xref: /illumos-gate/usr/src/uts/common/os/fio.c (revision eb9a1df2aeb866bf1de4494433b6d7e5fa07b3ae)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	All Rights Reserved */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/errno.h>
35 #include <sys/signal.h>
36 #include <sys/cred.h>
37 #include <sys/user.h>
38 #include <sys/conf.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/pathname.h>
42 #include <sys/file.h>
43 #include <sys/flock.h>
44 #include <sys/proc.h>
45 #include <sys/var.h>
46 #include <sys/cpuvar.h>
47 #include <sys/open.h>
48 #include <sys/cmn_err.h>
49 #include <sys/priocntl.h>
50 #include <sys/procset.h>
51 #include <sys/prsystm.h>
52 #include <sys/debug.h>
53 #include <sys/kmem.h>
54 #include <sys/atomic.h>
55 #include <sys/fcntl.h>
56 #include <sys/poll.h>
57 #include <sys/rctl.h>
58 #include <sys/port_impl.h>
59 #include <sys/dtrace.h>
60 
61 #include <c2/audit.h>
62 #include <sys/nbmlock.h>
63 
64 #ifdef DEBUG
65 
66 static uint32_t afd_maxfd;	/* # of entries in maximum allocated array */
67 static uint32_t afd_alloc;	/* count of kmem_alloc()s */
68 static uint32_t afd_free;	/* count of kmem_free()s */
69 static uint32_t afd_wait;	/* count of waits on non-zero ref count */
70 #define	MAXFD(x)	(afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
71 #define	COUNT(x)	atomic_inc_32(&x)
72 
73 #else	/* DEBUG */
74 
75 #define	MAXFD(x)
76 #define	COUNT(x)
77 
78 #endif	/* DEBUG */
79 
80 kmem_cache_t *file_cache;
81 
82 static void port_close_fd(portfd_t *);
83 
84 /*
85  * File descriptor allocation.
86  *
87  * fd_find(fip, minfd) finds the first available descriptor >= minfd.
88  * The most common case is open(2), in which minfd = 0, but we must also
89  * support fcntl(fd, F_DUPFD, minfd).
90  *
91  * The algorithm is as follows: we keep all file descriptors in an infix
92  * binary tree in which each node records the number of descriptors
93  * allocated in its right subtree, including itself.  Starting at minfd,
94  * we ascend the tree until we find a non-fully allocated right subtree.
95  * We then descend that subtree in a binary search for the smallest fd.
96  * Finally, we ascend the tree again to increment the allocation count
97  * of every subtree containing the newly-allocated fd.  Freeing an fd
98  * requires only the last step: we ascend the tree to decrement allocation
99  * counts.  Each of these three steps (ascent to find non-full subtree,
100  * descent to find lowest fd, ascent to update allocation counts) is
101  * O(log n), thus the algorithm as a whole is O(log n).
102  *
103  * We don't implement the fd tree using the customary left/right/parent
104  * pointers, but instead take advantage of the glorious mathematics of
105  * full infix binary trees.  For reference, here's an illustration of the
106  * logical structure of such a tree, rooted at 4 (binary 100), covering
107  * the range 1-7 (binary 001-111).  Our canonical trees do not include
108  * fd 0; we'll deal with that later.
109  *
110  *	      100
111  *	     /	 \
112  *	    /	  \
113  *	  010	  110
114  *	  / \	  / \
115  *	001 011 101 111
116  *
117  * We make the following observations, all of which are easily proven by
118  * induction on the depth of the tree:
119  *
120  * (T1) The least-significant bit (LSB) of any node is equal to its level
121  *      in the tree.  In our example, nodes 001, 011, 101 and 111 are at
122  *      level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
123  *
124  * (T2) The child size (CSIZE) of node N -- that is, the total number of
125  *	right-branch descendants in a child of node N, including itself -- is
126  *	given by clearing all but the least significant bit of N.  This
127  *	follows immediately from (T1).  Applying this rule to our example, we
128  *	see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
129  *
130  * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
131  *	ancestor containing node N in its right child -- is given by clearing
132  *	the LSB of N.  For example, LPARENT(111) = 110 and LPARENT(110) = 100.
133  *	Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
134  *	the fact that these are leftmost nodes.  Note that this algorithm
135  *	automatically skips generations as necessary.  For example, the parent
136  *      of node 101 is 110, which is a *right* ancestor (not what we want);
137  *      but its grandparent is 100, which is a left ancestor. Clearing the LSB
138  *      of 101 gets us to 100 directly, skipping right past the uninteresting
139  *      generation (110).
140  *
141  *      Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
142  *	the LSB, we can express LPARENT() nicely in terms of CSIZE():
143  *
144  *	LPARENT(N) = N - CSIZE(N)
145  *
146  * (T4) The nearest right ancestor (RPARENT) of node N is given by:
147  *
148  *	RPARENT(N) = N + CSIZE(N)
149  *
150  * (T5) For every interior node, the children differ from their parent by
151  *	CSIZE(parent) / 2.  In our example, CSIZE(100) / 2 = 2 = 10 binary,
152  *      and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
153  *
154  * Next, we'll need a few two's-complement math tricks.  Suppose a number,
155  * N, has the following form:
156  *
157  *		N = xxxx10...0
158  *
159  * That is, the binary representation of N consists of some string of bits,
160  * then a 1, then all zeroes.  This amounts to nothing more than saying that
161  * N has a least-significant bit, which is true for any N != 0.  If we look
162  * at N and N - 1 together, we see that we can combine them in useful ways:
163  *
164  *		  N = xxxx10...0
165  *	      N - 1 = xxxx01...1
166  *	------------------------
167  *	N & (N - 1) = xxxx000000
168  *	N | (N - 1) = xxxx111111
169  *	N ^ (N - 1) =     111111
170  *
171  * In particular, this suggests several easy ways to clear all but the LSB,
172  * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
173  * We'll opt for this formulation:
174  *
175  *	(C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
176  *
177  * Similarly, we have an easy way to determine LPARENT(N), which requires
178  * that we clear the LSB of N:
179  *
180  *	(L1) LPARENT(N) = N & (N - 1)
181  *
182  * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
183  * When combined with (T4), this yields an easy way to compute RPARENT(N):
184  *
185  *	(R1) RPARENT(N) = (N | (N - 1)) + 1
186  *
187  * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
188  * move the fd range from [1, 2^n) to [0, 2^n - 1).  This is straightforward,
189  * so there's no need to belabor the algebra; the revised relations become:
190  *
191  *	(C1a) CSIZE(N) = N ^ (N | (N + 1))
192  *
193  *	(L1a) LPARENT(N) = (N & (N + 1)) - 1
194  *
195  *	(R1a) RPARENT(N) = N | (N + 1)
196  *
197  * This completes the mathematical framework.  We now have all the tools
198  * we need to implement fd_find() and fd_reserve().
199  *
200  * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
201  * It does not actually allocate the descriptor; that's done by fd_reserve().
202  * fd_find() proceeds in two steps:
203  *
204  * (1) Find the leftmost subtree that contains a descriptor >= minfd.
205  *     We start at the right subtree rooted at minfd.  If this subtree is
206  *     not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
207  *     step 1 is done.  Otherwise, we know that all fds in this subtree
208  *     are taken, so we ascend to RPARENT(minfd) using (R1a).  We repeat
209  *     this process until we either find a candidate subtree or exceed
210  *     fip->fi_nfiles.  We use (C1a) to compute CSIZE().
211  *
212  * (2) Find the smallest fd in the subtree discovered by step 1.
213  *     Starting at the root of this subtree, we descend to find the
214  *     smallest available fd.  Since the left children have the smaller
215  *     fds, we will descend rightward only when the left child is full.
216  *
217  *     We begin by comparing the number of allocated fds in the root
218  *     to the number of allocated fds in its right child; if they differ
219  *     by exactly CSIZE(child), we know the left subtree is full, so we
220  *     descend right; that is, the right child becomes the search root.
221  *     Otherwise we leave the root alone and start following the right
222  *     child's left children.  As fortune would have it, this is very
223  *     simple computationally: by (T5), the right child of fd is just
224  *     fd + size, where size = CSIZE(fd) / 2.  Applying (T5) again,
225  *     we find that the right child's left child is fd + size - (size / 2) =
226  *     fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
227  *     fd + (size / 4), and so on.  In general, fd's right child's
228  *     leftmost nth descendant is fd + (size >> n).  Thus, to follow
229  *     the right child's left descendants, we just halve the size in
230  *     each iteration of the search.
231  *
232  *     When we descend leftward, we must keep track of the number of fds
233  *     that were allocated in all the right subtrees we rejected, so we
234  *     know how many of the root fd's allocations are in the remaining
235  *     (as yet unexplored) leftmost part of its right subtree.  When we
236  *     encounter a fully-allocated left child -- that is, when we find
237  *     that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
238  *     (as described earlier), resetting ralloc to zero.
239  *
240  * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
241  * on whether incr is 1 or -1.  Starting at fd, fd_reserve() ascends
242  * the leftmost ancestors (see (T3)) and updates the allocation counts.
243  * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
244  *
245  * flist_minsize() finds the minimal tree that still covers all
246  * used fds; as long as the allocation count of a root node is zero, we
247  * don't need that node or its right subtree.
248  *
249  * flist_nalloc() counts the number of allocated fds in the tree, by starting
250  * at the top of the tree and summing the right-subtree allocation counts as
251  * it descends leftwards.
252  *
253  * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
254  * 2^n - 1.  This ensures that the fd trees are always full, which saves
255  * quite a bit of boundary checking.
256  */
257 static int
258 fd_find(uf_info_t *fip, int minfd)
259 {
260 	int size, ralloc, fd;
261 
262 	ASSERT(MUTEX_HELD(&fip->fi_lock));
263 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
264 
265 	for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
266 		size = fd ^ (fd | (fd + 1));
267 		if (fip->fi_list[fd].uf_alloc == size)
268 			continue;
269 		for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
270 			ralloc += fip->fi_list[fd + size].uf_alloc;
271 			if (fip->fi_list[fd].uf_alloc == ralloc + size) {
272 				fd += size;
273 				ralloc = 0;
274 			}
275 		}
276 		return (fd);
277 	}
278 	return (-1);
279 }
280 
281 static void
282 fd_reserve(uf_info_t *fip, int fd, int incr)
283 {
284 	int pfd;
285 	uf_entry_t *ufp = &fip->fi_list[fd];
286 
287 	ASSERT((uint_t)fd < fip->fi_nfiles);
288 	ASSERT((ufp->uf_busy == 0 && incr == 1) ||
289 	    (ufp->uf_busy == 1 && incr == -1));
290 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
291 	ASSERT(MUTEX_HELD(&fip->fi_lock));
292 
293 	for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
294 		fip->fi_list[pfd].uf_alloc += incr;
295 
296 	ufp->uf_busy += incr;
297 }
298 
299 static int
300 flist_minsize(uf_info_t *fip)
301 {
302 	int fd;
303 
304 	/*
305 	 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
306 	 * by flist_fork(), which relies on other mechanisms for mutual
307 	 * exclusion.
308 	 */
309 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
310 
311 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
312 		if (fip->fi_list[fd >> 1].uf_alloc != 0)
313 			break;
314 
315 	return (fd);
316 }
317 
318 static int
319 flist_nalloc(uf_info_t *fip)
320 {
321 	int fd;
322 	int nalloc = 0;
323 
324 	ASSERT(MUTEX_HELD(&fip->fi_lock));
325 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
326 
327 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
328 		nalloc += fip->fi_list[fd >> 1].uf_alloc;
329 
330 	return (nalloc);
331 }
332 
333 /*
334  * Increase size of the fi_list array to accommodate at least maxfd.
335  * We keep the size of the form 2^n - 1 for benefit of fd_find().
336  */
337 static void
338 flist_grow(int maxfd)
339 {
340 	uf_info_t *fip = P_FINFO(curproc);
341 	int newcnt, oldcnt;
342 	uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
343 	uf_rlist_t *urp;
344 
345 	for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
346 		continue;
347 
348 	newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
349 
350 	mutex_enter(&fip->fi_lock);
351 	oldcnt = fip->fi_nfiles;
352 	if (newcnt <= oldcnt) {
353 		mutex_exit(&fip->fi_lock);
354 		kmem_free(newlist, newcnt * sizeof (uf_entry_t));
355 		return;
356 	}
357 	ASSERT((newcnt & (newcnt + 1)) == 0);
358 	oldlist = fip->fi_list;
359 	oldend = oldlist + oldcnt;
360 	newend = newlist + oldcnt;	/* no need to lock beyond old end */
361 
362 	/*
363 	 * fi_list and fi_nfiles cannot change while any uf_lock is held,
364 	 * so we must grab all the old locks *and* the new locks up to oldcnt.
365 	 * (Locks beyond the end of oldcnt aren't visible until we store
366 	 * the new fi_nfiles, which is the last thing we do before dropping
367 	 * all the locks, so there's no need to acquire these locks).
368 	 * Holding the new locks is necessary because when fi_list changes
369 	 * to point to the new list, fi_nfiles won't have been stored yet.
370 	 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
371 	 * could see the new fi_list, grab the new uf_lock, and then see
372 	 * fi_nfiles change while the lock is held -- in violation of
373 	 * UF_ENTER() semantics.
374 	 */
375 	for (src = oldlist; src < oldend; src++)
376 		mutex_enter(&src->uf_lock);
377 
378 	for (dst = newlist; dst < newend; dst++)
379 		mutex_enter(&dst->uf_lock);
380 
381 	for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
382 		dst->uf_file = src->uf_file;
383 		dst->uf_fpollinfo = src->uf_fpollinfo;
384 		dst->uf_refcnt = src->uf_refcnt;
385 		dst->uf_alloc = src->uf_alloc;
386 		dst->uf_flag = src->uf_flag;
387 		dst->uf_busy = src->uf_busy;
388 		dst->uf_portfd = src->uf_portfd;
389 	}
390 
391 	/*
392 	 * As soon as we store the new flist, future locking operations
393 	 * will use it.  Therefore, we must ensure that all the state
394 	 * we've just established reaches global visibility before the
395 	 * new flist does.
396 	 */
397 	membar_producer();
398 	fip->fi_list = newlist;
399 
400 	/*
401 	 * Routines like getf() make an optimistic check on the validity
402 	 * of the supplied file descriptor: if it's less than the current
403 	 * value of fi_nfiles -- examined without any locks -- then it's
404 	 * safe to attempt a UF_ENTER() on that fd (which is a valid
405 	 * assumption because fi_nfiles only increases).  Therefore, it
406 	 * is critical that the new value of fi_nfiles not reach global
407 	 * visibility until after the new fi_list: if it happened the
408 	 * other way around, getf() could see the new fi_nfiles and attempt
409 	 * a UF_ENTER() on the old fi_list, which would write beyond its
410 	 * end if the fd exceeded the old fi_nfiles.
411 	 */
412 	membar_producer();
413 	fip->fi_nfiles = newcnt;
414 
415 	/*
416 	 * The new state is consistent now, so we can drop all the locks.
417 	 */
418 	for (dst = newlist; dst < newend; dst++)
419 		mutex_exit(&dst->uf_lock);
420 
421 	for (src = oldlist; src < oldend; src++) {
422 		/*
423 		 * If any threads are blocked on the old cvs, wake them.
424 		 * This will force them to wake up, discover that fi_list
425 		 * has changed, and go back to sleep on the new cvs.
426 		 */
427 		cv_broadcast(&src->uf_wanted_cv);
428 		cv_broadcast(&src->uf_closing_cv);
429 		mutex_exit(&src->uf_lock);
430 	}
431 
432 	mutex_exit(&fip->fi_lock);
433 
434 	/*
435 	 * Retire the old flist.  We can't actually kmem_free() it now
436 	 * because someone may still have a pointer to it.  Instead,
437 	 * we link it onto a list of retired flists.  The new flist
438 	 * is at least double the size of the previous flist, so the
439 	 * total size of all retired flists will be less than the size
440 	 * of the current one (to prove, consider the sum of a geometric
441 	 * series in powers of 2).  exit() frees the retired flists.
442 	 */
443 	urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
444 	urp->ur_list = oldlist;
445 	urp->ur_nfiles = oldcnt;
446 
447 	mutex_enter(&fip->fi_lock);
448 	urp->ur_next = fip->fi_rlist;
449 	fip->fi_rlist = urp;
450 	mutex_exit(&fip->fi_lock);
451 }
452 
453 /*
454  * Utility functions for keeping track of the active file descriptors.
455  */
456 void
457 clear_stale_fd()		/* called from post_syscall() */
458 {
459 	afd_t *afd = &curthread->t_activefd;
460 	int i;
461 
462 	/* uninitialized is ok here, a_nfd is then zero */
463 	for (i = 0; i < afd->a_nfd; i++) {
464 		/* assert that this should not be necessary */
465 		ASSERT(afd->a_fd[i] == -1);
466 		afd->a_fd[i] = -1;
467 	}
468 	afd->a_stale = 0;
469 }
470 
471 void
472 free_afd(afd_t *afd)		/* called below and from thread_free() */
473 {
474 	int i;
475 
476 	/* free the buffer if it was kmem_alloc()ed */
477 	if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
478 		COUNT(afd_free);
479 		kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
480 	}
481 
482 	/* (re)initialize the structure */
483 	afd->a_fd = &afd->a_buf[0];
484 	afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
485 	afd->a_stale = 0;
486 	for (i = 0; i < afd->a_nfd; i++)
487 		afd->a_fd[i] = -1;
488 }
489 
490 static void
491 set_active_fd(int fd)
492 {
493 	afd_t *afd = &curthread->t_activefd;
494 	int i;
495 	int *old_fd;
496 	int old_nfd;
497 	int *new_fd;
498 	int new_nfd;
499 
500 	if (afd->a_nfd == 0) {	/* first time initialization */
501 		ASSERT(fd == -1);
502 		mutex_enter(&afd->a_fdlock);
503 		free_afd(afd);
504 		mutex_exit(&afd->a_fdlock);
505 	}
506 
507 	/* insert fd into vacant slot, if any */
508 	for (i = 0; i < afd->a_nfd; i++) {
509 		if (afd->a_fd[i] == -1) {
510 			afd->a_fd[i] = fd;
511 			return;
512 		}
513 	}
514 
515 	/*
516 	 * Reallocate the a_fd[] array to add one more slot.
517 	 */
518 	ASSERT(fd == -1);
519 	old_nfd = afd->a_nfd;
520 	old_fd = afd->a_fd;
521 	new_nfd = old_nfd + 1;
522 	new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
523 	MAXFD(new_nfd);
524 	COUNT(afd_alloc);
525 
526 	mutex_enter(&afd->a_fdlock);
527 	afd->a_fd = new_fd;
528 	afd->a_nfd = new_nfd;
529 	for (i = 0; i < old_nfd; i++)
530 		afd->a_fd[i] = old_fd[i];
531 	afd->a_fd[i] = fd;
532 	mutex_exit(&afd->a_fdlock);
533 
534 	if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
535 		COUNT(afd_free);
536 		kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
537 	}
538 }
539 
540 void
541 clear_active_fd(int fd)		/* called below and from aio.c */
542 {
543 	afd_t *afd = &curthread->t_activefd;
544 	int i;
545 
546 	for (i = 0; i < afd->a_nfd; i++) {
547 		if (afd->a_fd[i] == fd) {
548 			afd->a_fd[i] = -1;
549 			break;
550 		}
551 	}
552 	ASSERT(i < afd->a_nfd);		/* not found is not ok */
553 }
554 
555 /*
556  * Does this thread have this fd active?
557  */
558 static int
559 is_active_fd(kthread_t *t, int fd)
560 {
561 	afd_t *afd = &t->t_activefd;
562 	int i;
563 
564 	ASSERT(t != curthread);
565 	mutex_enter(&afd->a_fdlock);
566 	/* uninitialized is ok here, a_nfd is then zero */
567 	for (i = 0; i < afd->a_nfd; i++) {
568 		if (afd->a_fd[i] == fd) {
569 			mutex_exit(&afd->a_fdlock);
570 			return (1);
571 		}
572 	}
573 	mutex_exit(&afd->a_fdlock);
574 	return (0);
575 }
576 
577 /*
578  * Convert a user supplied file descriptor into a pointer to a file
579  * structure.  Only task is to check range of the descriptor (soft
580  * resource limit was enforced at open time and shouldn't be checked
581  * here).
582  */
583 file_t *
584 getf(int fd)
585 {
586 	uf_info_t *fip = P_FINFO(curproc);
587 	uf_entry_t *ufp;
588 	file_t *fp;
589 
590 	if ((uint_t)fd >= fip->fi_nfiles)
591 		return (NULL);
592 
593 	/*
594 	 * Reserve a slot in the active fd array now so we can call
595 	 * set_active_fd(fd) for real below, while still inside UF_ENTER().
596 	 */
597 	set_active_fd(-1);
598 
599 	UF_ENTER(ufp, fip, fd);
600 
601 	if ((fp = ufp->uf_file) == NULL) {
602 		UF_EXIT(ufp);
603 
604 		if (fd == fip->fi_badfd && fip->fi_action > 0)
605 			tsignal(curthread, fip->fi_action);
606 
607 		return (NULL);
608 	}
609 	ufp->uf_refcnt++;
610 
611 	set_active_fd(fd);	/* record the active file descriptor */
612 
613 	UF_EXIT(ufp);
614 
615 	return (fp);
616 }
617 
618 /*
619  * Close whatever file currently occupies the file descriptor slot
620  * and install the new file, usually NULL, in the file descriptor slot.
621  * The close must complete before we release the file descriptor slot.
622  * If newfp != NULL we only return an error if we can't allocate the
623  * slot so the caller knows that it needs to free the filep;
624  * in the other cases we return the error number from closef().
625  */
626 int
627 closeandsetf(int fd, file_t *newfp)
628 {
629 	proc_t *p = curproc;
630 	uf_info_t *fip = P_FINFO(p);
631 	uf_entry_t *ufp;
632 	file_t *fp;
633 	fpollinfo_t *fpip;
634 	portfd_t *pfd;
635 	int error;
636 
637 	if ((uint_t)fd >= fip->fi_nfiles) {
638 		if (newfp == NULL)
639 			return (EBADF);
640 		flist_grow(fd);
641 	}
642 
643 	if (newfp != NULL) {
644 		/*
645 		 * If ufp is reserved but has no file pointer, it's in the
646 		 * transition between ufalloc() and setf().  We must wait
647 		 * for this transition to complete before assigning the
648 		 * new non-NULL file pointer.
649 		 */
650 		mutex_enter(&fip->fi_lock);
651 		if (fd == fip->fi_badfd) {
652 			mutex_exit(&fip->fi_lock);
653 			if (fip->fi_action > 0)
654 				tsignal(curthread, fip->fi_action);
655 			return (EBADF);
656 		}
657 		UF_ENTER(ufp, fip, fd);
658 		while (ufp->uf_busy && ufp->uf_file == NULL) {
659 			mutex_exit(&fip->fi_lock);
660 			cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
661 			UF_EXIT(ufp);
662 			mutex_enter(&fip->fi_lock);
663 			UF_ENTER(ufp, fip, fd);
664 		}
665 		if ((fp = ufp->uf_file) == NULL) {
666 			ASSERT(ufp->uf_fpollinfo == NULL);
667 			ASSERT(ufp->uf_flag == 0);
668 			fd_reserve(fip, fd, 1);
669 			ufp->uf_file = newfp;
670 			UF_EXIT(ufp);
671 			mutex_exit(&fip->fi_lock);
672 			return (0);
673 		}
674 		mutex_exit(&fip->fi_lock);
675 	} else {
676 		UF_ENTER(ufp, fip, fd);
677 		if ((fp = ufp->uf_file) == NULL) {
678 			UF_EXIT(ufp);
679 			return (EBADF);
680 		}
681 	}
682 
683 	ASSERT(ufp->uf_busy);
684 	ufp->uf_file = NULL;
685 	ufp->uf_flag = 0;
686 
687 	/*
688 	 * If the file descriptor reference count is non-zero, then
689 	 * some other lwp in the process is performing system call
690 	 * activity on the file.  To avoid blocking here for a long
691 	 * time (the other lwp might be in a long term sleep in its
692 	 * system call), we scan all other lwps in the process to
693 	 * find the ones with this fd as one of their active fds,
694 	 * set their a_stale flag, and set them running if they
695 	 * are in an interruptible sleep so they will emerge from
696 	 * their system calls immediately.  post_syscall() will
697 	 * test the a_stale flag and set errno to EBADF.
698 	 */
699 	ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
700 	if (ufp->uf_refcnt > 0) {
701 		kthread_t *t;
702 
703 		/*
704 		 * We call sprlock_proc(p) to ensure that the thread
705 		 * list will not change while we are scanning it.
706 		 * To do this, we must drop ufp->uf_lock and then
707 		 * reacquire it (so we are not holding both p->p_lock
708 		 * and ufp->uf_lock at the same time).  ufp->uf_lock
709 		 * must be held for is_active_fd() to be correct
710 		 * (set_active_fd() is called while holding ufp->uf_lock).
711 		 *
712 		 * This is a convoluted dance, but it is better than
713 		 * the old brute-force method of stopping every thread
714 		 * in the process by calling holdlwps(SHOLDFORK1).
715 		 */
716 
717 		UF_EXIT(ufp);
718 		COUNT(afd_wait);
719 
720 		mutex_enter(&p->p_lock);
721 		sprlock_proc(p);
722 		mutex_exit(&p->p_lock);
723 
724 		UF_ENTER(ufp, fip, fd);
725 		ASSERT(ufp->uf_file == NULL);
726 
727 		if (ufp->uf_refcnt > 0) {
728 			for (t = curthread->t_forw;
729 			    t != curthread;
730 			    t = t->t_forw) {
731 				if (is_active_fd(t, fd)) {
732 					thread_lock(t);
733 					t->t_activefd.a_stale = 1;
734 					t->t_post_sys = 1;
735 					if (ISWAKEABLE(t))
736 						setrun_locked(t);
737 					thread_unlock(t);
738 				}
739 			}
740 		}
741 
742 		UF_EXIT(ufp);
743 
744 		mutex_enter(&p->p_lock);
745 		sprunlock(p);
746 
747 		UF_ENTER(ufp, fip, fd);
748 		ASSERT(ufp->uf_file == NULL);
749 	}
750 
751 	/*
752 	 * Wait for other lwps to stop using this file descriptor.
753 	 */
754 	while (ufp->uf_refcnt > 0) {
755 		cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
756 		/*
757 		 * cv_wait_stop() drops ufp->uf_lock, so the file list
758 		 * can change.  Drop the lock on our (possibly) stale
759 		 * ufp and let UF_ENTER() find and lock the current ufp.
760 		 */
761 		UF_EXIT(ufp);
762 		UF_ENTER(ufp, fip, fd);
763 	}
764 
765 #ifdef DEBUG
766 	/*
767 	 * catch a watchfd on device's pollhead list but not on fpollinfo list
768 	 */
769 	if (ufp->uf_fpollinfo != NULL)
770 		checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
771 #endif	/* DEBUG */
772 
773 	/*
774 	 * We may need to cleanup some cached poll states in t_pollstate
775 	 * before the fd can be reused. It is important that we don't
776 	 * access a stale thread structure. We will do the cleanup in two
777 	 * phases to avoid deadlock and holding uf_lock for too long.
778 	 * In phase 1, hold the uf_lock and call pollblockexit() to set
779 	 * state in t_pollstate struct so that a thread does not exit on
780 	 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
781 	 */
782 	pfd = ufp->uf_portfd;
783 	ufp->uf_portfd = NULL;
784 	fpip = ufp->uf_fpollinfo;
785 	ufp->uf_fpollinfo = NULL;
786 	if (fpip != NULL)
787 		pollblockexit(fpip);
788 	UF_EXIT(ufp);
789 	if (fpip != NULL)
790 		pollcacheclean(fpip, fd);
791 	if (pfd)
792 		port_close_fd(pfd);
793 
794 	/*
795 	 * Keep the file descriptor entry reserved across the closef().
796 	 */
797 	error = closef(fp);
798 
799 	setf(fd, newfp);
800 
801 	/* Only return closef() error when closing is all we do */
802 	return (newfp == NULL ? error : 0);
803 }
804 
805 /*
806  * Decrement uf_refcnt; wakeup anyone waiting to close the file.
807  */
808 void
809 releasef(int fd)
810 {
811 	uf_info_t *fip = P_FINFO(curproc);
812 	uf_entry_t *ufp;
813 
814 	UF_ENTER(ufp, fip, fd);
815 	ASSERT(ufp->uf_refcnt > 0);
816 	clear_active_fd(fd);	/* clear the active file descriptor */
817 	if (--ufp->uf_refcnt == 0)
818 		cv_broadcast(&ufp->uf_closing_cv);
819 	UF_EXIT(ufp);
820 }
821 
822 /*
823  * Identical to releasef() but can be called from another process.
824  */
825 void
826 areleasef(int fd, uf_info_t *fip)
827 {
828 	uf_entry_t *ufp;
829 
830 	UF_ENTER(ufp, fip, fd);
831 	ASSERT(ufp->uf_refcnt > 0);
832 	if (--ufp->uf_refcnt == 0)
833 		cv_broadcast(&ufp->uf_closing_cv);
834 	UF_EXIT(ufp);
835 }
836 
837 /*
838  * Duplicate all file descriptors across a fork.
839  */
840 void
841 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
842 {
843 	int fd, nfiles;
844 	uf_entry_t *pufp, *cufp;
845 
846 	mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
847 	cfip->fi_rlist = NULL;
848 
849 	/*
850 	 * We don't need to hold fi_lock because all other lwp's in the
851 	 * parent have been held.
852 	 */
853 	cfip->fi_nfiles = nfiles = flist_minsize(pfip);
854 
855 	cfip->fi_list = nfiles == 0 ? NULL :
856 	    kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
857 
858 	for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
859 	    fd++, pufp++, cufp++) {
860 		cufp->uf_file = pufp->uf_file;
861 		cufp->uf_alloc = pufp->uf_alloc;
862 		cufp->uf_flag = pufp->uf_flag;
863 		cufp->uf_busy = pufp->uf_busy;
864 		if (pufp->uf_file == NULL) {
865 			ASSERT(pufp->uf_flag == 0);
866 			if (pufp->uf_busy) {
867 				/*
868 				 * Grab locks to appease ASSERTs in fd_reserve
869 				 */
870 				mutex_enter(&cfip->fi_lock);
871 				mutex_enter(&cufp->uf_lock);
872 				fd_reserve(cfip, fd, -1);
873 				mutex_exit(&cufp->uf_lock);
874 				mutex_exit(&cfip->fi_lock);
875 			}
876 		}
877 	}
878 }
879 
880 /*
881  * Close all open file descriptors for the current process.
882  * This is only called from exit(), which is single-threaded,
883  * so we don't need any locking.
884  */
885 void
886 closeall(uf_info_t *fip)
887 {
888 	int fd;
889 	file_t *fp;
890 	uf_entry_t *ufp;
891 
892 	ufp = fip->fi_list;
893 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
894 		if ((fp = ufp->uf_file) != NULL) {
895 			ufp->uf_file = NULL;
896 			if (ufp->uf_portfd != NULL) {
897 				portfd_t *pfd;
898 				/* remove event port association */
899 				pfd = ufp->uf_portfd;
900 				ufp->uf_portfd = NULL;
901 				port_close_fd(pfd);
902 			}
903 			ASSERT(ufp->uf_fpollinfo == NULL);
904 			(void) closef(fp);
905 		}
906 	}
907 
908 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
909 	fip->fi_list = NULL;
910 	fip->fi_nfiles = 0;
911 	while (fip->fi_rlist != NULL) {
912 		uf_rlist_t *urp = fip->fi_rlist;
913 		fip->fi_rlist = urp->ur_next;
914 		kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
915 		kmem_free(urp, sizeof (uf_rlist_t));
916 	}
917 }
918 
919 /*
920  * Internal form of close.  Decrement reference count on file
921  * structure.  Decrement reference count on the vnode following
922  * removal of the referencing file structure.
923  */
924 int
925 closef(file_t *fp)
926 {
927 	vnode_t *vp;
928 	int error;
929 	int count;
930 	int flag;
931 	offset_t offset;
932 
933 	/*
934 	 * audit close of file (may be exit)
935 	 */
936 	if (AU_AUDITING())
937 		audit_closef(fp);
938 	ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
939 
940 	mutex_enter(&fp->f_tlock);
941 
942 	ASSERT(fp->f_count > 0);
943 
944 	count = fp->f_count--;
945 	flag = fp->f_flag;
946 	offset = fp->f_offset;
947 
948 	vp = fp->f_vnode;
949 
950 	error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL);
951 
952 	if (count > 1) {
953 		mutex_exit(&fp->f_tlock);
954 		return (error);
955 	}
956 	ASSERT(fp->f_count == 0);
957 	/* Last reference, remove any OFD style lock for the file_t */
958 	ofdcleanlock(fp);
959 	mutex_exit(&fp->f_tlock);
960 
961 	/*
962 	 * If DTrace has getf() subroutines active, it will set dtrace_closef
963 	 * to point to code that implements a barrier with respect to probe
964 	 * context.  This must be called before the file_t is freed (and the
965 	 * vnode that it refers to is released) -- but it must be after the
966 	 * file_t has been removed from the uf_entry_t.  That is, there must
967 	 * be no way for a racing getf() in probe context to yield the fp that
968 	 * we're operating upon.
969 	 */
970 	if (dtrace_closef != NULL)
971 		(*dtrace_closef)();
972 
973 	VN_RELE(vp);
974 	/*
975 	 * deallocate resources to audit_data
976 	 */
977 	if (audit_active)
978 		audit_unfalloc(fp);
979 	crfree(fp->f_cred);
980 	kmem_cache_free(file_cache, fp);
981 	return (error);
982 }
983 
984 /*
985  * This is a combination of ufalloc() and setf().
986  */
987 int
988 ufalloc_file(int start, file_t *fp)
989 {
990 	proc_t *p = curproc;
991 	uf_info_t *fip = P_FINFO(p);
992 	int filelimit;
993 	uf_entry_t *ufp;
994 	int nfiles;
995 	int fd;
996 
997 	/*
998 	 * Assertion is to convince the correctness of the following
999 	 * assignment for filelimit after casting to int.
1000 	 */
1001 	ASSERT(p->p_fno_ctl <= INT_MAX);
1002 	filelimit = (int)p->p_fno_ctl;
1003 
1004 	for (;;) {
1005 		mutex_enter(&fip->fi_lock);
1006 		fd = fd_find(fip, start);
1007 		if (fd >= 0 && fd == fip->fi_badfd) {
1008 			start = fd + 1;
1009 			mutex_exit(&fip->fi_lock);
1010 			continue;
1011 		}
1012 		if ((uint_t)fd < filelimit)
1013 			break;
1014 		if (fd >= filelimit) {
1015 			mutex_exit(&fip->fi_lock);
1016 			mutex_enter(&p->p_lock);
1017 			(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1018 			    p->p_rctls, p, RCA_SAFE);
1019 			mutex_exit(&p->p_lock);
1020 			return (-1);
1021 		}
1022 		/* fd_find() returned -1 */
1023 		nfiles = fip->fi_nfiles;
1024 		mutex_exit(&fip->fi_lock);
1025 		flist_grow(MAX(start, nfiles));
1026 	}
1027 
1028 	UF_ENTER(ufp, fip, fd);
1029 	fd_reserve(fip, fd, 1);
1030 	ASSERT(ufp->uf_file == NULL);
1031 	ufp->uf_file = fp;
1032 	UF_EXIT(ufp);
1033 	mutex_exit(&fip->fi_lock);
1034 	return (fd);
1035 }
1036 
1037 /*
1038  * Allocate a user file descriptor greater than or equal to "start".
1039  */
1040 int
1041 ufalloc(int start)
1042 {
1043 	return (ufalloc_file(start, NULL));
1044 }
1045 
1046 /*
1047  * Check that a future allocation of count fds on proc p has a good
1048  * chance of succeeding.  If not, do rctl processing as if we'd failed
1049  * the allocation.
1050  *
1051  * Our caller must guarantee that p cannot disappear underneath us.
1052  */
1053 int
1054 ufcanalloc(proc_t *p, uint_t count)
1055 {
1056 	uf_info_t *fip = P_FINFO(p);
1057 	int filelimit;
1058 	int current;
1059 
1060 	if (count == 0)
1061 		return (1);
1062 
1063 	ASSERT(p->p_fno_ctl <= INT_MAX);
1064 	filelimit = (int)p->p_fno_ctl;
1065 
1066 	mutex_enter(&fip->fi_lock);
1067 	current = flist_nalloc(fip);		/* # of in-use descriptors */
1068 	mutex_exit(&fip->fi_lock);
1069 
1070 	/*
1071 	 * If count is a positive integer, the worst that can happen is
1072 	 * an overflow to a negative value, which is caught by the >= 0 check.
1073 	 */
1074 	current += count;
1075 	if (count <= INT_MAX && current >= 0 && current <= filelimit)
1076 		return (1);
1077 
1078 	mutex_enter(&p->p_lock);
1079 	(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1080 	    p->p_rctls, p, RCA_SAFE);
1081 	mutex_exit(&p->p_lock);
1082 	return (0);
1083 }
1084 
1085 /*
1086  * Allocate a user file descriptor and a file structure.
1087  * Initialize the descriptor to point at the file structure.
1088  * If fdp is NULL, the user file descriptor will not be allocated.
1089  */
1090 int
1091 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1092 {
1093 	file_t *fp;
1094 	int fd;
1095 
1096 	if (fdp) {
1097 		if ((fd = ufalloc(0)) == -1)
1098 			return (EMFILE);
1099 	}
1100 	fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1101 	/*
1102 	 * Note: falloc returns the fp locked
1103 	 */
1104 	mutex_enter(&fp->f_tlock);
1105 	fp->f_count = 1;
1106 	fp->f_flag = (ushort_t)flag;
1107 	fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16;
1108 	fp->f_vnode = vp;
1109 	fp->f_offset = 0;
1110 	fp->f_audit_data = 0;
1111 	crhold(fp->f_cred = CRED());
1112 	/*
1113 	 * allocate resources to audit_data
1114 	 */
1115 	if (audit_active)
1116 		audit_falloc(fp);
1117 	*fpp = fp;
1118 	if (fdp)
1119 		*fdp = fd;
1120 	return (0);
1121 }
1122 
1123 /*ARGSUSED*/
1124 static int
1125 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1126 {
1127 	file_t *fp = buf;
1128 
1129 	mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1130 	return (0);
1131 }
1132 
1133 /*ARGSUSED*/
1134 static void
1135 file_cache_destructor(void *buf, void *cdrarg)
1136 {
1137 	file_t *fp = buf;
1138 
1139 	mutex_destroy(&fp->f_tlock);
1140 }
1141 
1142 void
1143 finit()
1144 {
1145 	file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1146 	    file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1147 }
1148 
1149 void
1150 unfalloc(file_t *fp)
1151 {
1152 	ASSERT(MUTEX_HELD(&fp->f_tlock));
1153 	if (--fp->f_count <= 0) {
1154 		/*
1155 		 * deallocate resources to audit_data
1156 		 */
1157 		if (audit_active)
1158 			audit_unfalloc(fp);
1159 		crfree(fp->f_cred);
1160 		mutex_exit(&fp->f_tlock);
1161 		kmem_cache_free(file_cache, fp);
1162 	} else
1163 		mutex_exit(&fp->f_tlock);
1164 }
1165 
1166 /*
1167  * Given a file descriptor, set the user's
1168  * file pointer to the given parameter.
1169  */
1170 void
1171 setf(int fd, file_t *fp)
1172 {
1173 	uf_info_t *fip = P_FINFO(curproc);
1174 	uf_entry_t *ufp;
1175 
1176 	if (AU_AUDITING())
1177 		audit_setf(fp, fd);
1178 
1179 	if (fp == NULL) {
1180 		mutex_enter(&fip->fi_lock);
1181 		UF_ENTER(ufp, fip, fd);
1182 		fd_reserve(fip, fd, -1);
1183 		mutex_exit(&fip->fi_lock);
1184 	} else {
1185 		UF_ENTER(ufp, fip, fd);
1186 		ASSERT(ufp->uf_busy);
1187 	}
1188 	ASSERT(ufp->uf_fpollinfo == NULL);
1189 	ASSERT(ufp->uf_flag == 0);
1190 	ufp->uf_file = fp;
1191 	cv_broadcast(&ufp->uf_wanted_cv);
1192 	UF_EXIT(ufp);
1193 }
1194 
1195 /*
1196  * Given a file descriptor, return the file table flags, plus,
1197  * if this is a socket in asynchronous mode, the FASYNC flag.
1198  * getf() may or may not have been called before calling f_getfl().
1199  */
1200 int
1201 f_getfl(int fd, int *flagp)
1202 {
1203 	uf_info_t *fip = P_FINFO(curproc);
1204 	uf_entry_t *ufp;
1205 	file_t *fp;
1206 	int error;
1207 
1208 	if ((uint_t)fd >= fip->fi_nfiles)
1209 		error = EBADF;
1210 	else {
1211 		UF_ENTER(ufp, fip, fd);
1212 		if ((fp = ufp->uf_file) == NULL)
1213 			error = EBADF;
1214 		else {
1215 			vnode_t *vp = fp->f_vnode;
1216 			int flag = fp->f_flag |
1217 			    ((fp->f_flag2 & ~FEPOLLED) << 16);
1218 
1219 			/*
1220 			 * BSD fcntl() FASYNC compatibility.
1221 			 */
1222 			if (vp->v_type == VSOCK)
1223 				flag |= sock_getfasync(vp);
1224 			*flagp = flag;
1225 			error = 0;
1226 		}
1227 		UF_EXIT(ufp);
1228 	}
1229 
1230 	return (error);
1231 }
1232 
1233 /*
1234  * Given a file descriptor, return the user's file flags.
1235  * Force the FD_CLOEXEC flag for writable self-open /proc files.
1236  * getf() may or may not have been called before calling f_getfd_error().
1237  */
1238 int
1239 f_getfd_error(int fd, int *flagp)
1240 {
1241 	uf_info_t *fip = P_FINFO(curproc);
1242 	uf_entry_t *ufp;
1243 	file_t *fp;
1244 	int flag;
1245 	int error;
1246 
1247 	if ((uint_t)fd >= fip->fi_nfiles)
1248 		error = EBADF;
1249 	else {
1250 		UF_ENTER(ufp, fip, fd);
1251 		if ((fp = ufp->uf_file) == NULL)
1252 			error = EBADF;
1253 		else {
1254 			flag = ufp->uf_flag;
1255 			if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1256 				flag |= FD_CLOEXEC;
1257 			*flagp = flag;
1258 			error = 0;
1259 		}
1260 		UF_EXIT(ufp);
1261 	}
1262 
1263 	return (error);
1264 }
1265 
1266 /*
1267  * getf() must have been called before calling f_getfd().
1268  */
1269 char
1270 f_getfd(int fd)
1271 {
1272 	int flag = 0;
1273 	(void) f_getfd_error(fd, &flag);
1274 	return ((char)flag);
1275 }
1276 
1277 /*
1278  * Given a file descriptor and file flags, set the user's file flags.
1279  * At present, the only valid flag is FD_CLOEXEC.
1280  * getf() may or may not have been called before calling f_setfd_error().
1281  */
1282 int
1283 f_setfd_error(int fd, int flags)
1284 {
1285 	uf_info_t *fip = P_FINFO(curproc);
1286 	uf_entry_t *ufp;
1287 	int error;
1288 
1289 	if ((uint_t)fd >= fip->fi_nfiles)
1290 		error = EBADF;
1291 	else {
1292 		UF_ENTER(ufp, fip, fd);
1293 		if (ufp->uf_file == NULL)
1294 			error = EBADF;
1295 		else {
1296 			ufp->uf_flag = flags & FD_CLOEXEC;
1297 			error = 0;
1298 		}
1299 		UF_EXIT(ufp);
1300 	}
1301 	return (error);
1302 }
1303 
1304 void
1305 f_setfd(int fd, char flags)
1306 {
1307 	(void) f_setfd_error(fd, flags);
1308 }
1309 
1310 #define	BADFD_MIN	3
1311 #define	BADFD_MAX	255
1312 
1313 /*
1314  * Attempt to allocate a file descriptor which is bad and which
1315  * is "poison" to the application.  It cannot be closed (except
1316  * on exec), allocated for a different use, etc.
1317  */
1318 int
1319 f_badfd(int start, int *fdp, int action)
1320 {
1321 	int fdr;
1322 	int badfd;
1323 	uf_info_t *fip = P_FINFO(curproc);
1324 
1325 #ifdef _LP64
1326 	/* No restrictions on 64 bit _file */
1327 	if (get_udatamodel() != DATAMODEL_ILP32)
1328 		return (EINVAL);
1329 #endif
1330 
1331 	if (start > BADFD_MAX || start < BADFD_MIN)
1332 		return (EINVAL);
1333 
1334 	if (action >= NSIG || action < 0)
1335 		return (EINVAL);
1336 
1337 	mutex_enter(&fip->fi_lock);
1338 	badfd = fip->fi_badfd;
1339 	mutex_exit(&fip->fi_lock);
1340 
1341 	if (badfd != -1)
1342 		return (EAGAIN);
1343 
1344 	fdr = ufalloc(start);
1345 
1346 	if (fdr > BADFD_MAX) {
1347 		setf(fdr, NULL);
1348 		return (EMFILE);
1349 	}
1350 	if (fdr < 0)
1351 		return (EMFILE);
1352 
1353 	mutex_enter(&fip->fi_lock);
1354 	if (fip->fi_badfd != -1) {
1355 		/* Lost race */
1356 		mutex_exit(&fip->fi_lock);
1357 		setf(fdr, NULL);
1358 		return (EAGAIN);
1359 	}
1360 	fip->fi_action = action;
1361 	fip->fi_badfd = fdr;
1362 	mutex_exit(&fip->fi_lock);
1363 	setf(fdr, NULL);
1364 
1365 	*fdp = fdr;
1366 
1367 	return (0);
1368 }
1369 
1370 /*
1371  * Allocate a file descriptor and assign it to the vnode "*vpp",
1372  * performing the usual open protocol upon it and returning the
1373  * file descriptor allocated.  It is the responsibility of the
1374  * caller to dispose of "*vpp" if any error occurs.
1375  */
1376 int
1377 fassign(vnode_t **vpp, int mode, int *fdp)
1378 {
1379 	file_t *fp;
1380 	int error;
1381 	int fd;
1382 
1383 	if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
1384 		return (error);
1385 	if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) {
1386 		setf(fd, NULL);
1387 		unfalloc(fp);
1388 		return (error);
1389 	}
1390 	fp->f_vnode = *vpp;
1391 	mutex_exit(&fp->f_tlock);
1392 	/*
1393 	 * Fill in the slot falloc reserved.
1394 	 */
1395 	setf(fd, fp);
1396 	*fdp = fd;
1397 	return (0);
1398 }
1399 
1400 /*
1401  * When a process forks it must increment the f_count of all file pointers
1402  * since there is a new process pointing at them.  fcnt_add(fip, 1) does this.
1403  * Since we are called when there is only 1 active lwp we don't need to
1404  * hold fi_lock or any uf_lock.  If the fork fails, fork_fail() calls
1405  * fcnt_add(fip, -1) to restore the counts.
1406  */
1407 void
1408 fcnt_add(uf_info_t *fip, int incr)
1409 {
1410 	int i;
1411 	uf_entry_t *ufp;
1412 	file_t *fp;
1413 
1414 	ufp = fip->fi_list;
1415 	for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1416 		if ((fp = ufp->uf_file) != NULL) {
1417 			mutex_enter(&fp->f_tlock);
1418 			ASSERT((incr == 1 && fp->f_count >= 1) ||
1419 			    (incr == -1 && fp->f_count >= 2));
1420 			fp->f_count += incr;
1421 			mutex_exit(&fp->f_tlock);
1422 		}
1423 	}
1424 }
1425 
1426 /*
1427  * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1428  * set and also to close all self-open for write /proc file descriptors.
1429  */
1430 void
1431 close_exec(uf_info_t *fip)
1432 {
1433 	int fd;
1434 	file_t *fp;
1435 	fpollinfo_t *fpip;
1436 	uf_entry_t *ufp;
1437 	portfd_t *pfd;
1438 
1439 	ufp = fip->fi_list;
1440 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1441 		if ((fp = ufp->uf_file) != NULL &&
1442 		    ((ufp->uf_flag & FD_CLOEXEC) ||
1443 		    ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1444 			fpip = ufp->uf_fpollinfo;
1445 			mutex_enter(&fip->fi_lock);
1446 			mutex_enter(&ufp->uf_lock);
1447 			fd_reserve(fip, fd, -1);
1448 			mutex_exit(&fip->fi_lock);
1449 			ufp->uf_file = NULL;
1450 			ufp->uf_fpollinfo = NULL;
1451 			ufp->uf_flag = 0;
1452 			/*
1453 			 * We may need to cleanup some cached poll states
1454 			 * in t_pollstate before the fd can be reused. It
1455 			 * is important that we don't access a stale thread
1456 			 * structure. We will do the cleanup in two
1457 			 * phases to avoid deadlock and holding uf_lock for
1458 			 * too long. In phase 1, hold the uf_lock and call
1459 			 * pollblockexit() to set state in t_pollstate struct
1460 			 * so that a thread does not exit on us. In phase 2,
1461 			 * we drop the uf_lock and call pollcacheclean().
1462 			 */
1463 			pfd = ufp->uf_portfd;
1464 			ufp->uf_portfd = NULL;
1465 			if (fpip != NULL)
1466 				pollblockexit(fpip);
1467 			mutex_exit(&ufp->uf_lock);
1468 			if (fpip != NULL)
1469 				pollcacheclean(fpip, fd);
1470 			if (pfd)
1471 				port_close_fd(pfd);
1472 			(void) closef(fp);
1473 		}
1474 	}
1475 
1476 	/* Reset bad fd */
1477 	fip->fi_badfd = -1;
1478 	fip->fi_action = -1;
1479 }
1480 
1481 /*
1482  * Utility function called by most of the *at() system call interfaces.
1483  *
1484  * Generate a starting vnode pointer for an (fd, path) pair where 'fd'
1485  * is an open file descriptor for a directory to be used as the starting
1486  * point for the lookup of the relative pathname 'path' (or, if path is
1487  * NULL, generate a vnode pointer for the direct target of the operation).
1488  *
1489  * If we successfully return a non-NULL startvp, it has been the target
1490  * of VN_HOLD() and the caller must call VN_RELE() on it.
1491  */
1492 int
1493 fgetstartvp(int fd, char *path, vnode_t **startvpp)
1494 {
1495 	vnode_t		*startvp;
1496 	file_t		*startfp;
1497 	char		startchar;
1498 
1499 	if (fd == AT_FDCWD && path == NULL)
1500 		return (EFAULT);
1501 
1502 	if (fd == AT_FDCWD) {
1503 		/*
1504 		 * Start from the current working directory.
1505 		 */
1506 		startvp = NULL;
1507 	} else {
1508 		if (path == NULL)
1509 			startchar = '\0';
1510 		else if (copyin(path, &startchar, sizeof (char)))
1511 			return (EFAULT);
1512 
1513 		if (startchar == '/') {
1514 			/*
1515 			 * 'path' is an absolute pathname.
1516 			 */
1517 			startvp = NULL;
1518 		} else {
1519 			/*
1520 			 * 'path' is a relative pathname or we will
1521 			 * be applying the operation to 'fd' itself.
1522 			 */
1523 			if ((startfp = getf(fd)) == NULL)
1524 				return (EBADF);
1525 			startvp = startfp->f_vnode;
1526 			VN_HOLD(startvp);
1527 			releasef(fd);
1528 		}
1529 	}
1530 	*startvpp = startvp;
1531 	return (0);
1532 }
1533 
1534 /*
1535  * Called from fchownat() and fchmodat() to set ownership and mode.
1536  * The contents of *vap must be set before calling here.
1537  */
1538 int
1539 fsetattrat(int fd, char *path, int flags, struct vattr *vap)
1540 {
1541 	vnode_t		*startvp;
1542 	vnode_t		*vp;
1543 	int		error;
1544 
1545 	/*
1546 	 * Since we are never called to set the size of a file, we don't
1547 	 * need to check for non-blocking locks (via nbl_need_check(vp)).
1548 	 */
1549 	ASSERT(!(vap->va_mask & AT_SIZE));
1550 
1551 	if ((error = fgetstartvp(fd, path, &startvp)) != 0)
1552 		return (error);
1553 	if (AU_AUDITING() && startvp != NULL)
1554 		audit_setfsat_path(1);
1555 
1556 	/*
1557 	 * Do lookup for fchownat/fchmodat when path not NULL
1558 	 */
1559 	if (path != NULL) {
1560 		if (error = lookupnameat(path, UIO_USERSPACE,
1561 		    (flags == AT_SYMLINK_NOFOLLOW) ?
1562 		    NO_FOLLOW : FOLLOW,
1563 		    NULLVPP, &vp, startvp)) {
1564 			if (startvp != NULL)
1565 				VN_RELE(startvp);
1566 			return (error);
1567 		}
1568 	} else {
1569 		vp = startvp;
1570 		ASSERT(vp);
1571 		VN_HOLD(vp);
1572 	}
1573 
1574 	if (vn_is_readonly(vp)) {
1575 		error = EROFS;
1576 	} else {
1577 		error = VOP_SETATTR(vp, vap, 0, CRED(), NULL);
1578 	}
1579 
1580 	if (startvp != NULL)
1581 		VN_RELE(startvp);
1582 	VN_RELE(vp);
1583 
1584 	return (error);
1585 }
1586 
1587 /*
1588  * Return true if the given vnode is referenced by any
1589  * entry in the current process's file descriptor table.
1590  */
1591 int
1592 fisopen(vnode_t *vp)
1593 {
1594 	int fd;
1595 	file_t *fp;
1596 	vnode_t *ovp;
1597 	uf_info_t *fip = P_FINFO(curproc);
1598 	uf_entry_t *ufp;
1599 
1600 	mutex_enter(&fip->fi_lock);
1601 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1602 		UF_ENTER(ufp, fip, fd);
1603 		if ((fp = ufp->uf_file) != NULL &&
1604 		    (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1605 			UF_EXIT(ufp);
1606 			mutex_exit(&fip->fi_lock);
1607 			return (1);
1608 		}
1609 		UF_EXIT(ufp);
1610 	}
1611 	mutex_exit(&fip->fi_lock);
1612 	return (0);
1613 }
1614 
1615 /*
1616  * Return zero if at least one file currently open (by curproc) shouldn't be
1617  * allowed to change zones.
1618  */
1619 int
1620 files_can_change_zones(void)
1621 {
1622 	int fd;
1623 	file_t *fp;
1624 	uf_info_t *fip = P_FINFO(curproc);
1625 	uf_entry_t *ufp;
1626 
1627 	mutex_enter(&fip->fi_lock);
1628 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1629 		UF_ENTER(ufp, fip, fd);
1630 		if ((fp = ufp->uf_file) != NULL &&
1631 		    !vn_can_change_zones(fp->f_vnode)) {
1632 			UF_EXIT(ufp);
1633 			mutex_exit(&fip->fi_lock);
1634 			return (0);
1635 		}
1636 		UF_EXIT(ufp);
1637 	}
1638 	mutex_exit(&fip->fi_lock);
1639 	return (1);
1640 }
1641 
1642 #ifdef DEBUG
1643 
1644 /*
1645  * The following functions are only used in ASSERT()s elsewhere.
1646  * They do not modify the state of the system.
1647  */
1648 
1649 /*
1650  * Return true (1) if the current thread is in the fpollinfo
1651  * list for this file descriptor, else false (0).
1652  */
1653 static int
1654 curthread_in_plist(uf_entry_t *ufp)
1655 {
1656 	fpollinfo_t *fpip;
1657 
1658 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
1659 	for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1660 		if (fpip->fp_thread == curthread)
1661 			return (1);
1662 	return (0);
1663 }
1664 
1665 /*
1666  * Sanity check to make sure that after lwp_exit(),
1667  * curthread does not appear on any fd's fpollinfo list.
1668  */
1669 void
1670 checkfpollinfo(void)
1671 {
1672 	int fd;
1673 	uf_info_t *fip = P_FINFO(curproc);
1674 	uf_entry_t *ufp;
1675 
1676 	mutex_enter(&fip->fi_lock);
1677 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1678 		UF_ENTER(ufp, fip, fd);
1679 		ASSERT(!curthread_in_plist(ufp));
1680 		UF_EXIT(ufp);
1681 	}
1682 	mutex_exit(&fip->fi_lock);
1683 }
1684 
1685 /*
1686  * Return true (1) if the current thread is in the fpollinfo
1687  * list for this file descriptor, else false (0).
1688  * This is the same as curthread_in_plist(),
1689  * but is called w/o holding uf_lock.
1690  */
1691 int
1692 infpollinfo(int fd)
1693 {
1694 	uf_info_t *fip = P_FINFO(curproc);
1695 	uf_entry_t *ufp;
1696 	int rc;
1697 
1698 	UF_ENTER(ufp, fip, fd);
1699 	rc = curthread_in_plist(ufp);
1700 	UF_EXIT(ufp);
1701 	return (rc);
1702 }
1703 
1704 #endif	/* DEBUG */
1705 
1706 /*
1707  * Add the curthread to fpollinfo list, meaning this fd is currently in the
1708  * thread's poll cache. Each lwp polling this file descriptor should call
1709  * this routine once.
1710  */
1711 void
1712 addfpollinfo(int fd)
1713 {
1714 	struct uf_entry *ufp;
1715 	fpollinfo_t *fpip;
1716 	uf_info_t *fip = P_FINFO(curproc);
1717 
1718 	fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1719 	fpip->fp_thread = curthread;
1720 	UF_ENTER(ufp, fip, fd);
1721 	/*
1722 	 * Assert we are not already on the list, that is, that
1723 	 * this lwp did not call addfpollinfo twice for the same fd.
1724 	 */
1725 	ASSERT(!curthread_in_plist(ufp));
1726 	/*
1727 	 * addfpollinfo is always done inside the getf/releasef pair.
1728 	 */
1729 	ASSERT(ufp->uf_refcnt >= 1);
1730 	fpip->fp_next = ufp->uf_fpollinfo;
1731 	ufp->uf_fpollinfo = fpip;
1732 	UF_EXIT(ufp);
1733 }
1734 
1735 /*
1736  * Delete curthread from fpollinfo list if it is there.
1737  */
1738 void
1739 delfpollinfo(int fd)
1740 {
1741 	struct uf_entry *ufp;
1742 	struct fpollinfo *fpip;
1743 	struct fpollinfo **fpipp;
1744 	uf_info_t *fip = P_FINFO(curproc);
1745 
1746 	UF_ENTER(ufp, fip, fd);
1747 	for (fpipp = &ufp->uf_fpollinfo;
1748 	    (fpip = *fpipp) != NULL;
1749 	    fpipp = &fpip->fp_next) {
1750 		if (fpip->fp_thread == curthread) {
1751 			*fpipp = fpip->fp_next;
1752 			kmem_free(fpip, sizeof (fpollinfo_t));
1753 			break;
1754 		}
1755 	}
1756 	/*
1757 	 * Assert that we are not still on the list, that is, that
1758 	 * this lwp did not call addfpollinfo twice for the same fd.
1759 	 */
1760 	ASSERT(!curthread_in_plist(ufp));
1761 	UF_EXIT(ufp);
1762 }
1763 
1764 /*
1765  * fd is associated with a port. pfd is a pointer to the fd entry in the
1766  * cache of the port.
1767  */
1768 
1769 void
1770 addfd_port(int fd, portfd_t *pfd)
1771 {
1772 	struct uf_entry *ufp;
1773 	uf_info_t *fip = P_FINFO(curproc);
1774 
1775 	UF_ENTER(ufp, fip, fd);
1776 	/*
1777 	 * addfd_port is always done inside the getf/releasef pair.
1778 	 */
1779 	ASSERT(ufp->uf_refcnt >= 1);
1780 	if (ufp->uf_portfd == NULL) {
1781 		/* first entry */
1782 		ufp->uf_portfd = pfd;
1783 		pfd->pfd_next = NULL;
1784 	} else {
1785 		pfd->pfd_next = ufp->uf_portfd;
1786 		ufp->uf_portfd = pfd;
1787 		pfd->pfd_next->pfd_prev = pfd;
1788 	}
1789 	UF_EXIT(ufp);
1790 }
1791 
1792 void
1793 delfd_port(int fd, portfd_t *pfd)
1794 {
1795 	struct uf_entry *ufp;
1796 	uf_info_t *fip = P_FINFO(curproc);
1797 
1798 	UF_ENTER(ufp, fip, fd);
1799 	/*
1800 	 * delfd_port is always done inside the getf/releasef pair.
1801 	 */
1802 	ASSERT(ufp->uf_refcnt >= 1);
1803 	if (ufp->uf_portfd == pfd) {
1804 		/* remove first entry */
1805 		ufp->uf_portfd = pfd->pfd_next;
1806 	} else {
1807 		pfd->pfd_prev->pfd_next = pfd->pfd_next;
1808 		if (pfd->pfd_next != NULL)
1809 			pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1810 	}
1811 	UF_EXIT(ufp);
1812 }
1813 
1814 static void
1815 port_close_fd(portfd_t *pfd)
1816 {
1817 	portfd_t	*pfdn;
1818 
1819 	/*
1820 	 * At this point, no other thread should access
1821 	 * the portfd_t list for this fd. The uf_file, uf_portfd
1822 	 * pointers in the uf_entry_t struct for this fd would
1823 	 * be set to NULL.
1824 	 */
1825 	for (; pfd != NULL; pfd = pfdn) {
1826 		pfdn = pfd->pfd_next;
1827 		port_close_pfd(pfd);
1828 	}
1829 }
1830