1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1988 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright 2017 Joyent, Inc. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/systm.h> 36 #include <sys/signal.h> 37 #include <sys/cred_impl.h> 38 #include <sys/policy.h> 39 #include <sys/user.h> 40 #include <sys/errno.h> 41 #include <sys/file.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/mman.h> 45 #include <sys/acct.h> 46 #include <sys/cpuvar.h> 47 #include <sys/proc.h> 48 #include <sys/cmn_err.h> 49 #include <sys/debug.h> 50 #include <sys/pathname.h> 51 #include <sys/vm.h> 52 #include <sys/lgrp.h> 53 #include <sys/vtrace.h> 54 #include <sys/exec.h> 55 #include <sys/exechdr.h> 56 #include <sys/kmem.h> 57 #include <sys/prsystm.h> 58 #include <sys/modctl.h> 59 #include <sys/vmparam.h> 60 #include <sys/door.h> 61 #include <sys/schedctl.h> 62 #include <sys/utrap.h> 63 #include <sys/systeminfo.h> 64 #include <sys/stack.h> 65 #include <sys/rctl.h> 66 #include <sys/dtrace.h> 67 #include <sys/lwpchan_impl.h> 68 #include <sys/pool.h> 69 #include <sys/sdt.h> 70 #include <sys/brand.h> 71 #include <sys/klpd.h> 72 #include <sys/random.h> 73 74 #include <c2/audit.h> 75 76 #include <vm/hat.h> 77 #include <vm/anon.h> 78 #include <vm/as.h> 79 #include <vm/seg.h> 80 #include <vm/seg_vn.h> 81 #include <vm/seg_hole.h> 82 83 #define PRIV_RESET 0x01 /* needs to reset privs */ 84 #define PRIV_SETID 0x02 /* needs to change uids */ 85 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */ 86 #define PRIV_INCREASE 0x08 /* child runs with more privs */ 87 #define MAC_FLAGS 0x10 /* need to adjust MAC flags */ 88 #define PRIV_FORCED 0x20 /* has forced privileges */ 89 90 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *, 91 priv_set_t *, cred_t *, const char *); 92 static int hold_execsw(struct execsw *); 93 94 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */ 95 uint_t auxv_hwcap_2 = 0; /* AT_SUN_HWCAP2 */ 96 #if defined(_SYSCALL32_IMPL) 97 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */ 98 uint_t auxv_hwcap32_2 = 0; /* 32-bit version of auxv_hwcap2 */ 99 #endif 100 101 #define PSUIDFLAGS (SNOCD|SUGID) 102 103 /* 104 * These are consumed within the specific exec modules, but are defined here 105 * because 106 * 107 * 1) The exec modules are unloadable, which would make this near useless. 108 * 109 * 2) We want them to be common across all of them, should more than ELF come 110 * to support them. 111 * 112 * All must be powers of 2. 113 */ 114 size_t aslr_max_brk_skew = 16 * 1024 * 1024; /* 16MB */ 115 #pragma weak exec_stackgap = aslr_max_stack_skew /* Old, compatible name */ 116 size_t aslr_max_stack_skew = 64 * 1024; /* 64KB */ 117 118 /* 119 * Size of guard segment for 64-bit processes and minimum size it can be shrunk 120 * to in the case of grow() operations. These are kept as variables in case 121 * they need to be tuned in an emergency. 122 */ 123 size_t stack_guard_seg_sz = 256 * 1024 * 1024; 124 size_t stack_guard_min_sz = 64 * 1024 * 1024; 125 126 /* 127 * exece() - system call wrapper around exec_common() 128 */ 129 int 130 exece(const char *fname, const char **argp, const char **envp) 131 { 132 int error; 133 134 error = exec_common(fname, argp, envp, EBA_NONE); 135 return (error ? (set_errno(error)) : 0); 136 } 137 138 int 139 exec_common(const char *fname, const char **argp, const char **envp, 140 int brand_action) 141 { 142 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL; 143 proc_t *p = ttoproc(curthread); 144 klwp_t *lwp = ttolwp(curthread); 145 struct user *up = PTOU(p); 146 long execsz; /* temporary count of exec size */ 147 int i; 148 int error; 149 char exec_file[MAXCOMLEN+1]; 150 struct pathname pn; 151 struct pathname resolvepn; 152 struct uarg args; 153 struct execa ua; 154 k_sigset_t savedmask; 155 lwpdir_t *lwpdir = NULL; 156 tidhash_t *tidhash; 157 lwpdir_t *old_lwpdir = NULL; 158 uint_t old_lwpdir_sz; 159 tidhash_t *old_tidhash; 160 uint_t old_tidhash_sz; 161 ret_tidhash_t *ret_tidhash; 162 lwpent_t *lep; 163 boolean_t brandme = B_FALSE; 164 165 /* 166 * exec() is not supported for the /proc agent lwp. 167 */ 168 if (curthread == p->p_agenttp) 169 return (ENOTSUP); 170 171 if (brand_action != EBA_NONE) { 172 /* 173 * Brand actions are not supported for processes that are not 174 * running in a branded zone. 175 */ 176 if (!ZONE_IS_BRANDED(p->p_zone)) 177 return (ENOTSUP); 178 179 if (brand_action == EBA_NATIVE) { 180 /* Only branded processes can be unbranded */ 181 if (!PROC_IS_BRANDED(p)) 182 return (ENOTSUP); 183 } else { 184 /* Only unbranded processes can be branded */ 185 if (PROC_IS_BRANDED(p)) 186 return (ENOTSUP); 187 brandme = B_TRUE; 188 } 189 } else { 190 /* 191 * If this is a native zone, or if the process is already 192 * branded, then we don't need to do anything. If this is 193 * a native process in a branded zone, we need to brand the 194 * process as it exec()s the new binary. 195 */ 196 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p)) 197 brandme = B_TRUE; 198 } 199 200 /* 201 * Inform /proc that an exec() has started. 202 * Hold signals that are ignored by default so that we will 203 * not be interrupted by a signal that will be ignored after 204 * successful completion of gexec(). 205 */ 206 mutex_enter(&p->p_lock); 207 prexecstart(); 208 schedctl_finish_sigblock(curthread); 209 savedmask = curthread->t_hold; 210 sigorset(&curthread->t_hold, &ignoredefault); 211 mutex_exit(&p->p_lock); 212 213 /* 214 * Look up path name and remember last component for later. 215 * To help coreadm expand its %d token, we attempt to save 216 * the directory containing the executable in p_execdir. The 217 * first call to lookuppn() may fail and return EINVAL because 218 * dirvpp is non-NULL. In that case, we make a second call to 219 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL, 220 * but coreadm is allowed to expand %d to the empty string and 221 * there are other cases in which that failure may occur. 222 */ 223 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 224 goto out; 225 pn_alloc(&resolvepn); 226 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) { 227 pn_free(&resolvepn); 228 pn_free(&pn); 229 if (error != EINVAL) 230 goto out; 231 232 dir = NULL; 233 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 234 goto out; 235 pn_alloc(&resolvepn); 236 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP, 237 &vp)) != 0) { 238 pn_free(&resolvepn); 239 pn_free(&pn); 240 goto out; 241 } 242 } 243 if (vp == NULL) { 244 if (dir != NULL) 245 VN_RELE(dir); 246 error = ENOENT; 247 pn_free(&resolvepn); 248 pn_free(&pn); 249 goto out; 250 } 251 252 if ((error = secpolicy_basic_exec(CRED(), vp)) != 0) { 253 if (dir != NULL) 254 VN_RELE(dir); 255 pn_free(&resolvepn); 256 pn_free(&pn); 257 VN_RELE(vp); 258 goto out; 259 } 260 261 /* 262 * We do not allow executing files in attribute directories. 263 * We test this by determining whether the resolved path 264 * contains a "/" when we're in an attribute directory; 265 * only if the pathname does not contain a "/" the resolved path 266 * points to a file in the current working (attribute) directory. 267 */ 268 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 && 269 strchr(resolvepn.pn_path, '/') == NULL) { 270 if (dir != NULL) 271 VN_RELE(dir); 272 error = EACCES; 273 pn_free(&resolvepn); 274 pn_free(&pn); 275 VN_RELE(vp); 276 goto out; 277 } 278 279 bzero(exec_file, MAXCOMLEN+1); 280 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN); 281 bzero(&args, sizeof (args)); 282 args.pathname = resolvepn.pn_path; 283 /* don't free resolvepn until we are done with args */ 284 pn_free(&pn); 285 286 /* 287 * If we're running in a profile shell, then call pfexecd. 288 */ 289 if ((CR_FLAGS(p->p_cred) & PRIV_PFEXEC) != 0) { 290 error = pfexec_call(p->p_cred, &resolvepn, &args.pfcred, 291 &args.scrubenv); 292 293 /* Returning errno in case we're not allowed to execute. */ 294 if (error > 0) { 295 if (dir != NULL) 296 VN_RELE(dir); 297 pn_free(&resolvepn); 298 VN_RELE(vp); 299 goto out; 300 } 301 302 /* Don't change the credentials when using old ptrace. */ 303 if (args.pfcred != NULL && 304 (p->p_proc_flag & P_PR_PTRACE) != 0) { 305 crfree(args.pfcred); 306 args.pfcred = NULL; 307 args.scrubenv = B_FALSE; 308 } 309 } 310 311 /* 312 * Specific exec handlers, or policies determined via 313 * /etc/system may override the historical default. 314 */ 315 args.stk_prot = PROT_ZFOD; 316 args.dat_prot = PROT_ZFOD; 317 318 CPU_STATS_ADD_K(sys, sysexec, 1); 319 DTRACE_PROC1(exec, char *, args.pathname); 320 321 ua.fname = fname; 322 ua.argp = argp; 323 ua.envp = envp; 324 325 /* If necessary, brand this process before we start the exec. */ 326 if (brandme) 327 brand_setbrand(p); 328 329 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz, 330 exec_file, p->p_cred, brand_action)) != 0) { 331 if (brandme) 332 brand_clearbrand(p, B_FALSE); 333 VN_RELE(vp); 334 if (dir != NULL) 335 VN_RELE(dir); 336 pn_free(&resolvepn); 337 goto fail; 338 } 339 340 /* 341 * Free floating point registers (sun4u only) 342 */ 343 ASSERT(lwp != NULL); 344 lwp_freeregs(lwp, 1); 345 346 /* 347 * Free thread and process context ops. 348 */ 349 if (curthread->t_ctx) 350 freectx(curthread, 1); 351 if (p->p_pctx) 352 freepctx(p, 1); 353 354 /* 355 * Remember file name for accounting; clear any cached DTrace predicate. 356 */ 357 up->u_acflag &= ~AFORK; 358 bcopy(exec_file, up->u_comm, MAXCOMLEN+1); 359 curthread->t_predcache = NULL; 360 361 /* 362 * Clear contract template state 363 */ 364 lwp_ctmpl_clear(lwp); 365 366 /* 367 * Save the directory in which we found the executable for expanding 368 * the %d token used in core file patterns. 369 */ 370 mutex_enter(&p->p_lock); 371 tmpvp = p->p_execdir; 372 p->p_execdir = dir; 373 if (p->p_execdir != NULL) 374 VN_HOLD(p->p_execdir); 375 mutex_exit(&p->p_lock); 376 377 if (tmpvp != NULL) 378 VN_RELE(tmpvp); 379 380 /* 381 * Reset stack state to the user stack, clear set of signals 382 * caught on the signal stack, and reset list of signals that 383 * restart system calls; the new program's environment should 384 * not be affected by detritus from the old program. Any 385 * pending held signals remain held, so don't clear t_hold. 386 */ 387 mutex_enter(&p->p_lock); 388 lwp->lwp_oldcontext = 0; 389 lwp->lwp_ustack = 0; 390 lwp->lwp_old_stk_ctl = 0; 391 sigemptyset(&up->u_signodefer); 392 sigemptyset(&up->u_sigonstack); 393 sigemptyset(&up->u_sigresethand); 394 lwp->lwp_sigaltstack.ss_sp = 0; 395 lwp->lwp_sigaltstack.ss_size = 0; 396 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 397 398 /* 399 * Make saved resource limit == current resource limit. 400 */ 401 for (i = 0; i < RLIM_NLIMITS; i++) { 402 /*CONSTCOND*/ 403 if (RLIM_SAVED(i)) { 404 (void) rctl_rlimit_get(rctlproc_legacy[i], p, 405 &up->u_saved_rlimit[i]); 406 } 407 } 408 409 /* 410 * If the action was to catch the signal, then the action 411 * must be reset to SIG_DFL. 412 */ 413 sigdefault(p); 414 p->p_flag &= ~(SNOWAIT|SJCTL); 415 p->p_flag |= (SEXECED|SMSACCT|SMSFORK); 416 up->u_signal[SIGCLD - 1] = SIG_DFL; 417 418 /* 419 * Delete the dot4 sigqueues/signotifies. 420 */ 421 sigqfree(p); 422 423 mutex_exit(&p->p_lock); 424 425 mutex_enter(&p->p_pflock); 426 p->p_prof.pr_base = NULL; 427 p->p_prof.pr_size = 0; 428 p->p_prof.pr_off = 0; 429 p->p_prof.pr_scale = 0; 430 p->p_prof.pr_samples = 0; 431 mutex_exit(&p->p_pflock); 432 433 ASSERT(curthread->t_schedctl == NULL); 434 435 #if defined(__sparc) 436 if (p->p_utraps != NULL) 437 utrap_free(p); 438 #endif /* __sparc */ 439 440 /* 441 * Close all close-on-exec files. 442 */ 443 close_exec(P_FINFO(p)); 444 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up); 445 446 /* Unbrand ourself if necessary. */ 447 if (PROC_IS_BRANDED(p) && (brand_action == EBA_NATIVE)) 448 brand_clearbrand(p, B_FALSE); 449 450 setregs(&args); 451 452 /* Mark this as an executable vnode */ 453 mutex_enter(&vp->v_lock); 454 vp->v_flag |= VVMEXEC; 455 mutex_exit(&vp->v_lock); 456 457 VN_RELE(vp); 458 if (dir != NULL) 459 VN_RELE(dir); 460 pn_free(&resolvepn); 461 462 /* 463 * Allocate a new lwp directory and lwpid hash table if necessary. 464 */ 465 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) { 466 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP); 467 lwpdir->ld_next = lwpdir + 1; 468 tidhash = kmem_zalloc(2 * sizeof (tidhash_t), KM_SLEEP); 469 if (p->p_lwpdir != NULL) 470 lep = p->p_lwpdir[curthread->t_dslot].ld_entry; 471 else 472 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 473 } 474 475 if (PROC_IS_BRANDED(p)) 476 BROP(p)->b_exec(); 477 478 mutex_enter(&p->p_lock); 479 prbarrier(p); 480 481 /* 482 * Reset lwp id to the default value of 1. 483 * This is a single-threaded process now 484 * and lwp #1 is lwp_wait()able by default. 485 * The t_unpark flag should not be inherited. 486 */ 487 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 488 curthread->t_tid = 1; 489 kpreempt_disable(); 490 ASSERT(curthread->t_lpl != NULL); 491 p->p_t1_lgrpid = curthread->t_lpl->lpl_lgrpid; 492 kpreempt_enable(); 493 if (p->p_tr_lgrpid != LGRP_NONE && p->p_tr_lgrpid != p->p_t1_lgrpid) { 494 lgrp_update_trthr_migrations(1); 495 } 496 curthread->t_unpark = 0; 497 curthread->t_proc_flag |= TP_TWAIT; 498 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */ 499 p->p_lwpdaemon = 0; /* but oh well ... */ 500 p->p_lwpid = 1; 501 502 /* 503 * Install the newly-allocated lwp directory and lwpid hash table 504 * and insert the current thread into the new hash table. 505 */ 506 if (lwpdir != NULL) { 507 old_lwpdir = p->p_lwpdir; 508 old_lwpdir_sz = p->p_lwpdir_sz; 509 old_tidhash = p->p_tidhash; 510 old_tidhash_sz = p->p_tidhash_sz; 511 p->p_lwpdir = p->p_lwpfree = lwpdir; 512 p->p_lwpdir_sz = 2; 513 lep->le_thread = curthread; 514 lep->le_lwpid = curthread->t_tid; 515 lep->le_start = curthread->t_start; 516 lwp_hash_in(p, lep, tidhash, 2, 0); 517 p->p_tidhash = tidhash; 518 p->p_tidhash_sz = 2; 519 } 520 ret_tidhash = p->p_ret_tidhash; 521 p->p_ret_tidhash = NULL; 522 523 /* 524 * Restore the saved signal mask and 525 * inform /proc that the exec() has finished. 526 */ 527 curthread->t_hold = savedmask; 528 prexecend(); 529 mutex_exit(&p->p_lock); 530 if (old_lwpdir) { 531 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t)); 532 kmem_free(old_tidhash, old_tidhash_sz * sizeof (tidhash_t)); 533 } 534 while (ret_tidhash != NULL) { 535 ret_tidhash_t *next = ret_tidhash->rth_next; 536 kmem_free(ret_tidhash->rth_tidhash, 537 ret_tidhash->rth_tidhash_sz * sizeof (tidhash_t)); 538 kmem_free(ret_tidhash, sizeof (*ret_tidhash)); 539 ret_tidhash = next; 540 } 541 542 ASSERT(error == 0); 543 DTRACE_PROC(exec__success); 544 return (0); 545 546 fail: 547 DTRACE_PROC1(exec__failure, int, error); 548 out: /* error return */ 549 mutex_enter(&p->p_lock); 550 curthread->t_hold = savedmask; 551 prexecend(); 552 mutex_exit(&p->p_lock); 553 ASSERT(error != 0); 554 return (error); 555 } 556 557 558 /* 559 * Perform generic exec duties and switchout to object-file specific 560 * handler. 561 */ 562 int 563 gexec( 564 struct vnode **vpp, 565 struct execa *uap, 566 struct uarg *args, 567 struct intpdata *idatap, 568 int level, 569 long *execsz, 570 caddr_t exec_file, 571 struct cred *cred, 572 int brand_action) 573 { 574 struct vnode *vp, *execvp = NULL; 575 proc_t *pp = ttoproc(curthread); 576 struct execsw *eswp; 577 int error = 0; 578 int suidflags = 0; 579 ssize_t resid; 580 uid_t uid, gid; 581 struct vattr vattr; 582 char magbuf[MAGIC_BYTES]; 583 int setid; 584 cred_t *oldcred, *newcred = NULL; 585 int privflags = 0; 586 int setidfl; 587 priv_set_t fset; 588 secflagset_t old_secflags; 589 590 secflags_copy(&old_secflags, &pp->p_secflags.psf_effective); 591 592 /* 593 * If the SNOCD or SUGID flag is set, turn it off and remember the 594 * previous setting so we can restore it if we encounter an error. 595 */ 596 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) { 597 mutex_enter(&pp->p_lock); 598 suidflags = pp->p_flag & PSUIDFLAGS; 599 pp->p_flag &= ~PSUIDFLAGS; 600 mutex_exit(&pp->p_lock); 601 } 602 603 if ((error = execpermissions(*vpp, &vattr, args)) != 0) 604 goto bad_noclose; 605 606 /* need to open vnode for stateful file systems */ 607 if ((error = VOP_OPEN(vpp, FREAD, CRED(), NULL)) != 0) 608 goto bad_noclose; 609 vp = *vpp; 610 611 /* 612 * Note: to support binary compatibility with SunOS a.out 613 * executables, we read in the first four bytes, as the 614 * magic number is in bytes 2-3. 615 */ 616 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf), 617 (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 618 goto bad; 619 if (resid != 0) 620 goto bad; 621 622 if ((eswp = findexec_by_hdr(magbuf)) == NULL) 623 goto bad; 624 625 if (level == 0 && 626 (privflags = execsetid(vp, &vattr, &uid, &gid, &fset, 627 args->pfcred == NULL ? cred : args->pfcred, args->pathname)) != 0) { 628 629 /* Pfcred is a credential with a ref count of 1 */ 630 631 if (args->pfcred != NULL) { 632 privflags |= PRIV_INCREASE|PRIV_RESET; 633 newcred = cred = args->pfcred; 634 } else { 635 newcred = cred = crdup(cred); 636 } 637 638 /* If we can, drop the PA bit */ 639 if ((privflags & PRIV_RESET) != 0) 640 priv_adjust_PA(cred); 641 642 if (privflags & PRIV_SETID) { 643 cred->cr_uid = uid; 644 cred->cr_gid = gid; 645 cred->cr_suid = uid; 646 cred->cr_sgid = gid; 647 } 648 649 if (privflags & MAC_FLAGS) { 650 if (!(CR_FLAGS(cred) & NET_MAC_AWARE_INHERIT)) 651 CR_FLAGS(cred) &= ~NET_MAC_AWARE; 652 CR_FLAGS(cred) &= ~NET_MAC_AWARE_INHERIT; 653 } 654 655 /* 656 * Implement the privilege updates: 657 * 658 * Restrict with L: 659 * 660 * I' = I & L 661 * 662 * E' = P' = (I' + F) & A 663 * 664 * But if running under ptrace, we cap I and F with P. 665 */ 666 if ((privflags & (PRIV_RESET|PRIV_FORCED)) != 0) { 667 if ((privflags & PRIV_INCREASE) != 0 && 668 (pp->p_proc_flag & P_PR_PTRACE) != 0) { 669 priv_intersect(&CR_OPPRIV(cred), 670 &CR_IPRIV(cred)); 671 priv_intersect(&CR_OPPRIV(cred), &fset); 672 } 673 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 674 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 675 if (privflags & PRIV_FORCED) { 676 priv_set_PA(cred); 677 priv_union(&fset, &CR_EPRIV(cred)); 678 priv_union(&fset, &CR_PPRIV(cred)); 679 } 680 priv_adjust_PA(cred); 681 } 682 } else if (level == 0 && args->pfcred != NULL) { 683 newcred = cred = args->pfcred; 684 privflags |= PRIV_INCREASE; 685 /* pfcred is not forced to adhere to these settings */ 686 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 687 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 688 priv_adjust_PA(cred); 689 } 690 691 /* The new image gets the inheritable secflags as its secflags */ 692 secflags_promote(pp); 693 694 /* SunOS 4.x buy-back */ 695 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) && 696 (vattr.va_mode & (VSUID|VSGID))) { 697 char path[MAXNAMELEN]; 698 refstr_t *mntpt = NULL; 699 int ret = -1; 700 701 bzero(path, sizeof (path)); 702 zone_hold(pp->p_zone); 703 704 ret = vnodetopath(pp->p_zone->zone_rootvp, vp, path, 705 sizeof (path), cred); 706 707 /* fallback to mountpoint if a path can't be found */ 708 if ((ret != 0) || (ret == 0 && path[0] == '\0')) 709 mntpt = vfs_getmntpoint(vp->v_vfsp); 710 711 if (mntpt == NULL) 712 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 713 "!uid %d: setuid execution not allowed, " 714 "file=%s", cred->cr_uid, path); 715 else 716 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 717 "!uid %d: setuid execution not allowed, " 718 "fs=%s, file=%s", cred->cr_uid, 719 ZONE_PATH_TRANSLATE(refstr_value(mntpt), 720 pp->p_zone), exec_file); 721 722 if (!INGLOBALZONE(pp)) { 723 /* zone_rootpath always has trailing / */ 724 if (mntpt == NULL) 725 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 726 "setuid execution not allowed, file=%s%s", 727 pp->p_zone->zone_name, cred->cr_uid, 728 pp->p_zone->zone_rootpath, path + 1); 729 else 730 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 731 "setuid execution not allowed, fs=%s, " 732 "file=%s", pp->p_zone->zone_name, 733 cred->cr_uid, refstr_value(mntpt), 734 exec_file); 735 } 736 737 if (mntpt != NULL) 738 refstr_rele(mntpt); 739 740 zone_rele(pp->p_zone); 741 } 742 743 /* 744 * execsetid() told us whether or not we had to change the 745 * credentials of the process. In privflags, it told us 746 * whether we gained any privileges or executed a set-uid executable. 747 */ 748 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE|PRIV_FORCED)); 749 750 /* 751 * Use /etc/system variable to determine if the stack 752 * should be marked as executable by default. 753 */ 754 if ((noexec_user_stack != 0) || 755 secflag_enabled(pp, PROC_SEC_NOEXECSTACK)) 756 args->stk_prot &= ~PROT_EXEC; 757 758 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */ 759 args->ex_vp = vp; 760 761 /* 762 * Traditionally, the setid flags told the sub processes whether 763 * the file just executed was set-uid or set-gid; this caused 764 * some confusion as the 'setid' flag did not match the SUGID 765 * process flag which is only set when the uids/gids do not match. 766 * A script set-gid/set-uid to the real uid/gid would start with 767 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH. 768 * Now we flag those cases where the calling process cannot 769 * be trusted to influence the newly exec'ed process, either 770 * because it runs with more privileges or when the uids/gids 771 * do in fact not match. 772 * This also makes the runtime linker agree with the on exec 773 * values of SNOCD and SUGID. 774 */ 775 setidfl = 0; 776 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid && 777 !supgroupmember(cred->cr_gid, cred))) { 778 setidfl |= EXECSETID_UGIDS; 779 } 780 if (setid & PRIV_SETUGID) 781 setidfl |= EXECSETID_SETID; 782 if (setid & PRIV_FORCED) 783 setidfl |= EXECSETID_PRIVS; 784 785 execvp = pp->p_exec; 786 if (execvp) 787 VN_HOLD(execvp); 788 789 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz, 790 setidfl, exec_file, cred, brand_action); 791 rw_exit(eswp->exec_lock); 792 if (error != 0) { 793 if (execvp) 794 VN_RELE(execvp); 795 /* 796 * If this process's p_exec has been set to the vp of 797 * the executable by exec_func, we will return without 798 * calling VOP_CLOSE because proc_exit will close it 799 * on exit. 800 */ 801 if (pp->p_exec == vp) 802 goto bad_noclose; 803 else 804 goto bad; 805 } 806 807 if (level == 0) { 808 uid_t oruid; 809 810 if (execvp != NULL) { 811 /* 812 * Close the previous executable only if we are 813 * at level 0. 814 */ 815 (void) VOP_CLOSE(execvp, FREAD, 1, (offset_t)0, 816 cred, NULL); 817 } 818 819 mutex_enter(&pp->p_crlock); 820 821 oruid = pp->p_cred->cr_ruid; 822 823 if (newcred != NULL) { 824 /* 825 * Free the old credentials, and set the new ones. 826 * Do this for both the process and the (single) thread. 827 */ 828 crfree(pp->p_cred); 829 pp->p_cred = cred; /* cred already held for proc */ 830 crhold(cred); /* hold new cred for thread */ 831 /* 832 * DTrace accesses t_cred in probe context. t_cred 833 * must always be either NULL, or point to a valid, 834 * allocated cred structure. 835 */ 836 oldcred = curthread->t_cred; 837 curthread->t_cred = cred; 838 crfree(oldcred); 839 840 if (priv_basic_test >= 0 && 841 !PRIV_ISASSERT(&CR_IPRIV(newcred), 842 priv_basic_test)) { 843 pid_t pid = pp->p_pid; 844 char *fn = PTOU(pp)->u_comm; 845 846 cmn_err(CE_WARN, "%s[%d]: exec: basic_test " 847 "privilege removed from E/I", fn, pid); 848 } 849 } 850 /* 851 * On emerging from a successful exec(), the saved 852 * uid and gid equal the effective uid and gid. 853 */ 854 cred->cr_suid = cred->cr_uid; 855 cred->cr_sgid = cred->cr_gid; 856 857 /* 858 * If the real and effective ids do not match, this 859 * is a setuid process that should not dump core. 860 * The group comparison is tricky; we prevent the code 861 * from flagging SNOCD when executing with an effective gid 862 * which is a supplementary group. 863 */ 864 if (cred->cr_ruid != cred->cr_uid || 865 (cred->cr_rgid != cred->cr_gid && 866 !supgroupmember(cred->cr_gid, cred)) || 867 (privflags & PRIV_INCREASE) != 0) 868 suidflags = PSUIDFLAGS; 869 else 870 suidflags = 0; 871 872 mutex_exit(&pp->p_crlock); 873 if (newcred != NULL && oruid != newcred->cr_ruid) { 874 /* Note that the process remains in the same zone. */ 875 mutex_enter(&pidlock); 876 upcount_dec(oruid, crgetzoneid(newcred)); 877 upcount_inc(newcred->cr_ruid, crgetzoneid(newcred)); 878 mutex_exit(&pidlock); 879 } 880 if (suidflags) { 881 mutex_enter(&pp->p_lock); 882 pp->p_flag |= suidflags; 883 mutex_exit(&pp->p_lock); 884 } 885 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) { 886 /* 887 * If process is traced via /proc, arrange to 888 * invalidate the associated /proc vnode. 889 */ 890 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE)) 891 args->traceinval = 1; 892 } 893 if (pp->p_proc_flag & P_PR_PTRACE) 894 psignal(pp, SIGTRAP); 895 if (args->traceinval) 896 prinvalidate(&pp->p_user); 897 } 898 if (execvp) 899 VN_RELE(execvp); 900 return (0); 901 902 bad: 903 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, cred, NULL); 904 905 bad_noclose: 906 if (newcred != NULL) 907 crfree(newcred); 908 if (error == 0) 909 error = ENOEXEC; 910 911 mutex_enter(&pp->p_lock); 912 if (suidflags) { 913 pp->p_flag |= suidflags; 914 } 915 /* 916 * Restore the effective secflags, to maintain the invariant they 917 * never change for a given process 918 */ 919 secflags_copy(&pp->p_secflags.psf_effective, &old_secflags); 920 mutex_exit(&pp->p_lock); 921 922 return (error); 923 } 924 925 extern char *execswnames[]; 926 927 struct execsw * 928 allocate_execsw(char *name, char *magic, size_t magic_size) 929 { 930 int i, j; 931 char *ename; 932 char *magicp; 933 934 mutex_enter(&execsw_lock); 935 for (i = 0; i < nexectype; i++) { 936 if (execswnames[i] == NULL) { 937 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP); 938 (void) strcpy(ename, name); 939 execswnames[i] = ename; 940 /* 941 * Set the magic number last so that we 942 * don't need to hold the execsw_lock in 943 * findexectype(). 944 */ 945 magicp = kmem_alloc(magic_size, KM_SLEEP); 946 for (j = 0; j < magic_size; j++) 947 magicp[j] = magic[j]; 948 execsw[i].exec_magic = magicp; 949 mutex_exit(&execsw_lock); 950 return (&execsw[i]); 951 } 952 } 953 mutex_exit(&execsw_lock); 954 return (NULL); 955 } 956 957 /* 958 * Find the exec switch table entry with the corresponding magic string. 959 */ 960 struct execsw * 961 findexecsw(char *magic) 962 { 963 struct execsw *eswp; 964 965 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 966 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 967 if (magic && eswp->exec_maglen != 0 && 968 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) 969 return (eswp); 970 } 971 return (NULL); 972 } 973 974 /* 975 * Find the execsw[] index for the given exec header string by looking for the 976 * magic string at a specified offset and length for each kind of executable 977 * file format until one matches. If no execsw[] entry is found, try to 978 * autoload a module for this magic string. 979 */ 980 struct execsw * 981 findexec_by_hdr(char *header) 982 { 983 struct execsw *eswp; 984 985 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 986 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 987 if (header && eswp->exec_maglen != 0 && 988 bcmp(&header[eswp->exec_magoff], eswp->exec_magic, 989 eswp->exec_maglen) == 0) { 990 if (hold_execsw(eswp) != 0) 991 return (NULL); 992 return (eswp); 993 } 994 } 995 return (NULL); /* couldn't find the type */ 996 } 997 998 /* 999 * Find the execsw[] index for the given magic string. If no execsw[] entry 1000 * is found, try to autoload a module for this magic string. 1001 */ 1002 struct execsw * 1003 findexec_by_magic(char *magic) 1004 { 1005 struct execsw *eswp; 1006 1007 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 1008 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 1009 if (magic && eswp->exec_maglen != 0 && 1010 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) { 1011 if (hold_execsw(eswp) != 0) 1012 return (NULL); 1013 return (eswp); 1014 } 1015 } 1016 return (NULL); /* couldn't find the type */ 1017 } 1018 1019 static int 1020 hold_execsw(struct execsw *eswp) 1021 { 1022 char *name; 1023 1024 rw_enter(eswp->exec_lock, RW_READER); 1025 while (!LOADED_EXEC(eswp)) { 1026 rw_exit(eswp->exec_lock); 1027 name = execswnames[eswp-execsw]; 1028 ASSERT(name); 1029 if (modload("exec", name) == -1) 1030 return (-1); 1031 rw_enter(eswp->exec_lock, RW_READER); 1032 } 1033 return (0); 1034 } 1035 1036 static int 1037 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp, 1038 priv_set_t *fset, cred_t *cr, const char *pathname) 1039 { 1040 proc_t *pp = ttoproc(curthread); 1041 uid_t uid, gid; 1042 int privflags = 0; 1043 1044 /* 1045 * Remember credentials. 1046 */ 1047 uid = cr->cr_uid; 1048 gid = cr->cr_gid; 1049 1050 /* Will try to reset the PRIV_AWARE bit later. */ 1051 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE) 1052 privflags |= PRIV_RESET; 1053 1054 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) { 1055 /* 1056 * If it's a set-uid root program we perform the 1057 * forced privilege look-aside. This has three possible 1058 * outcomes: 1059 * no look aside information -> treat as before 1060 * look aside in Limit set -> apply forced privs 1061 * look aside not in Limit set -> ignore set-uid root 1062 * 1063 * Ordinary set-uid root execution only allowed if the limit 1064 * set holds all unsafe privileges. 1065 */ 1066 if (vattrp->va_mode & VSUID) { 1067 if (vattrp->va_uid == 0) { 1068 int res = get_forced_privs(cr, pathname, fset); 1069 1070 switch (res) { 1071 case -1: 1072 if (priv_issubset(&priv_unsafe, 1073 &CR_LPRIV(cr))) { 1074 uid = vattrp->va_uid; 1075 privflags |= PRIV_SETUGID; 1076 } 1077 break; 1078 case 0: 1079 privflags |= PRIV_FORCED|PRIV_INCREASE; 1080 break; 1081 default: 1082 break; 1083 } 1084 } else { 1085 uid = vattrp->va_uid; 1086 privflags |= PRIV_SETUGID; 1087 } 1088 } 1089 if (vattrp->va_mode & VSGID) { 1090 gid = vattrp->va_gid; 1091 privflags |= PRIV_SETUGID; 1092 } 1093 } 1094 1095 /* 1096 * Do we need to change our credential anyway? 1097 * This is the case when E != I or P != I, as 1098 * we need to do the assignments (with F empty and A full) 1099 * Or when I is not a subset of L; in that case we need to 1100 * enforce L. 1101 * 1102 * I' = L & I 1103 * 1104 * E' = P' = (I' + F) & A 1105 * or 1106 * E' = P' = I' 1107 */ 1108 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) || 1109 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) || 1110 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr))) 1111 privflags |= PRIV_RESET; 1112 1113 /* Child has more privileges than parent */ 1114 if (!priv_issubset(&CR_IPRIV(cr), &CR_PPRIV(cr))) 1115 privflags |= PRIV_INCREASE; 1116 1117 /* If MAC-aware flag(s) are on, need to update cred to remove. */ 1118 if ((CR_FLAGS(cr) & NET_MAC_AWARE) || 1119 (CR_FLAGS(cr) & NET_MAC_AWARE_INHERIT)) 1120 privflags |= MAC_FLAGS; 1121 /* 1122 * Set setuid/setgid protections if no ptrace() compatibility. 1123 * For privileged processes, honor setuid/setgid even in 1124 * the presence of ptrace() compatibility. 1125 */ 1126 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 || 1127 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) && 1128 (cr->cr_uid != uid || 1129 cr->cr_gid != gid || 1130 cr->cr_suid != uid || 1131 cr->cr_sgid != gid)) { 1132 *uidp = uid; 1133 *gidp = gid; 1134 privflags |= PRIV_SETID; 1135 } 1136 return (privflags); 1137 } 1138 1139 int 1140 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args) 1141 { 1142 int error; 1143 proc_t *p = ttoproc(curthread); 1144 1145 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE; 1146 if (error = VOP_GETATTR(vp, vattrp, ATTR_EXEC, p->p_cred, NULL)) 1147 return (error); 1148 /* 1149 * Check the access mode. 1150 * If VPROC, ask /proc if the file is an object file. 1151 */ 1152 if ((error = VOP_ACCESS(vp, VEXEC, 0, p->p_cred, NULL)) != 0 || 1153 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) || 1154 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 || 1155 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) { 1156 if (error == 0) 1157 error = EACCES; 1158 return (error); 1159 } 1160 1161 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) && 1162 (error = VOP_ACCESS(vp, VREAD, 0, p->p_cred, NULL))) { 1163 /* 1164 * If process is under ptrace(2) compatibility, 1165 * fail the exec(2). 1166 */ 1167 if (p->p_proc_flag & P_PR_PTRACE) 1168 goto bad; 1169 /* 1170 * Process is traced via /proc. 1171 * Arrange to invalidate the /proc vnode. 1172 */ 1173 args->traceinval = 1; 1174 } 1175 return (0); 1176 bad: 1177 if (error == 0) 1178 error = ENOEXEC; 1179 return (error); 1180 } 1181 1182 /* 1183 * Map a section of an executable file into the user's 1184 * address space. 1185 */ 1186 int 1187 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 1188 off_t offset, int prot, int page, uint_t szc) 1189 { 1190 int error = 0; 1191 off_t oldoffset; 1192 caddr_t zfodbase, oldaddr; 1193 size_t end, oldlen; 1194 size_t zfoddiff; 1195 label_t ljb; 1196 proc_t *p = ttoproc(curthread); 1197 1198 oldaddr = addr; 1199 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1200 if (len) { 1201 oldlen = len; 1202 len += ((size_t)oldaddr - (size_t)addr); 1203 oldoffset = offset; 1204 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1205 if (page) { 1206 spgcnt_t prefltmem, availm, npages; 1207 int preread; 1208 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1209 1210 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1211 mflag |= MAP_TEXT; 1212 } else { 1213 mflag |= MAP_INITDATA; 1214 } 1215 1216 if (valid_usr_range(addr, len, prot, p->p_as, 1217 p->p_as->a_userlimit) != RANGE_OKAY) { 1218 error = ENOMEM; 1219 goto bad; 1220 } 1221 if (error = VOP_MAP(vp, (offset_t)offset, 1222 p->p_as, &addr, len, prot, PROT_ALL, 1223 mflag, CRED(), NULL)) 1224 goto bad; 1225 1226 /* 1227 * If the segment can fit, then we prefault 1228 * the entire segment in. This is based on the 1229 * model that says the best working set of a 1230 * small program is all of its pages. 1231 */ 1232 npages = (spgcnt_t)btopr(len); 1233 prefltmem = freemem - desfree; 1234 preread = 1235 (npages < prefltmem && len < PGTHRESH) ? 1 : 0; 1236 1237 /* 1238 * If we aren't prefaulting the segment, 1239 * increment "deficit", if necessary to ensure 1240 * that pages will become available when this 1241 * process starts executing. 1242 */ 1243 availm = freemem - lotsfree; 1244 if (preread == 0 && npages > availm && 1245 deficit < lotsfree) { 1246 deficit += MIN((pgcnt_t)(npages - availm), 1247 lotsfree - deficit); 1248 } 1249 1250 if (preread) { 1251 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD, 1252 "execmap preread:freemem %d size %lu", 1253 freemem, len); 1254 (void) as_fault(p->p_as->a_hat, p->p_as, 1255 (caddr_t)addr, len, F_INVAL, S_READ); 1256 } 1257 } else { 1258 if (valid_usr_range(addr, len, prot, p->p_as, 1259 p->p_as->a_userlimit) != RANGE_OKAY) { 1260 error = ENOMEM; 1261 goto bad; 1262 } 1263 1264 if (error = as_map(p->p_as, addr, len, 1265 segvn_create, zfod_argsp)) 1266 goto bad; 1267 /* 1268 * Read in the segment in one big chunk. 1269 */ 1270 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr, 1271 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0, 1272 (rlim64_t)0, CRED(), (ssize_t *)0)) 1273 goto bad; 1274 /* 1275 * Now set protections. 1276 */ 1277 if (prot != PROT_ZFOD) { 1278 (void) as_setprot(p->p_as, (caddr_t)addr, 1279 len, prot); 1280 } 1281 } 1282 } 1283 1284 if (zfodlen) { 1285 struct as *as = curproc->p_as; 1286 struct seg *seg; 1287 uint_t zprot = 0; 1288 1289 end = (size_t)addr + len; 1290 zfodbase = (caddr_t)roundup(end, PAGESIZE); 1291 zfoddiff = (uintptr_t)zfodbase - end; 1292 if (zfoddiff) { 1293 /* 1294 * Before we go to zero the remaining space on the last 1295 * page, make sure we have write permission. 1296 * 1297 * Normal illumos binaries don't even hit the case 1298 * where we have to change permission on the last page 1299 * since their protection is typically either 1300 * PROT_USER | PROT_WRITE | PROT_READ 1301 * or 1302 * PROT_ZFOD (same as PROT_ALL). 1303 * 1304 * We need to be careful how we zero-fill the last page 1305 * if the segment protection does not include 1306 * PROT_WRITE. Using as_setprot() can cause the VM 1307 * segment code to call segvn_vpage(), which must 1308 * allocate a page struct for each page in the segment. 1309 * If we have a very large segment, this may fail, so 1310 * we have to check for that, even though we ignore 1311 * other return values from as_setprot. 1312 */ 1313 1314 AS_LOCK_ENTER(as, RW_READER); 1315 seg = as_segat(curproc->p_as, (caddr_t)end); 1316 if (seg != NULL) 1317 SEGOP_GETPROT(seg, (caddr_t)end, zfoddiff - 1, 1318 &zprot); 1319 AS_LOCK_EXIT(as); 1320 1321 if (seg != NULL && (zprot & PROT_WRITE) == 0) { 1322 if (as_setprot(as, (caddr_t)end, zfoddiff - 1, 1323 zprot | PROT_WRITE) == ENOMEM) { 1324 error = ENOMEM; 1325 goto bad; 1326 } 1327 } 1328 1329 if (on_fault(&ljb)) { 1330 no_fault(); 1331 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1332 (void) as_setprot(as, (caddr_t)end, 1333 zfoddiff - 1, zprot); 1334 error = EFAULT; 1335 goto bad; 1336 } 1337 uzero((void *)end, zfoddiff); 1338 no_fault(); 1339 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1340 (void) as_setprot(as, (caddr_t)end, 1341 zfoddiff - 1, zprot); 1342 } 1343 if (zfodlen > zfoddiff) { 1344 struct segvn_crargs crargs = 1345 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1346 1347 zfodlen -= zfoddiff; 1348 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as, 1349 p->p_as->a_userlimit) != RANGE_OKAY) { 1350 error = ENOMEM; 1351 goto bad; 1352 } 1353 if (szc > 0) { 1354 /* 1355 * ASSERT alignment because the mapelfexec() 1356 * caller for the szc > 0 case extended zfod 1357 * so it's end is pgsz aligned. 1358 */ 1359 size_t pgsz = page_get_pagesize(szc); 1360 ASSERT(IS_P2ALIGNED(zfodbase + zfodlen, pgsz)); 1361 1362 if (IS_P2ALIGNED(zfodbase, pgsz)) { 1363 crargs.szc = szc; 1364 } else { 1365 crargs.szc = AS_MAP_HEAP; 1366 } 1367 } else { 1368 crargs.szc = AS_MAP_NO_LPOOB; 1369 } 1370 if (error = as_map(p->p_as, (caddr_t)zfodbase, 1371 zfodlen, segvn_create, &crargs)) 1372 goto bad; 1373 if (prot != PROT_ZFOD) { 1374 (void) as_setprot(p->p_as, (caddr_t)zfodbase, 1375 zfodlen, prot); 1376 } 1377 } 1378 } 1379 return (0); 1380 bad: 1381 return (error); 1382 } 1383 1384 void 1385 setexecenv(struct execenv *ep) 1386 { 1387 proc_t *p = ttoproc(curthread); 1388 klwp_t *lwp = ttolwp(curthread); 1389 struct vnode *vp; 1390 1391 p->p_bssbase = ep->ex_bssbase; 1392 p->p_brkbase = ep->ex_brkbase; 1393 p->p_brksize = ep->ex_brksize; 1394 if (p->p_exec) 1395 VN_RELE(p->p_exec); /* out with the old */ 1396 vp = p->p_exec = ep->ex_vp; 1397 if (vp != NULL) 1398 VN_HOLD(vp); /* in with the new */ 1399 1400 lwp->lwp_sigaltstack.ss_sp = 0; 1401 lwp->lwp_sigaltstack.ss_size = 0; 1402 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 1403 } 1404 1405 int 1406 execopen(struct vnode **vpp, int *fdp) 1407 { 1408 struct vnode *vp = *vpp; 1409 file_t *fp; 1410 int error = 0; 1411 int filemode = FREAD; 1412 1413 VN_HOLD(vp); /* open reference */ 1414 if (error = falloc(NULL, filemode, &fp, fdp)) { 1415 VN_RELE(vp); 1416 *fdp = -1; /* just in case falloc changed value */ 1417 return (error); 1418 } 1419 if (error = VOP_OPEN(&vp, filemode, CRED(), NULL)) { 1420 VN_RELE(vp); 1421 setf(*fdp, NULL); 1422 unfalloc(fp); 1423 *fdp = -1; 1424 return (error); 1425 } 1426 *vpp = vp; /* vnode should not have changed */ 1427 fp->f_vnode = vp; 1428 mutex_exit(&fp->f_tlock); 1429 setf(*fdp, fp); 1430 return (0); 1431 } 1432 1433 int 1434 execclose(int fd) 1435 { 1436 return (closeandsetf(fd, NULL)); 1437 } 1438 1439 1440 /* 1441 * noexec stub function. 1442 */ 1443 /*ARGSUSED*/ 1444 int 1445 noexec( 1446 struct vnode *vp, 1447 struct execa *uap, 1448 struct uarg *args, 1449 struct intpdata *idatap, 1450 int level, 1451 long *execsz, 1452 int setid, 1453 caddr_t exec_file, 1454 struct cred *cred) 1455 { 1456 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname); 1457 return (ENOEXEC); 1458 } 1459 1460 /* 1461 * Support routines for building a user stack. 1462 * 1463 * execve(path, argv, envp) must construct a new stack with the specified 1464 * arguments and environment variables (see exec_args() for a description 1465 * of the user stack layout). To do this, we copy the arguments and 1466 * environment variables from the old user address space into the kernel, 1467 * free the old as, create the new as, and copy our buffered information 1468 * to the new stack. Our kernel buffer has the following structure: 1469 * 1470 * +-----------------------+ <--- stk_base + stk_size 1471 * | string offsets | 1472 * +-----------------------+ <--- stk_offp 1473 * | | 1474 * | STK_AVAIL() space | 1475 * | | 1476 * +-----------------------+ <--- stk_strp 1477 * | strings | 1478 * +-----------------------+ <--- stk_base 1479 * 1480 * When we add a string, we store the string's contents (including the null 1481 * terminator) at stk_strp, and we store the offset of the string relative to 1482 * stk_base at --stk_offp. At strings are added, stk_strp increases and 1483 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just 1484 * the difference between these pointers. If we run out of space, we return 1485 * an error and exec_args() starts all over again with a buffer twice as large. 1486 * When we're all done, the kernel buffer looks like this: 1487 * 1488 * +-----------------------+ <--- stk_base + stk_size 1489 * | argv[0] offset | 1490 * +-----------------------+ 1491 * | ... | 1492 * +-----------------------+ 1493 * | argv[argc-1] offset | 1494 * +-----------------------+ 1495 * | envp[0] offset | 1496 * +-----------------------+ 1497 * | ... | 1498 * +-----------------------+ 1499 * | envp[envc-1] offset | 1500 * +-----------------------+ 1501 * | AT_SUN_PLATFORM offset| 1502 * +-----------------------+ 1503 * | AT_SUN_EXECNAME offset| 1504 * +-----------------------+ <--- stk_offp 1505 * | | 1506 * | STK_AVAIL() space | 1507 * | | 1508 * +-----------------------+ <--- stk_strp 1509 * | AT_SUN_EXECNAME offset| 1510 * +-----------------------+ 1511 * | AT_SUN_PLATFORM offset| 1512 * +-----------------------+ 1513 * | envp[envc-1] string | 1514 * +-----------------------+ 1515 * | ... | 1516 * +-----------------------+ 1517 * | envp[0] string | 1518 * +-----------------------+ 1519 * | argv[argc-1] string | 1520 * +-----------------------+ 1521 * | ... | 1522 * +-----------------------+ 1523 * | argv[0] string | 1524 * +-----------------------+ <--- stk_base 1525 */ 1526 1527 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp) 1528 1529 /* 1530 * Add a string to the stack. 1531 */ 1532 static int 1533 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg) 1534 { 1535 int error; 1536 size_t len; 1537 1538 if (STK_AVAIL(args) < sizeof (int)) 1539 return (E2BIG); 1540 *--args->stk_offp = args->stk_strp - args->stk_base; 1541 1542 if (segflg == UIO_USERSPACE) { 1543 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len); 1544 if (error != 0) 1545 return (error); 1546 } else { 1547 len = strlen(sp) + 1; 1548 if (len > STK_AVAIL(args)) 1549 return (E2BIG); 1550 bcopy(sp, args->stk_strp, len); 1551 } 1552 1553 args->stk_strp += len; 1554 1555 return (0); 1556 } 1557 1558 static int 1559 stk_getptr(uarg_t *args, char *src, char **dst) 1560 { 1561 int error; 1562 1563 if (args->from_model == DATAMODEL_NATIVE) { 1564 ulong_t ptr; 1565 error = fulword(src, &ptr); 1566 *dst = (caddr_t)ptr; 1567 } else { 1568 uint32_t ptr; 1569 error = fuword32(src, &ptr); 1570 *dst = (caddr_t)(uintptr_t)ptr; 1571 } 1572 return (error); 1573 } 1574 1575 static int 1576 stk_putptr(uarg_t *args, char *addr, char *value) 1577 { 1578 if (args->to_model == DATAMODEL_NATIVE) 1579 return (sulword(addr, (ulong_t)value)); 1580 else 1581 return (suword32(addr, (uint32_t)(uintptr_t)value)); 1582 } 1583 1584 static int 1585 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1586 { 1587 char *sp; 1588 int argc, error; 1589 int argv_empty = 0; 1590 size_t ptrsize = args->from_ptrsize; 1591 size_t size, pad; 1592 char *argv = (char *)uap->argp; 1593 char *envp = (char *)uap->envp; 1594 1595 /* 1596 * Copy interpreter's name and argument to argv[0] and argv[1]. 1597 * In the rare case that we have nested interpreters then those names 1598 * and arguments are also copied to the subsequent slots in argv. 1599 */ 1600 if (intp != NULL && intp->intp_name[0] != NULL) { 1601 int i; 1602 1603 for (i = 0; i < INTP_MAXDEPTH; i++) { 1604 if (intp->intp_name[i] == NULL) 1605 break; 1606 error = stk_add(args, intp->intp_name[i], UIO_SYSSPACE); 1607 if (error != 0) 1608 return (error); 1609 if (intp->intp_arg[i] != NULL) { 1610 error = stk_add(args, intp->intp_arg[i], 1611 UIO_SYSSPACE); 1612 if (error != 0) 1613 return (error); 1614 } 1615 } 1616 1617 if (args->fname != NULL) 1618 error = stk_add(args, args->fname, UIO_SYSSPACE); 1619 else 1620 error = stk_add(args, uap->fname, UIO_USERSPACE); 1621 if (error) 1622 return (error); 1623 1624 /* 1625 * Check for an empty argv[]. 1626 */ 1627 if (stk_getptr(args, argv, &sp)) 1628 return (EFAULT); 1629 if (sp == NULL) 1630 argv_empty = 1; 1631 1632 argv += ptrsize; /* ignore original argv[0] */ 1633 } 1634 1635 if (argv_empty == 0) { 1636 /* 1637 * Add argv[] strings to the stack. 1638 */ 1639 for (;;) { 1640 if (stk_getptr(args, argv, &sp)) 1641 return (EFAULT); 1642 if (sp == NULL) 1643 break; 1644 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1645 return (error); 1646 argv += ptrsize; 1647 } 1648 } 1649 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1650 args->arglen = args->stk_strp - args->stk_base; 1651 1652 /* 1653 * Add environ[] strings to the stack. 1654 */ 1655 if (envp != NULL) { 1656 for (;;) { 1657 char *tmp = args->stk_strp; 1658 if (stk_getptr(args, envp, &sp)) 1659 return (EFAULT); 1660 if (sp == NULL) 1661 break; 1662 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1663 return (error); 1664 if (args->scrubenv && strncmp(tmp, "LD_", 3) == 0) { 1665 /* Undo the copied string */ 1666 args->stk_strp = tmp; 1667 *(args->stk_offp++) = NULL; 1668 } 1669 envp += ptrsize; 1670 } 1671 } 1672 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1673 args->ne = args->na - argc; 1674 1675 /* 1676 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and 1677 * AT_SUN_EMULATOR strings to the stack. 1678 */ 1679 if (auxvpp != NULL && *auxvpp != NULL) { 1680 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0) 1681 return (error); 1682 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0) 1683 return (error); 1684 if (args->brandname != NULL && 1685 (error = stk_add(args, args->brandname, UIO_SYSSPACE)) != 0) 1686 return (error); 1687 if (args->emulator != NULL && 1688 (error = stk_add(args, args->emulator, UIO_SYSSPACE)) != 0) 1689 return (error); 1690 } 1691 1692 /* 1693 * Compute the size of the stack. This includes all the pointers, 1694 * the space reserved for the aux vector, and all the strings. 1695 * The total number of pointers is args->na (which is argc + envc) 1696 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL 1697 * after the last argument (i.e. argv[argc]); (3) the NULL after the 1698 * last environment variable (i.e. envp[envc]); and (4) the NULL after 1699 * all the strings, at the very top of the stack. 1700 */ 1701 size = (args->na + 4) * args->to_ptrsize + args->auxsize + 1702 (args->stk_strp - args->stk_base); 1703 1704 /* 1705 * Pad the string section with zeroes to align the stack size. 1706 */ 1707 pad = P2NPHASE(size, args->stk_align); 1708 1709 if (STK_AVAIL(args) < pad) 1710 return (E2BIG); 1711 1712 args->usrstack_size = size + pad; 1713 1714 while (pad-- != 0) 1715 *args->stk_strp++ = 0; 1716 1717 args->nc = args->stk_strp - args->stk_base; 1718 1719 return (0); 1720 } 1721 1722 static int 1723 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up) 1724 { 1725 size_t ptrsize = args->to_ptrsize; 1726 ssize_t pslen; 1727 char *kstrp = args->stk_base; 1728 char *ustrp = usrstack - args->nc - ptrsize; 1729 char *usp = usrstack - args->usrstack_size; 1730 int *offp = (int *)(args->stk_base + args->stk_size); 1731 int envc = args->ne; 1732 int argc = args->na - envc; 1733 int i; 1734 1735 /* 1736 * Record argc for /proc. 1737 */ 1738 up->u_argc = argc; 1739 1740 /* 1741 * Put argc on the stack. Note that even though it's an int, 1742 * it always consumes ptrsize bytes (for alignment). 1743 */ 1744 if (stk_putptr(args, usp, (char *)(uintptr_t)argc)) 1745 return (-1); 1746 1747 /* 1748 * Add argc space (ptrsize) to usp and record argv for /proc. 1749 */ 1750 up->u_argv = (uintptr_t)(usp += ptrsize); 1751 1752 /* 1753 * Put the argv[] pointers on the stack. 1754 */ 1755 for (i = 0; i < argc; i++, usp += ptrsize) 1756 if (stk_putptr(args, usp, &ustrp[*--offp])) 1757 return (-1); 1758 1759 /* 1760 * Copy arguments to u_psargs. 1761 */ 1762 pslen = MIN(args->arglen, PSARGSZ) - 1; 1763 for (i = 0; i < pslen; i++) 1764 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]); 1765 while (i < PSARGSZ) 1766 up->u_psargs[i++] = '\0'; 1767 1768 /* 1769 * Add space for argv[]'s NULL terminator (ptrsize) to usp and 1770 * record envp for /proc. 1771 */ 1772 up->u_envp = (uintptr_t)(usp += ptrsize); 1773 1774 /* 1775 * Put the envp[] pointers on the stack. 1776 */ 1777 for (i = 0; i < envc; i++, usp += ptrsize) 1778 if (stk_putptr(args, usp, &ustrp[*--offp])) 1779 return (-1); 1780 1781 /* 1782 * Add space for envp[]'s NULL terminator (ptrsize) to usp and 1783 * remember where the stack ends, which is also where auxv begins. 1784 */ 1785 args->stackend = usp += ptrsize; 1786 1787 /* 1788 * Put all the argv[], envp[], and auxv strings on the stack. 1789 */ 1790 if (copyout(args->stk_base, ustrp, args->nc)) 1791 return (-1); 1792 1793 /* 1794 * Fill in the aux vector now that we know the user stack addresses 1795 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and 1796 * AT_SUN_EMULATOR strings. 1797 */ 1798 if (auxvpp != NULL && *auxvpp != NULL) { 1799 if (args->to_model == DATAMODEL_NATIVE) { 1800 auxv_t **a = (auxv_t **)auxvpp; 1801 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp]) 1802 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp]) 1803 if (args->brandname != NULL) 1804 ADDAUX(*a, 1805 AT_SUN_BRANDNAME, (long)&ustrp[*--offp]) 1806 if (args->emulator != NULL) 1807 ADDAUX(*a, 1808 AT_SUN_EMULATOR, (long)&ustrp[*--offp]) 1809 } else { 1810 auxv32_t **a = (auxv32_t **)auxvpp; 1811 ADDAUX(*a, 1812 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp]) 1813 ADDAUX(*a, 1814 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp]) 1815 if (args->brandname != NULL) 1816 ADDAUX(*a, AT_SUN_BRANDNAME, 1817 (int)(uintptr_t)&ustrp[*--offp]) 1818 if (args->emulator != NULL) 1819 ADDAUX(*a, AT_SUN_EMULATOR, 1820 (int)(uintptr_t)&ustrp[*--offp]) 1821 } 1822 } 1823 1824 return (0); 1825 } 1826 1827 /* 1828 * Though the actual stack base is constant, slew the %sp by a random aligned 1829 * amount in [0,aslr_max_stack_skew). Mostly, this makes life slightly more 1830 * complicated for buffer overflows hoping to overwrite the return address. 1831 * 1832 * On some platforms this helps avoid cache thrashing when identical processes 1833 * simultaneously share caches that don't provide enough associativity 1834 * (e.g. sun4v systems). In this case stack slewing makes the same hot stack 1835 * variables in different processes live in different cache sets increasing 1836 * effective associativity. 1837 */ 1838 size_t 1839 exec_get_spslew(void) 1840 { 1841 #ifdef sun4v 1842 static uint_t sp_color_stride = 16; 1843 static uint_t sp_color_mask = 0x1f; 1844 static uint_t sp_current_color = (uint_t)-1; 1845 #endif 1846 size_t off; 1847 1848 ASSERT(ISP2(aslr_max_stack_skew)); 1849 1850 if ((aslr_max_stack_skew == 0) || 1851 !secflag_enabled(curproc, PROC_SEC_ASLR)) { 1852 #ifdef sun4v 1853 uint_t spcolor = atomic_inc_32_nv(&sp_current_color); 1854 return ((size_t)((spcolor & sp_color_mask) * 1855 SA(sp_color_stride))); 1856 #else 1857 return (0); 1858 #endif 1859 } 1860 1861 (void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off)); 1862 return (SA(P2PHASE(off, aslr_max_stack_skew))); 1863 } 1864 1865 /* 1866 * Initialize a new user stack with the specified arguments and environment. 1867 * The initial user stack layout is as follows: 1868 * 1869 * User Stack 1870 * +---------------+ 1871 * | | 1872 * | stack guard | 1873 * | (64-bit only) | 1874 * | | 1875 * +...............+ <--- stack limit (base - curproc->p_stk_ctl) 1876 * . . 1877 * . . 1878 * . . 1879 * +---------------+ <--- curproc->p_usrstack 1880 * | | 1881 * | slew | 1882 * | | 1883 * +---------------+ 1884 * | NULL | 1885 * +---------------+ 1886 * | | 1887 * | auxv strings | 1888 * | | 1889 * +---------------+ 1890 * | | 1891 * | envp strings | 1892 * | | 1893 * +---------------+ 1894 * | | 1895 * | argv strings | 1896 * | | 1897 * +---------------+ <--- ustrp 1898 * | | 1899 * | aux vector | 1900 * | | 1901 * +---------------+ <--- auxv 1902 * | NULL | 1903 * +---------------+ 1904 * | envp[envc-1] | 1905 * +---------------+ 1906 * | ... | 1907 * +---------------+ 1908 * | envp[0] | 1909 * +---------------+ <--- envp[] 1910 * | NULL | 1911 * +---------------+ 1912 * | argv[argc-1] | 1913 * +---------------+ 1914 * | ... | 1915 * +---------------+ 1916 * | argv[0] | 1917 * +---------------+ <--- argv[] 1918 * | argc | 1919 * +---------------+ <--- stack base 1920 * 1921 * In 64-bit processes, a stack guard segment is allocated at the address 1922 * immediately below where the stack limit ends. This protects new library 1923 * mappings (such as the linker) from being placed in relatively dangerous 1924 * proximity to the stack. 1925 */ 1926 int 1927 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1928 { 1929 size_t size; 1930 int error; 1931 proc_t *p = ttoproc(curthread); 1932 user_t *up = PTOU(p); 1933 char *usrstack; 1934 rctl_entity_p_t e; 1935 struct as *as; 1936 extern int use_stk_lpg; 1937 size_t sp_slew; 1938 #if defined(_LP64) 1939 const size_t sg_sz = (stack_guard_seg_sz & PAGEMASK); 1940 #endif /* defined(_LP64) */ 1941 1942 args->from_model = p->p_model; 1943 if (p->p_model == DATAMODEL_NATIVE) { 1944 args->from_ptrsize = sizeof (long); 1945 } else { 1946 args->from_ptrsize = sizeof (int32_t); 1947 } 1948 1949 if (args->to_model == DATAMODEL_NATIVE) { 1950 args->to_ptrsize = sizeof (long); 1951 args->ncargs = NCARGS; 1952 args->stk_align = STACK_ALIGN; 1953 if (args->addr32) 1954 usrstack = (char *)USRSTACK64_32; 1955 else 1956 usrstack = (char *)USRSTACK; 1957 } else { 1958 args->to_ptrsize = sizeof (int32_t); 1959 args->ncargs = NCARGS32; 1960 args->stk_align = STACK_ALIGN32; 1961 usrstack = (char *)USRSTACK32; 1962 } 1963 1964 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0); 1965 1966 #if defined(__sparc) 1967 /* 1968 * Make sure user register windows are empty before 1969 * attempting to make a new stack. 1970 */ 1971 (void) flush_user_windows_to_stack(NULL); 1972 #endif 1973 1974 for (size = PAGESIZE; ; size *= 2) { 1975 args->stk_size = size; 1976 args->stk_base = kmem_alloc(size, KM_SLEEP); 1977 args->stk_strp = args->stk_base; 1978 args->stk_offp = (int *)(args->stk_base + size); 1979 error = stk_copyin(uap, args, intp, auxvpp); 1980 if (error == 0) 1981 break; 1982 kmem_free(args->stk_base, size); 1983 if (error != E2BIG && error != ENAMETOOLONG) 1984 return (error); 1985 if (size >= args->ncargs) 1986 return (E2BIG); 1987 } 1988 1989 size = args->usrstack_size; 1990 1991 ASSERT(error == 0); 1992 ASSERT(P2PHASE(size, args->stk_align) == 0); 1993 ASSERT((ssize_t)STK_AVAIL(args) >= 0); 1994 1995 if (size > args->ncargs) { 1996 kmem_free(args->stk_base, args->stk_size); 1997 return (E2BIG); 1998 } 1999 2000 /* 2001 * Leave only the current lwp and force the other lwps to exit. 2002 * If another lwp beat us to the punch by calling exit(), bail out. 2003 */ 2004 if ((error = exitlwps(0)) != 0) { 2005 kmem_free(args->stk_base, args->stk_size); 2006 return (error); 2007 } 2008 2009 /* 2010 * Revoke any doors created by the process. 2011 */ 2012 if (p->p_door_list) 2013 door_exit(); 2014 2015 /* 2016 * Release schedctl data structures. 2017 */ 2018 if (p->p_pagep) 2019 schedctl_proc_cleanup(); 2020 2021 /* 2022 * Clean up any DTrace helpers for the process. 2023 */ 2024 if (p->p_dtrace_helpers != NULL) { 2025 ASSERT(dtrace_helpers_cleanup != NULL); 2026 (*dtrace_helpers_cleanup)(p); 2027 } 2028 2029 mutex_enter(&p->p_lock); 2030 /* 2031 * Cleanup the DTrace provider associated with this process. 2032 */ 2033 if (p->p_dtrace_probes) { 2034 ASSERT(dtrace_fasttrap_exec_ptr != NULL); 2035 dtrace_fasttrap_exec_ptr(p); 2036 } 2037 mutex_exit(&p->p_lock); 2038 2039 /* 2040 * discard the lwpchan cache. 2041 */ 2042 if (p->p_lcp != NULL) 2043 lwpchan_destroy_cache(1); 2044 2045 /* 2046 * Delete the POSIX timers. 2047 */ 2048 if (p->p_itimer != NULL) 2049 timer_exit(); 2050 2051 /* 2052 * Delete the ITIMER_REALPROF interval timer. 2053 * The other ITIMER_* interval timers are specified 2054 * to be inherited across exec(). 2055 */ 2056 delete_itimer_realprof(); 2057 2058 if (AU_AUDITING()) 2059 audit_exec(args->stk_base, args->stk_base + args->arglen, 2060 args->na - args->ne, args->ne, args->pfcred); 2061 2062 /* 2063 * Ensure that we don't change resource associations while we 2064 * change address spaces. 2065 */ 2066 mutex_enter(&p->p_lock); 2067 pool_barrier_enter(); 2068 mutex_exit(&p->p_lock); 2069 2070 /* 2071 * Destroy the old address space and create a new one. 2072 * From here on, any errors are fatal to the exec()ing process. 2073 * On error we return -1, which means the caller must SIGKILL 2074 * the process. 2075 */ 2076 relvm(); 2077 2078 mutex_enter(&p->p_lock); 2079 pool_barrier_exit(); 2080 mutex_exit(&p->p_lock); 2081 2082 up->u_execsw = args->execswp; 2083 2084 p->p_brkbase = NULL; 2085 p->p_brksize = 0; 2086 p->p_brkpageszc = 0; 2087 p->p_stksize = 0; 2088 p->p_stkpageszc = 0; 2089 p->p_stkg_start = 0; 2090 p->p_stkg_end = 0; 2091 p->p_model = args->to_model; 2092 p->p_usrstack = usrstack; 2093 p->p_stkprot = args->stk_prot; 2094 p->p_datprot = args->dat_prot; 2095 2096 /* 2097 * Reset resource controls such that all controls are again active as 2098 * well as appropriate to the potentially new address model for the 2099 * process. 2100 */ 2101 e.rcep_p.proc = p; 2102 e.rcep_t = RCENTITY_PROCESS; 2103 rctl_set_reset(p->p_rctls, p, &e); 2104 2105 /* Too early to call map_pgsz for the heap */ 2106 if (use_stk_lpg) { 2107 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, p, 0, 0, 0)); 2108 } 2109 2110 mutex_enter(&p->p_lock); 2111 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */ 2112 mutex_exit(&p->p_lock); 2113 2114 sp_slew = exec_get_spslew(); 2115 ASSERT(P2PHASE(sp_slew, args->stk_align) == 0); 2116 /* Be certain we don't underflow */ 2117 VERIFY((curproc->p_usrstack - (size + sp_slew)) < curproc->p_usrstack); 2118 exec_set_sp(size + sp_slew); 2119 2120 as = as_alloc(); 2121 p->p_as = as; 2122 as->a_proc = p; 2123 if (p->p_model == DATAMODEL_ILP32 || args->addr32) 2124 as->a_userlimit = (caddr_t)USERLIMIT32; 2125 (void) hat_setup(as->a_hat, HAT_ALLOC); 2126 hat_join_srd(as->a_hat, args->ex_vp); 2127 2128 /* Write out the contents of the new stack. */ 2129 error = stk_copyout(args, usrstack - sp_slew, auxvpp, up); 2130 kmem_free(args->stk_base, args->stk_size); 2131 2132 #if defined(_LP64) 2133 /* Add stack guard segment (if needed) after successful copyout */ 2134 if (error == 0 && p->p_model == DATAMODEL_LP64 && sg_sz != 0) { 2135 seghole_crargs_t sca; 2136 caddr_t addr_end = (caddr_t)(((uintptr_t)usrstack - 2137 p->p_stk_ctl) & PAGEMASK); 2138 caddr_t addr_start = addr_end - sg_sz; 2139 2140 DTRACE_PROBE4(stack__guard__chk, proc_t *, p, 2141 caddr_t, addr_start, caddr_t, addr_end, size_t, sg_sz); 2142 2143 if (addr_end >= usrstack || addr_start >= addr_end || 2144 valid_usr_range(addr_start, sg_sz, PROT_NONE, as, 2145 as->a_userlimit) != RANGE_OKAY) { 2146 return (E2BIG); 2147 } 2148 2149 /* Create un-mappable area in AS with seg_hole */ 2150 sca.name = "stack_guard"; 2151 error = as_map(as, addr_start, sg_sz, seghole_create, &sca); 2152 if (error == 0) { 2153 p->p_stkg_start = (uintptr_t)addr_start; 2154 p->p_stkg_end = (uintptr_t)addr_start + sg_sz; 2155 } 2156 } 2157 #endif /* defined(_LP64) */ 2158 2159 return (error); 2160 } 2161