1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, int); 85 static void fork_fail(proc_t *); 86 static void forklwp_fail(proc_t *); 87 88 int fork_fail_pending; 89 90 extern struct kmem_cache *process_cache; 91 92 /* 93 * forkall system call. 94 */ 95 int64_t 96 forkall(void) 97 { 98 return (cfork(0, 0, 0)); 99 } 100 101 /* 102 * The parent is stopped until the child invokes relvm(). 103 */ 104 int64_t 105 vfork(void) 106 { 107 curthread->t_post_sys = 1; /* so vfwait() will be called */ 108 return (cfork(1, 1, 0)); 109 } 110 111 /* 112 * fork system call, aka fork1. 113 */ 114 int64_t 115 fork1(void) 116 { 117 return (cfork(0, 1, 0)); 118 } 119 120 /* 121 * The forkall(), vfork(), and fork1() system calls are no longer 122 * invoked by libc. They are retained only for the benefit of 123 * old statically-linked applications. They should be eliminated 124 * when we no longer care about such old and broken applications. 125 */ 126 127 /* 128 * forksys system call - forkx, forkallx, vforkx. 129 * This is the interface now invoked by libc. 130 */ 131 int64_t 132 forksys(int subcode, int flags) 133 { 134 switch (subcode) { 135 case 0: 136 return (cfork(0, 1, flags)); /* forkx(flags) */ 137 case 1: 138 return (cfork(0, 0, flags)); /* forkallx(flags) */ 139 case 2: 140 curthread->t_post_sys = 1; /* so vfwait() will be called */ 141 return (cfork(1, 1, flags)); /* vforkx(flags) */ 142 default: 143 return ((int64_t)set_errno(EINVAL)); 144 } 145 } 146 147 /* ARGSUSED */ 148 static int64_t 149 cfork(int isvfork, int isfork1, int flags) 150 { 151 proc_t *p = ttoproc(curthread); 152 struct as *as; 153 proc_t *cp, **orphpp; 154 klwp_t *clone; 155 kthread_t *t; 156 task_t *tk; 157 rval_t r; 158 int error; 159 int i; 160 rctl_set_t *dup_set; 161 rctl_alloc_gp_t *dup_gp; 162 rctl_entity_p_t e; 163 lwpdir_t *ldp; 164 lwpent_t *lep; 165 lwpent_t *clep; 166 167 /* 168 * Allow only these two flags. 169 */ 170 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 171 error = EINVAL; 172 goto forkerr; 173 } 174 175 /* 176 * fork is not supported for the /proc agent lwp. 177 */ 178 if (curthread == p->p_agenttp) { 179 error = ENOTSUP; 180 goto forkerr; 181 } 182 183 if ((error = secpolicy_basic_fork(CRED())) != 0) 184 goto forkerr; 185 186 /* 187 * If the calling lwp is doing a fork1() then the 188 * other lwps in this process are not duplicated and 189 * don't need to be held where their kernel stacks can be 190 * cloned. If doing forkall(), the process is held with 191 * SHOLDFORK, so that the lwps are at a point where their 192 * stacks can be copied which is on entry or exit from 193 * the kernel. 194 */ 195 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 196 aston(curthread); 197 error = EINTR; 198 goto forkerr; 199 } 200 201 #if defined(__sparc) 202 /* 203 * Ensure that the user stack is fully constructed 204 * before creating the child process structure. 205 */ 206 (void) flush_user_windows_to_stack(NULL); 207 #endif 208 209 mutex_enter(&p->p_lock); 210 /* 211 * If this is vfork(), cancel any suspend request we might 212 * have gotten from some other thread via lwp_suspend(). 213 * Otherwise we could end up with a deadlock on return 214 * from the vfork() in both the parent and the child. 215 */ 216 if (isvfork) 217 curthread->t_proc_flag &= ~TP_HOLDLWP; 218 /* 219 * Prevent our resource set associations from being changed during fork. 220 */ 221 pool_barrier_enter(); 222 mutex_exit(&p->p_lock); 223 224 /* 225 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 226 */ 227 if (getproc(&cp, 0) < 0) { 228 mutex_enter(&p->p_lock); 229 pool_barrier_exit(); 230 continuelwps(p); 231 mutex_exit(&p->p_lock); 232 error = EAGAIN; 233 goto forkerr; 234 } 235 236 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 237 238 /* 239 * Assign an address space to child 240 */ 241 if (isvfork) { 242 /* 243 * Clear any watched areas and remember the 244 * watched pages for restoring in vfwait(). 245 */ 246 as = p->p_as; 247 if (avl_numnodes(&as->a_wpage) != 0) { 248 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 249 as_clearwatch(as); 250 p->p_wpage = as->a_wpage; 251 avl_create(&as->a_wpage, wp_compare, 252 sizeof (struct watched_page), 253 offsetof(struct watched_page, wp_link)); 254 AS_LOCK_EXIT(as, &as->a_lock); 255 } 256 cp->p_as = as; 257 cp->p_flag |= SVFORK; 258 } else { 259 /* 260 * We need to hold P_PR_LOCK until the address space has 261 * been duplicated and we've had a chance to remove from the 262 * child any DTrace probes that were in the parent. Holding 263 * P_PR_LOCK prevents any new probes from being added and any 264 * extant probes from being removed. 265 */ 266 mutex_enter(&p->p_lock); 267 sprlock_proc(p); 268 p->p_flag |= SFORKING; 269 mutex_exit(&p->p_lock); 270 271 error = as_dup(p->p_as, cp); 272 if (error != 0) { 273 mutex_enter(&p->p_lock); 274 sprunlock(p); 275 fork_fail(cp); 276 mutex_enter(&pidlock); 277 orphpp = &p->p_orphan; 278 while (*orphpp != cp) 279 orphpp = &(*orphpp)->p_nextorph; 280 *orphpp = cp->p_nextorph; 281 if (p->p_child == cp) 282 p->p_child = cp->p_sibling; 283 if (cp->p_sibling) 284 cp->p_sibling->p_psibling = cp->p_psibling; 285 if (cp->p_psibling) 286 cp->p_psibling->p_sibling = cp->p_sibling; 287 mutex_enter(&cp->p_lock); 288 tk = cp->p_task; 289 task_detach(cp); 290 ASSERT(cp->p_pool->pool_ref > 0); 291 atomic_add_32(&cp->p_pool->pool_ref, -1); 292 mutex_exit(&cp->p_lock); 293 pid_exit(cp); 294 mutex_exit(&pidlock); 295 task_rele(tk); 296 297 mutex_enter(&p->p_lock); 298 p->p_flag &= ~SFORKING; 299 pool_barrier_exit(); 300 continuelwps(p); 301 mutex_exit(&p->p_lock); 302 /* 303 * Preserve ENOMEM error condition but 304 * map all others to EAGAIN. 305 */ 306 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 307 goto forkerr; 308 } 309 310 /* Duplicate parent's shared memory */ 311 if (p->p_segacct) 312 shmfork(p, cp); 313 314 /* 315 * Remove all DTrace tracepoints from the child process. We 316 * need to do this _before_ duplicating USDT providers since 317 * any associated probes may be immediately enabled. 318 */ 319 if (p->p_dtrace_count > 0) 320 dtrace_fasttrap_fork(p, cp); 321 322 /* 323 * Duplicate any helper actions and providers. The SFORKING 324 * we set above informs the code to enable USDT probes that 325 * sprlock() may fail because the child is being forked. 326 */ 327 if (p->p_dtrace_helpers != NULL) { 328 mutex_enter(&p->p_lock); 329 sprunlock(p); 330 331 ASSERT(dtrace_helpers_fork != NULL); 332 (*dtrace_helpers_fork)(p, cp); 333 334 mutex_enter(&p->p_lock); 335 p->p_flag &= ~SFORKING; 336 mutex_exit(&p->p_lock); 337 } else { 338 mutex_enter(&p->p_lock); 339 p->p_flag &= ~SFORKING; 340 sprunlock(p); 341 } 342 } 343 344 /* 345 * Duplicate parent's resource controls. 346 */ 347 dup_set = rctl_set_create(); 348 for (;;) { 349 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 350 mutex_enter(&p->p_rctls->rcs_lock); 351 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 352 break; 353 mutex_exit(&p->p_rctls->rcs_lock); 354 rctl_prealloc_destroy(dup_gp); 355 } 356 e.rcep_p.proc = cp; 357 e.rcep_t = RCENTITY_PROCESS; 358 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 359 RCD_DUP | RCD_CALLBACK); 360 mutex_exit(&p->p_rctls->rcs_lock); 361 362 rctl_prealloc_destroy(dup_gp); 363 364 /* 365 * Allocate the child's lwp directory and lwpid hash table. 366 */ 367 if (isfork1) 368 cp->p_lwpdir_sz = 2; 369 else 370 cp->p_lwpdir_sz = p->p_lwpdir_sz; 371 cp->p_lwpdir = cp->p_lwpfree = ldp = 372 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 373 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 374 ldp->ld_next = ldp + 1; 375 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 376 cp->p_tidhash = 377 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 378 379 /* 380 * Duplicate parent's lwps. 381 * Mutual exclusion is not needed because the process is 382 * in the hold state and only the current lwp is running. 383 */ 384 klgrpset_clear(cp->p_lgrpset); 385 if (isfork1) { 386 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 387 if (clone == NULL) 388 goto forklwperr; 389 /* 390 * Inherit only the lwp_wait()able flag, 391 * Daemon threads should not call fork1(), but oh well... 392 */ 393 lwptot(clone)->t_proc_flag |= 394 (curthread->t_proc_flag & TP_TWAIT); 395 } else { 396 /* this is forkall(), no one can be in lwp_wait() */ 397 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 398 /* for each entry in the parent's lwp directory... */ 399 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 400 klwp_t *clwp; 401 kthread_t *ct; 402 403 if ((lep = ldp->ld_entry) == NULL) 404 continue; 405 406 if ((t = lep->le_thread) != NULL) { 407 clwp = forklwp(ttolwp(t), cp, t->t_tid); 408 if (clwp == NULL) 409 goto forklwperr; 410 ct = lwptot(clwp); 411 /* 412 * Inherit lwp_wait()able and daemon flags. 413 */ 414 ct->t_proc_flag |= 415 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 416 /* 417 * Keep track of the clone of curthread to 418 * post return values through lwp_setrval(). 419 * Mark other threads for special treatment 420 * by lwp_rtt() / post_syscall(). 421 */ 422 if (t == curthread) 423 clone = clwp; 424 else 425 ct->t_flag |= T_FORKALL; 426 } else { 427 /* 428 * Replicate zombie lwps in the child. 429 */ 430 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 431 clep->le_lwpid = lep->le_lwpid; 432 clep->le_start = lep->le_start; 433 lwp_hash_in(cp, clep, 434 cp->p_tidhash, cp->p_tidhash_sz, 0); 435 } 436 } 437 } 438 439 /* 440 * Put new process in the parent's process contract, or put it 441 * in a new one if there is an active process template. Send a 442 * fork event (if requested) to whatever contract the child is 443 * a member of. Fails if the parent has been SIGKILLed. 444 */ 445 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 446 goto forklwperr; 447 448 /* 449 * No fork failures occur beyond this point. 450 */ 451 452 cp->p_lwpid = p->p_lwpid; 453 if (!isfork1) { 454 cp->p_lwpdaemon = p->p_lwpdaemon; 455 cp->p_zombcnt = p->p_zombcnt; 456 /* 457 * If the parent's lwp ids have wrapped around, so have the 458 * child's. 459 */ 460 cp->p_flag |= p->p_flag & SLWPWRAP; 461 } 462 463 mutex_enter(&p->p_lock); 464 corectl_path_hold(cp->p_corefile = p->p_corefile); 465 corectl_content_hold(cp->p_content = p->p_content); 466 mutex_exit(&p->p_lock); 467 468 /* 469 * Duplicate process context ops, if any. 470 */ 471 if (p->p_pctx) 472 forkpctx(p, cp); 473 474 #ifdef __sparc 475 utrap_dup(p, cp); 476 #endif 477 /* 478 * If the child process has been marked to stop on exit 479 * from this fork, arrange for all other lwps to stop in 480 * sympathy with the active lwp. 481 */ 482 if (PTOU(cp)->u_systrap && 483 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 484 mutex_enter(&cp->p_lock); 485 t = cp->p_tlist; 486 do { 487 t->t_proc_flag |= TP_PRSTOP; 488 aston(t); /* so TP_PRSTOP will be seen */ 489 } while ((t = t->t_forw) != cp->p_tlist); 490 mutex_exit(&cp->p_lock); 491 } 492 /* 493 * If the parent process has been marked to stop on exit 494 * from this fork, and its asynchronous-stop flag has not 495 * been set, arrange for all other lwps to stop before 496 * they return back to user level. 497 */ 498 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 499 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 500 mutex_enter(&p->p_lock); 501 t = p->p_tlist; 502 do { 503 t->t_proc_flag |= TP_PRSTOP; 504 aston(t); /* so TP_PRSTOP will be seen */ 505 } while ((t = t->t_forw) != p->p_tlist); 506 mutex_exit(&p->p_lock); 507 } 508 509 if (PROC_IS_BRANDED(p)) 510 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 511 else 512 lwp_setrval(clone, p->p_pid, 1); 513 514 /* set return values for parent */ 515 r.r_val1 = (int)cp->p_pid; 516 r.r_val2 = 0; 517 518 /* 519 * pool_barrier_exit() can now be called because the child process has: 520 * - all identifying features cloned or set (p_pid, p_task, p_pool) 521 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 522 * - any other fields set which are used in resource set binding. 523 */ 524 mutex_enter(&p->p_lock); 525 pool_barrier_exit(); 526 mutex_exit(&p->p_lock); 527 528 mutex_enter(&pidlock); 529 mutex_enter(&cp->p_lock); 530 531 /* 532 * Set flags telling the child what (not) to do on exit. 533 */ 534 if (flags & FORK_NOSIGCHLD) 535 cp->p_pidflag |= CLDNOSIGCHLD; 536 if (flags & FORK_WAITPID) 537 cp->p_pidflag |= CLDWAITPID; 538 539 /* 540 * Now that there are lwps and threads attached, add the new 541 * process to the process group. 542 */ 543 pgjoin(cp, p->p_pgidp); 544 cp->p_stat = SRUN; 545 /* 546 * We are now done with all the lwps in the child process. 547 */ 548 t = cp->p_tlist; 549 do { 550 /* 551 * Set the lwp_suspend()ed lwps running. 552 * They will suspend properly at syscall exit. 553 */ 554 if (t->t_proc_flag & TP_HOLDLWP) 555 lwp_create_done(t); 556 else { 557 /* set TS_CREATE to allow continuelwps() to work */ 558 thread_lock(t); 559 ASSERT(t->t_state == TS_STOPPED && 560 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 561 t->t_schedflag |= TS_CREATE; 562 thread_unlock(t); 563 } 564 } while ((t = t->t_forw) != cp->p_tlist); 565 mutex_exit(&cp->p_lock); 566 567 if (isvfork) { 568 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 569 mutex_enter(&p->p_lock); 570 p->p_flag |= SVFWAIT; 571 curthread->t_flag |= T_VFPARENT; 572 DTRACE_PROC1(create, proc_t *, cp); 573 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 574 mutex_exit(&p->p_lock); 575 /* 576 * Grab child's p_lock before dropping pidlock to ensure 577 * the process will not disappear before we set it running. 578 */ 579 mutex_enter(&cp->p_lock); 580 mutex_exit(&pidlock); 581 sigdefault(cp); 582 continuelwps(cp); 583 mutex_exit(&cp->p_lock); 584 } else { 585 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 586 DTRACE_PROC1(create, proc_t *, cp); 587 /* 588 * It is CL_FORKRET's job to drop pidlock. 589 * If we do it here, the process could be set running 590 * and disappear before CL_FORKRET() is called. 591 */ 592 CL_FORKRET(curthread, cp->p_tlist); 593 schedctl_set_cidpri(curthread); 594 ASSERT(MUTEX_NOT_HELD(&pidlock)); 595 } 596 597 return (r.r_vals); 598 599 forklwperr: 600 if (isvfork) { 601 if (avl_numnodes(&p->p_wpage) != 0) { 602 /* restore watchpoints to parent */ 603 as = p->p_as; 604 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 605 as->a_wpage = p->p_wpage; 606 avl_create(&p->p_wpage, wp_compare, 607 sizeof (struct watched_page), 608 offsetof(struct watched_page, wp_link)); 609 as_setwatch(as); 610 AS_LOCK_EXIT(as, &as->a_lock); 611 } 612 } else { 613 if (cp->p_segacct) 614 shmexit(cp); 615 as = cp->p_as; 616 cp->p_as = &kas; 617 as_free(as); 618 } 619 620 if (cp->p_lwpdir) { 621 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 622 if ((lep = ldp->ld_entry) != NULL) 623 kmem_free(lep, sizeof (*lep)); 624 kmem_free(cp->p_lwpdir, 625 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 626 } 627 cp->p_lwpdir = NULL; 628 cp->p_lwpfree = NULL; 629 cp->p_lwpdir_sz = 0; 630 631 if (cp->p_tidhash) 632 kmem_free(cp->p_tidhash, 633 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 634 cp->p_tidhash = NULL; 635 cp->p_tidhash_sz = 0; 636 637 forklwp_fail(cp); 638 fork_fail(cp); 639 rctl_set_free(cp->p_rctls); 640 mutex_enter(&pidlock); 641 642 /* 643 * Detach failed child from task. 644 */ 645 mutex_enter(&cp->p_lock); 646 tk = cp->p_task; 647 task_detach(cp); 648 ASSERT(cp->p_pool->pool_ref > 0); 649 atomic_add_32(&cp->p_pool->pool_ref, -1); 650 mutex_exit(&cp->p_lock); 651 652 orphpp = &p->p_orphan; 653 while (*orphpp != cp) 654 orphpp = &(*orphpp)->p_nextorph; 655 *orphpp = cp->p_nextorph; 656 if (p->p_child == cp) 657 p->p_child = cp->p_sibling; 658 if (cp->p_sibling) 659 cp->p_sibling->p_psibling = cp->p_psibling; 660 if (cp->p_psibling) 661 cp->p_psibling->p_sibling = cp->p_sibling; 662 pid_exit(cp); 663 mutex_exit(&pidlock); 664 665 task_rele(tk); 666 667 mutex_enter(&p->p_lock); 668 pool_barrier_exit(); 669 continuelwps(p); 670 mutex_exit(&p->p_lock); 671 error = EAGAIN; 672 forkerr: 673 return ((int64_t)set_errno(error)); 674 } 675 676 /* 677 * Free allocated resources from getproc() if a fork failed. 678 */ 679 static void 680 fork_fail(proc_t *cp) 681 { 682 uf_info_t *fip = P_FINFO(cp); 683 684 fcnt_add(fip, -1); 685 sigdelq(cp, NULL, 0); 686 687 mutex_enter(&pidlock); 688 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 689 mutex_exit(&pidlock); 690 691 /* 692 * single threaded, so no locking needed here 693 */ 694 crfree(cp->p_cred); 695 696 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 697 698 VN_RELE(PTOU(curproc)->u_cdir); 699 if (PTOU(curproc)->u_rdir) 700 VN_RELE(PTOU(curproc)->u_rdir); 701 if (cp->p_exec) 702 VN_RELE(cp->p_exec); 703 if (cp->p_execdir) 704 VN_RELE(cp->p_execdir); 705 if (PTOU(curproc)->u_cwd) 706 refstr_rele(PTOU(curproc)->u_cwd); 707 } 708 709 /* 710 * Clean up the lwps already created for this child process. 711 * The fork failed while duplicating all the lwps of the parent 712 * and those lwps already created must be freed. 713 * This process is invisible to the rest of the system, 714 * so we don't need to hold p->p_lock to protect the list. 715 */ 716 static void 717 forklwp_fail(proc_t *p) 718 { 719 kthread_t *t; 720 task_t *tk; 721 722 while ((t = p->p_tlist) != NULL) { 723 /* 724 * First remove the lwp from the process's p_tlist. 725 */ 726 if (t != t->t_forw) 727 p->p_tlist = t->t_forw; 728 else 729 p->p_tlist = NULL; 730 p->p_lwpcnt--; 731 t->t_forw->t_back = t->t_back; 732 t->t_back->t_forw = t->t_forw; 733 734 tk = p->p_task; 735 mutex_enter(&p->p_zone->zone_nlwps_lock); 736 tk->tk_nlwps--; 737 tk->tk_proj->kpj_nlwps--; 738 p->p_zone->zone_nlwps--; 739 mutex_exit(&p->p_zone->zone_nlwps_lock); 740 741 ASSERT(t->t_schedctl == NULL); 742 743 if (t->t_door != NULL) { 744 kmem_free(t->t_door, sizeof (door_data_t)); 745 t->t_door = NULL; 746 } 747 lwp_ctmpl_clear(ttolwp(t)); 748 749 /* 750 * Remove the thread from the all threads list. 751 * We need to hold pidlock for this. 752 */ 753 mutex_enter(&pidlock); 754 t->t_next->t_prev = t->t_prev; 755 t->t_prev->t_next = t->t_next; 756 CL_EXIT(t); /* tell the scheduler that we're exiting */ 757 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 758 mutex_exit(&pidlock); 759 760 /* 761 * Let the lgroup load averages know that this thread isn't 762 * going to show up (i.e. un-do what was done on behalf of 763 * this thread by the earlier lgrp_move_thread()). 764 */ 765 kpreempt_disable(); 766 lgrp_move_thread(t, NULL, 1); 767 kpreempt_enable(); 768 769 /* 770 * The thread was created TS_STOPPED. 771 * We change it to TS_FREE to avoid an 772 * ASSERT() panic in thread_free(). 773 */ 774 t->t_state = TS_FREE; 775 thread_rele(t); 776 thread_free(t); 777 } 778 } 779 780 extern struct as kas; 781 782 /* 783 * fork a kernel process. 784 */ 785 int 786 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct) 787 { 788 proc_t *p; 789 struct user *up; 790 klwp_t *lwp; 791 cont_process_t *ctp = NULL; 792 rctl_entity_p_t e; 793 794 ASSERT(!(cid == syscid && ct != NULL)); 795 if (cid == syscid) { 796 rctl_alloc_gp_t *init_gp; 797 rctl_set_t *init_set; 798 799 if (getproc(&p, 1) < 0) 800 return (EAGAIN); 801 802 p->p_flag |= SNOWAIT; 803 p->p_exec = NULL; 804 p->p_execdir = NULL; 805 806 init_set = rctl_set_create(); 807 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 808 809 /* 810 * kernel processes do not inherit /proc tracing flags. 811 */ 812 sigemptyset(&p->p_sigmask); 813 premptyset(&p->p_fltmask); 814 up = PTOU(p); 815 up->u_systrap = 0; 816 premptyset(&(up->u_entrymask)); 817 premptyset(&(up->u_exitmask)); 818 mutex_enter(&p->p_lock); 819 e.rcep_p.proc = p; 820 e.rcep_t = RCENTITY_PROCESS; 821 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 822 init_gp); 823 mutex_exit(&p->p_lock); 824 825 rctl_prealloc_destroy(init_gp); 826 } else { 827 rctl_alloc_gp_t *init_gp, *default_gp; 828 rctl_set_t *init_set; 829 task_t *tk, *tk_old; 830 831 if (getproc(&p, 0) < 0) 832 return (EAGAIN); 833 /* 834 * init creates a new task, distinct from the task 835 * containing kernel "processes". 836 */ 837 tk = task_create(0, p->p_zone); 838 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 839 tk->tk_proj->kpj_ntasks++; 840 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 841 842 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 843 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 844 init_set = rctl_set_create(); 845 846 mutex_enter(&pidlock); 847 mutex_enter(&p->p_lock); 848 tk_old = p->p_task; /* switch to new task */ 849 850 task_detach(p); 851 task_begin(tk, p); 852 mutex_exit(&pidlock); 853 854 e.rcep_p.proc = p; 855 e.rcep_t = RCENTITY_PROCESS; 856 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 857 init_gp); 858 rctlproc_default_init(p, default_gp); 859 mutex_exit(&p->p_lock); 860 861 task_rele(tk_old); 862 rctl_prealloc_destroy(default_gp); 863 rctl_prealloc_destroy(init_gp); 864 } 865 866 p->p_as = &kas; 867 868 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 869 &curthread->t_hold, cid, 1)) == NULL) { 870 task_t *tk; 871 fork_fail(p); 872 mutex_enter(&pidlock); 873 mutex_enter(&p->p_lock); 874 tk = p->p_task; 875 task_detach(p); 876 ASSERT(p->p_pool->pool_ref > 0); 877 atomic_add_32(&p->p_pool->pool_ref, -1); 878 mutex_exit(&p->p_lock); 879 pid_exit(p); 880 mutex_exit(&pidlock); 881 task_rele(tk); 882 883 return (EAGAIN); 884 } 885 886 if (cid != syscid) { 887 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 888 B_FALSE); 889 ASSERT(ctp != NULL); 890 if (ct != NULL) 891 *ct = &ctp->conp_contract; 892 } 893 894 p->p_lwpid = 1; 895 mutex_enter(&pidlock); 896 pgjoin(p, curproc->p_pgidp); 897 p->p_stat = SRUN; 898 mutex_enter(&p->p_lock); 899 lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP; 900 lwp_create_done(lwptot(lwp)); 901 mutex_exit(&p->p_lock); 902 mutex_exit(&pidlock); 903 return (0); 904 } 905 906 /* 907 * create a child proc struct. 908 */ 909 static int 910 getproc(proc_t **cpp, int kernel) 911 { 912 proc_t *pp, *cp; 913 pid_t newpid; 914 struct user *uarea; 915 extern uint_t nproc; 916 struct cred *cr; 917 uid_t ruid; 918 zoneid_t zoneid; 919 920 if (!page_mem_avail(tune.t_minarmem)) 921 return (-1); 922 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 923 return (-1); /* no point in starting new processes */ 924 925 pp = curproc; 926 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 927 bzero(cp, sizeof (proc_t)); 928 929 /* 930 * Make proc entry for child process 931 */ 932 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 933 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 934 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 935 #if defined(__x86) 936 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 937 #endif 938 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 939 cp->p_stat = SIDL; 940 cp->p_mstart = gethrtime(); 941 /* 942 * p_zone must be set before we call pid_allocate since the process 943 * will be visible after that and code such as prfind_zone will 944 * look at the p_zone field. 945 */ 946 cp->p_zone = pp->p_zone; 947 cp->p_t1_lgrpid = LGRP_NONE; 948 cp->p_tr_lgrpid = LGRP_NONE; 949 950 if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) { 951 if (nproc == v.v_proc) { 952 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 953 cmn_err(CE_WARN, "out of processes"); 954 } 955 goto bad; 956 } 957 958 /* 959 * If not privileged make sure that this user hasn't exceeded 960 * v.v_maxup processes, and that users collectively haven't 961 * exceeded v.v_maxupttl processes. 962 */ 963 mutex_enter(&pidlock); 964 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 965 cr = CRED(); 966 ruid = crgetruid(cr); 967 zoneid = crgetzoneid(cr); 968 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 969 (nproc >= v.v_maxupttl || 970 upcount_get(ruid, zoneid) >= v.v_maxup) && 971 secpolicy_newproc(cr) != 0) { 972 mutex_exit(&pidlock); 973 zcmn_err(zoneid, CE_NOTE, 974 "out of per-user processes for uid %d", ruid); 975 goto bad; 976 } 977 978 /* 979 * Everything is cool, put the new proc on the active process list. 980 * It is already on the pid list and in /proc. 981 * Increment the per uid process count (upcount). 982 */ 983 nproc++; 984 upcount_inc(ruid, zoneid); 985 986 cp->p_next = practive; 987 practive->p_prev = cp; 988 practive = cp; 989 990 cp->p_ignore = pp->p_ignore; 991 cp->p_siginfo = pp->p_siginfo; 992 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 993 cp->p_sessp = pp->p_sessp; 994 sess_hold(pp); 995 cp->p_exec = pp->p_exec; 996 cp->p_execdir = pp->p_execdir; 997 cp->p_brand = pp->p_brand; 998 if (PROC_IS_BRANDED(pp)) 999 BROP(pp)->b_copy_procdata(cp, pp); 1000 1001 cp->p_bssbase = pp->p_bssbase; 1002 cp->p_brkbase = pp->p_brkbase; 1003 cp->p_brksize = pp->p_brksize; 1004 cp->p_brkpageszc = pp->p_brkpageszc; 1005 cp->p_stksize = pp->p_stksize; 1006 cp->p_stkpageszc = pp->p_stkpageszc; 1007 cp->p_stkprot = pp->p_stkprot; 1008 cp->p_datprot = pp->p_datprot; 1009 cp->p_usrstack = pp->p_usrstack; 1010 cp->p_model = pp->p_model; 1011 cp->p_ppid = pp->p_pid; 1012 cp->p_ancpid = pp->p_pid; 1013 cp->p_portcnt = pp->p_portcnt; 1014 1015 /* 1016 * Initialize watchpoint structures 1017 */ 1018 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1019 offsetof(struct watched_area, wa_link)); 1020 1021 /* 1022 * Initialize immediate resource control values. 1023 */ 1024 cp->p_stk_ctl = pp->p_stk_ctl; 1025 cp->p_fsz_ctl = pp->p_fsz_ctl; 1026 cp->p_vmem_ctl = pp->p_vmem_ctl; 1027 cp->p_fno_ctl = pp->p_fno_ctl; 1028 1029 /* 1030 * Link up to parent-child-sibling chain. No need to lock 1031 * in general since only a call to freeproc() (done by the 1032 * same parent as newproc()) diddles with the child chain. 1033 */ 1034 cp->p_sibling = pp->p_child; 1035 if (pp->p_child) 1036 pp->p_child->p_psibling = cp; 1037 1038 cp->p_parent = pp; 1039 pp->p_child = cp; 1040 1041 cp->p_child_ns = NULL; 1042 cp->p_sibling_ns = NULL; 1043 1044 cp->p_nextorph = pp->p_orphan; 1045 cp->p_nextofkin = pp; 1046 pp->p_orphan = cp; 1047 1048 /* 1049 * Inherit profiling state; do not inherit REALPROF profiling state. 1050 */ 1051 cp->p_prof = pp->p_prof; 1052 cp->p_rprof_cyclic = CYCLIC_NONE; 1053 1054 /* 1055 * Inherit pool pointer from the parent. Kernel processes are 1056 * always bound to the default pool. 1057 */ 1058 mutex_enter(&pp->p_lock); 1059 if (kernel) { 1060 cp->p_pool = pool_default; 1061 cp->p_flag |= SSYS; 1062 } else { 1063 cp->p_pool = pp->p_pool; 1064 } 1065 atomic_add_32(&cp->p_pool->pool_ref, 1); 1066 mutex_exit(&pp->p_lock); 1067 1068 /* 1069 * Add the child process to the current task. Kernel processes 1070 * are always attached to task0. 1071 */ 1072 mutex_enter(&cp->p_lock); 1073 if (kernel) 1074 task_attach(task0p, cp); 1075 else 1076 task_attach(pp->p_task, cp); 1077 mutex_exit(&cp->p_lock); 1078 mutex_exit(&pidlock); 1079 1080 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1081 offsetof(contract_t, ct_ctlist)); 1082 1083 /* 1084 * Duplicate any audit information kept in the process table 1085 */ 1086 if (audit_active) /* copy audit data to cp */ 1087 audit_newproc(cp); 1088 1089 crhold(cp->p_cred = cr); 1090 1091 /* 1092 * Bump up the counts on the file structures pointed at by the 1093 * parent's file table since the child will point at them too. 1094 */ 1095 fcnt_add(P_FINFO(pp), 1); 1096 1097 VN_HOLD(PTOU(pp)->u_cdir); 1098 if (PTOU(pp)->u_rdir) 1099 VN_HOLD(PTOU(pp)->u_rdir); 1100 if (PTOU(pp)->u_cwd) 1101 refstr_hold(PTOU(pp)->u_cwd); 1102 1103 /* 1104 * copy the parent's uarea. 1105 */ 1106 uarea = PTOU(cp); 1107 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1108 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1109 1110 gethrestime(&uarea->u_start); 1111 uarea->u_ticks = lbolt; 1112 uarea->u_mem = rm_asrss(pp->p_as); 1113 uarea->u_acflag = AFORK; 1114 1115 /* 1116 * If inherit-on-fork, copy /proc tracing flags to child. 1117 */ 1118 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1119 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1120 cp->p_sigmask = pp->p_sigmask; 1121 cp->p_fltmask = pp->p_fltmask; 1122 } else { 1123 sigemptyset(&cp->p_sigmask); 1124 premptyset(&cp->p_fltmask); 1125 uarea->u_systrap = 0; 1126 premptyset(&uarea->u_entrymask); 1127 premptyset(&uarea->u_exitmask); 1128 } 1129 /* 1130 * If microstate accounting is being inherited, mark child 1131 */ 1132 if ((pp->p_flag & SMSFORK) != 0) 1133 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1134 1135 /* 1136 * Inherit fixalignment flag from the parent 1137 */ 1138 cp->p_fixalignment = pp->p_fixalignment; 1139 1140 if (cp->p_exec) 1141 VN_HOLD(cp->p_exec); 1142 if (cp->p_execdir) 1143 VN_HOLD(cp->p_execdir); 1144 *cpp = cp; 1145 return (0); 1146 1147 bad: 1148 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1149 1150 mutex_destroy(&cp->p_crlock); 1151 mutex_destroy(&cp->p_pflock); 1152 #if defined(__x86) 1153 mutex_destroy(&cp->p_ldtlock); 1154 #endif 1155 if (newpid != -1) { 1156 proc_entry_free(cp->p_pidp); 1157 (void) pid_rele(cp->p_pidp); 1158 } 1159 kmem_cache_free(process_cache, cp); 1160 1161 /* 1162 * We most likely got into this situation because some process is 1163 * forking out of control. As punishment, put it to sleep for a 1164 * bit so it can't eat the machine alive. Sleep interval is chosen 1165 * to allow no more than one fork failure per cpu per clock tick 1166 * on average (yes, I just made this up). This has two desirable 1167 * properties: (1) it sets a constant limit on the fork failure 1168 * rate, and (2) the busier the system is, the harsher the penalty 1169 * for abusing it becomes. 1170 */ 1171 INCR_COUNT(&fork_fail_pending, &pidlock); 1172 delay(fork_fail_pending / ncpus + 1); 1173 DECR_COUNT(&fork_fail_pending, &pidlock); 1174 1175 return (-1); /* out of memory or proc slots */ 1176 } 1177 1178 /* 1179 * Release virtual memory. 1180 * In the case of vfork(), the child was given exclusive access to its 1181 * parent's address space. The parent is waiting in vfwait() for the 1182 * child to release its exclusive claim via relvm(). 1183 */ 1184 void 1185 relvm() 1186 { 1187 proc_t *p = curproc; 1188 1189 ASSERT((unsigned)p->p_lwpcnt <= 1); 1190 1191 prrelvm(); /* inform /proc */ 1192 1193 if (p->p_flag & SVFORK) { 1194 proc_t *pp = p->p_parent; 1195 /* 1196 * The child process is either exec'ing or exit'ing. 1197 * The child is now separated from the parent's address 1198 * space. The parent process is made dispatchable. 1199 * 1200 * This is a delicate locking maneuver, involving 1201 * both the parent's p_lock and the child's p_lock. 1202 * As soon as the SVFORK flag is turned off, the 1203 * parent is free to run, but it must not run until 1204 * we wake it up using its p_cv because it might 1205 * exit and we would be referencing invalid memory. 1206 * Therefore, we hold the parent with its p_lock 1207 * while protecting our p_flags with our own p_lock. 1208 */ 1209 try_again: 1210 mutex_enter(&p->p_lock); /* grab child's lock first */ 1211 prbarrier(p); /* make sure /proc is blocked out */ 1212 mutex_enter(&pp->p_lock); 1213 1214 /* 1215 * Check if parent is locked by /proc. 1216 */ 1217 if (pp->p_proc_flag & P_PR_LOCK) { 1218 /* 1219 * Delay until /proc is done with the parent. 1220 * We must drop our (the child's) p->p_lock, wait 1221 * via prbarrier() on the parent, then start over. 1222 */ 1223 mutex_exit(&p->p_lock); 1224 prbarrier(pp); 1225 mutex_exit(&pp->p_lock); 1226 goto try_again; 1227 } 1228 p->p_flag &= ~SVFORK; 1229 kpreempt_disable(); 1230 p->p_as = &kas; 1231 1232 /* 1233 * notify hat of change in thread's address space 1234 */ 1235 hat_thread_exit(curthread); 1236 kpreempt_enable(); 1237 1238 /* 1239 * child sizes are copied back to parent because 1240 * child may have grown. 1241 */ 1242 pp->p_brkbase = p->p_brkbase; 1243 pp->p_brksize = p->p_brksize; 1244 pp->p_stksize = p->p_stksize; 1245 /* 1246 * The parent is no longer waiting for the vfork()d child. 1247 * Restore the parent's watched pages, if any. This is 1248 * safe because we know the parent is not locked by /proc 1249 */ 1250 pp->p_flag &= ~SVFWAIT; 1251 if (avl_numnodes(&pp->p_wpage) != 0) { 1252 pp->p_as->a_wpage = pp->p_wpage; 1253 avl_create(&pp->p_wpage, wp_compare, 1254 sizeof (struct watched_page), 1255 offsetof(struct watched_page, wp_link)); 1256 } 1257 cv_signal(&pp->p_cv); 1258 mutex_exit(&pp->p_lock); 1259 mutex_exit(&p->p_lock); 1260 } else { 1261 if (p->p_as != &kas) { 1262 struct as *as; 1263 1264 if (p->p_segacct) 1265 shmexit(p); 1266 1267 /* 1268 * We grab p_lock for the benefit of /proc 1269 */ 1270 kpreempt_disable(); 1271 mutex_enter(&p->p_lock); 1272 prbarrier(p); /* make sure /proc is blocked out */ 1273 as = p->p_as; 1274 p->p_as = &kas; 1275 mutex_exit(&p->p_lock); 1276 1277 /* 1278 * notify hat of change in thread's address space 1279 */ 1280 hat_thread_exit(curthread); 1281 kpreempt_enable(); 1282 1283 as_free(as); 1284 p->p_tr_lgrpid = LGRP_NONE; 1285 } 1286 } 1287 } 1288 1289 /* 1290 * Wait for child to exec or exit. 1291 * Called by parent of vfork'ed process. 1292 * See important comments in relvm(), above. 1293 */ 1294 void 1295 vfwait(pid_t pid) 1296 { 1297 int signalled = 0; 1298 proc_t *pp = ttoproc(curthread); 1299 proc_t *cp; 1300 1301 /* 1302 * Wait for child to exec or exit. 1303 */ 1304 for (;;) { 1305 mutex_enter(&pidlock); 1306 cp = prfind(pid); 1307 if (cp == NULL || cp->p_parent != pp) { 1308 /* 1309 * Child has exit()ed. 1310 */ 1311 mutex_exit(&pidlock); 1312 break; 1313 } 1314 /* 1315 * Grab the child's p_lock before releasing pidlock. 1316 * Otherwise, the child could exit and we would be 1317 * referencing invalid memory. 1318 */ 1319 mutex_enter(&cp->p_lock); 1320 mutex_exit(&pidlock); 1321 if (!(cp->p_flag & SVFORK)) { 1322 /* 1323 * Child has exec()ed or is exit()ing. 1324 */ 1325 mutex_exit(&cp->p_lock); 1326 break; 1327 } 1328 mutex_enter(&pp->p_lock); 1329 mutex_exit(&cp->p_lock); 1330 /* 1331 * We might be waked up spuriously from the cv_wait(). 1332 * We have to do the whole operation over again to be 1333 * sure the child's SVFORK flag really is turned off. 1334 * We cannot make reference to the child because it can 1335 * exit before we return and we would be referencing 1336 * invalid memory. 1337 * 1338 * Because this is potentially a very long-term wait, 1339 * we call cv_wait_sig() (for its jobcontrol and /proc 1340 * side-effects) unless there is a current signal, in 1341 * which case we use cv_wait() because we cannot return 1342 * from this function until the child has released the 1343 * address space. Calling cv_wait_sig() with a current 1344 * signal would lead to an indefinite loop here because 1345 * cv_wait_sig() returns immediately in this case. 1346 */ 1347 if (signalled) 1348 cv_wait(&pp->p_cv, &pp->p_lock); 1349 else 1350 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1351 mutex_exit(&pp->p_lock); 1352 } 1353 1354 /* restore watchpoints to parent */ 1355 if (pr_watch_active(pp)) { 1356 struct as *as = pp->p_as; 1357 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1358 as_setwatch(as); 1359 AS_LOCK_EXIT(as, &as->a_lock); 1360 } 1361 1362 mutex_enter(&pp->p_lock); 1363 prbarrier(pp); /* barrier against /proc locking */ 1364 continuelwps(pp); 1365 mutex_exit(&pp->p_lock); 1366 } 1367