC_LOCKED(s, perm)); 822 perm->ipc_ref++; 823 } 824 825 /* 826 * Decrease the reference count on an ID and drops the ID's lock. 827 * Destroys the ID if the new reference count is zero. 828 */ 829 void 830 ipc_rele(ipc_service_t *s, kipc_perm_t *perm) 831 { 832 int nref; 833 834 ASSERT(IPC_INDEX(perm->ipc_id) < s->ipcs_tabsz); 835 ASSERT(IPC_LOCKED(s, perm)); 836 ASSERT(perm->ipc_ref > 0); 837 838 nref = --perm->ipc_ref; 839 mutex_exit(&s->ipcs_table[IPC_INDEX(perm->ipc_id)].ipct_lock); 840 841 if (nref == 0) { 842 ASSERT(IPC_FREE(perm)); /* ipc_rmid clears IPC_ALLOC */ 843 s->ipcs_dtor(perm); 844 project_rele(perm->ipc_proj); 845 zone_rele(perm->ipc_zone); 846 kmem_free(perm, s->ipcs_ssize); 847 } 848 } 849 850 /* 851 * Decrease the reference count on an ID, but don't drop the ID lock. 852 * Used in cases where one thread needs to remove many references (on 853 * behalf of other parties). 854 */ 855 void 856 ipc_rele_locked(ipc_service_t *s, kipc_perm_t *perm) 857 { 858 ASSERT(perm->ipc_ref > 1); 859 ASSERT(IPC_INDEX(perm->ipc_id) < s->ipcs_tabsz); 860 ASSERT(IPC_LOCKED(s, perm)); 861 862 perm->ipc_ref--; 863 } 864 865 866 /* 867 * Internal function to grow the service ID table. 868 */ 869 static int 870 ipc_grow(ipc_service_t *service) 871 { 872 ipc_slot_t *new, *old; 873 int i, oldsize, newsize; 874 875 ASSERT(MUTEX_HELD(&service->ipcs_lock)); 876 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 877 878 if (service->ipcs_tabsz == IPC_IDS_MAX) 879 return (ENOSPC); 880 881 oldsize = service->ipcs_tabsz; 882 newsize = oldsize << 1; 883 new = kmem_zalloc(newsize * sizeof (ipc_slot_t), KM_NOSLEEP); 884 if (new == NULL) 885 return (ENOSPC); 886 887 old = service->ipcs_table; 888 for (i = 0; i < oldsize; i++) { 889 mutex_enter(&old[i].ipct_lock); 890 mutex_enter(&new[i].ipct_lock); 891 892 new[i].ipct_seq = old[i].ipct_seq; 893 new[i].ipct_data = old[i].ipct_data; 894 old[i].ipct_data = NULL; 895 } 896 897 new[0].ipct_chain = old; 898 service->ipcs_table = new; 899 membar_producer(); 900 service->ipcs_tabsz = newsize; 901 902 for (i = 0; i < oldsize; i++) { 903 mutex_exit(&old[i].ipct_lock); 904 mutex_exit(&new[i].ipct_lock); 905 } 906 907 id_space_extend(service->ipcs_ids, oldsize, service->ipcs_tabsz); 908 909 return (0); 910 } 911 912 913 static int 914 ipc_keylookup(ipc_service_t *service, key_t key, int flag, kipc_perm_t **permp) 915 { 916 kipc_perm_t *perm = NULL; 917 avl_index_t where; 918 kipc_perm_t template; 919 920 ASSERT(MUTEX_HELD(&service->ipcs_lock)); 921 922 template.ipc_key = key; 923 template.ipc_zoneid = getzoneid(); 924 if (perm = avl_find(&service->ipcs_keys, &template, &where)) { 925 ASSERT(!IPC_FREE(perm)); 926 if ((flag & (IPC_CREAT | IPC_EXCL)) == (IPC_CREAT | IPC_EXCL)) 927 return (EEXIST); 928 if ((flag & 0777) & ~perm->ipc_mode) { 929 if (AU_AUDITING()) 930 audit_ipcget(NULL, (void *)perm); 931 return (EACCES); 932 } 933 *permp = perm; 934 return (0); 935 } else if (flag & IPC_CREAT) { 936 *permp = NULL; 937 return (0); 938 } 939 return (ENOENT); 940 } 941 942 static int 943 ipc_alloc_test(ipc_service_t *service, proc_t *pp) 944 { 945 ASSERT(MUTEX_HELD(&service->ipcs_lock)); 946 947 /* 948 * Resizing the table first would result in a cleaner code 949 * path, but would also allow a user to (permanently) double 950 * the id table size in cases where the allocation would be 951 * denied. Hence we test the rctl first. 952 */ 953 retry: 954 mutex_enter(&pp->p_lock); 955 if ((rctl_test(service->ipcs_proj_rctl, pp->p_task->tk_proj->kpj_rctls, 956 pp, 1, RCA_SAFE) & RCT_DENY) || 957 (rctl_test(service->ipcs_zone_rctl, pp->p_zone->zone_rctls, 958 pp, 1, RCA_SAFE) & RCT_DENY)) { 959 mutex_exit(&pp->p_lock); 960 return (ENOSPC); 961 } 962 963 if (service->ipcs_count == service->ipcs_tabsz) { 964 int error; 965 966 mutex_exit(&pp->p_lock); 967 if (error = ipc_grow(service)) 968 return (error); 969 goto retry; 970 } 971 972 return (0); 973 } 974 975 /* 976 * Given a key, search for or create the associated identifier. 977 * 978 * If IPC_CREAT is specified and the key isn't found, or if the key is 979 * equal to IPC_PRIVATE, we return 0 and place a pointer to a newly 980 * allocated object structure in permp. A pointer to the held service 981 * lock is placed in lockp. ipc_mode's IPC_ALLOC bit is clear. 982 * 983 * If the key is found and no error conditions arise, we return 0 and 984 * place a pointer to the existing object structure in permp. A 985 * pointer to the held ID lock is placed in lockp. ipc_mode's 986 * IPC_ALLOC bit is set. 987 * 988 * Otherwise, a non-zero errno value is returned. 989 */ 990 int 991 ipc_get(ipc_service_t *service, key_t key, int flag, kipc_perm_t **permp, 992 kmutex_t **lockp) 993 { 994 kipc_perm_t *perm = NULL; 995 proc_t *pp = curproc; 996 int error, index; 997 cred_t *cr = CRED(); 998 999 if (key != IPC_PRIVATE) { 1000 1001 mutex_enter(&service->ipcs_lock); 1002 error = ipc_keylookup(service, key, flag, &perm); 1003 if (perm != NULL) 1004 index = ipc_lock_internal(service, perm->ipc_id); 1005 mutex_exit(&service->ipcs_lock); 1006 1007 if (error) { 1008 ASSERT(perm == NULL); 1009 return (error); 1010 } 1011 1012 if (perm) { 1013 ASSERT(!IPC_FREE(perm)); 1014 *permp = perm; 1015 *lockp = &service->ipcs_table[index].ipct_lock; 1016 return (0); 1017 } 1018 1019 /* Key not found; fall through */ 1020 } 1021 1022 perm = kmem_zalloc(service->ipcs_ssize, KM_SLEEP); 1023 1024 mutex_enter(&service->ipcs_lock); 1025 if (error = ipc_alloc_test(service, pp)) { 1026 mutex_exit(&service->ipcs_lock); 1027 kmem_free(perm, service->ipcs_ssize); 1028 return (error); 1029 } 1030 1031 perm->ipc_cuid = perm->ipc_uid = crgetuid(cr); 1032 perm->ipc_cgid = perm->ipc_gid = crgetgid(cr); 1033 perm->ipc_zoneid = getzoneid(); 1034 perm->ipc_mode = flag & 0777; 1035 perm->ipc_key = key; 1036 perm->ipc_ref = 1; 1037 perm->ipc_id = IPC_ID_INVAL; 1038 *permp = perm; 1039 *lockp = &service->ipcs_lock; 1040 1041 return (0); 1042 } 1043 1044 /* 1045 * Attempts to add the a newly created ID to the global namespace. If 1046 * creating it would cause an error, we return the error. If there is 1047 * the possibility that we could obtain the existing ID and return it 1048 * to the user, we return EAGAIN. Otherwise, we return 0 with p_lock 1049 * and the service lock held. 1050 * 1051 * Since this should be only called after all initialization has been 1052 * completed, on failure we automatically invoke the destructor for the 1053 * object and deallocate the memory associated with it. 1054 */ 1055 int 1056 ipc_commit_begin(ipc_service_t *service, key_t key, int flag, 1057 kipc_perm_t *newperm) 1058 { 1059 kipc_perm_t *perm; 1060 int error; 1061 proc_t *pp = curproc; 1062 1063 ASSERT(newperm->ipc_ref == 1); 1064 ASSERT(IPC_FREE(newperm)); 1065 1066 /* 1067 * Set ipc_proj and ipc_zone so that future calls to ipc_cleanup() 1068 * clean up the necessary state. This must be done before the 1069 * potential call to ipcs_dtor() below. 1070 */ 1071 newperm->ipc_proj = pp->p_task->tk_proj; 1072 newperm->ipc_zone = pp->p_zone; 1073 1074 mutex_enter(&service->ipcs_lock); 1075 /* 1076 * Ensure that no-one has raced with us and created the key. 1077 */ 1078 if ((key != IPC_PRIVATE) && 1079 (((error = ipc_keylookup(service, key, flag, &perm)) != 0) || 1080 (perm != NULL))) { 1081 error = error ? error : EAGAIN; 1082 goto errout; 1083 } 1084 1085 /* 1086 * Ensure that no-one has raced with us and used the last of 1087 * the permissible ids, or the last of the free spaces in the 1088 * id table. 1089 */ 1090 if (error = ipc_alloc_test(service, pp)) 1091 goto errout; 1092 1093 ASSERT(MUTEX_HELD(&service->ipcs_lock)); 1094 ASSERT(MUTEX_HELD(&pp->p_lock)); 1095 1096 return (0); 1097 errout: 1098 mutex_exit(&service->ipcs_lock); 1099 service->ipcs_dtor(newperm); 1100 kmem_free(newperm, service->ipcs_ssize); 1101 return (error); 1102 } 1103 1104 /* 1105 * Commit the ID allocation transaction. Called with p_lock and the 1106 * service lock held, both of which are dropped. Returns the held ID 1107 * lock so the caller can extract the ID and perform ipcget auditing. 1108 */ 1109 kmutex_t * 1110 ipc_commit_end(ipc_service_t *service, kipc_perm_t *perm) 1111 { 1112 ipc_slot_t *slot; 1113 avl_index_t where; 1114 int index; 1115 void *loc; 1116 1117 ASSERT(MUTEX_HELD(&service->ipcs_lock)); 1118 ASSERT(MUTEX_HELD(&curproc->p_lock)); 1119 1120 (void) project_hold(perm->ipc_proj); 1121 (void) zone_hold(perm->ipc_zone); 1122 mutex_exit(&curproc->p_lock); 1123 1124 /* 1125 * Pick out our slot. 1126 */ 1127 service->ipcs_count++; 1128 index = id_alloc(service->ipcs_ids); 1129 ASSERT(index < service->ipcs_tabsz); 1130 slot = &service->ipcs_table[index]; 1131 mutex_enter(&slot->ipct_lock); 1132 ASSERT(slot->ipct_data == NULL); 1133 1134 /* 1135 * Update the perm structure. 1136 */ 1137 perm->ipc_mode |= IPC_ALLOC; 1138 perm->ipc_id = (slot->ipct_seq << IPC_SEQ_SHIFT) | index; 1139 1140 /* 1141 * Push into global visibility. 1142 */ 1143 slot->ipct_data = perm; 1144 if (perm->ipc_key != IPC_PRIVATE) { 1145 loc = avl_find(&service->ipcs_keys, perm, &where); 1146 ASSERT(loc == NULL); 1147 avl_insert(&service->ipcs_keys, perm, where); 1148 } 1149 list_insert_head(&service->ipcs_usedids, perm); 1150 1151 /* 1152 * Update resource consumption. 1153 */ 1154 IPC_PROJ_USAGE(perm, service) += 1; 1155 IPC_ZONE_USAGE(perm, service) += 1; 1156 1157 mutex_exit(&service->ipcs_lock); 1158 return (&slot->ipct_lock); 1159 } 1160 1161 /* 1162 * Clean up function, in case the allocation fails. If called between 1163 * ipc_lookup and ipc_commit_begin, perm->ipc_proj will be 0 and we 1164 * merely free the perm structure. If called after ipc_commit_begin, 1165 * we also drop locks and call the ID's destructor. 1166 */ 1167 void 1168 ipc_cleanup(ipc_service_t *service, kipc_perm_t *perm) 1169 { 1170 ASSERT(IPC_FREE(perm)); 1171 if (perm->ipc_proj) { 1172 mutex_exit(&curproc->p_lock); 1173 mutex_exit(&service->ipcs_lock); 1174 service->ipcs_dtor(perm); 1175 } 1176 kmem_free(perm, service->ipcs_ssize); 1177 } 1178 1179 1180 /* 1181 * Common code to remove an IPC object. This should be called after 1182 * all permissions checks have been performed, and with the service 1183 * and ID locked. Note that this does not remove the object from 1184 * the ipcs_usedids list (this needs to be done by the caller before 1185 * dropping the service lock). 1186 */ 1187 static void 1188 ipc_remove(ipc_service_t *service, kipc_perm_t *perm) 1189 { 1190 int id = perm->ipc_id; 1191 int index; 1192 1193 ASSERT(MUTEX_HELD(&service->ipcs_lock)); 1194 ASSERT(IPC_LOCKED(service, perm)); 1195 1196 index = IPC_INDEX(id); 1197 1198 service->ipcs_table[index].ipct_data = NULL; 1199 1200 if (perm->ipc_key != IPC_PRIVATE) 1201 avl_remove(&service->ipcs_keys, perm); 1202 list_remove(&service->ipcs_usedids, perm); 1203 perm->ipc_mode &= ~IPC_ALLOC; 1204 1205 id_free(service->ipcs_ids, index); 1206 1207 if (service->ipcs_table[index].ipct_seq++ == IPC_SEQ_MASK) 1208 service->ipcs_table[index].ipct_seq = 0; 1209 service->ipcs_count--; 1210 ASSERT(IPC_PROJ_USAGE(perm, service) > 0); 1211 ASSERT(IPC_ZONE_USAGE(perm, service) > 0); 1212 IPC_PROJ_USAGE(perm, service) -= 1; 1213 IPC_ZONE_USAGE(perm, service) -= 1; 1214 ASSERT(service->ipcs_count || ((IPC_PROJ_USAGE(perm, service) == 0) && 1215 (IPC_ZONE_USAGE(perm, service) == 0))); 1216 } 1217 1218 1219 /* 1220 * Common code to perform an IPC_RMID. Returns an errno value on 1221 * failure, 0 on success. 1222 */ 1223 int 1224 ipc_rmid(ipc_service_t *service, int id, cred_t *cr) 1225 { 1226 kipc_perm_t *perm; 1227 kmutex_t *lock; 1228 1229 mutex_enter(&service->ipcs_lock); 1230 1231 lock = ipc_lookup(service, id, &perm); 1232 if (lock == NULL) { 1233 mutex_exit(&service->ipcs_lock); 1234 return (EINVAL); 1235 } 1236 1237 ASSERT(service->ipcs_count > 0); 1238 1239 if (secpolicy_ipc_owner(cr, perm) != 0) { 1240 mutex_exit(lock); 1241 mutex_exit(&service->ipcs_lock); 1242 return (EPERM); 1243 } 1244 1245 /* 1246 * Nothing can fail from this point on. 1247 */ 1248 ipc_remove(service, perm); 1249 mutex_exit(&service->ipcs_lock); 1250 1251 /* perform any per-service removal actions */ 1252 service->ipcs_rmid(perm); 1253 1254 ipc_rele(service, perm); 1255 1256 return (0); 1257 } 1258 1259 /* 1260 * Implementation for shmids, semids, and msgids. buf is the address 1261 * of the user buffer, nids is the size, and pnids is a pointer to 1262 * where we write the actual number of ids that [would] have been 1263 * copied out. 1264 */ 1265 int 1266 ipc_ids(ipc_service_t *service, int *buf, uint_t nids, uint_t *pnids) 1267 { 1268 kipc_perm_t *perm; 1269 size_t idsize = 0; 1270 int error = 0; 1271 int idcount; 1272 int *ids; 1273 int numids = 0; 1274 zoneid_t zoneid = getzoneid(); 1275 int global = INGLOBALZONE(curproc); 1276 1277 if (buf == NULL) 1278 nids = 0; 1279 1280 /* 1281 * Get an accurate count of the total number of ids, and allocate a 1282 * staging buffer. Since ipcs_count is always sane, we don't have 1283 * to take ipcs_lock for our first guess. If there are no ids, or 1284 * we're in the global zone and the number of ids is greater than 1285 * the size of the specified buffer, we shunt to the end. Otherwise, 1286 * we go through the id list looking for (and counting) what is 1287 * visible in the specified zone. 1288 */ 1289 idcount = service->ipcs_count; 1290 for (;;) { 1291 if ((global && idcount > nids) || idcount == 0) { 1292 numids = idcount; 1293 nids = 0; 1294 goto out; 1295 } 1296 1297 idsize = idcount * sizeof (int); 1298 ids = kmem_alloc(idsize, KM_SLEEP); 1299 1300 mutex_enter(&service->ipcs_lock); 1301 if (idcount >= service->ipcs_count) 1302 break; 1303 idcount = service->ipcs_count; 1304 mutex_exit(&service->ipcs_lock); 1305 1306 if (idsize != 0) { 1307 kmem_free(ids, idsize); 1308 idsize = 0; 1309 } 1310 } 1311 1312 for (perm = list_head(&service->ipcs_usedids); perm != NULL; 1313 perm = list_next(&service->ipcs_usedids, perm)) { 1314 ASSERT(!IPC_FREE(perm)); 1315 if (global || perm->ipc_zoneid == zoneid) 1316 ids[numids++] = perm->ipc_id; 1317 } 1318 mutex_exit(&service->ipcs_lock); 1319 1320 /* 1321 * If there isn't enough space to hold all of the ids, just 1322 * return the number of ids without copying out any of them. 1323 */ 1324 if (nids < numids) 1325 nids = 0; 1326 1327 out: 1328 if (suword32(pnids, (uint32_t)numids) || 1329 (nids != 0 && copyout(ids, buf, numids * sizeof (int)))) 1330 error = EFAULT; 1331 if (idsize != 0) 1332 kmem_free(ids, idsize); 1333 return (error); 1334 } 1335 1336 /* 1337 * Destroy IPC objects from the given service that are associated with 1338 * the given zone. 1339 * 1340 * We can't hold on to the service lock when freeing objects, so we 1341 * first search the service and move all the objects to a private 1342 * list, then walk through and free them after dropping the lock. 1343 */ 1344 void 1345 ipc_remove_zone(ipc_service_t *service, zoneid_t zoneid) 1346 { 1347 kipc_perm_t *perm, *next; 1348 list_t rmlist; 1349 kmutex_t *lock; 1350 1351 list_create(&rmlist, sizeof (kipc_perm_t), 1352 offsetof(kipc_perm_t, ipc_list)); 1353 1354 mutex_enter(&service->ipcs_lock); 1355 for (perm = list_head(&service->ipcs_usedids); perm != NULL; 1356 perm = next) { 1357 next = list_next(&service->ipcs_usedids, perm); 1358 if (perm->ipc_zoneid != zoneid) 1359 continue; 1360 1361 /* 1362 * Remove the object from the service, then put it on 1363 * the removal list so we can defer the call to 1364 * ipc_rele (which will actually free the structure). 1365 * We need to do this since the destructor may grab 1366 * the service lock. 1367 */ 1368 ASSERT(!IPC_FREE(perm)); 1369 lock = ipc_lock(service, perm->ipc_id); 1370 ipc_remove(service, perm); 1371 mutex_exit(lock); 1372 list_insert_tail(&rmlist, perm); 1373 } 1374 mutex_exit(&service->ipcs_lock); 1375 1376 /* 1377 * Now that we've dropped the service lock, loop through the 1378 * private list freeing removed objects. 1379 */ 1380 for (perm = list_head(&rmlist); perm != NULL; perm = next) { 1381 next = list_next(&rmlist, perm); 1382 list_remove(&rmlist, perm); 1383 1384 (void) ipc_lock(service, perm->ipc_id); 1385 1386 /* perform any per-service removal actions */ 1387 service->ipcs_rmid(perm); 1388 1389 /* release reference */ 1390 ipc_rele(service, perm); 1391 } 1392 1393 list_destroy(&rmlist); 1394 } 1395