1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. 25 * Copyright 2024 Oxide Computer Company 26 */ 27 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 #include <sys/types.h> 32 #include <sys/sysmacros.h> 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/errno.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/conf.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 #include <sys/pathname.h> 43 #include <sys/file.h> 44 #include <sys/flock.h> 45 #include <sys/proc.h> 46 #include <sys/var.h> 47 #include <sys/cpuvar.h> 48 #include <sys/open.h> 49 #include <sys/cmn_err.h> 50 #include <sys/priocntl.h> 51 #include <sys/procset.h> 52 #include <sys/prsystm.h> 53 #include <sys/debug.h> 54 #include <sys/kmem.h> 55 #include <sys/atomic.h> 56 #include <sys/fcntl.h> 57 #include <sys/poll.h> 58 #include <sys/rctl.h> 59 #include <sys/port_impl.h> 60 #include <sys/dtrace.h> 61 #include <sys/stdbool.h> 62 63 #include <c2/audit.h> 64 #include <sys/nbmlock.h> 65 66 #ifdef DEBUG 67 68 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 69 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 70 static uint32_t afd_free; /* count of kmem_free()s */ 71 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 72 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 73 #define COUNT(x) atomic_inc_32(&x) 74 75 #else /* DEBUG */ 76 77 #define MAXFD(x) 78 #define COUNT(x) 79 80 #endif /* DEBUG */ 81 82 kmem_cache_t *file_cache; 83 84 static void port_close_fd(portfd_t *); 85 86 /* 87 * File descriptor allocation. 88 * 89 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 90 * The most common case is open(2), in which minfd = 0, but we must also 91 * support fcntl(fd, F_DUPFD, minfd). 92 * 93 * The algorithm is as follows: we keep all file descriptors in an infix 94 * binary tree in which each node records the number of descriptors 95 * allocated in its right subtree, including itself. Starting at minfd, 96 * we ascend the tree until we find a non-fully allocated right subtree. 97 * We then descend that subtree in a binary search for the smallest fd. 98 * Finally, we ascend the tree again to increment the allocation count 99 * of every subtree containing the newly-allocated fd. Freeing an fd 100 * requires only the last step: we ascend the tree to decrement allocation 101 * counts. Each of these three steps (ascent to find non-full subtree, 102 * descent to find lowest fd, ascent to update allocation counts) is 103 * O(log n), thus the algorithm as a whole is O(log n). 104 * 105 * We don't implement the fd tree using the customary left/right/parent 106 * pointers, but instead take advantage of the glorious mathematics of 107 * full infix binary trees. For reference, here's an illustration of the 108 * logical structure of such a tree, rooted at 4 (binary 100), covering 109 * the range 1-7 (binary 001-111). Our canonical trees do not include 110 * fd 0; we'll deal with that later. 111 * 112 * 100 113 * / \ 114 * / \ 115 * 010 110 116 * / \ / \ 117 * 001 011 101 111 118 * 119 * We make the following observations, all of which are easily proven by 120 * induction on the depth of the tree: 121 * 122 * (T1) The least-significant bit (LSB) of any node is equal to its level 123 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 124 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 125 * 126 * (T2) The child size (CSIZE) of node N -- that is, the total number of 127 * right-branch descendants in a child of node N, including itself -- is 128 * given by clearing all but the least significant bit of N. This 129 * follows immediately from (T1). Applying this rule to our example, we 130 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 131 * 132 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 133 * ancestor containing node N in its right child -- is given by clearing 134 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 135 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 136 * the fact that these are leftmost nodes. Note that this algorithm 137 * automatically skips generations as necessary. For example, the parent 138 * of node 101 is 110, which is a *right* ancestor (not what we want); 139 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 140 * of 101 gets us to 100 directly, skipping right past the uninteresting 141 * generation (110). 142 * 143 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 144 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 145 * 146 * LPARENT(N) = N - CSIZE(N) 147 * 148 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 149 * 150 * RPARENT(N) = N + CSIZE(N) 151 * 152 * (T5) For every interior node, the children differ from their parent by 153 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 154 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 155 * 156 * Next, we'll need a few two's-complement math tricks. Suppose a number, 157 * N, has the following form: 158 * 159 * N = xxxx10...0 160 * 161 * That is, the binary representation of N consists of some string of bits, 162 * then a 1, then all zeroes. This amounts to nothing more than saying that 163 * N has a least-significant bit, which is true for any N != 0. If we look 164 * at N and N - 1 together, we see that we can combine them in useful ways: 165 * 166 * N = xxxx10...0 167 * N - 1 = xxxx01...1 168 * ------------------------ 169 * N & (N - 1) = xxxx000000 170 * N | (N - 1) = xxxx111111 171 * N ^ (N - 1) = 111111 172 * 173 * In particular, this suggests several easy ways to clear all but the LSB, 174 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 175 * We'll opt for this formulation: 176 * 177 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 178 * 179 * Similarly, we have an easy way to determine LPARENT(N), which requires 180 * that we clear the LSB of N: 181 * 182 * (L1) LPARENT(N) = N & (N - 1) 183 * 184 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 185 * When combined with (T4), this yields an easy way to compute RPARENT(N): 186 * 187 * (R1) RPARENT(N) = (N | (N - 1)) + 1 188 * 189 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 190 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 191 * so there's no need to belabor the algebra; the revised relations become: 192 * 193 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 194 * 195 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 196 * 197 * (R1a) RPARENT(N) = N | (N + 1) 198 * 199 * This completes the mathematical framework. We now have all the tools 200 * we need to implement fd_find() and fd_reserve(). 201 * 202 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 203 * It does not actually allocate the descriptor; that's done by fd_reserve(). 204 * fd_find() proceeds in two steps: 205 * 206 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 207 * We start at the right subtree rooted at minfd. If this subtree is 208 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 209 * step 1 is done. Otherwise, we know that all fds in this subtree 210 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 211 * this process until we either find a candidate subtree or exceed 212 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 213 * 214 * (2) Find the smallest fd in the subtree discovered by step 1. 215 * Starting at the root of this subtree, we descend to find the 216 * smallest available fd. Since the left children have the smaller 217 * fds, we will descend rightward only when the left child is full. 218 * 219 * We begin by comparing the number of allocated fds in the root 220 * to the number of allocated fds in its right child; if they differ 221 * by exactly CSIZE(child), we know the left subtree is full, so we 222 * descend right; that is, the right child becomes the search root. 223 * Otherwise we leave the root alone and start following the right 224 * child's left children. As fortune would have it, this is very 225 * simple computationally: by (T5), the right child of fd is just 226 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 227 * we find that the right child's left child is fd + size - (size / 2) = 228 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 229 * fd + (size / 4), and so on. In general, fd's right child's 230 * leftmost nth descendant is fd + (size >> n). Thus, to follow 231 * the right child's left descendants, we just halve the size in 232 * each iteration of the search. 233 * 234 * When we descend leftward, we must keep track of the number of fds 235 * that were allocated in all the right subtrees we rejected, so we 236 * know how many of the root fd's allocations are in the remaining 237 * (as yet unexplored) leftmost part of its right subtree. When we 238 * encounter a fully-allocated left child -- that is, when we find 239 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 240 * (as described earlier), resetting ralloc to zero. 241 * 242 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 243 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 244 * the leftmost ancestors (see (T3)) and updates the allocation counts. 245 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 246 * 247 * flist_minsize() finds the minimal tree that still covers all 248 * used fds; as long as the allocation count of a root node is zero, we 249 * don't need that node or its right subtree. 250 * 251 * flist_nalloc() counts the number of allocated fds in the tree, by starting 252 * at the top of the tree and summing the right-subtree allocation counts as 253 * it descends leftwards. 254 * 255 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 256 * 2^n - 1. This ensures that the fd trees are always full, which saves 257 * quite a bit of boundary checking. 258 */ 259 static int 260 fd_find(uf_info_t *fip, int minfd) 261 { 262 int size, ralloc, fd; 263 264 ASSERT(MUTEX_HELD(&fip->fi_lock)); 265 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 266 267 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 268 size = fd ^ (fd | (fd + 1)); 269 if (fip->fi_list[fd].uf_alloc == size) 270 continue; 271 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 272 ralloc += fip->fi_list[fd + size].uf_alloc; 273 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 274 fd += size; 275 ralloc = 0; 276 } 277 } 278 return (fd); 279 } 280 return (-1); 281 } 282 283 static void 284 fd_reserve(uf_info_t *fip, int fd, int incr) 285 { 286 int pfd; 287 uf_entry_t *ufp = &fip->fi_list[fd]; 288 289 ASSERT((uint_t)fd < fip->fi_nfiles); 290 ASSERT((ufp->uf_busy == 0 && incr == 1) || 291 (ufp->uf_busy == 1 && incr == -1)); 292 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 293 ASSERT(MUTEX_HELD(&fip->fi_lock)); 294 295 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 296 fip->fi_list[pfd].uf_alloc += incr; 297 298 ufp->uf_busy += incr; 299 } 300 301 static int 302 flist_minsize(uf_info_t *fip) 303 { 304 int fd; 305 306 /* 307 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 308 * by flist_fork(), which relies on other mechanisms for mutual 309 * exclusion. 310 */ 311 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 312 313 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 314 if (fip->fi_list[fd >> 1].uf_alloc != 0) 315 break; 316 317 return (fd); 318 } 319 320 static int 321 flist_nalloc(uf_info_t *fip) 322 { 323 int fd; 324 int nalloc = 0; 325 326 ASSERT(MUTEX_HELD(&fip->fi_lock)); 327 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 328 329 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 330 nalloc += fip->fi_list[fd >> 1].uf_alloc; 331 332 return (nalloc); 333 } 334 335 /* 336 * Increase size of the fi_list array to accommodate at least maxfd. 337 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 338 */ 339 static void 340 flist_grow(int maxfd) 341 { 342 uf_info_t *fip = P_FINFO(curproc); 343 int newcnt, oldcnt; 344 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 345 uf_rlist_t *urp; 346 347 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 348 continue; 349 350 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 351 352 mutex_enter(&fip->fi_lock); 353 oldcnt = fip->fi_nfiles; 354 if (newcnt <= oldcnt) { 355 mutex_exit(&fip->fi_lock); 356 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 357 return; 358 } 359 ASSERT((newcnt & (newcnt + 1)) == 0); 360 oldlist = fip->fi_list; 361 oldend = oldlist + oldcnt; 362 newend = newlist + oldcnt; /* no need to lock beyond old end */ 363 364 /* 365 * fi_list and fi_nfiles cannot change while any uf_lock is held, 366 * so we must grab all the old locks *and* the new locks up to oldcnt. 367 * (Locks beyond the end of oldcnt aren't visible until we store 368 * the new fi_nfiles, which is the last thing we do before dropping 369 * all the locks, so there's no need to acquire these locks). 370 * Holding the new locks is necessary because when fi_list changes 371 * to point to the new list, fi_nfiles won't have been stored yet. 372 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 373 * could see the new fi_list, grab the new uf_lock, and then see 374 * fi_nfiles change while the lock is held -- in violation of 375 * UF_ENTER() semantics. 376 */ 377 for (src = oldlist; src < oldend; src++) 378 mutex_enter(&src->uf_lock); 379 380 for (dst = newlist; dst < newend; dst++) 381 mutex_enter(&dst->uf_lock); 382 383 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 384 dst->uf_file = src->uf_file; 385 dst->uf_fpollinfo = src->uf_fpollinfo; 386 dst->uf_refcnt = src->uf_refcnt; 387 dst->uf_alloc = src->uf_alloc; 388 dst->uf_flag = src->uf_flag; 389 dst->uf_busy = src->uf_busy; 390 dst->uf_portfd = src->uf_portfd; 391 dst->uf_gen = src->uf_gen; 392 } 393 394 /* 395 * As soon as we store the new flist, future locking operations 396 * will use it. Therefore, we must ensure that all the state 397 * we've just established reaches global visibility before the 398 * new flist does. 399 */ 400 membar_producer(); 401 fip->fi_list = newlist; 402 403 /* 404 * Routines like getf() make an optimistic check on the validity 405 * of the supplied file descriptor: if it's less than the current 406 * value of fi_nfiles -- examined without any locks -- then it's 407 * safe to attempt a UF_ENTER() on that fd (which is a valid 408 * assumption because fi_nfiles only increases). Therefore, it 409 * is critical that the new value of fi_nfiles not reach global 410 * visibility until after the new fi_list: if it happened the 411 * other way around, getf() could see the new fi_nfiles and attempt 412 * a UF_ENTER() on the old fi_list, which would write beyond its 413 * end if the fd exceeded the old fi_nfiles. 414 */ 415 membar_producer(); 416 fip->fi_nfiles = newcnt; 417 418 /* 419 * The new state is consistent now, so we can drop all the locks. 420 */ 421 for (dst = newlist; dst < newend; dst++) 422 mutex_exit(&dst->uf_lock); 423 424 for (src = oldlist; src < oldend; src++) { 425 /* 426 * If any threads are blocked on the old cvs, wake them. 427 * This will force them to wake up, discover that fi_list 428 * has changed, and go back to sleep on the new cvs. 429 */ 430 cv_broadcast(&src->uf_wanted_cv); 431 cv_broadcast(&src->uf_closing_cv); 432 mutex_exit(&src->uf_lock); 433 } 434 435 mutex_exit(&fip->fi_lock); 436 437 /* 438 * Retire the old flist. We can't actually kmem_free() it now 439 * because someone may still have a pointer to it. Instead, 440 * we link it onto a list of retired flists. The new flist 441 * is at least double the size of the previous flist, so the 442 * total size of all retired flists will be less than the size 443 * of the current one (to prove, consider the sum of a geometric 444 * series in powers of 2). exit() frees the retired flists. 445 */ 446 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 447 urp->ur_list = oldlist; 448 urp->ur_nfiles = oldcnt; 449 450 mutex_enter(&fip->fi_lock); 451 urp->ur_next = fip->fi_rlist; 452 fip->fi_rlist = urp; 453 mutex_exit(&fip->fi_lock); 454 } 455 456 /* 457 * Utility functions for keeping track of the active file descriptors. 458 */ 459 void 460 clear_stale_fd() /* called from post_syscall() */ 461 { 462 afd_t *afd = &curthread->t_activefd; 463 int i; 464 465 /* uninitialized is ok here, a_nfd is then zero */ 466 for (i = 0; i < afd->a_nfd; i++) { 467 /* assert that this should not be necessary */ 468 ASSERT(afd->a_fd[i] == -1); 469 afd->a_fd[i] = -1; 470 } 471 afd->a_stale = 0; 472 } 473 474 void 475 free_afd(afd_t *afd) /* called below and from thread_free() */ 476 { 477 int i; 478 479 /* free the buffer if it was kmem_alloc()ed */ 480 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 481 COUNT(afd_free); 482 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 483 } 484 485 /* (re)initialize the structure */ 486 afd->a_fd = &afd->a_buf[0]; 487 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 488 afd->a_stale = 0; 489 for (i = 0; i < afd->a_nfd; i++) 490 afd->a_fd[i] = -1; 491 } 492 493 static void 494 set_active_fd(int fd) 495 { 496 afd_t *afd = &curthread->t_activefd; 497 int i; 498 int *old_fd; 499 int old_nfd; 500 int *new_fd; 501 int new_nfd; 502 503 if (afd->a_nfd == 0) { /* first time initialization */ 504 ASSERT(fd == -1); 505 mutex_enter(&afd->a_fdlock); 506 free_afd(afd); 507 mutex_exit(&afd->a_fdlock); 508 } 509 510 /* insert fd into vacant slot, if any */ 511 for (i = 0; i < afd->a_nfd; i++) { 512 if (afd->a_fd[i] == -1) { 513 afd->a_fd[i] = fd; 514 return; 515 } 516 } 517 518 /* 519 * Reallocate the a_fd[] array to add one more slot. 520 */ 521 ASSERT(fd == -1); 522 old_nfd = afd->a_nfd; 523 old_fd = afd->a_fd; 524 new_nfd = old_nfd + 1; 525 new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 526 MAXFD(new_nfd); 527 COUNT(afd_alloc); 528 529 mutex_enter(&afd->a_fdlock); 530 afd->a_fd = new_fd; 531 afd->a_nfd = new_nfd; 532 for (i = 0; i < old_nfd; i++) 533 afd->a_fd[i] = old_fd[i]; 534 afd->a_fd[i] = fd; 535 mutex_exit(&afd->a_fdlock); 536 537 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 538 COUNT(afd_free); 539 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 540 } 541 } 542 543 void 544 clear_active_fd(int fd) /* called below and from aio.c */ 545 { 546 afd_t *afd = &curthread->t_activefd; 547 int i; 548 549 for (i = 0; i < afd->a_nfd; i++) { 550 if (afd->a_fd[i] == fd) { 551 afd->a_fd[i] = -1; 552 break; 553 } 554 } 555 ASSERT(i < afd->a_nfd); /* not found is not ok */ 556 } 557 558 /* 559 * Does this thread have this fd active? 560 */ 561 static int 562 is_active_fd(kthread_t *t, int fd) 563 { 564 afd_t *afd = &t->t_activefd; 565 int i; 566 567 ASSERT(t != curthread); 568 mutex_enter(&afd->a_fdlock); 569 /* uninitialized is ok here, a_nfd is then zero */ 570 for (i = 0; i < afd->a_nfd; i++) { 571 if (afd->a_fd[i] == fd) { 572 mutex_exit(&afd->a_fdlock); 573 return (1); 574 } 575 } 576 mutex_exit(&afd->a_fdlock); 577 return (0); 578 } 579 580 /* 581 * Convert a user supplied file descriptor into a pointer to a file structure. 582 * Only task is to check range of the descriptor (soft resource limit was 583 * enforced at open time and shouldn't be checked here). 584 */ 585 file_t * 586 getf_gen(int fd, uf_entry_gen_t *genp) 587 { 588 uf_info_t *fip = P_FINFO(curproc); 589 uf_entry_t *ufp; 590 file_t *fp; 591 592 if ((uint_t)fd >= fip->fi_nfiles) 593 return (NULL); 594 595 /* 596 * Reserve a slot in the active fd array now so we can call 597 * set_active_fd(fd) for real below, while still inside UF_ENTER(). 598 */ 599 set_active_fd(-1); 600 601 UF_ENTER(ufp, fip, fd); 602 603 if ((fp = ufp->uf_file) == NULL) { 604 UF_EXIT(ufp); 605 606 if (fd == fip->fi_badfd && fip->fi_action > 0) 607 tsignal(curthread, fip->fi_action); 608 609 return (NULL); 610 } 611 ufp->uf_refcnt++; 612 if (genp != NULL) { 613 *genp = ufp->uf_gen; 614 } 615 616 set_active_fd(fd); /* record the active file descriptor */ 617 618 UF_EXIT(ufp); 619 620 return (fp); 621 } 622 623 file_t * 624 getf(int fd) 625 { 626 return (getf_gen(fd, NULL)); 627 } 628 629 /* 630 * Close whatever file currently occupies the file descriptor slot 631 * and install the new file, usually NULL, in the file descriptor slot. 632 * The close must complete before we release the file descriptor slot. 633 * If newfp != NULL we only return an error if we can't allocate the 634 * slot so the caller knows that it needs to free the filep; 635 * in the other cases we return the error number from closef(). 636 */ 637 int 638 closeandsetf(int fd, file_t *newfp) 639 { 640 proc_t *p = curproc; 641 uf_info_t *fip = P_FINFO(p); 642 uf_entry_t *ufp; 643 file_t *fp; 644 fpollinfo_t *fpip; 645 portfd_t *pfd; 646 int error; 647 648 if ((uint_t)fd >= fip->fi_nfiles) { 649 if (newfp == NULL) 650 return (EBADF); 651 flist_grow(fd); 652 } 653 654 if (newfp != NULL) { 655 /* 656 * If ufp is reserved but has no file pointer, it's in the 657 * transition between ufalloc() and setf(). We must wait 658 * for this transition to complete before assigning the 659 * new non-NULL file pointer. 660 */ 661 mutex_enter(&fip->fi_lock); 662 if (fd == fip->fi_badfd) { 663 mutex_exit(&fip->fi_lock); 664 if (fip->fi_action > 0) 665 tsignal(curthread, fip->fi_action); 666 return (EBADF); 667 } 668 UF_ENTER(ufp, fip, fd); 669 while (ufp->uf_busy && ufp->uf_file == NULL) { 670 mutex_exit(&fip->fi_lock); 671 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 672 UF_EXIT(ufp); 673 mutex_enter(&fip->fi_lock); 674 UF_ENTER(ufp, fip, fd); 675 } 676 if ((fp = ufp->uf_file) == NULL) { 677 ASSERT(ufp->uf_fpollinfo == NULL); 678 ASSERT(ufp->uf_flag == 0); 679 fd_reserve(fip, fd, 1); 680 ufp->uf_file = newfp; 681 ufp->uf_gen++; 682 UF_EXIT(ufp); 683 mutex_exit(&fip->fi_lock); 684 return (0); 685 } 686 mutex_exit(&fip->fi_lock); 687 } else { 688 UF_ENTER(ufp, fip, fd); 689 if ((fp = ufp->uf_file) == NULL) { 690 UF_EXIT(ufp); 691 return (EBADF); 692 } 693 } 694 695 ASSERT(ufp->uf_busy); 696 ufp->uf_file = NULL; 697 ufp->uf_flag = 0; 698 699 /* 700 * If the file descriptor reference count is non-zero, then 701 * some other lwp in the process is performing system call 702 * activity on the file. To avoid blocking here for a long 703 * time (the other lwp might be in a long term sleep in its 704 * system call), we scan all other lwps in the process to 705 * find the ones with this fd as one of their active fds, 706 * set their a_stale flag, and set them running if they 707 * are in an interruptible sleep so they will emerge from 708 * their system calls immediately. post_syscall() will 709 * test the a_stale flag and set errno to EBADF. 710 */ 711 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 712 if (ufp->uf_refcnt > 0) { 713 kthread_t *t; 714 715 /* 716 * We call sprlock_proc(p) to ensure that the thread 717 * list will not change while we are scanning it. 718 * To do this, we must drop ufp->uf_lock and then 719 * reacquire it (so we are not holding both p->p_lock 720 * and ufp->uf_lock at the same time). ufp->uf_lock 721 * must be held for is_active_fd() to be correct 722 * (set_active_fd() is called while holding ufp->uf_lock). 723 * 724 * This is a convoluted dance, but it is better than 725 * the old brute-force method of stopping every thread 726 * in the process by calling holdlwps(SHOLDFORK1). 727 */ 728 729 UF_EXIT(ufp); 730 COUNT(afd_wait); 731 732 mutex_enter(&p->p_lock); 733 sprlock_proc(p); 734 mutex_exit(&p->p_lock); 735 736 UF_ENTER(ufp, fip, fd); 737 ASSERT(ufp->uf_file == NULL); 738 739 if (ufp->uf_refcnt > 0) { 740 for (t = curthread->t_forw; 741 t != curthread; 742 t = t->t_forw) { 743 if (is_active_fd(t, fd)) { 744 thread_lock(t); 745 t->t_activefd.a_stale = 1; 746 t->t_post_sys = 1; 747 if (ISWAKEABLE(t)) 748 setrun_locked(t); 749 thread_unlock(t); 750 } 751 } 752 } 753 754 UF_EXIT(ufp); 755 756 mutex_enter(&p->p_lock); 757 sprunlock(p); 758 759 UF_ENTER(ufp, fip, fd); 760 ASSERT(ufp->uf_file == NULL); 761 } 762 763 /* 764 * Wait for other lwps to stop using this file descriptor. 765 */ 766 while (ufp->uf_refcnt > 0) { 767 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 768 /* 769 * cv_wait_stop() drops ufp->uf_lock, so the file list 770 * can change. Drop the lock on our (possibly) stale 771 * ufp and let UF_ENTER() find and lock the current ufp. 772 */ 773 UF_EXIT(ufp); 774 UF_ENTER(ufp, fip, fd); 775 } 776 777 #ifdef DEBUG 778 /* 779 * catch a watchfd on device's pollhead list but not on fpollinfo list 780 */ 781 if (ufp->uf_fpollinfo != NULL) 782 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 783 #endif /* DEBUG */ 784 785 /* 786 * We may need to cleanup some cached poll states in t_pollstate 787 * before the fd can be reused. It is important that we don't 788 * access a stale thread structure. We will do the cleanup in two 789 * phases to avoid deadlock and holding uf_lock for too long. 790 * In phase 1, hold the uf_lock and call pollblockexit() to set 791 * state in t_pollstate struct so that a thread does not exit on 792 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 793 */ 794 pfd = ufp->uf_portfd; 795 ufp->uf_portfd = NULL; 796 fpip = ufp->uf_fpollinfo; 797 ufp->uf_fpollinfo = NULL; 798 if (fpip != NULL) 799 pollblockexit(fpip); 800 UF_EXIT(ufp); 801 if (fpip != NULL) 802 pollcacheclean(fpip, fd); 803 if (pfd) 804 port_close_fd(pfd); 805 806 /* 807 * Keep the file descriptor entry reserved across the closef(). 808 */ 809 error = closef(fp); 810 811 setf(fd, newfp); 812 813 /* Only return closef() error when closing is all we do */ 814 return (newfp == NULL ? error : 0); 815 } 816 817 /* 818 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 819 */ 820 void 821 releasef(int fd) 822 { 823 uf_info_t *fip = P_FINFO(curproc); 824 uf_entry_t *ufp; 825 826 UF_ENTER(ufp, fip, fd); 827 ASSERT(ufp->uf_refcnt > 0); 828 clear_active_fd(fd); /* clear the active file descriptor */ 829 if (--ufp->uf_refcnt == 0) 830 cv_broadcast(&ufp->uf_closing_cv); 831 UF_EXIT(ufp); 832 } 833 834 /* 835 * Identical to releasef() but can be called from another process. 836 */ 837 void 838 areleasef(int fd, uf_info_t *fip) 839 { 840 uf_entry_t *ufp; 841 842 UF_ENTER(ufp, fip, fd); 843 ASSERT(ufp->uf_refcnt > 0); 844 if (--ufp->uf_refcnt == 0) 845 cv_broadcast(&ufp->uf_closing_cv); 846 UF_EXIT(ufp); 847 } 848 849 /* 850 * Duplicate all file descriptors across a fork. 851 */ 852 void 853 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 854 { 855 int fd, nfiles; 856 uf_entry_t *pufp, *cufp; 857 858 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 859 cfip->fi_rlist = NULL; 860 861 /* 862 * We don't need to hold fi_lock because all other lwp's in the 863 * parent have been held. 864 */ 865 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 866 867 cfip->fi_list = nfiles == 0 ? NULL : 868 kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 869 870 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 871 fd++, pufp++, cufp++) { 872 boolean_t unreserve = B_FALSE; 873 874 /* 875 * Check to see if FD_CLOFORK is set. In this case we 'close' 876 * the file descriptor by simply not duplicating it and leaving 877 * this entry as an empty descriptor. While we don't need to 878 * close the underlying file_t, we do need to make sure we take 879 * care of cleaning up our reservation. We do not reset the 880 * generation either, simulating a setf here. 881 */ 882 if ((pufp->uf_flag & FD_CLOFORK) == 0) { 883 cufp->uf_file = pufp->uf_file; 884 cufp->uf_flag = pufp->uf_flag; 885 } 886 cufp->uf_busy = pufp->uf_busy; 887 cufp->uf_alloc = pufp->uf_alloc; 888 cufp->uf_gen = pufp->uf_gen; 889 890 /* 891 * We may have to clean up our allocation tracking. This happens 892 * either because we have no file due to the fact that we're 893 * busy or because we had a file and FD_CLOFORK is set. If there 894 * is no file and we're not busy, then the unreserve was already 895 * taken care of. 896 */ 897 if (pufp->uf_file == NULL) { 898 ASSERT3U(pufp->uf_flag, ==, 0); 899 if (pufp->uf_busy) { 900 unreserve = B_TRUE; 901 } 902 } else if ((pufp->uf_flag & FD_CLOFORK) != 0) { 903 ASSERT3P(pufp->uf_file, !=, NULL); 904 unreserve = B_TRUE; 905 } 906 907 if (unreserve) { 908 /* 909 * Grab locks to appease ASSERTs in fd_reserve 910 */ 911 mutex_enter(&cfip->fi_lock); 912 mutex_enter(&cufp->uf_lock); 913 fd_reserve(cfip, fd, -1); 914 mutex_exit(&cufp->uf_lock); 915 mutex_exit(&cfip->fi_lock); 916 } 917 } 918 } 919 920 /* 921 * Close all open file descriptors for the current process. 922 * This is only called from exit(), which is single-threaded, 923 * so we don't need any locking. 924 */ 925 void 926 closeall(uf_info_t *fip) 927 { 928 int fd; 929 file_t *fp; 930 uf_entry_t *ufp; 931 932 ufp = fip->fi_list; 933 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 934 if ((fp = ufp->uf_file) != NULL) { 935 ufp->uf_file = NULL; 936 if (ufp->uf_portfd != NULL) { 937 portfd_t *pfd; 938 /* remove event port association */ 939 pfd = ufp->uf_portfd; 940 ufp->uf_portfd = NULL; 941 port_close_fd(pfd); 942 } 943 ASSERT(ufp->uf_fpollinfo == NULL); 944 (void) closef(fp); 945 } 946 } 947 948 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 949 fip->fi_list = NULL; 950 fip->fi_nfiles = 0; 951 while (fip->fi_rlist != NULL) { 952 uf_rlist_t *urp = fip->fi_rlist; 953 fip->fi_rlist = urp->ur_next; 954 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 955 kmem_free(urp, sizeof (uf_rlist_t)); 956 } 957 } 958 959 /* 960 * Internal form of close. Decrement reference count on file 961 * structure. Decrement reference count on the vnode following 962 * removal of the referencing file structure. 963 */ 964 int 965 closef(file_t *fp) 966 { 967 vnode_t *vp; 968 int error; 969 int count; 970 int flag; 971 offset_t offset; 972 973 /* 974 * audit close of file (may be exit) 975 */ 976 if (AU_AUDITING()) 977 audit_closef(fp); 978 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 979 980 mutex_enter(&fp->f_tlock); 981 982 ASSERT(fp->f_count > 0); 983 984 count = fp->f_count--; 985 flag = fp->f_flag; 986 offset = fp->f_offset; 987 988 vp = fp->f_vnode; 989 990 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); 991 992 if (count > 1) { 993 mutex_exit(&fp->f_tlock); 994 return (error); 995 } 996 ASSERT(fp->f_count == 0); 997 /* Last reference, remove any OFD style lock for the file_t */ 998 ofdcleanlock(fp); 999 mutex_exit(&fp->f_tlock); 1000 1001 /* 1002 * If DTrace has getf() subroutines active, it will set dtrace_closef 1003 * to point to code that implements a barrier with respect to probe 1004 * context. This must be called before the file_t is freed (and the 1005 * vnode that it refers to is released) -- but it must be after the 1006 * file_t has been removed from the uf_entry_t. That is, there must 1007 * be no way for a racing getf() in probe context to yield the fp that 1008 * we're operating upon. 1009 */ 1010 if (dtrace_closef != NULL) 1011 (*dtrace_closef)(); 1012 1013 VN_RELE(vp); 1014 /* 1015 * deallocate resources to audit_data 1016 */ 1017 if (audit_active) 1018 audit_unfalloc(fp); 1019 crfree(fp->f_cred); 1020 kmem_cache_free(file_cache, fp); 1021 return (error); 1022 } 1023 1024 /* 1025 * This is a combination of ufalloc() and setf(). 1026 */ 1027 int 1028 ufalloc_file(int start, file_t *fp) 1029 { 1030 proc_t *p = curproc; 1031 uf_info_t *fip = P_FINFO(p); 1032 int filelimit; 1033 uf_entry_t *ufp; 1034 int nfiles; 1035 int fd; 1036 1037 /* 1038 * Assertion is to convince the correctness of the following 1039 * assignment for filelimit after casting to int. 1040 */ 1041 ASSERT(p->p_fno_ctl <= INT_MAX); 1042 filelimit = (int)p->p_fno_ctl; 1043 1044 for (;;) { 1045 mutex_enter(&fip->fi_lock); 1046 fd = fd_find(fip, start); 1047 if (fd >= 0 && fd == fip->fi_badfd) { 1048 start = fd + 1; 1049 mutex_exit(&fip->fi_lock); 1050 continue; 1051 } 1052 if ((uint_t)fd < filelimit) 1053 break; 1054 if (fd >= filelimit) { 1055 mutex_exit(&fip->fi_lock); 1056 mutex_enter(&p->p_lock); 1057 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1058 p->p_rctls, p, RCA_SAFE); 1059 mutex_exit(&p->p_lock); 1060 return (-1); 1061 } 1062 /* fd_find() returned -1 */ 1063 nfiles = fip->fi_nfiles; 1064 mutex_exit(&fip->fi_lock); 1065 flist_grow(MAX(start, nfiles)); 1066 } 1067 1068 UF_ENTER(ufp, fip, fd); 1069 fd_reserve(fip, fd, 1); 1070 ASSERT(ufp->uf_file == NULL); 1071 ufp->uf_file = fp; 1072 if (fp != NULL) { 1073 ufp->uf_gen++; 1074 } 1075 UF_EXIT(ufp); 1076 mutex_exit(&fip->fi_lock); 1077 return (fd); 1078 } 1079 1080 /* 1081 * Allocate a user file descriptor greater than or equal to "start". 1082 */ 1083 int 1084 ufalloc(int start) 1085 { 1086 return (ufalloc_file(start, NULL)); 1087 } 1088 1089 /* 1090 * Check that a future allocation of count fds on proc p has a good 1091 * chance of succeeding. If not, do rctl processing as if we'd failed 1092 * the allocation. 1093 * 1094 * Our caller must guarantee that p cannot disappear underneath us. 1095 */ 1096 int 1097 ufcanalloc(proc_t *p, uint_t count) 1098 { 1099 uf_info_t *fip = P_FINFO(p); 1100 int filelimit; 1101 int current; 1102 1103 if (count == 0) 1104 return (1); 1105 1106 ASSERT(p->p_fno_ctl <= INT_MAX); 1107 filelimit = (int)p->p_fno_ctl; 1108 1109 mutex_enter(&fip->fi_lock); 1110 current = flist_nalloc(fip); /* # of in-use descriptors */ 1111 mutex_exit(&fip->fi_lock); 1112 1113 /* 1114 * If count is a positive integer, the worst that can happen is 1115 * an overflow to a negative value, which is caught by the >= 0 check. 1116 */ 1117 current += count; 1118 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1119 return (1); 1120 1121 mutex_enter(&p->p_lock); 1122 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1123 p->p_rctls, p, RCA_SAFE); 1124 mutex_exit(&p->p_lock); 1125 return (0); 1126 } 1127 1128 /* 1129 * Allocate a user file descriptor and a file structure. 1130 * Initialize the descriptor to point at the file structure. 1131 * If fdp is NULL, the user file descriptor will not be allocated. 1132 */ 1133 int 1134 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1135 { 1136 file_t *fp; 1137 int fd; 1138 1139 if (fdp) { 1140 if ((fd = ufalloc(0)) == -1) 1141 return (EMFILE); 1142 } 1143 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1144 /* 1145 * Note: falloc returns the fp locked 1146 */ 1147 mutex_enter(&fp->f_tlock); 1148 fp->f_count = 1; 1149 fp->f_flag = (ushort_t)flag; 1150 fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16; 1151 fp->f_vnode = vp; 1152 fp->f_offset = 0; 1153 fp->f_audit_data = 0; 1154 crhold(fp->f_cred = CRED()); 1155 /* 1156 * allocate resources to audit_data 1157 */ 1158 if (audit_active) 1159 audit_falloc(fp); 1160 *fpp = fp; 1161 if (fdp) 1162 *fdp = fd; 1163 return (0); 1164 } 1165 1166 /*ARGSUSED*/ 1167 static int 1168 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1169 { 1170 file_t *fp = buf; 1171 1172 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1173 return (0); 1174 } 1175 1176 /*ARGSUSED*/ 1177 static void 1178 file_cache_destructor(void *buf, void *cdrarg) 1179 { 1180 file_t *fp = buf; 1181 1182 mutex_destroy(&fp->f_tlock); 1183 } 1184 1185 void 1186 finit() 1187 { 1188 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1189 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1190 } 1191 1192 void 1193 unfalloc(file_t *fp) 1194 { 1195 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1196 if (--fp->f_count <= 0) { 1197 /* 1198 * deallocate resources to audit_data 1199 */ 1200 if (audit_active) 1201 audit_unfalloc(fp); 1202 crfree(fp->f_cred); 1203 mutex_exit(&fp->f_tlock); 1204 kmem_cache_free(file_cache, fp); 1205 } else 1206 mutex_exit(&fp->f_tlock); 1207 } 1208 1209 /* 1210 * Given a file descriptor, set the user's 1211 * file pointer to the given parameter. 1212 */ 1213 void 1214 setf(int fd, file_t *fp) 1215 { 1216 uf_info_t *fip = P_FINFO(curproc); 1217 uf_entry_t *ufp; 1218 1219 if (AU_AUDITING()) 1220 audit_setf(fp, fd); 1221 1222 if (fp == NULL) { 1223 mutex_enter(&fip->fi_lock); 1224 UF_ENTER(ufp, fip, fd); 1225 fd_reserve(fip, fd, -1); 1226 mutex_exit(&fip->fi_lock); 1227 } else { 1228 UF_ENTER(ufp, fip, fd); 1229 ASSERT(ufp->uf_busy); 1230 ufp->uf_gen++; 1231 } 1232 ASSERT(ufp->uf_fpollinfo == NULL); 1233 ASSERT(ufp->uf_flag == 0); 1234 ufp->uf_file = fp; 1235 cv_broadcast(&ufp->uf_wanted_cv); 1236 UF_EXIT(ufp); 1237 } 1238 1239 /* 1240 * Given a file descriptor, return the file table flags, plus, 1241 * if this is a socket in asynchronous mode, the FASYNC flag. 1242 * getf() may or may not have been called before calling f_getfl(). 1243 */ 1244 int 1245 f_getfl(int fd, int *flagp) 1246 { 1247 uf_info_t *fip = P_FINFO(curproc); 1248 uf_entry_t *ufp; 1249 file_t *fp; 1250 int error; 1251 1252 if ((uint_t)fd >= fip->fi_nfiles) 1253 error = EBADF; 1254 else { 1255 UF_ENTER(ufp, fip, fd); 1256 if ((fp = ufp->uf_file) == NULL) 1257 error = EBADF; 1258 else { 1259 vnode_t *vp = fp->f_vnode; 1260 int flag = fp->f_flag | (fp->f_flag2 << 16); 1261 1262 /* 1263 * BSD fcntl() FASYNC compatibility. 1264 */ 1265 if (vp->v_type == VSOCK) 1266 flag |= sock_getfasync(vp); 1267 *flagp = flag; 1268 error = 0; 1269 } 1270 UF_EXIT(ufp); 1271 } 1272 1273 return (error); 1274 } 1275 1276 /* 1277 * Given a file descriptor, return the user's file flags. 1278 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1279 * getf() may or may not have been called before calling f_getfd_error(). 1280 */ 1281 int 1282 f_getfd_error(int fd, int *flagp) 1283 { 1284 uf_info_t *fip = P_FINFO(curproc); 1285 uf_entry_t *ufp; 1286 file_t *fp; 1287 int flag; 1288 int error; 1289 1290 if ((uint_t)fd >= fip->fi_nfiles) 1291 error = EBADF; 1292 else { 1293 UF_ENTER(ufp, fip, fd); 1294 if ((fp = ufp->uf_file) == NULL) { 1295 error = EBADF; 1296 } else { 1297 flag = ufp->uf_flag; 1298 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1299 flag |= FD_CLOEXEC; 1300 *flagp = flag; 1301 error = 0; 1302 } 1303 UF_EXIT(ufp); 1304 } 1305 1306 return (error); 1307 } 1308 1309 /* 1310 * getf() must have been called before calling f_getfd(). 1311 */ 1312 char 1313 f_getfd(int fd) 1314 { 1315 int flag = 0; 1316 (void) f_getfd_error(fd, &flag); 1317 return ((char)flag); 1318 } 1319 1320 /* 1321 * Given a file descriptor and file flags, set the user's file flags. 1322 * At present, the only valid flags are FD_CLOEXEC and FD_CLOFORK. 1323 * getf() may or may not have been called before calling f_setfd_error(). 1324 */ 1325 static int 1326 f_setfd_int(int fd, int flags, bool or) 1327 { 1328 uf_info_t *fip = P_FINFO(curproc); 1329 uf_entry_t *ufp; 1330 int error; 1331 1332 if ((uint_t)fd >= fip->fi_nfiles) { 1333 error = EBADF; 1334 } else { 1335 UF_ENTER(ufp, fip, fd); 1336 if (ufp->uf_file == NULL) { 1337 error = EBADF; 1338 } else { 1339 flags &= (FD_CLOEXEC | FD_CLOFORK); 1340 if (or) { 1341 ufp->uf_flag |= flags; 1342 } else { 1343 ufp->uf_flag = flags; 1344 } 1345 error = 0; 1346 } 1347 UF_EXIT(ufp); 1348 } 1349 return (error); 1350 } 1351 1352 int 1353 f_setfd_error(int fd, int flags) 1354 { 1355 return (f_setfd_int(fd, flags, false)); 1356 } 1357 1358 void 1359 f_setfd_or(int fd, short flags) 1360 { 1361 (void) f_setfd_int(fd, flags, true); 1362 } 1363 1364 #define BADFD_MIN 3 1365 #define BADFD_MAX 255 1366 1367 /* 1368 * Attempt to allocate a file descriptor which is bad and which 1369 * is "poison" to the application. It cannot be closed (except 1370 * on exec), allocated for a different use, etc. 1371 */ 1372 int 1373 f_badfd(int start, int *fdp, int action) 1374 { 1375 int fdr; 1376 int badfd; 1377 uf_info_t *fip = P_FINFO(curproc); 1378 1379 #ifdef _LP64 1380 /* No restrictions on 64 bit _file */ 1381 if (get_udatamodel() != DATAMODEL_ILP32) 1382 return (EINVAL); 1383 #endif 1384 1385 if (start > BADFD_MAX || start < BADFD_MIN) 1386 return (EINVAL); 1387 1388 if (action >= NSIG || action < 0) 1389 return (EINVAL); 1390 1391 mutex_enter(&fip->fi_lock); 1392 badfd = fip->fi_badfd; 1393 mutex_exit(&fip->fi_lock); 1394 1395 if (badfd != -1) 1396 return (EAGAIN); 1397 1398 fdr = ufalloc(start); 1399 1400 if (fdr > BADFD_MAX) { 1401 setf(fdr, NULL); 1402 return (EMFILE); 1403 } 1404 if (fdr < 0) 1405 return (EMFILE); 1406 1407 mutex_enter(&fip->fi_lock); 1408 if (fip->fi_badfd != -1) { 1409 /* Lost race */ 1410 mutex_exit(&fip->fi_lock); 1411 setf(fdr, NULL); 1412 return (EAGAIN); 1413 } 1414 fip->fi_action = action; 1415 fip->fi_badfd = fdr; 1416 mutex_exit(&fip->fi_lock); 1417 setf(fdr, NULL); 1418 1419 *fdp = fdr; 1420 1421 return (0); 1422 } 1423 1424 /* 1425 * Allocate a file descriptor and assign it to the vnode "*vpp", 1426 * performing the usual open protocol upon it and returning the 1427 * file descriptor allocated. It is the responsibility of the 1428 * caller to dispose of "*vpp" if any error occurs. 1429 */ 1430 int 1431 fassign(vnode_t **vpp, int mode, int *fdp) 1432 { 1433 file_t *fp; 1434 int error; 1435 int fd; 1436 1437 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1438 return (error); 1439 if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) { 1440 setf(fd, NULL); 1441 unfalloc(fp); 1442 return (error); 1443 } 1444 fp->f_vnode = *vpp; 1445 mutex_exit(&fp->f_tlock); 1446 /* 1447 * Fill in the slot falloc reserved. 1448 */ 1449 setf(fd, fp); 1450 *fdp = fd; 1451 return (0); 1452 } 1453 1454 /* 1455 * When a process forks it must increment the f_count of all file pointers 1456 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1457 * Since we are called when there is only 1 active lwp we don't need to 1458 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1459 * fcnt_add(fip, -1) to restore the counts. 1460 */ 1461 void 1462 fcnt_add(uf_info_t *fip, int incr) 1463 { 1464 int i; 1465 uf_entry_t *ufp; 1466 file_t *fp; 1467 1468 ufp = fip->fi_list; 1469 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1470 if ((fp = ufp->uf_file) != NULL) { 1471 mutex_enter(&fp->f_tlock); 1472 ASSERT((incr == 1 && fp->f_count >= 1) || 1473 (incr == -1 && fp->f_count >= 2)); 1474 fp->f_count += incr; 1475 mutex_exit(&fp->f_tlock); 1476 } 1477 } 1478 } 1479 1480 /* 1481 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1482 * set and also to close all self-open for write /proc file descriptors. 1483 */ 1484 void 1485 close_exec(uf_info_t *fip) 1486 { 1487 int fd; 1488 file_t *fp; 1489 fpollinfo_t *fpip; 1490 uf_entry_t *ufp; 1491 portfd_t *pfd; 1492 1493 ufp = fip->fi_list; 1494 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1495 if ((fp = ufp->uf_file) != NULL && 1496 ((ufp->uf_flag & FD_CLOEXEC) || 1497 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1498 fpip = ufp->uf_fpollinfo; 1499 mutex_enter(&fip->fi_lock); 1500 mutex_enter(&ufp->uf_lock); 1501 fd_reserve(fip, fd, -1); 1502 mutex_exit(&fip->fi_lock); 1503 ufp->uf_file = NULL; 1504 ufp->uf_fpollinfo = NULL; 1505 ufp->uf_flag = 0; 1506 /* 1507 * We may need to cleanup some cached poll states 1508 * in t_pollstate before the fd can be reused. It 1509 * is important that we don't access a stale thread 1510 * structure. We will do the cleanup in two 1511 * phases to avoid deadlock and holding uf_lock for 1512 * too long. In phase 1, hold the uf_lock and call 1513 * pollblockexit() to set state in t_pollstate struct 1514 * so that a thread does not exit on us. In phase 2, 1515 * we drop the uf_lock and call pollcacheclean(). 1516 */ 1517 pfd = ufp->uf_portfd; 1518 ufp->uf_portfd = NULL; 1519 if (fpip != NULL) 1520 pollblockexit(fpip); 1521 mutex_exit(&ufp->uf_lock); 1522 if (fpip != NULL) 1523 pollcacheclean(fpip, fd); 1524 if (pfd) 1525 port_close_fd(pfd); 1526 (void) closef(fp); 1527 } 1528 } 1529 1530 /* Reset bad fd */ 1531 fip->fi_badfd = -1; 1532 fip->fi_action = -1; 1533 } 1534 1535 /* 1536 * Utility function called by most of the *at() system call interfaces. 1537 * 1538 * Generate a starting vnode pointer for an (fd, path) pair where 'fd' 1539 * is an open file descriptor for a directory to be used as the starting 1540 * point for the lookup of the relative pathname 'path' (or, if path is 1541 * NULL, generate a vnode pointer for the direct target of the operation). 1542 * 1543 * If we successfully return a non-NULL startvp, it has been the target 1544 * of VN_HOLD() and the caller must call VN_RELE() on it. 1545 */ 1546 int 1547 fgetstartvp(int fd, char *path, vnode_t **startvpp) 1548 { 1549 vnode_t *startvp; 1550 file_t *startfp; 1551 char startchar; 1552 1553 if (fd == AT_FDCWD && path == NULL) 1554 return (EFAULT); 1555 1556 if (fd == AT_FDCWD) { 1557 /* 1558 * Start from the current working directory. 1559 */ 1560 startvp = NULL; 1561 } else { 1562 if (path == NULL) 1563 startchar = '\0'; 1564 else if (copyin(path, &startchar, sizeof (char))) 1565 return (EFAULT); 1566 1567 if (startchar == '/') { 1568 /* 1569 * 'path' is an absolute pathname. 1570 */ 1571 startvp = NULL; 1572 } else { 1573 /* 1574 * 'path' is a relative pathname or we will 1575 * be applying the operation to 'fd' itself. 1576 */ 1577 if ((startfp = getf(fd)) == NULL) 1578 return (EBADF); 1579 startvp = startfp->f_vnode; 1580 VN_HOLD(startvp); 1581 releasef(fd); 1582 } 1583 } 1584 *startvpp = startvp; 1585 return (0); 1586 } 1587 1588 /* 1589 * Called from fchownat() and fchmodat() to set ownership and mode. 1590 * The contents of *vap must be set before calling here. 1591 */ 1592 int 1593 fsetattrat(int fd, char *path, int flags, struct vattr *vap) 1594 { 1595 vnode_t *startvp; 1596 vnode_t *vp; 1597 int error; 1598 1599 /* 1600 * Since we are never called to set the size of a file, we don't 1601 * need to check for non-blocking locks (via nbl_need_check(vp)). 1602 */ 1603 ASSERT(!(vap->va_mask & AT_SIZE)); 1604 1605 if ((error = fgetstartvp(fd, path, &startvp)) != 0) 1606 return (error); 1607 if (AU_AUDITING() && startvp != NULL) 1608 audit_setfsat_path(1); 1609 1610 /* 1611 * Do lookup for fchownat/fchmodat when path not NULL 1612 */ 1613 if (path != NULL) { 1614 if (error = lookupnameat(path, UIO_USERSPACE, 1615 (flags == AT_SYMLINK_NOFOLLOW) ? 1616 NO_FOLLOW : FOLLOW, 1617 NULLVPP, &vp, startvp)) { 1618 if (startvp != NULL) 1619 VN_RELE(startvp); 1620 return (error); 1621 } 1622 } else { 1623 vp = startvp; 1624 ASSERT(vp); 1625 VN_HOLD(vp); 1626 } 1627 1628 if (vp->v_type == VLNK && (vap->va_mask & AT_MODE) != 0) { 1629 error = EOPNOTSUPP; 1630 } else if (vn_is_readonly(vp)) { 1631 error = EROFS; 1632 } else { 1633 error = VOP_SETATTR(vp, vap, 0, CRED(), NULL); 1634 } 1635 1636 if (startvp != NULL) 1637 VN_RELE(startvp); 1638 VN_RELE(vp); 1639 1640 return (error); 1641 } 1642 1643 /* 1644 * Return true if the given vnode is referenced by any 1645 * entry in the current process's file descriptor table. 1646 */ 1647 int 1648 fisopen(vnode_t *vp) 1649 { 1650 int fd; 1651 file_t *fp; 1652 vnode_t *ovp; 1653 uf_info_t *fip = P_FINFO(curproc); 1654 uf_entry_t *ufp; 1655 1656 mutex_enter(&fip->fi_lock); 1657 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1658 UF_ENTER(ufp, fip, fd); 1659 if ((fp = ufp->uf_file) != NULL && 1660 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1661 UF_EXIT(ufp); 1662 mutex_exit(&fip->fi_lock); 1663 return (1); 1664 } 1665 UF_EXIT(ufp); 1666 } 1667 mutex_exit(&fip->fi_lock); 1668 return (0); 1669 } 1670 1671 /* 1672 * Return zero if at least one file currently open (by curproc) shouldn't be 1673 * allowed to change zones. 1674 */ 1675 int 1676 files_can_change_zones(void) 1677 { 1678 int fd; 1679 file_t *fp; 1680 uf_info_t *fip = P_FINFO(curproc); 1681 uf_entry_t *ufp; 1682 1683 mutex_enter(&fip->fi_lock); 1684 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1685 UF_ENTER(ufp, fip, fd); 1686 if ((fp = ufp->uf_file) != NULL && 1687 !vn_can_change_zones(fp->f_vnode)) { 1688 UF_EXIT(ufp); 1689 mutex_exit(&fip->fi_lock); 1690 return (0); 1691 } 1692 UF_EXIT(ufp); 1693 } 1694 mutex_exit(&fip->fi_lock); 1695 return (1); 1696 } 1697 1698 #ifdef DEBUG 1699 1700 /* 1701 * The following functions are only used in ASSERT()s elsewhere. 1702 * They do not modify the state of the system. 1703 */ 1704 1705 /* 1706 * Return true (1) if the current thread is in the fpollinfo 1707 * list for this file descriptor, else false (0). 1708 */ 1709 static int 1710 curthread_in_plist(uf_entry_t *ufp) 1711 { 1712 fpollinfo_t *fpip; 1713 1714 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1715 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1716 if (fpip->fp_thread == curthread) 1717 return (1); 1718 return (0); 1719 } 1720 1721 /* 1722 * Sanity check to make sure that after lwp_exit(), 1723 * curthread does not appear on any fd's fpollinfo list. 1724 */ 1725 void 1726 checkfpollinfo(void) 1727 { 1728 int fd; 1729 uf_info_t *fip = P_FINFO(curproc); 1730 uf_entry_t *ufp; 1731 1732 mutex_enter(&fip->fi_lock); 1733 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1734 UF_ENTER(ufp, fip, fd); 1735 ASSERT(!curthread_in_plist(ufp)); 1736 UF_EXIT(ufp); 1737 } 1738 mutex_exit(&fip->fi_lock); 1739 } 1740 1741 /* 1742 * Return true (1) if the current thread is in the fpollinfo 1743 * list for this file descriptor, else false (0). 1744 * This is the same as curthread_in_plist(), 1745 * but is called w/o holding uf_lock. 1746 */ 1747 int 1748 infpollinfo(int fd) 1749 { 1750 uf_info_t *fip = P_FINFO(curproc); 1751 uf_entry_t *ufp; 1752 int rc; 1753 1754 UF_ENTER(ufp, fip, fd); 1755 rc = curthread_in_plist(ufp); 1756 UF_EXIT(ufp); 1757 return (rc); 1758 } 1759 1760 #endif /* DEBUG */ 1761 1762 /* 1763 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1764 * thread's poll cache. Each lwp polling this file descriptor should call 1765 * this routine once. 1766 */ 1767 void 1768 addfpollinfo(int fd) 1769 { 1770 struct uf_entry *ufp; 1771 fpollinfo_t *fpip; 1772 uf_info_t *fip = P_FINFO(curproc); 1773 1774 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1775 fpip->fp_thread = curthread; 1776 UF_ENTER(ufp, fip, fd); 1777 /* 1778 * Assert we are not already on the list, that is, that 1779 * this lwp did not call addfpollinfo twice for the same fd. 1780 */ 1781 ASSERT(!curthread_in_plist(ufp)); 1782 /* 1783 * addfpollinfo is always done inside the getf/releasef pair. 1784 */ 1785 ASSERT(ufp->uf_refcnt >= 1); 1786 fpip->fp_next = ufp->uf_fpollinfo; 1787 ufp->uf_fpollinfo = fpip; 1788 UF_EXIT(ufp); 1789 } 1790 1791 /* 1792 * Delete curthread from fpollinfo list if it is there. 1793 */ 1794 void 1795 delfpollinfo(int fd) 1796 { 1797 struct uf_entry *ufp; 1798 struct fpollinfo *fpip; 1799 struct fpollinfo **fpipp; 1800 uf_info_t *fip = P_FINFO(curproc); 1801 1802 UF_ENTER(ufp, fip, fd); 1803 for (fpipp = &ufp->uf_fpollinfo; 1804 (fpip = *fpipp) != NULL; 1805 fpipp = &fpip->fp_next) { 1806 if (fpip->fp_thread == curthread) { 1807 *fpipp = fpip->fp_next; 1808 kmem_free(fpip, sizeof (fpollinfo_t)); 1809 break; 1810 } 1811 } 1812 /* 1813 * Assert that we are not still on the list, that is, that 1814 * this lwp did not call addfpollinfo twice for the same fd. 1815 */ 1816 ASSERT(!curthread_in_plist(ufp)); 1817 UF_EXIT(ufp); 1818 } 1819 1820 /* 1821 * fd is associated with a port. pfd is a pointer to the fd entry in the 1822 * cache of the port. 1823 */ 1824 1825 void 1826 addfd_port(int fd, portfd_t *pfd) 1827 { 1828 struct uf_entry *ufp; 1829 uf_info_t *fip = P_FINFO(curproc); 1830 1831 UF_ENTER(ufp, fip, fd); 1832 /* 1833 * addfd_port is always done inside the getf/releasef pair. 1834 */ 1835 ASSERT(ufp->uf_refcnt >= 1); 1836 if (ufp->uf_portfd == NULL) { 1837 /* first entry */ 1838 ufp->uf_portfd = pfd; 1839 pfd->pfd_next = NULL; 1840 } else { 1841 pfd->pfd_next = ufp->uf_portfd; 1842 ufp->uf_portfd = pfd; 1843 pfd->pfd_next->pfd_prev = pfd; 1844 } 1845 UF_EXIT(ufp); 1846 } 1847 1848 void 1849 delfd_port(int fd, portfd_t *pfd) 1850 { 1851 struct uf_entry *ufp; 1852 uf_info_t *fip = P_FINFO(curproc); 1853 1854 UF_ENTER(ufp, fip, fd); 1855 /* 1856 * delfd_port is always done inside the getf/releasef pair. 1857 */ 1858 ASSERT(ufp->uf_refcnt >= 1); 1859 if (ufp->uf_portfd == pfd) { 1860 /* remove first entry */ 1861 ufp->uf_portfd = pfd->pfd_next; 1862 } else { 1863 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1864 if (pfd->pfd_next != NULL) 1865 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1866 } 1867 UF_EXIT(ufp); 1868 } 1869 1870 static void 1871 port_close_fd(portfd_t *pfd) 1872 { 1873 portfd_t *pfdn; 1874 1875 /* 1876 * At this point, no other thread should access 1877 * the portfd_t list for this fd. The uf_file, uf_portfd 1878 * pointers in the uf_entry_t struct for this fd would 1879 * be set to NULL. 1880 */ 1881 for (; pfd != NULL; pfd = pfdn) { 1882 pfdn = pfd->pfd_next; 1883 port_close_pfd(pfd); 1884 } 1885 } 1886