1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, pid_t, uint_t); 85 #define GETPROC_USER 0x0 86 #define GETPROC_KERNEL 0x1 87 88 static void fork_fail(proc_t *); 89 static void forklwp_fail(proc_t *); 90 91 int fork_fail_pending; 92 93 extern struct kmem_cache *process_cache; 94 95 /* 96 * The vfork() system call trap is no longer invoked by libc. 97 * It is retained only for the benefit of applications running 98 * within a solaris10 branded zone. It should be eliminated 99 * when we no longer support solaris10 branded zones. 100 */ 101 int64_t 102 vfork(void) 103 { 104 curthread->t_post_sys = 1; /* so vfwait() will be called */ 105 return (cfork(1, 1, 0)); 106 } 107 108 /* 109 * forksys system call - forkx, forkallx, vforkx. This is the 110 * interface invoked by libc for fork1(), forkall(), and vfork() 111 */ 112 int64_t 113 forksys(int subcode, int flags) 114 { 115 switch (subcode) { 116 case 0: 117 return (cfork(0, 1, flags)); /* forkx(flags) */ 118 case 1: 119 return (cfork(0, 0, flags)); /* forkallx(flags) */ 120 case 2: 121 curthread->t_post_sys = 1; /* so vfwait() will be called */ 122 return (cfork(1, 1, flags)); /* vforkx(flags) */ 123 default: 124 return ((int64_t)set_errno(EINVAL)); 125 } 126 } 127 128 /* 129 * Remove the associations of a child process from its parent and siblings. 130 */ 131 static void 132 disown_proc(proc_t *pp, proc_t *cp) 133 { 134 proc_t **orphpp; 135 136 ASSERT(MUTEX_HELD(&pidlock)); 137 138 orphpp = &pp->p_orphan; 139 while (*orphpp != cp) 140 orphpp = &(*orphpp)->p_nextorph; 141 *orphpp = cp->p_nextorph; 142 143 if (pp->p_child == cp) 144 pp->p_child = cp->p_sibling; 145 if (cp->p_sibling) 146 cp->p_sibling->p_psibling = cp->p_psibling; 147 if (cp->p_psibling) 148 cp->p_psibling->p_sibling = cp->p_sibling; 149 } 150 151 /* ARGSUSED */ 152 static int64_t 153 cfork(int isvfork, int isfork1, int flags) 154 { 155 proc_t *p = ttoproc(curthread); 156 struct as *as; 157 proc_t *cp; 158 klwp_t *clone; 159 kthread_t *t; 160 task_t *tk; 161 rval_t r; 162 int error; 163 int i; 164 rctl_set_t *dup_set; 165 rctl_alloc_gp_t *dup_gp; 166 rctl_entity_p_t e; 167 lwpdir_t *ldp; 168 lwpent_t *lep; 169 lwpent_t *clep; 170 171 /* 172 * Allow only these two flags. 173 */ 174 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 175 error = EINVAL; 176 atomic_inc_32(&curproc->p_zone->zone_ffmisc); 177 goto forkerr; 178 } 179 180 /* 181 * fork is not supported for the /proc agent lwp. 182 */ 183 if (curthread == p->p_agenttp) { 184 error = ENOTSUP; 185 atomic_inc_32(&curproc->p_zone->zone_ffmisc); 186 goto forkerr; 187 } 188 189 if ((error = secpolicy_basic_fork(CRED())) != 0) { 190 atomic_inc_32(&p->p_zone->zone_ffmisc); 191 goto forkerr; 192 } 193 194 /* 195 * If the calling lwp is doing a fork1() then the 196 * other lwps in this process are not duplicated and 197 * don't need to be held where their kernel stacks can be 198 * cloned. If doing forkall(), the process is held with 199 * SHOLDFORK, so that the lwps are at a point where their 200 * stacks can be copied which is on entry or exit from 201 * the kernel. 202 */ 203 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 204 aston(curthread); 205 error = EINTR; 206 atomic_inc_32(&p->p_zone->zone_ffmisc); 207 goto forkerr; 208 } 209 210 #if defined(__sparc) 211 /* 212 * Ensure that the user stack is fully constructed 213 * before creating the child process structure. 214 */ 215 (void) flush_user_windows_to_stack(NULL); 216 #endif 217 218 mutex_enter(&p->p_lock); 219 /* 220 * If this is vfork(), cancel any suspend request we might 221 * have gotten from some other thread via lwp_suspend(). 222 * Otherwise we could end up with a deadlock on return 223 * from the vfork() in both the parent and the child. 224 */ 225 if (isvfork) 226 curthread->t_proc_flag &= ~TP_HOLDLWP; 227 /* 228 * Prevent our resource set associations from being changed during fork. 229 */ 230 pool_barrier_enter(); 231 mutex_exit(&p->p_lock); 232 233 /* 234 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 235 */ 236 if (getproc(&cp, 0, GETPROC_USER) < 0) { 237 mutex_enter(&p->p_lock); 238 pool_barrier_exit(); 239 continuelwps(p); 240 mutex_exit(&p->p_lock); 241 error = EAGAIN; 242 goto forkerr; 243 } 244 245 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 246 247 /* 248 * Assign an address space to child 249 */ 250 if (isvfork) { 251 /* 252 * Clear any watched areas and remember the 253 * watched pages for restoring in vfwait(). 254 */ 255 as = p->p_as; 256 if (avl_numnodes(&as->a_wpage) != 0) { 257 AS_LOCK_ENTER(as, RW_WRITER); 258 as_clearwatch(as); 259 p->p_wpage = as->a_wpage; 260 avl_create(&as->a_wpage, wp_compare, 261 sizeof (struct watched_page), 262 offsetof(struct watched_page, wp_link)); 263 AS_LOCK_EXIT(as); 264 } 265 cp->p_as = as; 266 cp->p_flag |= SVFORK; 267 268 /* 269 * Use the parent's shm segment list information for 270 * the child as it uses its address space till it execs. 271 */ 272 cp->p_segacct = p->p_segacct; 273 } else { 274 /* 275 * We need to hold P_PR_LOCK until the address space has 276 * been duplicated and we've had a chance to remove from the 277 * child any DTrace probes that were in the parent. Holding 278 * P_PR_LOCK prevents any new probes from being added and any 279 * extant probes from being removed. 280 */ 281 mutex_enter(&p->p_lock); 282 sprlock_proc(p); 283 p->p_flag |= SFORKING; 284 mutex_exit(&p->p_lock); 285 286 error = as_dup(p->p_as, cp); 287 if (error != 0) { 288 mutex_enter(&p->p_lock); 289 sprunlock(p); 290 fork_fail(cp); 291 mutex_enter(&pidlock); 292 disown_proc(p, cp); 293 mutex_enter(&cp->p_lock); 294 tk = cp->p_task; 295 task_detach(cp); 296 ASSERT(cp->p_pool->pool_ref > 0); 297 atomic_dec_32(&cp->p_pool->pool_ref); 298 mutex_exit(&cp->p_lock); 299 pid_exit(cp, tk); 300 mutex_exit(&pidlock); 301 task_rele(tk); 302 303 mutex_enter(&p->p_lock); 304 p->p_flag &= ~SFORKING; 305 pool_barrier_exit(); 306 continuelwps(p); 307 mutex_exit(&p->p_lock); 308 /* 309 * Preserve ENOMEM error condition but 310 * map all others to EAGAIN. 311 */ 312 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 313 atomic_inc_32(&p->p_zone->zone_ffnomem); 314 goto forkerr; 315 } 316 317 /* 318 * Remove all DTrace tracepoints from the child process. We 319 * need to do this _before_ duplicating USDT providers since 320 * any associated probes may be immediately enabled. 321 */ 322 if (p->p_dtrace_count > 0) 323 dtrace_fasttrap_fork(p, cp); 324 325 mutex_enter(&p->p_lock); 326 sprunlock(p); 327 328 /* Duplicate parent's shared memory */ 329 if (p->p_segacct) 330 shmfork(p, cp); 331 332 /* 333 * Duplicate any helper actions and providers. The SFORKING 334 * we set above informs the code to enable USDT probes that 335 * sprlock() may fail because the child is being forked. 336 */ 337 if (p->p_dtrace_helpers != NULL) { 338 ASSERT(dtrace_helpers_fork != NULL); 339 (*dtrace_helpers_fork)(p, cp); 340 } 341 342 mutex_enter(&p->p_lock); 343 p->p_flag &= ~SFORKING; 344 mutex_exit(&p->p_lock); 345 } 346 347 /* 348 * Duplicate parent's resource controls. 349 */ 350 dup_set = rctl_set_create(); 351 for (;;) { 352 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 353 mutex_enter(&p->p_rctls->rcs_lock); 354 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 355 break; 356 mutex_exit(&p->p_rctls->rcs_lock); 357 rctl_prealloc_destroy(dup_gp); 358 } 359 e.rcep_p.proc = cp; 360 e.rcep_t = RCENTITY_PROCESS; 361 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 362 RCD_DUP | RCD_CALLBACK); 363 mutex_exit(&p->p_rctls->rcs_lock); 364 365 rctl_prealloc_destroy(dup_gp); 366 367 /* 368 * Allocate the child's lwp directory and lwpid hash table. 369 */ 370 if (isfork1) 371 cp->p_lwpdir_sz = 2; 372 else 373 cp->p_lwpdir_sz = p->p_lwpdir_sz; 374 cp->p_lwpdir = cp->p_lwpfree = ldp = 375 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 376 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 377 ldp->ld_next = ldp + 1; 378 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 379 cp->p_tidhash = 380 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 381 382 /* 383 * Duplicate parent's lwps. 384 * Mutual exclusion is not needed because the process is 385 * in the hold state and only the current lwp is running. 386 */ 387 klgrpset_clear(cp->p_lgrpset); 388 if (isfork1) { 389 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 390 if (clone == NULL) 391 goto forklwperr; 392 /* 393 * Inherit only the lwp_wait()able flag, 394 * Daemon threads should not call fork1(), but oh well... 395 */ 396 lwptot(clone)->t_proc_flag |= 397 (curthread->t_proc_flag & TP_TWAIT); 398 } else { 399 /* this is forkall(), no one can be in lwp_wait() */ 400 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 401 /* for each entry in the parent's lwp directory... */ 402 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 403 klwp_t *clwp; 404 kthread_t *ct; 405 406 if ((lep = ldp->ld_entry) == NULL) 407 continue; 408 409 if ((t = lep->le_thread) != NULL) { 410 clwp = forklwp(ttolwp(t), cp, t->t_tid); 411 if (clwp == NULL) 412 goto forklwperr; 413 ct = lwptot(clwp); 414 /* 415 * Inherit lwp_wait()able and daemon flags. 416 */ 417 ct->t_proc_flag |= 418 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 419 /* 420 * Keep track of the clone of curthread to 421 * post return values through lwp_setrval(). 422 * Mark other threads for special treatment 423 * by lwp_rtt() / post_syscall(). 424 */ 425 if (t == curthread) 426 clone = clwp; 427 else 428 ct->t_flag |= T_FORKALL; 429 } else { 430 /* 431 * Replicate zombie lwps in the child. 432 */ 433 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 434 clep->le_lwpid = lep->le_lwpid; 435 clep->le_start = lep->le_start; 436 lwp_hash_in(cp, clep, 437 cp->p_tidhash, cp->p_tidhash_sz, 0); 438 } 439 } 440 } 441 442 /* 443 * Put new process in the parent's process contract, or put it 444 * in a new one if there is an active process template. Send a 445 * fork event (if requested) to whatever contract the child is 446 * a member of. Fails if the parent has been SIGKILLed. 447 */ 448 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) { 449 atomic_inc_32(&p->p_zone->zone_ffmisc); 450 goto forklwperr; 451 } 452 453 /* 454 * No fork failures occur beyond this point. 455 */ 456 457 cp->p_lwpid = p->p_lwpid; 458 if (!isfork1) { 459 cp->p_lwpdaemon = p->p_lwpdaemon; 460 cp->p_zombcnt = p->p_zombcnt; 461 /* 462 * If the parent's lwp ids have wrapped around, so have the 463 * child's. 464 */ 465 cp->p_flag |= p->p_flag & SLWPWRAP; 466 } 467 468 mutex_enter(&p->p_lock); 469 corectl_path_hold(cp->p_corefile = p->p_corefile); 470 corectl_content_hold(cp->p_content = p->p_content); 471 mutex_exit(&p->p_lock); 472 473 /* 474 * Duplicate process context ops, if any. 475 */ 476 if (p->p_pctx) 477 forkpctx(p, cp); 478 479 #ifdef __sparc 480 utrap_dup(p, cp); 481 #endif 482 /* 483 * If the child process has been marked to stop on exit 484 * from this fork, arrange for all other lwps to stop in 485 * sympathy with the active lwp. 486 */ 487 if (PTOU(cp)->u_systrap && 488 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 489 mutex_enter(&cp->p_lock); 490 t = cp->p_tlist; 491 do { 492 t->t_proc_flag |= TP_PRSTOP; 493 aston(t); /* so TP_PRSTOP will be seen */ 494 } while ((t = t->t_forw) != cp->p_tlist); 495 mutex_exit(&cp->p_lock); 496 } 497 /* 498 * If the parent process has been marked to stop on exit 499 * from this fork, and its asynchronous-stop flag has not 500 * been set, arrange for all other lwps to stop before 501 * they return back to user level. 502 */ 503 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 504 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 505 mutex_enter(&p->p_lock); 506 t = p->p_tlist; 507 do { 508 t->t_proc_flag |= TP_PRSTOP; 509 aston(t); /* so TP_PRSTOP will be seen */ 510 } while ((t = t->t_forw) != p->p_tlist); 511 mutex_exit(&p->p_lock); 512 } 513 514 if (PROC_IS_BRANDED(p)) 515 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 516 else 517 lwp_setrval(clone, p->p_pid, 1); 518 519 /* set return values for parent */ 520 r.r_val1 = (int)cp->p_pid; 521 r.r_val2 = 0; 522 523 /* 524 * pool_barrier_exit() can now be called because the child process has: 525 * - all identifying features cloned or set (p_pid, p_task, p_pool) 526 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 527 * - any other fields set which are used in resource set binding. 528 */ 529 mutex_enter(&p->p_lock); 530 pool_barrier_exit(); 531 mutex_exit(&p->p_lock); 532 533 mutex_enter(&pidlock); 534 mutex_enter(&cp->p_lock); 535 536 /* 537 * Set flags telling the child what (not) to do on exit. 538 */ 539 if (flags & FORK_NOSIGCHLD) 540 cp->p_pidflag |= CLDNOSIGCHLD; 541 if (flags & FORK_WAITPID) 542 cp->p_pidflag |= CLDWAITPID; 543 544 /* 545 * Now that there are lwps and threads attached, add the new 546 * process to the process group. 547 */ 548 pgjoin(cp, p->p_pgidp); 549 cp->p_stat = SRUN; 550 /* 551 * We are now done with all the lwps in the child process. 552 */ 553 t = cp->p_tlist; 554 do { 555 /* 556 * Set the lwp_suspend()ed lwps running. 557 * They will suspend properly at syscall exit. 558 */ 559 if (t->t_proc_flag & TP_HOLDLWP) 560 lwp_create_done(t); 561 else { 562 /* set TS_CREATE to allow continuelwps() to work */ 563 thread_lock(t); 564 ASSERT(t->t_state == TS_STOPPED && 565 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 566 t->t_schedflag |= TS_CREATE; 567 thread_unlock(t); 568 } 569 } while ((t = t->t_forw) != cp->p_tlist); 570 mutex_exit(&cp->p_lock); 571 572 if (isvfork) { 573 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 574 mutex_enter(&p->p_lock); 575 p->p_flag |= SVFWAIT; 576 curthread->t_flag |= T_VFPARENT; 577 DTRACE_PROC1(create, proc_t *, cp); 578 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 579 mutex_exit(&p->p_lock); 580 /* 581 * Grab child's p_lock before dropping pidlock to ensure 582 * the process will not disappear before we set it running. 583 */ 584 mutex_enter(&cp->p_lock); 585 mutex_exit(&pidlock); 586 sigdefault(cp); 587 continuelwps(cp); 588 mutex_exit(&cp->p_lock); 589 } else { 590 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 591 DTRACE_PROC1(create, proc_t *, cp); 592 /* 593 * It is CL_FORKRET's job to drop pidlock. 594 * If we do it here, the process could be set running 595 * and disappear before CL_FORKRET() is called. 596 */ 597 CL_FORKRET(curthread, cp->p_tlist); 598 schedctl_set_cidpri(curthread); 599 ASSERT(MUTEX_NOT_HELD(&pidlock)); 600 } 601 602 return (r.r_vals); 603 604 forklwperr: 605 if (isvfork) { 606 if (avl_numnodes(&p->p_wpage) != 0) { 607 /* restore watchpoints to parent */ 608 as = p->p_as; 609 AS_LOCK_ENTER(as, RW_WRITER); 610 as->a_wpage = p->p_wpage; 611 avl_create(&p->p_wpage, wp_compare, 612 sizeof (struct watched_page), 613 offsetof(struct watched_page, wp_link)); 614 as_setwatch(as); 615 AS_LOCK_EXIT(as); 616 } 617 } else { 618 if (cp->p_segacct) 619 shmexit(cp); 620 as = cp->p_as; 621 cp->p_as = &kas; 622 as_free(as); 623 } 624 625 if (cp->p_lwpdir) { 626 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 627 if ((lep = ldp->ld_entry) != NULL) 628 kmem_free(lep, sizeof (*lep)); 629 kmem_free(cp->p_lwpdir, 630 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 631 } 632 cp->p_lwpdir = NULL; 633 cp->p_lwpfree = NULL; 634 cp->p_lwpdir_sz = 0; 635 636 if (cp->p_tidhash) 637 kmem_free(cp->p_tidhash, 638 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 639 cp->p_tidhash = NULL; 640 cp->p_tidhash_sz = 0; 641 642 forklwp_fail(cp); 643 fork_fail(cp); 644 rctl_set_free(cp->p_rctls); 645 mutex_enter(&pidlock); 646 647 /* 648 * Detach failed child from task. 649 */ 650 mutex_enter(&cp->p_lock); 651 tk = cp->p_task; 652 task_detach(cp); 653 ASSERT(cp->p_pool->pool_ref > 0); 654 atomic_dec_32(&cp->p_pool->pool_ref); 655 mutex_exit(&cp->p_lock); 656 657 disown_proc(p, cp); 658 pid_exit(cp, tk); 659 mutex_exit(&pidlock); 660 661 task_rele(tk); 662 663 mutex_enter(&p->p_lock); 664 pool_barrier_exit(); 665 continuelwps(p); 666 mutex_exit(&p->p_lock); 667 error = EAGAIN; 668 forkerr: 669 return ((int64_t)set_errno(error)); 670 } 671 672 /* 673 * Free allocated resources from getproc() if a fork failed. 674 */ 675 static void 676 fork_fail(proc_t *cp) 677 { 678 uf_info_t *fip = P_FINFO(cp); 679 680 fcnt_add(fip, -1); 681 sigdelq(cp, NULL, 0); 682 683 mutex_enter(&pidlock); 684 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 685 mutex_exit(&pidlock); 686 687 /* 688 * single threaded, so no locking needed here 689 */ 690 crfree(cp->p_cred); 691 692 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 693 694 VN_RELE(PTOU(curproc)->u_cdir); 695 if (PTOU(curproc)->u_rdir) 696 VN_RELE(PTOU(curproc)->u_rdir); 697 if (cp->p_exec) 698 VN_RELE(cp->p_exec); 699 if (cp->p_execdir) 700 VN_RELE(cp->p_execdir); 701 if (PTOU(curproc)->u_cwd) 702 refstr_rele(PTOU(curproc)->u_cwd); 703 if (PROC_IS_BRANDED(cp)) { 704 brand_clearbrand(cp, B_TRUE); 705 } 706 } 707 708 /* 709 * Clean up the lwps already created for this child process. 710 * The fork failed while duplicating all the lwps of the parent 711 * and those lwps already created must be freed. 712 * This process is invisible to the rest of the system, 713 * so we don't need to hold p->p_lock to protect the list. 714 */ 715 static void 716 forklwp_fail(proc_t *p) 717 { 718 kthread_t *t; 719 task_t *tk; 720 int branded = 0; 721 722 if (PROC_IS_BRANDED(p)) 723 branded = 1; 724 725 while ((t = p->p_tlist) != NULL) { 726 /* 727 * First remove the lwp from the process's p_tlist. 728 */ 729 if (t != t->t_forw) 730 p->p_tlist = t->t_forw; 731 else 732 p->p_tlist = NULL; 733 p->p_lwpcnt--; 734 t->t_forw->t_back = t->t_back; 735 t->t_back->t_forw = t->t_forw; 736 737 tk = p->p_task; 738 mutex_enter(&p->p_zone->zone_nlwps_lock); 739 tk->tk_nlwps--; 740 tk->tk_proj->kpj_nlwps--; 741 p->p_zone->zone_nlwps--; 742 mutex_exit(&p->p_zone->zone_nlwps_lock); 743 744 ASSERT(t->t_schedctl == NULL); 745 746 if (branded) 747 BROP(p)->b_freelwp(ttolwp(t)); 748 749 if (t->t_door != NULL) { 750 kmem_free(t->t_door, sizeof (door_data_t)); 751 t->t_door = NULL; 752 } 753 lwp_ctmpl_clear(ttolwp(t)); 754 755 /* 756 * Remove the thread from the all threads list. 757 * We need to hold pidlock for this. 758 */ 759 mutex_enter(&pidlock); 760 t->t_next->t_prev = t->t_prev; 761 t->t_prev->t_next = t->t_next; 762 CL_EXIT(t); /* tell the scheduler that we're exiting */ 763 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 764 mutex_exit(&pidlock); 765 766 /* 767 * Let the lgroup load averages know that this thread isn't 768 * going to show up (i.e. un-do what was done on behalf of 769 * this thread by the earlier lgrp_move_thread()). 770 */ 771 kpreempt_disable(); 772 lgrp_move_thread(t, NULL, 1); 773 kpreempt_enable(); 774 775 /* 776 * The thread was created TS_STOPPED. 777 * We change it to TS_FREE to avoid an 778 * ASSERT() panic in thread_free(). 779 */ 780 t->t_state = TS_FREE; 781 thread_rele(t); 782 thread_free(t); 783 } 784 } 785 786 extern struct as kas; 787 788 /* 789 * fork a kernel process. 790 */ 791 int 792 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct, 793 pid_t pid) 794 { 795 proc_t *p; 796 struct user *up; 797 kthread_t *t; 798 cont_process_t *ctp = NULL; 799 rctl_entity_p_t e; 800 801 ASSERT(cid != sysdccid); 802 ASSERT(cid != syscid || ct == NULL); 803 if (CLASS_KERNEL(cid)) { 804 rctl_alloc_gp_t *init_gp; 805 rctl_set_t *init_set; 806 807 ASSERT(pid != 1); 808 809 if (getproc(&p, pid, GETPROC_KERNEL) < 0) 810 return (EAGAIN); 811 812 /* 813 * Release the hold on the p_exec and p_execdir, these 814 * were acquired in getproc() 815 */ 816 if (p->p_execdir != NULL) 817 VN_RELE(p->p_execdir); 818 if (p->p_exec != NULL) 819 VN_RELE(p->p_exec); 820 p->p_flag |= SNOWAIT; 821 p->p_exec = NULL; 822 p->p_execdir = NULL; 823 824 init_set = rctl_set_create(); 825 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 826 827 /* 828 * kernel processes do not inherit /proc tracing flags. 829 */ 830 sigemptyset(&p->p_sigmask); 831 premptyset(&p->p_fltmask); 832 up = PTOU(p); 833 up->u_systrap = 0; 834 premptyset(&(up->u_entrymask)); 835 premptyset(&(up->u_exitmask)); 836 mutex_enter(&p->p_lock); 837 e.rcep_p.proc = p; 838 e.rcep_t = RCENTITY_PROCESS; 839 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 840 init_gp); 841 mutex_exit(&p->p_lock); 842 843 rctl_prealloc_destroy(init_gp); 844 845 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri); 846 } else { 847 rctl_alloc_gp_t *init_gp, *default_gp; 848 rctl_set_t *init_set; 849 task_t *tk, *tk_old; 850 klwp_t *lwp; 851 852 if (getproc(&p, pid, GETPROC_USER) < 0) 853 return (EAGAIN); 854 /* 855 * init creates a new task, distinct from the task 856 * containing kernel "processes". 857 */ 858 tk = task_create(0, p->p_zone); 859 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 860 tk->tk_proj->kpj_ntasks++; 861 tk->tk_nprocs++; 862 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 863 864 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 865 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 866 init_set = rctl_set_create(); 867 868 mutex_enter(&pidlock); 869 mutex_enter(&p->p_lock); 870 tk_old = p->p_task; /* switch to new task */ 871 872 task_detach(p); 873 task_begin(tk, p); 874 mutex_exit(&pidlock); 875 876 mutex_enter(&tk_old->tk_zone->zone_nlwps_lock); 877 tk_old->tk_nprocs--; 878 mutex_exit(&tk_old->tk_zone->zone_nlwps_lock); 879 880 e.rcep_p.proc = p; 881 e.rcep_t = RCENTITY_PROCESS; 882 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 883 init_gp); 884 rctlproc_default_init(p, default_gp); 885 mutex_exit(&p->p_lock); 886 887 task_rele(tk_old); 888 rctl_prealloc_destroy(default_gp); 889 rctl_prealloc_destroy(init_gp); 890 891 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 892 &curthread->t_hold, cid, 1)) == NULL) { 893 task_t *tk; 894 895 fork_fail(p); 896 mutex_enter(&pidlock); 897 disown_proc(p->p_parent, p); 898 899 mutex_enter(&p->p_lock); 900 tk = p->p_task; 901 task_detach(p); 902 ASSERT(p->p_pool->pool_ref > 0); 903 atomic_add_32(&p->p_pool->pool_ref, -1); 904 mutex_exit(&p->p_lock); 905 906 pid_exit(p, tk); 907 mutex_exit(&pidlock); 908 task_rele(tk); 909 return (EAGAIN); 910 } 911 t = lwptot(lwp); 912 913 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 914 B_FALSE); 915 ASSERT(ctp != NULL); 916 if (ct != NULL) 917 *ct = &ctp->conp_contract; 918 } 919 920 ASSERT3U(t->t_tid, ==, 1); 921 p->p_lwpid = 1; 922 mutex_enter(&pidlock); 923 pgjoin(p, p->p_parent->p_pgidp); 924 p->p_stat = SRUN; 925 mutex_enter(&p->p_lock); 926 t->t_proc_flag &= ~TP_HOLDLWP; 927 lwp_create_done(t); 928 mutex_exit(&p->p_lock); 929 mutex_exit(&pidlock); 930 return (0); 931 } 932 933 /* 934 * create a child proc struct. 935 */ 936 static int 937 getproc(proc_t **cpp, pid_t pid, uint_t flags) 938 { 939 proc_t *pp, *cp; 940 pid_t newpid; 941 struct user *uarea; 942 extern uint_t nproc; 943 struct cred *cr; 944 uid_t ruid; 945 zoneid_t zoneid; 946 task_t *task; 947 kproject_t *proj; 948 zone_t *zone; 949 int rctlfail = 0; 950 951 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 952 return (-1); /* no point in starting new processes */ 953 954 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc; 955 task = pp->p_task; 956 proj = task->tk_proj; 957 zone = pp->p_zone; 958 959 mutex_enter(&pp->p_lock); 960 mutex_enter(&zone->zone_nlwps_lock); 961 if (proj != proj0p) { 962 if (task->tk_nprocs >= task->tk_nprocs_ctl) 963 if (rctl_test(rc_task_nprocs, task->tk_rctls, 964 pp, 1, 0) & RCT_DENY) 965 rctlfail = 1; 966 967 if (proj->kpj_nprocs >= proj->kpj_nprocs_ctl) 968 if (rctl_test(rc_project_nprocs, proj->kpj_rctls, 969 pp, 1, 0) & RCT_DENY) 970 rctlfail = 1; 971 972 if (zone->zone_nprocs >= zone->zone_nprocs_ctl) 973 if (rctl_test(rc_zone_nprocs, zone->zone_rctls, 974 pp, 1, 0) & RCT_DENY) 975 rctlfail = 1; 976 977 if (rctlfail) { 978 mutex_exit(&zone->zone_nlwps_lock); 979 mutex_exit(&pp->p_lock); 980 atomic_inc_32(&zone->zone_ffcap); 981 goto punish; 982 } 983 } 984 task->tk_nprocs++; 985 proj->kpj_nprocs++; 986 zone->zone_nprocs++; 987 mutex_exit(&zone->zone_nlwps_lock); 988 mutex_exit(&pp->p_lock); 989 990 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 991 bzero(cp, sizeof (proc_t)); 992 993 /* 994 * Make proc entry for child process 995 */ 996 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 997 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 998 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 999 #if defined(__x86) 1000 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 1001 #endif 1002 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 1003 cp->p_stat = SIDL; 1004 cp->p_mstart = gethrtime(); 1005 cp->p_as = &kas; 1006 /* 1007 * p_zone must be set before we call pid_allocate since the process 1008 * will be visible after that and code such as prfind_zone will 1009 * look at the p_zone field. 1010 */ 1011 cp->p_zone = pp->p_zone; 1012 cp->p_t1_lgrpid = LGRP_NONE; 1013 cp->p_tr_lgrpid = LGRP_NONE; 1014 1015 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) { 1016 if (nproc == v.v_proc) { 1017 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 1018 cmn_err(CE_WARN, "out of processes"); 1019 } 1020 goto bad; 1021 } 1022 1023 mutex_enter(&pp->p_lock); 1024 cp->p_exec = pp->p_exec; 1025 cp->p_execdir = pp->p_execdir; 1026 mutex_exit(&pp->p_lock); 1027 1028 if (cp->p_exec) { 1029 VN_HOLD(cp->p_exec); 1030 /* 1031 * Each VOP_OPEN() must be paired with a corresponding 1032 * VOP_CLOSE(). In this case, the executable will be 1033 * closed for the child in either proc_exit() or gexec(). 1034 */ 1035 if (VOP_OPEN(&cp->p_exec, FREAD, CRED(), NULL) != 0) { 1036 VN_RELE(cp->p_exec); 1037 cp->p_exec = NULLVP; 1038 cp->p_execdir = NULLVP; 1039 goto bad; 1040 } 1041 } 1042 if (cp->p_execdir) 1043 VN_HOLD(cp->p_execdir); 1044 1045 /* 1046 * If not privileged make sure that this user hasn't exceeded 1047 * v.v_maxup processes, and that users collectively haven't 1048 * exceeded v.v_maxupttl processes. 1049 */ 1050 mutex_enter(&pidlock); 1051 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 1052 cr = CRED(); 1053 ruid = crgetruid(cr); 1054 zoneid = crgetzoneid(cr); 1055 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 1056 (nproc >= v.v_maxupttl || 1057 upcount_get(ruid, zoneid) >= v.v_maxup) && 1058 secpolicy_newproc(cr) != 0) { 1059 mutex_exit(&pidlock); 1060 zcmn_err(zoneid, CE_NOTE, 1061 "out of per-user processes for uid %d", ruid); 1062 goto bad; 1063 } 1064 1065 /* 1066 * Everything is cool, put the new proc on the active process list. 1067 * It is already on the pid list and in /proc. 1068 * Increment the per uid process count (upcount). 1069 */ 1070 nproc++; 1071 upcount_inc(ruid, zoneid); 1072 1073 cp->p_next = practive; 1074 practive->p_prev = cp; 1075 practive = cp; 1076 1077 cp->p_ignore = pp->p_ignore; 1078 cp->p_siginfo = pp->p_siginfo; 1079 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1080 cp->p_sessp = pp->p_sessp; 1081 sess_hold(pp); 1082 cp->p_brand = pp->p_brand; 1083 if (PROC_IS_BRANDED(pp)) 1084 BROP(pp)->b_copy_procdata(cp, pp); 1085 cp->p_bssbase = pp->p_bssbase; 1086 cp->p_brkbase = pp->p_brkbase; 1087 cp->p_brksize = pp->p_brksize; 1088 cp->p_brkpageszc = pp->p_brkpageszc; 1089 cp->p_stksize = pp->p_stksize; 1090 cp->p_stkpageszc = pp->p_stkpageszc; 1091 cp->p_stkprot = pp->p_stkprot; 1092 cp->p_datprot = pp->p_datprot; 1093 cp->p_usrstack = pp->p_usrstack; 1094 cp->p_model = pp->p_model; 1095 cp->p_ppid = pp->p_pid; 1096 cp->p_ancpid = pp->p_pid; 1097 cp->p_portcnt = pp->p_portcnt; 1098 /* 1099 * Security flags are preserved on fork, the inherited copy come into 1100 * effect on exec 1101 */ 1102 cp->p_secflags = pp->p_secflags; 1103 1104 /* 1105 * Initialize watchpoint structures 1106 */ 1107 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1108 offsetof(struct watched_area, wa_link)); 1109 1110 /* 1111 * Initialize immediate resource control values. 1112 */ 1113 cp->p_stk_ctl = pp->p_stk_ctl; 1114 cp->p_fsz_ctl = pp->p_fsz_ctl; 1115 cp->p_vmem_ctl = pp->p_vmem_ctl; 1116 cp->p_fno_ctl = pp->p_fno_ctl; 1117 1118 /* 1119 * Link up to parent-child-sibling chain. No need to lock 1120 * in general since only a call to freeproc() (done by the 1121 * same parent as newproc()) diddles with the child chain. 1122 */ 1123 cp->p_sibling = pp->p_child; 1124 if (pp->p_child) 1125 pp->p_child->p_psibling = cp; 1126 1127 cp->p_parent = pp; 1128 pp->p_child = cp; 1129 1130 cp->p_child_ns = NULL; 1131 cp->p_sibling_ns = NULL; 1132 1133 cp->p_nextorph = pp->p_orphan; 1134 cp->p_nextofkin = pp; 1135 pp->p_orphan = cp; 1136 1137 /* 1138 * Inherit profiling state; do not inherit REALPROF profiling state. 1139 */ 1140 cp->p_prof = pp->p_prof; 1141 cp->p_rprof_cyclic = CYCLIC_NONE; 1142 1143 /* 1144 * Inherit pool pointer from the parent. Kernel processes are 1145 * always bound to the default pool. 1146 */ 1147 mutex_enter(&pp->p_lock); 1148 if (flags & GETPROC_KERNEL) { 1149 cp->p_pool = pool_default; 1150 cp->p_flag |= SSYS; 1151 } else { 1152 cp->p_pool = pp->p_pool; 1153 } 1154 atomic_inc_32(&cp->p_pool->pool_ref); 1155 mutex_exit(&pp->p_lock); 1156 1157 /* 1158 * Add the child process to the current task. Kernel processes 1159 * are always attached to task0. 1160 */ 1161 mutex_enter(&cp->p_lock); 1162 if (flags & GETPROC_KERNEL) 1163 task_attach(task0p, cp); 1164 else 1165 task_attach(pp->p_task, cp); 1166 mutex_exit(&cp->p_lock); 1167 mutex_exit(&pidlock); 1168 1169 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1170 offsetof(contract_t, ct_ctlist)); 1171 1172 /* 1173 * Duplicate any audit information kept in the process table 1174 */ 1175 if (audit_active) /* copy audit data to cp */ 1176 audit_newproc(cp); 1177 1178 crhold(cp->p_cred = cr); 1179 1180 /* 1181 * Bump up the counts on the file structures pointed at by the 1182 * parent's file table since the child will point at them too. 1183 */ 1184 fcnt_add(P_FINFO(pp), 1); 1185 1186 if (PTOU(pp)->u_cdir) { 1187 VN_HOLD(PTOU(pp)->u_cdir); 1188 } else { 1189 ASSERT(pp == &p0); 1190 /* 1191 * We must be at or before vfs_mountroot(); it will take care of 1192 * assigning our current directory. 1193 */ 1194 } 1195 if (PTOU(pp)->u_rdir) 1196 VN_HOLD(PTOU(pp)->u_rdir); 1197 if (PTOU(pp)->u_cwd) 1198 refstr_hold(PTOU(pp)->u_cwd); 1199 1200 /* 1201 * copy the parent's uarea. 1202 */ 1203 uarea = PTOU(cp); 1204 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1205 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1206 1207 gethrestime(&uarea->u_start); 1208 uarea->u_ticks = ddi_get_lbolt(); 1209 uarea->u_mem = rm_asrss(pp->p_as); 1210 uarea->u_acflag = AFORK; 1211 1212 /* 1213 * If inherit-on-fork, copy /proc tracing flags to child. 1214 */ 1215 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1216 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1217 cp->p_sigmask = pp->p_sigmask; 1218 cp->p_fltmask = pp->p_fltmask; 1219 } else { 1220 sigemptyset(&cp->p_sigmask); 1221 premptyset(&cp->p_fltmask); 1222 uarea->u_systrap = 0; 1223 premptyset(&uarea->u_entrymask); 1224 premptyset(&uarea->u_exitmask); 1225 } 1226 /* 1227 * If microstate accounting is being inherited, mark child 1228 */ 1229 if ((pp->p_flag & SMSFORK) != 0) 1230 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1231 1232 /* 1233 * Inherit fixalignment flag from the parent 1234 */ 1235 cp->p_fixalignment = pp->p_fixalignment; 1236 1237 *cpp = cp; 1238 return (0); 1239 1240 bad: 1241 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1242 1243 mutex_destroy(&cp->p_crlock); 1244 mutex_destroy(&cp->p_pflock); 1245 #if defined(__x86) 1246 mutex_destroy(&cp->p_ldtlock); 1247 #endif 1248 if (newpid != -1) { 1249 proc_entry_free(cp->p_pidp); 1250 (void) pid_rele(cp->p_pidp); 1251 } 1252 kmem_cache_free(process_cache, cp); 1253 1254 mutex_enter(&zone->zone_nlwps_lock); 1255 task->tk_nprocs--; 1256 proj->kpj_nprocs--; 1257 zone->zone_nprocs--; 1258 mutex_exit(&zone->zone_nlwps_lock); 1259 atomic_inc_32(&zone->zone_ffnoproc); 1260 1261 punish: 1262 /* 1263 * We most likely got into this situation because some process is 1264 * forking out of control. As punishment, put it to sleep for a 1265 * bit so it can't eat the machine alive. Sleep interval is chosen 1266 * to allow no more than one fork failure per cpu per clock tick 1267 * on average (yes, I just made this up). This has two desirable 1268 * properties: (1) it sets a constant limit on the fork failure 1269 * rate, and (2) the busier the system is, the harsher the penalty 1270 * for abusing it becomes. 1271 */ 1272 INCR_COUNT(&fork_fail_pending, &pidlock); 1273 delay(fork_fail_pending / ncpus + 1); 1274 DECR_COUNT(&fork_fail_pending, &pidlock); 1275 1276 return (-1); /* out of memory or proc slots */ 1277 } 1278 1279 /* 1280 * Release virtual memory. 1281 * In the case of vfork(), the child was given exclusive access to its 1282 * parent's address space. The parent is waiting in vfwait() for the 1283 * child to release its exclusive claim via relvm(). 1284 */ 1285 void 1286 relvm() 1287 { 1288 proc_t *p = curproc; 1289 1290 ASSERT((unsigned)p->p_lwpcnt <= 1); 1291 1292 prrelvm(); /* inform /proc */ 1293 1294 if (p->p_flag & SVFORK) { 1295 proc_t *pp = p->p_parent; 1296 /* 1297 * The child process is either exec'ing or exit'ing. 1298 * The child is now separated from the parent's address 1299 * space. The parent process is made dispatchable. 1300 * 1301 * This is a delicate locking maneuver, involving 1302 * both the parent's p_lock and the child's p_lock. 1303 * As soon as the SVFORK flag is turned off, the 1304 * parent is free to run, but it must not run until 1305 * we wake it up using its p_cv because it might 1306 * exit and we would be referencing invalid memory. 1307 * Therefore, we hold the parent with its p_lock 1308 * while protecting our p_flags with our own p_lock. 1309 */ 1310 try_again: 1311 mutex_enter(&p->p_lock); /* grab child's lock first */ 1312 prbarrier(p); /* make sure /proc is blocked out */ 1313 mutex_enter(&pp->p_lock); 1314 1315 /* 1316 * Check if parent is locked by /proc. 1317 */ 1318 if (pp->p_proc_flag & P_PR_LOCK) { 1319 /* 1320 * Delay until /proc is done with the parent. 1321 * We must drop our (the child's) p->p_lock, wait 1322 * via prbarrier() on the parent, then start over. 1323 */ 1324 mutex_exit(&p->p_lock); 1325 prbarrier(pp); 1326 mutex_exit(&pp->p_lock); 1327 goto try_again; 1328 } 1329 p->p_flag &= ~SVFORK; 1330 kpreempt_disable(); 1331 p->p_as = &kas; 1332 1333 /* 1334 * notify hat of change in thread's address space 1335 */ 1336 hat_thread_exit(curthread); 1337 kpreempt_enable(); 1338 1339 /* 1340 * child sizes are copied back to parent because 1341 * child may have grown. 1342 */ 1343 pp->p_brkbase = p->p_brkbase; 1344 pp->p_brksize = p->p_brksize; 1345 pp->p_stksize = p->p_stksize; 1346 1347 /* 1348 * Copy back the shm accounting information 1349 * to the parent process. 1350 */ 1351 pp->p_segacct = p->p_segacct; 1352 p->p_segacct = NULL; 1353 1354 /* 1355 * The parent is no longer waiting for the vfork()d child. 1356 * Restore the parent's watched pages, if any. This is 1357 * safe because we know the parent is not locked by /proc 1358 */ 1359 pp->p_flag &= ~SVFWAIT; 1360 if (avl_numnodes(&pp->p_wpage) != 0) { 1361 pp->p_as->a_wpage = pp->p_wpage; 1362 avl_create(&pp->p_wpage, wp_compare, 1363 sizeof (struct watched_page), 1364 offsetof(struct watched_page, wp_link)); 1365 } 1366 cv_signal(&pp->p_cv); 1367 mutex_exit(&pp->p_lock); 1368 mutex_exit(&p->p_lock); 1369 } else { 1370 if (p->p_as != &kas) { 1371 struct as *as; 1372 1373 if (p->p_segacct) 1374 shmexit(p); 1375 1376 /* 1377 * We grab p_lock for the benefit of /proc 1378 */ 1379 kpreempt_disable(); 1380 mutex_enter(&p->p_lock); 1381 prbarrier(p); /* make sure /proc is blocked out */ 1382 as = p->p_as; 1383 p->p_as = &kas; 1384 mutex_exit(&p->p_lock); 1385 1386 /* 1387 * notify hat of change in thread's address space 1388 */ 1389 hat_thread_exit(curthread); 1390 kpreempt_enable(); 1391 1392 as_free(as); 1393 p->p_tr_lgrpid = LGRP_NONE; 1394 } 1395 } 1396 } 1397 1398 /* 1399 * Wait for child to exec or exit. 1400 * Called by parent of vfork'ed process. 1401 * See important comments in relvm(), above. 1402 */ 1403 void 1404 vfwait(pid_t pid) 1405 { 1406 int signalled = 0; 1407 proc_t *pp = ttoproc(curthread); 1408 proc_t *cp; 1409 1410 /* 1411 * Wait for child to exec or exit. 1412 */ 1413 for (;;) { 1414 mutex_enter(&pidlock); 1415 cp = prfind(pid); 1416 if (cp == NULL || cp->p_parent != pp) { 1417 /* 1418 * Child has exit()ed. 1419 */ 1420 mutex_exit(&pidlock); 1421 break; 1422 } 1423 /* 1424 * Grab the child's p_lock before releasing pidlock. 1425 * Otherwise, the child could exit and we would be 1426 * referencing invalid memory. 1427 */ 1428 mutex_enter(&cp->p_lock); 1429 mutex_exit(&pidlock); 1430 if (!(cp->p_flag & SVFORK)) { 1431 /* 1432 * Child has exec()ed or is exit()ing. 1433 */ 1434 mutex_exit(&cp->p_lock); 1435 break; 1436 } 1437 mutex_enter(&pp->p_lock); 1438 mutex_exit(&cp->p_lock); 1439 /* 1440 * We might be waked up spuriously from the cv_wait(). 1441 * We have to do the whole operation over again to be 1442 * sure the child's SVFORK flag really is turned off. 1443 * We cannot make reference to the child because it can 1444 * exit before we return and we would be referencing 1445 * invalid memory. 1446 * 1447 * Because this is potentially a very long-term wait, 1448 * we call cv_wait_sig() (for its jobcontrol and /proc 1449 * side-effects) unless there is a current signal, in 1450 * which case we use cv_wait() because we cannot return 1451 * from this function until the child has released the 1452 * address space. Calling cv_wait_sig() with a current 1453 * signal would lead to an indefinite loop here because 1454 * cv_wait_sig() returns immediately in this case. 1455 */ 1456 if (signalled) 1457 cv_wait(&pp->p_cv, &pp->p_lock); 1458 else 1459 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1460 mutex_exit(&pp->p_lock); 1461 } 1462 1463 /* restore watchpoints to parent */ 1464 if (pr_watch_active(pp)) { 1465 struct as *as = pp->p_as; 1466 AS_LOCK_ENTER(as, RW_WRITER); 1467 as_setwatch(as); 1468 AS_LOCK_EXIT(as); 1469 } 1470 1471 mutex_enter(&pp->p_lock); 1472 prbarrier(pp); /* barrier against /proc locking */ 1473 continuelwps(pp); 1474 mutex_exit(&pp->p_lock); 1475 } 1476