1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, pid_t, uint_t); 85 #define GETPROC_USER 0x0 86 #define GETPROC_KERNEL 0x1 87 88 static void fork_fail(proc_t *); 89 static void forklwp_fail(proc_t *); 90 91 int fork_fail_pending; 92 93 extern struct kmem_cache *process_cache; 94 95 /* 96 * forkall system call. 97 */ 98 int64_t 99 forkall(void) 100 { 101 return (cfork(0, 0, 0)); 102 } 103 104 /* 105 * The parent is stopped until the child invokes relvm(). 106 */ 107 int64_t 108 vfork(void) 109 { 110 curthread->t_post_sys = 1; /* so vfwait() will be called */ 111 return (cfork(1, 1, 0)); 112 } 113 114 /* 115 * fork system call, aka fork1. 116 */ 117 int64_t 118 fork1(void) 119 { 120 return (cfork(0, 1, 0)); 121 } 122 123 /* 124 * The forkall(), vfork(), and fork1() system calls are no longer 125 * invoked by libc. They are retained only for the benefit of 126 * old statically-linked applications. They should be eliminated 127 * when we no longer care about such old and broken applications. 128 */ 129 130 /* 131 * forksys system call - forkx, forkallx, vforkx. 132 * This is the interface now invoked by libc. 133 */ 134 int64_t 135 forksys(int subcode, int flags) 136 { 137 switch (subcode) { 138 case 0: 139 return (cfork(0, 1, flags)); /* forkx(flags) */ 140 case 1: 141 return (cfork(0, 0, flags)); /* forkallx(flags) */ 142 case 2: 143 curthread->t_post_sys = 1; /* so vfwait() will be called */ 144 return (cfork(1, 1, flags)); /* vforkx(flags) */ 145 default: 146 return ((int64_t)set_errno(EINVAL)); 147 } 148 } 149 150 /* ARGSUSED */ 151 static int64_t 152 cfork(int isvfork, int isfork1, int flags) 153 { 154 proc_t *p = ttoproc(curthread); 155 struct as *as; 156 proc_t *cp, **orphpp; 157 klwp_t *clone; 158 kthread_t *t; 159 task_t *tk; 160 rval_t r; 161 int error; 162 int i; 163 rctl_set_t *dup_set; 164 rctl_alloc_gp_t *dup_gp; 165 rctl_entity_p_t e; 166 lwpdir_t *ldp; 167 lwpent_t *lep; 168 lwpent_t *clep; 169 170 /* 171 * Allow only these two flags. 172 */ 173 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 174 error = EINVAL; 175 goto forkerr; 176 } 177 178 /* 179 * fork is not supported for the /proc agent lwp. 180 */ 181 if (curthread == p->p_agenttp) { 182 error = ENOTSUP; 183 goto forkerr; 184 } 185 186 if ((error = secpolicy_basic_fork(CRED())) != 0) 187 goto forkerr; 188 189 /* 190 * If the calling lwp is doing a fork1() then the 191 * other lwps in this process are not duplicated and 192 * don't need to be held where their kernel stacks can be 193 * cloned. If doing forkall(), the process is held with 194 * SHOLDFORK, so that the lwps are at a point where their 195 * stacks can be copied which is on entry or exit from 196 * the kernel. 197 */ 198 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 199 aston(curthread); 200 error = EINTR; 201 goto forkerr; 202 } 203 204 #if defined(__sparc) 205 /* 206 * Ensure that the user stack is fully constructed 207 * before creating the child process structure. 208 */ 209 (void) flush_user_windows_to_stack(NULL); 210 #endif 211 212 mutex_enter(&p->p_lock); 213 /* 214 * If this is vfork(), cancel any suspend request we might 215 * have gotten from some other thread via lwp_suspend(). 216 * Otherwise we could end up with a deadlock on return 217 * from the vfork() in both the parent and the child. 218 */ 219 if (isvfork) 220 curthread->t_proc_flag &= ~TP_HOLDLWP; 221 /* 222 * Prevent our resource set associations from being changed during fork. 223 */ 224 pool_barrier_enter(); 225 mutex_exit(&p->p_lock); 226 227 /* 228 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 229 */ 230 if (getproc(&cp, 0, GETPROC_USER) < 0) { 231 mutex_enter(&p->p_lock); 232 pool_barrier_exit(); 233 continuelwps(p); 234 mutex_exit(&p->p_lock); 235 error = EAGAIN; 236 goto forkerr; 237 } 238 239 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 240 241 /* 242 * Assign an address space to child 243 */ 244 if (isvfork) { 245 /* 246 * Clear any watched areas and remember the 247 * watched pages for restoring in vfwait(). 248 */ 249 as = p->p_as; 250 if (avl_numnodes(&as->a_wpage) != 0) { 251 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 252 as_clearwatch(as); 253 p->p_wpage = as->a_wpage; 254 avl_create(&as->a_wpage, wp_compare, 255 sizeof (struct watched_page), 256 offsetof(struct watched_page, wp_link)); 257 AS_LOCK_EXIT(as, &as->a_lock); 258 } 259 cp->p_as = as; 260 cp->p_flag |= SVFORK; 261 } else { 262 /* 263 * We need to hold P_PR_LOCK until the address space has 264 * been duplicated and we've had a chance to remove from the 265 * child any DTrace probes that were in the parent. Holding 266 * P_PR_LOCK prevents any new probes from being added and any 267 * extant probes from being removed. 268 */ 269 mutex_enter(&p->p_lock); 270 sprlock_proc(p); 271 p->p_flag |= SFORKING; 272 mutex_exit(&p->p_lock); 273 274 error = as_dup(p->p_as, cp); 275 if (error != 0) { 276 mutex_enter(&p->p_lock); 277 sprunlock(p); 278 fork_fail(cp); 279 mutex_enter(&pidlock); 280 orphpp = &p->p_orphan; 281 while (*orphpp != cp) 282 orphpp = &(*orphpp)->p_nextorph; 283 *orphpp = cp->p_nextorph; 284 if (p->p_child == cp) 285 p->p_child = cp->p_sibling; 286 if (cp->p_sibling) 287 cp->p_sibling->p_psibling = cp->p_psibling; 288 if (cp->p_psibling) 289 cp->p_psibling->p_sibling = cp->p_sibling; 290 mutex_enter(&cp->p_lock); 291 tk = cp->p_task; 292 task_detach(cp); 293 ASSERT(cp->p_pool->pool_ref > 0); 294 atomic_add_32(&cp->p_pool->pool_ref, -1); 295 mutex_exit(&cp->p_lock); 296 pid_exit(cp); 297 mutex_exit(&pidlock); 298 task_rele(tk); 299 300 mutex_enter(&p->p_lock); 301 p->p_flag &= ~SFORKING; 302 pool_barrier_exit(); 303 continuelwps(p); 304 mutex_exit(&p->p_lock); 305 /* 306 * Preserve ENOMEM error condition but 307 * map all others to EAGAIN. 308 */ 309 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 310 goto forkerr; 311 } 312 313 /* 314 * Remove all DTrace tracepoints from the child process. We 315 * need to do this _before_ duplicating USDT providers since 316 * any associated probes may be immediately enabled. 317 */ 318 if (p->p_dtrace_count > 0) 319 dtrace_fasttrap_fork(p, cp); 320 321 mutex_enter(&p->p_lock); 322 sprunlock(p); 323 324 /* Duplicate parent's shared memory */ 325 if (p->p_segacct) 326 shmfork(p, cp); 327 328 /* 329 * Duplicate any helper actions and providers. The SFORKING 330 * we set above informs the code to enable USDT probes that 331 * sprlock() may fail because the child is being forked. 332 */ 333 if (p->p_dtrace_helpers != NULL) { 334 ASSERT(dtrace_helpers_fork != NULL); 335 (*dtrace_helpers_fork)(p, cp); 336 } 337 338 mutex_enter(&p->p_lock); 339 p->p_flag &= ~SFORKING; 340 mutex_exit(&p->p_lock); 341 } 342 343 /* 344 * Duplicate parent's resource controls. 345 */ 346 dup_set = rctl_set_create(); 347 for (;;) { 348 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 349 mutex_enter(&p->p_rctls->rcs_lock); 350 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 351 break; 352 mutex_exit(&p->p_rctls->rcs_lock); 353 rctl_prealloc_destroy(dup_gp); 354 } 355 e.rcep_p.proc = cp; 356 e.rcep_t = RCENTITY_PROCESS; 357 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 358 RCD_DUP | RCD_CALLBACK); 359 mutex_exit(&p->p_rctls->rcs_lock); 360 361 rctl_prealloc_destroy(dup_gp); 362 363 /* 364 * Allocate the child's lwp directory and lwpid hash table. 365 */ 366 if (isfork1) 367 cp->p_lwpdir_sz = 2; 368 else 369 cp->p_lwpdir_sz = p->p_lwpdir_sz; 370 cp->p_lwpdir = cp->p_lwpfree = ldp = 371 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 372 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 373 ldp->ld_next = ldp + 1; 374 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 375 cp->p_tidhash = 376 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 377 378 /* 379 * Duplicate parent's lwps. 380 * Mutual exclusion is not needed because the process is 381 * in the hold state and only the current lwp is running. 382 */ 383 klgrpset_clear(cp->p_lgrpset); 384 if (isfork1) { 385 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 386 if (clone == NULL) 387 goto forklwperr; 388 /* 389 * Inherit only the lwp_wait()able flag, 390 * Daemon threads should not call fork1(), but oh well... 391 */ 392 lwptot(clone)->t_proc_flag |= 393 (curthread->t_proc_flag & TP_TWAIT); 394 } else { 395 /* this is forkall(), no one can be in lwp_wait() */ 396 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 397 /* for each entry in the parent's lwp directory... */ 398 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 399 klwp_t *clwp; 400 kthread_t *ct; 401 402 if ((lep = ldp->ld_entry) == NULL) 403 continue; 404 405 if ((t = lep->le_thread) != NULL) { 406 clwp = forklwp(ttolwp(t), cp, t->t_tid); 407 if (clwp == NULL) 408 goto forklwperr; 409 ct = lwptot(clwp); 410 /* 411 * Inherit lwp_wait()able and daemon flags. 412 */ 413 ct->t_proc_flag |= 414 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 415 /* 416 * Keep track of the clone of curthread to 417 * post return values through lwp_setrval(). 418 * Mark other threads for special treatment 419 * by lwp_rtt() / post_syscall(). 420 */ 421 if (t == curthread) 422 clone = clwp; 423 else 424 ct->t_flag |= T_FORKALL; 425 } else { 426 /* 427 * Replicate zombie lwps in the child. 428 */ 429 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 430 clep->le_lwpid = lep->le_lwpid; 431 clep->le_start = lep->le_start; 432 lwp_hash_in(cp, clep, 433 cp->p_tidhash, cp->p_tidhash_sz, 0); 434 } 435 } 436 } 437 438 /* 439 * Put new process in the parent's process contract, or put it 440 * in a new one if there is an active process template. Send a 441 * fork event (if requested) to whatever contract the child is 442 * a member of. Fails if the parent has been SIGKILLed. 443 */ 444 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) 445 goto forklwperr; 446 447 /* 448 * No fork failures occur beyond this point. 449 */ 450 451 cp->p_lwpid = p->p_lwpid; 452 if (!isfork1) { 453 cp->p_lwpdaemon = p->p_lwpdaemon; 454 cp->p_zombcnt = p->p_zombcnt; 455 /* 456 * If the parent's lwp ids have wrapped around, so have the 457 * child's. 458 */ 459 cp->p_flag |= p->p_flag & SLWPWRAP; 460 } 461 462 mutex_enter(&p->p_lock); 463 corectl_path_hold(cp->p_corefile = p->p_corefile); 464 corectl_content_hold(cp->p_content = p->p_content); 465 mutex_exit(&p->p_lock); 466 467 /* 468 * Duplicate process context ops, if any. 469 */ 470 if (p->p_pctx) 471 forkpctx(p, cp); 472 473 #ifdef __sparc 474 utrap_dup(p, cp); 475 #endif 476 /* 477 * If the child process has been marked to stop on exit 478 * from this fork, arrange for all other lwps to stop in 479 * sympathy with the active lwp. 480 */ 481 if (PTOU(cp)->u_systrap && 482 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 483 mutex_enter(&cp->p_lock); 484 t = cp->p_tlist; 485 do { 486 t->t_proc_flag |= TP_PRSTOP; 487 aston(t); /* so TP_PRSTOP will be seen */ 488 } while ((t = t->t_forw) != cp->p_tlist); 489 mutex_exit(&cp->p_lock); 490 } 491 /* 492 * If the parent process has been marked to stop on exit 493 * from this fork, and its asynchronous-stop flag has not 494 * been set, arrange for all other lwps to stop before 495 * they return back to user level. 496 */ 497 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 498 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 499 mutex_enter(&p->p_lock); 500 t = p->p_tlist; 501 do { 502 t->t_proc_flag |= TP_PRSTOP; 503 aston(t); /* so TP_PRSTOP will be seen */ 504 } while ((t = t->t_forw) != p->p_tlist); 505 mutex_exit(&p->p_lock); 506 } 507 508 if (PROC_IS_BRANDED(p)) 509 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 510 else 511 lwp_setrval(clone, p->p_pid, 1); 512 513 /* set return values for parent */ 514 r.r_val1 = (int)cp->p_pid; 515 r.r_val2 = 0; 516 517 /* 518 * pool_barrier_exit() can now be called because the child process has: 519 * - all identifying features cloned or set (p_pid, p_task, p_pool) 520 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 521 * - any other fields set which are used in resource set binding. 522 */ 523 mutex_enter(&p->p_lock); 524 pool_barrier_exit(); 525 mutex_exit(&p->p_lock); 526 527 mutex_enter(&pidlock); 528 mutex_enter(&cp->p_lock); 529 530 /* 531 * Set flags telling the child what (not) to do on exit. 532 */ 533 if (flags & FORK_NOSIGCHLD) 534 cp->p_pidflag |= CLDNOSIGCHLD; 535 if (flags & FORK_WAITPID) 536 cp->p_pidflag |= CLDWAITPID; 537 538 /* 539 * Now that there are lwps and threads attached, add the new 540 * process to the process group. 541 */ 542 pgjoin(cp, p->p_pgidp); 543 cp->p_stat = SRUN; 544 /* 545 * We are now done with all the lwps in the child process. 546 */ 547 t = cp->p_tlist; 548 do { 549 /* 550 * Set the lwp_suspend()ed lwps running. 551 * They will suspend properly at syscall exit. 552 */ 553 if (t->t_proc_flag & TP_HOLDLWP) 554 lwp_create_done(t); 555 else { 556 /* set TS_CREATE to allow continuelwps() to work */ 557 thread_lock(t); 558 ASSERT(t->t_state == TS_STOPPED && 559 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 560 t->t_schedflag |= TS_CREATE; 561 thread_unlock(t); 562 } 563 } while ((t = t->t_forw) != cp->p_tlist); 564 mutex_exit(&cp->p_lock); 565 566 if (isvfork) { 567 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 568 mutex_enter(&p->p_lock); 569 p->p_flag |= SVFWAIT; 570 curthread->t_flag |= T_VFPARENT; 571 DTRACE_PROC1(create, proc_t *, cp); 572 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 573 mutex_exit(&p->p_lock); 574 /* 575 * Grab child's p_lock before dropping pidlock to ensure 576 * the process will not disappear before we set it running. 577 */ 578 mutex_enter(&cp->p_lock); 579 mutex_exit(&pidlock); 580 sigdefault(cp); 581 continuelwps(cp); 582 mutex_exit(&cp->p_lock); 583 } else { 584 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 585 DTRACE_PROC1(create, proc_t *, cp); 586 /* 587 * It is CL_FORKRET's job to drop pidlock. 588 * If we do it here, the process could be set running 589 * and disappear before CL_FORKRET() is called. 590 */ 591 CL_FORKRET(curthread, cp->p_tlist); 592 schedctl_set_cidpri(curthread); 593 ASSERT(MUTEX_NOT_HELD(&pidlock)); 594 } 595 596 return (r.r_vals); 597 598 forklwperr: 599 if (isvfork) { 600 if (avl_numnodes(&p->p_wpage) != 0) { 601 /* restore watchpoints to parent */ 602 as = p->p_as; 603 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 604 as->a_wpage = p->p_wpage; 605 avl_create(&p->p_wpage, wp_compare, 606 sizeof (struct watched_page), 607 offsetof(struct watched_page, wp_link)); 608 as_setwatch(as); 609 AS_LOCK_EXIT(as, &as->a_lock); 610 } 611 } else { 612 if (cp->p_segacct) 613 shmexit(cp); 614 as = cp->p_as; 615 cp->p_as = &kas; 616 as_free(as); 617 } 618 619 if (cp->p_lwpdir) { 620 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 621 if ((lep = ldp->ld_entry) != NULL) 622 kmem_free(lep, sizeof (*lep)); 623 kmem_free(cp->p_lwpdir, 624 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 625 } 626 cp->p_lwpdir = NULL; 627 cp->p_lwpfree = NULL; 628 cp->p_lwpdir_sz = 0; 629 630 if (cp->p_tidhash) 631 kmem_free(cp->p_tidhash, 632 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 633 cp->p_tidhash = NULL; 634 cp->p_tidhash_sz = 0; 635 636 forklwp_fail(cp); 637 fork_fail(cp); 638 rctl_set_free(cp->p_rctls); 639 mutex_enter(&pidlock); 640 641 /* 642 * Detach failed child from task. 643 */ 644 mutex_enter(&cp->p_lock); 645 tk = cp->p_task; 646 task_detach(cp); 647 ASSERT(cp->p_pool->pool_ref > 0); 648 atomic_add_32(&cp->p_pool->pool_ref, -1); 649 mutex_exit(&cp->p_lock); 650 651 orphpp = &p->p_orphan; 652 while (*orphpp != cp) 653 orphpp = &(*orphpp)->p_nextorph; 654 *orphpp = cp->p_nextorph; 655 if (p->p_child == cp) 656 p->p_child = cp->p_sibling; 657 if (cp->p_sibling) 658 cp->p_sibling->p_psibling = cp->p_psibling; 659 if (cp->p_psibling) 660 cp->p_psibling->p_sibling = cp->p_sibling; 661 pid_exit(cp); 662 mutex_exit(&pidlock); 663 664 task_rele(tk); 665 666 mutex_enter(&p->p_lock); 667 pool_barrier_exit(); 668 continuelwps(p); 669 mutex_exit(&p->p_lock); 670 error = EAGAIN; 671 forkerr: 672 return ((int64_t)set_errno(error)); 673 } 674 675 /* 676 * Free allocated resources from getproc() if a fork failed. 677 */ 678 static void 679 fork_fail(proc_t *cp) 680 { 681 uf_info_t *fip = P_FINFO(cp); 682 683 fcnt_add(fip, -1); 684 sigdelq(cp, NULL, 0); 685 686 mutex_enter(&pidlock); 687 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 688 mutex_exit(&pidlock); 689 690 /* 691 * single threaded, so no locking needed here 692 */ 693 crfree(cp->p_cred); 694 695 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 696 697 VN_RELE(PTOU(curproc)->u_cdir); 698 if (PTOU(curproc)->u_rdir) 699 VN_RELE(PTOU(curproc)->u_rdir); 700 if (cp->p_exec) 701 VN_RELE(cp->p_exec); 702 if (cp->p_execdir) 703 VN_RELE(cp->p_execdir); 704 if (PTOU(curproc)->u_cwd) 705 refstr_rele(PTOU(curproc)->u_cwd); 706 } 707 708 /* 709 * Clean up the lwps already created for this child process. 710 * The fork failed while duplicating all the lwps of the parent 711 * and those lwps already created must be freed. 712 * This process is invisible to the rest of the system, 713 * so we don't need to hold p->p_lock to protect the list. 714 */ 715 static void 716 forklwp_fail(proc_t *p) 717 { 718 kthread_t *t; 719 task_t *tk; 720 721 while ((t = p->p_tlist) != NULL) { 722 /* 723 * First remove the lwp from the process's p_tlist. 724 */ 725 if (t != t->t_forw) 726 p->p_tlist = t->t_forw; 727 else 728 p->p_tlist = NULL; 729 p->p_lwpcnt--; 730 t->t_forw->t_back = t->t_back; 731 t->t_back->t_forw = t->t_forw; 732 733 tk = p->p_task; 734 mutex_enter(&p->p_zone->zone_nlwps_lock); 735 tk->tk_nlwps--; 736 tk->tk_proj->kpj_nlwps--; 737 p->p_zone->zone_nlwps--; 738 mutex_exit(&p->p_zone->zone_nlwps_lock); 739 740 ASSERT(t->t_schedctl == NULL); 741 742 if (t->t_door != NULL) { 743 kmem_free(t->t_door, sizeof (door_data_t)); 744 t->t_door = NULL; 745 } 746 lwp_ctmpl_clear(ttolwp(t)); 747 748 /* 749 * Remove the thread from the all threads list. 750 * We need to hold pidlock for this. 751 */ 752 mutex_enter(&pidlock); 753 t->t_next->t_prev = t->t_prev; 754 t->t_prev->t_next = t->t_next; 755 CL_EXIT(t); /* tell the scheduler that we're exiting */ 756 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 757 mutex_exit(&pidlock); 758 759 /* 760 * Let the lgroup load averages know that this thread isn't 761 * going to show up (i.e. un-do what was done on behalf of 762 * this thread by the earlier lgrp_move_thread()). 763 */ 764 kpreempt_disable(); 765 lgrp_move_thread(t, NULL, 1); 766 kpreempt_enable(); 767 768 /* 769 * The thread was created TS_STOPPED. 770 * We change it to TS_FREE to avoid an 771 * ASSERT() panic in thread_free(). 772 */ 773 t->t_state = TS_FREE; 774 thread_rele(t); 775 thread_free(t); 776 } 777 } 778 779 extern struct as kas; 780 781 /* 782 * fork a kernel process. 783 */ 784 int 785 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct, 786 pid_t pid) 787 { 788 proc_t *p; 789 struct user *up; 790 kthread_t *t; 791 cont_process_t *ctp = NULL; 792 rctl_entity_p_t e; 793 794 ASSERT(cid != sysdccid); 795 ASSERT(cid != syscid || ct == NULL); 796 if (CLASS_KERNEL(cid)) { 797 rctl_alloc_gp_t *init_gp; 798 rctl_set_t *init_set; 799 800 ASSERT(pid != 1); 801 802 if (getproc(&p, pid, GETPROC_KERNEL) < 0) 803 return (EAGAIN); 804 805 /* 806 * Release the hold on the p_exec and p_execdir, these 807 * were acquired in getproc() 808 */ 809 if (p->p_execdir != NULL) 810 VN_RELE(p->p_execdir); 811 if (p->p_exec != NULL) 812 VN_RELE(p->p_exec); 813 p->p_flag |= SNOWAIT; 814 p->p_exec = NULL; 815 p->p_execdir = NULL; 816 817 init_set = rctl_set_create(); 818 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 819 820 /* 821 * kernel processes do not inherit /proc tracing flags. 822 */ 823 sigemptyset(&p->p_sigmask); 824 premptyset(&p->p_fltmask); 825 up = PTOU(p); 826 up->u_systrap = 0; 827 premptyset(&(up->u_entrymask)); 828 premptyset(&(up->u_exitmask)); 829 mutex_enter(&p->p_lock); 830 e.rcep_p.proc = p; 831 e.rcep_t = RCENTITY_PROCESS; 832 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 833 init_gp); 834 mutex_exit(&p->p_lock); 835 836 rctl_prealloc_destroy(init_gp); 837 838 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri); 839 } else { 840 rctl_alloc_gp_t *init_gp, *default_gp; 841 rctl_set_t *init_set; 842 task_t *tk, *tk_old; 843 klwp_t *lwp; 844 845 ASSERT(pid == 1); 846 847 if (getproc(&p, pid, GETPROC_USER) < 0) 848 return (EAGAIN); 849 /* 850 * init creates a new task, distinct from the task 851 * containing kernel "processes". 852 */ 853 tk = task_create(0, p->p_zone); 854 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 855 tk->tk_proj->kpj_ntasks++; 856 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 857 858 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 859 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 860 init_set = rctl_set_create(); 861 862 mutex_enter(&pidlock); 863 mutex_enter(&p->p_lock); 864 tk_old = p->p_task; /* switch to new task */ 865 866 task_detach(p); 867 task_begin(tk, p); 868 mutex_exit(&pidlock); 869 870 e.rcep_p.proc = p; 871 e.rcep_t = RCENTITY_PROCESS; 872 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 873 init_gp); 874 rctlproc_default_init(p, default_gp); 875 mutex_exit(&p->p_lock); 876 877 task_rele(tk_old); 878 rctl_prealloc_destroy(default_gp); 879 rctl_prealloc_destroy(init_gp); 880 881 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 882 &curthread->t_hold, cid, 1)) == NULL) { 883 task_t *tk; 884 fork_fail(p); 885 mutex_enter(&pidlock); 886 mutex_enter(&p->p_lock); 887 tk = p->p_task; 888 task_detach(p); 889 ASSERT(p->p_pool->pool_ref > 0); 890 atomic_add_32(&p->p_pool->pool_ref, -1); 891 mutex_exit(&p->p_lock); 892 pid_exit(p); 893 mutex_exit(&pidlock); 894 task_rele(tk); 895 896 return (EAGAIN); 897 } 898 t = lwptot(lwp); 899 900 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 901 B_FALSE); 902 ASSERT(ctp != NULL); 903 if (ct != NULL) 904 *ct = &ctp->conp_contract; 905 } 906 907 ASSERT3U(t->t_tid, ==, 1); 908 p->p_lwpid = 1; 909 mutex_enter(&pidlock); 910 pgjoin(p, p->p_parent->p_pgidp); 911 p->p_stat = SRUN; 912 mutex_enter(&p->p_lock); 913 t->t_proc_flag &= ~TP_HOLDLWP; 914 lwp_create_done(t); 915 mutex_exit(&p->p_lock); 916 mutex_exit(&pidlock); 917 return (0); 918 } 919 920 /* 921 * create a child proc struct. 922 */ 923 static int 924 getproc(proc_t **cpp, pid_t pid, uint_t flags) 925 { 926 proc_t *pp, *cp; 927 pid_t newpid; 928 struct user *uarea; 929 extern uint_t nproc; 930 struct cred *cr; 931 uid_t ruid; 932 zoneid_t zoneid; 933 934 if (!page_mem_avail(tune.t_minarmem)) 935 return (-1); 936 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 937 return (-1); /* no point in starting new processes */ 938 939 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc; 940 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 941 bzero(cp, sizeof (proc_t)); 942 943 /* 944 * Make proc entry for child process 945 */ 946 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 947 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 948 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 949 #if defined(__x86) 950 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 951 #endif 952 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 953 cp->p_stat = SIDL; 954 cp->p_mstart = gethrtime(); 955 cp->p_as = &kas; 956 /* 957 * p_zone must be set before we call pid_allocate since the process 958 * will be visible after that and code such as prfind_zone will 959 * look at the p_zone field. 960 */ 961 cp->p_zone = pp->p_zone; 962 cp->p_t1_lgrpid = LGRP_NONE; 963 cp->p_tr_lgrpid = LGRP_NONE; 964 965 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) { 966 if (nproc == v.v_proc) { 967 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 968 cmn_err(CE_WARN, "out of processes"); 969 } 970 goto bad; 971 } 972 973 /* 974 * If not privileged make sure that this user hasn't exceeded 975 * v.v_maxup processes, and that users collectively haven't 976 * exceeded v.v_maxupttl processes. 977 */ 978 mutex_enter(&pidlock); 979 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 980 cr = CRED(); 981 ruid = crgetruid(cr); 982 zoneid = crgetzoneid(cr); 983 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 984 (nproc >= v.v_maxupttl || 985 upcount_get(ruid, zoneid) >= v.v_maxup) && 986 secpolicy_newproc(cr) != 0) { 987 mutex_exit(&pidlock); 988 zcmn_err(zoneid, CE_NOTE, 989 "out of per-user processes for uid %d", ruid); 990 goto bad; 991 } 992 993 /* 994 * Everything is cool, put the new proc on the active process list. 995 * It is already on the pid list and in /proc. 996 * Increment the per uid process count (upcount). 997 */ 998 nproc++; 999 upcount_inc(ruid, zoneid); 1000 1001 cp->p_next = practive; 1002 practive->p_prev = cp; 1003 practive = cp; 1004 1005 cp->p_ignore = pp->p_ignore; 1006 cp->p_siginfo = pp->p_siginfo; 1007 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1008 cp->p_sessp = pp->p_sessp; 1009 sess_hold(pp); 1010 cp->p_exec = pp->p_exec; 1011 cp->p_execdir = pp->p_execdir; 1012 cp->p_brand = pp->p_brand; 1013 if (PROC_IS_BRANDED(pp)) 1014 BROP(pp)->b_copy_procdata(cp, pp); 1015 1016 cp->p_bssbase = pp->p_bssbase; 1017 cp->p_brkbase = pp->p_brkbase; 1018 cp->p_brksize = pp->p_brksize; 1019 cp->p_brkpageszc = pp->p_brkpageszc; 1020 cp->p_stksize = pp->p_stksize; 1021 cp->p_stkpageszc = pp->p_stkpageszc; 1022 cp->p_stkprot = pp->p_stkprot; 1023 cp->p_datprot = pp->p_datprot; 1024 cp->p_usrstack = pp->p_usrstack; 1025 cp->p_model = pp->p_model; 1026 cp->p_ppid = pp->p_pid; 1027 cp->p_ancpid = pp->p_pid; 1028 cp->p_portcnt = pp->p_portcnt; 1029 1030 /* 1031 * Initialize watchpoint structures 1032 */ 1033 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1034 offsetof(struct watched_area, wa_link)); 1035 1036 /* 1037 * Initialize immediate resource control values. 1038 */ 1039 cp->p_stk_ctl = pp->p_stk_ctl; 1040 cp->p_fsz_ctl = pp->p_fsz_ctl; 1041 cp->p_vmem_ctl = pp->p_vmem_ctl; 1042 cp->p_fno_ctl = pp->p_fno_ctl; 1043 1044 /* 1045 * Link up to parent-child-sibling chain. No need to lock 1046 * in general since only a call to freeproc() (done by the 1047 * same parent as newproc()) diddles with the child chain. 1048 */ 1049 cp->p_sibling = pp->p_child; 1050 if (pp->p_child) 1051 pp->p_child->p_psibling = cp; 1052 1053 cp->p_parent = pp; 1054 pp->p_child = cp; 1055 1056 cp->p_child_ns = NULL; 1057 cp->p_sibling_ns = NULL; 1058 1059 cp->p_nextorph = pp->p_orphan; 1060 cp->p_nextofkin = pp; 1061 pp->p_orphan = cp; 1062 1063 /* 1064 * Inherit profiling state; do not inherit REALPROF profiling state. 1065 */ 1066 cp->p_prof = pp->p_prof; 1067 cp->p_rprof_cyclic = CYCLIC_NONE; 1068 1069 /* 1070 * Inherit pool pointer from the parent. Kernel processes are 1071 * always bound to the default pool. 1072 */ 1073 mutex_enter(&pp->p_lock); 1074 if (flags & GETPROC_KERNEL) { 1075 cp->p_pool = pool_default; 1076 cp->p_flag |= SSYS; 1077 } else { 1078 cp->p_pool = pp->p_pool; 1079 } 1080 atomic_add_32(&cp->p_pool->pool_ref, 1); 1081 mutex_exit(&pp->p_lock); 1082 1083 /* 1084 * Add the child process to the current task. Kernel processes 1085 * are always attached to task0. 1086 */ 1087 mutex_enter(&cp->p_lock); 1088 if (flags & GETPROC_KERNEL) 1089 task_attach(task0p, cp); 1090 else 1091 task_attach(pp->p_task, cp); 1092 mutex_exit(&cp->p_lock); 1093 mutex_exit(&pidlock); 1094 1095 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1096 offsetof(contract_t, ct_ctlist)); 1097 1098 /* 1099 * Duplicate any audit information kept in the process table 1100 */ 1101 if (audit_active) /* copy audit data to cp */ 1102 audit_newproc(cp); 1103 1104 crhold(cp->p_cred = cr); 1105 1106 /* 1107 * Bump up the counts on the file structures pointed at by the 1108 * parent's file table since the child will point at them too. 1109 */ 1110 fcnt_add(P_FINFO(pp), 1); 1111 1112 if (PTOU(pp)->u_cdir) { 1113 VN_HOLD(PTOU(pp)->u_cdir); 1114 } else { 1115 ASSERT(pp == &p0); 1116 /* 1117 * We must be at or before vfs_mountroot(); it will take care of 1118 * assigning our current directory. 1119 */ 1120 } 1121 if (PTOU(pp)->u_rdir) 1122 VN_HOLD(PTOU(pp)->u_rdir); 1123 if (PTOU(pp)->u_cwd) 1124 refstr_hold(PTOU(pp)->u_cwd); 1125 1126 /* 1127 * copy the parent's uarea. 1128 */ 1129 uarea = PTOU(cp); 1130 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1131 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1132 1133 gethrestime(&uarea->u_start); 1134 uarea->u_ticks = ddi_get_lbolt(); 1135 uarea->u_mem = rm_asrss(pp->p_as); 1136 uarea->u_acflag = AFORK; 1137 1138 /* 1139 * If inherit-on-fork, copy /proc tracing flags to child. 1140 */ 1141 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1142 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1143 cp->p_sigmask = pp->p_sigmask; 1144 cp->p_fltmask = pp->p_fltmask; 1145 } else { 1146 sigemptyset(&cp->p_sigmask); 1147 premptyset(&cp->p_fltmask); 1148 uarea->u_systrap = 0; 1149 premptyset(&uarea->u_entrymask); 1150 premptyset(&uarea->u_exitmask); 1151 } 1152 /* 1153 * If microstate accounting is being inherited, mark child 1154 */ 1155 if ((pp->p_flag & SMSFORK) != 0) 1156 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1157 1158 /* 1159 * Inherit fixalignment flag from the parent 1160 */ 1161 cp->p_fixalignment = pp->p_fixalignment; 1162 1163 if (cp->p_exec) 1164 VN_HOLD(cp->p_exec); 1165 if (cp->p_execdir) 1166 VN_HOLD(cp->p_execdir); 1167 *cpp = cp; 1168 return (0); 1169 1170 bad: 1171 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1172 1173 mutex_destroy(&cp->p_crlock); 1174 mutex_destroy(&cp->p_pflock); 1175 #if defined(__x86) 1176 mutex_destroy(&cp->p_ldtlock); 1177 #endif 1178 if (newpid != -1) { 1179 proc_entry_free(cp->p_pidp); 1180 (void) pid_rele(cp->p_pidp); 1181 } 1182 kmem_cache_free(process_cache, cp); 1183 1184 /* 1185 * We most likely got into this situation because some process is 1186 * forking out of control. As punishment, put it to sleep for a 1187 * bit so it can't eat the machine alive. Sleep interval is chosen 1188 * to allow no more than one fork failure per cpu per clock tick 1189 * on average (yes, I just made this up). This has two desirable 1190 * properties: (1) it sets a constant limit on the fork failure 1191 * rate, and (2) the busier the system is, the harsher the penalty 1192 * for abusing it becomes. 1193 */ 1194 INCR_COUNT(&fork_fail_pending, &pidlock); 1195 delay(fork_fail_pending / ncpus + 1); 1196 DECR_COUNT(&fork_fail_pending, &pidlock); 1197 1198 return (-1); /* out of memory or proc slots */ 1199 } 1200 1201 /* 1202 * Release virtual memory. 1203 * In the case of vfork(), the child was given exclusive access to its 1204 * parent's address space. The parent is waiting in vfwait() for the 1205 * child to release its exclusive claim via relvm(). 1206 */ 1207 void 1208 relvm() 1209 { 1210 proc_t *p = curproc; 1211 1212 ASSERT((unsigned)p->p_lwpcnt <= 1); 1213 1214 prrelvm(); /* inform /proc */ 1215 1216 if (p->p_flag & SVFORK) { 1217 proc_t *pp = p->p_parent; 1218 /* 1219 * The child process is either exec'ing or exit'ing. 1220 * The child is now separated from the parent's address 1221 * space. The parent process is made dispatchable. 1222 * 1223 * This is a delicate locking maneuver, involving 1224 * both the parent's p_lock and the child's p_lock. 1225 * As soon as the SVFORK flag is turned off, the 1226 * parent is free to run, but it must not run until 1227 * we wake it up using its p_cv because it might 1228 * exit and we would be referencing invalid memory. 1229 * Therefore, we hold the parent with its p_lock 1230 * while protecting our p_flags with our own p_lock. 1231 */ 1232 try_again: 1233 mutex_enter(&p->p_lock); /* grab child's lock first */ 1234 prbarrier(p); /* make sure /proc is blocked out */ 1235 mutex_enter(&pp->p_lock); 1236 1237 /* 1238 * Check if parent is locked by /proc. 1239 */ 1240 if (pp->p_proc_flag & P_PR_LOCK) { 1241 /* 1242 * Delay until /proc is done with the parent. 1243 * We must drop our (the child's) p->p_lock, wait 1244 * via prbarrier() on the parent, then start over. 1245 */ 1246 mutex_exit(&p->p_lock); 1247 prbarrier(pp); 1248 mutex_exit(&pp->p_lock); 1249 goto try_again; 1250 } 1251 p->p_flag &= ~SVFORK; 1252 kpreempt_disable(); 1253 p->p_as = &kas; 1254 1255 /* 1256 * notify hat of change in thread's address space 1257 */ 1258 hat_thread_exit(curthread); 1259 kpreempt_enable(); 1260 1261 /* 1262 * child sizes are copied back to parent because 1263 * child may have grown. 1264 */ 1265 pp->p_brkbase = p->p_brkbase; 1266 pp->p_brksize = p->p_brksize; 1267 pp->p_stksize = p->p_stksize; 1268 /* 1269 * The parent is no longer waiting for the vfork()d child. 1270 * Restore the parent's watched pages, if any. This is 1271 * safe because we know the parent is not locked by /proc 1272 */ 1273 pp->p_flag &= ~SVFWAIT; 1274 if (avl_numnodes(&pp->p_wpage) != 0) { 1275 pp->p_as->a_wpage = pp->p_wpage; 1276 avl_create(&pp->p_wpage, wp_compare, 1277 sizeof (struct watched_page), 1278 offsetof(struct watched_page, wp_link)); 1279 } 1280 cv_signal(&pp->p_cv); 1281 mutex_exit(&pp->p_lock); 1282 mutex_exit(&p->p_lock); 1283 } else { 1284 if (p->p_as != &kas) { 1285 struct as *as; 1286 1287 if (p->p_segacct) 1288 shmexit(p); 1289 1290 /* 1291 * We grab p_lock for the benefit of /proc 1292 */ 1293 kpreempt_disable(); 1294 mutex_enter(&p->p_lock); 1295 prbarrier(p); /* make sure /proc is blocked out */ 1296 as = p->p_as; 1297 p->p_as = &kas; 1298 mutex_exit(&p->p_lock); 1299 1300 /* 1301 * notify hat of change in thread's address space 1302 */ 1303 hat_thread_exit(curthread); 1304 kpreempt_enable(); 1305 1306 as_free(as); 1307 p->p_tr_lgrpid = LGRP_NONE; 1308 } 1309 } 1310 } 1311 1312 /* 1313 * Wait for child to exec or exit. 1314 * Called by parent of vfork'ed process. 1315 * See important comments in relvm(), above. 1316 */ 1317 void 1318 vfwait(pid_t pid) 1319 { 1320 int signalled = 0; 1321 proc_t *pp = ttoproc(curthread); 1322 proc_t *cp; 1323 1324 /* 1325 * Wait for child to exec or exit. 1326 */ 1327 for (;;) { 1328 mutex_enter(&pidlock); 1329 cp = prfind(pid); 1330 if (cp == NULL || cp->p_parent != pp) { 1331 /* 1332 * Child has exit()ed. 1333 */ 1334 mutex_exit(&pidlock); 1335 break; 1336 } 1337 /* 1338 * Grab the child's p_lock before releasing pidlock. 1339 * Otherwise, the child could exit and we would be 1340 * referencing invalid memory. 1341 */ 1342 mutex_enter(&cp->p_lock); 1343 mutex_exit(&pidlock); 1344 if (!(cp->p_flag & SVFORK)) { 1345 /* 1346 * Child has exec()ed or is exit()ing. 1347 */ 1348 mutex_exit(&cp->p_lock); 1349 break; 1350 } 1351 mutex_enter(&pp->p_lock); 1352 mutex_exit(&cp->p_lock); 1353 /* 1354 * We might be waked up spuriously from the cv_wait(). 1355 * We have to do the whole operation over again to be 1356 * sure the child's SVFORK flag really is turned off. 1357 * We cannot make reference to the child because it can 1358 * exit before we return and we would be referencing 1359 * invalid memory. 1360 * 1361 * Because this is potentially a very long-term wait, 1362 * we call cv_wait_sig() (for its jobcontrol and /proc 1363 * side-effects) unless there is a current signal, in 1364 * which case we use cv_wait() because we cannot return 1365 * from this function until the child has released the 1366 * address space. Calling cv_wait_sig() with a current 1367 * signal would lead to an indefinite loop here because 1368 * cv_wait_sig() returns immediately in this case. 1369 */ 1370 if (signalled) 1371 cv_wait(&pp->p_cv, &pp->p_lock); 1372 else 1373 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1374 mutex_exit(&pp->p_lock); 1375 } 1376 1377 /* restore watchpoints to parent */ 1378 if (pr_watch_active(pp)) { 1379 struct as *as = pp->p_as; 1380 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1381 as_setwatch(as); 1382 AS_LOCK_EXIT(as, &as->a_lock); 1383 } 1384 1385 mutex_enter(&pp->p_lock); 1386 prbarrier(pp); /* barrier against /proc locking */ 1387 continuelwps(pp); 1388 mutex_exit(&pp->p_lock); 1389 } 1390