xref: /illumos-gate/usr/src/uts/common/os/fork.c (revision 292f4c1c373bd6e2c3c0b6e199a87392f265291f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/policy.h>
39 #include <sys/user.h>
40 #include <sys/systm.h>
41 #include <sys/cpuvar.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/file.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <sys/cmn_err.h>
49 #include <sys/acct.h>
50 #include <sys/tuneable.h>
51 #include <sys/class.h>
52 #include <sys/kmem.h>
53 #include <sys/session.h>
54 #include <sys/ucontext.h>
55 #include <sys/stack.h>
56 #include <sys/procfs.h>
57 #include <sys/prsystm.h>
58 #include <sys/vmsystm.h>
59 #include <sys/vtrace.h>
60 #include <sys/debug.h>
61 #include <sys/shm_impl.h>
62 #include <sys/door_data.h>
63 #include <vm/as.h>
64 #include <vm/rm.h>
65 #include <c2/audit.h>
66 #include <sys/var.h>
67 #include <sys/schedctl.h>
68 #include <sys/utrap.h>
69 #include <sys/task.h>
70 #include <sys/resource.h>
71 #include <sys/cyclic.h>
72 #include <sys/lgrp.h>
73 #include <sys/rctl.h>
74 #include <sys/contract_impl.h>
75 #include <sys/contract/process_impl.h>
76 #include <sys/list.h>
77 #include <sys/dtrace.h>
78 #include <sys/pool.h>
79 #include <sys/zone.h>
80 #include <sys/sdt.h>
81 #include <sys/class.h>
82 #include <sys/corectl.h>
83 #include <sys/brand.h>
84 
85 static int64_t cfork(int, int);
86 static int getproc(proc_t **, int);
87 static void fork_fail(proc_t *);
88 static void forklwp_fail(proc_t *);
89 
90 int fork_fail_pending;
91 
92 extern struct kmem_cache *process_cache;
93 
94 /*
95  * forkall system call.
96  */
97 int64_t
98 forkall(void)
99 {
100 	return (cfork(0, 0));
101 }
102 
103 /*
104  * The parent is stopped until the child invokes relvm().
105  */
106 int64_t
107 vfork(void)
108 {
109 	curthread->t_post_sys = 1;	/* so vfwait() will be called */
110 	return (cfork(1, 1));
111 }
112 
113 /*
114  * fork1 system call
115  */
116 int64_t
117 fork1(void)
118 {
119 	return (cfork(0, 1));
120 }
121 
122 /* ARGSUSED */
123 static int64_t
124 cfork(int isvfork, int isfork1)
125 {
126 	proc_t *p = ttoproc(curthread);
127 	struct as *as;
128 	proc_t *cp, **orphpp;
129 	klwp_t *clone;
130 	kthread_t *t;
131 	task_t *tk;
132 	rval_t	r;
133 	int error;
134 	int i;
135 	rctl_set_t *dup_set;
136 	rctl_alloc_gp_t *dup_gp;
137 	rctl_entity_p_t e;
138 	lwpdir_t *ldp;
139 	lwpent_t *lep;
140 	lwpent_t *clep;
141 
142 	/*
143 	 * fork is not supported for the /proc agent lwp.
144 	 */
145 	if (curthread == p->p_agenttp) {
146 		error = ENOTSUP;
147 		goto forkerr;
148 	}
149 
150 	if ((error = secpolicy_basic_fork(CRED())) != 0)
151 		goto forkerr;
152 
153 	/*
154 	 * If the calling lwp is doing a fork1() then the
155 	 * other lwps in this process are not duplicated and
156 	 * don't need to be held where their kernel stacks can be
157 	 * cloned.  If doing forkall(), the process is held with
158 	 * SHOLDFORK, so that the lwps are at a point where their
159 	 * stacks can be copied which is on entry or exit from
160 	 * the kernel.
161 	 */
162 	if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
163 		aston(curthread);
164 		error = EINTR;
165 		goto forkerr;
166 	}
167 
168 #if defined(__sparc)
169 	/*
170 	 * Ensure that the user stack is fully constructed
171 	 * before creating the child process structure.
172 	 */
173 	(void) flush_user_windows_to_stack(NULL);
174 #endif
175 
176 	mutex_enter(&p->p_lock);
177 	/*
178 	 * If this is vfork(), cancel any suspend request we might
179 	 * have gotten from some other thread via lwp_suspend().
180 	 * Otherwise we could end up with a deadlock on return
181 	 * from the vfork() in both the parent and the child.
182 	 */
183 	if (isvfork)
184 		curthread->t_proc_flag &= ~TP_HOLDLWP;
185 	/*
186 	 * Prevent our resource set associations from being changed during fork.
187 	 */
188 	pool_barrier_enter();
189 	mutex_exit(&p->p_lock);
190 
191 	/*
192 	 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
193 	 */
194 	if (getproc(&cp, 0) < 0) {
195 		mutex_enter(&p->p_lock);
196 		pool_barrier_exit();
197 		continuelwps(p);
198 		mutex_exit(&p->p_lock);
199 		error = EAGAIN;
200 		goto forkerr;
201 	}
202 
203 	TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
204 
205 	/*
206 	 * Assign an address space to child
207 	 */
208 	if (isvfork) {
209 		/*
210 		 * Clear any watched areas and remember the
211 		 * watched pages for restoring in vfwait().
212 		 */
213 		as = p->p_as;
214 		if (avl_numnodes(&as->a_wpage) != 0) {
215 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
216 			as_clearwatch(as);
217 			p->p_wpage = as->a_wpage;
218 			avl_create(&as->a_wpage, wp_compare,
219 			    sizeof (struct watched_page),
220 			    offsetof(struct watched_page, wp_link));
221 			AS_LOCK_EXIT(as, &as->a_lock);
222 		}
223 		cp->p_as = as;
224 		cp->p_flag |= SVFORK;
225 	} else {
226 		/*
227 		 * We need to hold P_PR_LOCK until the address space has
228 		 * been duplicated and we've had a chance to remove from the
229 		 * child any DTrace probes that were in the parent. Holding
230 		 * P_PR_LOCK prevents any new probes from being added and any
231 		 * extant probes from being removed.
232 		 */
233 		mutex_enter(&p->p_lock);
234 		sprlock_proc(p);
235 		p->p_flag |= SFORKING;
236 		mutex_exit(&p->p_lock);
237 
238 		error = as_dup(p->p_as, &cp->p_as);
239 		if (error != 0) {
240 			fork_fail(cp);
241 			mutex_enter(&pidlock);
242 			orphpp = &p->p_orphan;
243 			while (*orphpp != cp)
244 				orphpp = &(*orphpp)->p_nextorph;
245 			*orphpp = cp->p_nextorph;
246 			if (p->p_child == cp)
247 				p->p_child = cp->p_sibling;
248 			if (cp->p_sibling)
249 				cp->p_sibling->p_psibling = cp->p_psibling;
250 			if (cp->p_psibling)
251 				cp->p_psibling->p_sibling = cp->p_sibling;
252 			mutex_enter(&cp->p_lock);
253 			tk = cp->p_task;
254 			task_detach(cp);
255 			ASSERT(cp->p_pool->pool_ref > 0);
256 			atomic_add_32(&cp->p_pool->pool_ref, -1);
257 			mutex_exit(&cp->p_lock);
258 			pid_exit(cp);
259 			mutex_exit(&pidlock);
260 			task_rele(tk);
261 
262 			mutex_enter(&p->p_lock);
263 			p->p_flag &= ~SFORKING;
264 			pool_barrier_exit();
265 			continuelwps(p);
266 			sprunlock(p);
267 			/*
268 			 * Preserve ENOMEM error condition but
269 			 * map all others to EAGAIN.
270 			 */
271 			error = (error == ENOMEM) ? ENOMEM : EAGAIN;
272 			goto forkerr;
273 		}
274 		cp->p_as->a_proc = cp;
275 
276 		/* Duplicate parent's shared memory */
277 		if (p->p_segacct)
278 			shmfork(p, cp);
279 
280 		/*
281 		 * Remove all DTrace tracepoints from the child process. We
282 		 * need to do this _before_ duplicating USDT providers since
283 		 * any associated probes may be immediately enabled.
284 		 */
285 		if (p->p_dtrace_count > 0)
286 			dtrace_fasttrap_fork(p, cp);
287 
288 		/*
289 		 * Duplicate any helper actions and providers. The SFORKING
290 		 * we set above informs the code to enable USDT probes that
291 		 * sprlock() may fail because the child is being forked.
292 		 */
293 		if (p->p_dtrace_helpers != NULL) {
294 			ASSERT(dtrace_helpers_fork != NULL);
295 			(*dtrace_helpers_fork)(p, cp);
296 		}
297 
298 		mutex_enter(&p->p_lock);
299 		p->p_flag &= ~SFORKING;
300 		sprunlock(p);
301 	}
302 
303 	/*
304 	 * Duplicate parent's resource controls.
305 	 */
306 	dup_set = rctl_set_create();
307 	for (;;) {
308 		dup_gp = rctl_set_dup_prealloc(p->p_rctls);
309 		mutex_enter(&p->p_rctls->rcs_lock);
310 		if (rctl_set_dup_ready(p->p_rctls, dup_gp))
311 			break;
312 		mutex_exit(&p->p_rctls->rcs_lock);
313 		rctl_prealloc_destroy(dup_gp);
314 	}
315 	e.rcep_p.proc = cp;
316 	e.rcep_t = RCENTITY_PROCESS;
317 	cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
318 	    RCD_DUP | RCD_CALLBACK);
319 	mutex_exit(&p->p_rctls->rcs_lock);
320 
321 	rctl_prealloc_destroy(dup_gp);
322 
323 	/*
324 	 * Allocate the child's lwp directory and lwpid hash table.
325 	 */
326 	if (isfork1)
327 		cp->p_lwpdir_sz = 2;
328 	else
329 		cp->p_lwpdir_sz = p->p_lwpdir_sz;
330 	cp->p_lwpdir = cp->p_lwpfree = ldp =
331 		kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
332 	for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
333 		ldp->ld_next = ldp + 1;
334 	cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
335 	cp->p_tidhash =
336 		kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP);
337 
338 	/*
339 	 * Duplicate parent's lwps.
340 	 * Mutual exclusion is not needed because the process is
341 	 * in the hold state and only the current lwp is running.
342 	 */
343 	klgrpset_clear(cp->p_lgrpset);
344 	if (isfork1) {
345 		clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
346 		if (clone == NULL)
347 			goto forklwperr;
348 		/*
349 		 * Inherit only the lwp_wait()able flag,
350 		 * Daemon threads should not call fork1(), but oh well...
351 		 */
352 		lwptot(clone)->t_proc_flag |=
353 			(curthread->t_proc_flag & TP_TWAIT);
354 	} else {
355 		/* this is forkall(), no one can be in lwp_wait() */
356 		ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
357 		/* for each entry in the parent's lwp directory... */
358 		for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
359 			klwp_t *clwp;
360 			kthread_t *ct;
361 
362 			if ((lep = ldp->ld_entry) == NULL)
363 				continue;
364 
365 			if ((t = lep->le_thread) != NULL) {
366 				clwp = forklwp(ttolwp(t), cp, t->t_tid);
367 				if (clwp == NULL)
368 					goto forklwperr;
369 				ct = lwptot(clwp);
370 				/*
371 				 * Inherit lwp_wait()able and daemon flags.
372 				 */
373 				ct->t_proc_flag |=
374 				    (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
375 				/*
376 				 * Keep track of the clone of curthread to
377 				 * post return values through lwp_setrval().
378 				 * Mark other threads for special treatment
379 				 * by lwp_rtt() / post_syscall().
380 				 */
381 				if (t == curthread)
382 					clone = clwp;
383 				else
384 					ct->t_flag |= T_FORKALL;
385 			} else {
386 				/*
387 				 * Replicate zombie lwps in the child.
388 				 */
389 				clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
390 				clep->le_lwpid = lep->le_lwpid;
391 				clep->le_start = lep->le_start;
392 				lwp_hash_in(cp, clep);
393 			}
394 		}
395 	}
396 
397 	/*
398 	 * Put new process in the parent's process contract, or put it
399 	 * in a new one if there is an active process template.  Send a
400 	 * fork event (if requested) to whatever contract the child is
401 	 * a member of.  Fails if the parent has been SIGKILLed.
402 	 */
403 	if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL)
404 		goto forklwperr;
405 
406 	/*
407 	 * No fork failures occur beyond this point.
408 	 */
409 
410 	cp->p_lwpid = p->p_lwpid;
411 	if (!isfork1) {
412 		cp->p_lwpdaemon = p->p_lwpdaemon;
413 		cp->p_zombcnt = p->p_zombcnt;
414 		/*
415 		 * If the parent's lwp ids have wrapped around, so have the
416 		 * child's.
417 		 */
418 		cp->p_flag |= p->p_flag & SLWPWRAP;
419 	}
420 
421 	mutex_enter(&p->p_lock);
422 	corectl_path_hold(cp->p_corefile = p->p_corefile);
423 	corectl_content_hold(cp->p_content = p->p_content);
424 	mutex_exit(&p->p_lock);
425 
426 	/*
427 	 * Duplicate process context ops, if any.
428 	 */
429 	if (p->p_pctx)
430 		forkpctx(p, cp);
431 
432 #ifdef __sparc
433 	utrap_dup(p, cp);
434 #endif
435 	/*
436 	 * If the child process has been marked to stop on exit
437 	 * from this fork, arrange for all other lwps to stop in
438 	 * sympathy with the active lwp.
439 	 */
440 	if (PTOU(cp)->u_systrap &&
441 	    prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
442 		mutex_enter(&cp->p_lock);
443 		t = cp->p_tlist;
444 		do {
445 			t->t_proc_flag |= TP_PRSTOP;
446 			aston(t);	/* so TP_PRSTOP will be seen */
447 		} while ((t = t->t_forw) != cp->p_tlist);
448 		mutex_exit(&cp->p_lock);
449 	}
450 	/*
451 	 * If the parent process has been marked to stop on exit
452 	 * from this fork, and its asynchronous-stop flag has not
453 	 * been set, arrange for all other lwps to stop before
454 	 * they return back to user level.
455 	 */
456 	if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
457 	    prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
458 		mutex_enter(&p->p_lock);
459 		t = p->p_tlist;
460 		do {
461 			t->t_proc_flag |= TP_PRSTOP;
462 			aston(t);	/* so TP_PRSTOP will be seen */
463 		} while ((t = t->t_forw) != p->p_tlist);
464 		mutex_exit(&p->p_lock);
465 	}
466 
467 	if (PROC_IS_BRANDED(p))
468 		BROP(p)->b_lwp_setrval(clone, p->p_pid, 1);
469 	else
470 		lwp_setrval(clone, p->p_pid, 1);
471 
472 	/* set return values for parent */
473 	r.r_val1 = (int)cp->p_pid;
474 	r.r_val2 = 0;
475 
476 	/*
477 	 * pool_barrier_exit() can now be called because the child process has:
478 	 * - all identifying features cloned or set (p_pid, p_task, p_pool)
479 	 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
480 	 * - any other fields set which are used in resource set binding.
481 	 */
482 	mutex_enter(&p->p_lock);
483 	pool_barrier_exit();
484 	mutex_exit(&p->p_lock);
485 
486 	mutex_enter(&pidlock);
487 	mutex_enter(&cp->p_lock);
488 
489 	/*
490 	 * Now that there are lwps and threads attached, add the new
491 	 * process to the process group.
492 	 */
493 	pgjoin(cp, p->p_pgidp);
494 	cp->p_stat = SRUN;
495 	/*
496 	 * We are now done with all the lwps in the child process.
497 	 */
498 	t = cp->p_tlist;
499 	do {
500 		/*
501 		 * Set the lwp_suspend()ed lwps running.
502 		 * They will suspend properly at syscall exit.
503 		 */
504 		if (t->t_proc_flag & TP_HOLDLWP)
505 			lwp_create_done(t);
506 		else {
507 			/* set TS_CREATE to allow continuelwps() to work */
508 			thread_lock(t);
509 			ASSERT(t->t_state == TS_STOPPED &&
510 			    !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
511 			t->t_schedflag |= TS_CREATE;
512 			thread_unlock(t);
513 		}
514 	} while ((t = t->t_forw) != cp->p_tlist);
515 	mutex_exit(&cp->p_lock);
516 
517 	if (isvfork) {
518 		CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
519 		mutex_enter(&p->p_lock);
520 		p->p_flag |= SVFWAIT;
521 		DTRACE_PROC1(create, proc_t *, cp);
522 		cv_broadcast(&pr_pid_cv[p->p_slot]);	/* inform /proc */
523 		mutex_exit(&p->p_lock);
524 		/*
525 		 * Grab child's p_lock before dropping pidlock to ensure
526 		 * the process will not disappear before we set it running.
527 		 */
528 		mutex_enter(&cp->p_lock);
529 		mutex_exit(&pidlock);
530 		sigdefault(cp);
531 		continuelwps(cp);
532 		mutex_exit(&cp->p_lock);
533 	} else {
534 		CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
535 		DTRACE_PROC1(create, proc_t *, cp);
536 		/*
537 		 * It is CL_FORKRET's job to drop pidlock.
538 		 * If we do it here, the process could be set running
539 		 * and disappear before CL_FORKRET() is called.
540 		 */
541 		CL_FORKRET(curthread, cp->p_tlist);
542 		ASSERT(MUTEX_NOT_HELD(&pidlock));
543 	}
544 
545 	return (r.r_vals);
546 
547 forklwperr:
548 	if (isvfork) {
549 		if (avl_numnodes(&p->p_wpage) != 0) {
550 			/* restore watchpoints to parent */
551 			as = p->p_as;
552 			AS_LOCK_ENTER(as, &as->a_lock,
553 				RW_WRITER);
554 			as->a_wpage = p->p_wpage;
555 			avl_create(&p->p_wpage, wp_compare,
556 			    sizeof (struct watched_page),
557 			    offsetof(struct watched_page, wp_link));
558 			as_setwatch(as);
559 			AS_LOCK_EXIT(as, &as->a_lock);
560 		}
561 	} else {
562 		if (cp->p_segacct)
563 			shmexit(cp);
564 		as = cp->p_as;
565 		cp->p_as = &kas;
566 		as_free(as);
567 	}
568 
569 	if (cp->p_lwpdir) {
570 		for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
571 			if ((lep = ldp->ld_entry) != NULL)
572 				kmem_free(lep, sizeof (*lep));
573 		kmem_free(cp->p_lwpdir,
574 		    cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
575 	}
576 	cp->p_lwpdir = NULL;
577 	cp->p_lwpfree = NULL;
578 	cp->p_lwpdir_sz = 0;
579 
580 	if (cp->p_tidhash)
581 		kmem_free(cp->p_tidhash,
582 		    cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
583 	cp->p_tidhash = NULL;
584 	cp->p_tidhash_sz = 0;
585 
586 	forklwp_fail(cp);
587 	fork_fail(cp);
588 	rctl_set_free(cp->p_rctls);
589 	mutex_enter(&pidlock);
590 
591 	/*
592 	 * Detach failed child from task.
593 	 */
594 	mutex_enter(&cp->p_lock);
595 	tk = cp->p_task;
596 	task_detach(cp);
597 	ASSERT(cp->p_pool->pool_ref > 0);
598 	atomic_add_32(&cp->p_pool->pool_ref, -1);
599 	mutex_exit(&cp->p_lock);
600 
601 	orphpp = &p->p_orphan;
602 	while (*orphpp != cp)
603 		orphpp = &(*orphpp)->p_nextorph;
604 	*orphpp = cp->p_nextorph;
605 	if (p->p_child == cp)
606 		p->p_child = cp->p_sibling;
607 	if (cp->p_sibling)
608 		cp->p_sibling->p_psibling = cp->p_psibling;
609 	if (cp->p_psibling)
610 		cp->p_psibling->p_sibling = cp->p_sibling;
611 	pid_exit(cp);
612 	mutex_exit(&pidlock);
613 
614 	task_rele(tk);
615 
616 	mutex_enter(&p->p_lock);
617 	pool_barrier_exit();
618 	continuelwps(p);
619 	mutex_exit(&p->p_lock);
620 	error = EAGAIN;
621 forkerr:
622 	return ((int64_t)set_errno(error));
623 }
624 
625 /*
626  * Free allocated resources from getproc() if a fork failed.
627  */
628 static void
629 fork_fail(proc_t *cp)
630 {
631 	uf_info_t *fip = P_FINFO(cp);
632 
633 	fcnt_add(fip, -1);
634 	sigdelq(cp, NULL, 0);
635 
636 	mutex_enter(&pidlock);
637 	upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
638 	mutex_exit(&pidlock);
639 
640 	/*
641 	 * single threaded, so no locking needed here
642 	 */
643 	crfree(cp->p_cred);
644 
645 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
646 
647 	VN_RELE(u.u_cdir);
648 	if (u.u_rdir)
649 		VN_RELE(u.u_rdir);
650 	if (cp->p_exec)
651 		VN_RELE(cp->p_exec);
652 	if (cp->p_execdir)
653 		VN_RELE(cp->p_execdir);
654 	if (u.u_cwd)
655 		refstr_rele(u.u_cwd);
656 }
657 
658 /*
659  * Clean up the lwps already created for this child process.
660  * The fork failed while duplicating all the lwps of the parent
661  * and those lwps already created must be freed.
662  * This process is invisible to the rest of the system,
663  * so we don't need to hold p->p_lock to protect the list.
664  */
665 static void
666 forklwp_fail(proc_t *p)
667 {
668 	kthread_t *t;
669 	task_t *tk;
670 
671 	while ((t = p->p_tlist) != NULL) {
672 		/*
673 		 * First remove the lwp from the process's p_tlist.
674 		 */
675 		if (t != t->t_forw)
676 			p->p_tlist = t->t_forw;
677 		else
678 			p->p_tlist = NULL;
679 		p->p_lwpcnt--;
680 		t->t_forw->t_back = t->t_back;
681 		t->t_back->t_forw = t->t_forw;
682 
683 		tk = p->p_task;
684 		mutex_enter(&p->p_zone->zone_nlwps_lock);
685 		tk->tk_nlwps--;
686 		tk->tk_proj->kpj_nlwps--;
687 		p->p_zone->zone_nlwps--;
688 		mutex_exit(&p->p_zone->zone_nlwps_lock);
689 
690 		ASSERT(t->t_schedctl == NULL);
691 
692 		if (t->t_door != NULL) {
693 			kmem_free(t->t_door, sizeof (door_data_t));
694 			t->t_door = NULL;
695 		}
696 		lwp_ctmpl_clear(ttolwp(t));
697 
698 		/*
699 		 * Remove the thread from the all threads list.
700 		 * We need to hold pidlock for this.
701 		 */
702 		mutex_enter(&pidlock);
703 		t->t_next->t_prev = t->t_prev;
704 		t->t_prev->t_next = t->t_next;
705 		CL_EXIT(t);	/* tell the scheduler that we're exiting */
706 		cv_broadcast(&t->t_joincv);	/* tell anyone in thread_join */
707 		mutex_exit(&pidlock);
708 
709 		/*
710 		 * Let the lgroup load averages know that this thread isn't
711 		 * going to show up (i.e. un-do what was done on behalf of
712 		 * this thread by the earlier lgrp_move_thread()).
713 		 */
714 		kpreempt_disable();
715 		lgrp_move_thread(t, NULL, 1);
716 		kpreempt_enable();
717 
718 		/*
719 		 * The thread was created TS_STOPPED.
720 		 * We change it to TS_FREE to avoid an
721 		 * ASSERT() panic in thread_free().
722 		 */
723 		t->t_state = TS_FREE;
724 		thread_rele(t);
725 		thread_free(t);
726 	}
727 }
728 
729 extern struct as kas;
730 
731 /*
732  * fork a kernel process.
733  */
734 int
735 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct)
736 {
737 	proc_t *p;
738 	struct user *up;
739 	klwp_t *lwp;
740 	cont_process_t *ctp = NULL;
741 	rctl_entity_p_t e;
742 
743 	ASSERT(!(cid == syscid && ct != NULL));
744 	if (cid == syscid) {
745 		rctl_alloc_gp_t *init_gp;
746 		rctl_set_t *init_set;
747 
748 		if (getproc(&p, 1) < 0)
749 			return (EAGAIN);
750 
751 		p->p_flag |= SNOWAIT;
752 		p->p_exec = NULL;
753 		p->p_execdir = NULL;
754 
755 		init_set = rctl_set_create();
756 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
757 
758 		/*
759 		 * kernel processes do not inherit /proc tracing flags.
760 		 */
761 		sigemptyset(&p->p_sigmask);
762 		premptyset(&p->p_fltmask);
763 		up = PTOU(p);
764 		up->u_systrap = 0;
765 		premptyset(&(up->u_entrymask));
766 		premptyset(&(up->u_exitmask));
767 		mutex_enter(&p->p_lock);
768 		e.rcep_p.proc = p;
769 		e.rcep_t = RCENTITY_PROCESS;
770 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
771 		    init_gp);
772 		mutex_exit(&p->p_lock);
773 
774 		rctl_prealloc_destroy(init_gp);
775 	} else  {
776 		rctl_alloc_gp_t *init_gp, *default_gp;
777 		rctl_set_t *init_set;
778 		task_t *tk, *tk_old;
779 
780 		if (getproc(&p, 0) < 0)
781 			return (EAGAIN);
782 		/*
783 		 * init creates a new task, distinct from the task
784 		 * containing kernel "processes".
785 		 */
786 		tk = task_create(0, p->p_zone);
787 		mutex_enter(&tk->tk_zone->zone_nlwps_lock);
788 		tk->tk_proj->kpj_ntasks++;
789 		mutex_exit(&tk->tk_zone->zone_nlwps_lock);
790 
791 		default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
792 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
793 		init_set = rctl_set_create();
794 
795 		mutex_enter(&pidlock);
796 		mutex_enter(&p->p_lock);
797 		tk_old = p->p_task;	/* switch to new task */
798 
799 		task_detach(p);
800 		task_begin(tk, p);
801 		mutex_exit(&pidlock);
802 
803 		e.rcep_p.proc = p;
804 		e.rcep_t = RCENTITY_PROCESS;
805 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
806 		    init_gp);
807 		rctlproc_default_init(p, default_gp);
808 		mutex_exit(&p->p_lock);
809 
810 		task_rele(tk_old);
811 		rctl_prealloc_destroy(default_gp);
812 		rctl_prealloc_destroy(init_gp);
813 	}
814 
815 	p->p_as = &kas;
816 
817 	if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
818 	    &curthread->t_hold, cid, 1)) == NULL) {
819 		task_t *tk;
820 		fork_fail(p);
821 		mutex_enter(&pidlock);
822 		mutex_enter(&p->p_lock);
823 		tk = p->p_task;
824 		task_detach(p);
825 		ASSERT(p->p_pool->pool_ref > 0);
826 		atomic_add_32(&p->p_pool->pool_ref, -1);
827 		mutex_exit(&p->p_lock);
828 		pid_exit(p);
829 		mutex_exit(&pidlock);
830 		task_rele(tk);
831 
832 		return (EAGAIN);
833 	}
834 
835 	if (cid != syscid) {
836 		ctp = contract_process_fork(sys_process_tmpl, p, curproc,
837 		    B_FALSE);
838 		ASSERT(ctp != NULL);
839 		if (ct != NULL)
840 			*ct = &ctp->conp_contract;
841 	}
842 
843 	p->p_lwpid = 1;
844 	mutex_enter(&pidlock);
845 	pgjoin(p, curproc->p_pgidp);
846 	p->p_stat = SRUN;
847 	mutex_enter(&p->p_lock);
848 	lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP;
849 	lwp_create_done(lwptot(lwp));
850 	mutex_exit(&p->p_lock);
851 	mutex_exit(&pidlock);
852 	return (0);
853 }
854 
855 /*
856  * create a child proc struct.
857  */
858 static int
859 getproc(proc_t **cpp, int kernel)
860 {
861 	proc_t		*pp, *cp;
862 	pid_t		newpid;
863 	struct user	*uarea;
864 	extern uint_t	nproc;
865 	struct cred	*cr;
866 	uid_t		ruid;
867 	zoneid_t	zoneid;
868 
869 	if (!page_mem_avail(tune.t_minarmem))
870 		return (-1);
871 	if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
872 		return (-1);	/* no point in starting new processes */
873 
874 	pp = curproc;
875 	cp = kmem_cache_alloc(process_cache, KM_SLEEP);
876 	bzero(cp, sizeof (proc_t));
877 
878 	/*
879 	 * Make proc entry for child process
880 	 */
881 	mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL);
882 	mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
883 	mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
884 #if defined(__x86)
885 	mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
886 #endif
887 	mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
888 	cp->p_stat = SIDL;
889 	cp->p_mstart = gethrtime();
890 	/*
891 	 * p_zone must be set before we call pid_allocate since the process
892 	 * will be visible after that and code such as prfind_zone will
893 	 * look at the p_zone field.
894 	 */
895 	cp->p_zone = pp->p_zone;
896 
897 	if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) {
898 		if (nproc == v.v_proc) {
899 			CPU_STATS_ADDQ(CPU, sys, procovf, 1);
900 			cmn_err(CE_WARN, "out of processes");
901 		}
902 		goto bad;
903 	}
904 
905 	/*
906 	 * If not privileged make sure that this user hasn't exceeded
907 	 * v.v_maxup processes, and that users collectively haven't
908 	 * exceeded v.v_maxupttl processes.
909 	 */
910 	mutex_enter(&pidlock);
911 	ASSERT(nproc < v.v_proc);	/* otherwise how'd we get our pid? */
912 	cr = CRED();
913 	ruid = crgetruid(cr);
914 	zoneid = crgetzoneid(cr);
915 	if (nproc >= v.v_maxup && 	/* short-circuit; usually false */
916 	    (nproc >= v.v_maxupttl ||
917 	    upcount_get(ruid, zoneid) >= v.v_maxup) &&
918 	    secpolicy_newproc(cr) != 0) {
919 		mutex_exit(&pidlock);
920 		zcmn_err(zoneid, CE_NOTE,
921 		    "out of per-user processes for uid %d", ruid);
922 		goto bad;
923 	}
924 
925 	/*
926 	 * Everything is cool, put the new proc on the active process list.
927 	 * It is already on the pid list and in /proc.
928 	 * Increment the per uid process count (upcount).
929 	 */
930 	nproc++;
931 	upcount_inc(ruid, zoneid);
932 
933 	cp->p_next = practive;
934 	practive->p_prev = cp;
935 	practive = cp;
936 
937 	cp->p_ignore = pp->p_ignore;
938 	cp->p_siginfo = pp->p_siginfo;
939 	cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
940 	cp->p_sessp = pp->p_sessp;
941 	sess_hold(pp);
942 	cp->p_exec = pp->p_exec;
943 	cp->p_execdir = pp->p_execdir;
944 	cp->p_brand = pp->p_brand;
945 	if (PROC_IS_BRANDED(pp))
946 		BROP(pp)->b_copy_procdata(cp, pp);
947 
948 	cp->p_bssbase = pp->p_bssbase;
949 	cp->p_brkbase = pp->p_brkbase;
950 	cp->p_brksize = pp->p_brksize;
951 	cp->p_brkpageszc = pp->p_brkpageszc;
952 	cp->p_stksize = pp->p_stksize;
953 	cp->p_stkpageszc = pp->p_stkpageszc;
954 	cp->p_stkprot = pp->p_stkprot;
955 	cp->p_datprot = pp->p_datprot;
956 	cp->p_usrstack = pp->p_usrstack;
957 	cp->p_model = pp->p_model;
958 	cp->p_ppid = pp->p_pid;
959 	cp->p_ancpid = pp->p_pid;
960 	cp->p_portcnt = pp->p_portcnt;
961 
962 	/*
963 	 * Initialize watchpoint structures
964 	 */
965 	avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
966 	    offsetof(struct watched_area, wa_link));
967 
968 	/*
969 	 * Initialize immediate resource control values.
970 	 */
971 	cp->p_stk_ctl = pp->p_stk_ctl;
972 	cp->p_fsz_ctl = pp->p_fsz_ctl;
973 	cp->p_vmem_ctl = pp->p_vmem_ctl;
974 	cp->p_fno_ctl = pp->p_fno_ctl;
975 
976 	/*
977 	 * Link up to parent-child-sibling chain.  No need to lock
978 	 * in general since only a call to freeproc() (done by the
979 	 * same parent as newproc()) diddles with the child chain.
980 	 */
981 	cp->p_sibling = pp->p_child;
982 	if (pp->p_child)
983 		pp->p_child->p_psibling = cp;
984 
985 	cp->p_parent = pp;
986 	pp->p_child = cp;
987 
988 	cp->p_child_ns = NULL;
989 	cp->p_sibling_ns = NULL;
990 
991 	cp->p_nextorph = pp->p_orphan;
992 	cp->p_nextofkin = pp;
993 	pp->p_orphan = cp;
994 
995 	/*
996 	 * Inherit profiling state; do not inherit REALPROF profiling state.
997 	 */
998 	cp->p_prof = pp->p_prof;
999 	cp->p_rprof_cyclic = CYCLIC_NONE;
1000 
1001 	/*
1002 	 * Inherit pool pointer from the parent.  Kernel processes are
1003 	 * always bound to the default pool.
1004 	 */
1005 	mutex_enter(&pp->p_lock);
1006 	if (kernel) {
1007 		cp->p_pool = pool_default;
1008 		cp->p_flag |= SSYS;
1009 	} else {
1010 		cp->p_pool = pp->p_pool;
1011 	}
1012 	atomic_add_32(&cp->p_pool->pool_ref, 1);
1013 	mutex_exit(&pp->p_lock);
1014 
1015 	/*
1016 	 * Add the child process to the current task.  Kernel processes
1017 	 * are always attached to task0.
1018 	 */
1019 	mutex_enter(&cp->p_lock);
1020 	if (kernel)
1021 		task_attach(task0p, cp);
1022 	else
1023 		task_attach(pp->p_task, cp);
1024 	mutex_exit(&cp->p_lock);
1025 	mutex_exit(&pidlock);
1026 
1027 	avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1028 	    offsetof(contract_t, ct_ctlist));
1029 
1030 	/*
1031 	 * Duplicate any audit information kept in the process table
1032 	 */
1033 #ifdef C2_AUDIT
1034 	if (audit_active)	/* copy audit data to cp */
1035 		audit_newproc(cp);
1036 #endif
1037 
1038 	crhold(cp->p_cred = cr);
1039 
1040 	/*
1041 	 * Bump up the counts on the file structures pointed at by the
1042 	 * parent's file table since the child will point at them too.
1043 	 */
1044 	fcnt_add(P_FINFO(pp), 1);
1045 
1046 	VN_HOLD(u.u_cdir);
1047 	if (u.u_rdir)
1048 		VN_HOLD(u.u_rdir);
1049 	if (u.u_cwd)
1050 		refstr_hold(u.u_cwd);
1051 
1052 	/*
1053 	 * copy the parent's uarea.
1054 	 */
1055 	uarea = PTOU(cp);
1056 	bcopy(PTOU(pp), uarea, sizeof (user_t));
1057 	flist_fork(P_FINFO(pp), P_FINFO(cp));
1058 
1059 	gethrestime(&uarea->u_start);
1060 	uarea->u_ticks = lbolt;
1061 	uarea->u_mem = rm_asrss(pp->p_as);
1062 	uarea->u_acflag = AFORK;
1063 
1064 	/*
1065 	 * If inherit-on-fork, copy /proc tracing flags to child.
1066 	 */
1067 	if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1068 		cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1069 		cp->p_sigmask = pp->p_sigmask;
1070 		cp->p_fltmask = pp->p_fltmask;
1071 	} else {
1072 		sigemptyset(&cp->p_sigmask);
1073 		premptyset(&cp->p_fltmask);
1074 		uarea->u_systrap = 0;
1075 		premptyset(&uarea->u_entrymask);
1076 		premptyset(&uarea->u_exitmask);
1077 	}
1078 	/*
1079 	 * If microstate accounting is being inherited, mark child
1080 	 */
1081 	if ((pp->p_flag & SMSFORK) != 0)
1082 		cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1083 
1084 	/*
1085 	 * Inherit fixalignment flag from the parent
1086 	 */
1087 	cp->p_fixalignment = pp->p_fixalignment;
1088 
1089 	if (cp->p_exec)
1090 		VN_HOLD(cp->p_exec);
1091 	if (cp->p_execdir)
1092 		VN_HOLD(cp->p_execdir);
1093 	*cpp = cp;
1094 	return (0);
1095 
1096 bad:
1097 	ASSERT(MUTEX_NOT_HELD(&pidlock));
1098 
1099 	mutex_destroy(&cp->p_crlock);
1100 	mutex_destroy(&cp->p_pflock);
1101 #if defined(__x86)
1102 	mutex_destroy(&cp->p_ldtlock);
1103 #endif
1104 	if (newpid != -1) {
1105 		proc_entry_free(cp->p_pidp);
1106 		(void) pid_rele(cp->p_pidp);
1107 	}
1108 	kmem_cache_free(process_cache, cp);
1109 
1110 	/*
1111 	 * We most likely got into this situation because some process is
1112 	 * forking out of control.  As punishment, put it to sleep for a
1113 	 * bit so it can't eat the machine alive.  Sleep interval is chosen
1114 	 * to allow no more than one fork failure per cpu per clock tick
1115 	 * on average (yes, I just made this up).  This has two desirable
1116 	 * properties: (1) it sets a constant limit on the fork failure
1117 	 * rate, and (2) the busier the system is, the harsher the penalty
1118 	 * for abusing it becomes.
1119 	 */
1120 	INCR_COUNT(&fork_fail_pending, &pidlock);
1121 	delay(fork_fail_pending / ncpus + 1);
1122 	DECR_COUNT(&fork_fail_pending, &pidlock);
1123 
1124 	return (-1); /* out of memory or proc slots */
1125 }
1126 
1127 /*
1128  * Release virtual memory.
1129  * In the case of vfork(), the child was given exclusive access to its
1130  * parent's address space.  The parent is waiting in vfwait() for the
1131  * child to release its exclusive claim via relvm().
1132  */
1133 void
1134 relvm()
1135 {
1136 	proc_t *p = curproc;
1137 
1138 	ASSERT((unsigned)p->p_lwpcnt <= 1);
1139 
1140 	prrelvm();	/* inform /proc */
1141 
1142 	if (p->p_flag & SVFORK) {
1143 		proc_t *pp = p->p_parent;
1144 		/*
1145 		 * The child process is either exec'ing or exit'ing.
1146 		 * The child is now separated from the parent's address
1147 		 * space.  The parent process is made dispatchable.
1148 		 *
1149 		 * This is a delicate locking maneuver, involving
1150 		 * both the parent's p_lock and the child's p_lock.
1151 		 * As soon as the SVFORK flag is turned off, the
1152 		 * parent is free to run, but it must not run until
1153 		 * we wake it up using its p_cv because it might
1154 		 * exit and we would be referencing invalid memory.
1155 		 * Therefore, we hold the parent with its p_lock
1156 		 * while protecting our p_flags with our own p_lock.
1157 		 */
1158 try_again:
1159 		mutex_enter(&p->p_lock);	/* grab child's lock first */
1160 		prbarrier(p);		/* make sure /proc is blocked out */
1161 		mutex_enter(&pp->p_lock);
1162 
1163 		/*
1164 		 * Check if parent is locked by /proc.
1165 		 */
1166 		if (pp->p_proc_flag & P_PR_LOCK) {
1167 			/*
1168 			 * Delay until /proc is done with the parent.
1169 			 * We must drop our (the child's) p->p_lock, wait
1170 			 * via prbarrier() on the parent, then start over.
1171 			 */
1172 			mutex_exit(&p->p_lock);
1173 			prbarrier(pp);
1174 			mutex_exit(&pp->p_lock);
1175 			goto try_again;
1176 		}
1177 		p->p_flag &= ~SVFORK;
1178 		kpreempt_disable();
1179 		p->p_as = &kas;
1180 
1181 		/*
1182 		 * notify hat of change in thread's address space
1183 		 */
1184 		hat_thread_exit(curthread);
1185 		kpreempt_enable();
1186 
1187 		/*
1188 		 * child sizes are copied back to parent because
1189 		 * child may have grown.
1190 		 */
1191 		pp->p_brkbase = p->p_brkbase;
1192 		pp->p_brksize = p->p_brksize;
1193 		pp->p_stksize = p->p_stksize;
1194 		/*
1195 		 * The parent is no longer waiting for the vfork()d child.
1196 		 * Restore the parent's watched pages, if any.  This is
1197 		 * safe because we know the parent is not locked by /proc
1198 		 */
1199 		pp->p_flag &= ~SVFWAIT;
1200 		if (avl_numnodes(&pp->p_wpage) != 0) {
1201 			pp->p_as->a_wpage = pp->p_wpage;
1202 			avl_create(&pp->p_wpage, wp_compare,
1203 			    sizeof (struct watched_page),
1204 			    offsetof(struct watched_page, wp_link));
1205 		}
1206 		cv_signal(&pp->p_cv);
1207 		mutex_exit(&pp->p_lock);
1208 		mutex_exit(&p->p_lock);
1209 	} else {
1210 		if (p->p_as != &kas) {
1211 			struct as *as;
1212 
1213 			if (p->p_segacct)
1214 				shmexit(p);
1215 
1216 			/*
1217 			 * We grab p_lock for the benefit of /proc
1218 			 */
1219 			kpreempt_disable();
1220 			mutex_enter(&p->p_lock);
1221 			prbarrier(p);	/* make sure /proc is blocked out */
1222 			as = p->p_as;
1223 			p->p_as = &kas;
1224 			mutex_exit(&p->p_lock);
1225 
1226 			/*
1227 			 * notify hat of change in thread's address space
1228 			 */
1229 			hat_thread_exit(curthread);
1230 			kpreempt_enable();
1231 
1232 			as_free(as);
1233 		}
1234 	}
1235 }
1236 
1237 /*
1238  * Wait for child to exec or exit.
1239  * Called by parent of vfork'ed process.
1240  * See important comments in relvm(), above.
1241  */
1242 void
1243 vfwait(pid_t pid)
1244 {
1245 	int signalled = 0;
1246 	proc_t *pp = ttoproc(curthread);
1247 	proc_t *cp;
1248 
1249 	/*
1250 	 * Wait for child to exec or exit.
1251 	 */
1252 	for (;;) {
1253 		mutex_enter(&pidlock);
1254 		cp = prfind(pid);
1255 		if (cp == NULL || cp->p_parent != pp) {
1256 			/*
1257 			 * Child has exit()ed.
1258 			 */
1259 			mutex_exit(&pidlock);
1260 			break;
1261 		}
1262 		/*
1263 		 * Grab the child's p_lock before releasing pidlock.
1264 		 * Otherwise, the child could exit and we would be
1265 		 * referencing invalid memory.
1266 		 */
1267 		mutex_enter(&cp->p_lock);
1268 		mutex_exit(&pidlock);
1269 		if (!(cp->p_flag & SVFORK)) {
1270 			/*
1271 			 * Child has exec()ed or is exit()ing.
1272 			 */
1273 			mutex_exit(&cp->p_lock);
1274 			break;
1275 		}
1276 		mutex_enter(&pp->p_lock);
1277 		mutex_exit(&cp->p_lock);
1278 		/*
1279 		 * We might be waked up spuriously from the cv_wait().
1280 		 * We have to do the whole operation over again to be
1281 		 * sure the child's SVFORK flag really is turned off.
1282 		 * We cannot make reference to the child because it can
1283 		 * exit before we return and we would be referencing
1284 		 * invalid memory.
1285 		 *
1286 		 * Because this is potentially a very long-term wait,
1287 		 * we call cv_wait_sig() (for its jobcontrol and /proc
1288 		 * side-effects) unless there is a current signal, in
1289 		 * which case we use cv_wait() because we cannot return
1290 		 * from this function until the child has released the
1291 		 * address space.  Calling cv_wait_sig() with a current
1292 		 * signal would lead to an indefinite loop here because
1293 		 * cv_wait_sig() returns immediately in this case.
1294 		 */
1295 		if (signalled)
1296 			cv_wait(&pp->p_cv, &pp->p_lock);
1297 		else
1298 			signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1299 		mutex_exit(&pp->p_lock);
1300 	}
1301 
1302 	/* restore watchpoints to parent */
1303 	if (pr_watch_active(pp)) {
1304 		struct as *as = pp->p_as;
1305 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1306 		as_setwatch(as);
1307 		AS_LOCK_EXIT(as, &as->a_lock);
1308 	}
1309 
1310 	mutex_enter(&pp->p_lock);
1311 	prbarrier(pp);	/* barrier against /proc locking */
1312 	continuelwps(pp);
1313 	mutex_exit(&pp->p_lock);
1314 }
1315