1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/vm.h> 31 #include <sys/proc.h> 32 #include <sys/file.h> 33 #include <sys/conf.h> 34 #include <sys/kmem.h> 35 #include <sys/mem.h> 36 #include <sys/mman.h> 37 #include <sys/vnode.h> 38 #include <sys/errno.h> 39 #include <sys/memlist.h> 40 #include <sys/dumphdr.h> 41 #include <sys/dumpadm.h> 42 #include <sys/ksyms.h> 43 #include <sys/compress.h> 44 #include <sys/stream.h> 45 #include <sys/strsun.h> 46 #include <sys/cmn_err.h> 47 #include <sys/bitmap.h> 48 #include <sys/modctl.h> 49 #include <sys/utsname.h> 50 #include <sys/systeminfo.h> 51 #include <sys/vmem.h> 52 #include <sys/log.h> 53 #include <sys/var.h> 54 #include <sys/debug.h> 55 #include <sys/sunddi.h> 56 #include <fs/fs_subr.h> 57 #include <sys/fs/snode.h> 58 #include <sys/ontrap.h> 59 #include <sys/panic.h> 60 #include <sys/dkio.h> 61 #include <sys/vtoc.h> 62 #include <sys/errorq.h> 63 #include <sys/fm/util.h> 64 #include <sys/fs/zfs.h> 65 66 #include <vm/hat.h> 67 #include <vm/as.h> 68 #include <vm/page.h> 69 #include <vm/seg.h> 70 #include <vm/seg_kmem.h> 71 72 kmutex_t dump_lock; /* lock for dump configuration */ 73 dumphdr_t *dumphdr; /* dump header */ 74 int dump_conflags = DUMP_KERNEL; /* dump configuration flags */ 75 vnode_t *dumpvp; /* dump device vnode pointer */ 76 u_offset_t dumpvp_size; /* size of dump device, in bytes */ 77 static u_offset_t dumpvp_limit; /* maximum write offset */ 78 char *dumppath; /* pathname of dump device */ 79 int dump_timeout = 120; /* timeout for dumping page during panic */ 80 int dump_timeleft; /* portion of dump_timeout remaining */ 81 int dump_ioerr; /* dump i/o error */ 82 83 #ifdef DEBUG 84 int dumpfaildebug = 1; /* enter debugger if dump fails */ 85 #else 86 int dumpfaildebug = 0; 87 #endif 88 89 static ulong_t *dump_bitmap; /* bitmap for marking pages to dump */ 90 static pgcnt_t dump_bitmapsize; /* size of bitmap */ 91 static pid_t *dump_pids; /* list of process IDs at dump time */ 92 static offset_t dumpvp_off; /* current dump device offset */ 93 static char *dump_cmap; /* VA for dump compression mapping */ 94 static char *dumpbuf_cur, *dumpbuf_start, *dumpbuf_end; 95 static char *dump_cbuf; /* compression buffer */ 96 static char *dump_uebuf; /* memory error detection buffer */ 97 static size_t dumpbuf_size; /* size of dumpbuf in bytes */ 98 static size_t dumpbuf_limit = 1UL << 23; /* 8MB */ 99 static size_t dump_iosize; /* device's best transfer size, if any */ 100 static uint64_t dumpbuf_thresh = 1ULL << 30; /* 1GB */ 101 static ulong_t dumpbuf_mult = 8; 102 103 /* 104 * The dump i/o buffer must be at least one page, at most xfer_size bytes, and 105 * should scale with physmem in between. The transfer size passed in will 106 * either represent a global default (maxphys) or the best size for the device. 107 * Once the physical memory size exceeds dumpbuf_thresh (1GB by default), we 108 * increase the percentage of physical memory that dumpbuf can consume by a 109 * factor of dumpbuf_mult (8 by default) to improve large memory performance. 110 * The size of the dumpbuf i/o buffer is limited by dumpbuf_limit (8MB by 111 * default) because the dump performance saturates beyond a certain size. 112 */ 113 static size_t 114 dumpbuf_iosize(size_t xfer_size) 115 { 116 pgcnt_t scale = physmem; 117 size_t iosize; 118 119 if (scale >= dumpbuf_thresh / PAGESIZE) { 120 scale *= dumpbuf_mult; /* increase scaling factor */ 121 iosize = MIN(xfer_size, scale) & PAGEMASK; 122 if (dumpbuf_limit && iosize > dumpbuf_limit) 123 iosize = MAX(PAGESIZE, dumpbuf_limit & PAGEMASK); 124 } else 125 iosize = MAX(PAGESIZE, MIN(xfer_size, scale) & PAGEMASK); 126 127 return (iosize); 128 } 129 130 static void 131 dumpbuf_resize(void) 132 { 133 char *old_buf = dumpbuf_start; 134 size_t old_size = dumpbuf_size; 135 char *new_buf; 136 size_t new_size; 137 138 ASSERT(MUTEX_HELD(&dump_lock)); 139 140 if ((new_size = dumpbuf_iosize(MAX(dump_iosize, maxphys))) <= old_size) 141 return; /* no need to reallocate buffer */ 142 143 new_buf = kmem_alloc(new_size, KM_SLEEP); 144 dumpbuf_size = new_size; 145 dumpbuf_start = new_buf; 146 dumpbuf_end = new_buf + new_size; 147 kmem_free(old_buf, old_size); 148 } 149 150 static void 151 dumphdr_init(void) 152 { 153 pgcnt_t npages = 0; 154 155 ASSERT(MUTEX_HELD(&dump_lock)); 156 157 if (dumphdr == NULL) { 158 dumphdr = kmem_zalloc(sizeof (dumphdr_t), KM_SLEEP); 159 dumphdr->dump_magic = DUMP_MAGIC; 160 dumphdr->dump_version = DUMP_VERSION; 161 dumphdr->dump_wordsize = DUMP_WORDSIZE; 162 dumphdr->dump_pageshift = PAGESHIFT; 163 dumphdr->dump_pagesize = PAGESIZE; 164 dumphdr->dump_utsname = utsname; 165 (void) strcpy(dumphdr->dump_platform, platform); 166 dump_cmap = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 167 dumpbuf_size = dumpbuf_iosize(maxphys); 168 dumpbuf_start = kmem_alloc(dumpbuf_size, KM_SLEEP); 169 dumpbuf_end = dumpbuf_start + dumpbuf_size; 170 dump_cbuf = kmem_alloc(PAGESIZE, KM_SLEEP); /* compress buf */ 171 dump_uebuf = kmem_alloc(PAGESIZE, KM_SLEEP); /* UE buf */ 172 dump_pids = kmem_alloc(v.v_proc * sizeof (pid_t), KM_SLEEP); 173 } 174 175 npages = num_phys_pages(); 176 177 if (dump_bitmapsize != npages) { 178 void *map = kmem_alloc(BT_SIZEOFMAP(npages), KM_SLEEP); 179 kmem_free(dump_bitmap, BT_SIZEOFMAP(dump_bitmapsize)); 180 dump_bitmap = map; 181 dump_bitmapsize = npages; 182 } 183 } 184 185 /* 186 * Establish a new dump device. 187 */ 188 int 189 dumpinit(vnode_t *vp, char *name, int justchecking) 190 { 191 vnode_t *cvp; 192 vattr_t vattr; 193 vnode_t *cdev_vp; 194 int error = 0; 195 196 ASSERT(MUTEX_HELD(&dump_lock)); 197 198 dumphdr_init(); 199 200 cvp = common_specvp(vp); 201 if (cvp == dumpvp) 202 return (0); 203 204 /* 205 * Determine whether this is a plausible dump device. We want either: 206 * (1) a real device that's not mounted and has a cb_dump routine, or 207 * (2) a swapfile on some filesystem that has a vop_dump routine. 208 */ 209 if ((error = VOP_OPEN(&cvp, FREAD | FWRITE, kcred, NULL)) != 0) 210 return (error); 211 212 vattr.va_mask = AT_SIZE | AT_TYPE | AT_RDEV; 213 if ((error = VOP_GETATTR(cvp, &vattr, 0, kcred, NULL)) == 0) { 214 if (vattr.va_type == VBLK || vattr.va_type == VCHR) { 215 if (devopsp[getmajor(vattr.va_rdev)]-> 216 devo_cb_ops->cb_dump == nodev) 217 error = ENOTSUP; 218 else if (vfs_devismounted(vattr.va_rdev)) 219 error = EBUSY; 220 } else { 221 if (vn_matchopval(cvp, VOPNAME_DUMP, fs_nosys) || 222 !IS_SWAPVP(cvp)) 223 error = ENOTSUP; 224 } 225 } 226 227 if (error == 0 && vattr.va_size < 2 * DUMP_LOGSIZE + DUMP_ERPTSIZE) 228 error = ENOSPC; 229 230 if (error || justchecking) { 231 (void) VOP_CLOSE(cvp, FREAD | FWRITE, 1, (offset_t)0, 232 kcred, NULL); 233 return (error); 234 } 235 236 VN_HOLD(cvp); 237 238 if (dumpvp != NULL) 239 dumpfini(); /* unconfigure the old dump device */ 240 241 dumpvp = cvp; 242 dumpvp_size = vattr.va_size & -DUMP_OFFSET; 243 dumppath = kmem_alloc(strlen(name) + 1, KM_SLEEP); 244 (void) strcpy(dumppath, name); 245 dump_iosize = 0; 246 247 /* 248 * If the dump device is a block device, attempt to open up the 249 * corresponding character device and determine its maximum transfer 250 * size. We use this information to potentially resize dumpbuf to a 251 * larger and more optimal size for performing i/o to the dump device. 252 */ 253 if (cvp->v_type == VBLK && 254 (cdev_vp = makespecvp(VTOS(cvp)->s_dev, VCHR)) != NULL) { 255 if (VOP_OPEN(&cdev_vp, FREAD | FWRITE, kcred, NULL) == 0) { 256 size_t blk_size; 257 struct dk_cinfo dki; 258 struct extvtoc vtoc; 259 260 if (VOP_IOCTL(cdev_vp, DKIOCGEXTVTOC, (intptr_t)&vtoc, 261 FKIOCTL, kcred, NULL, NULL) == 0 && 262 vtoc.v_sectorsz != 0) 263 blk_size = vtoc.v_sectorsz; 264 else 265 blk_size = DEV_BSIZE; 266 267 if (VOP_IOCTL(cdev_vp, DKIOCINFO, (intptr_t)&dki, 268 FKIOCTL, kcred, NULL, NULL) == 0) { 269 dump_iosize = dki.dki_maxtransfer * blk_size; 270 dumpbuf_resize(); 271 } 272 /* 273 * If we are working with a zvol then call into 274 * it to dumpify itself. 275 */ 276 if (strcmp(dki.dki_dname, ZVOL_DRIVER) == 0) { 277 if ((error = VOP_IOCTL(cdev_vp, 278 DKIOCDUMPINIT, NULL, FKIOCTL, kcred, 279 NULL, NULL)) != 0) { 280 dumpfini(); 281 } 282 } 283 284 (void) VOP_CLOSE(cdev_vp, FREAD | FWRITE, 1, 0, 285 kcred, NULL); 286 } 287 288 VN_RELE(cdev_vp); 289 } 290 291 cmn_err(CE_CONT, "?dump on %s size %llu MB\n", name, dumpvp_size >> 20); 292 293 return (error); 294 } 295 296 void 297 dumpfini(void) 298 { 299 vattr_t vattr; 300 boolean_t is_zfs = B_FALSE; 301 vnode_t *cdev_vp; 302 ASSERT(MUTEX_HELD(&dump_lock)); 303 304 kmem_free(dumppath, strlen(dumppath) + 1); 305 306 /* 307 * Determine if we are using zvols for our dump device 308 */ 309 vattr.va_mask = AT_RDEV; 310 if (VOP_GETATTR(dumpvp, &vattr, 0, kcred, NULL) == 0) { 311 is_zfs = (getmajor(vattr.va_rdev) == 312 ddi_name_to_major(ZFS_DRIVER)) ? B_TRUE : B_FALSE; 313 } 314 315 /* 316 * If we have a zvol dump device then we call into zfs so 317 * that it may have a chance to cleanup. 318 */ 319 if (is_zfs && 320 (cdev_vp = makespecvp(VTOS(dumpvp)->s_dev, VCHR)) != NULL) { 321 if (VOP_OPEN(&cdev_vp, FREAD | FWRITE, kcred, NULL) == 0) { 322 (void) VOP_IOCTL(cdev_vp, DKIOCDUMPFINI, NULL, FKIOCTL, 323 kcred, NULL, NULL); 324 (void) VOP_CLOSE(cdev_vp, FREAD | FWRITE, 1, 0, 325 kcred, NULL); 326 } 327 VN_RELE(cdev_vp); 328 } 329 330 (void) VOP_CLOSE(dumpvp, FREAD | FWRITE, 1, (offset_t)0, kcred, NULL); 331 332 VN_RELE(dumpvp); 333 334 dumpvp = NULL; 335 dumpvp_size = 0; 336 dumppath = NULL; 337 } 338 339 static pfn_t 340 dump_bitnum_to_pfn(pgcnt_t bitnum) 341 { 342 struct memlist *mp; 343 344 for (mp = phys_install; mp != NULL; mp = mp->next) { 345 if (bitnum < (mp->size >> PAGESHIFT)) 346 return ((mp->address >> PAGESHIFT) + bitnum); 347 bitnum -= mp->size >> PAGESHIFT; 348 } 349 return (PFN_INVALID); 350 } 351 352 static pgcnt_t 353 dump_pfn_to_bitnum(pfn_t pfn) 354 { 355 struct memlist *mp; 356 pgcnt_t bitnum = 0; 357 358 for (mp = phys_install; mp != NULL; mp = mp->next) { 359 if (pfn >= (mp->address >> PAGESHIFT) && 360 pfn < ((mp->address + mp->size) >> PAGESHIFT)) 361 return (bitnum + pfn - (mp->address >> PAGESHIFT)); 362 bitnum += mp->size >> PAGESHIFT; 363 } 364 return ((pgcnt_t)-1); 365 } 366 367 static offset_t 368 dumpvp_flush(void) 369 { 370 size_t size = P2ROUNDUP(dumpbuf_cur - dumpbuf_start, PAGESIZE); 371 int err; 372 373 if (dumpvp_off + size > dumpvp_limit) { 374 dump_ioerr = ENOSPC; 375 } else if (size != 0) { 376 if (panicstr) 377 err = VOP_DUMP(dumpvp, dumpbuf_start, 378 lbtodb(dumpvp_off), btod(size), NULL); 379 else 380 err = vn_rdwr(UIO_WRITE, dumpvp, dumpbuf_start, size, 381 dumpvp_off, UIO_SYSSPACE, 0, dumpvp_limit, 382 kcred, 0); 383 if (err && dump_ioerr == 0) 384 dump_ioerr = err; 385 } 386 dumpvp_off += size; 387 dumpbuf_cur = dumpbuf_start; 388 dump_timeleft = dump_timeout; 389 return (dumpvp_off); 390 } 391 392 void 393 dumpvp_write(const void *va, size_t size) 394 { 395 while (size != 0) { 396 size_t len = MIN(size, dumpbuf_end - dumpbuf_cur); 397 if (len == 0) { 398 (void) dumpvp_flush(); 399 } else { 400 bcopy(va, dumpbuf_cur, len); 401 va = (char *)va + len; 402 dumpbuf_cur += len; 403 size -= len; 404 } 405 } 406 } 407 408 /*ARGSUSED*/ 409 static void 410 dumpvp_ksyms_write(const void *src, void *dst, size_t size) 411 { 412 dumpvp_write(src, size); 413 } 414 415 /* 416 * Mark 'pfn' in the bitmap and dump its translation table entry. 417 */ 418 void 419 dump_addpage(struct as *as, void *va, pfn_t pfn) 420 { 421 mem_vtop_t mem_vtop; 422 pgcnt_t bitnum; 423 424 if ((bitnum = dump_pfn_to_bitnum(pfn)) != (pgcnt_t)-1) { 425 if (!BT_TEST(dump_bitmap, bitnum)) { 426 dumphdr->dump_npages++; 427 BT_SET(dump_bitmap, bitnum); 428 } 429 dumphdr->dump_nvtop++; 430 mem_vtop.m_as = as; 431 mem_vtop.m_va = va; 432 mem_vtop.m_pfn = pfn; 433 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 434 } 435 dump_timeleft = dump_timeout; 436 } 437 438 /* 439 * Mark 'pfn' in the bitmap 440 */ 441 void 442 dump_page(pfn_t pfn) 443 { 444 pgcnt_t bitnum; 445 446 if ((bitnum = dump_pfn_to_bitnum(pfn)) != (pgcnt_t)-1) { 447 if (!BT_TEST(dump_bitmap, bitnum)) { 448 dumphdr->dump_npages++; 449 BT_SET(dump_bitmap, bitnum); 450 } 451 } 452 dump_timeleft = dump_timeout; 453 } 454 455 /* 456 * Dump the <as, va, pfn> information for a given address space. 457 * SEGOP_DUMP() will call dump_addpage() for each page in the segment. 458 */ 459 static void 460 dump_as(struct as *as) 461 { 462 struct seg *seg; 463 464 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 465 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 466 if (seg->s_as != as) 467 break; 468 if (seg->s_ops == NULL) 469 continue; 470 SEGOP_DUMP(seg); 471 } 472 AS_LOCK_EXIT(as, &as->a_lock); 473 474 if (seg != NULL) 475 cmn_err(CE_WARN, "invalid segment %p in address space %p", 476 (void *)seg, (void *)as); 477 } 478 479 static int 480 dump_process(pid_t pid) 481 { 482 proc_t *p = sprlock(pid); 483 484 if (p == NULL) 485 return (-1); 486 if (p->p_as != &kas) { 487 mutex_exit(&p->p_lock); 488 dump_as(p->p_as); 489 mutex_enter(&p->p_lock); 490 } 491 492 sprunlock(p); 493 494 return (0); 495 } 496 497 void 498 dump_ereports(void) 499 { 500 u_offset_t dumpvp_start; 501 erpt_dump_t ed; 502 503 if (dumpvp == NULL || dumphdr == NULL) 504 return; 505 506 dumpbuf_cur = dumpbuf_start; 507 dumpvp_limit = dumpvp_size - (DUMP_OFFSET + DUMP_LOGSIZE); 508 dumpvp_start = dumpvp_limit - DUMP_ERPTSIZE; 509 dumpvp_off = dumpvp_start; 510 511 fm_ereport_dump(); 512 if (panicstr) 513 errorq_dump(); 514 515 bzero(&ed, sizeof (ed)); /* indicate end of ereports */ 516 dumpvp_write(&ed, sizeof (ed)); 517 (void) dumpvp_flush(); 518 519 if (!panicstr) { 520 (void) VOP_PUTPAGE(dumpvp, dumpvp_start, 521 (size_t)(dumpvp_off - dumpvp_start), 522 B_INVAL | B_FORCE, kcred, NULL); 523 } 524 } 525 526 void 527 dump_messages(void) 528 { 529 log_dump_t ld; 530 mblk_t *mctl, *mdata; 531 queue_t *q, *qlast; 532 u_offset_t dumpvp_start; 533 534 if (dumpvp == NULL || dumphdr == NULL || log_consq == NULL) 535 return; 536 537 dumpbuf_cur = dumpbuf_start; 538 dumpvp_limit = dumpvp_size - DUMP_OFFSET; 539 dumpvp_start = dumpvp_limit - DUMP_LOGSIZE; 540 dumpvp_off = dumpvp_start; 541 542 qlast = NULL; 543 do { 544 for (q = log_consq; q->q_next != qlast; q = q->q_next) 545 continue; 546 for (mctl = q->q_first; mctl != NULL; mctl = mctl->b_next) { 547 dump_timeleft = dump_timeout; 548 mdata = mctl->b_cont; 549 ld.ld_magic = LOG_MAGIC; 550 ld.ld_msgsize = MBLKL(mctl->b_cont); 551 ld.ld_csum = checksum32(mctl->b_rptr, MBLKL(mctl)); 552 ld.ld_msum = checksum32(mdata->b_rptr, MBLKL(mdata)); 553 dumpvp_write(&ld, sizeof (ld)); 554 dumpvp_write(mctl->b_rptr, MBLKL(mctl)); 555 dumpvp_write(mdata->b_rptr, MBLKL(mdata)); 556 } 557 } while ((qlast = q) != log_consq); 558 559 ld.ld_magic = 0; /* indicate end of messages */ 560 dumpvp_write(&ld, sizeof (ld)); 561 (void) dumpvp_flush(); 562 if (!panicstr) { 563 (void) VOP_PUTPAGE(dumpvp, dumpvp_start, 564 (size_t)(dumpvp_off - dumpvp_start), 565 B_INVAL | B_FORCE, kcred, NULL); 566 } 567 } 568 569 static void 570 dump_pagecopy(void *src, void *dst) 571 { 572 long *wsrc = (long *)src; 573 long *wdst = (long *)dst; 574 const ulong_t ncopies = PAGESIZE / sizeof (long); 575 volatile int w = 0; 576 volatile int ueoff = -1; 577 on_trap_data_t otd; 578 579 if (on_trap(&otd, OT_DATA_EC)) { 580 if (ueoff == -1) { 581 uint64_t pa; 582 583 ueoff = w * sizeof (long); 584 pa = ptob((uint64_t)hat_getpfnum(kas.a_hat, src)) 585 + ueoff; 586 cmn_err(CE_WARN, "memory error at PA 0x%08x.%08x", 587 (uint32_t)(pa >> 32), (uint32_t)pa); 588 } 589 #ifdef _LP64 590 wdst[w++] = 0xbadecc00badecc; 591 #else 592 wdst[w++] = 0xbadecc; 593 #endif 594 } 595 while (w < ncopies) { 596 wdst[w] = wsrc[w]; 597 w++; 598 } 599 no_trap(); 600 } 601 602 /* 603 * Dump the system. 604 */ 605 void 606 dumpsys(void) 607 { 608 pfn_t pfn; 609 pgcnt_t bitnum; 610 int npages = 0; 611 int percent_done = 0; 612 uint32_t csize; 613 u_offset_t total_csize = 0; 614 int compress_ratio; 615 proc_t *p; 616 pid_t npids, pidx; 617 char *content; 618 619 if (dumpvp == NULL || dumphdr == NULL) { 620 uprintf("skipping system dump - no dump device configured\n"); 621 return; 622 } 623 dumpbuf_cur = dumpbuf_start; 624 625 /* 626 * Calculate the starting block for dump. If we're dumping on a 627 * swap device, start 1/5 of the way in; otherwise, start at the 628 * beginning. And never use the first page -- it may be a disk label. 629 */ 630 if (dumpvp->v_flag & VISSWAP) 631 dumphdr->dump_start = P2ROUNDUP(dumpvp_size / 5, DUMP_OFFSET); 632 else 633 dumphdr->dump_start = DUMP_OFFSET; 634 635 dumphdr->dump_flags = DF_VALID | DF_COMPLETE | DF_LIVE; 636 dumphdr->dump_crashtime = gethrestime_sec(); 637 dumphdr->dump_npages = 0; 638 dumphdr->dump_nvtop = 0; 639 bzero(dump_bitmap, BT_SIZEOFMAP(dump_bitmapsize)); 640 dump_timeleft = dump_timeout; 641 642 if (panicstr) { 643 dumphdr->dump_flags &= ~DF_LIVE; 644 (void) VOP_DUMPCTL(dumpvp, DUMP_FREE, NULL, NULL); 645 (void) VOP_DUMPCTL(dumpvp, DUMP_ALLOC, NULL, NULL); 646 (void) vsnprintf(dumphdr->dump_panicstring, DUMP_PANICSIZE, 647 panicstr, panicargs); 648 } 649 650 if (dump_conflags & DUMP_ALL) 651 content = "all"; 652 else if (dump_conflags & DUMP_CURPROC) 653 content = "kernel + curproc"; 654 else 655 content = "kernel"; 656 uprintf("dumping to %s, offset %lld, content: %s\n", dumppath, 657 dumphdr->dump_start, content); 658 659 /* 660 * Leave room for the message and ereport save areas and terminal dump 661 * header. 662 */ 663 dumpvp_limit = dumpvp_size - DUMP_LOGSIZE - DUMP_OFFSET - DUMP_ERPTSIZE; 664 665 /* 666 * Write out the symbol table. It's no longer compressed, 667 * so its 'size' and 'csize' are equal. 668 */ 669 dumpvp_off = dumphdr->dump_ksyms = dumphdr->dump_start + PAGESIZE; 670 dumphdr->dump_ksyms_size = dumphdr->dump_ksyms_csize = 671 ksyms_snapshot(dumpvp_ksyms_write, NULL, LONG_MAX); 672 673 /* 674 * Write out the translation map. 675 */ 676 dumphdr->dump_map = dumpvp_flush(); 677 dump_as(&kas); 678 dumphdr->dump_nvtop += dump_plat_addr(); 679 680 /* 681 * call into hat, which may have unmapped pages that also need to 682 * be in the dump 683 */ 684 hat_dump(); 685 686 if (dump_conflags & DUMP_ALL) { 687 mutex_enter(&pidlock); 688 689 for (npids = 0, p = practive; p != NULL; p = p->p_next) 690 dump_pids[npids++] = p->p_pid; 691 692 mutex_exit(&pidlock); 693 694 for (pidx = 0; pidx < npids; pidx++) 695 (void) dump_process(dump_pids[pidx]); 696 697 for (bitnum = 0; bitnum < dump_bitmapsize; bitnum++) { 698 dump_timeleft = dump_timeout; 699 BT_SET(dump_bitmap, bitnum); 700 } 701 dumphdr->dump_npages = dump_bitmapsize; 702 dumphdr->dump_flags |= DF_ALL; 703 704 } else if (dump_conflags & DUMP_CURPROC) { 705 /* 706 * Determine which pid is to be dumped. If we're panicking, we 707 * dump the process associated with panic_thread (if any). If 708 * this is a live dump, we dump the process associated with 709 * curthread. 710 */ 711 npids = 0; 712 if (panicstr) { 713 if (panic_thread != NULL && 714 panic_thread->t_procp != NULL && 715 panic_thread->t_procp != &p0) { 716 dump_pids[npids++] = 717 panic_thread->t_procp->p_pid; 718 } 719 } else { 720 dump_pids[npids++] = curthread->t_procp->p_pid; 721 } 722 723 if (npids && dump_process(dump_pids[0]) == 0) 724 dumphdr->dump_flags |= DF_CURPROC; 725 else 726 dumphdr->dump_flags |= DF_KERNEL; 727 728 } else { 729 dumphdr->dump_flags |= DF_KERNEL; 730 } 731 732 dumphdr->dump_hashmask = (1 << highbit(dumphdr->dump_nvtop - 1)) - 1; 733 734 /* 735 * Write out the pfn table. 736 */ 737 dumphdr->dump_pfn = dumpvp_flush(); 738 for (bitnum = 0; bitnum < dump_bitmapsize; bitnum++) { 739 dump_timeleft = dump_timeout; 740 if (!BT_TEST(dump_bitmap, bitnum)) 741 continue; 742 pfn = dump_bitnum_to_pfn(bitnum); 743 ASSERT(pfn != PFN_INVALID); 744 dumpvp_write(&pfn, sizeof (pfn_t)); 745 } 746 dump_plat_pfn(); 747 748 /* 749 * Write out all the pages. 750 */ 751 dumphdr->dump_data = dumpvp_flush(); 752 for (bitnum = 0; bitnum < dump_bitmapsize; bitnum++) { 753 dump_timeleft = dump_timeout; 754 if (!BT_TEST(dump_bitmap, bitnum)) 755 continue; 756 pfn = dump_bitnum_to_pfn(bitnum); 757 ASSERT(pfn != PFN_INVALID); 758 759 /* 760 * Map in page frame 'pfn', scan it for UE's while copying 761 * the data to dump_uebuf, unmap it, compress dump_uebuf into 762 * dump_cbuf, and write out dump_cbuf. The UE check ensures 763 * that we don't lose the whole dump because of a latent UE. 764 */ 765 hat_devload(kas.a_hat, dump_cmap, PAGESIZE, pfn, PROT_READ, 766 HAT_LOAD_NOCONSIST); 767 dump_pagecopy(dump_cmap, dump_uebuf); 768 hat_unload(kas.a_hat, dump_cmap, PAGESIZE, HAT_UNLOAD); 769 csize = (uint32_t)compress(dump_uebuf, dump_cbuf, PAGESIZE); 770 dumpvp_write(&csize, sizeof (uint32_t)); 771 dumpvp_write(dump_cbuf, csize); 772 if (dump_ioerr) { 773 dumphdr->dump_flags &= ~DF_COMPLETE; 774 dumphdr->dump_npages = npages; 775 break; 776 } 777 total_csize += csize; 778 if (++npages * 100LL / dumphdr->dump_npages > percent_done) { 779 uprintf("^\r%3d%% done", ++percent_done); 780 if (!panicstr) 781 delay(1); /* let the output be sent */ 782 } 783 } 784 dumphdr->dump_npages += dump_plat_data(dump_cbuf); 785 786 (void) dumpvp_flush(); 787 788 /* 789 * Write out the initial and terminal dump headers. 790 */ 791 dumpvp_off = dumphdr->dump_start; 792 dumpvp_write(dumphdr, sizeof (dumphdr_t)); 793 (void) dumpvp_flush(); 794 795 dumpvp_limit = dumpvp_size; 796 dumpvp_off = dumpvp_limit - DUMP_OFFSET; 797 dumpvp_write(dumphdr, sizeof (dumphdr_t)); 798 (void) dumpvp_flush(); 799 800 compress_ratio = (int)(100LL * npages / (btopr(total_csize + 1))); 801 802 uprintf("\r%3d%% done: %d pages dumped, compression ratio %d.%02d, ", 803 percent_done, npages, compress_ratio / 100, compress_ratio % 100); 804 805 if (dump_ioerr == 0) { 806 uprintf("dump succeeded\n"); 807 } else { 808 uprintf("dump failed: error %d\n", dump_ioerr); 809 if (panicstr && dumpfaildebug) 810 debug_enter("dump failed"); 811 } 812 813 /* 814 * Write out all undelivered messages. This has to be the *last* 815 * thing we do because the dump process itself emits messages. 816 */ 817 if (panicstr) { 818 dump_ereports(); 819 dump_messages(); 820 } 821 822 delay(2 * hz); /* let people see the 'done' message */ 823 dump_timeleft = 0; 824 dump_ioerr = 0; 825 } 826 827 /* 828 * This function is called whenever the memory size, as represented 829 * by the phys_install list, changes. 830 */ 831 void 832 dump_resize() 833 { 834 mutex_enter(&dump_lock); 835 dumphdr_init(); 836 dumpbuf_resize(); 837 mutex_exit(&dump_lock); 838 } 839 840 /* 841 * This function allows for dynamic resizing of a dump area. It assumes that 842 * the underlying device has update its appropriate size(9P). 843 */ 844 int 845 dumpvp_resize() 846 { 847 int error; 848 vattr_t vattr; 849 850 mutex_enter(&dump_lock); 851 vattr.va_mask = AT_SIZE; 852 if ((error = VOP_GETATTR(dumpvp, &vattr, 0, kcred, NULL)) != 0) { 853 mutex_exit(&dump_lock); 854 return (error); 855 } 856 857 if (error == 0 && vattr.va_size < 2 * DUMP_LOGSIZE + DUMP_ERPTSIZE) { 858 mutex_exit(&dump_lock); 859 return (ENOSPC); 860 } 861 862 dumpvp_size = vattr.va_size & -DUMP_OFFSET; 863 mutex_exit(&dump_lock); 864 return (0); 865 } 866