1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1988 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/systm.h> 34 #include <sys/signal.h> 35 #include <sys/cred_impl.h> 36 #include <sys/policy.h> 37 #include <sys/user.h> 38 #include <sys/errno.h> 39 #include <sys/file.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 #include <sys/mman.h> 43 #include <sys/acct.h> 44 #include <sys/cpuvar.h> 45 #include <sys/proc.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/pathname.h> 49 #include <sys/vm.h> 50 #include <sys/lgrp.h> 51 #include <sys/vtrace.h> 52 #include <sys/exec.h> 53 #include <sys/exechdr.h> 54 #include <sys/kmem.h> 55 #include <sys/prsystm.h> 56 #include <sys/modctl.h> 57 #include <sys/vmparam.h> 58 #include <sys/door.h> 59 #include <sys/schedctl.h> 60 #include <sys/utrap.h> 61 #include <sys/systeminfo.h> 62 #include <sys/stack.h> 63 #include <sys/rctl.h> 64 #include <sys/dtrace.h> 65 #include <sys/lwpchan_impl.h> 66 #include <sys/pool.h> 67 #include <sys/sdt.h> 68 #include <sys/brand.h> 69 70 #include <c2/audit.h> 71 72 #include <vm/hat.h> 73 #include <vm/anon.h> 74 #include <vm/as.h> 75 #include <vm/seg.h> 76 #include <vm/seg_vn.h> 77 78 #define PRIV_RESET 0x01 /* needs to reset privs */ 79 #define PRIV_SETID 0x02 /* needs to change uids */ 80 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */ 81 #define PRIV_INCREASE 0x08 /* child runs with more privs */ 82 #define MAC_FLAGS 0x10 /* need to adjust MAC flags */ 83 84 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *); 85 static int hold_execsw(struct execsw *); 86 87 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */ 88 #if defined(_SYSCALL32_IMPL) 89 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */ 90 #endif 91 92 #define PSUIDFLAGS (SNOCD|SUGID) 93 94 /* 95 * exec() - wrapper around exece providing NULL environment pointer 96 */ 97 int 98 exec(const char *fname, const char **argp) 99 { 100 return (exece(fname, argp, NULL)); 101 } 102 103 /* 104 * exece() - system call wrapper around exec_common() 105 */ 106 int 107 exece(const char *fname, const char **argp, const char **envp) 108 { 109 int error; 110 111 error = exec_common(fname, argp, envp, EBA_NONE); 112 return (error ? (set_errno(error)) : 0); 113 } 114 115 int 116 exec_common(const char *fname, const char **argp, const char **envp, 117 int brand_action) 118 { 119 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL; 120 proc_t *p = ttoproc(curthread); 121 klwp_t *lwp = ttolwp(curthread); 122 struct user *up = PTOU(p); 123 long execsz; /* temporary count of exec size */ 124 int i; 125 int error; 126 char exec_file[MAXCOMLEN+1]; 127 struct pathname pn; 128 struct pathname resolvepn; 129 struct uarg args; 130 struct execa ua; 131 k_sigset_t savedmask; 132 lwpdir_t *lwpdir = NULL; 133 lwpdir_t **tidhash; 134 lwpdir_t *old_lwpdir = NULL; 135 uint_t old_lwpdir_sz; 136 lwpdir_t **old_tidhash; 137 uint_t old_tidhash_sz; 138 lwpent_t *lep; 139 boolean_t brandme = B_FALSE; 140 141 /* 142 * exec() is not supported for the /proc agent lwp. 143 */ 144 if (curthread == p->p_agenttp) 145 return (ENOTSUP); 146 147 if (brand_action != EBA_NONE) { 148 /* 149 * Brand actions are not supported for processes that are not 150 * running in a branded zone. 151 */ 152 if (!ZONE_IS_BRANDED(p->p_zone)) 153 return (ENOTSUP); 154 155 if (brand_action == EBA_NATIVE) { 156 /* Only branded processes can be unbranded */ 157 if (!PROC_IS_BRANDED(p)) 158 return (ENOTSUP); 159 } else { 160 /* Only unbranded processes can be branded */ 161 if (PROC_IS_BRANDED(p)) 162 return (ENOTSUP); 163 brandme = B_TRUE; 164 } 165 } else { 166 /* 167 * If this is a native zone, or if the process is already 168 * branded, then we don't need to do anything. If this is 169 * a native process in a branded zone, we need to brand the 170 * process as it exec()s the new binary. 171 */ 172 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p)) 173 brandme = B_TRUE; 174 } 175 176 /* 177 * Inform /proc that an exec() has started. 178 * Hold signals that are ignored by default so that we will 179 * not be interrupted by a signal that will be ignored after 180 * successful completion of gexec(). 181 */ 182 mutex_enter(&p->p_lock); 183 prexecstart(); 184 schedctl_finish_sigblock(curthread); 185 savedmask = curthread->t_hold; 186 sigorset(&curthread->t_hold, &ignoredefault); 187 mutex_exit(&p->p_lock); 188 189 /* 190 * Look up path name and remember last component for later. 191 * To help coreadm expand its %d token, we attempt to save 192 * the directory containing the executable in p_execdir. The 193 * first call to lookuppn() may fail and return EINVAL because 194 * dirvpp is non-NULL. In that case, we make a second call to 195 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL, 196 * but coreadm is allowed to expand %d to the empty string and 197 * there are other cases in which that failure may occur. 198 */ 199 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 200 goto out; 201 pn_alloc(&resolvepn); 202 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) { 203 pn_free(&resolvepn); 204 pn_free(&pn); 205 if (error != EINVAL) 206 goto out; 207 208 dir = NULL; 209 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 210 goto out; 211 pn_alloc(&resolvepn); 212 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP, 213 &vp)) != 0) { 214 pn_free(&resolvepn); 215 pn_free(&pn); 216 goto out; 217 } 218 } 219 if (vp == NULL) { 220 if (dir != NULL) 221 VN_RELE(dir); 222 error = ENOENT; 223 pn_free(&resolvepn); 224 pn_free(&pn); 225 goto out; 226 } 227 228 if ((error = secpolicy_basic_exec(CRED(), vp)) != 0) { 229 if (dir != NULL) 230 VN_RELE(dir); 231 pn_free(&resolvepn); 232 pn_free(&pn); 233 VN_RELE(vp); 234 goto out; 235 } 236 237 /* 238 * We do not allow executing files in attribute directories. 239 * We test this by determining whether the resolved path 240 * contains a "/" when we're in an attribute directory; 241 * only if the pathname does not contain a "/" the resolved path 242 * points to a file in the current working (attribute) directory. 243 */ 244 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 && 245 strchr(resolvepn.pn_path, '/') == NULL) { 246 if (dir != NULL) 247 VN_RELE(dir); 248 error = EACCES; 249 pn_free(&resolvepn); 250 pn_free(&pn); 251 VN_RELE(vp); 252 goto out; 253 } 254 255 bzero(exec_file, MAXCOMLEN+1); 256 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN); 257 bzero(&args, sizeof (args)); 258 args.pathname = resolvepn.pn_path; 259 /* don't free resolvepn until we are done with args */ 260 pn_free(&pn); 261 262 /* 263 * Specific exec handlers, or policies determined via 264 * /etc/system may override the historical default. 265 */ 266 args.stk_prot = PROT_ZFOD; 267 args.dat_prot = PROT_ZFOD; 268 269 CPU_STATS_ADD_K(sys, sysexec, 1); 270 DTRACE_PROC1(exec, char *, args.pathname); 271 272 ua.fname = fname; 273 ua.argp = argp; 274 ua.envp = envp; 275 276 /* If necessary, brand this process before we start the exec. */ 277 if (brandme) 278 brand_setbrand(p); 279 280 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz, 281 exec_file, p->p_cred, brand_action)) != 0) { 282 if (brandme) 283 brand_clearbrand(p); 284 VN_RELE(vp); 285 if (dir != NULL) 286 VN_RELE(dir); 287 pn_free(&resolvepn); 288 goto fail; 289 } 290 291 /* 292 * Free floating point registers (sun4u only) 293 */ 294 ASSERT(lwp != NULL); 295 lwp_freeregs(lwp, 1); 296 297 /* 298 * Free thread and process context ops. 299 */ 300 if (curthread->t_ctx) 301 freectx(curthread, 1); 302 if (p->p_pctx) 303 freepctx(p, 1); 304 305 /* 306 * Remember file name for accounting; clear any cached DTrace predicate. 307 */ 308 up->u_acflag &= ~AFORK; 309 bcopy(exec_file, up->u_comm, MAXCOMLEN+1); 310 curthread->t_predcache = NULL; 311 312 /* 313 * Clear contract template state 314 */ 315 lwp_ctmpl_clear(lwp); 316 317 /* 318 * Save the directory in which we found the executable for expanding 319 * the %d token used in core file patterns. 320 */ 321 mutex_enter(&p->p_lock); 322 tmpvp = p->p_execdir; 323 p->p_execdir = dir; 324 if (p->p_execdir != NULL) 325 VN_HOLD(p->p_execdir); 326 mutex_exit(&p->p_lock); 327 328 if (tmpvp != NULL) 329 VN_RELE(tmpvp); 330 331 /* 332 * Reset stack state to the user stack, clear set of signals 333 * caught on the signal stack, and reset list of signals that 334 * restart system calls; the new program's environment should 335 * not be affected by detritus from the old program. Any 336 * pending held signals remain held, so don't clear t_hold. 337 */ 338 mutex_enter(&p->p_lock); 339 lwp->lwp_oldcontext = 0; 340 lwp->lwp_ustack = 0; 341 lwp->lwp_old_stk_ctl = 0; 342 sigemptyset(&up->u_signodefer); 343 sigemptyset(&up->u_sigonstack); 344 sigemptyset(&up->u_sigresethand); 345 lwp->lwp_sigaltstack.ss_sp = 0; 346 lwp->lwp_sigaltstack.ss_size = 0; 347 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 348 349 /* 350 * Make saved resource limit == current resource limit. 351 */ 352 for (i = 0; i < RLIM_NLIMITS; i++) { 353 /*CONSTCOND*/ 354 if (RLIM_SAVED(i)) { 355 (void) rctl_rlimit_get(rctlproc_legacy[i], p, 356 &up->u_saved_rlimit[i]); 357 } 358 } 359 360 /* 361 * If the action was to catch the signal, then the action 362 * must be reset to SIG_DFL. 363 */ 364 sigdefault(p); 365 p->p_flag &= ~(SNOWAIT|SJCTL); 366 p->p_flag |= (SEXECED|SMSACCT|SMSFORK); 367 up->u_signal[SIGCLD - 1] = SIG_DFL; 368 369 /* 370 * Delete the dot4 sigqueues/signotifies. 371 */ 372 sigqfree(p); 373 374 mutex_exit(&p->p_lock); 375 376 mutex_enter(&p->p_pflock); 377 p->p_prof.pr_base = NULL; 378 p->p_prof.pr_size = 0; 379 p->p_prof.pr_off = 0; 380 p->p_prof.pr_scale = 0; 381 p->p_prof.pr_samples = 0; 382 mutex_exit(&p->p_pflock); 383 384 ASSERT(curthread->t_schedctl == NULL); 385 386 #if defined(__sparc) 387 if (p->p_utraps != NULL) 388 utrap_free(p); 389 #endif /* __sparc */ 390 391 /* 392 * Close all close-on-exec files. 393 */ 394 close_exec(P_FINFO(p)); 395 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up); 396 397 /* Unbrand ourself if necessary. */ 398 if (PROC_IS_BRANDED(p) && (brand_action == EBA_NATIVE)) 399 brand_clearbrand(p); 400 401 setregs(&args); 402 403 /* Mark this as an executable vnode */ 404 mutex_enter(&vp->v_lock); 405 vp->v_flag |= VVMEXEC; 406 mutex_exit(&vp->v_lock); 407 408 VN_RELE(vp); 409 if (dir != NULL) 410 VN_RELE(dir); 411 pn_free(&resolvepn); 412 413 /* 414 * Allocate a new lwp directory and lwpid hash table if necessary. 415 */ 416 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) { 417 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP); 418 lwpdir->ld_next = lwpdir + 1; 419 tidhash = kmem_zalloc(2 * sizeof (lwpdir_t *), KM_SLEEP); 420 if (p->p_lwpdir != NULL) 421 lep = p->p_lwpdir[curthread->t_dslot].ld_entry; 422 else 423 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 424 } 425 426 if (PROC_IS_BRANDED(p)) 427 BROP(p)->b_exec(); 428 429 mutex_enter(&p->p_lock); 430 prbarrier(p); 431 432 /* 433 * Reset lwp id to the default value of 1. 434 * This is a single-threaded process now 435 * and lwp #1 is lwp_wait()able by default. 436 * The t_unpark flag should not be inherited. 437 */ 438 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 439 curthread->t_tid = 1; 440 kpreempt_disable(); 441 ASSERT(curthread->t_lpl != NULL); 442 p->p_t1_lgrpid = curthread->t_lpl->lpl_lgrpid; 443 kpreempt_enable(); 444 if (p->p_tr_lgrpid != LGRP_NONE && p->p_tr_lgrpid != p->p_t1_lgrpid) { 445 lgrp_update_trthr_migrations(1); 446 } 447 curthread->t_unpark = 0; 448 curthread->t_proc_flag |= TP_TWAIT; 449 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */ 450 p->p_lwpdaemon = 0; /* but oh well ... */ 451 p->p_lwpid = 1; 452 453 /* 454 * Install the newly-allocated lwp directory and lwpid hash table 455 * and insert the current thread into the new hash table. 456 */ 457 if (lwpdir != NULL) { 458 old_lwpdir = p->p_lwpdir; 459 old_lwpdir_sz = p->p_lwpdir_sz; 460 old_tidhash = p->p_tidhash; 461 old_tidhash_sz = p->p_tidhash_sz; 462 p->p_lwpdir = p->p_lwpfree = lwpdir; 463 p->p_lwpdir_sz = 2; 464 p->p_tidhash = tidhash; 465 p->p_tidhash_sz = 2; 466 lep->le_thread = curthread; 467 lep->le_lwpid = curthread->t_tid; 468 lep->le_start = curthread->t_start; 469 lwp_hash_in(p, lep); 470 } 471 472 /* 473 * Restore the saved signal mask and 474 * inform /proc that the exec() has finished. 475 */ 476 curthread->t_hold = savedmask; 477 prexecend(); 478 mutex_exit(&p->p_lock); 479 if (old_lwpdir) { 480 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t)); 481 kmem_free(old_tidhash, old_tidhash_sz * sizeof (lwpdir_t *)); 482 } 483 484 ASSERT(error == 0); 485 DTRACE_PROC(exec__success); 486 return (0); 487 488 fail: 489 DTRACE_PROC1(exec__failure, int, error); 490 out: /* error return */ 491 mutex_enter(&p->p_lock); 492 curthread->t_hold = savedmask; 493 prexecend(); 494 mutex_exit(&p->p_lock); 495 ASSERT(error != 0); 496 return (error); 497 } 498 499 500 /* 501 * Perform generic exec duties and switchout to object-file specific 502 * handler. 503 */ 504 int 505 gexec( 506 struct vnode **vpp, 507 struct execa *uap, 508 struct uarg *args, 509 struct intpdata *idatap, 510 int level, 511 long *execsz, 512 caddr_t exec_file, 513 struct cred *cred, 514 int brand_action) 515 { 516 struct vnode *vp; 517 proc_t *pp = ttoproc(curthread); 518 struct execsw *eswp; 519 int error = 0; 520 int suidflags = 0; 521 ssize_t resid; 522 uid_t uid, gid; 523 struct vattr vattr; 524 char magbuf[MAGIC_BYTES]; 525 int setid; 526 cred_t *oldcred, *newcred = NULL; 527 int privflags = 0; 528 int setidfl; 529 530 /* 531 * If the SNOCD or SUGID flag is set, turn it off and remember the 532 * previous setting so we can restore it if we encounter an error. 533 */ 534 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) { 535 mutex_enter(&pp->p_lock); 536 suidflags = pp->p_flag & PSUIDFLAGS; 537 pp->p_flag &= ~PSUIDFLAGS; 538 mutex_exit(&pp->p_lock); 539 } 540 541 if ((error = execpermissions(*vpp, &vattr, args)) != 0) 542 goto bad; 543 544 /* need to open vnode for stateful file systems like rfs */ 545 if ((error = VOP_OPEN(vpp, FREAD, CRED(), NULL)) != 0) 546 goto bad; 547 vp = *vpp; 548 549 /* 550 * Note: to support binary compatibility with SunOS a.out 551 * executables, we read in the first four bytes, as the 552 * magic number is in bytes 2-3. 553 */ 554 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf), 555 (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 556 goto bad; 557 if (resid != 0) 558 goto bad; 559 560 if ((eswp = findexec_by_hdr(magbuf)) == NULL) 561 goto bad; 562 563 if (level == 0 && 564 (privflags = execsetid(vp, &vattr, &uid, &gid)) != 0) { 565 566 newcred = cred = crdup(cred); 567 568 /* If we can, drop the PA bit */ 569 if ((privflags & PRIV_RESET) != 0) 570 priv_adjust_PA(cred); 571 572 if (privflags & PRIV_SETID) { 573 cred->cr_uid = uid; 574 cred->cr_gid = gid; 575 cred->cr_suid = uid; 576 cred->cr_sgid = gid; 577 } 578 579 if (privflags & MAC_FLAGS) { 580 if (!(CR_FLAGS(cred) & NET_MAC_AWARE_INHERIT)) 581 CR_FLAGS(cred) &= ~NET_MAC_AWARE; 582 CR_FLAGS(cred) &= ~NET_MAC_AWARE_INHERIT; 583 } 584 585 /* 586 * Implement the privilege updates: 587 * 588 * Restrict with L: 589 * 590 * I' = I & L 591 * 592 * E' = P' = (I' + F) & A 593 * 594 * But if running under ptrace, we cap I with P. 595 */ 596 if ((privflags & PRIV_RESET) != 0) { 597 if ((privflags & PRIV_INCREASE) != 0 && 598 (pp->p_proc_flag & P_PR_PTRACE) != 0) 599 priv_intersect(&CR_OPPRIV(cred), 600 &CR_IPRIV(cred)); 601 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 602 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 603 priv_adjust_PA(cred); 604 } 605 } 606 607 /* SunOS 4.x buy-back */ 608 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) && 609 (vattr.va_mode & (VSUID|VSGID))) { 610 cmn_err(CE_NOTE, 611 "!%s, uid %d: setuid execution not allowed, dev=%lx", 612 exec_file, cred->cr_uid, vp->v_vfsp->vfs_dev); 613 } 614 615 /* 616 * execsetid() told us whether or not we had to change the 617 * credentials of the process. In privflags, it told us 618 * whether we gained any privileges or executed a set-uid executable. 619 */ 620 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE)); 621 622 /* 623 * Use /etc/system variable to determine if the stack 624 * should be marked as executable by default. 625 */ 626 if (noexec_user_stack) 627 args->stk_prot &= ~PROT_EXEC; 628 629 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */ 630 args->ex_vp = vp; 631 632 /* 633 * Traditionally, the setid flags told the sub processes whether 634 * the file just executed was set-uid or set-gid; this caused 635 * some confusion as the 'setid' flag did not match the SUGID 636 * process flag which is only set when the uids/gids do not match. 637 * A script set-gid/set-uid to the real uid/gid would start with 638 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH. 639 * Now we flag those cases where the calling process cannot 640 * be trusted to influence the newly exec'ed process, either 641 * because it runs with more privileges or when the uids/gids 642 * do in fact not match. 643 * This also makes the runtime linker agree with the on exec 644 * values of SNOCD and SUGID. 645 */ 646 setidfl = 0; 647 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid && 648 !supgroupmember(cred->cr_gid, cred))) { 649 setidfl |= EXECSETID_UGIDS; 650 } 651 if (setid & PRIV_SETUGID) 652 setidfl |= EXECSETID_SETID; 653 if (setid & PRIV_INCREASE) 654 setidfl |= EXECSETID_PRIVS; 655 656 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz, 657 setidfl, exec_file, cred, brand_action); 658 rw_exit(eswp->exec_lock); 659 if (error != 0) { 660 if (newcred != NULL) 661 crfree(newcred); 662 goto bad; 663 } 664 665 if (level == 0) { 666 mutex_enter(&pp->p_crlock); 667 if (newcred != NULL) { 668 /* 669 * Free the old credentials, and set the new ones. 670 * Do this for both the process and the (single) thread. 671 */ 672 crfree(pp->p_cred); 673 pp->p_cred = cred; /* cred already held for proc */ 674 crhold(cred); /* hold new cred for thread */ 675 /* 676 * DTrace accesses t_cred in probe context. t_cred 677 * must always be either NULL, or point to a valid, 678 * allocated cred structure. 679 */ 680 oldcred = curthread->t_cred; 681 curthread->t_cred = cred; 682 crfree(oldcred); 683 } 684 /* 685 * On emerging from a successful exec(), the saved 686 * uid and gid equal the effective uid and gid. 687 */ 688 cred->cr_suid = cred->cr_uid; 689 cred->cr_sgid = cred->cr_gid; 690 691 /* 692 * If the real and effective ids do not match, this 693 * is a setuid process that should not dump core. 694 * The group comparison is tricky; we prevent the code 695 * from flagging SNOCD when executing with an effective gid 696 * which is a supplementary group. 697 */ 698 if (cred->cr_ruid != cred->cr_uid || 699 (cred->cr_rgid != cred->cr_gid && 700 !supgroupmember(cred->cr_gid, cred)) || 701 (privflags & PRIV_INCREASE) != 0) 702 suidflags = PSUIDFLAGS; 703 else 704 suidflags = 0; 705 706 mutex_exit(&pp->p_crlock); 707 if (suidflags) { 708 mutex_enter(&pp->p_lock); 709 pp->p_flag |= suidflags; 710 mutex_exit(&pp->p_lock); 711 } 712 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) { 713 /* 714 * If process is traced via /proc, arrange to 715 * invalidate the associated /proc vnode. 716 */ 717 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE)) 718 args->traceinval = 1; 719 } 720 if (pp->p_proc_flag & P_PR_PTRACE) 721 psignal(pp, SIGTRAP); 722 if (args->traceinval) 723 prinvalidate(&pp->p_user); 724 } 725 726 return (0); 727 bad: 728 if (error == 0) 729 error = ENOEXEC; 730 731 if (suidflags) { 732 mutex_enter(&pp->p_lock); 733 pp->p_flag |= suidflags; 734 mutex_exit(&pp->p_lock); 735 } 736 return (error); 737 } 738 739 extern char *execswnames[]; 740 741 struct execsw * 742 allocate_execsw(char *name, char *magic, size_t magic_size) 743 { 744 int i, j; 745 char *ename; 746 char *magicp; 747 748 mutex_enter(&execsw_lock); 749 for (i = 0; i < nexectype; i++) { 750 if (execswnames[i] == NULL) { 751 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP); 752 (void) strcpy(ename, name); 753 execswnames[i] = ename; 754 /* 755 * Set the magic number last so that we 756 * don't need to hold the execsw_lock in 757 * findexectype(). 758 */ 759 magicp = kmem_alloc(magic_size, KM_SLEEP); 760 for (j = 0; j < magic_size; j++) 761 magicp[j] = magic[j]; 762 execsw[i].exec_magic = magicp; 763 mutex_exit(&execsw_lock); 764 return (&execsw[i]); 765 } 766 } 767 mutex_exit(&execsw_lock); 768 return (NULL); 769 } 770 771 /* 772 * Find the exec switch table entry with the corresponding magic string. 773 */ 774 struct execsw * 775 findexecsw(char *magic) 776 { 777 struct execsw *eswp; 778 779 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 780 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 781 if (magic && eswp->exec_maglen != 0 && 782 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) 783 return (eswp); 784 } 785 return (NULL); 786 } 787 788 /* 789 * Find the execsw[] index for the given exec header string by looking for the 790 * magic string at a specified offset and length for each kind of executable 791 * file format until one matches. If no execsw[] entry is found, try to 792 * autoload a module for this magic string. 793 */ 794 struct execsw * 795 findexec_by_hdr(char *header) 796 { 797 struct execsw *eswp; 798 799 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 800 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 801 if (header && eswp->exec_maglen != 0 && 802 bcmp(&header[eswp->exec_magoff], eswp->exec_magic, 803 eswp->exec_maglen) == 0) { 804 if (hold_execsw(eswp) != 0) 805 return (NULL); 806 return (eswp); 807 } 808 } 809 return (NULL); /* couldn't find the type */ 810 } 811 812 /* 813 * Find the execsw[] index for the given magic string. If no execsw[] entry 814 * is found, try to autoload a module for this magic string. 815 */ 816 struct execsw * 817 findexec_by_magic(char *magic) 818 { 819 struct execsw *eswp; 820 821 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 822 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 823 if (magic && eswp->exec_maglen != 0 && 824 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) { 825 if (hold_execsw(eswp) != 0) 826 return (NULL); 827 return (eswp); 828 } 829 } 830 return (NULL); /* couldn't find the type */ 831 } 832 833 static int 834 hold_execsw(struct execsw *eswp) 835 { 836 char *name; 837 838 rw_enter(eswp->exec_lock, RW_READER); 839 while (!LOADED_EXEC(eswp)) { 840 rw_exit(eswp->exec_lock); 841 name = execswnames[eswp-execsw]; 842 ASSERT(name); 843 if (modload("exec", name) == -1) 844 return (-1); 845 rw_enter(eswp->exec_lock, RW_READER); 846 } 847 return (0); 848 } 849 850 static int 851 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp) 852 { 853 proc_t *pp = ttoproc(curthread); 854 uid_t uid, gid; 855 cred_t *cr = pp->p_cred; 856 int privflags = 0; 857 858 /* 859 * Remember credentials. 860 */ 861 uid = cr->cr_uid; 862 gid = cr->cr_gid; 863 864 /* Will try to reset the PRIV_AWARE bit later. */ 865 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE) 866 privflags |= PRIV_RESET; 867 868 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) { 869 /* 870 * Set-uid root execution only allowed if the limit set 871 * holds all unsafe privileges. 872 */ 873 if ((vattrp->va_mode & VSUID) && (vattrp->va_uid != 0 || 874 priv_issubset(&priv_unsafe, &CR_LPRIV(cr)))) { 875 uid = vattrp->va_uid; 876 privflags |= PRIV_SETUGID; 877 } 878 if (vattrp->va_mode & VSGID) { 879 gid = vattrp->va_gid; 880 privflags |= PRIV_SETUGID; 881 } 882 } 883 884 /* 885 * Do we need to change our credential anyway? 886 * This is the case when E != I or P != I, as 887 * we need to do the assignments (with F empty and A full) 888 * Or when I is not a subset of L; in that case we need to 889 * enforce L. 890 * 891 * I' = L & I 892 * 893 * E' = P' = (I' + F) & A 894 * or 895 * E' = P' = I' 896 */ 897 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) || 898 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) || 899 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr))) 900 privflags |= PRIV_RESET; 901 902 /* If MAC-aware flag(s) are on, need to update cred to remove. */ 903 if ((CR_FLAGS(cr) & NET_MAC_AWARE) || 904 (CR_FLAGS(cr) & NET_MAC_AWARE_INHERIT)) 905 privflags |= MAC_FLAGS; 906 907 /* 908 * When we introduce the "forced" set then we will need 909 * to set PRIV_INCREASE here if I not a subset of P. 910 * If the "allowed" set is introduced we will need to do 911 * a similar thing; however, it seems more reasonable to 912 * have the allowed set reduce "L": script language interpreters 913 * would typically have an allowed set of "all". 914 */ 915 916 /* 917 * Set setuid/setgid protections if no ptrace() compatibility. 918 * For privileged processes, honor setuid/setgid even in 919 * the presence of ptrace() compatibility. 920 */ 921 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 || 922 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) && 923 (cr->cr_uid != uid || 924 cr->cr_gid != gid || 925 cr->cr_suid != uid || 926 cr->cr_sgid != gid)) { 927 *uidp = uid; 928 *gidp = gid; 929 privflags |= PRIV_SETID; 930 } 931 return (privflags); 932 } 933 934 int 935 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args) 936 { 937 int error; 938 proc_t *p = ttoproc(curthread); 939 940 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE; 941 if (error = VOP_GETATTR(vp, vattrp, ATTR_EXEC, p->p_cred, NULL)) 942 return (error); 943 /* 944 * Check the access mode. 945 * If VPROC, ask /proc if the file is an object file. 946 */ 947 if ((error = VOP_ACCESS(vp, VEXEC, 0, p->p_cred, NULL)) != 0 || 948 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) || 949 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 || 950 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) { 951 if (error == 0) 952 error = EACCES; 953 return (error); 954 } 955 956 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) && 957 (error = VOP_ACCESS(vp, VREAD, 0, p->p_cred, NULL))) { 958 /* 959 * If process is under ptrace(2) compatibility, 960 * fail the exec(2). 961 */ 962 if (p->p_proc_flag & P_PR_PTRACE) 963 goto bad; 964 /* 965 * Process is traced via /proc. 966 * Arrange to invalidate the /proc vnode. 967 */ 968 args->traceinval = 1; 969 } 970 return (0); 971 bad: 972 if (error == 0) 973 error = ENOEXEC; 974 return (error); 975 } 976 977 /* 978 * Map a section of an executable file into the user's 979 * address space. 980 */ 981 int 982 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 983 off_t offset, int prot, int page, uint_t szc) 984 { 985 int error = 0; 986 off_t oldoffset; 987 caddr_t zfodbase, oldaddr; 988 size_t end, oldlen; 989 size_t zfoddiff; 990 label_t ljb; 991 proc_t *p = ttoproc(curthread); 992 993 oldaddr = addr; 994 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 995 if (len) { 996 oldlen = len; 997 len += ((size_t)oldaddr - (size_t)addr); 998 oldoffset = offset; 999 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1000 if (page) { 1001 spgcnt_t prefltmem, availm, npages; 1002 int preread; 1003 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1004 1005 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1006 mflag |= MAP_TEXT; 1007 } else { 1008 mflag |= MAP_INITDATA; 1009 } 1010 1011 if (valid_usr_range(addr, len, prot, p->p_as, 1012 p->p_as->a_userlimit) != RANGE_OKAY) { 1013 error = ENOMEM; 1014 goto bad; 1015 } 1016 if (error = VOP_MAP(vp, (offset_t)offset, 1017 p->p_as, &addr, len, prot, PROT_ALL, 1018 mflag, CRED(), NULL)) 1019 goto bad; 1020 1021 /* 1022 * If the segment can fit, then we prefault 1023 * the entire segment in. This is based on the 1024 * model that says the best working set of a 1025 * small program is all of its pages. 1026 */ 1027 npages = (spgcnt_t)btopr(len); 1028 prefltmem = freemem - desfree; 1029 preread = 1030 (npages < prefltmem && len < PGTHRESH) ? 1 : 0; 1031 1032 /* 1033 * If we aren't prefaulting the segment, 1034 * increment "deficit", if necessary to ensure 1035 * that pages will become available when this 1036 * process starts executing. 1037 */ 1038 availm = freemem - lotsfree; 1039 if (preread == 0 && npages > availm && 1040 deficit < lotsfree) { 1041 deficit += MIN((pgcnt_t)(npages - availm), 1042 lotsfree - deficit); 1043 } 1044 1045 if (preread) { 1046 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD, 1047 "execmap preread:freemem %d size %lu", 1048 freemem, len); 1049 (void) as_fault(p->p_as->a_hat, p->p_as, 1050 (caddr_t)addr, len, F_INVAL, S_READ); 1051 } 1052 } else { 1053 if (valid_usr_range(addr, len, prot, p->p_as, 1054 p->p_as->a_userlimit) != RANGE_OKAY) { 1055 error = ENOMEM; 1056 goto bad; 1057 } 1058 1059 if (error = as_map(p->p_as, addr, len, 1060 segvn_create, zfod_argsp)) 1061 goto bad; 1062 /* 1063 * Read in the segment in one big chunk. 1064 */ 1065 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr, 1066 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0, 1067 (rlim64_t)0, CRED(), (ssize_t *)0)) 1068 goto bad; 1069 /* 1070 * Now set protections. 1071 */ 1072 if (prot != PROT_ZFOD) { 1073 (void) as_setprot(p->p_as, (caddr_t)addr, 1074 len, prot); 1075 } 1076 } 1077 } 1078 1079 if (zfodlen) { 1080 struct as *as = curproc->p_as; 1081 struct seg *seg; 1082 uint_t zprot = 0; 1083 1084 end = (size_t)addr + len; 1085 zfodbase = (caddr_t)roundup(end, PAGESIZE); 1086 zfoddiff = (uintptr_t)zfodbase - end; 1087 if (zfoddiff) { 1088 /* 1089 * Before we go to zero the remaining space on the last 1090 * page, make sure we have write permission. 1091 */ 1092 1093 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1094 seg = as_segat(curproc->p_as, (caddr_t)end); 1095 if (seg != NULL) 1096 SEGOP_GETPROT(seg, (caddr_t)end, zfoddiff - 1, 1097 &zprot); 1098 AS_LOCK_EXIT(as, &as->a_lock); 1099 1100 if (seg != NULL && (zprot & PROT_WRITE) == 0) { 1101 (void) as_setprot(as, (caddr_t)end, 1102 zfoddiff - 1, zprot | PROT_WRITE); 1103 } 1104 1105 if (on_fault(&ljb)) { 1106 no_fault(); 1107 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1108 (void) as_setprot(as, (caddr_t)end, 1109 zfoddiff - 1, zprot); 1110 error = EFAULT; 1111 goto bad; 1112 } 1113 uzero((void *)end, zfoddiff); 1114 no_fault(); 1115 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1116 (void) as_setprot(as, (caddr_t)end, 1117 zfoddiff - 1, zprot); 1118 } 1119 if (zfodlen > zfoddiff) { 1120 struct segvn_crargs crargs = 1121 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1122 1123 zfodlen -= zfoddiff; 1124 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as, 1125 p->p_as->a_userlimit) != RANGE_OKAY) { 1126 error = ENOMEM; 1127 goto bad; 1128 } 1129 if (szc > 0) { 1130 /* 1131 * ASSERT alignment because the mapelfexec() 1132 * caller for the szc > 0 case extended zfod 1133 * so it's end is pgsz aligned. 1134 */ 1135 size_t pgsz = page_get_pagesize(szc); 1136 ASSERT(IS_P2ALIGNED(zfodbase + zfodlen, pgsz)); 1137 1138 if (IS_P2ALIGNED(zfodbase, pgsz)) { 1139 crargs.szc = szc; 1140 } else { 1141 crargs.szc = AS_MAP_HEAP; 1142 } 1143 } else { 1144 crargs.szc = AS_MAP_NO_LPOOB; 1145 } 1146 if (error = as_map(p->p_as, (caddr_t)zfodbase, 1147 zfodlen, segvn_create, &crargs)) 1148 goto bad; 1149 if (prot != PROT_ZFOD) { 1150 (void) as_setprot(p->p_as, (caddr_t)zfodbase, 1151 zfodlen, prot); 1152 } 1153 } 1154 } 1155 return (0); 1156 bad: 1157 return (error); 1158 } 1159 1160 void 1161 setexecenv(struct execenv *ep) 1162 { 1163 proc_t *p = ttoproc(curthread); 1164 klwp_t *lwp = ttolwp(curthread); 1165 struct vnode *vp; 1166 1167 p->p_bssbase = ep->ex_bssbase; 1168 p->p_brkbase = ep->ex_brkbase; 1169 p->p_brksize = ep->ex_brksize; 1170 if (p->p_exec) 1171 VN_RELE(p->p_exec); /* out with the old */ 1172 vp = p->p_exec = ep->ex_vp; 1173 if (vp != NULL) 1174 VN_HOLD(vp); /* in with the new */ 1175 1176 lwp->lwp_sigaltstack.ss_sp = 0; 1177 lwp->lwp_sigaltstack.ss_size = 0; 1178 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 1179 } 1180 1181 int 1182 execopen(struct vnode **vpp, int *fdp) 1183 { 1184 struct vnode *vp = *vpp; 1185 file_t *fp; 1186 int error = 0; 1187 int filemode = FREAD; 1188 1189 VN_HOLD(vp); /* open reference */ 1190 if (error = falloc(NULL, filemode, &fp, fdp)) { 1191 VN_RELE(vp); 1192 *fdp = -1; /* just in case falloc changed value */ 1193 return (error); 1194 } 1195 if (error = VOP_OPEN(&vp, filemode, CRED(), NULL)) { 1196 VN_RELE(vp); 1197 setf(*fdp, NULL); 1198 unfalloc(fp); 1199 *fdp = -1; 1200 return (error); 1201 } 1202 *vpp = vp; /* vnode should not have changed */ 1203 fp->f_vnode = vp; 1204 mutex_exit(&fp->f_tlock); 1205 setf(*fdp, fp); 1206 return (0); 1207 } 1208 1209 int 1210 execclose(int fd) 1211 { 1212 return (closeandsetf(fd, NULL)); 1213 } 1214 1215 1216 /* 1217 * noexec stub function. 1218 */ 1219 /*ARGSUSED*/ 1220 int 1221 noexec( 1222 struct vnode *vp, 1223 struct execa *uap, 1224 struct uarg *args, 1225 struct intpdata *idatap, 1226 int level, 1227 long *execsz, 1228 int setid, 1229 caddr_t exec_file, 1230 struct cred *cred) 1231 { 1232 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname); 1233 return (ENOEXEC); 1234 } 1235 1236 /* 1237 * Support routines for building a user stack. 1238 * 1239 * execve(path, argv, envp) must construct a new stack with the specified 1240 * arguments and environment variables (see exec_args() for a description 1241 * of the user stack layout). To do this, we copy the arguments and 1242 * environment variables from the old user address space into the kernel, 1243 * free the old as, create the new as, and copy our buffered information 1244 * to the new stack. Our kernel buffer has the following structure: 1245 * 1246 * +-----------------------+ <--- stk_base + stk_size 1247 * | string offsets | 1248 * +-----------------------+ <--- stk_offp 1249 * | | 1250 * | STK_AVAIL() space | 1251 * | | 1252 * +-----------------------+ <--- stk_strp 1253 * | strings | 1254 * +-----------------------+ <--- stk_base 1255 * 1256 * When we add a string, we store the string's contents (including the null 1257 * terminator) at stk_strp, and we store the offset of the string relative to 1258 * stk_base at --stk_offp. At strings are added, stk_strp increases and 1259 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just 1260 * the difference between these pointers. If we run out of space, we return 1261 * an error and exec_args() starts all over again with a buffer twice as large. 1262 * When we're all done, the kernel buffer looks like this: 1263 * 1264 * +-----------------------+ <--- stk_base + stk_size 1265 * | argv[0] offset | 1266 * +-----------------------+ 1267 * | ... | 1268 * +-----------------------+ 1269 * | argv[argc-1] offset | 1270 * +-----------------------+ 1271 * | envp[0] offset | 1272 * +-----------------------+ 1273 * | ... | 1274 * +-----------------------+ 1275 * | envp[envc-1] offset | 1276 * +-----------------------+ 1277 * | AT_SUN_PLATFORM offset| 1278 * +-----------------------+ 1279 * | AT_SUN_EXECNAME offset| 1280 * +-----------------------+ <--- stk_offp 1281 * | | 1282 * | STK_AVAIL() space | 1283 * | | 1284 * +-----------------------+ <--- stk_strp 1285 * | AT_SUN_EXECNAME offset| 1286 * +-----------------------+ 1287 * | AT_SUN_PLATFORM offset| 1288 * +-----------------------+ 1289 * | envp[envc-1] string | 1290 * +-----------------------+ 1291 * | ... | 1292 * +-----------------------+ 1293 * | envp[0] string | 1294 * +-----------------------+ 1295 * | argv[argc-1] string | 1296 * +-----------------------+ 1297 * | ... | 1298 * +-----------------------+ 1299 * | argv[0] string | 1300 * +-----------------------+ <--- stk_base 1301 */ 1302 1303 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp) 1304 1305 /* 1306 * Add a string to the stack. 1307 */ 1308 static int 1309 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg) 1310 { 1311 int error; 1312 size_t len; 1313 1314 if (STK_AVAIL(args) < sizeof (int)) 1315 return (E2BIG); 1316 *--args->stk_offp = args->stk_strp - args->stk_base; 1317 1318 if (segflg == UIO_USERSPACE) { 1319 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len); 1320 if (error != 0) 1321 return (error); 1322 } else { 1323 len = strlen(sp) + 1; 1324 if (len > STK_AVAIL(args)) 1325 return (E2BIG); 1326 bcopy(sp, args->stk_strp, len); 1327 } 1328 1329 args->stk_strp += len; 1330 1331 return (0); 1332 } 1333 1334 static int 1335 stk_getptr(uarg_t *args, char *src, char **dst) 1336 { 1337 int error; 1338 1339 if (args->from_model == DATAMODEL_NATIVE) { 1340 ulong_t ptr; 1341 error = fulword(src, &ptr); 1342 *dst = (caddr_t)ptr; 1343 } else { 1344 uint32_t ptr; 1345 error = fuword32(src, &ptr); 1346 *dst = (caddr_t)(uintptr_t)ptr; 1347 } 1348 return (error); 1349 } 1350 1351 static int 1352 stk_putptr(uarg_t *args, char *addr, char *value) 1353 { 1354 if (args->to_model == DATAMODEL_NATIVE) 1355 return (sulword(addr, (ulong_t)value)); 1356 else 1357 return (suword32(addr, (uint32_t)(uintptr_t)value)); 1358 } 1359 1360 static int 1361 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1362 { 1363 char *sp; 1364 int argc, error; 1365 int argv_empty = 0; 1366 size_t ptrsize = args->from_ptrsize; 1367 size_t size, pad; 1368 char *argv = (char *)uap->argp; 1369 char *envp = (char *)uap->envp; 1370 1371 /* 1372 * Copy interpreter's name and argument to argv[0] and argv[1]. 1373 */ 1374 if (intp != NULL && intp->intp_name != NULL) { 1375 if ((error = stk_add(args, intp->intp_name, UIO_SYSSPACE)) != 0) 1376 return (error); 1377 if (intp->intp_arg != NULL && 1378 (error = stk_add(args, intp->intp_arg, UIO_SYSSPACE)) != 0) 1379 return (error); 1380 if (args->fname != NULL) 1381 error = stk_add(args, args->fname, UIO_SYSSPACE); 1382 else 1383 error = stk_add(args, uap->fname, UIO_USERSPACE); 1384 if (error) 1385 return (error); 1386 1387 /* 1388 * Check for an empty argv[]. 1389 */ 1390 if (stk_getptr(args, argv, &sp)) 1391 return (EFAULT); 1392 if (sp == NULL) 1393 argv_empty = 1; 1394 1395 argv += ptrsize; /* ignore original argv[0] */ 1396 } 1397 1398 if (argv_empty == 0) { 1399 /* 1400 * Add argv[] strings to the stack. 1401 */ 1402 for (;;) { 1403 if (stk_getptr(args, argv, &sp)) 1404 return (EFAULT); 1405 if (sp == NULL) 1406 break; 1407 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1408 return (error); 1409 argv += ptrsize; 1410 } 1411 } 1412 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1413 args->arglen = args->stk_strp - args->stk_base; 1414 1415 /* 1416 * Add environ[] strings to the stack. 1417 */ 1418 if (envp != NULL) { 1419 for (;;) { 1420 if (stk_getptr(args, envp, &sp)) 1421 return (EFAULT); 1422 if (sp == NULL) 1423 break; 1424 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1425 return (error); 1426 envp += ptrsize; 1427 } 1428 } 1429 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1430 args->ne = args->na - argc; 1431 1432 /* 1433 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and 1434 * AT_SUN_EMULATOR strings to the stack. 1435 */ 1436 if (auxvpp != NULL && *auxvpp != NULL) { 1437 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0) 1438 return (error); 1439 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0) 1440 return (error); 1441 if (args->brandname != NULL && 1442 (error = stk_add(args, args->brandname, UIO_SYSSPACE)) != 0) 1443 return (error); 1444 if (args->emulator != NULL && 1445 (error = stk_add(args, args->emulator, UIO_SYSSPACE)) != 0) 1446 return (error); 1447 } 1448 1449 /* 1450 * Compute the size of the stack. This includes all the pointers, 1451 * the space reserved for the aux vector, and all the strings. 1452 * The total number of pointers is args->na (which is argc + envc) 1453 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL 1454 * after the last argument (i.e. argv[argc]); (3) the NULL after the 1455 * last environment variable (i.e. envp[envc]); and (4) the NULL after 1456 * all the strings, at the very top of the stack. 1457 */ 1458 size = (args->na + 4) * args->to_ptrsize + args->auxsize + 1459 (args->stk_strp - args->stk_base); 1460 1461 /* 1462 * Pad the string section with zeroes to align the stack size. 1463 */ 1464 pad = P2NPHASE(size, args->stk_align); 1465 1466 if (STK_AVAIL(args) < pad) 1467 return (E2BIG); 1468 1469 args->usrstack_size = size + pad; 1470 1471 while (pad-- != 0) 1472 *args->stk_strp++ = 0; 1473 1474 args->nc = args->stk_strp - args->stk_base; 1475 1476 return (0); 1477 } 1478 1479 static int 1480 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up) 1481 { 1482 size_t ptrsize = args->to_ptrsize; 1483 ssize_t pslen; 1484 char *kstrp = args->stk_base; 1485 char *ustrp = usrstack - args->nc - ptrsize; 1486 char *usp = usrstack - args->usrstack_size; 1487 int *offp = (int *)(args->stk_base + args->stk_size); 1488 int envc = args->ne; 1489 int argc = args->na - envc; 1490 int i; 1491 1492 /* 1493 * Record argc for /proc. 1494 */ 1495 up->u_argc = argc; 1496 1497 /* 1498 * Put argc on the stack. Note that even though it's an int, 1499 * it always consumes ptrsize bytes (for alignment). 1500 */ 1501 if (stk_putptr(args, usp, (char *)(uintptr_t)argc)) 1502 return (-1); 1503 1504 /* 1505 * Add argc space (ptrsize) to usp and record argv for /proc. 1506 */ 1507 up->u_argv = (uintptr_t)(usp += ptrsize); 1508 1509 /* 1510 * Put the argv[] pointers on the stack. 1511 */ 1512 for (i = 0; i < argc; i++, usp += ptrsize) 1513 if (stk_putptr(args, usp, &ustrp[*--offp])) 1514 return (-1); 1515 1516 /* 1517 * Copy arguments to u_psargs. 1518 */ 1519 pslen = MIN(args->arglen, PSARGSZ) - 1; 1520 for (i = 0; i < pslen; i++) 1521 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]); 1522 while (i < PSARGSZ) 1523 up->u_psargs[i++] = '\0'; 1524 1525 /* 1526 * Add space for argv[]'s NULL terminator (ptrsize) to usp and 1527 * record envp for /proc. 1528 */ 1529 up->u_envp = (uintptr_t)(usp += ptrsize); 1530 1531 /* 1532 * Put the envp[] pointers on the stack. 1533 */ 1534 for (i = 0; i < envc; i++, usp += ptrsize) 1535 if (stk_putptr(args, usp, &ustrp[*--offp])) 1536 return (-1); 1537 1538 /* 1539 * Add space for envp[]'s NULL terminator (ptrsize) to usp and 1540 * remember where the stack ends, which is also where auxv begins. 1541 */ 1542 args->stackend = usp += ptrsize; 1543 1544 /* 1545 * Put all the argv[], envp[], and auxv strings on the stack. 1546 */ 1547 if (copyout(args->stk_base, ustrp, args->nc)) 1548 return (-1); 1549 1550 /* 1551 * Fill in the aux vector now that we know the user stack addresses 1552 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and 1553 * AT_SUN_EMULATOR strings. 1554 */ 1555 if (auxvpp != NULL && *auxvpp != NULL) { 1556 if (args->to_model == DATAMODEL_NATIVE) { 1557 auxv_t **a = (auxv_t **)auxvpp; 1558 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp]) 1559 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp]) 1560 if (args->brandname != NULL) 1561 ADDAUX(*a, 1562 AT_SUN_BRANDNAME, (long)&ustrp[*--offp]) 1563 if (args->emulator != NULL) 1564 ADDAUX(*a, 1565 AT_SUN_EMULATOR, (long)&ustrp[*--offp]) 1566 } else { 1567 auxv32_t **a = (auxv32_t **)auxvpp; 1568 ADDAUX(*a, 1569 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp]) 1570 ADDAUX(*a, 1571 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp]) 1572 if (args->brandname != NULL) 1573 ADDAUX(*a, AT_SUN_BRANDNAME, 1574 (int)(uintptr_t)&ustrp[*--offp]) 1575 if (args->emulator != NULL) 1576 ADDAUX(*a, AT_SUN_EMULATOR, 1577 (int)(uintptr_t)&ustrp[*--offp]) 1578 } 1579 } 1580 1581 return (0); 1582 } 1583 1584 /* 1585 * Initialize a new user stack with the specified arguments and environment. 1586 * The initial user stack layout is as follows: 1587 * 1588 * User Stack 1589 * +---------------+ <--- curproc->p_usrstack 1590 * | | 1591 * | slew | 1592 * | | 1593 * +---------------+ 1594 * | NULL | 1595 * +---------------+ 1596 * | | 1597 * | auxv strings | 1598 * | | 1599 * +---------------+ 1600 * | | 1601 * | envp strings | 1602 * | | 1603 * +---------------+ 1604 * | | 1605 * | argv strings | 1606 * | | 1607 * +---------------+ <--- ustrp 1608 * | | 1609 * | aux vector | 1610 * | | 1611 * +---------------+ <--- auxv 1612 * | NULL | 1613 * +---------------+ 1614 * | envp[envc-1] | 1615 * +---------------+ 1616 * | ... | 1617 * +---------------+ 1618 * | envp[0] | 1619 * +---------------+ <--- envp[] 1620 * | NULL | 1621 * +---------------+ 1622 * | argv[argc-1] | 1623 * +---------------+ 1624 * | ... | 1625 * +---------------+ 1626 * | argv[0] | 1627 * +---------------+ <--- argv[] 1628 * | argc | 1629 * +---------------+ <--- stack base 1630 */ 1631 int 1632 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1633 { 1634 size_t size; 1635 int error; 1636 proc_t *p = ttoproc(curthread); 1637 user_t *up = PTOU(p); 1638 char *usrstack; 1639 rctl_entity_p_t e; 1640 struct as *as; 1641 extern int use_stk_lpg; 1642 size_t sp_slew; 1643 1644 args->from_model = p->p_model; 1645 if (p->p_model == DATAMODEL_NATIVE) { 1646 args->from_ptrsize = sizeof (long); 1647 } else { 1648 args->from_ptrsize = sizeof (int32_t); 1649 } 1650 1651 if (args->to_model == DATAMODEL_NATIVE) { 1652 args->to_ptrsize = sizeof (long); 1653 args->ncargs = NCARGS; 1654 args->stk_align = STACK_ALIGN; 1655 if (args->addr32) 1656 usrstack = (char *)USRSTACK64_32; 1657 else 1658 usrstack = (char *)USRSTACK; 1659 } else { 1660 args->to_ptrsize = sizeof (int32_t); 1661 args->ncargs = NCARGS32; 1662 args->stk_align = STACK_ALIGN32; 1663 usrstack = (char *)USRSTACK32; 1664 } 1665 1666 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0); 1667 1668 #if defined(__sparc) 1669 /* 1670 * Make sure user register windows are empty before 1671 * attempting to make a new stack. 1672 */ 1673 (void) flush_user_windows_to_stack(NULL); 1674 #endif 1675 1676 for (size = PAGESIZE; ; size *= 2) { 1677 args->stk_size = size; 1678 args->stk_base = kmem_alloc(size, KM_SLEEP); 1679 args->stk_strp = args->stk_base; 1680 args->stk_offp = (int *)(args->stk_base + size); 1681 error = stk_copyin(uap, args, intp, auxvpp); 1682 if (error == 0) 1683 break; 1684 kmem_free(args->stk_base, size); 1685 if (error != E2BIG && error != ENAMETOOLONG) 1686 return (error); 1687 if (size >= args->ncargs) 1688 return (E2BIG); 1689 } 1690 1691 size = args->usrstack_size; 1692 1693 ASSERT(error == 0); 1694 ASSERT(P2PHASE(size, args->stk_align) == 0); 1695 ASSERT((ssize_t)STK_AVAIL(args) >= 0); 1696 1697 if (size > args->ncargs) { 1698 kmem_free(args->stk_base, args->stk_size); 1699 return (E2BIG); 1700 } 1701 1702 /* 1703 * Leave only the current lwp and force the other lwps to exit. 1704 * If another lwp beat us to the punch by calling exit(), bail out. 1705 */ 1706 if ((error = exitlwps(0)) != 0) { 1707 kmem_free(args->stk_base, args->stk_size); 1708 return (error); 1709 } 1710 1711 /* 1712 * Revoke any doors created by the process. 1713 */ 1714 if (p->p_door_list) 1715 door_exit(); 1716 1717 /* 1718 * Release schedctl data structures. 1719 */ 1720 if (p->p_pagep) 1721 schedctl_proc_cleanup(); 1722 1723 /* 1724 * Clean up any DTrace helpers for the process. 1725 */ 1726 if (p->p_dtrace_helpers != NULL) { 1727 ASSERT(dtrace_helpers_cleanup != NULL); 1728 (*dtrace_helpers_cleanup)(); 1729 } 1730 1731 mutex_enter(&p->p_lock); 1732 /* 1733 * Cleanup the DTrace provider associated with this process. 1734 */ 1735 if (p->p_dtrace_probes) { 1736 ASSERT(dtrace_fasttrap_exec_ptr != NULL); 1737 dtrace_fasttrap_exec_ptr(p); 1738 } 1739 mutex_exit(&p->p_lock); 1740 1741 /* 1742 * discard the lwpchan cache. 1743 */ 1744 if (p->p_lcp != NULL) 1745 lwpchan_destroy_cache(1); 1746 1747 /* 1748 * Delete the POSIX timers. 1749 */ 1750 if (p->p_itimer != NULL) 1751 timer_exit(); 1752 1753 if (audit_active) 1754 audit_exec(args->stk_base, args->stk_base + args->arglen, 1755 args->na - args->ne, args->ne); 1756 1757 /* 1758 * Ensure that we don't change resource associations while we 1759 * change address spaces. 1760 */ 1761 mutex_enter(&p->p_lock); 1762 pool_barrier_enter(); 1763 mutex_exit(&p->p_lock); 1764 1765 /* 1766 * Destroy the old address space and create a new one. 1767 * From here on, any errors are fatal to the exec()ing process. 1768 * On error we return -1, which means the caller must SIGKILL 1769 * the process. 1770 */ 1771 relvm(); 1772 1773 mutex_enter(&p->p_lock); 1774 pool_barrier_exit(); 1775 mutex_exit(&p->p_lock); 1776 1777 up->u_execsw = args->execswp; 1778 1779 p->p_brkbase = NULL; 1780 p->p_brksize = 0; 1781 p->p_brkpageszc = 0; 1782 p->p_stksize = 0; 1783 p->p_stkpageszc = 0; 1784 p->p_model = args->to_model; 1785 p->p_usrstack = usrstack; 1786 p->p_stkprot = args->stk_prot; 1787 p->p_datprot = args->dat_prot; 1788 1789 /* 1790 * Reset resource controls such that all controls are again active as 1791 * well as appropriate to the potentially new address model for the 1792 * process. 1793 */ 1794 e.rcep_p.proc = p; 1795 e.rcep_t = RCENTITY_PROCESS; 1796 rctl_set_reset(p->p_rctls, p, &e); 1797 1798 /* Too early to call map_pgsz for the heap */ 1799 if (use_stk_lpg) { 1800 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, p, 0, 0, 0)); 1801 } 1802 1803 mutex_enter(&p->p_lock); 1804 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */ 1805 mutex_exit(&p->p_lock); 1806 1807 /* 1808 * Some platforms may choose to randomize real stack start by adding a 1809 * small slew (not more than a few hundred bytes) to the top of the 1810 * stack. This helps avoid cache thrashing when identical processes 1811 * simultaneously share caches that don't provide enough associativity 1812 * (e.g. sun4v systems). In this case stack slewing makes the same hot 1813 * stack variables in different processes to live in different cache 1814 * sets increasing effective associativity. 1815 */ 1816 sp_slew = exec_get_spslew(); 1817 ASSERT(P2PHASE(sp_slew, args->stk_align) == 0); 1818 exec_set_sp(size + sp_slew); 1819 1820 as = as_alloc(); 1821 p->p_as = as; 1822 as->a_proc = p; 1823 if (p->p_model == DATAMODEL_ILP32 || args->addr32) 1824 as->a_userlimit = (caddr_t)USERLIMIT32; 1825 (void) hat_setup(as->a_hat, HAT_ALLOC); 1826 hat_join_srd(as->a_hat, args->ex_vp); 1827 1828 /* 1829 * Finally, write out the contents of the new stack. 1830 */ 1831 error = stk_copyout(args, usrstack - sp_slew, auxvpp, up); 1832 kmem_free(args->stk_base, args->stk_size); 1833 return (error); 1834 } 1835