xref: /illumos-gate/usr/src/uts/common/os/fork.c (revision 150d2c5288c645a1c1a7d2bee61199a3729406c7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/sysmacros.h>
35 #include <sys/signal.h>
36 #include <sys/cred.h>
37 #include <sys/policy.h>
38 #include <sys/user.h>
39 #include <sys/systm.h>
40 #include <sys/cpuvar.h>
41 #include <sys/vfs.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <sys/cmn_err.h>
48 #include <sys/acct.h>
49 #include <sys/tuneable.h>
50 #include <sys/class.h>
51 #include <sys/kmem.h>
52 #include <sys/session.h>
53 #include <sys/ucontext.h>
54 #include <sys/stack.h>
55 #include <sys/procfs.h>
56 #include <sys/prsystm.h>
57 #include <sys/vmsystm.h>
58 #include <sys/vtrace.h>
59 #include <sys/debug.h>
60 #include <sys/shm_impl.h>
61 #include <sys/door_data.h>
62 #include <vm/as.h>
63 #include <vm/rm.h>
64 #include <c2/audit.h>
65 #include <sys/var.h>
66 #include <sys/schedctl.h>
67 #include <sys/utrap.h>
68 #include <sys/task.h>
69 #include <sys/resource.h>
70 #include <sys/cyclic.h>
71 #include <sys/lgrp.h>
72 #include <sys/rctl.h>
73 #include <sys/contract_impl.h>
74 #include <sys/contract/process_impl.h>
75 #include <sys/list.h>
76 #include <sys/dtrace.h>
77 #include <sys/pool.h>
78 #include <sys/zone.h>
79 #include <sys/sdt.h>
80 #include <sys/class.h>
81 #include <sys/corectl.h>
82 #include <sys/brand.h>
83 #include <sys/fork.h>
84 
85 static int64_t cfork(int, int, int);
86 static int getproc(proc_t **, int);
87 static void fork_fail(proc_t *);
88 static void forklwp_fail(proc_t *);
89 
90 int fork_fail_pending;
91 
92 extern struct kmem_cache *process_cache;
93 
94 /*
95  * forkall system call.
96  */
97 int64_t
98 forkall(void)
99 {
100 	return (cfork(0, 0, 0));
101 }
102 
103 /*
104  * The parent is stopped until the child invokes relvm().
105  */
106 int64_t
107 vfork(void)
108 {
109 	curthread->t_post_sys = 1;	/* so vfwait() will be called */
110 	return (cfork(1, 1, 0));
111 }
112 
113 /*
114  * fork system call, aka fork1.
115  */
116 int64_t
117 fork1(void)
118 {
119 	return (cfork(0, 1, 0));
120 }
121 
122 /*
123  * The forkall(), vfork(), and fork1() system calls are no longer
124  * invoked by libc.  They are retained only for the benefit of
125  * old statically-linked applications.  They should be eliminated
126  * when we no longer care about such old and broken applications.
127  */
128 
129 /*
130  * forksys system call - forkx, forkallx, vforkx.
131  * This is the interface now invoked by libc.
132  */
133 int64_t
134 forksys(int subcode, int flags)
135 {
136 	switch (subcode) {
137 	case 0:
138 		return (cfork(0, 1, flags));	/* forkx(flags) */
139 	case 1:
140 		return (cfork(0, 0, flags));	/* forkallx(flags) */
141 	case 2:
142 		curthread->t_post_sys = 1;	/* so vfwait() will be called */
143 		return (cfork(1, 1, flags));	/* vforkx(flags) */
144 	default:
145 		return ((int64_t)set_errno(EINVAL));
146 	}
147 }
148 
149 /* ARGSUSED */
150 static int64_t
151 cfork(int isvfork, int isfork1, int flags)
152 {
153 	proc_t *p = ttoproc(curthread);
154 	struct as *as;
155 	proc_t *cp, **orphpp;
156 	klwp_t *clone;
157 	kthread_t *t;
158 	task_t *tk;
159 	rval_t	r;
160 	int error;
161 	int i;
162 	rctl_set_t *dup_set;
163 	rctl_alloc_gp_t *dup_gp;
164 	rctl_entity_p_t e;
165 	lwpdir_t *ldp;
166 	lwpent_t *lep;
167 	lwpent_t *clep;
168 
169 	/*
170 	 * Allow only these two flags.
171 	 */
172 	if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) {
173 		error = EINVAL;
174 		goto forkerr;
175 	}
176 
177 	/*
178 	 * fork is not supported for the /proc agent lwp.
179 	 */
180 	if (curthread == p->p_agenttp) {
181 		error = ENOTSUP;
182 		goto forkerr;
183 	}
184 
185 	if ((error = secpolicy_basic_fork(CRED())) != 0)
186 		goto forkerr;
187 
188 	/*
189 	 * If the calling lwp is doing a fork1() then the
190 	 * other lwps in this process are not duplicated and
191 	 * don't need to be held where their kernel stacks can be
192 	 * cloned.  If doing forkall(), the process is held with
193 	 * SHOLDFORK, so that the lwps are at a point where their
194 	 * stacks can be copied which is on entry or exit from
195 	 * the kernel.
196 	 */
197 	if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
198 		aston(curthread);
199 		error = EINTR;
200 		goto forkerr;
201 	}
202 
203 #if defined(__sparc)
204 	/*
205 	 * Ensure that the user stack is fully constructed
206 	 * before creating the child process structure.
207 	 */
208 	(void) flush_user_windows_to_stack(NULL);
209 #endif
210 
211 	mutex_enter(&p->p_lock);
212 	/*
213 	 * If this is vfork(), cancel any suspend request we might
214 	 * have gotten from some other thread via lwp_suspend().
215 	 * Otherwise we could end up with a deadlock on return
216 	 * from the vfork() in both the parent and the child.
217 	 */
218 	if (isvfork)
219 		curthread->t_proc_flag &= ~TP_HOLDLWP;
220 	/*
221 	 * Prevent our resource set associations from being changed during fork.
222 	 */
223 	pool_barrier_enter();
224 	mutex_exit(&p->p_lock);
225 
226 	/*
227 	 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
228 	 */
229 	if (getproc(&cp, 0) < 0) {
230 		mutex_enter(&p->p_lock);
231 		pool_barrier_exit();
232 		continuelwps(p);
233 		mutex_exit(&p->p_lock);
234 		error = EAGAIN;
235 		goto forkerr;
236 	}
237 
238 	TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
239 
240 	/*
241 	 * Assign an address space to child
242 	 */
243 	if (isvfork) {
244 		/*
245 		 * Clear any watched areas and remember the
246 		 * watched pages for restoring in vfwait().
247 		 */
248 		as = p->p_as;
249 		if (avl_numnodes(&as->a_wpage) != 0) {
250 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
251 			as_clearwatch(as);
252 			p->p_wpage = as->a_wpage;
253 			avl_create(&as->a_wpage, wp_compare,
254 			    sizeof (struct watched_page),
255 			    offsetof(struct watched_page, wp_link));
256 			AS_LOCK_EXIT(as, &as->a_lock);
257 		}
258 		cp->p_as = as;
259 		cp->p_flag |= SVFORK;
260 	} else {
261 		/*
262 		 * We need to hold P_PR_LOCK until the address space has
263 		 * been duplicated and we've had a chance to remove from the
264 		 * child any DTrace probes that were in the parent. Holding
265 		 * P_PR_LOCK prevents any new probes from being added and any
266 		 * extant probes from being removed.
267 		 */
268 		mutex_enter(&p->p_lock);
269 		sprlock_proc(p);
270 		p->p_flag |= SFORKING;
271 		mutex_exit(&p->p_lock);
272 
273 		error = as_dup(p->p_as, &cp->p_as);
274 		if (error != 0) {
275 			fork_fail(cp);
276 			mutex_enter(&pidlock);
277 			orphpp = &p->p_orphan;
278 			while (*orphpp != cp)
279 				orphpp = &(*orphpp)->p_nextorph;
280 			*orphpp = cp->p_nextorph;
281 			if (p->p_child == cp)
282 				p->p_child = cp->p_sibling;
283 			if (cp->p_sibling)
284 				cp->p_sibling->p_psibling = cp->p_psibling;
285 			if (cp->p_psibling)
286 				cp->p_psibling->p_sibling = cp->p_sibling;
287 			mutex_enter(&cp->p_lock);
288 			tk = cp->p_task;
289 			task_detach(cp);
290 			ASSERT(cp->p_pool->pool_ref > 0);
291 			atomic_add_32(&cp->p_pool->pool_ref, -1);
292 			mutex_exit(&cp->p_lock);
293 			pid_exit(cp);
294 			mutex_exit(&pidlock);
295 			task_rele(tk);
296 
297 			mutex_enter(&p->p_lock);
298 			p->p_flag &= ~SFORKING;
299 			pool_barrier_exit();
300 			continuelwps(p);
301 			sprunlock(p);
302 			/*
303 			 * Preserve ENOMEM error condition but
304 			 * map all others to EAGAIN.
305 			 */
306 			error = (error == ENOMEM) ? ENOMEM : EAGAIN;
307 			goto forkerr;
308 		}
309 		cp->p_as->a_proc = cp;
310 
311 		/* Duplicate parent's shared memory */
312 		if (p->p_segacct)
313 			shmfork(p, cp);
314 
315 		/*
316 		 * Remove all DTrace tracepoints from the child process. We
317 		 * need to do this _before_ duplicating USDT providers since
318 		 * any associated probes may be immediately enabled.
319 		 */
320 		if (p->p_dtrace_count > 0)
321 			dtrace_fasttrap_fork(p, cp);
322 
323 		/*
324 		 * Duplicate any helper actions and providers. The SFORKING
325 		 * we set above informs the code to enable USDT probes that
326 		 * sprlock() may fail because the child is being forked.
327 		 */
328 		if (p->p_dtrace_helpers != NULL) {
329 			ASSERT(dtrace_helpers_fork != NULL);
330 			(*dtrace_helpers_fork)(p, cp);
331 		}
332 
333 		mutex_enter(&p->p_lock);
334 		p->p_flag &= ~SFORKING;
335 		sprunlock(p);
336 	}
337 
338 	/*
339 	 * Duplicate parent's resource controls.
340 	 */
341 	dup_set = rctl_set_create();
342 	for (;;) {
343 		dup_gp = rctl_set_dup_prealloc(p->p_rctls);
344 		mutex_enter(&p->p_rctls->rcs_lock);
345 		if (rctl_set_dup_ready(p->p_rctls, dup_gp))
346 			break;
347 		mutex_exit(&p->p_rctls->rcs_lock);
348 		rctl_prealloc_destroy(dup_gp);
349 	}
350 	e.rcep_p.proc = cp;
351 	e.rcep_t = RCENTITY_PROCESS;
352 	cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
353 	    RCD_DUP | RCD_CALLBACK);
354 	mutex_exit(&p->p_rctls->rcs_lock);
355 
356 	rctl_prealloc_destroy(dup_gp);
357 
358 	/*
359 	 * Allocate the child's lwp directory and lwpid hash table.
360 	 */
361 	if (isfork1)
362 		cp->p_lwpdir_sz = 2;
363 	else
364 		cp->p_lwpdir_sz = p->p_lwpdir_sz;
365 	cp->p_lwpdir = cp->p_lwpfree = ldp =
366 		kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
367 	for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
368 		ldp->ld_next = ldp + 1;
369 	cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
370 	cp->p_tidhash =
371 		kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP);
372 
373 	/*
374 	 * Duplicate parent's lwps.
375 	 * Mutual exclusion is not needed because the process is
376 	 * in the hold state and only the current lwp is running.
377 	 */
378 	klgrpset_clear(cp->p_lgrpset);
379 	if (isfork1) {
380 		clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
381 		if (clone == NULL)
382 			goto forklwperr;
383 		/*
384 		 * Inherit only the lwp_wait()able flag,
385 		 * Daemon threads should not call fork1(), but oh well...
386 		 */
387 		lwptot(clone)->t_proc_flag |=
388 			(curthread->t_proc_flag & TP_TWAIT);
389 	} else {
390 		/* this is forkall(), no one can be in lwp_wait() */
391 		ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
392 		/* for each entry in the parent's lwp directory... */
393 		for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
394 			klwp_t *clwp;
395 			kthread_t *ct;
396 
397 			if ((lep = ldp->ld_entry) == NULL)
398 				continue;
399 
400 			if ((t = lep->le_thread) != NULL) {
401 				clwp = forklwp(ttolwp(t), cp, t->t_tid);
402 				if (clwp == NULL)
403 					goto forklwperr;
404 				ct = lwptot(clwp);
405 				/*
406 				 * Inherit lwp_wait()able and daemon flags.
407 				 */
408 				ct->t_proc_flag |=
409 				    (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
410 				/*
411 				 * Keep track of the clone of curthread to
412 				 * post return values through lwp_setrval().
413 				 * Mark other threads for special treatment
414 				 * by lwp_rtt() / post_syscall().
415 				 */
416 				if (t == curthread)
417 					clone = clwp;
418 				else
419 					ct->t_flag |= T_FORKALL;
420 			} else {
421 				/*
422 				 * Replicate zombie lwps in the child.
423 				 */
424 				clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
425 				clep->le_lwpid = lep->le_lwpid;
426 				clep->le_start = lep->le_start;
427 				lwp_hash_in(cp, clep);
428 			}
429 		}
430 	}
431 
432 	/*
433 	 * Put new process in the parent's process contract, or put it
434 	 * in a new one if there is an active process template.  Send a
435 	 * fork event (if requested) to whatever contract the child is
436 	 * a member of.  Fails if the parent has been SIGKILLed.
437 	 */
438 	if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL)
439 		goto forklwperr;
440 
441 	/*
442 	 * No fork failures occur beyond this point.
443 	 */
444 
445 	cp->p_lwpid = p->p_lwpid;
446 	if (!isfork1) {
447 		cp->p_lwpdaemon = p->p_lwpdaemon;
448 		cp->p_zombcnt = p->p_zombcnt;
449 		/*
450 		 * If the parent's lwp ids have wrapped around, so have the
451 		 * child's.
452 		 */
453 		cp->p_flag |= p->p_flag & SLWPWRAP;
454 	}
455 
456 	mutex_enter(&p->p_lock);
457 	corectl_path_hold(cp->p_corefile = p->p_corefile);
458 	corectl_content_hold(cp->p_content = p->p_content);
459 	mutex_exit(&p->p_lock);
460 
461 	/*
462 	 * Duplicate process context ops, if any.
463 	 */
464 	if (p->p_pctx)
465 		forkpctx(p, cp);
466 
467 #ifdef __sparc
468 	utrap_dup(p, cp);
469 #endif
470 	/*
471 	 * If the child process has been marked to stop on exit
472 	 * from this fork, arrange for all other lwps to stop in
473 	 * sympathy with the active lwp.
474 	 */
475 	if (PTOU(cp)->u_systrap &&
476 	    prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
477 		mutex_enter(&cp->p_lock);
478 		t = cp->p_tlist;
479 		do {
480 			t->t_proc_flag |= TP_PRSTOP;
481 			aston(t);	/* so TP_PRSTOP will be seen */
482 		} while ((t = t->t_forw) != cp->p_tlist);
483 		mutex_exit(&cp->p_lock);
484 	}
485 	/*
486 	 * If the parent process has been marked to stop on exit
487 	 * from this fork, and its asynchronous-stop flag has not
488 	 * been set, arrange for all other lwps to stop before
489 	 * they return back to user level.
490 	 */
491 	if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
492 	    prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
493 		mutex_enter(&p->p_lock);
494 		t = p->p_tlist;
495 		do {
496 			t->t_proc_flag |= TP_PRSTOP;
497 			aston(t);	/* so TP_PRSTOP will be seen */
498 		} while ((t = t->t_forw) != p->p_tlist);
499 		mutex_exit(&p->p_lock);
500 	}
501 
502 	if (PROC_IS_BRANDED(p))
503 		BROP(p)->b_lwp_setrval(clone, p->p_pid, 1);
504 	else
505 		lwp_setrval(clone, p->p_pid, 1);
506 
507 	/* set return values for parent */
508 	r.r_val1 = (int)cp->p_pid;
509 	r.r_val2 = 0;
510 
511 	/*
512 	 * pool_barrier_exit() can now be called because the child process has:
513 	 * - all identifying features cloned or set (p_pid, p_task, p_pool)
514 	 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
515 	 * - any other fields set which are used in resource set binding.
516 	 */
517 	mutex_enter(&p->p_lock);
518 	pool_barrier_exit();
519 	mutex_exit(&p->p_lock);
520 
521 	mutex_enter(&pidlock);
522 	mutex_enter(&cp->p_lock);
523 
524 	/*
525 	 * Set flags telling the child what (not) to do on exit.
526 	 */
527 	if (flags & FORK_NOSIGCHLD)
528 		cp->p_pidflag |= CLDNOSIGCHLD;
529 	if (flags & FORK_WAITPID)
530 		cp->p_pidflag |= CLDWAITPID;
531 
532 	/*
533 	 * Now that there are lwps and threads attached, add the new
534 	 * process to the process group.
535 	 */
536 	pgjoin(cp, p->p_pgidp);
537 	cp->p_stat = SRUN;
538 	/*
539 	 * We are now done with all the lwps in the child process.
540 	 */
541 	t = cp->p_tlist;
542 	do {
543 		/*
544 		 * Set the lwp_suspend()ed lwps running.
545 		 * They will suspend properly at syscall exit.
546 		 */
547 		if (t->t_proc_flag & TP_HOLDLWP)
548 			lwp_create_done(t);
549 		else {
550 			/* set TS_CREATE to allow continuelwps() to work */
551 			thread_lock(t);
552 			ASSERT(t->t_state == TS_STOPPED &&
553 			    !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
554 			t->t_schedflag |= TS_CREATE;
555 			thread_unlock(t);
556 		}
557 	} while ((t = t->t_forw) != cp->p_tlist);
558 	mutex_exit(&cp->p_lock);
559 
560 	if (isvfork) {
561 		CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
562 		mutex_enter(&p->p_lock);
563 		p->p_flag |= (SVFPARENT | SVFWAIT);
564 		DTRACE_PROC1(create, proc_t *, cp);
565 		cv_broadcast(&pr_pid_cv[p->p_slot]);	/* inform /proc */
566 		mutex_exit(&p->p_lock);
567 		/*
568 		 * Grab child's p_lock before dropping pidlock to ensure
569 		 * the process will not disappear before we set it running.
570 		 */
571 		mutex_enter(&cp->p_lock);
572 		mutex_exit(&pidlock);
573 		sigdefault(cp);
574 		continuelwps(cp);
575 		mutex_exit(&cp->p_lock);
576 	} else {
577 		CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
578 		DTRACE_PROC1(create, proc_t *, cp);
579 		/*
580 		 * It is CL_FORKRET's job to drop pidlock.
581 		 * If we do it here, the process could be set running
582 		 * and disappear before CL_FORKRET() is called.
583 		 */
584 		CL_FORKRET(curthread, cp->p_tlist);
585 		ASSERT(MUTEX_NOT_HELD(&pidlock));
586 	}
587 
588 	return (r.r_vals);
589 
590 forklwperr:
591 	if (isvfork) {
592 		if (avl_numnodes(&p->p_wpage) != 0) {
593 			/* restore watchpoints to parent */
594 			as = p->p_as;
595 			AS_LOCK_ENTER(as, &as->a_lock,
596 				RW_WRITER);
597 			as->a_wpage = p->p_wpage;
598 			avl_create(&p->p_wpage, wp_compare,
599 			    sizeof (struct watched_page),
600 			    offsetof(struct watched_page, wp_link));
601 			as_setwatch(as);
602 			AS_LOCK_EXIT(as, &as->a_lock);
603 		}
604 	} else {
605 		if (cp->p_segacct)
606 			shmexit(cp);
607 		as = cp->p_as;
608 		cp->p_as = &kas;
609 		as_free(as);
610 	}
611 
612 	if (cp->p_lwpdir) {
613 		for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
614 			if ((lep = ldp->ld_entry) != NULL)
615 				kmem_free(lep, sizeof (*lep));
616 		kmem_free(cp->p_lwpdir,
617 		    cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
618 	}
619 	cp->p_lwpdir = NULL;
620 	cp->p_lwpfree = NULL;
621 	cp->p_lwpdir_sz = 0;
622 
623 	if (cp->p_tidhash)
624 		kmem_free(cp->p_tidhash,
625 		    cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
626 	cp->p_tidhash = NULL;
627 	cp->p_tidhash_sz = 0;
628 
629 	forklwp_fail(cp);
630 	fork_fail(cp);
631 	rctl_set_free(cp->p_rctls);
632 	mutex_enter(&pidlock);
633 
634 	/*
635 	 * Detach failed child from task.
636 	 */
637 	mutex_enter(&cp->p_lock);
638 	tk = cp->p_task;
639 	task_detach(cp);
640 	ASSERT(cp->p_pool->pool_ref > 0);
641 	atomic_add_32(&cp->p_pool->pool_ref, -1);
642 	mutex_exit(&cp->p_lock);
643 
644 	orphpp = &p->p_orphan;
645 	while (*orphpp != cp)
646 		orphpp = &(*orphpp)->p_nextorph;
647 	*orphpp = cp->p_nextorph;
648 	if (p->p_child == cp)
649 		p->p_child = cp->p_sibling;
650 	if (cp->p_sibling)
651 		cp->p_sibling->p_psibling = cp->p_psibling;
652 	if (cp->p_psibling)
653 		cp->p_psibling->p_sibling = cp->p_sibling;
654 	pid_exit(cp);
655 	mutex_exit(&pidlock);
656 
657 	task_rele(tk);
658 
659 	mutex_enter(&p->p_lock);
660 	pool_barrier_exit();
661 	continuelwps(p);
662 	mutex_exit(&p->p_lock);
663 	error = EAGAIN;
664 forkerr:
665 	return ((int64_t)set_errno(error));
666 }
667 
668 /*
669  * Free allocated resources from getproc() if a fork failed.
670  */
671 static void
672 fork_fail(proc_t *cp)
673 {
674 	uf_info_t *fip = P_FINFO(cp);
675 
676 	fcnt_add(fip, -1);
677 	sigdelq(cp, NULL, 0);
678 
679 	mutex_enter(&pidlock);
680 	upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
681 	mutex_exit(&pidlock);
682 
683 	/*
684 	 * single threaded, so no locking needed here
685 	 */
686 	crfree(cp->p_cred);
687 
688 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
689 
690 	VN_RELE(PTOU(curproc)->u_cdir);
691 	if (PTOU(curproc)->u_rdir)
692 		VN_RELE(PTOU(curproc)->u_rdir);
693 	if (cp->p_exec)
694 		VN_RELE(cp->p_exec);
695 	if (cp->p_execdir)
696 		VN_RELE(cp->p_execdir);
697 	if (PTOU(curproc)->u_cwd)
698 		refstr_rele(PTOU(curproc)->u_cwd);
699 }
700 
701 /*
702  * Clean up the lwps already created for this child process.
703  * The fork failed while duplicating all the lwps of the parent
704  * and those lwps already created must be freed.
705  * This process is invisible to the rest of the system,
706  * so we don't need to hold p->p_lock to protect the list.
707  */
708 static void
709 forklwp_fail(proc_t *p)
710 {
711 	kthread_t *t;
712 	task_t *tk;
713 
714 	while ((t = p->p_tlist) != NULL) {
715 		/*
716 		 * First remove the lwp from the process's p_tlist.
717 		 */
718 		if (t != t->t_forw)
719 			p->p_tlist = t->t_forw;
720 		else
721 			p->p_tlist = NULL;
722 		p->p_lwpcnt--;
723 		t->t_forw->t_back = t->t_back;
724 		t->t_back->t_forw = t->t_forw;
725 
726 		tk = p->p_task;
727 		mutex_enter(&p->p_zone->zone_nlwps_lock);
728 		tk->tk_nlwps--;
729 		tk->tk_proj->kpj_nlwps--;
730 		p->p_zone->zone_nlwps--;
731 		mutex_exit(&p->p_zone->zone_nlwps_lock);
732 
733 		ASSERT(t->t_schedctl == NULL);
734 
735 		if (t->t_door != NULL) {
736 			kmem_free(t->t_door, sizeof (door_data_t));
737 			t->t_door = NULL;
738 		}
739 		lwp_ctmpl_clear(ttolwp(t));
740 
741 		/*
742 		 * Remove the thread from the all threads list.
743 		 * We need to hold pidlock for this.
744 		 */
745 		mutex_enter(&pidlock);
746 		t->t_next->t_prev = t->t_prev;
747 		t->t_prev->t_next = t->t_next;
748 		CL_EXIT(t);	/* tell the scheduler that we're exiting */
749 		cv_broadcast(&t->t_joincv);	/* tell anyone in thread_join */
750 		mutex_exit(&pidlock);
751 
752 		/*
753 		 * Let the lgroup load averages know that this thread isn't
754 		 * going to show up (i.e. un-do what was done on behalf of
755 		 * this thread by the earlier lgrp_move_thread()).
756 		 */
757 		kpreempt_disable();
758 		lgrp_move_thread(t, NULL, 1);
759 		kpreempt_enable();
760 
761 		/*
762 		 * The thread was created TS_STOPPED.
763 		 * We change it to TS_FREE to avoid an
764 		 * ASSERT() panic in thread_free().
765 		 */
766 		t->t_state = TS_FREE;
767 		thread_rele(t);
768 		thread_free(t);
769 	}
770 }
771 
772 extern struct as kas;
773 
774 /*
775  * fork a kernel process.
776  */
777 int
778 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct)
779 {
780 	proc_t *p;
781 	struct user *up;
782 	klwp_t *lwp;
783 	cont_process_t *ctp = NULL;
784 	rctl_entity_p_t e;
785 
786 	ASSERT(!(cid == syscid && ct != NULL));
787 	if (cid == syscid) {
788 		rctl_alloc_gp_t *init_gp;
789 		rctl_set_t *init_set;
790 
791 		if (getproc(&p, 1) < 0)
792 			return (EAGAIN);
793 
794 		p->p_flag |= SNOWAIT;
795 		p->p_exec = NULL;
796 		p->p_execdir = NULL;
797 
798 		init_set = rctl_set_create();
799 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
800 
801 		/*
802 		 * kernel processes do not inherit /proc tracing flags.
803 		 */
804 		sigemptyset(&p->p_sigmask);
805 		premptyset(&p->p_fltmask);
806 		up = PTOU(p);
807 		up->u_systrap = 0;
808 		premptyset(&(up->u_entrymask));
809 		premptyset(&(up->u_exitmask));
810 		mutex_enter(&p->p_lock);
811 		e.rcep_p.proc = p;
812 		e.rcep_t = RCENTITY_PROCESS;
813 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
814 		    init_gp);
815 		mutex_exit(&p->p_lock);
816 
817 		rctl_prealloc_destroy(init_gp);
818 	} else  {
819 		rctl_alloc_gp_t *init_gp, *default_gp;
820 		rctl_set_t *init_set;
821 		task_t *tk, *tk_old;
822 
823 		if (getproc(&p, 0) < 0)
824 			return (EAGAIN);
825 		/*
826 		 * init creates a new task, distinct from the task
827 		 * containing kernel "processes".
828 		 */
829 		tk = task_create(0, p->p_zone);
830 		mutex_enter(&tk->tk_zone->zone_nlwps_lock);
831 		tk->tk_proj->kpj_ntasks++;
832 		mutex_exit(&tk->tk_zone->zone_nlwps_lock);
833 
834 		default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
835 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
836 		init_set = rctl_set_create();
837 
838 		mutex_enter(&pidlock);
839 		mutex_enter(&p->p_lock);
840 		tk_old = p->p_task;	/* switch to new task */
841 
842 		task_detach(p);
843 		task_begin(tk, p);
844 		mutex_exit(&pidlock);
845 
846 		e.rcep_p.proc = p;
847 		e.rcep_t = RCENTITY_PROCESS;
848 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
849 		    init_gp);
850 		rctlproc_default_init(p, default_gp);
851 		mutex_exit(&p->p_lock);
852 
853 		task_rele(tk_old);
854 		rctl_prealloc_destroy(default_gp);
855 		rctl_prealloc_destroy(init_gp);
856 	}
857 
858 	p->p_as = &kas;
859 
860 	if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
861 	    &curthread->t_hold, cid, 1)) == NULL) {
862 		task_t *tk;
863 		fork_fail(p);
864 		mutex_enter(&pidlock);
865 		mutex_enter(&p->p_lock);
866 		tk = p->p_task;
867 		task_detach(p);
868 		ASSERT(p->p_pool->pool_ref > 0);
869 		atomic_add_32(&p->p_pool->pool_ref, -1);
870 		mutex_exit(&p->p_lock);
871 		pid_exit(p);
872 		mutex_exit(&pidlock);
873 		task_rele(tk);
874 
875 		return (EAGAIN);
876 	}
877 
878 	if (cid != syscid) {
879 		ctp = contract_process_fork(sys_process_tmpl, p, curproc,
880 		    B_FALSE);
881 		ASSERT(ctp != NULL);
882 		if (ct != NULL)
883 			*ct = &ctp->conp_contract;
884 	}
885 
886 	p->p_lwpid = 1;
887 	mutex_enter(&pidlock);
888 	pgjoin(p, curproc->p_pgidp);
889 	p->p_stat = SRUN;
890 	mutex_enter(&p->p_lock);
891 	lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP;
892 	lwp_create_done(lwptot(lwp));
893 	mutex_exit(&p->p_lock);
894 	mutex_exit(&pidlock);
895 	return (0);
896 }
897 
898 /*
899  * create a child proc struct.
900  */
901 static int
902 getproc(proc_t **cpp, int kernel)
903 {
904 	proc_t		*pp, *cp;
905 	pid_t		newpid;
906 	struct user	*uarea;
907 	extern uint_t	nproc;
908 	struct cred	*cr;
909 	uid_t		ruid;
910 	zoneid_t	zoneid;
911 
912 	if (!page_mem_avail(tune.t_minarmem))
913 		return (-1);
914 	if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
915 		return (-1);	/* no point in starting new processes */
916 
917 	pp = curproc;
918 	cp = kmem_cache_alloc(process_cache, KM_SLEEP);
919 	bzero(cp, sizeof (proc_t));
920 
921 	/*
922 	 * Make proc entry for child process
923 	 */
924 	mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL);
925 	mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
926 	mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
927 #if defined(__x86)
928 	mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
929 #endif
930 	mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
931 	cp->p_stat = SIDL;
932 	cp->p_mstart = gethrtime();
933 	/*
934 	 * p_zone must be set before we call pid_allocate since the process
935 	 * will be visible after that and code such as prfind_zone will
936 	 * look at the p_zone field.
937 	 */
938 	cp->p_zone = pp->p_zone;
939 
940 	if ((newpid = pid_allocate(cp, PID_ALLOC_PROC)) == -1) {
941 		if (nproc == v.v_proc) {
942 			CPU_STATS_ADDQ(CPU, sys, procovf, 1);
943 			cmn_err(CE_WARN, "out of processes");
944 		}
945 		goto bad;
946 	}
947 
948 	/*
949 	 * If not privileged make sure that this user hasn't exceeded
950 	 * v.v_maxup processes, and that users collectively haven't
951 	 * exceeded v.v_maxupttl processes.
952 	 */
953 	mutex_enter(&pidlock);
954 	ASSERT(nproc < v.v_proc);	/* otherwise how'd we get our pid? */
955 	cr = CRED();
956 	ruid = crgetruid(cr);
957 	zoneid = crgetzoneid(cr);
958 	if (nproc >= v.v_maxup && 	/* short-circuit; usually false */
959 	    (nproc >= v.v_maxupttl ||
960 	    upcount_get(ruid, zoneid) >= v.v_maxup) &&
961 	    secpolicy_newproc(cr) != 0) {
962 		mutex_exit(&pidlock);
963 		zcmn_err(zoneid, CE_NOTE,
964 		    "out of per-user processes for uid %d", ruid);
965 		goto bad;
966 	}
967 
968 	/*
969 	 * Everything is cool, put the new proc on the active process list.
970 	 * It is already on the pid list and in /proc.
971 	 * Increment the per uid process count (upcount).
972 	 */
973 	nproc++;
974 	upcount_inc(ruid, zoneid);
975 
976 	cp->p_next = practive;
977 	practive->p_prev = cp;
978 	practive = cp;
979 
980 	cp->p_ignore = pp->p_ignore;
981 	cp->p_siginfo = pp->p_siginfo;
982 	cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
983 	cp->p_sessp = pp->p_sessp;
984 	sess_hold(pp);
985 	cp->p_exec = pp->p_exec;
986 	cp->p_execdir = pp->p_execdir;
987 	cp->p_brand = pp->p_brand;
988 	if (PROC_IS_BRANDED(pp))
989 		BROP(pp)->b_copy_procdata(cp, pp);
990 
991 	cp->p_bssbase = pp->p_bssbase;
992 	cp->p_brkbase = pp->p_brkbase;
993 	cp->p_brksize = pp->p_brksize;
994 	cp->p_brkpageszc = pp->p_brkpageszc;
995 	cp->p_stksize = pp->p_stksize;
996 	cp->p_stkpageszc = pp->p_stkpageszc;
997 	cp->p_stkprot = pp->p_stkprot;
998 	cp->p_datprot = pp->p_datprot;
999 	cp->p_usrstack = pp->p_usrstack;
1000 	cp->p_model = pp->p_model;
1001 	cp->p_ppid = pp->p_pid;
1002 	cp->p_ancpid = pp->p_pid;
1003 	cp->p_portcnt = pp->p_portcnt;
1004 
1005 	/*
1006 	 * Initialize watchpoint structures
1007 	 */
1008 	avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
1009 	    offsetof(struct watched_area, wa_link));
1010 
1011 	/*
1012 	 * Initialize immediate resource control values.
1013 	 */
1014 	cp->p_stk_ctl = pp->p_stk_ctl;
1015 	cp->p_fsz_ctl = pp->p_fsz_ctl;
1016 	cp->p_vmem_ctl = pp->p_vmem_ctl;
1017 	cp->p_fno_ctl = pp->p_fno_ctl;
1018 
1019 	/*
1020 	 * Link up to parent-child-sibling chain.  No need to lock
1021 	 * in general since only a call to freeproc() (done by the
1022 	 * same parent as newproc()) diddles with the child chain.
1023 	 */
1024 	cp->p_sibling = pp->p_child;
1025 	if (pp->p_child)
1026 		pp->p_child->p_psibling = cp;
1027 
1028 	cp->p_parent = pp;
1029 	pp->p_child = cp;
1030 
1031 	cp->p_child_ns = NULL;
1032 	cp->p_sibling_ns = NULL;
1033 
1034 	cp->p_nextorph = pp->p_orphan;
1035 	cp->p_nextofkin = pp;
1036 	pp->p_orphan = cp;
1037 
1038 	/*
1039 	 * Inherit profiling state; do not inherit REALPROF profiling state.
1040 	 */
1041 	cp->p_prof = pp->p_prof;
1042 	cp->p_rprof_cyclic = CYCLIC_NONE;
1043 
1044 	/*
1045 	 * Inherit pool pointer from the parent.  Kernel processes are
1046 	 * always bound to the default pool.
1047 	 */
1048 	mutex_enter(&pp->p_lock);
1049 	if (kernel) {
1050 		cp->p_pool = pool_default;
1051 		cp->p_flag |= SSYS;
1052 	} else {
1053 		cp->p_pool = pp->p_pool;
1054 	}
1055 	atomic_add_32(&cp->p_pool->pool_ref, 1);
1056 	mutex_exit(&pp->p_lock);
1057 
1058 	/*
1059 	 * Add the child process to the current task.  Kernel processes
1060 	 * are always attached to task0.
1061 	 */
1062 	mutex_enter(&cp->p_lock);
1063 	if (kernel)
1064 		task_attach(task0p, cp);
1065 	else
1066 		task_attach(pp->p_task, cp);
1067 	mutex_exit(&cp->p_lock);
1068 	mutex_exit(&pidlock);
1069 
1070 	avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1071 	    offsetof(contract_t, ct_ctlist));
1072 
1073 	/*
1074 	 * Duplicate any audit information kept in the process table
1075 	 */
1076 #ifdef C2_AUDIT
1077 	if (audit_active)	/* copy audit data to cp */
1078 		audit_newproc(cp);
1079 #endif
1080 
1081 	crhold(cp->p_cred = cr);
1082 
1083 	/*
1084 	 * Bump up the counts on the file structures pointed at by the
1085 	 * parent's file table since the child will point at them too.
1086 	 */
1087 	fcnt_add(P_FINFO(pp), 1);
1088 
1089 	VN_HOLD(PTOU(pp)->u_cdir);
1090 	if (PTOU(pp)->u_rdir)
1091 		VN_HOLD(PTOU(pp)->u_rdir);
1092 	if (PTOU(pp)->u_cwd)
1093 		refstr_hold(PTOU(pp)->u_cwd);
1094 
1095 	/*
1096 	 * copy the parent's uarea.
1097 	 */
1098 	uarea = PTOU(cp);
1099 	bcopy(PTOU(pp), uarea, sizeof (*uarea));
1100 	flist_fork(P_FINFO(pp), P_FINFO(cp));
1101 
1102 	gethrestime(&uarea->u_start);
1103 	uarea->u_ticks = lbolt;
1104 	uarea->u_mem = rm_asrss(pp->p_as);
1105 	uarea->u_acflag = AFORK;
1106 
1107 	/*
1108 	 * If inherit-on-fork, copy /proc tracing flags to child.
1109 	 */
1110 	if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1111 		cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1112 		cp->p_sigmask = pp->p_sigmask;
1113 		cp->p_fltmask = pp->p_fltmask;
1114 	} else {
1115 		sigemptyset(&cp->p_sigmask);
1116 		premptyset(&cp->p_fltmask);
1117 		uarea->u_systrap = 0;
1118 		premptyset(&uarea->u_entrymask);
1119 		premptyset(&uarea->u_exitmask);
1120 	}
1121 	/*
1122 	 * If microstate accounting is being inherited, mark child
1123 	 */
1124 	if ((pp->p_flag & SMSFORK) != 0)
1125 		cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1126 
1127 	/*
1128 	 * Inherit fixalignment flag from the parent
1129 	 */
1130 	cp->p_fixalignment = pp->p_fixalignment;
1131 
1132 	if (cp->p_exec)
1133 		VN_HOLD(cp->p_exec);
1134 	if (cp->p_execdir)
1135 		VN_HOLD(cp->p_execdir);
1136 	*cpp = cp;
1137 	return (0);
1138 
1139 bad:
1140 	ASSERT(MUTEX_NOT_HELD(&pidlock));
1141 
1142 	mutex_destroy(&cp->p_crlock);
1143 	mutex_destroy(&cp->p_pflock);
1144 #if defined(__x86)
1145 	mutex_destroy(&cp->p_ldtlock);
1146 #endif
1147 	if (newpid != -1) {
1148 		proc_entry_free(cp->p_pidp);
1149 		(void) pid_rele(cp->p_pidp);
1150 	}
1151 	kmem_cache_free(process_cache, cp);
1152 
1153 	/*
1154 	 * We most likely got into this situation because some process is
1155 	 * forking out of control.  As punishment, put it to sleep for a
1156 	 * bit so it can't eat the machine alive.  Sleep interval is chosen
1157 	 * to allow no more than one fork failure per cpu per clock tick
1158 	 * on average (yes, I just made this up).  This has two desirable
1159 	 * properties: (1) it sets a constant limit on the fork failure
1160 	 * rate, and (2) the busier the system is, the harsher the penalty
1161 	 * for abusing it becomes.
1162 	 */
1163 	INCR_COUNT(&fork_fail_pending, &pidlock);
1164 	delay(fork_fail_pending / ncpus + 1);
1165 	DECR_COUNT(&fork_fail_pending, &pidlock);
1166 
1167 	return (-1); /* out of memory or proc slots */
1168 }
1169 
1170 /*
1171  * Release virtual memory.
1172  * In the case of vfork(), the child was given exclusive access to its
1173  * parent's address space.  The parent is waiting in vfwait() for the
1174  * child to release its exclusive claim via relvm().
1175  */
1176 void
1177 relvm()
1178 {
1179 	proc_t *p = curproc;
1180 
1181 	ASSERT((unsigned)p->p_lwpcnt <= 1);
1182 
1183 	prrelvm();	/* inform /proc */
1184 
1185 	if (p->p_flag & SVFORK) {
1186 		proc_t *pp = p->p_parent;
1187 		/*
1188 		 * The child process is either exec'ing or exit'ing.
1189 		 * The child is now separated from the parent's address
1190 		 * space.  The parent process is made dispatchable.
1191 		 *
1192 		 * This is a delicate locking maneuver, involving
1193 		 * both the parent's p_lock and the child's p_lock.
1194 		 * As soon as the SVFORK flag is turned off, the
1195 		 * parent is free to run, but it must not run until
1196 		 * we wake it up using its p_cv because it might
1197 		 * exit and we would be referencing invalid memory.
1198 		 * Therefore, we hold the parent with its p_lock
1199 		 * while protecting our p_flags with our own p_lock.
1200 		 */
1201 try_again:
1202 		mutex_enter(&p->p_lock);	/* grab child's lock first */
1203 		prbarrier(p);		/* make sure /proc is blocked out */
1204 		mutex_enter(&pp->p_lock);
1205 
1206 		/*
1207 		 * Check if parent is locked by /proc.
1208 		 */
1209 		if (pp->p_proc_flag & P_PR_LOCK) {
1210 			/*
1211 			 * Delay until /proc is done with the parent.
1212 			 * We must drop our (the child's) p->p_lock, wait
1213 			 * via prbarrier() on the parent, then start over.
1214 			 */
1215 			mutex_exit(&p->p_lock);
1216 			prbarrier(pp);
1217 			mutex_exit(&pp->p_lock);
1218 			goto try_again;
1219 		}
1220 		p->p_flag &= ~SVFORK;
1221 		kpreempt_disable();
1222 		p->p_as = &kas;
1223 
1224 		/*
1225 		 * notify hat of change in thread's address space
1226 		 */
1227 		hat_thread_exit(curthread);
1228 		kpreempt_enable();
1229 
1230 		/*
1231 		 * child sizes are copied back to parent because
1232 		 * child may have grown.
1233 		 */
1234 		pp->p_brkbase = p->p_brkbase;
1235 		pp->p_brksize = p->p_brksize;
1236 		pp->p_stksize = p->p_stksize;
1237 		/*
1238 		 * The parent is no longer waiting for the vfork()d child.
1239 		 * Restore the parent's watched pages, if any.  This is
1240 		 * safe because we know the parent is not locked by /proc
1241 		 */
1242 		pp->p_flag &= ~SVFWAIT;
1243 		if (avl_numnodes(&pp->p_wpage) != 0) {
1244 			pp->p_as->a_wpage = pp->p_wpage;
1245 			avl_create(&pp->p_wpage, wp_compare,
1246 			    sizeof (struct watched_page),
1247 			    offsetof(struct watched_page, wp_link));
1248 		}
1249 		cv_signal(&pp->p_cv);
1250 		mutex_exit(&pp->p_lock);
1251 		mutex_exit(&p->p_lock);
1252 	} else {
1253 		if (p->p_as != &kas) {
1254 			struct as *as;
1255 
1256 			if (p->p_segacct)
1257 				shmexit(p);
1258 
1259 			/*
1260 			 * We grab p_lock for the benefit of /proc
1261 			 */
1262 			kpreempt_disable();
1263 			mutex_enter(&p->p_lock);
1264 			prbarrier(p);	/* make sure /proc is blocked out */
1265 			as = p->p_as;
1266 			p->p_as = &kas;
1267 			mutex_exit(&p->p_lock);
1268 
1269 			/*
1270 			 * notify hat of change in thread's address space
1271 			 */
1272 			hat_thread_exit(curthread);
1273 			kpreempt_enable();
1274 
1275 			as_free(as);
1276 		}
1277 	}
1278 }
1279 
1280 /*
1281  * Wait for child to exec or exit.
1282  * Called by parent of vfork'ed process.
1283  * See important comments in relvm(), above.
1284  */
1285 void
1286 vfwait(pid_t pid)
1287 {
1288 	int signalled = 0;
1289 	proc_t *pp = ttoproc(curthread);
1290 	proc_t *cp;
1291 
1292 	/*
1293 	 * Wait for child to exec or exit.
1294 	 */
1295 	for (;;) {
1296 		mutex_enter(&pidlock);
1297 		cp = prfind(pid);
1298 		if (cp == NULL || cp->p_parent != pp) {
1299 			/*
1300 			 * Child has exit()ed.
1301 			 */
1302 			mutex_exit(&pidlock);
1303 			break;
1304 		}
1305 		/*
1306 		 * Grab the child's p_lock before releasing pidlock.
1307 		 * Otherwise, the child could exit and we would be
1308 		 * referencing invalid memory.
1309 		 */
1310 		mutex_enter(&cp->p_lock);
1311 		mutex_exit(&pidlock);
1312 		if (!(cp->p_flag & SVFORK)) {
1313 			/*
1314 			 * Child has exec()ed or is exit()ing.
1315 			 */
1316 			mutex_exit(&cp->p_lock);
1317 			break;
1318 		}
1319 		mutex_enter(&pp->p_lock);
1320 		mutex_exit(&cp->p_lock);
1321 		/*
1322 		 * We might be waked up spuriously from the cv_wait().
1323 		 * We have to do the whole operation over again to be
1324 		 * sure the child's SVFORK flag really is turned off.
1325 		 * We cannot make reference to the child because it can
1326 		 * exit before we return and we would be referencing
1327 		 * invalid memory.
1328 		 *
1329 		 * Because this is potentially a very long-term wait,
1330 		 * we call cv_wait_sig() (for its jobcontrol and /proc
1331 		 * side-effects) unless there is a current signal, in
1332 		 * which case we use cv_wait() because we cannot return
1333 		 * from this function until the child has released the
1334 		 * address space.  Calling cv_wait_sig() with a current
1335 		 * signal would lead to an indefinite loop here because
1336 		 * cv_wait_sig() returns immediately in this case.
1337 		 */
1338 		if (signalled)
1339 			cv_wait(&pp->p_cv, &pp->p_lock);
1340 		else
1341 			signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1342 		mutex_exit(&pp->p_lock);
1343 	}
1344 
1345 	/* restore watchpoints to parent */
1346 	if (pr_watch_active(pp)) {
1347 		struct as *as = pp->p_as;
1348 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1349 		as_setwatch(as);
1350 		AS_LOCK_EXIT(as, &as->a_lock);
1351 	}
1352 
1353 	mutex_enter(&pp->p_lock);
1354 	prbarrier(pp);	/* barrier against /proc locking */
1355 	pp->p_flag &= ~SVFPARENT;
1356 	continuelwps(pp);
1357 	mutex_exit(&pp->p_lock);
1358 }
1359