1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1988 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/systm.h> 34 #include <sys/signal.h> 35 #include <sys/cred_impl.h> 36 #include <sys/policy.h> 37 #include <sys/user.h> 38 #include <sys/errno.h> 39 #include <sys/file.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 #include <sys/mman.h> 43 #include <sys/acct.h> 44 #include <sys/cpuvar.h> 45 #include <sys/proc.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/pathname.h> 49 #include <sys/vm.h> 50 #include <sys/lgrp.h> 51 #include <sys/vtrace.h> 52 #include <sys/exec.h> 53 #include <sys/exechdr.h> 54 #include <sys/kmem.h> 55 #include <sys/prsystm.h> 56 #include <sys/modctl.h> 57 #include <sys/vmparam.h> 58 #include <sys/door.h> 59 #include <sys/schedctl.h> 60 #include <sys/utrap.h> 61 #include <sys/systeminfo.h> 62 #include <sys/stack.h> 63 #include <sys/rctl.h> 64 #include <sys/dtrace.h> 65 #include <sys/lwpchan_impl.h> 66 #include <sys/pool.h> 67 #include <sys/sdt.h> 68 #include <sys/brand.h> 69 70 #include <c2/audit.h> 71 72 #include <vm/hat.h> 73 #include <vm/anon.h> 74 #include <vm/as.h> 75 #include <vm/seg.h> 76 #include <vm/seg_vn.h> 77 78 #define PRIV_RESET 0x01 /* needs to reset privs */ 79 #define PRIV_SETID 0x02 /* needs to change uids */ 80 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */ 81 #define PRIV_INCREASE 0x08 /* child runs with more privs */ 82 #define MAC_FLAGS 0x10 /* need to adjust MAC flags */ 83 84 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *); 85 static int hold_execsw(struct execsw *); 86 87 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */ 88 #if defined(_SYSCALL32_IMPL) 89 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */ 90 #endif 91 92 #define PSUIDFLAGS (SNOCD|SUGID) 93 94 /* 95 * exece() - system call wrapper around exec_common() 96 */ 97 int 98 exece(const char *fname, const char **argp, const char **envp) 99 { 100 int error; 101 102 error = exec_common(fname, argp, envp, EBA_NONE); 103 return (error ? (set_errno(error)) : 0); 104 } 105 106 int 107 exec_common(const char *fname, const char **argp, const char **envp, 108 int brand_action) 109 { 110 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL; 111 proc_t *p = ttoproc(curthread); 112 klwp_t *lwp = ttolwp(curthread); 113 struct user *up = PTOU(p); 114 long execsz; /* temporary count of exec size */ 115 int i; 116 int error; 117 char exec_file[MAXCOMLEN+1]; 118 struct pathname pn; 119 struct pathname resolvepn; 120 struct uarg args; 121 struct execa ua; 122 k_sigset_t savedmask; 123 lwpdir_t *lwpdir = NULL; 124 tidhash_t *tidhash; 125 lwpdir_t *old_lwpdir = NULL; 126 uint_t old_lwpdir_sz; 127 tidhash_t *old_tidhash; 128 uint_t old_tidhash_sz; 129 ret_tidhash_t *ret_tidhash; 130 lwpent_t *lep; 131 boolean_t brandme = B_FALSE; 132 133 /* 134 * exec() is not supported for the /proc agent lwp. 135 */ 136 if (curthread == p->p_agenttp) 137 return (ENOTSUP); 138 139 if (brand_action != EBA_NONE) { 140 /* 141 * Brand actions are not supported for processes that are not 142 * running in a branded zone. 143 */ 144 if (!ZONE_IS_BRANDED(p->p_zone)) 145 return (ENOTSUP); 146 147 if (brand_action == EBA_NATIVE) { 148 /* Only branded processes can be unbranded */ 149 if (!PROC_IS_BRANDED(p)) 150 return (ENOTSUP); 151 } else { 152 /* Only unbranded processes can be branded */ 153 if (PROC_IS_BRANDED(p)) 154 return (ENOTSUP); 155 brandme = B_TRUE; 156 } 157 } else { 158 /* 159 * If this is a native zone, or if the process is already 160 * branded, then we don't need to do anything. If this is 161 * a native process in a branded zone, we need to brand the 162 * process as it exec()s the new binary. 163 */ 164 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p)) 165 brandme = B_TRUE; 166 } 167 168 /* 169 * Inform /proc that an exec() has started. 170 * Hold signals that are ignored by default so that we will 171 * not be interrupted by a signal that will be ignored after 172 * successful completion of gexec(). 173 */ 174 mutex_enter(&p->p_lock); 175 prexecstart(); 176 schedctl_finish_sigblock(curthread); 177 savedmask = curthread->t_hold; 178 sigorset(&curthread->t_hold, &ignoredefault); 179 mutex_exit(&p->p_lock); 180 181 /* 182 * Look up path name and remember last component for later. 183 * To help coreadm expand its %d token, we attempt to save 184 * the directory containing the executable in p_execdir. The 185 * first call to lookuppn() may fail and return EINVAL because 186 * dirvpp is non-NULL. In that case, we make a second call to 187 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL, 188 * but coreadm is allowed to expand %d to the empty string and 189 * there are other cases in which that failure may occur. 190 */ 191 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 192 goto out; 193 pn_alloc(&resolvepn); 194 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) { 195 pn_free(&resolvepn); 196 pn_free(&pn); 197 if (error != EINVAL) 198 goto out; 199 200 dir = NULL; 201 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 202 goto out; 203 pn_alloc(&resolvepn); 204 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP, 205 &vp)) != 0) { 206 pn_free(&resolvepn); 207 pn_free(&pn); 208 goto out; 209 } 210 } 211 if (vp == NULL) { 212 if (dir != NULL) 213 VN_RELE(dir); 214 error = ENOENT; 215 pn_free(&resolvepn); 216 pn_free(&pn); 217 goto out; 218 } 219 220 if ((error = secpolicy_basic_exec(CRED(), vp)) != 0) { 221 if (dir != NULL) 222 VN_RELE(dir); 223 pn_free(&resolvepn); 224 pn_free(&pn); 225 VN_RELE(vp); 226 goto out; 227 } 228 229 /* 230 * We do not allow executing files in attribute directories. 231 * We test this by determining whether the resolved path 232 * contains a "/" when we're in an attribute directory; 233 * only if the pathname does not contain a "/" the resolved path 234 * points to a file in the current working (attribute) directory. 235 */ 236 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 && 237 strchr(resolvepn.pn_path, '/') == NULL) { 238 if (dir != NULL) 239 VN_RELE(dir); 240 error = EACCES; 241 pn_free(&resolvepn); 242 pn_free(&pn); 243 VN_RELE(vp); 244 goto out; 245 } 246 247 bzero(exec_file, MAXCOMLEN+1); 248 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN); 249 bzero(&args, sizeof (args)); 250 args.pathname = resolvepn.pn_path; 251 /* don't free resolvepn until we are done with args */ 252 pn_free(&pn); 253 254 /* 255 * Specific exec handlers, or policies determined via 256 * /etc/system may override the historical default. 257 */ 258 args.stk_prot = PROT_ZFOD; 259 args.dat_prot = PROT_ZFOD; 260 261 CPU_STATS_ADD_K(sys, sysexec, 1); 262 DTRACE_PROC1(exec, char *, args.pathname); 263 264 ua.fname = fname; 265 ua.argp = argp; 266 ua.envp = envp; 267 268 /* If necessary, brand this process before we start the exec. */ 269 if (brandme) 270 brand_setbrand(p); 271 272 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz, 273 exec_file, p->p_cred, brand_action)) != 0) { 274 if (brandme) 275 brand_clearbrand(p); 276 VN_RELE(vp); 277 if (dir != NULL) 278 VN_RELE(dir); 279 pn_free(&resolvepn); 280 goto fail; 281 } 282 283 /* 284 * Free floating point registers (sun4u only) 285 */ 286 ASSERT(lwp != NULL); 287 lwp_freeregs(lwp, 1); 288 289 /* 290 * Free thread and process context ops. 291 */ 292 if (curthread->t_ctx) 293 freectx(curthread, 1); 294 if (p->p_pctx) 295 freepctx(p, 1); 296 297 /* 298 * Remember file name for accounting; clear any cached DTrace predicate. 299 */ 300 up->u_acflag &= ~AFORK; 301 bcopy(exec_file, up->u_comm, MAXCOMLEN+1); 302 curthread->t_predcache = NULL; 303 304 /* 305 * Clear contract template state 306 */ 307 lwp_ctmpl_clear(lwp); 308 309 /* 310 * Save the directory in which we found the executable for expanding 311 * the %d token used in core file patterns. 312 */ 313 mutex_enter(&p->p_lock); 314 tmpvp = p->p_execdir; 315 p->p_execdir = dir; 316 if (p->p_execdir != NULL) 317 VN_HOLD(p->p_execdir); 318 mutex_exit(&p->p_lock); 319 320 if (tmpvp != NULL) 321 VN_RELE(tmpvp); 322 323 /* 324 * Reset stack state to the user stack, clear set of signals 325 * caught on the signal stack, and reset list of signals that 326 * restart system calls; the new program's environment should 327 * not be affected by detritus from the old program. Any 328 * pending held signals remain held, so don't clear t_hold. 329 */ 330 mutex_enter(&p->p_lock); 331 lwp->lwp_oldcontext = 0; 332 lwp->lwp_ustack = 0; 333 lwp->lwp_old_stk_ctl = 0; 334 sigemptyset(&up->u_signodefer); 335 sigemptyset(&up->u_sigonstack); 336 sigemptyset(&up->u_sigresethand); 337 lwp->lwp_sigaltstack.ss_sp = 0; 338 lwp->lwp_sigaltstack.ss_size = 0; 339 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 340 341 /* 342 * Make saved resource limit == current resource limit. 343 */ 344 for (i = 0; i < RLIM_NLIMITS; i++) { 345 /*CONSTCOND*/ 346 if (RLIM_SAVED(i)) { 347 (void) rctl_rlimit_get(rctlproc_legacy[i], p, 348 &up->u_saved_rlimit[i]); 349 } 350 } 351 352 /* 353 * If the action was to catch the signal, then the action 354 * must be reset to SIG_DFL. 355 */ 356 sigdefault(p); 357 p->p_flag &= ~(SNOWAIT|SJCTL); 358 p->p_flag |= (SEXECED|SMSACCT|SMSFORK); 359 up->u_signal[SIGCLD - 1] = SIG_DFL; 360 361 /* 362 * Delete the dot4 sigqueues/signotifies. 363 */ 364 sigqfree(p); 365 366 mutex_exit(&p->p_lock); 367 368 mutex_enter(&p->p_pflock); 369 p->p_prof.pr_base = NULL; 370 p->p_prof.pr_size = 0; 371 p->p_prof.pr_off = 0; 372 p->p_prof.pr_scale = 0; 373 p->p_prof.pr_samples = 0; 374 mutex_exit(&p->p_pflock); 375 376 ASSERT(curthread->t_schedctl == NULL); 377 378 #if defined(__sparc) 379 if (p->p_utraps != NULL) 380 utrap_free(p); 381 #endif /* __sparc */ 382 383 /* 384 * Close all close-on-exec files. 385 */ 386 close_exec(P_FINFO(p)); 387 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up); 388 389 /* Unbrand ourself if necessary. */ 390 if (PROC_IS_BRANDED(p) && (brand_action == EBA_NATIVE)) 391 brand_clearbrand(p); 392 393 setregs(&args); 394 395 /* Mark this as an executable vnode */ 396 mutex_enter(&vp->v_lock); 397 vp->v_flag |= VVMEXEC; 398 mutex_exit(&vp->v_lock); 399 400 VN_RELE(vp); 401 if (dir != NULL) 402 VN_RELE(dir); 403 pn_free(&resolvepn); 404 405 /* 406 * Allocate a new lwp directory and lwpid hash table if necessary. 407 */ 408 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) { 409 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP); 410 lwpdir->ld_next = lwpdir + 1; 411 tidhash = kmem_zalloc(2 * sizeof (tidhash_t), KM_SLEEP); 412 if (p->p_lwpdir != NULL) 413 lep = p->p_lwpdir[curthread->t_dslot].ld_entry; 414 else 415 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 416 } 417 418 if (PROC_IS_BRANDED(p)) 419 BROP(p)->b_exec(); 420 421 mutex_enter(&p->p_lock); 422 prbarrier(p); 423 424 /* 425 * Reset lwp id to the default value of 1. 426 * This is a single-threaded process now 427 * and lwp #1 is lwp_wait()able by default. 428 * The t_unpark flag should not be inherited. 429 */ 430 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 431 curthread->t_tid = 1; 432 kpreempt_disable(); 433 ASSERT(curthread->t_lpl != NULL); 434 p->p_t1_lgrpid = curthread->t_lpl->lpl_lgrpid; 435 kpreempt_enable(); 436 if (p->p_tr_lgrpid != LGRP_NONE && p->p_tr_lgrpid != p->p_t1_lgrpid) { 437 lgrp_update_trthr_migrations(1); 438 } 439 curthread->t_unpark = 0; 440 curthread->t_proc_flag |= TP_TWAIT; 441 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */ 442 p->p_lwpdaemon = 0; /* but oh well ... */ 443 p->p_lwpid = 1; 444 445 /* 446 * Install the newly-allocated lwp directory and lwpid hash table 447 * and insert the current thread into the new hash table. 448 */ 449 if (lwpdir != NULL) { 450 old_lwpdir = p->p_lwpdir; 451 old_lwpdir_sz = p->p_lwpdir_sz; 452 old_tidhash = p->p_tidhash; 453 old_tidhash_sz = p->p_tidhash_sz; 454 p->p_lwpdir = p->p_lwpfree = lwpdir; 455 p->p_lwpdir_sz = 2; 456 lep->le_thread = curthread; 457 lep->le_lwpid = curthread->t_tid; 458 lep->le_start = curthread->t_start; 459 lwp_hash_in(p, lep, tidhash, 2, 0); 460 p->p_tidhash = tidhash; 461 p->p_tidhash_sz = 2; 462 } 463 ret_tidhash = p->p_ret_tidhash; 464 p->p_ret_tidhash = NULL; 465 466 /* 467 * Restore the saved signal mask and 468 * inform /proc that the exec() has finished. 469 */ 470 curthread->t_hold = savedmask; 471 prexecend(); 472 mutex_exit(&p->p_lock); 473 if (old_lwpdir) { 474 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t)); 475 kmem_free(old_tidhash, old_tidhash_sz * sizeof (tidhash_t)); 476 } 477 while (ret_tidhash != NULL) { 478 ret_tidhash_t *next = ret_tidhash->rth_next; 479 kmem_free(ret_tidhash->rth_tidhash, 480 ret_tidhash->rth_tidhash_sz * sizeof (tidhash_t)); 481 kmem_free(ret_tidhash, sizeof (*ret_tidhash)); 482 ret_tidhash = next; 483 } 484 485 ASSERT(error == 0); 486 DTRACE_PROC(exec__success); 487 return (0); 488 489 fail: 490 DTRACE_PROC1(exec__failure, int, error); 491 out: /* error return */ 492 mutex_enter(&p->p_lock); 493 curthread->t_hold = savedmask; 494 prexecend(); 495 mutex_exit(&p->p_lock); 496 ASSERT(error != 0); 497 return (error); 498 } 499 500 501 /* 502 * Perform generic exec duties and switchout to object-file specific 503 * handler. 504 */ 505 int 506 gexec( 507 struct vnode **vpp, 508 struct execa *uap, 509 struct uarg *args, 510 struct intpdata *idatap, 511 int level, 512 long *execsz, 513 caddr_t exec_file, 514 struct cred *cred, 515 int brand_action) 516 { 517 struct vnode *vp, *execvp = NULL; 518 proc_t *pp = ttoproc(curthread); 519 struct execsw *eswp; 520 int error = 0; 521 int suidflags = 0; 522 ssize_t resid; 523 uid_t uid, gid; 524 struct vattr vattr; 525 char magbuf[MAGIC_BYTES]; 526 int setid; 527 cred_t *oldcred, *newcred = NULL; 528 int privflags = 0; 529 int setidfl; 530 531 /* 532 * If the SNOCD or SUGID flag is set, turn it off and remember the 533 * previous setting so we can restore it if we encounter an error. 534 */ 535 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) { 536 mutex_enter(&pp->p_lock); 537 suidflags = pp->p_flag & PSUIDFLAGS; 538 pp->p_flag &= ~PSUIDFLAGS; 539 mutex_exit(&pp->p_lock); 540 } 541 542 if ((error = execpermissions(*vpp, &vattr, args)) != 0) 543 goto bad_noclose; 544 545 /* need to open vnode for stateful file systems */ 546 if ((error = VOP_OPEN(vpp, FREAD, CRED(), NULL)) != 0) 547 goto bad_noclose; 548 vp = *vpp; 549 550 /* 551 * Note: to support binary compatibility with SunOS a.out 552 * executables, we read in the first four bytes, as the 553 * magic number is in bytes 2-3. 554 */ 555 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf), 556 (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 557 goto bad; 558 if (resid != 0) 559 goto bad; 560 561 if ((eswp = findexec_by_hdr(magbuf)) == NULL) 562 goto bad; 563 564 if (level == 0 && 565 (privflags = execsetid(vp, &vattr, &uid, &gid)) != 0) { 566 567 newcred = cred = crdup(cred); 568 569 /* If we can, drop the PA bit */ 570 if ((privflags & PRIV_RESET) != 0) 571 priv_adjust_PA(cred); 572 573 if (privflags & PRIV_SETID) { 574 cred->cr_uid = uid; 575 cred->cr_gid = gid; 576 cred->cr_suid = uid; 577 cred->cr_sgid = gid; 578 } 579 580 if (privflags & MAC_FLAGS) { 581 if (!(CR_FLAGS(cred) & NET_MAC_AWARE_INHERIT)) 582 CR_FLAGS(cred) &= ~NET_MAC_AWARE; 583 CR_FLAGS(cred) &= ~NET_MAC_AWARE_INHERIT; 584 } 585 586 /* 587 * Implement the privilege updates: 588 * 589 * Restrict with L: 590 * 591 * I' = I & L 592 * 593 * E' = P' = (I' + F) & A 594 * 595 * But if running under ptrace, we cap I with P. 596 */ 597 if ((privflags & PRIV_RESET) != 0) { 598 if ((privflags & PRIV_INCREASE) != 0 && 599 (pp->p_proc_flag & P_PR_PTRACE) != 0) 600 priv_intersect(&CR_OPPRIV(cred), 601 &CR_IPRIV(cred)); 602 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 603 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 604 priv_adjust_PA(cred); 605 } 606 } 607 608 /* SunOS 4.x buy-back */ 609 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) && 610 (vattr.va_mode & (VSUID|VSGID))) { 611 char path[MAXNAMELEN]; 612 refstr_t *mntpt = NULL; 613 int ret = -1; 614 615 bzero(path, sizeof (path)); 616 zone_hold(pp->p_zone); 617 618 ret = vnodetopath(pp->p_zone->zone_rootvp, vp, path, 619 sizeof (path), cred); 620 621 /* fallback to mountpoint if a path can't be found */ 622 if ((ret != 0) || (ret == 0 && path[0] == '\0')) 623 mntpt = vfs_getmntpoint(vp->v_vfsp); 624 625 if (mntpt == NULL) 626 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 627 "!uid %d: setuid execution not allowed, " 628 "file=%s", cred->cr_uid, path); 629 else 630 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 631 "!uid %d: setuid execution not allowed, " 632 "fs=%s, file=%s", cred->cr_uid, 633 ZONE_PATH_TRANSLATE(refstr_value(mntpt), 634 pp->p_zone), exec_file); 635 636 if (!INGLOBALZONE(pp)) { 637 /* zone_rootpath always has trailing / */ 638 if (mntpt == NULL) 639 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 640 "setuid execution not allowed, file=%s%s", 641 pp->p_zone->zone_name, cred->cr_uid, 642 pp->p_zone->zone_rootpath, path + 1); 643 else 644 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 645 "setuid execution not allowed, fs=%s, " 646 "file=%s", pp->p_zone->zone_name, 647 cred->cr_uid, refstr_value(mntpt), 648 exec_file); 649 } 650 651 if (mntpt != NULL) 652 refstr_rele(mntpt); 653 654 zone_rele(pp->p_zone); 655 } 656 657 /* 658 * execsetid() told us whether or not we had to change the 659 * credentials of the process. In privflags, it told us 660 * whether we gained any privileges or executed a set-uid executable. 661 */ 662 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE)); 663 664 /* 665 * Use /etc/system variable to determine if the stack 666 * should be marked as executable by default. 667 */ 668 if (noexec_user_stack) 669 args->stk_prot &= ~PROT_EXEC; 670 671 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */ 672 args->ex_vp = vp; 673 674 /* 675 * Traditionally, the setid flags told the sub processes whether 676 * the file just executed was set-uid or set-gid; this caused 677 * some confusion as the 'setid' flag did not match the SUGID 678 * process flag which is only set when the uids/gids do not match. 679 * A script set-gid/set-uid to the real uid/gid would start with 680 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH. 681 * Now we flag those cases where the calling process cannot 682 * be trusted to influence the newly exec'ed process, either 683 * because it runs with more privileges or when the uids/gids 684 * do in fact not match. 685 * This also makes the runtime linker agree with the on exec 686 * values of SNOCD and SUGID. 687 */ 688 setidfl = 0; 689 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid && 690 !supgroupmember(cred->cr_gid, cred))) { 691 setidfl |= EXECSETID_UGIDS; 692 } 693 if (setid & PRIV_SETUGID) 694 setidfl |= EXECSETID_SETID; 695 if (setid & PRIV_INCREASE) 696 setidfl |= EXECSETID_PRIVS; 697 698 execvp = pp->p_exec; 699 if (execvp) 700 VN_HOLD(execvp); 701 702 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz, 703 setidfl, exec_file, cred, brand_action); 704 rw_exit(eswp->exec_lock); 705 if (error != 0) { 706 if (execvp) 707 VN_RELE(execvp); 708 /* 709 * If this process's p_exec has been set to the vp of 710 * the executable by exec_func, we will return without 711 * calling VOP_CLOSE because proc_exit will close it 712 * on exit. 713 */ 714 if (pp->p_exec == vp) 715 goto bad_noclose; 716 else 717 goto bad; 718 } 719 720 if (level == 0) { 721 if (execvp != NULL) { 722 /* 723 * Close the previous executable only if we are 724 * at level 0. 725 */ 726 (void) VOP_CLOSE(execvp, FREAD, 1, (offset_t)0, 727 cred, NULL); 728 } 729 730 mutex_enter(&pp->p_crlock); 731 if (newcred != NULL) { 732 /* 733 * Free the old credentials, and set the new ones. 734 * Do this for both the process and the (single) thread. 735 */ 736 crfree(pp->p_cred); 737 pp->p_cred = cred; /* cred already held for proc */ 738 crhold(cred); /* hold new cred for thread */ 739 /* 740 * DTrace accesses t_cred in probe context. t_cred 741 * must always be either NULL, or point to a valid, 742 * allocated cred structure. 743 */ 744 oldcred = curthread->t_cred; 745 curthread->t_cred = cred; 746 crfree(oldcred); 747 748 if (priv_basic_test >= 0 && 749 !PRIV_ISASSERT(&CR_IPRIV(newcred), 750 priv_basic_test)) { 751 pid_t pid = pp->p_pid; 752 char *fn = PTOU(pp)->u_comm; 753 754 cmn_err(CE_WARN, "%s[%d]: exec: basic_test " 755 "privilege removed from E/I", fn, pid); 756 } 757 } 758 /* 759 * On emerging from a successful exec(), the saved 760 * uid and gid equal the effective uid and gid. 761 */ 762 cred->cr_suid = cred->cr_uid; 763 cred->cr_sgid = cred->cr_gid; 764 765 /* 766 * If the real and effective ids do not match, this 767 * is a setuid process that should not dump core. 768 * The group comparison is tricky; we prevent the code 769 * from flagging SNOCD when executing with an effective gid 770 * which is a supplementary group. 771 */ 772 if (cred->cr_ruid != cred->cr_uid || 773 (cred->cr_rgid != cred->cr_gid && 774 !supgroupmember(cred->cr_gid, cred)) || 775 (privflags & PRIV_INCREASE) != 0) 776 suidflags = PSUIDFLAGS; 777 else 778 suidflags = 0; 779 780 mutex_exit(&pp->p_crlock); 781 if (suidflags) { 782 mutex_enter(&pp->p_lock); 783 pp->p_flag |= suidflags; 784 mutex_exit(&pp->p_lock); 785 } 786 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) { 787 /* 788 * If process is traced via /proc, arrange to 789 * invalidate the associated /proc vnode. 790 */ 791 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE)) 792 args->traceinval = 1; 793 } 794 if (pp->p_proc_flag & P_PR_PTRACE) 795 psignal(pp, SIGTRAP); 796 if (args->traceinval) 797 prinvalidate(&pp->p_user); 798 } 799 if (execvp) 800 VN_RELE(execvp); 801 return (0); 802 803 bad: 804 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, cred, NULL); 805 806 bad_noclose: 807 if (newcred != NULL) 808 crfree(newcred); 809 if (error == 0) 810 error = ENOEXEC; 811 812 if (suidflags) { 813 mutex_enter(&pp->p_lock); 814 pp->p_flag |= suidflags; 815 mutex_exit(&pp->p_lock); 816 } 817 return (error); 818 } 819 820 extern char *execswnames[]; 821 822 struct execsw * 823 allocate_execsw(char *name, char *magic, size_t magic_size) 824 { 825 int i, j; 826 char *ename; 827 char *magicp; 828 829 mutex_enter(&execsw_lock); 830 for (i = 0; i < nexectype; i++) { 831 if (execswnames[i] == NULL) { 832 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP); 833 (void) strcpy(ename, name); 834 execswnames[i] = ename; 835 /* 836 * Set the magic number last so that we 837 * don't need to hold the execsw_lock in 838 * findexectype(). 839 */ 840 magicp = kmem_alloc(magic_size, KM_SLEEP); 841 for (j = 0; j < magic_size; j++) 842 magicp[j] = magic[j]; 843 execsw[i].exec_magic = magicp; 844 mutex_exit(&execsw_lock); 845 return (&execsw[i]); 846 } 847 } 848 mutex_exit(&execsw_lock); 849 return (NULL); 850 } 851 852 /* 853 * Find the exec switch table entry with the corresponding magic string. 854 */ 855 struct execsw * 856 findexecsw(char *magic) 857 { 858 struct execsw *eswp; 859 860 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 861 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 862 if (magic && eswp->exec_maglen != 0 && 863 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) 864 return (eswp); 865 } 866 return (NULL); 867 } 868 869 /* 870 * Find the execsw[] index for the given exec header string by looking for the 871 * magic string at a specified offset and length for each kind of executable 872 * file format until one matches. If no execsw[] entry is found, try to 873 * autoload a module for this magic string. 874 */ 875 struct execsw * 876 findexec_by_hdr(char *header) 877 { 878 struct execsw *eswp; 879 880 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 881 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 882 if (header && eswp->exec_maglen != 0 && 883 bcmp(&header[eswp->exec_magoff], eswp->exec_magic, 884 eswp->exec_maglen) == 0) { 885 if (hold_execsw(eswp) != 0) 886 return (NULL); 887 return (eswp); 888 } 889 } 890 return (NULL); /* couldn't find the type */ 891 } 892 893 /* 894 * Find the execsw[] index for the given magic string. If no execsw[] entry 895 * is found, try to autoload a module for this magic string. 896 */ 897 struct execsw * 898 findexec_by_magic(char *magic) 899 { 900 struct execsw *eswp; 901 902 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 903 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 904 if (magic && eswp->exec_maglen != 0 && 905 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) { 906 if (hold_execsw(eswp) != 0) 907 return (NULL); 908 return (eswp); 909 } 910 } 911 return (NULL); /* couldn't find the type */ 912 } 913 914 static int 915 hold_execsw(struct execsw *eswp) 916 { 917 char *name; 918 919 rw_enter(eswp->exec_lock, RW_READER); 920 while (!LOADED_EXEC(eswp)) { 921 rw_exit(eswp->exec_lock); 922 name = execswnames[eswp-execsw]; 923 ASSERT(name); 924 if (modload("exec", name) == -1) 925 return (-1); 926 rw_enter(eswp->exec_lock, RW_READER); 927 } 928 return (0); 929 } 930 931 static int 932 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp) 933 { 934 proc_t *pp = ttoproc(curthread); 935 uid_t uid, gid; 936 cred_t *cr = pp->p_cred; 937 int privflags = 0; 938 939 /* 940 * Remember credentials. 941 */ 942 uid = cr->cr_uid; 943 gid = cr->cr_gid; 944 945 /* Will try to reset the PRIV_AWARE bit later. */ 946 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE) 947 privflags |= PRIV_RESET; 948 949 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) { 950 /* 951 * Set-uid root execution only allowed if the limit set 952 * holds all unsafe privileges. 953 */ 954 if ((vattrp->va_mode & VSUID) && (vattrp->va_uid != 0 || 955 priv_issubset(&priv_unsafe, &CR_LPRIV(cr)))) { 956 uid = vattrp->va_uid; 957 privflags |= PRIV_SETUGID; 958 } 959 if (vattrp->va_mode & VSGID) { 960 gid = vattrp->va_gid; 961 privflags |= PRIV_SETUGID; 962 } 963 } 964 965 /* 966 * Do we need to change our credential anyway? 967 * This is the case when E != I or P != I, as 968 * we need to do the assignments (with F empty and A full) 969 * Or when I is not a subset of L; in that case we need to 970 * enforce L. 971 * 972 * I' = L & I 973 * 974 * E' = P' = (I' + F) & A 975 * or 976 * E' = P' = I' 977 */ 978 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) || 979 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) || 980 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr))) 981 privflags |= PRIV_RESET; 982 983 /* If MAC-aware flag(s) are on, need to update cred to remove. */ 984 if ((CR_FLAGS(cr) & NET_MAC_AWARE) || 985 (CR_FLAGS(cr) & NET_MAC_AWARE_INHERIT)) 986 privflags |= MAC_FLAGS; 987 988 /* 989 * When we introduce the "forced" set then we will need 990 * to set PRIV_INCREASE here if I not a subset of P. 991 * If the "allowed" set is introduced we will need to do 992 * a similar thing; however, it seems more reasonable to 993 * have the allowed set reduce "L": script language interpreters 994 * would typically have an allowed set of "all". 995 */ 996 997 /* 998 * Set setuid/setgid protections if no ptrace() compatibility. 999 * For privileged processes, honor setuid/setgid even in 1000 * the presence of ptrace() compatibility. 1001 */ 1002 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 || 1003 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) && 1004 (cr->cr_uid != uid || 1005 cr->cr_gid != gid || 1006 cr->cr_suid != uid || 1007 cr->cr_sgid != gid)) { 1008 *uidp = uid; 1009 *gidp = gid; 1010 privflags |= PRIV_SETID; 1011 } 1012 return (privflags); 1013 } 1014 1015 int 1016 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args) 1017 { 1018 int error; 1019 proc_t *p = ttoproc(curthread); 1020 1021 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE; 1022 if (error = VOP_GETATTR(vp, vattrp, ATTR_EXEC, p->p_cred, NULL)) 1023 return (error); 1024 /* 1025 * Check the access mode. 1026 * If VPROC, ask /proc if the file is an object file. 1027 */ 1028 if ((error = VOP_ACCESS(vp, VEXEC, 0, p->p_cred, NULL)) != 0 || 1029 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) || 1030 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 || 1031 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) { 1032 if (error == 0) 1033 error = EACCES; 1034 return (error); 1035 } 1036 1037 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) && 1038 (error = VOP_ACCESS(vp, VREAD, 0, p->p_cred, NULL))) { 1039 /* 1040 * If process is under ptrace(2) compatibility, 1041 * fail the exec(2). 1042 */ 1043 if (p->p_proc_flag & P_PR_PTRACE) 1044 goto bad; 1045 /* 1046 * Process is traced via /proc. 1047 * Arrange to invalidate the /proc vnode. 1048 */ 1049 args->traceinval = 1; 1050 } 1051 return (0); 1052 bad: 1053 if (error == 0) 1054 error = ENOEXEC; 1055 return (error); 1056 } 1057 1058 /* 1059 * Map a section of an executable file into the user's 1060 * address space. 1061 */ 1062 int 1063 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 1064 off_t offset, int prot, int page, uint_t szc) 1065 { 1066 int error = 0; 1067 off_t oldoffset; 1068 caddr_t zfodbase, oldaddr; 1069 size_t end, oldlen; 1070 size_t zfoddiff; 1071 label_t ljb; 1072 proc_t *p = ttoproc(curthread); 1073 1074 oldaddr = addr; 1075 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1076 if (len) { 1077 oldlen = len; 1078 len += ((size_t)oldaddr - (size_t)addr); 1079 oldoffset = offset; 1080 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1081 if (page) { 1082 spgcnt_t prefltmem, availm, npages; 1083 int preread; 1084 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1085 1086 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1087 mflag |= MAP_TEXT; 1088 } else { 1089 mflag |= MAP_INITDATA; 1090 } 1091 1092 if (valid_usr_range(addr, len, prot, p->p_as, 1093 p->p_as->a_userlimit) != RANGE_OKAY) { 1094 error = ENOMEM; 1095 goto bad; 1096 } 1097 if (error = VOP_MAP(vp, (offset_t)offset, 1098 p->p_as, &addr, len, prot, PROT_ALL, 1099 mflag, CRED(), NULL)) 1100 goto bad; 1101 1102 /* 1103 * If the segment can fit, then we prefault 1104 * the entire segment in. This is based on the 1105 * model that says the best working set of a 1106 * small program is all of its pages. 1107 */ 1108 npages = (spgcnt_t)btopr(len); 1109 prefltmem = freemem - desfree; 1110 preread = 1111 (npages < prefltmem && len < PGTHRESH) ? 1 : 0; 1112 1113 /* 1114 * If we aren't prefaulting the segment, 1115 * increment "deficit", if necessary to ensure 1116 * that pages will become available when this 1117 * process starts executing. 1118 */ 1119 availm = freemem - lotsfree; 1120 if (preread == 0 && npages > availm && 1121 deficit < lotsfree) { 1122 deficit += MIN((pgcnt_t)(npages - availm), 1123 lotsfree - deficit); 1124 } 1125 1126 if (preread) { 1127 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD, 1128 "execmap preread:freemem %d size %lu", 1129 freemem, len); 1130 (void) as_fault(p->p_as->a_hat, p->p_as, 1131 (caddr_t)addr, len, F_INVAL, S_READ); 1132 } 1133 } else { 1134 if (valid_usr_range(addr, len, prot, p->p_as, 1135 p->p_as->a_userlimit) != RANGE_OKAY) { 1136 error = ENOMEM; 1137 goto bad; 1138 } 1139 1140 if (error = as_map(p->p_as, addr, len, 1141 segvn_create, zfod_argsp)) 1142 goto bad; 1143 /* 1144 * Read in the segment in one big chunk. 1145 */ 1146 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr, 1147 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0, 1148 (rlim64_t)0, CRED(), (ssize_t *)0)) 1149 goto bad; 1150 /* 1151 * Now set protections. 1152 */ 1153 if (prot != PROT_ZFOD) { 1154 (void) as_setprot(p->p_as, (caddr_t)addr, 1155 len, prot); 1156 } 1157 } 1158 } 1159 1160 if (zfodlen) { 1161 struct as *as = curproc->p_as; 1162 struct seg *seg; 1163 uint_t zprot = 0; 1164 1165 end = (size_t)addr + len; 1166 zfodbase = (caddr_t)roundup(end, PAGESIZE); 1167 zfoddiff = (uintptr_t)zfodbase - end; 1168 if (zfoddiff) { 1169 /* 1170 * Before we go to zero the remaining space on the last 1171 * page, make sure we have write permission. 1172 */ 1173 1174 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1175 seg = as_segat(curproc->p_as, (caddr_t)end); 1176 if (seg != NULL) 1177 SEGOP_GETPROT(seg, (caddr_t)end, zfoddiff - 1, 1178 &zprot); 1179 AS_LOCK_EXIT(as, &as->a_lock); 1180 1181 if (seg != NULL && (zprot & PROT_WRITE) == 0) { 1182 (void) as_setprot(as, (caddr_t)end, 1183 zfoddiff - 1, zprot | PROT_WRITE); 1184 } 1185 1186 if (on_fault(&ljb)) { 1187 no_fault(); 1188 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1189 (void) as_setprot(as, (caddr_t)end, 1190 zfoddiff - 1, zprot); 1191 error = EFAULT; 1192 goto bad; 1193 } 1194 uzero((void *)end, zfoddiff); 1195 no_fault(); 1196 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1197 (void) as_setprot(as, (caddr_t)end, 1198 zfoddiff - 1, zprot); 1199 } 1200 if (zfodlen > zfoddiff) { 1201 struct segvn_crargs crargs = 1202 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1203 1204 zfodlen -= zfoddiff; 1205 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as, 1206 p->p_as->a_userlimit) != RANGE_OKAY) { 1207 error = ENOMEM; 1208 goto bad; 1209 } 1210 if (szc > 0) { 1211 /* 1212 * ASSERT alignment because the mapelfexec() 1213 * caller for the szc > 0 case extended zfod 1214 * so it's end is pgsz aligned. 1215 */ 1216 size_t pgsz = page_get_pagesize(szc); 1217 ASSERT(IS_P2ALIGNED(zfodbase + zfodlen, pgsz)); 1218 1219 if (IS_P2ALIGNED(zfodbase, pgsz)) { 1220 crargs.szc = szc; 1221 } else { 1222 crargs.szc = AS_MAP_HEAP; 1223 } 1224 } else { 1225 crargs.szc = AS_MAP_NO_LPOOB; 1226 } 1227 if (error = as_map(p->p_as, (caddr_t)zfodbase, 1228 zfodlen, segvn_create, &crargs)) 1229 goto bad; 1230 if (prot != PROT_ZFOD) { 1231 (void) as_setprot(p->p_as, (caddr_t)zfodbase, 1232 zfodlen, prot); 1233 } 1234 } 1235 } 1236 return (0); 1237 bad: 1238 return (error); 1239 } 1240 1241 void 1242 setexecenv(struct execenv *ep) 1243 { 1244 proc_t *p = ttoproc(curthread); 1245 klwp_t *lwp = ttolwp(curthread); 1246 struct vnode *vp; 1247 1248 p->p_bssbase = ep->ex_bssbase; 1249 p->p_brkbase = ep->ex_brkbase; 1250 p->p_brksize = ep->ex_brksize; 1251 if (p->p_exec) 1252 VN_RELE(p->p_exec); /* out with the old */ 1253 vp = p->p_exec = ep->ex_vp; 1254 if (vp != NULL) 1255 VN_HOLD(vp); /* in with the new */ 1256 1257 lwp->lwp_sigaltstack.ss_sp = 0; 1258 lwp->lwp_sigaltstack.ss_size = 0; 1259 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 1260 } 1261 1262 int 1263 execopen(struct vnode **vpp, int *fdp) 1264 { 1265 struct vnode *vp = *vpp; 1266 file_t *fp; 1267 int error = 0; 1268 int filemode = FREAD; 1269 1270 VN_HOLD(vp); /* open reference */ 1271 if (error = falloc(NULL, filemode, &fp, fdp)) { 1272 VN_RELE(vp); 1273 *fdp = -1; /* just in case falloc changed value */ 1274 return (error); 1275 } 1276 if (error = VOP_OPEN(&vp, filemode, CRED(), NULL)) { 1277 VN_RELE(vp); 1278 setf(*fdp, NULL); 1279 unfalloc(fp); 1280 *fdp = -1; 1281 return (error); 1282 } 1283 *vpp = vp; /* vnode should not have changed */ 1284 fp->f_vnode = vp; 1285 mutex_exit(&fp->f_tlock); 1286 setf(*fdp, fp); 1287 return (0); 1288 } 1289 1290 int 1291 execclose(int fd) 1292 { 1293 return (closeandsetf(fd, NULL)); 1294 } 1295 1296 1297 /* 1298 * noexec stub function. 1299 */ 1300 /*ARGSUSED*/ 1301 int 1302 noexec( 1303 struct vnode *vp, 1304 struct execa *uap, 1305 struct uarg *args, 1306 struct intpdata *idatap, 1307 int level, 1308 long *execsz, 1309 int setid, 1310 caddr_t exec_file, 1311 struct cred *cred) 1312 { 1313 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname); 1314 return (ENOEXEC); 1315 } 1316 1317 /* 1318 * Support routines for building a user stack. 1319 * 1320 * execve(path, argv, envp) must construct a new stack with the specified 1321 * arguments and environment variables (see exec_args() for a description 1322 * of the user stack layout). To do this, we copy the arguments and 1323 * environment variables from the old user address space into the kernel, 1324 * free the old as, create the new as, and copy our buffered information 1325 * to the new stack. Our kernel buffer has the following structure: 1326 * 1327 * +-----------------------+ <--- stk_base + stk_size 1328 * | string offsets | 1329 * +-----------------------+ <--- stk_offp 1330 * | | 1331 * | STK_AVAIL() space | 1332 * | | 1333 * +-----------------------+ <--- stk_strp 1334 * | strings | 1335 * +-----------------------+ <--- stk_base 1336 * 1337 * When we add a string, we store the string's contents (including the null 1338 * terminator) at stk_strp, and we store the offset of the string relative to 1339 * stk_base at --stk_offp. At strings are added, stk_strp increases and 1340 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just 1341 * the difference between these pointers. If we run out of space, we return 1342 * an error and exec_args() starts all over again with a buffer twice as large. 1343 * When we're all done, the kernel buffer looks like this: 1344 * 1345 * +-----------------------+ <--- stk_base + stk_size 1346 * | argv[0] offset | 1347 * +-----------------------+ 1348 * | ... | 1349 * +-----------------------+ 1350 * | argv[argc-1] offset | 1351 * +-----------------------+ 1352 * | envp[0] offset | 1353 * +-----------------------+ 1354 * | ... | 1355 * +-----------------------+ 1356 * | envp[envc-1] offset | 1357 * +-----------------------+ 1358 * | AT_SUN_PLATFORM offset| 1359 * +-----------------------+ 1360 * | AT_SUN_EXECNAME offset| 1361 * +-----------------------+ <--- stk_offp 1362 * | | 1363 * | STK_AVAIL() space | 1364 * | | 1365 * +-----------------------+ <--- stk_strp 1366 * | AT_SUN_EXECNAME offset| 1367 * +-----------------------+ 1368 * | AT_SUN_PLATFORM offset| 1369 * +-----------------------+ 1370 * | envp[envc-1] string | 1371 * +-----------------------+ 1372 * | ... | 1373 * +-----------------------+ 1374 * | envp[0] string | 1375 * +-----------------------+ 1376 * | argv[argc-1] string | 1377 * +-----------------------+ 1378 * | ... | 1379 * +-----------------------+ 1380 * | argv[0] string | 1381 * +-----------------------+ <--- stk_base 1382 */ 1383 1384 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp) 1385 1386 /* 1387 * Add a string to the stack. 1388 */ 1389 static int 1390 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg) 1391 { 1392 int error; 1393 size_t len; 1394 1395 if (STK_AVAIL(args) < sizeof (int)) 1396 return (E2BIG); 1397 *--args->stk_offp = args->stk_strp - args->stk_base; 1398 1399 if (segflg == UIO_USERSPACE) { 1400 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len); 1401 if (error != 0) 1402 return (error); 1403 } else { 1404 len = strlen(sp) + 1; 1405 if (len > STK_AVAIL(args)) 1406 return (E2BIG); 1407 bcopy(sp, args->stk_strp, len); 1408 } 1409 1410 args->stk_strp += len; 1411 1412 return (0); 1413 } 1414 1415 static int 1416 stk_getptr(uarg_t *args, char *src, char **dst) 1417 { 1418 int error; 1419 1420 if (args->from_model == DATAMODEL_NATIVE) { 1421 ulong_t ptr; 1422 error = fulword(src, &ptr); 1423 *dst = (caddr_t)ptr; 1424 } else { 1425 uint32_t ptr; 1426 error = fuword32(src, &ptr); 1427 *dst = (caddr_t)(uintptr_t)ptr; 1428 } 1429 return (error); 1430 } 1431 1432 static int 1433 stk_putptr(uarg_t *args, char *addr, char *value) 1434 { 1435 if (args->to_model == DATAMODEL_NATIVE) 1436 return (sulword(addr, (ulong_t)value)); 1437 else 1438 return (suword32(addr, (uint32_t)(uintptr_t)value)); 1439 } 1440 1441 static int 1442 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1443 { 1444 char *sp; 1445 int argc, error; 1446 int argv_empty = 0; 1447 size_t ptrsize = args->from_ptrsize; 1448 size_t size, pad; 1449 char *argv = (char *)uap->argp; 1450 char *envp = (char *)uap->envp; 1451 1452 /* 1453 * Copy interpreter's name and argument to argv[0] and argv[1]. 1454 */ 1455 if (intp != NULL && intp->intp_name != NULL) { 1456 if ((error = stk_add(args, intp->intp_name, UIO_SYSSPACE)) != 0) 1457 return (error); 1458 if (intp->intp_arg != NULL && 1459 (error = stk_add(args, intp->intp_arg, UIO_SYSSPACE)) != 0) 1460 return (error); 1461 if (args->fname != NULL) 1462 error = stk_add(args, args->fname, UIO_SYSSPACE); 1463 else 1464 error = stk_add(args, uap->fname, UIO_USERSPACE); 1465 if (error) 1466 return (error); 1467 1468 /* 1469 * Check for an empty argv[]. 1470 */ 1471 if (stk_getptr(args, argv, &sp)) 1472 return (EFAULT); 1473 if (sp == NULL) 1474 argv_empty = 1; 1475 1476 argv += ptrsize; /* ignore original argv[0] */ 1477 } 1478 1479 if (argv_empty == 0) { 1480 /* 1481 * Add argv[] strings to the stack. 1482 */ 1483 for (;;) { 1484 if (stk_getptr(args, argv, &sp)) 1485 return (EFAULT); 1486 if (sp == NULL) 1487 break; 1488 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1489 return (error); 1490 argv += ptrsize; 1491 } 1492 } 1493 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1494 args->arglen = args->stk_strp - args->stk_base; 1495 1496 /* 1497 * Add environ[] strings to the stack. 1498 */ 1499 if (envp != NULL) { 1500 for (;;) { 1501 if (stk_getptr(args, envp, &sp)) 1502 return (EFAULT); 1503 if (sp == NULL) 1504 break; 1505 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1506 return (error); 1507 envp += ptrsize; 1508 } 1509 } 1510 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1511 args->ne = args->na - argc; 1512 1513 /* 1514 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and 1515 * AT_SUN_EMULATOR strings to the stack. 1516 */ 1517 if (auxvpp != NULL && *auxvpp != NULL) { 1518 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0) 1519 return (error); 1520 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0) 1521 return (error); 1522 if (args->brandname != NULL && 1523 (error = stk_add(args, args->brandname, UIO_SYSSPACE)) != 0) 1524 return (error); 1525 if (args->emulator != NULL && 1526 (error = stk_add(args, args->emulator, UIO_SYSSPACE)) != 0) 1527 return (error); 1528 } 1529 1530 /* 1531 * Compute the size of the stack. This includes all the pointers, 1532 * the space reserved for the aux vector, and all the strings. 1533 * The total number of pointers is args->na (which is argc + envc) 1534 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL 1535 * after the last argument (i.e. argv[argc]); (3) the NULL after the 1536 * last environment variable (i.e. envp[envc]); and (4) the NULL after 1537 * all the strings, at the very top of the stack. 1538 */ 1539 size = (args->na + 4) * args->to_ptrsize + args->auxsize + 1540 (args->stk_strp - args->stk_base); 1541 1542 /* 1543 * Pad the string section with zeroes to align the stack size. 1544 */ 1545 pad = P2NPHASE(size, args->stk_align); 1546 1547 if (STK_AVAIL(args) < pad) 1548 return (E2BIG); 1549 1550 args->usrstack_size = size + pad; 1551 1552 while (pad-- != 0) 1553 *args->stk_strp++ = 0; 1554 1555 args->nc = args->stk_strp - args->stk_base; 1556 1557 return (0); 1558 } 1559 1560 static int 1561 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up) 1562 { 1563 size_t ptrsize = args->to_ptrsize; 1564 ssize_t pslen; 1565 char *kstrp = args->stk_base; 1566 char *ustrp = usrstack - args->nc - ptrsize; 1567 char *usp = usrstack - args->usrstack_size; 1568 int *offp = (int *)(args->stk_base + args->stk_size); 1569 int envc = args->ne; 1570 int argc = args->na - envc; 1571 int i; 1572 1573 /* 1574 * Record argc for /proc. 1575 */ 1576 up->u_argc = argc; 1577 1578 /* 1579 * Put argc on the stack. Note that even though it's an int, 1580 * it always consumes ptrsize bytes (for alignment). 1581 */ 1582 if (stk_putptr(args, usp, (char *)(uintptr_t)argc)) 1583 return (-1); 1584 1585 /* 1586 * Add argc space (ptrsize) to usp and record argv for /proc. 1587 */ 1588 up->u_argv = (uintptr_t)(usp += ptrsize); 1589 1590 /* 1591 * Put the argv[] pointers on the stack. 1592 */ 1593 for (i = 0; i < argc; i++, usp += ptrsize) 1594 if (stk_putptr(args, usp, &ustrp[*--offp])) 1595 return (-1); 1596 1597 /* 1598 * Copy arguments to u_psargs. 1599 */ 1600 pslen = MIN(args->arglen, PSARGSZ) - 1; 1601 for (i = 0; i < pslen; i++) 1602 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]); 1603 while (i < PSARGSZ) 1604 up->u_psargs[i++] = '\0'; 1605 1606 /* 1607 * Add space for argv[]'s NULL terminator (ptrsize) to usp and 1608 * record envp for /proc. 1609 */ 1610 up->u_envp = (uintptr_t)(usp += ptrsize); 1611 1612 /* 1613 * Put the envp[] pointers on the stack. 1614 */ 1615 for (i = 0; i < envc; i++, usp += ptrsize) 1616 if (stk_putptr(args, usp, &ustrp[*--offp])) 1617 return (-1); 1618 1619 /* 1620 * Add space for envp[]'s NULL terminator (ptrsize) to usp and 1621 * remember where the stack ends, which is also where auxv begins. 1622 */ 1623 args->stackend = usp += ptrsize; 1624 1625 /* 1626 * Put all the argv[], envp[], and auxv strings on the stack. 1627 */ 1628 if (copyout(args->stk_base, ustrp, args->nc)) 1629 return (-1); 1630 1631 /* 1632 * Fill in the aux vector now that we know the user stack addresses 1633 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and 1634 * AT_SUN_EMULATOR strings. 1635 */ 1636 if (auxvpp != NULL && *auxvpp != NULL) { 1637 if (args->to_model == DATAMODEL_NATIVE) { 1638 auxv_t **a = (auxv_t **)auxvpp; 1639 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp]) 1640 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp]) 1641 if (args->brandname != NULL) 1642 ADDAUX(*a, 1643 AT_SUN_BRANDNAME, (long)&ustrp[*--offp]) 1644 if (args->emulator != NULL) 1645 ADDAUX(*a, 1646 AT_SUN_EMULATOR, (long)&ustrp[*--offp]) 1647 } else { 1648 auxv32_t **a = (auxv32_t **)auxvpp; 1649 ADDAUX(*a, 1650 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp]) 1651 ADDAUX(*a, 1652 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp]) 1653 if (args->brandname != NULL) 1654 ADDAUX(*a, AT_SUN_BRANDNAME, 1655 (int)(uintptr_t)&ustrp[*--offp]) 1656 if (args->emulator != NULL) 1657 ADDAUX(*a, AT_SUN_EMULATOR, 1658 (int)(uintptr_t)&ustrp[*--offp]) 1659 } 1660 } 1661 1662 return (0); 1663 } 1664 1665 /* 1666 * Initialize a new user stack with the specified arguments and environment. 1667 * The initial user stack layout is as follows: 1668 * 1669 * User Stack 1670 * +---------------+ <--- curproc->p_usrstack 1671 * | | 1672 * | slew | 1673 * | | 1674 * +---------------+ 1675 * | NULL | 1676 * +---------------+ 1677 * | | 1678 * | auxv strings | 1679 * | | 1680 * +---------------+ 1681 * | | 1682 * | envp strings | 1683 * | | 1684 * +---------------+ 1685 * | | 1686 * | argv strings | 1687 * | | 1688 * +---------------+ <--- ustrp 1689 * | | 1690 * | aux vector | 1691 * | | 1692 * +---------------+ <--- auxv 1693 * | NULL | 1694 * +---------------+ 1695 * | envp[envc-1] | 1696 * +---------------+ 1697 * | ... | 1698 * +---------------+ 1699 * | envp[0] | 1700 * +---------------+ <--- envp[] 1701 * | NULL | 1702 * +---------------+ 1703 * | argv[argc-1] | 1704 * +---------------+ 1705 * | ... | 1706 * +---------------+ 1707 * | argv[0] | 1708 * +---------------+ <--- argv[] 1709 * | argc | 1710 * +---------------+ <--- stack base 1711 */ 1712 int 1713 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1714 { 1715 size_t size; 1716 int error; 1717 proc_t *p = ttoproc(curthread); 1718 user_t *up = PTOU(p); 1719 char *usrstack; 1720 rctl_entity_p_t e; 1721 struct as *as; 1722 extern int use_stk_lpg; 1723 size_t sp_slew; 1724 1725 args->from_model = p->p_model; 1726 if (p->p_model == DATAMODEL_NATIVE) { 1727 args->from_ptrsize = sizeof (long); 1728 } else { 1729 args->from_ptrsize = sizeof (int32_t); 1730 } 1731 1732 if (args->to_model == DATAMODEL_NATIVE) { 1733 args->to_ptrsize = sizeof (long); 1734 args->ncargs = NCARGS; 1735 args->stk_align = STACK_ALIGN; 1736 if (args->addr32) 1737 usrstack = (char *)USRSTACK64_32; 1738 else 1739 usrstack = (char *)USRSTACK; 1740 } else { 1741 args->to_ptrsize = sizeof (int32_t); 1742 args->ncargs = NCARGS32; 1743 args->stk_align = STACK_ALIGN32; 1744 usrstack = (char *)USRSTACK32; 1745 } 1746 1747 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0); 1748 1749 #if defined(__sparc) 1750 /* 1751 * Make sure user register windows are empty before 1752 * attempting to make a new stack. 1753 */ 1754 (void) flush_user_windows_to_stack(NULL); 1755 #endif 1756 1757 for (size = PAGESIZE; ; size *= 2) { 1758 args->stk_size = size; 1759 args->stk_base = kmem_alloc(size, KM_SLEEP); 1760 args->stk_strp = args->stk_base; 1761 args->stk_offp = (int *)(args->stk_base + size); 1762 error = stk_copyin(uap, args, intp, auxvpp); 1763 if (error == 0) 1764 break; 1765 kmem_free(args->stk_base, size); 1766 if (error != E2BIG && error != ENAMETOOLONG) 1767 return (error); 1768 if (size >= args->ncargs) 1769 return (E2BIG); 1770 } 1771 1772 size = args->usrstack_size; 1773 1774 ASSERT(error == 0); 1775 ASSERT(P2PHASE(size, args->stk_align) == 0); 1776 ASSERT((ssize_t)STK_AVAIL(args) >= 0); 1777 1778 if (size > args->ncargs) { 1779 kmem_free(args->stk_base, args->stk_size); 1780 return (E2BIG); 1781 } 1782 1783 /* 1784 * Leave only the current lwp and force the other lwps to exit. 1785 * If another lwp beat us to the punch by calling exit(), bail out. 1786 */ 1787 if ((error = exitlwps(0)) != 0) { 1788 kmem_free(args->stk_base, args->stk_size); 1789 return (error); 1790 } 1791 1792 /* 1793 * Revoke any doors created by the process. 1794 */ 1795 if (p->p_door_list) 1796 door_exit(); 1797 1798 /* 1799 * Release schedctl data structures. 1800 */ 1801 if (p->p_pagep) 1802 schedctl_proc_cleanup(); 1803 1804 /* 1805 * Clean up any DTrace helpers for the process. 1806 */ 1807 if (p->p_dtrace_helpers != NULL) { 1808 ASSERT(dtrace_helpers_cleanup != NULL); 1809 (*dtrace_helpers_cleanup)(); 1810 } 1811 1812 mutex_enter(&p->p_lock); 1813 /* 1814 * Cleanup the DTrace provider associated with this process. 1815 */ 1816 if (p->p_dtrace_probes) { 1817 ASSERT(dtrace_fasttrap_exec_ptr != NULL); 1818 dtrace_fasttrap_exec_ptr(p); 1819 } 1820 mutex_exit(&p->p_lock); 1821 1822 /* 1823 * discard the lwpchan cache. 1824 */ 1825 if (p->p_lcp != NULL) 1826 lwpchan_destroy_cache(1); 1827 1828 /* 1829 * Delete the POSIX timers. 1830 */ 1831 if (p->p_itimer != NULL) 1832 timer_exit(); 1833 1834 /* 1835 * Delete the ITIMER_REALPROF interval timer. 1836 * The other ITIMER_* interval timers are specified 1837 * to be inherited across exec(). 1838 */ 1839 delete_itimer_realprof(); 1840 1841 if (AU_AUDITING()) 1842 audit_exec(args->stk_base, args->stk_base + args->arglen, 1843 args->na - args->ne, args->ne); 1844 1845 /* 1846 * Ensure that we don't change resource associations while we 1847 * change address spaces. 1848 */ 1849 mutex_enter(&p->p_lock); 1850 pool_barrier_enter(); 1851 mutex_exit(&p->p_lock); 1852 1853 /* 1854 * Destroy the old address space and create a new one. 1855 * From here on, any errors are fatal to the exec()ing process. 1856 * On error we return -1, which means the caller must SIGKILL 1857 * the process. 1858 */ 1859 relvm(); 1860 1861 mutex_enter(&p->p_lock); 1862 pool_barrier_exit(); 1863 mutex_exit(&p->p_lock); 1864 1865 up->u_execsw = args->execswp; 1866 1867 p->p_brkbase = NULL; 1868 p->p_brksize = 0; 1869 p->p_brkpageszc = 0; 1870 p->p_stksize = 0; 1871 p->p_stkpageszc = 0; 1872 p->p_model = args->to_model; 1873 p->p_usrstack = usrstack; 1874 p->p_stkprot = args->stk_prot; 1875 p->p_datprot = args->dat_prot; 1876 1877 /* 1878 * Reset resource controls such that all controls are again active as 1879 * well as appropriate to the potentially new address model for the 1880 * process. 1881 */ 1882 e.rcep_p.proc = p; 1883 e.rcep_t = RCENTITY_PROCESS; 1884 rctl_set_reset(p->p_rctls, p, &e); 1885 1886 /* Too early to call map_pgsz for the heap */ 1887 if (use_stk_lpg) { 1888 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, p, 0, 0, 0)); 1889 } 1890 1891 mutex_enter(&p->p_lock); 1892 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */ 1893 mutex_exit(&p->p_lock); 1894 1895 /* 1896 * Some platforms may choose to randomize real stack start by adding a 1897 * small slew (not more than a few hundred bytes) to the top of the 1898 * stack. This helps avoid cache thrashing when identical processes 1899 * simultaneously share caches that don't provide enough associativity 1900 * (e.g. sun4v systems). In this case stack slewing makes the same hot 1901 * stack variables in different processes to live in different cache 1902 * sets increasing effective associativity. 1903 */ 1904 sp_slew = exec_get_spslew(); 1905 ASSERT(P2PHASE(sp_slew, args->stk_align) == 0); 1906 exec_set_sp(size + sp_slew); 1907 1908 as = as_alloc(); 1909 p->p_as = as; 1910 as->a_proc = p; 1911 if (p->p_model == DATAMODEL_ILP32 || args->addr32) 1912 as->a_userlimit = (caddr_t)USERLIMIT32; 1913 (void) hat_setup(as->a_hat, HAT_ALLOC); 1914 hat_join_srd(as->a_hat, args->ex_vp); 1915 1916 /* 1917 * Finally, write out the contents of the new stack. 1918 */ 1919 error = stk_copyout(args, usrstack - sp_slew, auxvpp, up); 1920 kmem_free(args->stk_base, args->stk_size); 1921 return (error); 1922 } 1923