xref: /illumos-gate/usr/src/uts/common/os/fio.c (revision 848f70c9866a9757d1c6dcb2b9db5e7c49997ba5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	All Rights Reserved */
28 
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/cred.h>
36 #include <sys/user.h>
37 #include <sys/conf.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/pathname.h>
41 #include <sys/file.h>
42 #include <sys/proc.h>
43 #include <sys/var.h>
44 #include <sys/cpuvar.h>
45 #include <sys/open.h>
46 #include <sys/cmn_err.h>
47 #include <sys/priocntl.h>
48 #include <sys/procset.h>
49 #include <sys/prsystm.h>
50 #include <sys/debug.h>
51 #include <sys/kmem.h>
52 #include <sys/atomic.h>
53 #include <sys/fcntl.h>
54 #include <sys/poll.h>
55 #include <sys/rctl.h>
56 #include <sys/port_impl.h>
57 
58 #include <c2/audit.h>
59 #include <sys/nbmlock.h>
60 
61 #ifdef DEBUG
62 
63 static uint32_t afd_maxfd;	/* # of entries in maximum allocated array */
64 static uint32_t afd_alloc;	/* count of kmem_alloc()s */
65 static uint32_t afd_free;	/* count of kmem_free()s */
66 static uint32_t afd_wait;	/* count of waits on non-zero ref count */
67 #define	MAXFD(x)	(afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
68 #define	COUNT(x)	atomic_add_32(&x, 1)
69 
70 #else	/* DEBUG */
71 
72 #define	MAXFD(x)
73 #define	COUNT(x)
74 
75 #endif	/* DEBUG */
76 
77 kmem_cache_t *file_cache;
78 static int vpsetattr(vnode_t *, vattr_t *, int);
79 
80 static void port_close_fd(portfd_t *);
81 
82 /*
83  * File descriptor allocation.
84  *
85  * fd_find(fip, minfd) finds the first available descriptor >= minfd.
86  * The most common case is open(2), in which minfd = 0, but we must also
87  * support fcntl(fd, F_DUPFD, minfd).
88  *
89  * The algorithm is as follows: we keep all file descriptors in an infix
90  * binary tree in which each node records the number of descriptors
91  * allocated in its right subtree, including itself.  Starting at minfd,
92  * we ascend the tree until we find a non-fully allocated right subtree.
93  * We then descend that subtree in a binary search for the smallest fd.
94  * Finally, we ascend the tree again to increment the allocation count
95  * of every subtree containing the newly-allocated fd.  Freeing an fd
96  * requires only the last step: we ascend the tree to decrement allocation
97  * counts.  Each of these three steps (ascent to find non-full subtree,
98  * descent to find lowest fd, ascent to update allocation counts) is
99  * O(log n), thus the algorithm as a whole is O(log n).
100  *
101  * We don't implement the fd tree using the customary left/right/parent
102  * pointers, but instead take advantage of the glorious mathematics of
103  * full infix binary trees.  For reference, here's an illustration of the
104  * logical structure of such a tree, rooted at 4 (binary 100), covering
105  * the range 1-7 (binary 001-111).  Our canonical trees do not include
106  * fd 0; we'll deal with that later.
107  *
108  *	      100
109  *	     /	 \
110  *	    /	  \
111  *	  010	  110
112  *	  / \	  / \
113  *	001 011 101 111
114  *
115  * We make the following observations, all of which are easily proven by
116  * induction on the depth of the tree:
117  *
118  * (T1) The least-significant bit (LSB) of any node is equal to its level
119  *      in the tree.  In our example, nodes 001, 011, 101 and 111 are at
120  *      level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
121  *
122  * (T2) The child size (CSIZE) of node N -- that is, the total number of
123  *	right-branch descendants in a child of node N, including itself -- is
124  *	given by clearing all but the least significant bit of N.  This
125  *	follows immediately from (T1).  Applying this rule to our example, we
126  *	see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
127  *
128  * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
129  *	ancestor containing node N in its right child -- is given by clearing
130  *	the LSB of N.  For example, LPARENT(111) = 110 and LPARENT(110) = 100.
131  *	Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
132  *	the fact that these are leftmost nodes.  Note that this algorithm
133  *	automatically skips generations as necessary.  For example, the parent
134  *      of node 101 is 110, which is a *right* ancestor (not what we want);
135  *      but its grandparent is 100, which is a left ancestor. Clearing the LSB
136  *      of 101 gets us to 100 directly, skipping right past the uninteresting
137  *      generation (110).
138  *
139  *      Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
140  *	the LSB, we can express LPARENT() nicely in terms of CSIZE():
141  *
142  *	LPARENT(N) = N - CSIZE(N)
143  *
144  * (T4) The nearest right ancestor (RPARENT) of node N is given by:
145  *
146  *	RPARENT(N) = N + CSIZE(N)
147  *
148  * (T5) For every interior node, the children differ from their parent by
149  *	CSIZE(parent) / 2.  In our example, CSIZE(100) / 2 = 2 = 10 binary,
150  *      and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
151  *
152  * Next, we'll need a few two's-complement math tricks.  Suppose a number,
153  * N, has the following form:
154  *
155  *		N = xxxx10...0
156  *
157  * That is, the binary representation of N consists of some string of bits,
158  * then a 1, then all zeroes.  This amounts to nothing more than saying that
159  * N has a least-significant bit, which is true for any N != 0.  If we look
160  * at N and N - 1 together, we see that we can combine them in useful ways:
161  *
162  *		  N = xxxx10...0
163  *	      N - 1 = xxxx01...1
164  *	------------------------
165  *	N & (N - 1) = xxxx000000
166  *	N | (N - 1) = xxxx111111
167  *	N ^ (N - 1) =     111111
168  *
169  * In particular, this suggests several easy ways to clear all but the LSB,
170  * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
171  * We'll opt for this formulation:
172  *
173  *	(C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
174  *
175  * Similarly, we have an easy way to determine LPARENT(N), which requires
176  * that we clear the LSB of N:
177  *
178  *	(L1) LPARENT(N) = N & (N - 1)
179  *
180  * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
181  * When combined with (T4), this yields an easy way to compute RPARENT(N):
182  *
183  *	(R1) RPARENT(N) = (N | (N - 1)) + 1
184  *
185  * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
186  * move the fd range from [1, 2^n) to [0, 2^n - 1).  This is straightforward,
187  * so there's no need to belabor the algebra; the revised relations become:
188  *
189  *	(C1a) CSIZE(N) = N ^ (N | (N + 1))
190  *
191  *	(L1a) LPARENT(N) = (N & (N + 1)) - 1
192  *
193  *	(R1a) RPARENT(N) = N | (N + 1)
194  *
195  * This completes the mathematical framework.  We now have all the tools
196  * we need to implement fd_find() and fd_reserve().
197  *
198  * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
199  * It does not actually allocate the descriptor; that's done by fd_reserve().
200  * fd_find() proceeds in two steps:
201  *
202  * (1) Find the leftmost subtree that contains a descriptor >= minfd.
203  *     We start at the right subtree rooted at minfd.  If this subtree is
204  *     not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
205  *     step 1 is done.  Otherwise, we know that all fds in this subtree
206  *     are taken, so we ascend to RPARENT(minfd) using (R1a).  We repeat
207  *     this process until we either find a candidate subtree or exceed
208  *     fip->fi_nfiles.  We use (C1a) to compute CSIZE().
209  *
210  * (2) Find the smallest fd in the subtree discovered by step 1.
211  *     Starting at the root of this subtree, we descend to find the
212  *     smallest available fd.  Since the left children have the smaller
213  *     fds, we will descend rightward only when the left child is full.
214  *
215  *     We begin by comparing the number of allocated fds in the root
216  *     to the number of allocated fds in its right child; if they differ
217  *     by exactly CSIZE(child), we know the left subtree is full, so we
218  *     descend right; that is, the right child becomes the search root.
219  *     Otherwise we leave the root alone and start following the right
220  *     child's left children.  As fortune would have it, this is very
221  *     simple computationally: by (T5), the right child of fd is just
222  *     fd + size, where size = CSIZE(fd) / 2.  Applying (T5) again,
223  *     we find that the right child's left child is fd + size - (size / 2) =
224  *     fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
225  *     fd + (size / 4), and so on.  In general, fd's right child's
226  *     leftmost nth descendant is fd + (size >> n).  Thus, to follow
227  *     the right child's left descendants, we just halve the size in
228  *     each iteration of the search.
229  *
230  *     When we descend leftward, we must keep track of the number of fds
231  *     that were allocated in all the right subtrees we rejected, so we
232  *     know how many of the root fd's allocations are in the remaining
233  *     (as yet unexplored) leftmost part of its right subtree.  When we
234  *     encounter a fully-allocated left child -- that is, when we find
235  *     that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
236  *     (as described earlier), resetting ralloc to zero.
237  *
238  * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
239  * on whether incr is 1 or -1.  Starting at fd, fd_reserve() ascends
240  * the leftmost ancestors (see (T3)) and updates the allocation counts.
241  * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
242  *
243  * flist_minsize() finds the minimal tree that still covers all
244  * used fds; as long as the allocation count of a root node is zero, we
245  * don't need that node or its right subtree.
246  *
247  * flist_nalloc() counts the number of allocated fds in the tree, by starting
248  * at the top of the tree and summing the right-subtree allocation counts as
249  * it descends leftwards.
250  *
251  * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
252  * 2^n - 1.  This ensures that the fd trees are always full, which saves
253  * quite a bit of boundary checking.
254  */
255 static int
256 fd_find(uf_info_t *fip, int minfd)
257 {
258 	int size, ralloc, fd;
259 
260 	ASSERT(MUTEX_HELD(&fip->fi_lock));
261 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
262 
263 	for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
264 		size = fd ^ (fd | (fd + 1));
265 		if (fip->fi_list[fd].uf_alloc == size)
266 			continue;
267 		for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
268 			ralloc += fip->fi_list[fd + size].uf_alloc;
269 			if (fip->fi_list[fd].uf_alloc == ralloc + size) {
270 				fd += size;
271 				ralloc = 0;
272 			}
273 		}
274 		return (fd);
275 	}
276 	return (-1);
277 }
278 
279 static void
280 fd_reserve(uf_info_t *fip, int fd, int incr)
281 {
282 	int pfd;
283 	uf_entry_t *ufp = &fip->fi_list[fd];
284 
285 	ASSERT((uint_t)fd < fip->fi_nfiles);
286 	ASSERT((ufp->uf_busy == 0 && incr == 1) ||
287 	    (ufp->uf_busy == 1 && incr == -1));
288 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
289 	ASSERT(MUTEX_HELD(&fip->fi_lock));
290 
291 	for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
292 		fip->fi_list[pfd].uf_alloc += incr;
293 
294 	ufp->uf_busy += incr;
295 }
296 
297 static int
298 flist_minsize(uf_info_t *fip)
299 {
300 	int fd;
301 
302 	/*
303 	 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
304 	 * by flist_fork(), which relies on other mechanisms for mutual
305 	 * exclusion.
306 	 */
307 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
308 
309 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
310 		if (fip->fi_list[fd >> 1].uf_alloc != 0)
311 			break;
312 
313 	return (fd);
314 }
315 
316 static int
317 flist_nalloc(uf_info_t *fip)
318 {
319 	int fd;
320 	int nalloc = 0;
321 
322 	ASSERT(MUTEX_HELD(&fip->fi_lock));
323 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
324 
325 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
326 		nalloc += fip->fi_list[fd >> 1].uf_alloc;
327 
328 	return (nalloc);
329 }
330 
331 /*
332  * Increase size of the fi_list array to accommodate at least maxfd.
333  * We keep the size of the form 2^n - 1 for benefit of fd_find().
334  */
335 static void
336 flist_grow(int maxfd)
337 {
338 	uf_info_t *fip = P_FINFO(curproc);
339 	int newcnt, oldcnt;
340 	uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
341 	uf_rlist_t *urp;
342 
343 	for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
344 		continue;
345 
346 	newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
347 
348 	mutex_enter(&fip->fi_lock);
349 	oldcnt = fip->fi_nfiles;
350 	if (newcnt <= oldcnt) {
351 		mutex_exit(&fip->fi_lock);
352 		kmem_free(newlist, newcnt * sizeof (uf_entry_t));
353 		return;
354 	}
355 	ASSERT((newcnt & (newcnt + 1)) == 0);
356 	oldlist = fip->fi_list;
357 	oldend = oldlist + oldcnt;
358 	newend = newlist + oldcnt;	/* no need to lock beyond old end */
359 
360 	/*
361 	 * fi_list and fi_nfiles cannot change while any uf_lock is held,
362 	 * so we must grab all the old locks *and* the new locks up to oldcnt.
363 	 * (Locks beyond the end of oldcnt aren't visible until we store
364 	 * the new fi_nfiles, which is the last thing we do before dropping
365 	 * all the locks, so there's no need to acquire these locks).
366 	 * Holding the new locks is necessary because when fi_list changes
367 	 * to point to the new list, fi_nfiles won't have been stored yet.
368 	 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
369 	 * could see the new fi_list, grab the new uf_lock, and then see
370 	 * fi_nfiles change while the lock is held -- in violation of
371 	 * UF_ENTER() semantics.
372 	 */
373 	for (src = oldlist; src < oldend; src++)
374 		mutex_enter(&src->uf_lock);
375 
376 	for (dst = newlist; dst < newend; dst++)
377 		mutex_enter(&dst->uf_lock);
378 
379 	for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
380 		dst->uf_file = src->uf_file;
381 		dst->uf_fpollinfo = src->uf_fpollinfo;
382 		dst->uf_refcnt = src->uf_refcnt;
383 		dst->uf_alloc = src->uf_alloc;
384 		dst->uf_flag = src->uf_flag;
385 		dst->uf_busy = src->uf_busy;
386 		dst->uf_portfd = src->uf_portfd;
387 	}
388 
389 	/*
390 	 * As soon as we store the new flist, future locking operations
391 	 * will use it.  Therefore, we must ensure that all the state
392 	 * we've just established reaches global visibility before the
393 	 * new flist does.
394 	 */
395 	membar_producer();
396 	fip->fi_list = newlist;
397 
398 	/*
399 	 * Routines like getf() make an optimistic check on the validity
400 	 * of the supplied file descriptor: if it's less than the current
401 	 * value of fi_nfiles -- examined without any locks -- then it's
402 	 * safe to attempt a UF_ENTER() on that fd (which is a valid
403 	 * assumption because fi_nfiles only increases).  Therefore, it
404 	 * is critical that the new value of fi_nfiles not reach global
405 	 * visibility until after the new fi_list: if it happened the
406 	 * other way around, getf() could see the new fi_nfiles and attempt
407 	 * a UF_ENTER() on the old fi_list, which would write beyond its
408 	 * end if the fd exceeded the old fi_nfiles.
409 	 */
410 	membar_producer();
411 	fip->fi_nfiles = newcnt;
412 
413 	/*
414 	 * The new state is consistent now, so we can drop all the locks.
415 	 */
416 	for (dst = newlist; dst < newend; dst++)
417 		mutex_exit(&dst->uf_lock);
418 
419 	for (src = oldlist; src < oldend; src++) {
420 		/*
421 		 * If any threads are blocked on the old cvs, wake them.
422 		 * This will force them to wake up, discover that fi_list
423 		 * has changed, and go back to sleep on the new cvs.
424 		 */
425 		cv_broadcast(&src->uf_wanted_cv);
426 		cv_broadcast(&src->uf_closing_cv);
427 		mutex_exit(&src->uf_lock);
428 	}
429 
430 	mutex_exit(&fip->fi_lock);
431 
432 	/*
433 	 * Retire the old flist.  We can't actually kmem_free() it now
434 	 * because someone may still have a pointer to it.  Instead,
435 	 * we link it onto a list of retired flists.  The new flist
436 	 * is at least double the size of the previous flist, so the
437 	 * total size of all retired flists will be less than the size
438 	 * of the current one (to prove, consider the sum of a geometric
439 	 * series in powers of 2).  exit() frees the retired flists.
440 	 */
441 	urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
442 	urp->ur_list = oldlist;
443 	urp->ur_nfiles = oldcnt;
444 
445 	mutex_enter(&fip->fi_lock);
446 	urp->ur_next = fip->fi_rlist;
447 	fip->fi_rlist = urp;
448 	mutex_exit(&fip->fi_lock);
449 }
450 
451 /*
452  * Utility functions for keeping track of the active file descriptors.
453  */
454 void
455 clear_stale_fd()		/* called from post_syscall() */
456 {
457 	afd_t *afd = &curthread->t_activefd;
458 	int i;
459 
460 	/* uninitialized is ok here, a_nfd is then zero */
461 	for (i = 0; i < afd->a_nfd; i++) {
462 		/* assert that this should not be necessary */
463 		ASSERT(afd->a_fd[i] == -1);
464 		afd->a_fd[i] = -1;
465 	}
466 	afd->a_stale = 0;
467 }
468 
469 void
470 free_afd(afd_t *afd)		/* called below and from thread_free() */
471 {
472 	int i;
473 
474 	/* free the buffer if it was kmem_alloc()ed */
475 	if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
476 		COUNT(afd_free);
477 		kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
478 	}
479 
480 	/* (re)initialize the structure */
481 	afd->a_fd = &afd->a_buf[0];
482 	afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
483 	afd->a_stale = 0;
484 	for (i = 0; i < afd->a_nfd; i++)
485 		afd->a_fd[i] = -1;
486 }
487 
488 static void
489 set_active_fd(int fd)
490 {
491 	afd_t *afd = &curthread->t_activefd;
492 	int i;
493 	int *old_fd;
494 	int old_nfd;
495 	int *new_fd;
496 	int new_nfd;
497 
498 	if (afd->a_nfd == 0) {	/* first time initialization */
499 		ASSERT(fd == -1);
500 		mutex_enter(&afd->a_fdlock);
501 		free_afd(afd);
502 		mutex_exit(&afd->a_fdlock);
503 	}
504 
505 	/* insert fd into vacant slot, if any */
506 	for (i = 0; i < afd->a_nfd; i++) {
507 		if (afd->a_fd[i] == -1) {
508 			afd->a_fd[i] = fd;
509 			return;
510 		}
511 	}
512 
513 	/*
514 	 * Reallocate the a_fd[] array to add one more slot.
515 	 */
516 	ASSERT(fd == -1);
517 	old_nfd = afd->a_nfd;
518 	old_fd = afd->a_fd;
519 	new_nfd = old_nfd + 1;
520 	new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
521 	MAXFD(new_nfd);
522 	COUNT(afd_alloc);
523 
524 	mutex_enter(&afd->a_fdlock);
525 	afd->a_fd = new_fd;
526 	afd->a_nfd = new_nfd;
527 	for (i = 0; i < old_nfd; i++)
528 		afd->a_fd[i] = old_fd[i];
529 	afd->a_fd[i] = fd;
530 	mutex_exit(&afd->a_fdlock);
531 
532 	if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
533 		COUNT(afd_free);
534 		kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
535 	}
536 }
537 
538 void
539 clear_active_fd(int fd)		/* called below and from aio.c */
540 {
541 	afd_t *afd = &curthread->t_activefd;
542 	int i;
543 
544 	for (i = 0; i < afd->a_nfd; i++) {
545 		if (afd->a_fd[i] == fd) {
546 			afd->a_fd[i] = -1;
547 			break;
548 		}
549 	}
550 	ASSERT(i < afd->a_nfd);		/* not found is not ok */
551 }
552 
553 /*
554  * Does this thread have this fd active?
555  */
556 static int
557 is_active_fd(kthread_t *t, int fd)
558 {
559 	afd_t *afd = &t->t_activefd;
560 	int i;
561 
562 	ASSERT(t != curthread);
563 	mutex_enter(&afd->a_fdlock);
564 	/* uninitialized is ok here, a_nfd is then zero */
565 	for (i = 0; i < afd->a_nfd; i++) {
566 		if (afd->a_fd[i] == fd) {
567 			mutex_exit(&afd->a_fdlock);
568 			return (1);
569 		}
570 	}
571 	mutex_exit(&afd->a_fdlock);
572 	return (0);
573 }
574 
575 /*
576  * Convert a user supplied file descriptor into a pointer to a file
577  * structure.  Only task is to check range of the descriptor (soft
578  * resource limit was enforced at open time and shouldn't be checked
579  * here).
580  */
581 file_t *
582 getf(int fd)
583 {
584 	uf_info_t *fip = P_FINFO(curproc);
585 	uf_entry_t *ufp;
586 	file_t *fp;
587 
588 	if ((uint_t)fd >= fip->fi_nfiles)
589 		return (NULL);
590 
591 	/*
592 	 * Reserve a slot in the active fd array now so we can call
593 	 * set_active_fd(fd) for real below, while still inside UF_ENTER().
594 	 */
595 	set_active_fd(-1);
596 
597 	UF_ENTER(ufp, fip, fd);
598 
599 	if ((fp = ufp->uf_file) == NULL) {
600 		UF_EXIT(ufp);
601 
602 		if (fd == fip->fi_badfd && fip->fi_action > 0)
603 			tsignal(curthread, fip->fi_action);
604 
605 		return (NULL);
606 	}
607 	ufp->uf_refcnt++;
608 
609 	set_active_fd(fd);	/* record the active file descriptor */
610 
611 	UF_EXIT(ufp);
612 
613 	return (fp);
614 }
615 
616 /*
617  * Close whatever file currently occupies the file descriptor slot
618  * and install the new file, usually NULL, in the file descriptor slot.
619  * The close must complete before we release the file descriptor slot.
620  * If newfp != NULL we only return an error if we can't allocate the
621  * slot so the caller knows that it needs to free the filep;
622  * in the other cases we return the error number from closef().
623  */
624 int
625 closeandsetf(int fd, file_t *newfp)
626 {
627 	proc_t *p = curproc;
628 	uf_info_t *fip = P_FINFO(p);
629 	uf_entry_t *ufp;
630 	file_t *fp;
631 	fpollinfo_t *fpip;
632 	portfd_t *pfd;
633 	int error;
634 
635 	if ((uint_t)fd >= fip->fi_nfiles) {
636 		if (newfp == NULL)
637 			return (EBADF);
638 		flist_grow(fd);
639 	}
640 
641 	if (newfp != NULL) {
642 		/*
643 		 * If ufp is reserved but has no file pointer, it's in the
644 		 * transition between ufalloc() and setf().  We must wait
645 		 * for this transition to complete before assigning the
646 		 * new non-NULL file pointer.
647 		 */
648 		mutex_enter(&fip->fi_lock);
649 		if (fd == fip->fi_badfd) {
650 			mutex_exit(&fip->fi_lock);
651 			if (fip->fi_action > 0)
652 				tsignal(curthread, fip->fi_action);
653 			return (EBADF);
654 		}
655 		UF_ENTER(ufp, fip, fd);
656 		while (ufp->uf_busy && ufp->uf_file == NULL) {
657 			mutex_exit(&fip->fi_lock);
658 			cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
659 			UF_EXIT(ufp);
660 			mutex_enter(&fip->fi_lock);
661 			UF_ENTER(ufp, fip, fd);
662 		}
663 		if ((fp = ufp->uf_file) == NULL) {
664 			ASSERT(ufp->uf_fpollinfo == NULL);
665 			ASSERT(ufp->uf_flag == 0);
666 			fd_reserve(fip, fd, 1);
667 			ufp->uf_file = newfp;
668 			UF_EXIT(ufp);
669 			mutex_exit(&fip->fi_lock);
670 			return (0);
671 		}
672 		mutex_exit(&fip->fi_lock);
673 	} else {
674 		UF_ENTER(ufp, fip, fd);
675 		if ((fp = ufp->uf_file) == NULL) {
676 			UF_EXIT(ufp);
677 			return (EBADF);
678 		}
679 	}
680 
681 	ASSERT(ufp->uf_busy);
682 	ufp->uf_file = NULL;
683 	ufp->uf_flag = 0;
684 
685 	/*
686 	 * If the file descriptor reference count is non-zero, then
687 	 * some other lwp in the process is performing system call
688 	 * activity on the file.  To avoid blocking here for a long
689 	 * time (the other lwp might be in a long term sleep in its
690 	 * system call), we scan all other lwps in the process to
691 	 * find the ones with this fd as one of their active fds,
692 	 * set their a_stale flag, and set them running if they
693 	 * are in an interruptible sleep so they will emerge from
694 	 * their system calls immediately.  post_syscall() will
695 	 * test the a_stale flag and set errno to EBADF.
696 	 */
697 	ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
698 	if (ufp->uf_refcnt > 0) {
699 		kthread_t *t;
700 
701 		/*
702 		 * We call sprlock_proc(p) to ensure that the thread
703 		 * list will not change while we are scanning it.
704 		 * To do this, we must drop ufp->uf_lock and then
705 		 * reacquire it (so we are not holding both p->p_lock
706 		 * and ufp->uf_lock at the same time).  ufp->uf_lock
707 		 * must be held for is_active_fd() to be correct
708 		 * (set_active_fd() is called while holding ufp->uf_lock).
709 		 *
710 		 * This is a convoluted dance, but it is better than
711 		 * the old brute-force method of stopping every thread
712 		 * in the process by calling holdlwps(SHOLDFORK1).
713 		 */
714 
715 		UF_EXIT(ufp);
716 		COUNT(afd_wait);
717 
718 		mutex_enter(&p->p_lock);
719 		sprlock_proc(p);
720 		mutex_exit(&p->p_lock);
721 
722 		UF_ENTER(ufp, fip, fd);
723 		ASSERT(ufp->uf_file == NULL);
724 
725 		if (ufp->uf_refcnt > 0) {
726 			for (t = curthread->t_forw;
727 			    t != curthread;
728 			    t = t->t_forw) {
729 				if (is_active_fd(t, fd)) {
730 					thread_lock(t);
731 					t->t_activefd.a_stale = 1;
732 					t->t_post_sys = 1;
733 					if (ISWAKEABLE(t))
734 						setrun_locked(t);
735 					thread_unlock(t);
736 				}
737 			}
738 		}
739 
740 		UF_EXIT(ufp);
741 
742 		mutex_enter(&p->p_lock);
743 		sprunlock(p);
744 
745 		UF_ENTER(ufp, fip, fd);
746 		ASSERT(ufp->uf_file == NULL);
747 	}
748 
749 	/*
750 	 * Wait for other lwps to stop using this file descriptor.
751 	 */
752 	while (ufp->uf_refcnt > 0) {
753 		cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
754 		/*
755 		 * cv_wait_stop() drops ufp->uf_lock, so the file list
756 		 * can change.  Drop the lock on our (possibly) stale
757 		 * ufp and let UF_ENTER() find and lock the current ufp.
758 		 */
759 		UF_EXIT(ufp);
760 		UF_ENTER(ufp, fip, fd);
761 	}
762 
763 #ifdef DEBUG
764 	/*
765 	 * catch a watchfd on device's pollhead list but not on fpollinfo list
766 	 */
767 	if (ufp->uf_fpollinfo != NULL)
768 		checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
769 #endif	/* DEBUG */
770 
771 	/*
772 	 * We may need to cleanup some cached poll states in t_pollstate
773 	 * before the fd can be reused. It is important that we don't
774 	 * access a stale thread structure. We will do the cleanup in two
775 	 * phases to avoid deadlock and holding uf_lock for too long.
776 	 * In phase 1, hold the uf_lock and call pollblockexit() to set
777 	 * state in t_pollstate struct so that a thread does not exit on
778 	 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
779 	 */
780 	pfd = ufp->uf_portfd;
781 	ufp->uf_portfd = NULL;
782 	fpip = ufp->uf_fpollinfo;
783 	ufp->uf_fpollinfo = NULL;
784 	if (fpip != NULL)
785 		pollblockexit(fpip);
786 	UF_EXIT(ufp);
787 	if (fpip != NULL)
788 		pollcacheclean(fpip, fd);
789 	if (pfd)
790 		port_close_fd(pfd);
791 
792 	/*
793 	 * Keep the file descriptor entry reserved across the closef().
794 	 */
795 	error = closef(fp);
796 
797 	setf(fd, newfp);
798 
799 	/* Only return closef() error when closing is all we do */
800 	return (newfp == NULL ? error : 0);
801 }
802 
803 /*
804  * Decrement uf_refcnt; wakeup anyone waiting to close the file.
805  */
806 void
807 releasef(int fd)
808 {
809 	uf_info_t *fip = P_FINFO(curproc);
810 	uf_entry_t *ufp;
811 
812 	UF_ENTER(ufp, fip, fd);
813 	ASSERT(ufp->uf_refcnt > 0);
814 	clear_active_fd(fd);	/* clear the active file descriptor */
815 	if (--ufp->uf_refcnt == 0)
816 		cv_broadcast(&ufp->uf_closing_cv);
817 	UF_EXIT(ufp);
818 }
819 
820 /*
821  * Identical to releasef() but can be called from another process.
822  */
823 void
824 areleasef(int fd, uf_info_t *fip)
825 {
826 	uf_entry_t *ufp;
827 
828 	UF_ENTER(ufp, fip, fd);
829 	ASSERT(ufp->uf_refcnt > 0);
830 	if (--ufp->uf_refcnt == 0)
831 		cv_broadcast(&ufp->uf_closing_cv);
832 	UF_EXIT(ufp);
833 }
834 
835 /*
836  * Duplicate all file descriptors across a fork.
837  */
838 void
839 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
840 {
841 	int fd, nfiles;
842 	uf_entry_t *pufp, *cufp;
843 
844 	mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
845 	cfip->fi_rlist = NULL;
846 
847 	/*
848 	 * We don't need to hold fi_lock because all other lwp's in the
849 	 * parent have been held.
850 	 */
851 	cfip->fi_nfiles = nfiles = flist_minsize(pfip);
852 
853 	cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
854 
855 	for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
856 	    fd++, pufp++, cufp++) {
857 		cufp->uf_file = pufp->uf_file;
858 		cufp->uf_alloc = pufp->uf_alloc;
859 		cufp->uf_flag = pufp->uf_flag;
860 		cufp->uf_busy = pufp->uf_busy;
861 		if (pufp->uf_file == NULL) {
862 			ASSERT(pufp->uf_flag == 0);
863 			if (pufp->uf_busy) {
864 				/*
865 				 * Grab locks to appease ASSERTs in fd_reserve
866 				 */
867 				mutex_enter(&cfip->fi_lock);
868 				mutex_enter(&cufp->uf_lock);
869 				fd_reserve(cfip, fd, -1);
870 				mutex_exit(&cufp->uf_lock);
871 				mutex_exit(&cfip->fi_lock);
872 			}
873 		}
874 	}
875 }
876 
877 /*
878  * Close all open file descriptors for the current process.
879  * This is only called from exit(), which is single-threaded,
880  * so we don't need any locking.
881  */
882 void
883 closeall(uf_info_t *fip)
884 {
885 	int fd;
886 	file_t *fp;
887 	uf_entry_t *ufp;
888 
889 	ufp = fip->fi_list;
890 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
891 		if ((fp = ufp->uf_file) != NULL) {
892 			ufp->uf_file = NULL;
893 			if (ufp->uf_portfd != NULL) {
894 				portfd_t *pfd;
895 				/* remove event port association */
896 				pfd = ufp->uf_portfd;
897 				ufp->uf_portfd = NULL;
898 				port_close_fd(pfd);
899 			}
900 			ASSERT(ufp->uf_fpollinfo == NULL);
901 			(void) closef(fp);
902 		}
903 	}
904 
905 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
906 	fip->fi_list = NULL;
907 	fip->fi_nfiles = 0;
908 	while (fip->fi_rlist != NULL) {
909 		uf_rlist_t *urp = fip->fi_rlist;
910 		fip->fi_rlist = urp->ur_next;
911 		kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
912 		kmem_free(urp, sizeof (uf_rlist_t));
913 	}
914 }
915 
916 /*
917  * Internal form of close.  Decrement reference count on file
918  * structure.  Decrement reference count on the vnode following
919  * removal of the referencing file structure.
920  */
921 int
922 closef(file_t *fp)
923 {
924 	vnode_t *vp;
925 	int error;
926 	int count;
927 	int flag;
928 	offset_t offset;
929 
930 	/*
931 	 * audit close of file (may be exit)
932 	 */
933 	if (AU_AUDITING())
934 		audit_closef(fp);
935 	ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
936 
937 	mutex_enter(&fp->f_tlock);
938 
939 	ASSERT(fp->f_count > 0);
940 
941 	count = fp->f_count--;
942 	flag = fp->f_flag;
943 	offset = fp->f_offset;
944 
945 	vp = fp->f_vnode;
946 
947 	error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL);
948 
949 	if (count > 1) {
950 		mutex_exit(&fp->f_tlock);
951 		return (error);
952 	}
953 	ASSERT(fp->f_count == 0);
954 	mutex_exit(&fp->f_tlock);
955 
956 	VN_RELE(vp);
957 	/*
958 	 * deallocate resources to audit_data
959 	 */
960 	if (audit_active)
961 		audit_unfalloc(fp);
962 	crfree(fp->f_cred);
963 	kmem_cache_free(file_cache, fp);
964 	return (error);
965 }
966 
967 /*
968  * This is a combination of ufalloc() and setf().
969  */
970 int
971 ufalloc_file(int start, file_t *fp)
972 {
973 	proc_t *p = curproc;
974 	uf_info_t *fip = P_FINFO(p);
975 	int filelimit;
976 	uf_entry_t *ufp;
977 	int nfiles;
978 	int fd;
979 
980 	/*
981 	 * Assertion is to convince the correctness of the following
982 	 * assignment for filelimit after casting to int.
983 	 */
984 	ASSERT(p->p_fno_ctl <= INT_MAX);
985 	filelimit = (int)p->p_fno_ctl;
986 
987 	for (;;) {
988 		mutex_enter(&fip->fi_lock);
989 		fd = fd_find(fip, start);
990 		if (fd >= 0 && fd == fip->fi_badfd) {
991 			start = fd + 1;
992 			mutex_exit(&fip->fi_lock);
993 			continue;
994 		}
995 		if ((uint_t)fd < filelimit)
996 			break;
997 		if (fd >= filelimit) {
998 			mutex_exit(&fip->fi_lock);
999 			mutex_enter(&p->p_lock);
1000 			(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1001 			    p->p_rctls, p, RCA_SAFE);
1002 			mutex_exit(&p->p_lock);
1003 			return (-1);
1004 		}
1005 		/* fd_find() returned -1 */
1006 		nfiles = fip->fi_nfiles;
1007 		mutex_exit(&fip->fi_lock);
1008 		flist_grow(MAX(start, nfiles));
1009 	}
1010 
1011 	UF_ENTER(ufp, fip, fd);
1012 	fd_reserve(fip, fd, 1);
1013 	ASSERT(ufp->uf_file == NULL);
1014 	ufp->uf_file = fp;
1015 	UF_EXIT(ufp);
1016 	mutex_exit(&fip->fi_lock);
1017 	return (fd);
1018 }
1019 
1020 /*
1021  * Allocate a user file descriptor greater than or equal to "start".
1022  */
1023 int
1024 ufalloc(int start)
1025 {
1026 	return (ufalloc_file(start, NULL));
1027 }
1028 
1029 /*
1030  * Check that a future allocation of count fds on proc p has a good
1031  * chance of succeeding.  If not, do rctl processing as if we'd failed
1032  * the allocation.
1033  *
1034  * Our caller must guarantee that p cannot disappear underneath us.
1035  */
1036 int
1037 ufcanalloc(proc_t *p, uint_t count)
1038 {
1039 	uf_info_t *fip = P_FINFO(p);
1040 	int filelimit;
1041 	int current;
1042 
1043 	if (count == 0)
1044 		return (1);
1045 
1046 	ASSERT(p->p_fno_ctl <= INT_MAX);
1047 	filelimit = (int)p->p_fno_ctl;
1048 
1049 	mutex_enter(&fip->fi_lock);
1050 	current = flist_nalloc(fip);		/* # of in-use descriptors */
1051 	mutex_exit(&fip->fi_lock);
1052 
1053 	/*
1054 	 * If count is a positive integer, the worst that can happen is
1055 	 * an overflow to a negative value, which is caught by the >= 0 check.
1056 	 */
1057 	current += count;
1058 	if (count <= INT_MAX && current >= 0 && current <= filelimit)
1059 		return (1);
1060 
1061 	mutex_enter(&p->p_lock);
1062 	(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1063 	    p->p_rctls, p, RCA_SAFE);
1064 	mutex_exit(&p->p_lock);
1065 	return (0);
1066 }
1067 
1068 /*
1069  * Allocate a user file descriptor and a file structure.
1070  * Initialize the descriptor to point at the file structure.
1071  * If fdp is NULL, the user file descriptor will not be allocated.
1072  */
1073 int
1074 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1075 {
1076 	file_t *fp;
1077 	int fd;
1078 
1079 	if (fdp) {
1080 		if ((fd = ufalloc(0)) == -1)
1081 			return (EMFILE);
1082 	}
1083 	fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1084 	/*
1085 	 * Note: falloc returns the fp locked
1086 	 */
1087 	mutex_enter(&fp->f_tlock);
1088 	fp->f_count = 1;
1089 	fp->f_flag = (ushort_t)flag;
1090 	fp->f_vnode = vp;
1091 	fp->f_offset = 0;
1092 	fp->f_audit_data = 0;
1093 	crhold(fp->f_cred = CRED());
1094 	/*
1095 	 * allocate resources to audit_data
1096 	 */
1097 	if (audit_active)
1098 		audit_falloc(fp);
1099 	*fpp = fp;
1100 	if (fdp)
1101 		*fdp = fd;
1102 	return (0);
1103 }
1104 
1105 /*ARGSUSED*/
1106 static int
1107 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1108 {
1109 	file_t *fp = buf;
1110 
1111 	mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1112 	return (0);
1113 }
1114 
1115 /*ARGSUSED*/
1116 static void
1117 file_cache_destructor(void *buf, void *cdrarg)
1118 {
1119 	file_t *fp = buf;
1120 
1121 	mutex_destroy(&fp->f_tlock);
1122 }
1123 
1124 void
1125 finit()
1126 {
1127 	file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1128 	    file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1129 }
1130 
1131 void
1132 unfalloc(file_t *fp)
1133 {
1134 	ASSERT(MUTEX_HELD(&fp->f_tlock));
1135 	if (--fp->f_count <= 0) {
1136 		/*
1137 		 * deallocate resources to audit_data
1138 		 */
1139 		if (audit_active)
1140 			audit_unfalloc(fp);
1141 		crfree(fp->f_cred);
1142 		mutex_exit(&fp->f_tlock);
1143 		kmem_cache_free(file_cache, fp);
1144 	} else
1145 		mutex_exit(&fp->f_tlock);
1146 }
1147 
1148 /*
1149  * Given a file descriptor, set the user's
1150  * file pointer to the given parameter.
1151  */
1152 void
1153 setf(int fd, file_t *fp)
1154 {
1155 	uf_info_t *fip = P_FINFO(curproc);
1156 	uf_entry_t *ufp;
1157 
1158 	if (AU_AUDITING())
1159 		audit_setf(fp, fd);
1160 
1161 	if (fp == NULL) {
1162 		mutex_enter(&fip->fi_lock);
1163 		UF_ENTER(ufp, fip, fd);
1164 		fd_reserve(fip, fd, -1);
1165 		mutex_exit(&fip->fi_lock);
1166 	} else {
1167 		UF_ENTER(ufp, fip, fd);
1168 		ASSERT(ufp->uf_busy);
1169 	}
1170 	ASSERT(ufp->uf_fpollinfo == NULL);
1171 	ASSERT(ufp->uf_flag == 0);
1172 	ufp->uf_file = fp;
1173 	cv_broadcast(&ufp->uf_wanted_cv);
1174 	UF_EXIT(ufp);
1175 }
1176 
1177 /*
1178  * Given a file descriptor, return the file table flags, plus,
1179  * if this is a socket in asynchronous mode, the FASYNC flag.
1180  * getf() may or may not have been called before calling f_getfl().
1181  */
1182 int
1183 f_getfl(int fd, int *flagp)
1184 {
1185 	uf_info_t *fip = P_FINFO(curproc);
1186 	uf_entry_t *ufp;
1187 	file_t *fp;
1188 	int error;
1189 
1190 	if ((uint_t)fd >= fip->fi_nfiles)
1191 		error = EBADF;
1192 	else {
1193 		UF_ENTER(ufp, fip, fd);
1194 		if ((fp = ufp->uf_file) == NULL)
1195 			error = EBADF;
1196 		else {
1197 			vnode_t *vp = fp->f_vnode;
1198 			int flag = fp->f_flag;
1199 
1200 			/*
1201 			 * BSD fcntl() FASYNC compatibility.
1202 			 */
1203 			if (vp->v_type == VSOCK)
1204 				flag |= sock_getfasync(vp);
1205 			*flagp = flag;
1206 			error = 0;
1207 		}
1208 		UF_EXIT(ufp);
1209 	}
1210 
1211 	return (error);
1212 }
1213 
1214 /*
1215  * Given a file descriptor, return the user's file flags.
1216  * Force the FD_CLOEXEC flag for writable self-open /proc files.
1217  * getf() may or may not have been called before calling f_getfd_error().
1218  */
1219 int
1220 f_getfd_error(int fd, int *flagp)
1221 {
1222 	uf_info_t *fip = P_FINFO(curproc);
1223 	uf_entry_t *ufp;
1224 	file_t *fp;
1225 	int flag;
1226 	int error;
1227 
1228 	if ((uint_t)fd >= fip->fi_nfiles)
1229 		error = EBADF;
1230 	else {
1231 		UF_ENTER(ufp, fip, fd);
1232 		if ((fp = ufp->uf_file) == NULL)
1233 			error = EBADF;
1234 		else {
1235 			flag = ufp->uf_flag;
1236 			if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1237 				flag |= FD_CLOEXEC;
1238 			*flagp = flag;
1239 			error = 0;
1240 		}
1241 		UF_EXIT(ufp);
1242 	}
1243 
1244 	return (error);
1245 }
1246 
1247 /*
1248  * getf() must have been called before calling f_getfd().
1249  */
1250 char
1251 f_getfd(int fd)
1252 {
1253 	int flag = 0;
1254 	(void) f_getfd_error(fd, &flag);
1255 	return ((char)flag);
1256 }
1257 
1258 /*
1259  * Given a file descriptor and file flags, set the user's file flags.
1260  * At present, the only valid flag is FD_CLOEXEC.
1261  * getf() may or may not have been called before calling f_setfd_error().
1262  */
1263 int
1264 f_setfd_error(int fd, int flags)
1265 {
1266 	uf_info_t *fip = P_FINFO(curproc);
1267 	uf_entry_t *ufp;
1268 	int error;
1269 
1270 	if ((uint_t)fd >= fip->fi_nfiles)
1271 		error = EBADF;
1272 	else {
1273 		UF_ENTER(ufp, fip, fd);
1274 		if (ufp->uf_file == NULL)
1275 			error = EBADF;
1276 		else {
1277 			ufp->uf_flag = flags & FD_CLOEXEC;
1278 			error = 0;
1279 		}
1280 		UF_EXIT(ufp);
1281 	}
1282 	return (error);
1283 }
1284 
1285 void
1286 f_setfd(int fd, char flags)
1287 {
1288 	(void) f_setfd_error(fd, flags);
1289 }
1290 
1291 #define	BADFD_MIN	3
1292 #define	BADFD_MAX	255
1293 
1294 /*
1295  * Attempt to allocate a file descriptor which is bad and which
1296  * is "poison" to the application.  It cannot be closed (except
1297  * on exec), allocated for a different use, etc.
1298  */
1299 int
1300 f_badfd(int start, int *fdp, int action)
1301 {
1302 	int fdr;
1303 	int badfd;
1304 	uf_info_t *fip = P_FINFO(curproc);
1305 
1306 #ifdef _LP64
1307 	/* No restrictions on 64 bit _file */
1308 	if (get_udatamodel() != DATAMODEL_ILP32)
1309 		return (EINVAL);
1310 #endif
1311 
1312 	if (start > BADFD_MAX || start < BADFD_MIN)
1313 		return (EINVAL);
1314 
1315 	if (action >= NSIG || action < 0)
1316 		return (EINVAL);
1317 
1318 	mutex_enter(&fip->fi_lock);
1319 	badfd = fip->fi_badfd;
1320 	mutex_exit(&fip->fi_lock);
1321 
1322 	if (badfd != -1)
1323 		return (EAGAIN);
1324 
1325 	fdr = ufalloc(start);
1326 
1327 	if (fdr > BADFD_MAX) {
1328 		setf(fdr, NULL);
1329 		return (EMFILE);
1330 	}
1331 	if (fdr < 0)
1332 		return (EMFILE);
1333 
1334 	mutex_enter(&fip->fi_lock);
1335 	if (fip->fi_badfd != -1) {
1336 		/* Lost race */
1337 		mutex_exit(&fip->fi_lock);
1338 		setf(fdr, NULL);
1339 		return (EAGAIN);
1340 	}
1341 	fip->fi_action = action;
1342 	fip->fi_badfd = fdr;
1343 	mutex_exit(&fip->fi_lock);
1344 	setf(fdr, NULL);
1345 
1346 	*fdp = fdr;
1347 
1348 	return (0);
1349 }
1350 
1351 /*
1352  * Allocate a file descriptor and assign it to the vnode "*vpp",
1353  * performing the usual open protocol upon it and returning the
1354  * file descriptor allocated.  It is the responsibility of the
1355  * caller to dispose of "*vpp" if any error occurs.
1356  */
1357 int
1358 fassign(vnode_t **vpp, int mode, int *fdp)
1359 {
1360 	file_t *fp;
1361 	int error;
1362 	int fd;
1363 
1364 	if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
1365 		return (error);
1366 	if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) {
1367 		setf(fd, NULL);
1368 		unfalloc(fp);
1369 		return (error);
1370 	}
1371 	fp->f_vnode = *vpp;
1372 	mutex_exit(&fp->f_tlock);
1373 	/*
1374 	 * Fill in the slot falloc reserved.
1375 	 */
1376 	setf(fd, fp);
1377 	*fdp = fd;
1378 	return (0);
1379 }
1380 
1381 /*
1382  * When a process forks it must increment the f_count of all file pointers
1383  * since there is a new process pointing at them.  fcnt_add(fip, 1) does this.
1384  * Since we are called when there is only 1 active lwp we don't need to
1385  * hold fi_lock or any uf_lock.  If the fork fails, fork_fail() calls
1386  * fcnt_add(fip, -1) to restore the counts.
1387  */
1388 void
1389 fcnt_add(uf_info_t *fip, int incr)
1390 {
1391 	int i;
1392 	uf_entry_t *ufp;
1393 	file_t *fp;
1394 
1395 	ufp = fip->fi_list;
1396 	for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1397 		if ((fp = ufp->uf_file) != NULL) {
1398 			mutex_enter(&fp->f_tlock);
1399 			ASSERT((incr == 1 && fp->f_count >= 1) ||
1400 			    (incr == -1 && fp->f_count >= 2));
1401 			fp->f_count += incr;
1402 			mutex_exit(&fp->f_tlock);
1403 		}
1404 	}
1405 }
1406 
1407 /*
1408  * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1409  * set and also to close all self-open for write /proc file descriptors.
1410  */
1411 void
1412 close_exec(uf_info_t *fip)
1413 {
1414 	int fd;
1415 	file_t *fp;
1416 	fpollinfo_t *fpip;
1417 	uf_entry_t *ufp;
1418 	portfd_t *pfd;
1419 
1420 	ufp = fip->fi_list;
1421 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1422 		if ((fp = ufp->uf_file) != NULL &&
1423 		    ((ufp->uf_flag & FD_CLOEXEC) ||
1424 		    ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1425 			fpip = ufp->uf_fpollinfo;
1426 			mutex_enter(&fip->fi_lock);
1427 			mutex_enter(&ufp->uf_lock);
1428 			fd_reserve(fip, fd, -1);
1429 			mutex_exit(&fip->fi_lock);
1430 			ufp->uf_file = NULL;
1431 			ufp->uf_fpollinfo = NULL;
1432 			ufp->uf_flag = 0;
1433 			/*
1434 			 * We may need to cleanup some cached poll states
1435 			 * in t_pollstate before the fd can be reused. It
1436 			 * is important that we don't access a stale thread
1437 			 * structure. We will do the cleanup in two
1438 			 * phases to avoid deadlock and holding uf_lock for
1439 			 * too long. In phase 1, hold the uf_lock and call
1440 			 * pollblockexit() to set state in t_pollstate struct
1441 			 * so that a thread does not exit on us. In phase 2,
1442 			 * we drop the uf_lock and call pollcacheclean().
1443 			 */
1444 			pfd = ufp->uf_portfd;
1445 			ufp->uf_portfd = NULL;
1446 			if (fpip != NULL)
1447 				pollblockexit(fpip);
1448 			mutex_exit(&ufp->uf_lock);
1449 			if (fpip != NULL)
1450 				pollcacheclean(fpip, fd);
1451 			if (pfd)
1452 				port_close_fd(pfd);
1453 			(void) closef(fp);
1454 		}
1455 	}
1456 
1457 	/* Reset bad fd */
1458 	fip->fi_badfd = -1;
1459 	fip->fi_action = -1;
1460 }
1461 
1462 /*
1463  * Common routine for modifying attributes of named files.
1464  */
1465 int
1466 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags)
1467 {
1468 	vnode_t *vp;
1469 	int error = 0;
1470 
1471 	if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp))
1472 		return (set_errno(error));
1473 	if (error = vpsetattr(vp, vap, flags))
1474 		(void) set_errno(error);
1475 	VN_RELE(vp);
1476 	return (error);
1477 }
1478 
1479 /*
1480  * Common routine for modifying attributes of files referenced
1481  * by descriptor.
1482  */
1483 int
1484 fdsetattr(int fd, vattr_t *vap)
1485 {
1486 	file_t *fp;
1487 	vnode_t *vp;
1488 	int error = 0;
1489 
1490 	if ((fp = getf(fd)) != NULL) {
1491 		vp = fp->f_vnode;
1492 		if (error = vpsetattr(vp, vap, 0)) {
1493 			(void) set_errno(error);
1494 		}
1495 		releasef(fd);
1496 	} else
1497 		error = set_errno(EBADF);
1498 	return (error);
1499 }
1500 
1501 /*
1502  * Common routine to set the attributes for the given vnode.
1503  * If the vnode is a file and the filesize is being manipulated,
1504  * this makes sure that there are no conflicting non-blocking
1505  * mandatory locks in that region.
1506  */
1507 static int
1508 vpsetattr(vnode_t *vp, vattr_t *vap, int flags)
1509 {
1510 	int error = 0;
1511 	int in_crit = 0;
1512 	u_offset_t	begin;
1513 	vattr_t	vattr;
1514 	ssize_t	length;
1515 
1516 	if (vn_is_readonly(vp)) {
1517 		error = EROFS;
1518 	}
1519 	if (!error && (vap->va_mask & AT_SIZE) &&
1520 	    nbl_need_check(vp)) {
1521 		nbl_start_crit(vp, RW_READER);
1522 		in_crit = 1;
1523 		vattr.va_mask = AT_SIZE;
1524 		if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
1525 			begin = vap->va_size > vattr.va_size ?
1526 			    vattr.va_size : vap->va_size;
1527 			length = vattr.va_size > vap->va_size ?
1528 			    vattr.va_size - vap->va_size :
1529 			    vap->va_size - vattr.va_size;
1530 
1531 			if (nbl_conflict(vp, NBL_WRITE, begin, length, 0,
1532 			    NULL)) {
1533 				error = EACCES;
1534 			}
1535 		}
1536 	}
1537 	if (!error)
1538 		error = VOP_SETATTR(vp, vap, flags, CRED(), NULL);
1539 
1540 	if (in_crit)
1541 		nbl_end_crit(vp);
1542 
1543 	return (error);
1544 }
1545 
1546 /*
1547  * Return true if the given vnode is referenced by any
1548  * entry in the current process's file descriptor table.
1549  */
1550 int
1551 fisopen(vnode_t *vp)
1552 {
1553 	int fd;
1554 	file_t *fp;
1555 	vnode_t *ovp;
1556 	uf_info_t *fip = P_FINFO(curproc);
1557 	uf_entry_t *ufp;
1558 
1559 	mutex_enter(&fip->fi_lock);
1560 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1561 		UF_ENTER(ufp, fip, fd);
1562 		if ((fp = ufp->uf_file) != NULL &&
1563 		    (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1564 			UF_EXIT(ufp);
1565 			mutex_exit(&fip->fi_lock);
1566 			return (1);
1567 		}
1568 		UF_EXIT(ufp);
1569 	}
1570 	mutex_exit(&fip->fi_lock);
1571 	return (0);
1572 }
1573 
1574 /*
1575  * Return zero if at least one file currently open (by curproc) shouldn't be
1576  * allowed to change zones.
1577  */
1578 int
1579 files_can_change_zones(void)
1580 {
1581 	int fd;
1582 	file_t *fp;
1583 	uf_info_t *fip = P_FINFO(curproc);
1584 	uf_entry_t *ufp;
1585 
1586 	mutex_enter(&fip->fi_lock);
1587 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1588 		UF_ENTER(ufp, fip, fd);
1589 		if ((fp = ufp->uf_file) != NULL &&
1590 		    !vn_can_change_zones(fp->f_vnode)) {
1591 			UF_EXIT(ufp);
1592 			mutex_exit(&fip->fi_lock);
1593 			return (0);
1594 		}
1595 		UF_EXIT(ufp);
1596 	}
1597 	mutex_exit(&fip->fi_lock);
1598 	return (1);
1599 }
1600 
1601 #ifdef DEBUG
1602 
1603 /*
1604  * The following functions are only used in ASSERT()s elsewhere.
1605  * They do not modify the state of the system.
1606  */
1607 
1608 /*
1609  * Return true (1) if the current thread is in the fpollinfo
1610  * list for this file descriptor, else false (0).
1611  */
1612 static int
1613 curthread_in_plist(uf_entry_t *ufp)
1614 {
1615 	fpollinfo_t *fpip;
1616 
1617 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
1618 	for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1619 		if (fpip->fp_thread == curthread)
1620 			return (1);
1621 	return (0);
1622 }
1623 
1624 /*
1625  * Sanity check to make sure that after lwp_exit(),
1626  * curthread does not appear on any fd's fpollinfo list.
1627  */
1628 void
1629 checkfpollinfo(void)
1630 {
1631 	int fd;
1632 	uf_info_t *fip = P_FINFO(curproc);
1633 	uf_entry_t *ufp;
1634 
1635 	mutex_enter(&fip->fi_lock);
1636 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1637 		UF_ENTER(ufp, fip, fd);
1638 		ASSERT(!curthread_in_plist(ufp));
1639 		UF_EXIT(ufp);
1640 	}
1641 	mutex_exit(&fip->fi_lock);
1642 }
1643 
1644 /*
1645  * Return true (1) if the current thread is in the fpollinfo
1646  * list for this file descriptor, else false (0).
1647  * This is the same as curthread_in_plist(),
1648  * but is called w/o holding uf_lock.
1649  */
1650 int
1651 infpollinfo(int fd)
1652 {
1653 	uf_info_t *fip = P_FINFO(curproc);
1654 	uf_entry_t *ufp;
1655 	int rc;
1656 
1657 	UF_ENTER(ufp, fip, fd);
1658 	rc = curthread_in_plist(ufp);
1659 	UF_EXIT(ufp);
1660 	return (rc);
1661 }
1662 
1663 #endif	/* DEBUG */
1664 
1665 /*
1666  * Add the curthread to fpollinfo list, meaning this fd is currently in the
1667  * thread's poll cache. Each lwp polling this file descriptor should call
1668  * this routine once.
1669  */
1670 void
1671 addfpollinfo(int fd)
1672 {
1673 	struct uf_entry *ufp;
1674 	fpollinfo_t *fpip;
1675 	uf_info_t *fip = P_FINFO(curproc);
1676 
1677 	fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1678 	fpip->fp_thread = curthread;
1679 	UF_ENTER(ufp, fip, fd);
1680 	/*
1681 	 * Assert we are not already on the list, that is, that
1682 	 * this lwp did not call addfpollinfo twice for the same fd.
1683 	 */
1684 	ASSERT(!curthread_in_plist(ufp));
1685 	/*
1686 	 * addfpollinfo is always done inside the getf/releasef pair.
1687 	 */
1688 	ASSERT(ufp->uf_refcnt >= 1);
1689 	fpip->fp_next = ufp->uf_fpollinfo;
1690 	ufp->uf_fpollinfo = fpip;
1691 	UF_EXIT(ufp);
1692 }
1693 
1694 /*
1695  * Delete curthread from fpollinfo list if it is there.
1696  */
1697 void
1698 delfpollinfo(int fd)
1699 {
1700 	struct uf_entry *ufp;
1701 	struct fpollinfo *fpip;
1702 	struct fpollinfo **fpipp;
1703 	uf_info_t *fip = P_FINFO(curproc);
1704 
1705 	UF_ENTER(ufp, fip, fd);
1706 	for (fpipp = &ufp->uf_fpollinfo;
1707 	    (fpip = *fpipp) != NULL;
1708 	    fpipp = &fpip->fp_next) {
1709 		if (fpip->fp_thread == curthread) {
1710 			*fpipp = fpip->fp_next;
1711 			kmem_free(fpip, sizeof (fpollinfo_t));
1712 			break;
1713 		}
1714 	}
1715 	/*
1716 	 * Assert that we are not still on the list, that is, that
1717 	 * this lwp did not call addfpollinfo twice for the same fd.
1718 	 */
1719 	ASSERT(!curthread_in_plist(ufp));
1720 	UF_EXIT(ufp);
1721 }
1722 
1723 /*
1724  * fd is associated with a port. pfd is a pointer to the fd entry in the
1725  * cache of the port.
1726  */
1727 
1728 void
1729 addfd_port(int fd, portfd_t *pfd)
1730 {
1731 	struct uf_entry *ufp;
1732 	uf_info_t *fip = P_FINFO(curproc);
1733 
1734 	UF_ENTER(ufp, fip, fd);
1735 	/*
1736 	 * addfd_port is always done inside the getf/releasef pair.
1737 	 */
1738 	ASSERT(ufp->uf_refcnt >= 1);
1739 	if (ufp->uf_portfd == NULL) {
1740 		/* first entry */
1741 		ufp->uf_portfd = pfd;
1742 		pfd->pfd_next = NULL;
1743 	} else {
1744 		pfd->pfd_next = ufp->uf_portfd;
1745 		ufp->uf_portfd = pfd;
1746 		pfd->pfd_next->pfd_prev = pfd;
1747 	}
1748 	UF_EXIT(ufp);
1749 }
1750 
1751 void
1752 delfd_port(int fd, portfd_t *pfd)
1753 {
1754 	struct uf_entry *ufp;
1755 	uf_info_t *fip = P_FINFO(curproc);
1756 
1757 	UF_ENTER(ufp, fip, fd);
1758 	/*
1759 	 * delfd_port is always done inside the getf/releasef pair.
1760 	 */
1761 	ASSERT(ufp->uf_refcnt >= 1);
1762 	if (ufp->uf_portfd == pfd) {
1763 		/* remove first entry */
1764 		ufp->uf_portfd = pfd->pfd_next;
1765 	} else {
1766 		pfd->pfd_prev->pfd_next = pfd->pfd_next;
1767 		if (pfd->pfd_next != NULL)
1768 			pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1769 	}
1770 	UF_EXIT(ufp);
1771 }
1772 
1773 static void
1774 port_close_fd(portfd_t *pfd)
1775 {
1776 	portfd_t	*pfdn;
1777 
1778 	/*
1779 	 * At this point, no other thread should access
1780 	 * the portfd_t list for this fd. The uf_file, uf_portfd
1781 	 * pointers in the uf_entry_t struct for this fd would
1782 	 * be set to NULL.
1783 	 */
1784 	for (; pfd != NULL; pfd = pfdn) {
1785 		pfdn = pfd->pfd_next;
1786 		port_close_pfd(pfd);
1787 	}
1788 }
1789