1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2013 OmniTI Computer Consulting, Inc. All rights reserved.
24 * Copyright 2017 Joyent, Inc.
25 */
26
27 /*
28 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
30 */
31
32 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
33 /* All Rights Reserved */
34
35 #include <sys/types.h>
36 #include <sys/inttypes.h>
37 #include <sys/param.h>
38 #include <sys/sysmacros.h>
39 #include <sys/systm.h>
40 #include <sys/signal.h>
41 #include <sys/user.h>
42 #include <sys/errno.h>
43 #include <sys/var.h>
44 #include <sys/proc.h>
45 #include <sys/tuneable.h>
46 #include <sys/debug.h>
47 #include <sys/cmn_err.h>
48 #include <sys/cred.h>
49 #include <sys/vnode.h>
50 #include <sys/vfs.h>
51 #include <sys/vm.h>
52 #include <sys/file.h>
53 #include <sys/mman.h>
54 #include <sys/vmparam.h>
55 #include <sys/fcntl.h>
56 #include <sys/lwpchan_impl.h>
57 #include <sys/nbmlock.h>
58
59 #include <vm/hat.h>
60 #include <vm/as.h>
61 #include <vm/seg.h>
62 #include <vm/seg_dev.h>
63 #include <vm/seg_vn.h>
64
65 int use_brk_lpg = 1;
66 int use_stk_lpg = 1;
67
68 /*
69 * If set, we will not randomize mappings where the 'addr' argument is
70 * non-NULL and not an alignment.
71 */
72 int aslr_respect_mmap_hint = 1;
73
74 static int brk_lpg(caddr_t nva);
75 static int grow_lpg(caddr_t sp);
76
77 intptr_t
brk(caddr_t nva)78 brk(caddr_t nva)
79 {
80 int error;
81 proc_t *p = curproc;
82
83 /*
84 * Serialize brk operations on an address space.
85 * This also serves as the lock protecting p_brksize
86 * and p_brkpageszc.
87 */
88 as_rangelock(p->p_as);
89
90 /*
91 * As a special case to aid the implementation of sbrk(2), if given a
92 * new brk of 0, return the current brk. We'll hide this in brk(2).
93 */
94 if (nva == 0) {
95 intptr_t base = (intptr_t)(p->p_brkbase + p->p_brksize);
96 as_rangeunlock(p->p_as);
97 return (base);
98 }
99
100 if (use_brk_lpg && (p->p_flag & SAUTOLPG) != 0) {
101 error = brk_lpg(nva);
102 } else {
103 error = brk_internal(nva, p->p_brkpageszc);
104 }
105 as_rangeunlock(p->p_as);
106 return ((error != 0 ? set_errno(error) : 0));
107 }
108
109 /*
110 * Algorithm: call arch-specific map_pgsz to get best page size to use,
111 * then call brk_internal().
112 * Returns 0 on success.
113 */
114 static int
brk_lpg(caddr_t nva)115 brk_lpg(caddr_t nva)
116 {
117 struct proc *p = curproc;
118 size_t pgsz, len;
119 caddr_t addr, brkend;
120 caddr_t bssbase = p->p_bssbase;
121 caddr_t brkbase = p->p_brkbase;
122 int oszc, szc;
123 int err;
124
125 oszc = p->p_brkpageszc;
126
127 /*
128 * If p_brkbase has not yet been set, the first call
129 * to brk_internal() will initialize it.
130 */
131 if (brkbase == 0) {
132 return (brk_internal(nva, oszc));
133 }
134
135 len = nva - bssbase;
136
137 pgsz = map_pgsz(MAPPGSZ_HEAP, p, bssbase, len, 0);
138 szc = page_szc(pgsz);
139
140 /*
141 * Covers two cases:
142 * 1. page_szc() returns -1 for invalid page size, so we want to
143 * ignore it in that case.
144 * 2. By design we never decrease page size, as it is more stable.
145 */
146 if (szc <= oszc) {
147 err = brk_internal(nva, oszc);
148 /* If failed, back off to base page size. */
149 if (err != 0 && oszc != 0) {
150 err = brk_internal(nva, 0);
151 }
152 return (err);
153 }
154
155 err = brk_internal(nva, szc);
156 /* If using szc failed, map with base page size and return. */
157 if (err != 0) {
158 if (szc != 0) {
159 err = brk_internal(nva, 0);
160 }
161 return (err);
162 }
163
164 /*
165 * Round up brk base to a large page boundary and remap
166 * anything in the segment already faulted in beyond that
167 * point.
168 */
169 addr = (caddr_t)P2ROUNDUP((uintptr_t)p->p_bssbase, pgsz);
170 brkend = brkbase + p->p_brksize;
171 len = brkend - addr;
172 /* Check that len is not negative. Update page size code for heap. */
173 if (addr >= p->p_bssbase && brkend > addr && IS_P2ALIGNED(len, pgsz)) {
174 (void) as_setpagesize(p->p_as, addr, len, szc, B_FALSE);
175 p->p_brkpageszc = szc;
176 }
177
178 ASSERT(err == 0);
179 return (err); /* should always be 0 */
180 }
181
182 /*
183 * Returns 0 on success.
184 */
185 int
brk_internal(caddr_t nva,uint_t brkszc)186 brk_internal(caddr_t nva, uint_t brkszc)
187 {
188 caddr_t ova; /* current break address */
189 size_t size;
190 int error;
191 struct proc *p = curproc;
192 struct as *as = p->p_as;
193 size_t pgsz;
194 uint_t szc;
195 rctl_qty_t as_rctl;
196
197 /*
198 * extend heap to brkszc alignment but use current p->p_brkpageszc
199 * for the newly created segment. This allows the new extension
200 * segment to be concatenated successfully with the existing brk
201 * segment.
202 */
203 if ((szc = brkszc) != 0) {
204 pgsz = page_get_pagesize(szc);
205 ASSERT(pgsz > PAGESIZE);
206 } else {
207 pgsz = PAGESIZE;
208 }
209
210 mutex_enter(&p->p_lock);
211 as_rctl = rctl_enforced_value(rctlproc_legacy[RLIMIT_DATA],
212 p->p_rctls, p);
213 mutex_exit(&p->p_lock);
214
215 /*
216 * If p_brkbase has not yet been set, the first call
217 * to brk() will initialize it.
218 */
219 if (p->p_brkbase == 0)
220 p->p_brkbase = nva;
221
222 /*
223 * Before multiple page size support existed p_brksize was the value
224 * not rounded to the pagesize (i.e. it stored the exact user request
225 * for heap size). If pgsz is greater than PAGESIZE calculate the
226 * heap size as the real new heap size by rounding it up to pgsz.
227 * This is useful since we may want to know where the heap ends
228 * without knowing heap pagesize (e.g. some old code) and also if
229 * heap pagesize changes we can update p_brkpageszc but delay adding
230 * new mapping yet still know from p_brksize where the heap really
231 * ends. The user requested heap end is stored in libc variable.
232 */
233 if (pgsz > PAGESIZE) {
234 caddr_t tnva = (caddr_t)P2ROUNDUP((uintptr_t)nva, pgsz);
235 size = tnva - p->p_brkbase;
236 if (tnva < p->p_brkbase || (size > p->p_brksize &&
237 size > (size_t)as_rctl)) {
238 szc = 0;
239 pgsz = PAGESIZE;
240 size = nva - p->p_brkbase;
241 }
242 } else {
243 size = nva - p->p_brkbase;
244 }
245
246 /*
247 * use PAGESIZE to roundup ova because we want to know the real value
248 * of the current heap end in case p_brkpageszc changes since the last
249 * p_brksize was computed.
250 */
251 nva = (caddr_t)P2ROUNDUP((uintptr_t)nva, pgsz);
252 ova = (caddr_t)P2ROUNDUP((uintptr_t)(p->p_brkbase + p->p_brksize),
253 PAGESIZE);
254
255 if ((nva < p->p_brkbase) || (size > p->p_brksize &&
256 size > as_rctl)) {
257 mutex_enter(&p->p_lock);
258 (void) rctl_action(rctlproc_legacy[RLIMIT_DATA], p->p_rctls, p,
259 RCA_SAFE);
260 mutex_exit(&p->p_lock);
261 return (ENOMEM);
262 }
263
264 if (nva > ova) {
265 struct segvn_crargs crargs =
266 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
267
268 if (!(p->p_datprot & PROT_EXEC)) {
269 crargs.prot &= ~PROT_EXEC;
270 }
271
272 /*
273 * Add new zfod mapping to extend UNIX data segment
274 * AS_MAP_NO_LPOOB means use 0, and don't reapply OOB policies
275 * via map_pgszcvec(). Use AS_MAP_HEAP to get intermediate
276 * page sizes if ova is not aligned to szc's pgsz.
277 */
278 if (szc > 0) {
279 caddr_t rbss;
280
281 rbss = (caddr_t)P2ROUNDUP((uintptr_t)p->p_bssbase,
282 pgsz);
283 if (IS_P2ALIGNED(p->p_bssbase, pgsz) || ova > rbss) {
284 crargs.szc = p->p_brkpageszc ? p->p_brkpageszc :
285 AS_MAP_NO_LPOOB;
286 } else if (ova == rbss) {
287 crargs.szc = szc;
288 } else {
289 crargs.szc = AS_MAP_HEAP;
290 }
291 } else {
292 crargs.szc = AS_MAP_NO_LPOOB;
293 }
294 crargs.lgrp_mem_policy_flags = LGRP_MP_FLAG_EXTEND_UP;
295 error = as_map(as, ova, (size_t)(nva - ova), segvn_create,
296 &crargs);
297 if (error) {
298 return (error);
299 }
300
301 } else if (nva < ova) {
302 /*
303 * Release mapping to shrink UNIX data segment.
304 */
305 (void) as_unmap(as, nva, (size_t)(ova - nva));
306 }
307 p->p_brksize = size;
308 return (0);
309 }
310
311 /*
312 * Grow the stack to include sp. Return 1 if successful, 0 otherwise.
313 * This routine assumes that the stack grows downward.
314 */
315 int
grow(caddr_t sp)316 grow(caddr_t sp)
317 {
318 struct proc *p = curproc;
319 struct as *as = p->p_as;
320 size_t oldsize = p->p_stksize;
321 size_t newsize;
322 int err;
323
324 /*
325 * Serialize grow operations on an address space.
326 * This also serves as the lock protecting p_stksize
327 * and p_stkpageszc.
328 */
329 as_rangelock(as);
330 if (use_stk_lpg && (p->p_flag & SAUTOLPG) != 0) {
331 err = grow_lpg(sp);
332 } else {
333 err = grow_internal(sp, p->p_stkpageszc);
334 }
335 newsize = p->p_stksize;
336 as_rangeunlock(as);
337
338 if (err == 0 && newsize > oldsize) {
339 ASSERT(IS_P2ALIGNED(oldsize, PAGESIZE));
340 ASSERT(IS_P2ALIGNED(newsize, PAGESIZE));
341 /*
342 * Set up translations so the process doesn't have to fault in
343 * the stack pages we just gave it.
344 */
345 (void) as_fault(as->a_hat, as, p->p_usrstack - newsize,
346 newsize - oldsize, F_INVAL, S_WRITE);
347 }
348 return ((err == 0 ? 1 : 0));
349 }
350
351 /*
352 * Algorithm: call arch-specific map_pgsz to get best page size to use,
353 * then call grow_internal().
354 * Returns 0 on success.
355 */
356 static int
grow_lpg(caddr_t sp)357 grow_lpg(caddr_t sp)
358 {
359 struct proc *p = curproc;
360 size_t pgsz;
361 size_t len, newsize;
362 caddr_t addr, saddr;
363 caddr_t growend;
364 int oszc, szc;
365 int err;
366
367 newsize = p->p_usrstack - sp;
368
369 oszc = p->p_stkpageszc;
370 pgsz = map_pgsz(MAPPGSZ_STK, p, sp, newsize, 0);
371 szc = page_szc(pgsz);
372
373 /*
374 * Covers two cases:
375 * 1. page_szc() returns -1 for invalid page size, so we want to
376 * ignore it in that case.
377 * 2. By design we never decrease page size, as it is more stable.
378 * This shouldn't happen as the stack never shrinks.
379 */
380 if (szc <= oszc) {
381 err = grow_internal(sp, oszc);
382 /* failed, fall back to base page size */
383 if (err != 0 && oszc != 0) {
384 err = grow_internal(sp, 0);
385 }
386 return (err);
387 }
388
389 /*
390 * We've grown sufficiently to switch to a new page size.
391 * So we are going to remap the whole segment with the new page size.
392 */
393 err = grow_internal(sp, szc);
394 /* The grow with szc failed, so fall back to base page size. */
395 if (err != 0) {
396 if (szc != 0) {
397 err = grow_internal(sp, 0);
398 }
399 return (err);
400 }
401
402 /*
403 * Round up stack pointer to a large page boundary and remap
404 * any pgsz pages in the segment already faulted in beyond that
405 * point.
406 */
407 saddr = p->p_usrstack - p->p_stksize;
408 addr = (caddr_t)P2ROUNDUP((uintptr_t)saddr, pgsz);
409 growend = (caddr_t)P2ALIGN((uintptr_t)p->p_usrstack, pgsz);
410 len = growend - addr;
411 /* Check that len is not negative. Update page size code for stack. */
412 if (addr >= saddr && growend > addr && IS_P2ALIGNED(len, pgsz)) {
413 (void) as_setpagesize(p->p_as, addr, len, szc, B_FALSE);
414 p->p_stkpageszc = szc;
415 }
416
417 ASSERT(err == 0);
418 return (err); /* should always be 0 */
419 }
420
421 /*
422 * This routine assumes that the stack grows downward.
423 * Returns 0 on success, errno on failure.
424 */
425 int
grow_internal(caddr_t sp,uint_t growszc)426 grow_internal(caddr_t sp, uint_t growszc)
427 {
428 struct proc *p = curproc;
429 size_t newsize;
430 size_t oldsize;
431 uintptr_t new_start;
432 int error;
433 size_t pgsz;
434 uint_t szc;
435 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
436
437 ASSERT(sp < p->p_usrstack);
438 sp = (caddr_t)P2ALIGN((uintptr_t)sp, PAGESIZE);
439
440 /*
441 * grow to growszc alignment but use current p->p_stkpageszc for
442 * the segvn_crargs szc passed to segvn_create. For memcntl to
443 * increase the szc, this allows the new extension segment to be
444 * concatenated successfully with the existing stack segment.
445 */
446 if ((szc = growszc) != 0) {
447 pgsz = page_get_pagesize(szc);
448 ASSERT(pgsz > PAGESIZE);
449 newsize = p->p_usrstack - (caddr_t)P2ALIGN((uintptr_t)sp, pgsz);
450 if (newsize > (size_t)p->p_stk_ctl) {
451 szc = 0;
452 pgsz = PAGESIZE;
453 newsize = p->p_usrstack - sp;
454 }
455 } else {
456 pgsz = PAGESIZE;
457 newsize = p->p_usrstack - sp;
458 }
459
460 if (newsize > (size_t)p->p_stk_ctl) {
461 (void) rctl_action(rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p,
462 RCA_UNSAFE_ALL);
463
464 return (ENOMEM);
465 }
466
467 oldsize = p->p_stksize;
468 ASSERT(P2PHASE(oldsize, PAGESIZE) == 0);
469
470 if (newsize <= oldsize) { /* prevent the stack from shrinking */
471 return (0);
472 }
473
474 if (!(p->p_stkprot & PROT_EXEC)) {
475 crargs.prot &= ~PROT_EXEC;
476 }
477 /*
478 * extend stack with the proposed new growszc, which is different
479 * than p_stkpageszc only on a memcntl to increase the stack pagesize.
480 * AS_MAP_NO_LPOOB means use 0, and don't reapply OOB policies via
481 * map_pgszcvec(). Use AS_MAP_STACK to get intermediate page sizes
482 * if not aligned to szc's pgsz.
483 */
484 if (szc > 0) {
485 caddr_t oldsp = p->p_usrstack - oldsize;
486 caddr_t austk = (caddr_t)P2ALIGN((uintptr_t)p->p_usrstack,
487 pgsz);
488
489 if (IS_P2ALIGNED(p->p_usrstack, pgsz) || oldsp < austk) {
490 crargs.szc = p->p_stkpageszc ? p->p_stkpageszc :
491 AS_MAP_NO_LPOOB;
492 } else if (oldsp == austk) {
493 crargs.szc = szc;
494 } else {
495 crargs.szc = AS_MAP_STACK;
496 }
497 } else {
498 crargs.szc = AS_MAP_NO_LPOOB;
499 }
500 crargs.lgrp_mem_policy_flags = LGRP_MP_FLAG_EXTEND_DOWN;
501
502 /*
503 * The stack is about to grow into its guard. This can be acceptable
504 * if the size restriction on the stack has been expanded since its
505 * initialization during exec(). In such cases, the guard segment will
506 * be shrunk, provided the new size is reasonable.
507 */
508 new_start = (uintptr_t)p->p_usrstack - newsize;
509 if (p->p_stkg_start != 0 && new_start > p->p_stkg_start &&
510 new_start < p->p_stkg_end) {
511 const size_t unmap_sz = p->p_stkg_end - new_start;
512 const size_t remain_sz = new_start - p->p_stkg_start;
513 extern size_t stack_guard_min_sz;
514
515 /* Do not allow the guard to shrink below minimum size */
516 if (remain_sz < stack_guard_min_sz) {
517 return (ENOMEM);
518 }
519
520 error = as_unmap(p->p_as, (caddr_t)new_start, unmap_sz);
521 if (error != 0) {
522 return (error);
523 }
524 p->p_stkg_end -= unmap_sz;
525 }
526
527 if ((error = as_map(p->p_as, (caddr_t)new_start, newsize - oldsize,
528 segvn_create, &crargs)) != 0) {
529 if (error == EAGAIN) {
530 cmn_err(CE_WARN, "Sorry, no swap space to grow stack "
531 "for pid %d (%s)", p->p_pid, PTOU(p)->u_comm);
532 }
533 return (error);
534 }
535 p->p_stksize = newsize;
536 return (0);
537 }
538
539 /*
540 * Find address for user to map. If MAP_FIXED is not specified, we can pick
541 * any address we want, but we will first try the value in *addrp if it is
542 * non-NULL and _MAP_RANDOMIZE is not set. Thus this is implementing a way to
543 * try and get a preferred address.
544 */
545 int
choose_addr(struct as * as,caddr_t * addrp,size_t len,offset_t off,int vacalign,uint_t flags)546 choose_addr(struct as *as, caddr_t *addrp, size_t len, offset_t off,
547 int vacalign, uint_t flags)
548 {
549 caddr_t basep = (caddr_t)(uintptr_t)((uintptr_t)*addrp & PAGEMASK);
550 size_t lenp = len;
551
552 ASSERT(AS_ISCLAIMGAP(as)); /* searches should be serialized */
553 if (flags & MAP_FIXED) {
554 (void) as_unmap(as, *addrp, len);
555 return (0);
556 } else if (basep != NULL &&
557 ((flags & (MAP_ALIGN | _MAP_RANDOMIZE)) == 0) &&
558 !as_gap(as, len, &basep, &lenp, 0, *addrp)) {
559 /* User supplied address was available */
560 *addrp = basep;
561 } else {
562 /*
563 * No user supplied address or the address supplied was not
564 * available.
565 */
566 map_addr(addrp, len, off, vacalign, flags);
567 }
568 if (*addrp == NULL)
569 return (ENOMEM);
570 return (0);
571 }
572
573
574 /*
575 * Used for MAP_ANON - fast way to get anonymous pages
576 */
577 static int
zmap(struct as * as,caddr_t * addrp,size_t len,uint_t uprot,int flags,offset_t pos)578 zmap(struct as *as, caddr_t *addrp, size_t len, uint_t uprot, int flags,
579 offset_t pos)
580 {
581 struct segvn_crargs vn_a;
582 int error;
583
584 if (((PROT_ALL & uprot) != uprot))
585 return (EACCES);
586
587 if ((flags & MAP_FIXED) != 0) {
588 caddr_t userlimit;
589
590 /*
591 * Use the user address. First verify that
592 * the address to be used is page aligned.
593 * Then make some simple bounds checks.
594 */
595 if (((uintptr_t)*addrp & PAGEOFFSET) != 0)
596 return (EINVAL);
597
598 userlimit = flags & _MAP_LOW32 ?
599 (caddr_t)USERLIMIT32 : as->a_userlimit;
600 switch (valid_usr_range(*addrp, len, uprot, as, userlimit)) {
601 case RANGE_OKAY:
602 break;
603 case RANGE_BADPROT:
604 return (ENOTSUP);
605 case RANGE_BADADDR:
606 default:
607 return (ENOMEM);
608 }
609 }
610 /*
611 * No need to worry about vac alignment for anonymous
612 * pages since this is a "clone" object that doesn't
613 * yet exist.
614 */
615 error = choose_addr(as, addrp, len, pos, ADDR_NOVACALIGN, flags);
616 if (error != 0) {
617 return (error);
618 }
619
620 /*
621 * Use the seg_vn segment driver; passing in the NULL amp
622 * gives the desired "cloning" effect.
623 */
624 vn_a.vp = NULL;
625 vn_a.offset = 0;
626 vn_a.type = flags & MAP_TYPE;
627 vn_a.prot = uprot;
628 vn_a.maxprot = PROT_ALL;
629 vn_a.flags = flags & ~MAP_TYPE;
630 vn_a.cred = CRED();
631 vn_a.amp = NULL;
632 vn_a.szc = 0;
633 vn_a.lgrp_mem_policy_flags = 0;
634
635 return (as_map(as, *addrp, len, segvn_create, &vn_a));
636 }
637
638 #define RANDOMIZABLE_MAPPING(addr, flags) (((flags & MAP_FIXED) == 0) && \
639 !(((flags & MAP_ALIGN) == 0) && (addr != 0) && aslr_respect_mmap_hint))
640
641 static int
smmap_common(caddr_t * addrp,size_t len,int prot,int flags,struct file * fp,offset_t pos)642 smmap_common(caddr_t *addrp, size_t len,
643 int prot, int flags, struct file *fp, offset_t pos)
644 {
645 struct vnode *vp;
646 struct as *as = curproc->p_as;
647 uint_t uprot, maxprot, type;
648 int error;
649 int in_crit = 0;
650
651 if ((flags & ~(MAP_SHARED | MAP_PRIVATE | MAP_FIXED | _MAP_NEW |
652 _MAP_LOW32 | MAP_NORESERVE | MAP_ANON | MAP_ALIGN |
653 MAP_TEXT | MAP_INITDATA)) != 0) {
654 /* | MAP_RENAME */ /* not implemented, let user know */
655 return (EINVAL);
656 }
657
658 if ((flags & MAP_TEXT) && !(prot & PROT_EXEC)) {
659 return (EINVAL);
660 }
661
662 if ((flags & (MAP_TEXT | MAP_INITDATA)) == (MAP_TEXT | MAP_INITDATA)) {
663 return (EINVAL);
664 }
665
666 if ((flags & (MAP_FIXED | _MAP_RANDOMIZE)) ==
667 (MAP_FIXED | _MAP_RANDOMIZE)) {
668 return (EINVAL);
669 }
670
671 /*
672 * If it's not a fixed allocation and mmap ASLR is enabled, randomize
673 * it.
674 */
675 if (RANDOMIZABLE_MAPPING(*addrp, flags) &&
676 secflag_enabled(curproc, PROC_SEC_ASLR))
677 flags |= _MAP_RANDOMIZE;
678
679 #if defined(__sparc)
680 /*
681 * See if this is an "old mmap call". If so, remember this
682 * fact and convert the flags value given to mmap to indicate
683 * the specified address in the system call must be used.
684 * _MAP_NEW is turned set by all new uses of mmap.
685 */
686 if ((flags & _MAP_NEW) == 0)
687 flags |= MAP_FIXED;
688 #endif
689 flags &= ~_MAP_NEW;
690
691 type = flags & MAP_TYPE;
692 if (type != MAP_PRIVATE && type != MAP_SHARED)
693 return (EINVAL);
694
695
696 if (flags & MAP_ALIGN) {
697 if (flags & MAP_FIXED)
698 return (EINVAL);
699
700 /* alignment needs to be a power of 2 >= page size */
701 if (((uintptr_t)*addrp < PAGESIZE && (uintptr_t)*addrp != 0) ||
702 !ISP2((uintptr_t)*addrp))
703 return (EINVAL);
704 }
705 /*
706 * Check for bad lengths and file position.
707 * We let the VOP_MAP routine check for negative lengths
708 * since on some vnode types this might be appropriate.
709 */
710 if (len == 0 || (pos & (u_offset_t)PAGEOFFSET) != 0)
711 return (EINVAL);
712
713 maxprot = PROT_ALL; /* start out allowing all accesses */
714 uprot = prot | PROT_USER;
715
716 if (fp == NULL) {
717 ASSERT(flags & MAP_ANON);
718 /* discard lwpchan mappings, like munmap() */
719 if ((flags & MAP_FIXED) && curproc->p_lcp != NULL)
720 lwpchan_delete_mapping(curproc, *addrp, *addrp + len);
721 as_rangelock(as);
722 error = zmap(as, addrp, len, uprot, flags, pos);
723 as_rangeunlock(as);
724 /*
725 * Tell machine specific code that lwp has mapped shared memory
726 */
727 if (error == 0 && (flags & MAP_SHARED)) {
728 /* EMPTY */
729 LWP_MMODEL_SHARED_AS(*addrp, len);
730 }
731 return (error);
732 } else if ((flags & MAP_ANON) != 0)
733 return (EINVAL);
734
735 vp = fp->f_vnode;
736
737 /* Can't execute code from "noexec" mounted filesystem. */
738 if ((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0)
739 maxprot &= ~PROT_EXEC;
740
741 /*
742 * These checks were added as part of large files.
743 *
744 * Return ENXIO if the initial position is negative; return EOVERFLOW
745 * if (offset + len) would overflow the maximum allowed offset for the
746 * type of file descriptor being used.
747 */
748 if (vp->v_type == VREG) {
749 if (pos < 0)
750 return (ENXIO);
751 if ((offset_t)len > (OFFSET_MAX(fp) - pos))
752 return (EOVERFLOW);
753 }
754
755 if (type == MAP_SHARED && (fp->f_flag & FWRITE) == 0) {
756 /* no write access allowed */
757 maxprot &= ~PROT_WRITE;
758 }
759
760 /*
761 * Verify that the specified protections are not greater than the
762 * maximum allowable protections. Also test to make sure that the
763 * file descriptor allows for read access since "write only" mappings
764 * are hard to do since normally we do the read from the file before
765 * the page can be written.
766 */
767 if (((maxprot & uprot) != uprot) || (fp->f_flag & FREAD) == 0)
768 return (EACCES);
769
770 /*
771 * If the user specified an address, do some simple checks here
772 */
773 if ((flags & MAP_FIXED) != 0) {
774 caddr_t userlimit;
775
776 /*
777 * Use the user address. First verify that
778 * the address to be used is page aligned.
779 * Then make some simple bounds checks.
780 */
781 if (((uintptr_t)*addrp & PAGEOFFSET) != 0)
782 return (EINVAL);
783
784 userlimit = flags & _MAP_LOW32 ?
785 (caddr_t)USERLIMIT32 : as->a_userlimit;
786 switch (valid_usr_range(*addrp, len, uprot, as, userlimit)) {
787 case RANGE_OKAY:
788 break;
789 case RANGE_BADPROT:
790 return (ENOTSUP);
791 case RANGE_BADADDR:
792 default:
793 return (ENOMEM);
794 }
795 }
796
797 if ((prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) &&
798 nbl_need_check(vp)) {
799 int svmand;
800 nbl_op_t nop;
801
802 nbl_start_crit(vp, RW_READER);
803 in_crit = 1;
804 error = nbl_svmand(vp, fp->f_cred, &svmand);
805 if (error != 0)
806 goto done;
807 if ((prot & PROT_WRITE) && (type == MAP_SHARED)) {
808 if (prot & (PROT_READ | PROT_EXEC)) {
809 nop = NBL_READWRITE;
810 } else {
811 nop = NBL_WRITE;
812 }
813 } else {
814 nop = NBL_READ;
815 }
816 if (nbl_conflict(vp, nop, 0, LONG_MAX, svmand, NULL)) {
817 error = EACCES;
818 goto done;
819 }
820 }
821
822 /* discard lwpchan mappings, like munmap() */
823 if ((flags & MAP_FIXED) && curproc->p_lcp != NULL)
824 lwpchan_delete_mapping(curproc, *addrp, *addrp + len);
825
826 /*
827 * Ok, now let the vnode map routine do its thing to set things up.
828 */
829 error = VOP_MAP(vp, pos, as,
830 addrp, len, uprot, maxprot, flags, fp->f_cred, NULL);
831
832 if (error == 0) {
833 /*
834 * Tell machine specific code that lwp has mapped shared memory
835 */
836 if (flags & MAP_SHARED) {
837 /* EMPTY */
838 LWP_MMODEL_SHARED_AS(*addrp, len);
839 }
840 if (vp->v_type == VREG &&
841 (flags & (MAP_TEXT | MAP_INITDATA)) != 0) {
842 /*
843 * Mark this as an executable vnode
844 */
845 mutex_enter(&vp->v_lock);
846 vp->v_flag |= VVMEXEC;
847 mutex_exit(&vp->v_lock);
848 }
849 }
850
851 done:
852 if (in_crit)
853 nbl_end_crit(vp);
854 return (error);
855 }
856
857 #ifdef _LP64
858 /*
859 * LP64 mmap(2) system call: 64-bit offset, 64-bit address.
860 *
861 * The "large file" mmap routine mmap64(2) is also mapped to this routine
862 * by the 64-bit version of libc.
863 *
864 * Eventually, this should be the only version, and have smmap_common()
865 * folded back into it again. Some day.
866 */
867 caddr_t
smmap64(caddr_t addr,size_t len,int prot,int flags,int fd,off_t pos)868 smmap64(caddr_t addr, size_t len, int prot, int flags, int fd, off_t pos)
869 {
870 struct file *fp;
871 int error;
872
873 if (fd == -1 && (flags & MAP_ANON) != 0)
874 error = smmap_common(&addr, len, prot, flags,
875 NULL, (offset_t)pos);
876 else if ((fp = getf(fd)) != NULL) {
877 error = smmap_common(&addr, len, prot, flags,
878 fp, (offset_t)pos);
879 releasef(fd);
880 } else
881 error = EBADF;
882
883 return (error ? (caddr_t)(uintptr_t)set_errno(error) : addr);
884 }
885 #endif /* _LP64 */
886
887 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
888
889 /*
890 * ILP32 mmap(2) system call: 32-bit offset, 32-bit address.
891 */
892 caddr_t
smmap32(caddr32_t addr,size32_t len,int prot,int flags,int fd,off32_t pos)893 smmap32(caddr32_t addr, size32_t len, int prot, int flags, int fd, off32_t pos)
894 {
895 struct file *fp;
896 int error;
897 caddr_t a = (caddr_t)(uintptr_t)addr;
898
899 if (flags & _MAP_LOW32)
900 error = EINVAL;
901 else if (fd == -1 && (flags & MAP_ANON) != 0)
902 error = smmap_common(&a, (size_t)len, prot,
903 flags | _MAP_LOW32, NULL, (offset_t)pos);
904 else if ((fp = getf(fd)) != NULL) {
905 error = smmap_common(&a, (size_t)len, prot,
906 flags | _MAP_LOW32, fp, (offset_t)pos);
907 releasef(fd);
908 } else
909 error = EBADF;
910
911 ASSERT(error != 0 || (uintptr_t)(a + len) < (uintptr_t)UINT32_MAX);
912
913 return (error ? (caddr_t)(uintptr_t)set_errno(error) : a);
914 }
915
916 /*
917 * ILP32 mmap64(2) system call: 64-bit offset, 32-bit address.
918 *
919 * Now things really get ugly because we can't use the C-style
920 * calling convention for more than 6 args, and 64-bit parameter
921 * passing on 32-bit systems is less than clean.
922 */
923
924 struct mmaplf32a {
925 caddr_t addr;
926 size_t len;
927 #ifdef _LP64
928 /*
929 * 32-bit contents, 64-bit cells
930 */
931 uint64_t prot;
932 uint64_t flags;
933 uint64_t fd;
934 uint64_t offhi;
935 uint64_t offlo;
936 #else
937 /*
938 * 32-bit contents, 32-bit cells
939 */
940 uint32_t prot;
941 uint32_t flags;
942 uint32_t fd;
943 uint32_t offhi;
944 uint32_t offlo;
945 #endif
946 };
947
948 int
smmaplf32(struct mmaplf32a * uap,rval_t * rvp)949 smmaplf32(struct mmaplf32a *uap, rval_t *rvp)
950 {
951 struct file *fp;
952 int error;
953 caddr_t a = uap->addr;
954 int flags = (int)uap->flags;
955 int fd = (int)uap->fd;
956 #ifdef _BIG_ENDIAN
957 offset_t off = ((u_offset_t)uap->offhi << 32) | (u_offset_t)uap->offlo;
958 #else
959 offset_t off = ((u_offset_t)uap->offlo << 32) | (u_offset_t)uap->offhi;
960 #endif
961
962 if (flags & _MAP_LOW32)
963 error = EINVAL;
964 else if (fd == -1 && (flags & MAP_ANON) != 0)
965 error = smmap_common(&a, uap->len, (int)uap->prot,
966 flags | _MAP_LOW32, NULL, off);
967 else if ((fp = getf(fd)) != NULL) {
968 error = smmap_common(&a, uap->len, (int)uap->prot,
969 flags | _MAP_LOW32, fp, off);
970 releasef(fd);
971 } else
972 error = EBADF;
973
974 if (error == 0)
975 rvp->r_val1 = (uintptr_t)a;
976 return (error);
977 }
978
979 #endif /* _SYSCALL32_IMPL || _ILP32 */
980
981 int
munmap(caddr_t addr,size_t len)982 munmap(caddr_t addr, size_t len)
983 {
984 struct proc *p = curproc;
985 struct as *as = p->p_as;
986
987 if (((uintptr_t)addr & PAGEOFFSET) != 0 || len == 0)
988 return (set_errno(EINVAL));
989
990 if (valid_usr_range(addr, len, 0, as, as->a_userlimit) != RANGE_OKAY)
991 return (set_errno(EINVAL));
992
993 /*
994 * Discard lwpchan mappings.
995 */
996 if (p->p_lcp != NULL)
997 lwpchan_delete_mapping(p, addr, addr + len);
998 if (as_unmap(as, addr, len) != 0)
999 return (set_errno(EINVAL));
1000
1001 return (0);
1002 }
1003
1004 int
mprotect(caddr_t addr,size_t len,int prot)1005 mprotect(caddr_t addr, size_t len, int prot)
1006 {
1007 struct as *as = curproc->p_as;
1008 uint_t uprot = prot | PROT_USER;
1009 int error;
1010
1011 if (((uintptr_t)addr & PAGEOFFSET) != 0 || len == 0)
1012 return (set_errno(EINVAL));
1013
1014 switch (valid_usr_range(addr, len, prot, as, as->a_userlimit)) {
1015 case RANGE_OKAY:
1016 break;
1017 case RANGE_BADPROT:
1018 return (set_errno(ENOTSUP));
1019 case RANGE_BADADDR:
1020 default:
1021 return (set_errno(ENOMEM));
1022 }
1023
1024 error = as_setprot(as, addr, len, uprot);
1025 if (error)
1026 return (set_errno(error));
1027 return (0);
1028 }
1029
1030 #define MC_CACHE 128 /* internal result buffer */
1031 #define MC_QUANTUM (MC_CACHE * PAGESIZE) /* addresses covered in loop */
1032
1033 int
mincore(caddr_t addr,size_t len,char * vecp)1034 mincore(caddr_t addr, size_t len, char *vecp)
1035 {
1036 struct as *as = curproc->p_as;
1037 caddr_t ea; /* end address of loop */
1038 size_t rl; /* inner result length */
1039 char vec[MC_CACHE]; /* local vector cache */
1040 int error;
1041 model_t model;
1042 long llen;
1043
1044 model = get_udatamodel();
1045 /*
1046 * Validate form of address parameters.
1047 */
1048 if (model == DATAMODEL_NATIVE) {
1049 llen = (long)len;
1050 } else {
1051 llen = (int32_t)(size32_t)len;
1052 }
1053 if (((uintptr_t)addr & PAGEOFFSET) != 0 || llen <= 0)
1054 return (set_errno(EINVAL));
1055
1056 if (valid_usr_range(addr, len, 0, as, as->a_userlimit) != RANGE_OKAY)
1057 return (set_errno(ENOMEM));
1058
1059 /*
1060 * Loop over subranges of interval [addr : addr + len), recovering
1061 * results internally and then copying them out to caller. Subrange
1062 * is based on the size of MC_CACHE, defined above.
1063 */
1064 for (ea = addr + len; addr < ea; addr += MC_QUANTUM) {
1065 error = as_incore(as, addr,
1066 (size_t)MIN(MC_QUANTUM, ea - addr), vec, &rl);
1067 if (rl != 0) {
1068 rl = (rl + PAGESIZE - 1) / PAGESIZE;
1069 if (copyout(vec, vecp, rl) != 0)
1070 return (set_errno(EFAULT));
1071 vecp += rl;
1072 }
1073 if (error != 0)
1074 return (set_errno(ENOMEM));
1075 }
1076 return (0);
1077 }
1078