xref: /illumos-gate/usr/src/uts/common/os/fio.c (revision 9164a50bf932130cbb5097a16f6986873ce0e6e5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc.
25  * Copyright 2024 Oxide Computer Company
26  */
27 
28 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
29 /*	All Rights Reserved */
30 
31 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/errno.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/conf.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 #include <sys/pathname.h>
43 #include <sys/file.h>
44 #include <sys/flock.h>
45 #include <sys/proc.h>
46 #include <sys/var.h>
47 #include <sys/cpuvar.h>
48 #include <sys/open.h>
49 #include <sys/cmn_err.h>
50 #include <sys/priocntl.h>
51 #include <sys/procset.h>
52 #include <sys/prsystm.h>
53 #include <sys/debug.h>
54 #include <sys/kmem.h>
55 #include <sys/atomic.h>
56 #include <sys/fcntl.h>
57 #include <sys/poll.h>
58 #include <sys/rctl.h>
59 #include <sys/port_impl.h>
60 #include <sys/dtrace.h>
61 #include <sys/stdbool.h>
62 
63 #include <c2/audit.h>
64 #include <sys/nbmlock.h>
65 
66 #ifdef DEBUG
67 
68 static uint32_t afd_maxfd;	/* # of entries in maximum allocated array */
69 static uint32_t afd_alloc;	/* count of kmem_alloc()s */
70 static uint32_t afd_free;	/* count of kmem_free()s */
71 static uint32_t afd_wait;	/* count of waits on non-zero ref count */
72 #define	MAXFD(x)	(afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
73 #define	COUNT(x)	atomic_inc_32(&x)
74 
75 #else	/* DEBUG */
76 
77 #define	MAXFD(x)
78 #define	COUNT(x)
79 
80 #endif	/* DEBUG */
81 
82 kmem_cache_t *file_cache;
83 
84 static void port_close_fd(portfd_t *);
85 
86 /*
87  * File descriptor allocation.
88  *
89  * fd_find(fip, minfd) finds the first available descriptor >= minfd.
90  * The most common case is open(2), in which minfd = 0, but we must also
91  * support fcntl(fd, F_DUPFD, minfd).
92  *
93  * The algorithm is as follows: we keep all file descriptors in an infix
94  * binary tree in which each node records the number of descriptors
95  * allocated in its right subtree, including itself.  Starting at minfd,
96  * we ascend the tree until we find a non-fully allocated right subtree.
97  * We then descend that subtree in a binary search for the smallest fd.
98  * Finally, we ascend the tree again to increment the allocation count
99  * of every subtree containing the newly-allocated fd.  Freeing an fd
100  * requires only the last step: we ascend the tree to decrement allocation
101  * counts.  Each of these three steps (ascent to find non-full subtree,
102  * descent to find lowest fd, ascent to update allocation counts) is
103  * O(log n), thus the algorithm as a whole is O(log n).
104  *
105  * We don't implement the fd tree using the customary left/right/parent
106  * pointers, but instead take advantage of the glorious mathematics of
107  * full infix binary trees.  For reference, here's an illustration of the
108  * logical structure of such a tree, rooted at 4 (binary 100), covering
109  * the range 1-7 (binary 001-111).  Our canonical trees do not include
110  * fd 0; we'll deal with that later.
111  *
112  *	      100
113  *	     /	 \
114  *	    /	  \
115  *	  010	  110
116  *	  / \	  / \
117  *	001 011 101 111
118  *
119  * We make the following observations, all of which are easily proven by
120  * induction on the depth of the tree:
121  *
122  * (T1) The least-significant bit (LSB) of any node is equal to its level
123  *      in the tree.  In our example, nodes 001, 011, 101 and 111 are at
124  *      level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
125  *
126  * (T2) The child size (CSIZE) of node N -- that is, the total number of
127  *	right-branch descendants in a child of node N, including itself -- is
128  *	given by clearing all but the least significant bit of N.  This
129  *	follows immediately from (T1).  Applying this rule to our example, we
130  *	see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
131  *
132  * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
133  *	ancestor containing node N in its right child -- is given by clearing
134  *	the LSB of N.  For example, LPARENT(111) = 110 and LPARENT(110) = 100.
135  *	Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
136  *	the fact that these are leftmost nodes.  Note that this algorithm
137  *	automatically skips generations as necessary.  For example, the parent
138  *      of node 101 is 110, which is a *right* ancestor (not what we want);
139  *      but its grandparent is 100, which is a left ancestor. Clearing the LSB
140  *      of 101 gets us to 100 directly, skipping right past the uninteresting
141  *      generation (110).
142  *
143  *      Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
144  *	the LSB, we can express LPARENT() nicely in terms of CSIZE():
145  *
146  *	LPARENT(N) = N - CSIZE(N)
147  *
148  * (T4) The nearest right ancestor (RPARENT) of node N is given by:
149  *
150  *	RPARENT(N) = N + CSIZE(N)
151  *
152  * (T5) For every interior node, the children differ from their parent by
153  *	CSIZE(parent) / 2.  In our example, CSIZE(100) / 2 = 2 = 10 binary,
154  *      and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
155  *
156  * Next, we'll need a few two's-complement math tricks.  Suppose a number,
157  * N, has the following form:
158  *
159  *		N = xxxx10...0
160  *
161  * That is, the binary representation of N consists of some string of bits,
162  * then a 1, then all zeroes.  This amounts to nothing more than saying that
163  * N has a least-significant bit, which is true for any N != 0.  If we look
164  * at N and N - 1 together, we see that we can combine them in useful ways:
165  *
166  *		  N = xxxx10...0
167  *	      N - 1 = xxxx01...1
168  *	------------------------
169  *	N & (N - 1) = xxxx000000
170  *	N | (N - 1) = xxxx111111
171  *	N ^ (N - 1) =     111111
172  *
173  * In particular, this suggests several easy ways to clear all but the LSB,
174  * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
175  * We'll opt for this formulation:
176  *
177  *	(C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
178  *
179  * Similarly, we have an easy way to determine LPARENT(N), which requires
180  * that we clear the LSB of N:
181  *
182  *	(L1) LPARENT(N) = N & (N - 1)
183  *
184  * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
185  * When combined with (T4), this yields an easy way to compute RPARENT(N):
186  *
187  *	(R1) RPARENT(N) = (N | (N - 1)) + 1
188  *
189  * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
190  * move the fd range from [1, 2^n) to [0, 2^n - 1).  This is straightforward,
191  * so there's no need to belabor the algebra; the revised relations become:
192  *
193  *	(C1a) CSIZE(N) = N ^ (N | (N + 1))
194  *
195  *	(L1a) LPARENT(N) = (N & (N + 1)) - 1
196  *
197  *	(R1a) RPARENT(N) = N | (N + 1)
198  *
199  * This completes the mathematical framework.  We now have all the tools
200  * we need to implement fd_find() and fd_reserve().
201  *
202  * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
203  * It does not actually allocate the descriptor; that's done by fd_reserve().
204  * fd_find() proceeds in two steps:
205  *
206  * (1) Find the leftmost subtree that contains a descriptor >= minfd.
207  *     We start at the right subtree rooted at minfd.  If this subtree is
208  *     not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
209  *     step 1 is done.  Otherwise, we know that all fds in this subtree
210  *     are taken, so we ascend to RPARENT(minfd) using (R1a).  We repeat
211  *     this process until we either find a candidate subtree or exceed
212  *     fip->fi_nfiles.  We use (C1a) to compute CSIZE().
213  *
214  * (2) Find the smallest fd in the subtree discovered by step 1.
215  *     Starting at the root of this subtree, we descend to find the
216  *     smallest available fd.  Since the left children have the smaller
217  *     fds, we will descend rightward only when the left child is full.
218  *
219  *     We begin by comparing the number of allocated fds in the root
220  *     to the number of allocated fds in its right child; if they differ
221  *     by exactly CSIZE(child), we know the left subtree is full, so we
222  *     descend right; that is, the right child becomes the search root.
223  *     Otherwise we leave the root alone and start following the right
224  *     child's left children.  As fortune would have it, this is very
225  *     simple computationally: by (T5), the right child of fd is just
226  *     fd + size, where size = CSIZE(fd) / 2.  Applying (T5) again,
227  *     we find that the right child's left child is fd + size - (size / 2) =
228  *     fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
229  *     fd + (size / 4), and so on.  In general, fd's right child's
230  *     leftmost nth descendant is fd + (size >> n).  Thus, to follow
231  *     the right child's left descendants, we just halve the size in
232  *     each iteration of the search.
233  *
234  *     When we descend leftward, we must keep track of the number of fds
235  *     that were allocated in all the right subtrees we rejected, so we
236  *     know how many of the root fd's allocations are in the remaining
237  *     (as yet unexplored) leftmost part of its right subtree.  When we
238  *     encounter a fully-allocated left child -- that is, when we find
239  *     that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
240  *     (as described earlier), resetting ralloc to zero.
241  *
242  * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
243  * on whether incr is 1 or -1.  Starting at fd, fd_reserve() ascends
244  * the leftmost ancestors (see (T3)) and updates the allocation counts.
245  * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
246  *
247  * flist_minsize() finds the minimal tree that still covers all
248  * used fds; as long as the allocation count of a root node is zero, we
249  * don't need that node or its right subtree.
250  *
251  * flist_nalloc() counts the number of allocated fds in the tree, by starting
252  * at the top of the tree and summing the right-subtree allocation counts as
253  * it descends leftwards.
254  *
255  * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
256  * 2^n - 1.  This ensures that the fd trees are always full, which saves
257  * quite a bit of boundary checking.
258  */
259 static int
260 fd_find(uf_info_t *fip, int minfd)
261 {
262 	int size, ralloc, fd;
263 
264 	ASSERT(MUTEX_HELD(&fip->fi_lock));
265 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
266 
267 	for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
268 		size = fd ^ (fd | (fd + 1));
269 		if (fip->fi_list[fd].uf_alloc == size)
270 			continue;
271 		for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
272 			ralloc += fip->fi_list[fd + size].uf_alloc;
273 			if (fip->fi_list[fd].uf_alloc == ralloc + size) {
274 				fd += size;
275 				ralloc = 0;
276 			}
277 		}
278 		return (fd);
279 	}
280 	return (-1);
281 }
282 
283 static void
284 fd_reserve(uf_info_t *fip, int fd, int incr)
285 {
286 	int pfd;
287 	uf_entry_t *ufp = &fip->fi_list[fd];
288 
289 	ASSERT((uint_t)fd < fip->fi_nfiles);
290 	ASSERT((ufp->uf_busy == 0 && incr == 1) ||
291 	    (ufp->uf_busy == 1 && incr == -1));
292 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
293 	ASSERT(MUTEX_HELD(&fip->fi_lock));
294 
295 	for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
296 		fip->fi_list[pfd].uf_alloc += incr;
297 
298 	ufp->uf_busy += incr;
299 }
300 
301 static int
302 flist_minsize(uf_info_t *fip)
303 {
304 	int fd;
305 
306 	/*
307 	 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
308 	 * by flist_fork(), which relies on other mechanisms for mutual
309 	 * exclusion.
310 	 */
311 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
312 
313 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
314 		if (fip->fi_list[fd >> 1].uf_alloc != 0)
315 			break;
316 
317 	return (fd);
318 }
319 
320 static int
321 flist_nalloc(uf_info_t *fip)
322 {
323 	int fd;
324 	int nalloc = 0;
325 
326 	ASSERT(MUTEX_HELD(&fip->fi_lock));
327 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
328 
329 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
330 		nalloc += fip->fi_list[fd >> 1].uf_alloc;
331 
332 	return (nalloc);
333 }
334 
335 /*
336  * Increase size of the fi_list array to accommodate at least maxfd.
337  * We keep the size of the form 2^n - 1 for benefit of fd_find().
338  */
339 static void
340 flist_grow(int maxfd)
341 {
342 	uf_info_t *fip = P_FINFO(curproc);
343 	int newcnt, oldcnt;
344 	uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
345 	uf_rlist_t *urp;
346 
347 	for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
348 		continue;
349 
350 	newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
351 
352 	mutex_enter(&fip->fi_lock);
353 	oldcnt = fip->fi_nfiles;
354 	if (newcnt <= oldcnt) {
355 		mutex_exit(&fip->fi_lock);
356 		kmem_free(newlist, newcnt * sizeof (uf_entry_t));
357 		return;
358 	}
359 	ASSERT((newcnt & (newcnt + 1)) == 0);
360 	oldlist = fip->fi_list;
361 	oldend = oldlist + oldcnt;
362 	newend = newlist + oldcnt;	/* no need to lock beyond old end */
363 
364 	/*
365 	 * fi_list and fi_nfiles cannot change while any uf_lock is held,
366 	 * so we must grab all the old locks *and* the new locks up to oldcnt.
367 	 * (Locks beyond the end of oldcnt aren't visible until we store
368 	 * the new fi_nfiles, which is the last thing we do before dropping
369 	 * all the locks, so there's no need to acquire these locks).
370 	 * Holding the new locks is necessary because when fi_list changes
371 	 * to point to the new list, fi_nfiles won't have been stored yet.
372 	 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
373 	 * could see the new fi_list, grab the new uf_lock, and then see
374 	 * fi_nfiles change while the lock is held -- in violation of
375 	 * UF_ENTER() semantics.
376 	 */
377 	for (src = oldlist; src < oldend; src++)
378 		mutex_enter(&src->uf_lock);
379 
380 	for (dst = newlist; dst < newend; dst++)
381 		mutex_enter(&dst->uf_lock);
382 
383 	for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
384 		dst->uf_file = src->uf_file;
385 		dst->uf_fpollinfo = src->uf_fpollinfo;
386 		dst->uf_refcnt = src->uf_refcnt;
387 		dst->uf_alloc = src->uf_alloc;
388 		dst->uf_flag = src->uf_flag;
389 		dst->uf_busy = src->uf_busy;
390 		dst->uf_portfd = src->uf_portfd;
391 		dst->uf_gen = src->uf_gen;
392 	}
393 
394 	/*
395 	 * As soon as we store the new flist, future locking operations
396 	 * will use it.  Therefore, we must ensure that all the state
397 	 * we've just established reaches global visibility before the
398 	 * new flist does.
399 	 */
400 	membar_producer();
401 	fip->fi_list = newlist;
402 
403 	/*
404 	 * Routines like getf() make an optimistic check on the validity
405 	 * of the supplied file descriptor: if it's less than the current
406 	 * value of fi_nfiles -- examined without any locks -- then it's
407 	 * safe to attempt a UF_ENTER() on that fd (which is a valid
408 	 * assumption because fi_nfiles only increases).  Therefore, it
409 	 * is critical that the new value of fi_nfiles not reach global
410 	 * visibility until after the new fi_list: if it happened the
411 	 * other way around, getf() could see the new fi_nfiles and attempt
412 	 * a UF_ENTER() on the old fi_list, which would write beyond its
413 	 * end if the fd exceeded the old fi_nfiles.
414 	 */
415 	membar_producer();
416 	fip->fi_nfiles = newcnt;
417 
418 	/*
419 	 * The new state is consistent now, so we can drop all the locks.
420 	 */
421 	for (dst = newlist; dst < newend; dst++)
422 		mutex_exit(&dst->uf_lock);
423 
424 	for (src = oldlist; src < oldend; src++) {
425 		/*
426 		 * If any threads are blocked on the old cvs, wake them.
427 		 * This will force them to wake up, discover that fi_list
428 		 * has changed, and go back to sleep on the new cvs.
429 		 */
430 		cv_broadcast(&src->uf_wanted_cv);
431 		cv_broadcast(&src->uf_closing_cv);
432 		mutex_exit(&src->uf_lock);
433 	}
434 
435 	mutex_exit(&fip->fi_lock);
436 
437 	/*
438 	 * Retire the old flist.  We can't actually kmem_free() it now
439 	 * because someone may still have a pointer to it.  Instead,
440 	 * we link it onto a list of retired flists.  The new flist
441 	 * is at least double the size of the previous flist, so the
442 	 * total size of all retired flists will be less than the size
443 	 * of the current one (to prove, consider the sum of a geometric
444 	 * series in powers of 2).  exit() frees the retired flists.
445 	 */
446 	urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
447 	urp->ur_list = oldlist;
448 	urp->ur_nfiles = oldcnt;
449 
450 	mutex_enter(&fip->fi_lock);
451 	urp->ur_next = fip->fi_rlist;
452 	fip->fi_rlist = urp;
453 	mutex_exit(&fip->fi_lock);
454 }
455 
456 /*
457  * Utility functions for keeping track of the active file descriptors.
458  */
459 void
460 clear_stale_fd()		/* called from post_syscall() */
461 {
462 	afd_t *afd = &curthread->t_activefd;
463 	int i;
464 
465 	/* uninitialized is ok here, a_nfd is then zero */
466 	for (i = 0; i < afd->a_nfd; i++) {
467 		/* assert that this should not be necessary */
468 		ASSERT(afd->a_fd[i] == -1);
469 		afd->a_fd[i] = -1;
470 	}
471 	afd->a_stale = 0;
472 }
473 
474 void
475 free_afd(afd_t *afd)		/* called below and from thread_free() */
476 {
477 	int i;
478 
479 	/* free the buffer if it was kmem_alloc()ed */
480 	if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
481 		COUNT(afd_free);
482 		kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
483 	}
484 
485 	/* (re)initialize the structure */
486 	afd->a_fd = &afd->a_buf[0];
487 	afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
488 	afd->a_stale = 0;
489 	for (i = 0; i < afd->a_nfd; i++)
490 		afd->a_fd[i] = -1;
491 }
492 
493 static void
494 set_active_fd(int fd)
495 {
496 	afd_t *afd = &curthread->t_activefd;
497 	int i;
498 	int *old_fd;
499 	int old_nfd;
500 	int *new_fd;
501 	int new_nfd;
502 
503 	if (afd->a_nfd == 0) {	/* first time initialization */
504 		ASSERT(fd == -1);
505 		mutex_enter(&afd->a_fdlock);
506 		free_afd(afd);
507 		mutex_exit(&afd->a_fdlock);
508 	}
509 
510 	/* insert fd into vacant slot, if any */
511 	for (i = 0; i < afd->a_nfd; i++) {
512 		if (afd->a_fd[i] == -1) {
513 			afd->a_fd[i] = fd;
514 			return;
515 		}
516 	}
517 
518 	/*
519 	 * Reallocate the a_fd[] array to add one more slot.
520 	 */
521 	ASSERT(fd == -1);
522 	old_nfd = afd->a_nfd;
523 	old_fd = afd->a_fd;
524 	new_nfd = old_nfd + 1;
525 	new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
526 	MAXFD(new_nfd);
527 	COUNT(afd_alloc);
528 
529 	mutex_enter(&afd->a_fdlock);
530 	afd->a_fd = new_fd;
531 	afd->a_nfd = new_nfd;
532 	for (i = 0; i < old_nfd; i++)
533 		afd->a_fd[i] = old_fd[i];
534 	afd->a_fd[i] = fd;
535 	mutex_exit(&afd->a_fdlock);
536 
537 	if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
538 		COUNT(afd_free);
539 		kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
540 	}
541 }
542 
543 void
544 clear_active_fd(int fd)		/* called below and from aio.c */
545 {
546 	afd_t *afd = &curthread->t_activefd;
547 	int i;
548 
549 	for (i = 0; i < afd->a_nfd; i++) {
550 		if (afd->a_fd[i] == fd) {
551 			afd->a_fd[i] = -1;
552 			break;
553 		}
554 	}
555 	ASSERT(i < afd->a_nfd);		/* not found is not ok */
556 }
557 
558 /*
559  * Does this thread have this fd active?
560  */
561 static int
562 is_active_fd(kthread_t *t, int fd)
563 {
564 	afd_t *afd = &t->t_activefd;
565 	int i;
566 
567 	ASSERT(t != curthread);
568 	mutex_enter(&afd->a_fdlock);
569 	/* uninitialized is ok here, a_nfd is then zero */
570 	for (i = 0; i < afd->a_nfd; i++) {
571 		if (afd->a_fd[i] == fd) {
572 			mutex_exit(&afd->a_fdlock);
573 			return (1);
574 		}
575 	}
576 	mutex_exit(&afd->a_fdlock);
577 	return (0);
578 }
579 
580 /*
581  * Convert a user supplied file descriptor into a pointer to a file structure.
582  * Only task is to check range of the descriptor (soft resource limit was
583  * enforced at open time and shouldn't be checked here).
584  */
585 file_t *
586 getf_gen(int fd, uf_entry_gen_t *genp)
587 {
588 	uf_info_t *fip = P_FINFO(curproc);
589 	uf_entry_t *ufp;
590 	file_t *fp;
591 
592 	if ((uint_t)fd >= fip->fi_nfiles)
593 		return (NULL);
594 
595 	/*
596 	 * Reserve a slot in the active fd array now so we can call
597 	 * set_active_fd(fd) for real below, while still inside UF_ENTER().
598 	 */
599 	set_active_fd(-1);
600 
601 	UF_ENTER(ufp, fip, fd);
602 
603 	if ((fp = ufp->uf_file) == NULL) {
604 		UF_EXIT(ufp);
605 
606 		if (fd == fip->fi_badfd && fip->fi_action > 0)
607 			tsignal(curthread, fip->fi_action);
608 
609 		return (NULL);
610 	}
611 	ufp->uf_refcnt++;
612 	if (genp != NULL) {
613 		*genp = ufp->uf_gen;
614 	}
615 
616 	set_active_fd(fd);	/* record the active file descriptor */
617 
618 	UF_EXIT(ufp);
619 
620 	return (fp);
621 }
622 
623 file_t *
624 getf(int fd)
625 {
626 	return (getf_gen(fd, NULL));
627 }
628 
629 /*
630  * Close whatever file currently occupies the file descriptor slot
631  * and install the new file, usually NULL, in the file descriptor slot.
632  * The close must complete before we release the file descriptor slot.
633  * If newfp != NULL we only return an error if we can't allocate the
634  * slot so the caller knows that it needs to free the filep;
635  * in the other cases we return the error number from closef().
636  */
637 int
638 closeandsetf(int fd, file_t *newfp)
639 {
640 	proc_t *p = curproc;
641 	uf_info_t *fip = P_FINFO(p);
642 	uf_entry_t *ufp;
643 	file_t *fp;
644 	fpollinfo_t *fpip;
645 	portfd_t *pfd;
646 	int error;
647 
648 	if ((uint_t)fd >= fip->fi_nfiles) {
649 		if (newfp == NULL)
650 			return (EBADF);
651 		flist_grow(fd);
652 	}
653 
654 	if (newfp != NULL) {
655 		/*
656 		 * If ufp is reserved but has no file pointer, it's in the
657 		 * transition between ufalloc() and setf().  We must wait
658 		 * for this transition to complete before assigning the
659 		 * new non-NULL file pointer.
660 		 */
661 		mutex_enter(&fip->fi_lock);
662 		if (fd == fip->fi_badfd) {
663 			mutex_exit(&fip->fi_lock);
664 			if (fip->fi_action > 0)
665 				tsignal(curthread, fip->fi_action);
666 			return (EBADF);
667 		}
668 		UF_ENTER(ufp, fip, fd);
669 		while (ufp->uf_busy && ufp->uf_file == NULL) {
670 			mutex_exit(&fip->fi_lock);
671 			cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
672 			UF_EXIT(ufp);
673 			mutex_enter(&fip->fi_lock);
674 			UF_ENTER(ufp, fip, fd);
675 		}
676 		if ((fp = ufp->uf_file) == NULL) {
677 			ASSERT(ufp->uf_fpollinfo == NULL);
678 			ASSERT(ufp->uf_flag == 0);
679 			fd_reserve(fip, fd, 1);
680 			ufp->uf_file = newfp;
681 			ufp->uf_gen++;
682 			UF_EXIT(ufp);
683 			mutex_exit(&fip->fi_lock);
684 			return (0);
685 		}
686 		mutex_exit(&fip->fi_lock);
687 	} else {
688 		UF_ENTER(ufp, fip, fd);
689 		if ((fp = ufp->uf_file) == NULL) {
690 			UF_EXIT(ufp);
691 			return (EBADF);
692 		}
693 	}
694 
695 	ASSERT(ufp->uf_busy);
696 	ufp->uf_file = NULL;
697 	ufp->uf_flag = 0;
698 
699 	/*
700 	 * If the file descriptor reference count is non-zero, then
701 	 * some other lwp in the process is performing system call
702 	 * activity on the file.  To avoid blocking here for a long
703 	 * time (the other lwp might be in a long term sleep in its
704 	 * system call), we scan all other lwps in the process to
705 	 * find the ones with this fd as one of their active fds,
706 	 * set their a_stale flag, and set them running if they
707 	 * are in an interruptible sleep so they will emerge from
708 	 * their system calls immediately.  post_syscall() will
709 	 * test the a_stale flag and set errno to EBADF.
710 	 */
711 	ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
712 	if (ufp->uf_refcnt > 0) {
713 		kthread_t *t;
714 
715 		/*
716 		 * We call sprlock_proc(p) to ensure that the thread
717 		 * list will not change while we are scanning it.
718 		 * To do this, we must drop ufp->uf_lock and then
719 		 * reacquire it (so we are not holding both p->p_lock
720 		 * and ufp->uf_lock at the same time).  ufp->uf_lock
721 		 * must be held for is_active_fd() to be correct
722 		 * (set_active_fd() is called while holding ufp->uf_lock).
723 		 *
724 		 * This is a convoluted dance, but it is better than
725 		 * the old brute-force method of stopping every thread
726 		 * in the process by calling holdlwps(SHOLDFORK1).
727 		 */
728 
729 		UF_EXIT(ufp);
730 		COUNT(afd_wait);
731 
732 		mutex_enter(&p->p_lock);
733 		sprlock_proc(p);
734 		mutex_exit(&p->p_lock);
735 
736 		UF_ENTER(ufp, fip, fd);
737 		ASSERT(ufp->uf_file == NULL);
738 
739 		if (ufp->uf_refcnt > 0) {
740 			for (t = curthread->t_forw;
741 			    t != curthread;
742 			    t = t->t_forw) {
743 				if (is_active_fd(t, fd)) {
744 					thread_lock(t);
745 					t->t_activefd.a_stale = 1;
746 					t->t_post_sys = 1;
747 					if (ISWAKEABLE(t))
748 						setrun_locked(t);
749 					thread_unlock(t);
750 				}
751 			}
752 		}
753 
754 		UF_EXIT(ufp);
755 
756 		mutex_enter(&p->p_lock);
757 		sprunlock(p);
758 
759 		UF_ENTER(ufp, fip, fd);
760 		ASSERT(ufp->uf_file == NULL);
761 	}
762 
763 	/*
764 	 * Wait for other lwps to stop using this file descriptor.
765 	 */
766 	while (ufp->uf_refcnt > 0) {
767 		cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
768 		/*
769 		 * cv_wait_stop() drops ufp->uf_lock, so the file list
770 		 * can change.  Drop the lock on our (possibly) stale
771 		 * ufp and let UF_ENTER() find and lock the current ufp.
772 		 */
773 		UF_EXIT(ufp);
774 		UF_ENTER(ufp, fip, fd);
775 	}
776 
777 #ifdef DEBUG
778 	/*
779 	 * catch a watchfd on device's pollhead list but not on fpollinfo list
780 	 */
781 	if (ufp->uf_fpollinfo != NULL)
782 		checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
783 #endif	/* DEBUG */
784 
785 	/*
786 	 * We may need to cleanup some cached poll states in t_pollstate
787 	 * before the fd can be reused. It is important that we don't
788 	 * access a stale thread structure. We will do the cleanup in two
789 	 * phases to avoid deadlock and holding uf_lock for too long.
790 	 * In phase 1, hold the uf_lock and call pollblockexit() to set
791 	 * state in t_pollstate struct so that a thread does not exit on
792 	 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
793 	 */
794 	pfd = ufp->uf_portfd;
795 	ufp->uf_portfd = NULL;
796 	fpip = ufp->uf_fpollinfo;
797 	ufp->uf_fpollinfo = NULL;
798 	if (fpip != NULL)
799 		pollblockexit(fpip);
800 	UF_EXIT(ufp);
801 	if (fpip != NULL)
802 		pollcacheclean(fpip, fd);
803 	if (pfd)
804 		port_close_fd(pfd);
805 
806 	/*
807 	 * Keep the file descriptor entry reserved across the closef().
808 	 */
809 	error = closef(fp);
810 
811 	setf(fd, newfp);
812 
813 	/* Only return closef() error when closing is all we do */
814 	return (newfp == NULL ? error : 0);
815 }
816 
817 /*
818  * Decrement uf_refcnt; wakeup anyone waiting to close the file.
819  */
820 void
821 releasef(int fd)
822 {
823 	uf_info_t *fip = P_FINFO(curproc);
824 	uf_entry_t *ufp;
825 
826 	UF_ENTER(ufp, fip, fd);
827 	ASSERT(ufp->uf_refcnt > 0);
828 	clear_active_fd(fd);	/* clear the active file descriptor */
829 	if (--ufp->uf_refcnt == 0)
830 		cv_broadcast(&ufp->uf_closing_cv);
831 	UF_EXIT(ufp);
832 }
833 
834 /*
835  * Identical to releasef() but can be called from another process.
836  */
837 void
838 areleasef(int fd, uf_info_t *fip)
839 {
840 	uf_entry_t *ufp;
841 
842 	UF_ENTER(ufp, fip, fd);
843 	ASSERT(ufp->uf_refcnt > 0);
844 	if (--ufp->uf_refcnt == 0)
845 		cv_broadcast(&ufp->uf_closing_cv);
846 	UF_EXIT(ufp);
847 }
848 
849 /*
850  * Duplicate all file descriptors across a fork.
851  */
852 void
853 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
854 {
855 	int fd, nfiles;
856 	uf_entry_t *pufp, *cufp;
857 
858 	mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
859 	cfip->fi_rlist = NULL;
860 
861 	/*
862 	 * We don't need to hold fi_lock because all other lwp's in the
863 	 * parent have been held.
864 	 */
865 	cfip->fi_nfiles = nfiles = flist_minsize(pfip);
866 
867 	cfip->fi_list = nfiles == 0 ? NULL :
868 	    kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
869 
870 	for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
871 	    fd++, pufp++, cufp++) {
872 		boolean_t unreserve = B_FALSE;
873 
874 		/*
875 		 * Check to see if FD_CLOFORK is set. In this case we 'close'
876 		 * the file descriptor by simply not duplicating it and leaving
877 		 * this entry as an empty descriptor. While we don't need to
878 		 * close the underlying file_t, we do need to make sure we take
879 		 * care of cleaning up our reservation. We do not reset the
880 		 * generation either, simulating a setf here.
881 		 */
882 		if ((pufp->uf_flag & FD_CLOFORK) == 0) {
883 			cufp->uf_file = pufp->uf_file;
884 			cufp->uf_flag = pufp->uf_flag;
885 		}
886 		cufp->uf_busy = pufp->uf_busy;
887 		cufp->uf_alloc = pufp->uf_alloc;
888 		cufp->uf_gen = pufp->uf_gen;
889 
890 		/*
891 		 * We may have to clean up our allocation tracking. This happens
892 		 * either because we have no file due to the fact that we're
893 		 * busy or because we had a file and FD_CLOFORK is set. If there
894 		 * is no file and we're not busy, then the unreserve was already
895 		 * taken care of.
896 		 */
897 		if (pufp->uf_file == NULL) {
898 			ASSERT3U(pufp->uf_flag, ==, 0);
899 			if (pufp->uf_busy) {
900 				unreserve = B_TRUE;
901 			}
902 		} else if ((pufp->uf_flag & FD_CLOFORK) != 0) {
903 			ASSERT3P(pufp->uf_file, !=, NULL);
904 			unreserve = B_TRUE;
905 		}
906 
907 		if (unreserve) {
908 			/*
909 			 * Grab locks to appease ASSERTs in fd_reserve
910 			 */
911 			mutex_enter(&cfip->fi_lock);
912 			mutex_enter(&cufp->uf_lock);
913 			fd_reserve(cfip, fd, -1);
914 			mutex_exit(&cufp->uf_lock);
915 			mutex_exit(&cfip->fi_lock);
916 		}
917 	}
918 }
919 
920 /*
921  * Close all open file descriptors for the current process.
922  * This is only called from exit(), which is single-threaded,
923  * so we don't need any locking.
924  */
925 void
926 closeall(uf_info_t *fip)
927 {
928 	int fd;
929 	file_t *fp;
930 	uf_entry_t *ufp;
931 
932 	ufp = fip->fi_list;
933 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
934 		if ((fp = ufp->uf_file) != NULL) {
935 			ufp->uf_file = NULL;
936 			if (ufp->uf_portfd != NULL) {
937 				portfd_t *pfd;
938 				/* remove event port association */
939 				pfd = ufp->uf_portfd;
940 				ufp->uf_portfd = NULL;
941 				port_close_fd(pfd);
942 			}
943 			ASSERT(ufp->uf_fpollinfo == NULL);
944 			(void) closef(fp);
945 		}
946 	}
947 
948 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
949 	fip->fi_list = NULL;
950 	fip->fi_nfiles = 0;
951 	while (fip->fi_rlist != NULL) {
952 		uf_rlist_t *urp = fip->fi_rlist;
953 		fip->fi_rlist = urp->ur_next;
954 		kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
955 		kmem_free(urp, sizeof (uf_rlist_t));
956 	}
957 }
958 
959 /*
960  * Internal form of close.  Decrement reference count on file
961  * structure.  Decrement reference count on the vnode following
962  * removal of the referencing file structure.
963  */
964 int
965 closef(file_t *fp)
966 {
967 	vnode_t *vp;
968 	int error;
969 	int count;
970 	int flag;
971 	offset_t offset;
972 
973 	/*
974 	 * audit close of file (may be exit)
975 	 */
976 	if (AU_AUDITING())
977 		audit_closef(fp);
978 	ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
979 
980 	mutex_enter(&fp->f_tlock);
981 
982 	ASSERT(fp->f_count > 0);
983 
984 	count = fp->f_count--;
985 	flag = fp->f_flag;
986 	offset = fp->f_offset;
987 
988 	vp = fp->f_vnode;
989 
990 	error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL);
991 
992 	if (count > 1) {
993 		mutex_exit(&fp->f_tlock);
994 		return (error);
995 	}
996 	ASSERT(fp->f_count == 0);
997 	/* Last reference, remove any OFD style lock for the file_t */
998 	ofdcleanlock(fp);
999 	mutex_exit(&fp->f_tlock);
1000 
1001 	/*
1002 	 * If DTrace has getf() subroutines active, it will set dtrace_closef
1003 	 * to point to code that implements a barrier with respect to probe
1004 	 * context.  This must be called before the file_t is freed (and the
1005 	 * vnode that it refers to is released) -- but it must be after the
1006 	 * file_t has been removed from the uf_entry_t.  That is, there must
1007 	 * be no way for a racing getf() in probe context to yield the fp that
1008 	 * we're operating upon.
1009 	 */
1010 	if (dtrace_closef != NULL)
1011 		(*dtrace_closef)();
1012 
1013 	VN_RELE(vp);
1014 	/*
1015 	 * deallocate resources to audit_data
1016 	 */
1017 	if (audit_active)
1018 		audit_unfalloc(fp);
1019 	crfree(fp->f_cred);
1020 	kmem_cache_free(file_cache, fp);
1021 	return (error);
1022 }
1023 
1024 /*
1025  * This is a combination of ufalloc() and setf().
1026  */
1027 int
1028 ufalloc_file(int start, file_t *fp)
1029 {
1030 	proc_t *p = curproc;
1031 	uf_info_t *fip = P_FINFO(p);
1032 	int filelimit;
1033 	uf_entry_t *ufp;
1034 	int nfiles;
1035 	int fd;
1036 
1037 	/*
1038 	 * Assertion is to convince the correctness of the following
1039 	 * assignment for filelimit after casting to int.
1040 	 */
1041 	ASSERT(p->p_fno_ctl <= INT_MAX);
1042 	filelimit = (int)p->p_fno_ctl;
1043 
1044 	for (;;) {
1045 		mutex_enter(&fip->fi_lock);
1046 		fd = fd_find(fip, start);
1047 		if (fd >= 0 && fd == fip->fi_badfd) {
1048 			start = fd + 1;
1049 			mutex_exit(&fip->fi_lock);
1050 			continue;
1051 		}
1052 		if ((uint_t)fd < filelimit)
1053 			break;
1054 		if (fd >= filelimit) {
1055 			mutex_exit(&fip->fi_lock);
1056 			mutex_enter(&p->p_lock);
1057 			(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1058 			    p->p_rctls, p, RCA_SAFE);
1059 			mutex_exit(&p->p_lock);
1060 			return (-1);
1061 		}
1062 		/* fd_find() returned -1 */
1063 		nfiles = fip->fi_nfiles;
1064 		mutex_exit(&fip->fi_lock);
1065 		flist_grow(MAX(start, nfiles));
1066 	}
1067 
1068 	UF_ENTER(ufp, fip, fd);
1069 	fd_reserve(fip, fd, 1);
1070 	ASSERT(ufp->uf_file == NULL);
1071 	ufp->uf_file = fp;
1072 	if (fp != NULL) {
1073 		ufp->uf_gen++;
1074 	}
1075 	UF_EXIT(ufp);
1076 	mutex_exit(&fip->fi_lock);
1077 	return (fd);
1078 }
1079 
1080 /*
1081  * Allocate a user file descriptor greater than or equal to "start".
1082  */
1083 int
1084 ufalloc(int start)
1085 {
1086 	return (ufalloc_file(start, NULL));
1087 }
1088 
1089 /*
1090  * Check that a future allocation of count fds on proc p has a good
1091  * chance of succeeding.  If not, do rctl processing as if we'd failed
1092  * the allocation.
1093  *
1094  * Our caller must guarantee that p cannot disappear underneath us.
1095  */
1096 int
1097 ufcanalloc(proc_t *p, uint_t count)
1098 {
1099 	uf_info_t *fip = P_FINFO(p);
1100 	int filelimit;
1101 	int current;
1102 
1103 	if (count == 0)
1104 		return (1);
1105 
1106 	ASSERT(p->p_fno_ctl <= INT_MAX);
1107 	filelimit = (int)p->p_fno_ctl;
1108 
1109 	mutex_enter(&fip->fi_lock);
1110 	current = flist_nalloc(fip);		/* # of in-use descriptors */
1111 	mutex_exit(&fip->fi_lock);
1112 
1113 	/*
1114 	 * If count is a positive integer, the worst that can happen is
1115 	 * an overflow to a negative value, which is caught by the >= 0 check.
1116 	 */
1117 	current += count;
1118 	if (count <= INT_MAX && current >= 0 && current <= filelimit)
1119 		return (1);
1120 
1121 	mutex_enter(&p->p_lock);
1122 	(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1123 	    p->p_rctls, p, RCA_SAFE);
1124 	mutex_exit(&p->p_lock);
1125 	return (0);
1126 }
1127 
1128 /*
1129  * Allocate a user file descriptor and a file structure.
1130  * Initialize the descriptor to point at the file structure.
1131  * If fdp is NULL, the user file descriptor will not be allocated.
1132  */
1133 int
1134 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1135 {
1136 	file_t *fp;
1137 	int fd;
1138 
1139 	if (fdp) {
1140 		if ((fd = ufalloc(0)) == -1)
1141 			return (EMFILE);
1142 	}
1143 	fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1144 	/*
1145 	 * Note: falloc returns the fp locked
1146 	 */
1147 	mutex_enter(&fp->f_tlock);
1148 	fp->f_count = 1;
1149 	fp->f_flag = (ushort_t)flag;
1150 	fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16;
1151 	fp->f_vnode = vp;
1152 	fp->f_offset = 0;
1153 	fp->f_audit_data = 0;
1154 	crhold(fp->f_cred = CRED());
1155 	/*
1156 	 * allocate resources to audit_data
1157 	 */
1158 	if (audit_active)
1159 		audit_falloc(fp);
1160 	*fpp = fp;
1161 	if (fdp)
1162 		*fdp = fd;
1163 	return (0);
1164 }
1165 
1166 /*ARGSUSED*/
1167 static int
1168 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1169 {
1170 	file_t *fp = buf;
1171 
1172 	mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1173 	return (0);
1174 }
1175 
1176 /*ARGSUSED*/
1177 static void
1178 file_cache_destructor(void *buf, void *cdrarg)
1179 {
1180 	file_t *fp = buf;
1181 
1182 	mutex_destroy(&fp->f_tlock);
1183 }
1184 
1185 void
1186 finit()
1187 {
1188 	file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1189 	    file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1190 }
1191 
1192 void
1193 unfalloc(file_t *fp)
1194 {
1195 	ASSERT(MUTEX_HELD(&fp->f_tlock));
1196 	if (--fp->f_count <= 0) {
1197 		/*
1198 		 * deallocate resources to audit_data
1199 		 */
1200 		if (audit_active)
1201 			audit_unfalloc(fp);
1202 		crfree(fp->f_cred);
1203 		mutex_exit(&fp->f_tlock);
1204 		kmem_cache_free(file_cache, fp);
1205 	} else
1206 		mutex_exit(&fp->f_tlock);
1207 }
1208 
1209 /*
1210  * Given a file descriptor, set the user's
1211  * file pointer to the given parameter.
1212  */
1213 void
1214 setf(int fd, file_t *fp)
1215 {
1216 	uf_info_t *fip = P_FINFO(curproc);
1217 	uf_entry_t *ufp;
1218 
1219 	if (AU_AUDITING())
1220 		audit_setf(fp, fd);
1221 
1222 	if (fp == NULL) {
1223 		mutex_enter(&fip->fi_lock);
1224 		UF_ENTER(ufp, fip, fd);
1225 		fd_reserve(fip, fd, -1);
1226 		mutex_exit(&fip->fi_lock);
1227 	} else {
1228 		UF_ENTER(ufp, fip, fd);
1229 		ASSERT(ufp->uf_busy);
1230 		ufp->uf_gen++;
1231 	}
1232 	ASSERT(ufp->uf_fpollinfo == NULL);
1233 	ASSERT(ufp->uf_flag == 0);
1234 	ufp->uf_file = fp;
1235 	cv_broadcast(&ufp->uf_wanted_cv);
1236 	UF_EXIT(ufp);
1237 }
1238 
1239 /*
1240  * Given a file descriptor, return the file table flags, plus,
1241  * if this is a socket in asynchronous mode, the FASYNC flag.
1242  * getf() may or may not have been called before calling f_getfl().
1243  */
1244 int
1245 f_getfl(int fd, int *flagp)
1246 {
1247 	uf_info_t *fip = P_FINFO(curproc);
1248 	uf_entry_t *ufp;
1249 	file_t *fp;
1250 	int error;
1251 
1252 	if ((uint_t)fd >= fip->fi_nfiles)
1253 		error = EBADF;
1254 	else {
1255 		UF_ENTER(ufp, fip, fd);
1256 		if ((fp = ufp->uf_file) == NULL)
1257 			error = EBADF;
1258 		else {
1259 			vnode_t *vp = fp->f_vnode;
1260 			int flag = fp->f_flag | (fp->f_flag2 << 16);
1261 
1262 			/*
1263 			 * BSD fcntl() FASYNC compatibility.
1264 			 */
1265 			if (vp->v_type == VSOCK)
1266 				flag |= sock_getfasync(vp);
1267 			*flagp = flag;
1268 			error = 0;
1269 		}
1270 		UF_EXIT(ufp);
1271 	}
1272 
1273 	return (error);
1274 }
1275 
1276 /*
1277  * Given a file descriptor, return the user's file flags.
1278  * Force the FD_CLOEXEC flag for writable self-open /proc files.
1279  * getf() may or may not have been called before calling f_getfd_error().
1280  */
1281 int
1282 f_getfd_error(int fd, int *flagp)
1283 {
1284 	uf_info_t *fip = P_FINFO(curproc);
1285 	uf_entry_t *ufp;
1286 	file_t *fp;
1287 	int flag;
1288 	int error;
1289 
1290 	if ((uint_t)fd >= fip->fi_nfiles)
1291 		error = EBADF;
1292 	else {
1293 		UF_ENTER(ufp, fip, fd);
1294 		if ((fp = ufp->uf_file) == NULL) {
1295 			error = EBADF;
1296 		} else {
1297 			flag = ufp->uf_flag;
1298 			if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1299 				flag |= FD_CLOEXEC;
1300 			*flagp = flag;
1301 			error = 0;
1302 		}
1303 		UF_EXIT(ufp);
1304 	}
1305 
1306 	return (error);
1307 }
1308 
1309 /*
1310  * getf() must have been called before calling f_getfd().
1311  */
1312 char
1313 f_getfd(int fd)
1314 {
1315 	int flag = 0;
1316 	(void) f_getfd_error(fd, &flag);
1317 	return ((char)flag);
1318 }
1319 
1320 /*
1321  * Given a file descriptor and file flags, set the user's file flags.
1322  * At present, the only valid flags are FD_CLOEXEC and FD_CLOFORK.
1323  * getf() may or may not have been called before calling f_setfd_error().
1324  */
1325 static int
1326 f_setfd_int(int fd, int flags, bool or)
1327 {
1328 	uf_info_t *fip = P_FINFO(curproc);
1329 	uf_entry_t *ufp;
1330 	int error;
1331 
1332 	if ((uint_t)fd >= fip->fi_nfiles) {
1333 		error = EBADF;
1334 	} else {
1335 		UF_ENTER(ufp, fip, fd);
1336 		if (ufp->uf_file == NULL) {
1337 			error = EBADF;
1338 		} else {
1339 			flags &= (FD_CLOEXEC | FD_CLOFORK);
1340 			if (or) {
1341 				ufp->uf_flag |= flags;
1342 			} else {
1343 				ufp->uf_flag = flags;
1344 			}
1345 			error = 0;
1346 		}
1347 		UF_EXIT(ufp);
1348 	}
1349 	return (error);
1350 }
1351 
1352 int
1353 f_setfd_error(int fd, int flags)
1354 {
1355 	return (f_setfd_int(fd, flags, false));
1356 }
1357 
1358 void
1359 f_setfd_or(int fd, short flags)
1360 {
1361 	(void) f_setfd_int(fd, flags, true);
1362 }
1363 
1364 #define	BADFD_MIN	3
1365 #define	BADFD_MAX	255
1366 
1367 /*
1368  * Attempt to allocate a file descriptor which is bad and which
1369  * is "poison" to the application.  It cannot be closed (except
1370  * on exec), allocated for a different use, etc.
1371  */
1372 int
1373 f_badfd(int start, int *fdp, int action)
1374 {
1375 	int fdr;
1376 	int badfd;
1377 	uf_info_t *fip = P_FINFO(curproc);
1378 
1379 #ifdef _LP64
1380 	/* No restrictions on 64 bit _file */
1381 	if (get_udatamodel() != DATAMODEL_ILP32)
1382 		return (EINVAL);
1383 #endif
1384 
1385 	if (start > BADFD_MAX || start < BADFD_MIN)
1386 		return (EINVAL);
1387 
1388 	if (action >= NSIG || action < 0)
1389 		return (EINVAL);
1390 
1391 	mutex_enter(&fip->fi_lock);
1392 	badfd = fip->fi_badfd;
1393 	mutex_exit(&fip->fi_lock);
1394 
1395 	if (badfd != -1)
1396 		return (EAGAIN);
1397 
1398 	fdr = ufalloc(start);
1399 
1400 	if (fdr > BADFD_MAX) {
1401 		setf(fdr, NULL);
1402 		return (EMFILE);
1403 	}
1404 	if (fdr < 0)
1405 		return (EMFILE);
1406 
1407 	mutex_enter(&fip->fi_lock);
1408 	if (fip->fi_badfd != -1) {
1409 		/* Lost race */
1410 		mutex_exit(&fip->fi_lock);
1411 		setf(fdr, NULL);
1412 		return (EAGAIN);
1413 	}
1414 	fip->fi_action = action;
1415 	fip->fi_badfd = fdr;
1416 	mutex_exit(&fip->fi_lock);
1417 	setf(fdr, NULL);
1418 
1419 	*fdp = fdr;
1420 
1421 	return (0);
1422 }
1423 
1424 /*
1425  * Allocate a file descriptor and assign it to the vnode "*vpp",
1426  * performing the usual open protocol upon it and returning the
1427  * file descriptor allocated.  It is the responsibility of the
1428  * caller to dispose of "*vpp" if any error occurs.
1429  */
1430 int
1431 fassign(vnode_t **vpp, int mode, int *fdp)
1432 {
1433 	file_t *fp;
1434 	int error;
1435 	int fd;
1436 
1437 	if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
1438 		return (error);
1439 	if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) {
1440 		setf(fd, NULL);
1441 		unfalloc(fp);
1442 		return (error);
1443 	}
1444 	fp->f_vnode = *vpp;
1445 	mutex_exit(&fp->f_tlock);
1446 	/*
1447 	 * Fill in the slot falloc reserved.
1448 	 */
1449 	setf(fd, fp);
1450 	*fdp = fd;
1451 	return (0);
1452 }
1453 
1454 /*
1455  * When a process forks it must increment the f_count of all file pointers
1456  * since there is a new process pointing at them.  fcnt_add(fip, 1) does this.
1457  * Since we are called when there is only 1 active lwp we don't need to
1458  * hold fi_lock or any uf_lock.  If the fork fails, fork_fail() calls
1459  * fcnt_add(fip, -1) to restore the counts.
1460  */
1461 void
1462 fcnt_add(uf_info_t *fip, int incr)
1463 {
1464 	int i;
1465 	uf_entry_t *ufp;
1466 	file_t *fp;
1467 
1468 	ufp = fip->fi_list;
1469 	for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1470 		if ((fp = ufp->uf_file) != NULL) {
1471 			mutex_enter(&fp->f_tlock);
1472 			ASSERT((incr == 1 && fp->f_count >= 1) ||
1473 			    (incr == -1 && fp->f_count >= 2));
1474 			fp->f_count += incr;
1475 			mutex_exit(&fp->f_tlock);
1476 		}
1477 	}
1478 }
1479 
1480 /*
1481  * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1482  * set and also to close all self-open for write /proc file descriptors.
1483  */
1484 void
1485 close_exec(uf_info_t *fip)
1486 {
1487 	int fd;
1488 	file_t *fp;
1489 	fpollinfo_t *fpip;
1490 	uf_entry_t *ufp;
1491 	portfd_t *pfd;
1492 
1493 	ufp = fip->fi_list;
1494 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1495 		if ((fp = ufp->uf_file) != NULL &&
1496 		    ((ufp->uf_flag & FD_CLOEXEC) ||
1497 		    ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1498 			fpip = ufp->uf_fpollinfo;
1499 			mutex_enter(&fip->fi_lock);
1500 			mutex_enter(&ufp->uf_lock);
1501 			fd_reserve(fip, fd, -1);
1502 			mutex_exit(&fip->fi_lock);
1503 			ufp->uf_file = NULL;
1504 			ufp->uf_fpollinfo = NULL;
1505 			ufp->uf_flag = 0;
1506 			/*
1507 			 * We may need to cleanup some cached poll states
1508 			 * in t_pollstate before the fd can be reused. It
1509 			 * is important that we don't access a stale thread
1510 			 * structure. We will do the cleanup in two
1511 			 * phases to avoid deadlock and holding uf_lock for
1512 			 * too long. In phase 1, hold the uf_lock and call
1513 			 * pollblockexit() to set state in t_pollstate struct
1514 			 * so that a thread does not exit on us. In phase 2,
1515 			 * we drop the uf_lock and call pollcacheclean().
1516 			 */
1517 			pfd = ufp->uf_portfd;
1518 			ufp->uf_portfd = NULL;
1519 			if (fpip != NULL)
1520 				pollblockexit(fpip);
1521 			mutex_exit(&ufp->uf_lock);
1522 			if (fpip != NULL)
1523 				pollcacheclean(fpip, fd);
1524 			if (pfd)
1525 				port_close_fd(pfd);
1526 			(void) closef(fp);
1527 		}
1528 	}
1529 
1530 	/* Reset bad fd */
1531 	fip->fi_badfd = -1;
1532 	fip->fi_action = -1;
1533 }
1534 
1535 /*
1536  * Utility function called by most of the *at() system call interfaces.
1537  *
1538  * Generate a starting vnode pointer for an (fd, path) pair where 'fd'
1539  * is an open file descriptor for a directory to be used as the starting
1540  * point for the lookup of the relative pathname 'path' (or, if path is
1541  * NULL, generate a vnode pointer for the direct target of the operation).
1542  *
1543  * If we successfully return a non-NULL startvp, it has been the target
1544  * of VN_HOLD() and the caller must call VN_RELE() on it.
1545  */
1546 int
1547 fgetstartvp(int fd, char *path, vnode_t **startvpp)
1548 {
1549 	vnode_t		*startvp;
1550 	file_t		*startfp;
1551 	char		startchar;
1552 
1553 	if (fd == AT_FDCWD && path == NULL)
1554 		return (EFAULT);
1555 
1556 	if (fd == AT_FDCWD) {
1557 		/*
1558 		 * Start from the current working directory.
1559 		 */
1560 		startvp = NULL;
1561 	} else {
1562 		if (path == NULL)
1563 			startchar = '\0';
1564 		else if (copyin(path, &startchar, sizeof (char)))
1565 			return (EFAULT);
1566 
1567 		if (startchar == '/') {
1568 			/*
1569 			 * 'path' is an absolute pathname.
1570 			 */
1571 			startvp = NULL;
1572 		} else {
1573 			/*
1574 			 * 'path' is a relative pathname or we will
1575 			 * be applying the operation to 'fd' itself.
1576 			 */
1577 			if ((startfp = getf(fd)) == NULL)
1578 				return (EBADF);
1579 			startvp = startfp->f_vnode;
1580 			VN_HOLD(startvp);
1581 			releasef(fd);
1582 		}
1583 	}
1584 	*startvpp = startvp;
1585 	return (0);
1586 }
1587 
1588 /*
1589  * Called from fchownat() and fchmodat() to set ownership and mode.
1590  * The contents of *vap must be set before calling here.
1591  */
1592 int
1593 fsetattrat(int fd, char *path, int flags, struct vattr *vap)
1594 {
1595 	vnode_t		*startvp;
1596 	vnode_t		*vp;
1597 	int		error;
1598 
1599 	/*
1600 	 * Since we are never called to set the size of a file, we don't
1601 	 * need to check for non-blocking locks (via nbl_need_check(vp)).
1602 	 */
1603 	ASSERT(!(vap->va_mask & AT_SIZE));
1604 
1605 	if ((error = fgetstartvp(fd, path, &startvp)) != 0)
1606 		return (error);
1607 	if (AU_AUDITING() && startvp != NULL)
1608 		audit_setfsat_path(1);
1609 
1610 	/*
1611 	 * Do lookup for fchownat/fchmodat when path not NULL
1612 	 */
1613 	if (path != NULL) {
1614 		if (error = lookupnameat(path, UIO_USERSPACE,
1615 		    (flags == AT_SYMLINK_NOFOLLOW) ?
1616 		    NO_FOLLOW : FOLLOW,
1617 		    NULLVPP, &vp, startvp)) {
1618 			if (startvp != NULL)
1619 				VN_RELE(startvp);
1620 			return (error);
1621 		}
1622 	} else {
1623 		vp = startvp;
1624 		ASSERT(vp);
1625 		VN_HOLD(vp);
1626 	}
1627 
1628 	if (vp->v_type == VLNK && (vap->va_mask & AT_MODE) != 0) {
1629 		error = EOPNOTSUPP;
1630 	} else if (vn_is_readonly(vp)) {
1631 		error = EROFS;
1632 	} else {
1633 		error = VOP_SETATTR(vp, vap, 0, CRED(), NULL);
1634 	}
1635 
1636 	if (startvp != NULL)
1637 		VN_RELE(startvp);
1638 	VN_RELE(vp);
1639 
1640 	return (error);
1641 }
1642 
1643 /*
1644  * Return true if the given vnode is referenced by any
1645  * entry in the current process's file descriptor table.
1646  */
1647 int
1648 fisopen(vnode_t *vp)
1649 {
1650 	int fd;
1651 	file_t *fp;
1652 	vnode_t *ovp;
1653 	uf_info_t *fip = P_FINFO(curproc);
1654 	uf_entry_t *ufp;
1655 
1656 	mutex_enter(&fip->fi_lock);
1657 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1658 		UF_ENTER(ufp, fip, fd);
1659 		if ((fp = ufp->uf_file) != NULL &&
1660 		    (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1661 			UF_EXIT(ufp);
1662 			mutex_exit(&fip->fi_lock);
1663 			return (1);
1664 		}
1665 		UF_EXIT(ufp);
1666 	}
1667 	mutex_exit(&fip->fi_lock);
1668 	return (0);
1669 }
1670 
1671 /*
1672  * Return zero if at least one file currently open (by curproc) shouldn't be
1673  * allowed to change zones.
1674  */
1675 int
1676 files_can_change_zones(void)
1677 {
1678 	int fd;
1679 	file_t *fp;
1680 	uf_info_t *fip = P_FINFO(curproc);
1681 	uf_entry_t *ufp;
1682 
1683 	mutex_enter(&fip->fi_lock);
1684 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1685 		UF_ENTER(ufp, fip, fd);
1686 		if ((fp = ufp->uf_file) != NULL &&
1687 		    !vn_can_change_zones(fp->f_vnode)) {
1688 			UF_EXIT(ufp);
1689 			mutex_exit(&fip->fi_lock);
1690 			return (0);
1691 		}
1692 		UF_EXIT(ufp);
1693 	}
1694 	mutex_exit(&fip->fi_lock);
1695 	return (1);
1696 }
1697 
1698 #ifdef DEBUG
1699 
1700 /*
1701  * The following functions are only used in ASSERT()s elsewhere.
1702  * They do not modify the state of the system.
1703  */
1704 
1705 /*
1706  * Return true (1) if the current thread is in the fpollinfo
1707  * list for this file descriptor, else false (0).
1708  */
1709 static int
1710 curthread_in_plist(uf_entry_t *ufp)
1711 {
1712 	fpollinfo_t *fpip;
1713 
1714 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
1715 	for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1716 		if (fpip->fp_thread == curthread)
1717 			return (1);
1718 	return (0);
1719 }
1720 
1721 /*
1722  * Sanity check to make sure that after lwp_exit(),
1723  * curthread does not appear on any fd's fpollinfo list.
1724  */
1725 void
1726 checkfpollinfo(void)
1727 {
1728 	int fd;
1729 	uf_info_t *fip = P_FINFO(curproc);
1730 	uf_entry_t *ufp;
1731 
1732 	mutex_enter(&fip->fi_lock);
1733 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1734 		UF_ENTER(ufp, fip, fd);
1735 		ASSERT(!curthread_in_plist(ufp));
1736 		UF_EXIT(ufp);
1737 	}
1738 	mutex_exit(&fip->fi_lock);
1739 }
1740 
1741 /*
1742  * Return true (1) if the current thread is in the fpollinfo
1743  * list for this file descriptor, else false (0).
1744  * This is the same as curthread_in_plist(),
1745  * but is called w/o holding uf_lock.
1746  */
1747 int
1748 infpollinfo(int fd)
1749 {
1750 	uf_info_t *fip = P_FINFO(curproc);
1751 	uf_entry_t *ufp;
1752 	int rc;
1753 
1754 	UF_ENTER(ufp, fip, fd);
1755 	rc = curthread_in_plist(ufp);
1756 	UF_EXIT(ufp);
1757 	return (rc);
1758 }
1759 
1760 #endif	/* DEBUG */
1761 
1762 /*
1763  * Add the curthread to fpollinfo list, meaning this fd is currently in the
1764  * thread's poll cache. Each lwp polling this file descriptor should call
1765  * this routine once.
1766  */
1767 void
1768 addfpollinfo(int fd)
1769 {
1770 	struct uf_entry *ufp;
1771 	fpollinfo_t *fpip;
1772 	uf_info_t *fip = P_FINFO(curproc);
1773 
1774 	fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1775 	fpip->fp_thread = curthread;
1776 	UF_ENTER(ufp, fip, fd);
1777 	/*
1778 	 * Assert we are not already on the list, that is, that
1779 	 * this lwp did not call addfpollinfo twice for the same fd.
1780 	 */
1781 	ASSERT(!curthread_in_plist(ufp));
1782 	/*
1783 	 * addfpollinfo is always done inside the getf/releasef pair.
1784 	 */
1785 	ASSERT(ufp->uf_refcnt >= 1);
1786 	fpip->fp_next = ufp->uf_fpollinfo;
1787 	ufp->uf_fpollinfo = fpip;
1788 	UF_EXIT(ufp);
1789 }
1790 
1791 /*
1792  * Delete curthread from fpollinfo list if it is there.
1793  */
1794 void
1795 delfpollinfo(int fd)
1796 {
1797 	struct uf_entry *ufp;
1798 	struct fpollinfo *fpip;
1799 	struct fpollinfo **fpipp;
1800 	uf_info_t *fip = P_FINFO(curproc);
1801 
1802 	UF_ENTER(ufp, fip, fd);
1803 	for (fpipp = &ufp->uf_fpollinfo;
1804 	    (fpip = *fpipp) != NULL;
1805 	    fpipp = &fpip->fp_next) {
1806 		if (fpip->fp_thread == curthread) {
1807 			*fpipp = fpip->fp_next;
1808 			kmem_free(fpip, sizeof (fpollinfo_t));
1809 			break;
1810 		}
1811 	}
1812 	/*
1813 	 * Assert that we are not still on the list, that is, that
1814 	 * this lwp did not call addfpollinfo twice for the same fd.
1815 	 */
1816 	ASSERT(!curthread_in_plist(ufp));
1817 	UF_EXIT(ufp);
1818 }
1819 
1820 /*
1821  * fd is associated with a port. pfd is a pointer to the fd entry in the
1822  * cache of the port.
1823  */
1824 
1825 void
1826 addfd_port(int fd, portfd_t *pfd)
1827 {
1828 	struct uf_entry *ufp;
1829 	uf_info_t *fip = P_FINFO(curproc);
1830 
1831 	UF_ENTER(ufp, fip, fd);
1832 	/*
1833 	 * addfd_port is always done inside the getf/releasef pair.
1834 	 */
1835 	ASSERT(ufp->uf_refcnt >= 1);
1836 	if (ufp->uf_portfd == NULL) {
1837 		/* first entry */
1838 		ufp->uf_portfd = pfd;
1839 		pfd->pfd_next = NULL;
1840 	} else {
1841 		pfd->pfd_next = ufp->uf_portfd;
1842 		ufp->uf_portfd = pfd;
1843 		pfd->pfd_next->pfd_prev = pfd;
1844 	}
1845 	UF_EXIT(ufp);
1846 }
1847 
1848 void
1849 delfd_port(int fd, portfd_t *pfd)
1850 {
1851 	struct uf_entry *ufp;
1852 	uf_info_t *fip = P_FINFO(curproc);
1853 
1854 	UF_ENTER(ufp, fip, fd);
1855 	/*
1856 	 * delfd_port is always done inside the getf/releasef pair.
1857 	 */
1858 	ASSERT(ufp->uf_refcnt >= 1);
1859 	if (ufp->uf_portfd == pfd) {
1860 		/* remove first entry */
1861 		ufp->uf_portfd = pfd->pfd_next;
1862 	} else {
1863 		pfd->pfd_prev->pfd_next = pfd->pfd_next;
1864 		if (pfd->pfd_next != NULL)
1865 			pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1866 	}
1867 	UF_EXIT(ufp);
1868 }
1869 
1870 static void
1871 port_close_fd(portfd_t *pfd)
1872 {
1873 	portfd_t	*pfdn;
1874 
1875 	/*
1876 	 * At this point, no other thread should access
1877 	 * the portfd_t list for this fd. The uf_file, uf_portfd
1878 	 * pointers in the uf_entry_t struct for this fd would
1879 	 * be set to NULL.
1880 	 */
1881 	for (; pfd != NULL; pfd = pfdn) {
1882 		pfdn = pfd->pfd_next;
1883 		port_close_pfd(pfd);
1884 	}
1885 }
1886