1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, int); 85 static void fork_fail(proc_t *); 86 static void forklwp_fail(proc_t *); 87 88 int fork_fail_pending; 89 90 extern struct kmem_cache *process_cache; 91 92 /* 93 * forkall system call. 94 */ 95 int64_t 96 forkall(void) 97 { 98 return (cfork(0, 0, 0)); 99 } 100 101 /* 102 * The parent is stopped until the child invokes relvm(). 103 */ 104 int64_t 105 vfork(void) 106 { 107 curthread->t_post_sys = 1; /* so vfwait() will be called */ 108 return (cfork(1, 1, 0)); 109 } 110 111 /* 112 * fork system call, aka fork1. 113 */ 114 int64_t 115 fork1(void) 116 { 117 return (cfork(0, 1, 0)); 118 } 119 120 /* 121 * The forkall(), vfork(), and fork1() system calls are no longer 122 * invoked by libc. They are retained only for the benefit of 123 * old statically-linked applications. They should be eliminated 124 * when we no longer care about such old and broken applications. 125 */ 126 127 /* 128 * forksys system call - forkx, forkallx, vforkx. 129 * This is the interface now invoked by libc. 130 */ 131 int64_t 132 forksys(int subcode, int flags) 133 { 134 switch (subcode) { 135 case 0: 136 return (cfork(0, 1, flags)); /* forkx(flags) */ 137 case 1: 138 return (cfork(0, 0, flags)); /* forkallx(flags) */ 139 case 2: 140 curthread->t_post_sys = 1; /* so vfwait() will be called */ 141 return (cfork(1, 1, flags)); /* vforkx(flags) */ 142 default: 143 return ((int64_t)set_errno(EINVAL)); 144 } 145 } 146 147 /* ARGSUSED */ 148 static int64_t 149 cfork(int isvfork, int isfork1, int flags) 150 { 151 proc_t *p = ttoproc(curthread); 152 struct as *as; 153 proc_t *cp, **orphpp; 154 klwp_t *clone; 155 kthread_t *t; 156 task_t *tk; 157 rval_t r; 158 int error; 159 int i; 160 rctl_set_t *dup_set; 161 rctl_alloc_gp_t *dup_gp; 162 rctl_entity_p_t e; 163 lwpdir_t *ldp; 164 lwpent_t *lep; 165 lwpent_t *clep; 166 167 /* 168 * Allow only these two flags. 169 */ 170 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 171 error = EINVAL; 172 goto forkerr; 173 } 174 175 /* 176 * fork is not supported for the /proc agent lwp. 177 */ 178 if (curthread == p->p_agenttp) { 179 error = ENOTSUP; 180 goto forkerr; 181 } 182 183 if ((error = secpolicy_basic_fork(CRED())) != 0) 184 goto forkerr; 185 186 /* 187 * If the calling lwp is doing a fork1() then the 188 * other lwps in this process are not duplicated and 189 * don't need to be held where their kernel stacks can be 190 * cloned. If doing forkall(), the process is held with 191 * SHOLDFORK, so that the lwps are at a point where their 192 * stacks can be copied which is on entry or exit from 193 * the kernel. 194 */ 195 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 196 aston(curthread); 197 error = EINTR; 198 goto forkerr; 199 } 200 201 #if defined(__sparc) 202 /* 203 * Ensure that the user stack is fully constructed 204 * before creating the child process structure. 205 */ 206 (void) flush_user_windows_to_stack(NULL); 207 #endif 208 209 mutex_enter(&p->p_lock); 210 /* 211 * If this is vfork(), cancel any suspend request we might 212 * have gotten from some other thread via lwp_suspend(). 213 * Otherwise we could end up with a deadlock on return 214 * from the vfork() in both the parent and the child. 215 */ 216 if (isvfork) 217 curthread->t_proc_flag &= ~TP_HOLDLWP; 218 /* 219 * Prevent our resource set associations from being changed during fork. 220 */ 221 pool_barrier_enter(); 222 mutex_exit(&p->p_lock); 223 224 /* 225 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 226 */ 227 if (getproc(&cp, 0) < 0) { 228 mutex_enter(&p->p_lock); 229 pool_barrier_exit(); 230 continuelwps(p); 231 mutex_exit(&p->p_lock); 232 error = EAGAIN; 233 goto forkerr; 234 } 235 236 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 237 238 /* 239 * Assign an address space to child 240 */ 241 if (isvfork) { 242 /* 243 * Clear any watched areas and remember the 244 * watched pages for restoring in vfwait(). 245 */ 246 as = p->p_as; 247 if (avl_numnodes(&as->a_wpage) != 0) { 248 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 249 as_clearwatch(as); 250 p->p_wpage = as->a_wpage; 251 avl_create(&as->a_wpage, wp_compare, 252 sizeof (struct watched_page), 253 offsetof(struct watched_page, wp_link)); 254 AS_LOCK_EXIT(as, &as->a_lock); 255 } 256 cp->p_as = as; 257 cp->p_flag |= SVFORK; 258 } else { 259 /* 260 * We need to hold P_PR_LOCK until the address space has 261 * been duplicated and we've had a chance to remove from the 262 * child any DTrace probes that were in the parent. Holding 263 * P_PR_LOCK prevents any new probes from being added and any 264 * extant probes from being removed. 265 */ 266 mutex_enter(&p->p_lock); 267 sprlock_proc(p); 268 p->p_flag |= SFORKING; 269 mutex_exit(&p->p_lock); 270 271 error = as_dup(p->p_as, cp); 272 if (error != 0) { 273 mutex_enter(&p->p_lock); 274 sprunlock(p); 275 fork_fail(cp); 276 mutex_enter(&pidlock); 277 orphpp = &p->p_orphan; 278 while (*orphpp != cp) 279 orphpp = &(*orphpp)->p_nextorph; 280 *orphpp = cp->p_nextorph; 281 if (p->p_child == cp) 282 p->p_child = cp->p_sibling; 283 if (cp->p_sibling) 284 cp->p_sibling->p_psibling = cp->p_psibling; 285 if (cp->p_psibling) 286 cp->p_psibling->p_sibling = cp->p_sibling; 287 mutex_enter(&cp->p_lock); 288 tk = cp->p_task; 289 task_detach(cp); 290 ASSERT(cp->p_pool->pool_ref > 0); 291 atomic_add_32(&cp->p_pool->pool_ref, -1); 292 mutex_exit(&cp->p_lock); 293 pid_exit(cp); 294 mutex_exit(&pidlock); 295 task_rele(tk); 296 297 mutex_enter(&p->p_lock); 298 p->p_flag &= ~SFORKING; 299 pool_barrier_exit(); 300 continuelwps(p); 301 mutex_exit(&p->p_lock); 302 /* 303 * Preserve ENOMEM error condition but 304 * map all others to EAGAIN. 305 */ 306 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 307 goto forkerr; 308 } 309 310 /* Duplicate parent's shared memory */ 311 if (p->p_segacct) 312 shmfork(p, cp); 313 314 /* 315 * Remove all DTrace tracepoints from the child process. We 316 * need to do this _before_ duplicating USDT providers since 317 * any associated probes may be immediately enabled. 318 */ 319 if (p->p_dtrace_count > 0) 320 dtrace_fasttrap_fork(p, cp); 321 322 /* 323 * Duplicate any helper actions and providers. The SFORKING 324 * we set above informs the code to enable USDT probes that 325 * sprlock() may fail because the child is being forked. 326 */ 327 if (p->p_dtrace_helpers != NULL) { 328 mutex_enter(&p->p_lock); 329 sprunlock(p); 330 331 ASSERT(dtrace_helpers_fork != NULL); 332 (*dtrace_helpers_fork)(p, cp); 333 334 mutex_enter(&p->p_lock); 335 p->p_flag &= ~SFORKING; 336 mutex_exit(&p->p_lock); 337 } else { 338 mutex_enter(&p->p_lock); 339 p->p_flag &= ~SFORKING; 340 sprunlock(p); 341 } 342 } 343 344 /* 345 * Duplicate parent's resource controls. 346 */ 347 dup_set = rctl_set_create(); 348 for (;;) { 349 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 350 mutex_enter(&p->p_rctls->rcs_lock); 351 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 352 break; 353 mutex_exit(&p->p_rctls->rcs_lock); 354 rctl_prealloc_destroy(dup_gp); 355 } 356 e.rcep_p.proc = cp; 357 e.rcep_t = RCENTITY_PROCESS; 358 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 359 RCD_DUP | RCD_CALLBACK); 360 mutex_exit(&p->p_rctls->rcs_lock); 361 362 rctl_prealloc_destroy(dup_gp); 363 364 /* 365 * Allocate the child's lwp directory and lwpid hash table. 366 */ 367 if (isfork1) 368 cp->p_lwpdir_sz = 2; 369 else 370 cp->p_lwpdir_sz = p->p_lwpdir_sz; 371 cp->p_lwpdir = cp->p_lwpfree = ldp = 372 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 373 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 374 ldp->ld_next = ldp + 1; 375 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 376 cp->p_tidhash = 377 kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP); 378 379 /* 380 * Duplicate parent's lwps. 381 * Mutual exclusion is not needed because the process is 382 * in the hold state and only the current lwp is running. 383 */ 384 klgrpset_clear(cp->p_lgrpset); 385 if (isfork1) { 386 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 387 if (clone == NULL) 388 goto forklwperr; 389 /* 390 * Inherit only the lwp_wait()able flag, 391 * Daemon threads should not call fork1(), but oh well... 392 */ 393 lwptot(clone)->t_proc_flag |= 394 (curthread->t_proc_flag & TP_TWAIT); 395 } else { 396 /* this is forkall(), no one can be in lwp_wait() */ 397 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 398 /* for each entry in the parent's lwp directory... */ 399 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 400 klwp_t *clwp; 401 kthread_t *ct; 402 403 if ((lep = ldp->ld_entry) == NULL) 404 continue; 405 406 if ((t = lep->le_thread) != NULL) { 407 clwp = forklwp(ttolwp(t), cp, t->t_tid); 408 if (clwp == NULL) 409 goto forklwperr; 410 ct = lwptot(clwp); 411 /* 412 * Inherit lwp_wait()able and daemon flags. 413 */ 414 ct->t_proc_flag |= 415 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 416 /* 417 * Keep track of the clone of curthread to 418 * post return values through lwp_setrval(). 419 * Mark other threads for special treatment 420 * by lwp_rtt() / post_syscall(). 421 */ 422 if (t == curthread) 423 clone = clwp; 424 else 425 ct->t_flag |= T_FORKALL; 426 } else { 427 /* 428 * Replicate zombie lwps in the child. 429 */ 430 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 431 clep->le_lwpid = lep->le_lwpid; 432 clep->le_start = lep->le_start; 433 lwp_hash_in(cp, clep); 434 } 435 } 436 } 437 438 /* 439 * Put new process in the parent's process contract, or put it 440 * in a new one if there is an active process template. Send a 441 * fork event (if requested) to whatever contract the child is 442 * a member of. Fails if the parent has been SIGKILLed. 443 */ 444 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 445 goto forklwperr; 446 447 /* 448 * No fork failures occur beyond this point. 449 */ 450 451 cp->p_lwpid = p->p_lwpid; 452 if (!isfork1) { 453 cp->p_lwpdaemon = p->p_lwpdaemon; 454 cp->p_zombcnt = p->p_zombcnt; 455 /* 456 * If the parent's lwp ids have wrapped around, so have the 457 * child's. 458 */ 459 cp->p_flag |= p->p_flag & SLWPWRAP; 460 } 461 462 mutex_enter(&p->p_lock); 463 corectl_path_hold(cp->p_corefile = p->p_corefile); 464 corectl_content_hold(cp->p_content = p->p_content); 465 mutex_exit(&p->p_lock); 466 467 /* 468 * Duplicate process context ops, if any. 469 */ 470 if (p->p_pctx) 471 forkpctx(p, cp); 472 473 #ifdef __sparc 474 utrap_dup(p, cp); 475 #endif 476 /* 477 * If the child process has been marked to stop on exit 478 * from this fork, arrange for all other lwps to stop in 479 * sympathy with the active lwp. 480 */ 481 if (PTOU(cp)->u_systrap && 482 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 483 mutex_enter(&cp->p_lock); 484 t = cp->p_tlist; 485 do { 486 t->t_proc_flag |= TP_PRSTOP; 487 aston(t); /* so TP_PRSTOP will be seen */ 488 } while ((t = t->t_forw) != cp->p_tlist); 489 mutex_exit(&cp->p_lock); 490 } 491 /* 492 * If the parent process has been marked to stop on exit 493 * from this fork, and its asynchronous-stop flag has not 494 * been set, arrange for all other lwps to stop before 495 * they return back to user level. 496 */ 497 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 498 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 499 mutex_enter(&p->p_lock); 500 t = p->p_tlist; 501 do { 502 t->t_proc_flag |= TP_PRSTOP; 503 aston(t); /* so TP_PRSTOP will be seen */ 504 } while ((t = t->t_forw) != p->p_tlist); 505 mutex_exit(&p->p_lock); 506 } 507 508 if (PROC_IS_BRANDED(p)) 509 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 510 else 511 lwp_setrval(clone, p->p_pid, 1); 512 513 /* set return values for parent */ 514 r.r_val1 = (int)cp->p_pid; 515 r.r_val2 = 0; 516 517 /* 518 * pool_barrier_exit() can now be called because the child process has: 519 * - all identifying features cloned or set (p_pid, p_task, p_pool) 520 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 521 * - any other fields set which are used in resource set binding. 522 */ 523 mutex_enter(&p->p_lock); 524 pool_barrier_exit(); 525 mutex_exit(&p->p_lock); 526 527 mutex_enter(&pidlock); 528 mutex_enter(&cp->p_lock); 529 530 /* 531 * Set flags telling the child what (not) to do on exit. 532 */ 533 if (flags & FORK_NOSIGCHLD) 534 cp->p_pidflag |= CLDNOSIGCHLD; 535 if (flags & FORK_WAITPID) 536 cp->p_pidflag |= CLDWAITPID; 537 538 /* 539 * Now that there are lwps and threads attached, add the new 540 * process to the process group. 541 */ 542 pgjoin(cp, p->p_pgidp); 543 cp->p_stat = SRUN; 544 /* 545 * We are now done with all the lwps in the child process. 546 */ 547 t = cp->p_tlist; 548 do { 549 /* 550 * Set the lwp_suspend()ed lwps running. 551 * They will suspend properly at syscall exit. 552 */ 553 if (t->t_proc_flag & TP_HOLDLWP) 554 lwp_create_done(t); 555 else { 556 /* set TS_CREATE to allow continuelwps() to work */ 557 thread_lock(t); 558 ASSERT(t->t_state == TS_STOPPED && 559 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 560 t->t_schedflag |= TS_CREATE; 561 thread_unlock(t); 562 } 563 } while ((t = t->t_forw) != cp->p_tlist); 564 mutex_exit(&cp->p_lock); 565 566 if (isvfork) { 567 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 568 mutex_enter(&p->p_lock); 569 p->p_flag |= SVFWAIT; 570 curthread->t_flag |= T_VFPARENT; 571 DTRACE_PROC1(create, proc_t *, cp); 572 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 573 mutex_exit(&p->p_lock); 574 /* 575 * Grab child's p_lock before dropping pidlock to ensure 576 * the process will not disappear before we set it running. 577 */ 578 mutex_enter(&cp->p_lock); 579 mutex_exit(&pidlock); 580 sigdefault(cp); 581 continuelwps(cp); 582 mutex_exit(&cp->p_lock); 583 } else { 584 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 585 DTRACE_PROC1(create, proc_t *, cp); 586 /* 587 * It is CL_FORKRET's job to drop pidlock. 588 * If we do it here, the process could be set running 589 * and disappear before CL_FORKRET() is called. 590 */ 591 CL_FORKRET(curthread, cp->p_tlist); 592 schedctl_set_cidpri(curthread); 593 ASSERT(MUTEX_NOT_HELD(&pidlock)); 594 } 595 596 return (r.r_vals); 597 598 forklwperr: 599 if (isvfork) { 600 if (avl_numnodes(&p->p_wpage) != 0) { 601 /* restore watchpoints to parent */ 602 as = p->p_as; 603 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 604 as->a_wpage = p->p_wpage; 605 avl_create(&p->p_wpage, wp_compare, 606 sizeof (struct watched_page), 607 offsetof(struct watched_page, wp_link)); 608 as_setwatch(as); 609 AS_LOCK_EXIT(as, &as->a_lock); 610 } 611 } else { 612 if (cp->p_segacct) 613 shmexit(cp); 614 as = cp->p_as; 615 cp->p_as = &kas; 616 as_free(as); 617 } 618 619 if (cp->p_lwpdir) { 620 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 621 if ((lep = ldp->ld_entry) != NULL) 622 kmem_free(lep, sizeof (*lep)); 623 kmem_free(cp->p_lwpdir, 624 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 625 } 626 cp->p_lwpdir = NULL; 627 cp->p_lwpfree = NULL; 628 cp->p_lwpdir_sz = 0; 629 630 if (cp->p_tidhash) 631 kmem_free(cp->p_tidhash, 632 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 633 cp->p_tidhash = NULL; 634 cp->p_tidhash_sz = 0; 635 636 forklwp_fail(cp); 637 fork_fail(cp); 638 rctl_set_free(cp->p_rctls); 639 mutex_enter(&pidlock); 640 641 /* 642 * Detach failed child from task. 643 */ 644 mutex_enter(&cp->p_lock); 645 tk = cp->p_task; 646 task_detach(cp); 647 ASSERT(cp->p_pool->pool_ref > 0); 648 atomic_add_32(&cp->p_pool->pool_ref, -1); 649 mutex_exit(&cp->p_lock); 650 651 orphpp = &p->p_orphan; 652 while (*orphpp != cp) 653 orphpp = &(*orphpp)->p_nextorph; 654 *orphpp = cp->p_nextorph; 655 if (p->p_child == cp) 656 p->p_child = cp->p_sibling; 657 if (cp->p_sibling) 658 cp->p_sibling->p_psibling = cp->p_psibling; 659 if (cp->p_psibling) 660 cp->p_psibling->p_sibling = cp->p_sibling; 661 pid_exit(cp); 662 mutex_exit(&pidlock); 663 664 task_rele(tk); 665 666 mutex_enter(&p->p_lock); 667 pool_barrier_exit(); 668 continuelwps(p); 669 mutex_exit(&p->p_lock); 670 error = EAGAIN; 671 forkerr: 672 return ((int64_t)set_errno(error)); 673 } 674 675 /* 676 * Free allocated resources from getproc() if a fork failed. 677 */ 678 static void 679 fork_fail(proc_t *cp) 680 { 681 uf_info_t *fip = P_FINFO(cp); 682 683 fcnt_add(fip, -1); 684 sigdelq(cp, NULL, 0); 685 686 mutex_enter(&pidlock); 687 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 688 mutex_exit(&pidlock); 689 690 /* 691 * single threaded, so no locking needed here 692 */ 693 crfree(cp->p_cred); 694 695 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 696 697 VN_RELE(PTOU(curproc)->u_cdir); 698 if (PTOU(curproc)->u_rdir) 699 VN_RELE(PTOU(curproc)->u_rdir); 700 if (cp->p_exec) 701 VN_RELE(cp->p_exec); 702 if (cp->p_execdir) 703 VN_RELE(cp->p_execdir); 704 if (PTOU(curproc)->u_cwd) 705 refstr_rele(PTOU(curproc)->u_cwd); 706 } 707 708 /* 709 * Clean up the lwps already created for this child process. 710 * The fork failed while duplicating all the lwps of the parent 711 * and those lwps already created must be freed. 712 * This process is invisible to the rest of the system, 713 * so we don't need to hold p->p_lock to protect the list. 714 */ 715 static void 716 forklwp_fail(proc_t *p) 717 { 718 kthread_t *t; 719 task_t *tk; 720 721 while ((t = p->p_tlist) != NULL) { 722 /* 723 * First remove the lwp from the process's p_tlist. 724 */ 725 if (t != t->t_forw) 726 p->p_tlist = t->t_forw; 727 else 728 p->p_tlist = NULL; 729 p->p_lwpcnt--; 730 t->t_forw->t_back = t->t_back; 731 t->t_back->t_forw = t->t_forw; 732 733 tk = p->p_task; 734 mutex_enter(&p->p_zone->zone_nlwps_lock); 735 tk->tk_nlwps--; 736 tk->tk_proj->kpj_nlwps--; 737 p->p_zone->zone_nlwps--; 738 mutex_exit(&p->p_zone->zone_nlwps_lock); 739 740 ASSERT(t->t_schedctl == NULL); 741 742 if (t->t_door != NULL) { 743 kmem_free(t->t_door, sizeof (door_data_t)); 744 t->t_door = NULL; 745 } 746 lwp_ctmpl_clear(ttolwp(t)); 747 748 /* 749 * Remove the thread from the all threads list. 750 * We need to hold pidlock for this. 751 */ 752 mutex_enter(&pidlock); 753 t->t_next->t_prev = t->t_prev; 754 t->t_prev->t_next = t->t_next; 755 CL_EXIT(t); /* tell the scheduler that we're exiting */ 756 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 757 mutex_exit(&pidlock); 758 759 /* 760 * Let the lgroup load averages know that this thread isn't 761 * going to show up (i.e. un-do what was done on behalf of 762 * this thread by the earlier lgrp_move_thread()). 763 */ 764 kpreempt_disable(); 765 lgrp_move_thread(t, NULL, 1); 766 kpreempt_enable(); 767 768 /* 769 * The thread was created TS_STOPPED. 770 * We change it to TS_FREE to avoid an 771 * ASSERT() panic in thread_free(). 772 */ 773 t->t_state = TS_FREE; 774 thread_rele(t); 775 thread_free(t); 776 } 777 } 778 779 extern struct as kas; 780 781 /* 782 * fork a kernel process. 783 */ 784 int 785 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 786 { 787 proc_t *p; 788 struct user *up; 789 klwp_t *lwp; 790 cont_process_t *ctp = NULL; 791 rctl_entity_p_t e; 792 793 ASSERT(!(cid == syscid && ct != NULL)); 794 if (cid == syscid) { 795 rctl_alloc_gp_t *init_gp; 796 rctl_set_t *init_set; 797 798 if (getproc(&p, 1) < 0) 799 return (EAGAIN); 800 801 p->p_flag |= SNOWAIT; 802 p->p_exec = NULL; 803 p->p_execdir = NULL; 804 805 init_set = rctl_set_create(); 806 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 807 808 /* 809 * kernel processes do not inherit /proc tracing flags. 810 */ 811 sigemptyset(&p->p_sigmask); 812 premptyset(&p->p_fltmask); 813 up = PTOU(p); 814 up->u_systrap = 0; 815 premptyset(&(up->u_entrymask)); 816 premptyset(&(up->u_exitmask)); 817 mutex_enter(&p->p_lock); 818 e.rcep_p.proc = p; 819 e.rcep_t = RCENTITY_PROCESS; 820 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 821 init_gp); 822 mutex_exit(&p->p_lock); 823 824 rctl_prealloc_destroy(init_gp); 825 } else { 826 rctl_alloc_gp_t *init_gp, *default_gp; 827 rctl_set_t *init_set; 828 task_t *tk, *tk_old; 829 830 if (getproc(&p, 0) < 0) 831 return (EAGAIN); 832 /* 833 * init creates a new task, distinct from the task 834 * containing kernel "processes". 835 */ 836 tk = task_create(0, p->p_zone); 837 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 838 tk->tk_proj->kpj_ntasks++; 839 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 840 841 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 842 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 843 init_set = rctl_set_create(); 844 845 mutex_enter(&pidlock); 846 mutex_enter(&p->p_lock); 847 tk_old = p->p_task; /* switch to new task */ 848 849 task_detach(p); 850 task_begin(tk, p); 851 mutex_exit(&pidlock); 852 853 e.rcep_p.proc = p; 854 e.rcep_t = RCENTITY_PROCESS; 855 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 856 init_gp); 857 rctlproc_default_init(p, default_gp); 858 mutex_exit(&p->p_lock); 859 860 task_rele(tk_old); 861 rctl_prealloc_destroy(default_gp); 862 rctl_prealloc_destroy(init_gp); 863 } 864 865 p->p_as = &kas; 866 867 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 868 &curthread->t_hold, cid, 1)) == NULL) { 869 task_t *tk; 870 fork_fail(p); 871 mutex_enter(&pidlock); 872 mutex_enter(&p->p_lock); 873 tk = p->p_task; 874 task_detach(p); 875 ASSERT(p->p_pool->pool_ref > 0); 876 atomic_add_32(&p->p_pool->pool_ref, -1); 877 mutex_exit(&p->p_lock); 878 pid_exit(p); 879 mutex_exit(&pidlock); 880 task_rele(tk); 881 882 return (EAGAIN); 883 } 884 885 if (cid != syscid) { 886 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 887 B_FALSE); 888 ASSERT(ctp != NULL); 889 if (ct != NULL) 890 *ct = &ctp->conp_contract; 891 } 892 893 p->p_lwpid = 1; 894 mutex_enter(&pidlock); 895 pgjoin(p, curproc->p_pgidp); 896 p->p_stat = SRUN; 897 mutex_enter(&p->p_lock); 898 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 899 lwp_create_done(lwptot(lwp)); 900 mutex_exit(&p->p_lock); 901 mutex_exit(&pidlock); 902 return (0); 903 } 904 905 /* 906 * create a child proc struct. 907 */ 908 static int 909 getproc(proc_t **cpp, int kernel) 910 { 911 proc_t *pp, *cp; 912 pid_t newpid; 913 struct user *uarea; 914 extern uint_t nproc; 915 struct cred *cr; 916 uid_t ruid; 917 zoneid_t zoneid; 918 919 if (!page_mem_avail(tune.t_minarmem)) 920 return (-1); 921 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 922 return (-1); /* no point in starting new processes */ 923 924 pp = curproc; 925 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 926 bzero(cp, sizeof (proc_t)); 927 928 /* 929 * Make proc entry for child process 930 */ 931 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 932 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 933 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 934 #if defined(__x86) 935 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 936 #endif 937 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 938 cp->p_stat = SIDL; 939 cp->p_mstart = gethrtime(); 940 /* 941 * p_zone must be set before we call pid_allocate since the process 942 * will be visible after that and code such as prfind_zone will 943 * look at the p_zone field. 944 */ 945 cp->p_zone = pp->p_zone; 946 cp->p_t1_lgrpid = LGRP_NONE; 947 cp->p_tr_lgrpid = LGRP_NONE; 948 949 if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) { 950 if (nproc == v.v_proc) { 951 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 952 cmn_err(CE_WARN, "out of processes"); 953 } 954 goto bad; 955 } 956 957 /* 958 * If not privileged make sure that this user hasn't exceeded 959 * v.v_maxup processes, and that users collectively haven't 960 * exceeded v.v_maxupttl processes. 961 */ 962 mutex_enter(&pidlock); 963 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 964 cr = CRED(); 965 ruid = crgetruid(cr); 966 zoneid = crgetzoneid(cr); 967 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 968 (nproc >= v.v_maxupttl || 969 upcount_get(ruid, zoneid) >= v.v_maxup) && 970 secpolicy_newproc(cr) != 0) { 971 mutex_exit(&pidlock); 972 zcmn_err(zoneid, CE_NOTE, 973 "out of per-user processes for uid %d", ruid); 974 goto bad; 975 } 976 977 /* 978 * Everything is cool, put the new proc on the active process list. 979 * It is already on the pid list and in /proc. 980 * Increment the per uid process count (upcount). 981 */ 982 nproc++; 983 upcount_inc(ruid, zoneid); 984 985 cp->p_next = practive; 986 practive->p_prev = cp; 987 practive = cp; 988 989 cp->p_ignore = pp->p_ignore; 990 cp->p_siginfo = pp->p_siginfo; 991 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 992 cp->p_sessp = pp->p_sessp; 993 sess_hold(pp); 994 cp->p_exec = pp->p_exec; 995 cp->p_execdir = pp->p_execdir; 996 cp->p_brand = pp->p_brand; 997 if (PROC_IS_BRANDED(pp)) 998 BROP(pp)->b_copy_procdata(cp, pp); 999 1000 cp->p_bssbase = pp->p_bssbase; 1001 cp->p_brkbase = pp->p_brkbase; 1002 cp->p_brksize = pp->p_brksize; 1003 cp->p_brkpageszc = pp->p_brkpageszc; 1004 cp->p_stksize = pp->p_stksize; 1005 cp->p_stkpageszc = pp->p_stkpageszc; 1006 cp->p_stkprot = pp->p_stkprot; 1007 cp->p_datprot = pp->p_datprot; 1008 cp->p_usrstack = pp->p_usrstack; 1009 cp->p_model = pp->p_model; 1010 cp->p_ppid = pp->p_pid; 1011 cp->p_ancpid = pp->p_pid; 1012 cp->p_portcnt = pp->p_portcnt; 1013 1014 /* 1015 * Initialize watchpoint structures 1016 */ 1017 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1018 offsetof(struct watched_area, wa_link)); 1019 1020 /* 1021 * Initialize immediate resource control values. 1022 */ 1023 cp->p_stk_ctl = pp->p_stk_ctl; 1024 cp->p_fsz_ctl = pp->p_fsz_ctl; 1025 cp->p_vmem_ctl = pp->p_vmem_ctl; 1026 cp->p_fno_ctl = pp->p_fno_ctl; 1027 1028 /* 1029 * Link up to parent-child-sibling chain. No need to lock 1030 * in general since only a call to freeproc() (done by the 1031 * same parent as newproc()) diddles with the child chain. 1032 */ 1033 cp->p_sibling = pp->p_child; 1034 if (pp->p_child) 1035 pp->p_child->p_psibling = cp; 1036 1037 cp->p_parent = pp; 1038 pp->p_child = cp; 1039 1040 cp->p_child_ns = NULL; 1041 cp->p_sibling_ns = NULL; 1042 1043 cp->p_nextorph = pp->p_orphan; 1044 cp->p_nextofkin = pp; 1045 pp->p_orphan = cp; 1046 1047 /* 1048 * Inherit profiling state; do not inherit REALPROF profiling state. 1049 */ 1050 cp->p_prof = pp->p_prof; 1051 cp->p_rprof_cyclic = CYCLIC_NONE; 1052 1053 /* 1054 * Inherit pool pointer from the parent. Kernel processes are 1055 * always bound to the default pool. 1056 */ 1057 mutex_enter(&pp->p_lock); 1058 if (kernel) { 1059 cp->p_pool = pool_default; 1060 cp->p_flag |= SSYS; 1061 } else { 1062 cp->p_pool = pp->p_pool; 1063 } 1064 atomic_add_32(&cp->p_pool->pool_ref, 1); 1065 mutex_exit(&pp->p_lock); 1066 1067 /* 1068 * Add the child process to the current task. Kernel processes 1069 * are always attached to task0. 1070 */ 1071 mutex_enter(&cp->p_lock); 1072 if (kernel) 1073 task_attach(task0p, cp); 1074 else 1075 task_attach(pp->p_task, cp); 1076 mutex_exit(&cp->p_lock); 1077 mutex_exit(&pidlock); 1078 1079 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1080 offsetof(contract_t, ct_ctlist)); 1081 1082 /* 1083 * Duplicate any audit information kept in the process table 1084 */ 1085 if (audit_active) /* copy audit data to cp */ 1086 audit_newproc(cp); 1087 1088 crhold(cp->p_cred = cr); 1089 1090 /* 1091 * Bump up the counts on the file structures pointed at by the 1092 * parent's file table since the child will point at them too. 1093 */ 1094 fcnt_add(P_FINFO(pp), 1); 1095 1096 VN_HOLD(PTOU(pp)->u_cdir); 1097 if (PTOU(pp)->u_rdir) 1098 VN_HOLD(PTOU(pp)->u_rdir); 1099 if (PTOU(pp)->u_cwd) 1100 refstr_hold(PTOU(pp)->u_cwd); 1101 1102 /* 1103 * copy the parent's uarea. 1104 */ 1105 uarea = PTOU(cp); 1106 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1107 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1108 1109 gethrestime(&uarea->u_start); 1110 uarea->u_ticks = lbolt; 1111 uarea->u_mem = rm_asrss(pp->p_as); 1112 uarea->u_acflag = AFORK; 1113 1114 /* 1115 * If inherit-on-fork, copy /proc tracing flags to child. 1116 */ 1117 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1118 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1119 cp->p_sigmask = pp->p_sigmask; 1120 cp->p_fltmask = pp->p_fltmask; 1121 } else { 1122 sigemptyset(&cp->p_sigmask); 1123 premptyset(&cp->p_fltmask); 1124 uarea->u_systrap = 0; 1125 premptyset(&uarea->u_entrymask); 1126 premptyset(&uarea->u_exitmask); 1127 } 1128 /* 1129 * If microstate accounting is being inherited, mark child 1130 */ 1131 if ((pp->p_flag & SMSFORK) != 0) 1132 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1133 1134 /* 1135 * Inherit fixalignment flag from the parent 1136 */ 1137 cp->p_fixalignment = pp->p_fixalignment; 1138 1139 if (cp->p_exec) 1140 VN_HOLD(cp->p_exec); 1141 if (cp->p_execdir) 1142 VN_HOLD(cp->p_execdir); 1143 *cpp = cp; 1144 return (0); 1145 1146 bad: 1147 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1148 1149 mutex_destroy(&cp->p_crlock); 1150 mutex_destroy(&cp->p_pflock); 1151 #if defined(__x86) 1152 mutex_destroy(&cp->p_ldtlock); 1153 #endif 1154 if (newpid != -1) { 1155 proc_entry_free(cp->p_pidp); 1156 (void) pid_rele(cp->p_pidp); 1157 } 1158 kmem_cache_free(process_cache, cp); 1159 1160 /* 1161 * We most likely got into this situation because some process is 1162 * forking out of control. As punishment, put it to sleep for a 1163 * bit so it can't eat the machine alive. Sleep interval is chosen 1164 * to allow no more than one fork failure per cpu per clock tick 1165 * on average (yes, I just made this up). This has two desirable 1166 * properties: (1) it sets a constant limit on the fork failure 1167 * rate, and (2) the busier the system is, the harsher the penalty 1168 * for abusing it becomes. 1169 */ 1170 INCR_COUNT(&fork_fail_pending, &pidlock); 1171 delay(fork_fail_pending / ncpus + 1); 1172 DECR_COUNT(&fork_fail_pending, &pidlock); 1173 1174 return (-1); /* out of memory or proc slots */ 1175 } 1176 1177 /* 1178 * Release virtual memory. 1179 * In the case of vfork(), the child was given exclusive access to its 1180 * parent's address space. The parent is waiting in vfwait() for the 1181 * child to release its exclusive claim via relvm(). 1182 */ 1183 void 1184 relvm() 1185 { 1186 proc_t *p = curproc; 1187 1188 ASSERT((unsigned)p->p_lwpcnt <= 1); 1189 1190 prrelvm(); /* inform /proc */ 1191 1192 if (p->p_flag & SVFORK) { 1193 proc_t *pp = p->p_parent; 1194 /* 1195 * The child process is either exec'ing or exit'ing. 1196 * The child is now separated from the parent's address 1197 * space. The parent process is made dispatchable. 1198 * 1199 * This is a delicate locking maneuver, involving 1200 * both the parent's p_lock and the child's p_lock. 1201 * As soon as the SVFORK flag is turned off, the 1202 * parent is free to run, but it must not run until 1203 * we wake it up using its p_cv because it might 1204 * exit and we would be referencing invalid memory. 1205 * Therefore, we hold the parent with its p_lock 1206 * while protecting our p_flags with our own p_lock. 1207 */ 1208 try_again: 1209 mutex_enter(&p->p_lock); /* grab child's lock first */ 1210 prbarrier(p); /* make sure /proc is blocked out */ 1211 mutex_enter(&pp->p_lock); 1212 1213 /* 1214 * Check if parent is locked by /proc. 1215 */ 1216 if (pp->p_proc_flag & P_PR_LOCK) { 1217 /* 1218 * Delay until /proc is done with the parent. 1219 * We must drop our (the child's) p->p_lock, wait 1220 * via prbarrier() on the parent, then start over. 1221 */ 1222 mutex_exit(&p->p_lock); 1223 prbarrier(pp); 1224 mutex_exit(&pp->p_lock); 1225 goto try_again; 1226 } 1227 p->p_flag &= ~SVFORK; 1228 kpreempt_disable(); 1229 p->p_as = &kas; 1230 1231 /* 1232 * notify hat of change in thread's address space 1233 */ 1234 hat_thread_exit(curthread); 1235 kpreempt_enable(); 1236 1237 /* 1238 * child sizes are copied back to parent because 1239 * child may have grown. 1240 */ 1241 pp->p_brkbase = p->p_brkbase; 1242 pp->p_brksize = p->p_brksize; 1243 pp->p_stksize = p->p_stksize; 1244 /* 1245 * The parent is no longer waiting for the vfork()d child. 1246 * Restore the parent's watched pages, if any. This is 1247 * safe because we know the parent is not locked by /proc 1248 */ 1249 pp->p_flag &= ~SVFWAIT; 1250 if (avl_numnodes(&pp->p_wpage) != 0) { 1251 pp->p_as->a_wpage = pp->p_wpage; 1252 avl_create(&pp->p_wpage, wp_compare, 1253 sizeof (struct watched_page), 1254 offsetof(struct watched_page, wp_link)); 1255 } 1256 cv_signal(&pp->p_cv); 1257 mutex_exit(&pp->p_lock); 1258 mutex_exit(&p->p_lock); 1259 } else { 1260 if (p->p_as != &kas) { 1261 struct as *as; 1262 1263 if (p->p_segacct) 1264 shmexit(p); 1265 1266 /* 1267 * We grab p_lock for the benefit of /proc 1268 */ 1269 kpreempt_disable(); 1270 mutex_enter(&p->p_lock); 1271 prbarrier(p); /* make sure /proc is blocked out */ 1272 as = p->p_as; 1273 p->p_as = &kas; 1274 mutex_exit(&p->p_lock); 1275 1276 /* 1277 * notify hat of change in thread's address space 1278 */ 1279 hat_thread_exit(curthread); 1280 kpreempt_enable(); 1281 1282 as_free(as); 1283 p->p_tr_lgrpid = LGRP_NONE; 1284 } 1285 } 1286 } 1287 1288 /* 1289 * Wait for child to exec or exit. 1290 * Called by parent of vfork'ed process. 1291 * See important comments in relvm(), above. 1292 */ 1293 void 1294 vfwait(pid_t pid) 1295 { 1296 int signalled = 0; 1297 proc_t *pp = ttoproc(curthread); 1298 proc_t *cp; 1299 1300 /* 1301 * Wait for child to exec or exit. 1302 */ 1303 for (;;) { 1304 mutex_enter(&pidlock); 1305 cp = prfind(pid); 1306 if (cp == NULL || cp->p_parent != pp) { 1307 /* 1308 * Child has exit()ed. 1309 */ 1310 mutex_exit(&pidlock); 1311 break; 1312 } 1313 /* 1314 * Grab the child's p_lock before releasing pidlock. 1315 * Otherwise, the child could exit and we would be 1316 * referencing invalid memory. 1317 */ 1318 mutex_enter(&cp->p_lock); 1319 mutex_exit(&pidlock); 1320 if (!(cp->p_flag & SVFORK)) { 1321 /* 1322 * Child has exec()ed or is exit()ing. 1323 */ 1324 mutex_exit(&cp->p_lock); 1325 break; 1326 } 1327 mutex_enter(&pp->p_lock); 1328 mutex_exit(&cp->p_lock); 1329 /* 1330 * We might be waked up spuriously from the cv_wait(). 1331 * We have to do the whole operation over again to be 1332 * sure the child's SVFORK flag really is turned off. 1333 * We cannot make reference to the child because it can 1334 * exit before we return and we would be referencing 1335 * invalid memory. 1336 * 1337 * Because this is potentially a very long-term wait, 1338 * we call cv_wait_sig() (for its jobcontrol and /proc 1339 * side-effects) unless there is a current signal, in 1340 * which case we use cv_wait() because we cannot return 1341 * from this function until the child has released the 1342 * address space. Calling cv_wait_sig() with a current 1343 * signal would lead to an indefinite loop here because 1344 * cv_wait_sig() returns immediately in this case. 1345 */ 1346 if (signalled) 1347 cv_wait(&pp->p_cv, &pp->p_lock); 1348 else 1349 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1350 mutex_exit(&pp->p_lock); 1351 } 1352 1353 /* restore watchpoints to parent */ 1354 if (pr_watch_active(pp)) { 1355 struct as *as = pp->p_as; 1356 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1357 as_setwatch(as); 1358 AS_LOCK_EXIT(as, &as->a_lock); 1359 } 1360 1361 mutex_enter(&pp->p_lock); 1362 prbarrier(pp); /* barrier against /proc locking */ 1363 continuelwps(pp); 1364 mutex_exit(&pp->p_lock); 1365 } 1366