xref: /illumos-gate/usr/src/uts/common/os/group.c (revision ff2aee480f8fc985fe6a84c8d593c7a13c7a0481)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/systm.h>
29 #include <sys/param.h>
30 #include <sys/debug.h>
31 #include <sys/kmem.h>
32 #include <sys/group.h>
33 
34 
35 #define	GRP_SET_SIZE_DEFAULT 2
36 
37 static void group_grow_set(group_t *);
38 static void group_shrink_set(group_t *);
39 static void group_pack_set(void **, uint_t);
40 
41 /*
42  * Initialize a group_t
43  */
44 void
45 group_create(group_t *g)
46 {
47 	bzero(g, sizeof (group_t));
48 }
49 
50 /*
51  * Destroy a group_t
52  * The group must already be empty
53  */
54 void
55 group_destroy(group_t *g)
56 {
57 	ASSERT(g->grp_size == 0);
58 
59 	if (g->grp_capacity > 0) {
60 		kmem_free(g->grp_set, g->grp_capacity * sizeof (void *));
61 		g->grp_capacity = 0;
62 	}
63 	g->grp_set = NULL;
64 }
65 
66 /*
67  * Add element "e" to group "g"
68  *
69  * Returns -1 if addition would result in overcapacity, and
70  * resize operations aren't allowed, and 0 otherwise
71  */
72 int
73 group_add(group_t *g, void *e, int gflag)
74 {
75 	int	entry;
76 
77 	if ((gflag & GRP_NORESIZE) &&
78 	    g->grp_size == g->grp_capacity)
79 		return (-1);
80 
81 	ASSERT(g->grp_size != g->grp_capacity || (gflag & GRP_RESIZE));
82 
83 	entry = g->grp_size++;
84 	if (g->grp_size > g->grp_capacity)
85 		group_grow_set(g);
86 
87 	ASSERT(g->grp_set[entry] == NULL);
88 	g->grp_set[entry] = e;
89 
90 	return (0);
91 }
92 
93 /*
94  * Remove element "e" from group "g"
95  *
96  * Returns -1 if "e" was not present in "g" and 0 otherwise
97  */
98 int
99 group_remove(group_t *g, void *e, int gflag)
100 {
101 	int	i;
102 
103 	/*
104 	 * Find the element in the group's set
105 	 */
106 	for (i = 0; i < g->grp_size; i++)
107 		if (g->grp_set[i] == e)
108 			break;
109 	if (g->grp_set[i] != e)
110 		return (-1);
111 
112 	g->grp_set[i] = NULL;
113 	group_pack_set(g->grp_set, g->grp_size);
114 	g->grp_size--;
115 
116 	if ((gflag & GRP_RESIZE) &&
117 	    g->grp_size > GRP_SET_SIZE_DEFAULT &&
118 	    ((g->grp_size - 1) & g->grp_size) == 0)
119 		group_shrink_set(g);
120 
121 	return (0);
122 }
123 
124 /*
125  * Expand the capacity of group "g" so that it may
126  * contain at least "n" elements
127  */
128 void
129 group_expand(group_t *g, uint_t n)
130 {
131 	while (g->grp_capacity < n)
132 		group_grow_set(g);
133 }
134 
135 /*
136  * Upsize a group's holding capacity
137  */
138 static void
139 group_grow_set(group_t *g)
140 {
141 	uint_t		cap_old, cap_new;
142 	void		**set_old, **set_new;
143 
144 	cap_old = g->grp_capacity;
145 	set_old = g->grp_set;
146 
147 	/*
148 	 * The array size grows in powers of two
149 	 */
150 	if ((cap_new = (cap_old << 1)) == 0) {
151 		/*
152 		 * The set is unallocated.
153 		 * Allocate a default sized set.
154 		 */
155 		cap_new = GRP_SET_SIZE_DEFAULT;
156 		g->grp_set = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
157 		g->grp_capacity = cap_new;
158 	} else {
159 		/*
160 		 * Allocate a newly sized array,
161 		 * copy the data, and free the old array.
162 		 */
163 		set_new = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
164 		(void) kcopy(set_old, set_new, cap_old * sizeof (void *));
165 		g->grp_set = set_new;
166 		g->grp_capacity = cap_new;
167 		kmem_free(set_old, cap_old * sizeof (void *));
168 	}
169 	/*
170 	 * The new array size should be a power of two
171 	 */
172 	ASSERT(((cap_new - 1) & cap_new) == 0);
173 }
174 
175 /*
176  * Downsize a group's holding capacity
177  */
178 static void
179 group_shrink_set(group_t *g)
180 {
181 	uint_t		cap_old, cap_new;
182 	void		**set_old, **set_new;
183 
184 	cap_old = g->grp_capacity;
185 	set_old = g->grp_set;
186 
187 	/*
188 	 * The group's existing array size must already
189 	 * be a power of two
190 	 */
191 	ASSERT(((cap_old - 1) & cap_old) == 0);
192 	cap_new = cap_old >> 1;
193 
194 	/*
195 	 * GRP_SET_SIZE_DEFAULT is the minumum set size.
196 	 */
197 	if (cap_new < GRP_SET_SIZE_DEFAULT)
198 		return;
199 
200 	set_new = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
201 	(void) kcopy(set_old, set_new, cap_new * sizeof (void *));
202 	g->grp_capacity = cap_new;
203 	g->grp_set = set_new;
204 
205 	ASSERT(((cap_new - 1) & cap_new) == 0);
206 	kmem_free(set_old, cap_old * sizeof (void *));
207 }
208 
209 /*
210  * Pack a group's set
211  * Element order is not preserved
212  */
213 static void
214 group_pack_set(void **set, uint_t sz)
215 {
216 	uint_t	i, j, free;
217 
218 	free = (uint_t)-1;
219 
220 	for (i = 0; i < sz; i++) {
221 		if (set[i] == NULL && free == (uint_t)-1) {
222 			/*
223 			 * Found a new free slot.
224 			 * Start packing from here.
225 			 */
226 			free = i;
227 		} else if (set[i] != NULL && free != (uint_t)-1) {
228 			/*
229 			 * Found a slot to pack into
230 			 * an earlier free slot.
231 			 */
232 			ASSERT(set[free] == NULL);
233 			set[free] = set[i];
234 			set[i] = NULL;
235 
236 			/*
237 			 * Find the next free slot
238 			 */
239 			for (j = free + 1; set[j] != NULL; j++) {
240 				ASSERT(j <= i);
241 				if (j == i)
242 					break;
243 			}
244 			if (set[j] == NULL)
245 				free = j;
246 			else
247 				free = (uint_t)-1;
248 		}
249 	}
250 }
251 
252 /*
253  * Initialize a group iterator cookie
254  */
255 void
256 group_iter_init(group_iter_t *iter)
257 {
258 	*iter = 0;
259 }
260 
261 /*
262  * Iterate over the elements in a group
263  */
264 void *
265 group_iterate(group_t *g, group_iter_t *iter)
266 {
267 	uint_t	idx = *iter;
268 	void	*data = NULL;
269 
270 	while (idx < g->grp_size) {
271 		data = g->grp_set[idx++];
272 		if (data != NULL)
273 			break;
274 	}
275 	*iter = idx;
276 
277 	return (data);
278 }
279 
280 /*
281  * Indexed access to a group's elements
282  */
283 void *
284 group_access_at(group_t *g, uint_t idx)
285 {
286 	if (idx >= g->grp_capacity)
287 		return (NULL);
288 
289 	return (g->grp_set[idx]);
290 }
291 
292 /*
293  * Add a new ordered group element at specified
294  * index. The group must already be of sufficient
295  * capacity to hold an element at the specified index.
296  *
297  * Returns 0 if addition was sucessful, and -1 if the
298  * addition failed because the table was too small
299  */
300 int
301 group_add_at(group_t *g, void *e, uint_t idx)
302 {
303 	if (idx >= g->grp_capacity)
304 		return (-1);
305 
306 	if (idx >= g->grp_size)
307 		g->grp_size = idx + 1;
308 
309 	ASSERT(g->grp_set[idx] == NULL);
310 	g->grp_set[idx] = e;
311 	return (0);
312 }
313 
314 /*
315  * Remove the entry at the specified index
316  */
317 void
318 group_remove_at(group_t *g, uint_t idx)
319 {
320 	ASSERT(idx < g->grp_capacity);
321 	g->grp_set[idx] = NULL;
322 }
323